-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathG_printed.txt
83 lines (83 loc) · 4.59 KB
/
G_printed.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
UnetGenerator (
(model): UnetSkipConnectionBlock (
(model): Sequential (
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): UnetSkipConnectionBlock (
(model): Sequential (
(0): LeakyReLU (0.2, inplace)
(1): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(3): UnetSkipConnectionBlock (
(model): Sequential (
(0): LeakyReLU (0.2, inplace)
(1): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(3): UnetSkipConnectionBlock (
(model): Sequential (
(0): LeakyReLU (0.2, inplace)
(1): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(3): UnetSkipConnectionBlock (
(model): Sequential (
(0): LeakyReLU (0.2, inplace)
(1): Conv2d(512, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(3): UnetSkipConnectionBlock (
(model): Sequential (
(0): LeakyReLU (0.2, inplace)
(1): Conv2d(512, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(3): UnetSkipConnectionBlock (
(model): Sequential (
(0): LeakyReLU (0.2, inplace)
(1): Conv2d(512, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(3): UnetSkipConnectionBlock (
(model): Sequential (
(0): LeakyReLU (0.2, inplace)
(1): Conv2d(512, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(2): ReLU (inplace)
(3): ConvTranspose2d(512, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(4): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
)
)
(4): ReLU (inplace)
(5): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(7): Dropout (p = 0.5)
)
)
(4): ReLU (inplace)
(5): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(7): Dropout (p = 0.5)
)
)
(4): ReLU (inplace)
(5): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(7): Dropout (p = 0.5)
)
)
(4): ReLU (inplace)
(5): ConvTranspose2d(1024, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
)
)
(4): ReLU (inplace)
(5): ConvTranspose2d(512, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
)
)
(4): ReLU (inplace)
(5): ConvTranspose2d(256, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
)
)
(2): ReLU (inplace)
(3): ConvTranspose2d(128, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(4): Tanh ()
)
)
)
Total number of parameters: 54413955