-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_c_program_compression.py
355 lines (311 loc) · 11.7 KB
/
make_c_program_compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import typer
import mlflow
import pickle
import numpy as np
import pandas as pd
import seaborn as sns
from simplify_leaves_mnist import FFFWrapper
from matplotlib import pyplot as plt
def get_split_code(array, bias):
code = """
acc = """ + " + ".join(f"x[{i}] * {v}" for i, v in enumerate(array)) + """;
acc += """ + str(bias[0]) + """;
"""
return code
def get_output_code(w1, b1, w2, b2):
code = """
float hidden[""" + str(w1.shape[1]) + """];
"""
for i in range(w1.shape[1]):
code += f"hidden[{i}] = {b1[i]} + " + " + ".join(f"x[{j}] * {v}" for j, v in enumerate(w1[:, i])) + ";\n"
code += f"hidden[{i}] = hidden[{i}] > 0 ? hidden[{i}] : 0;\n"
code += """
float logits[""" + str(w2.shape[1]) + """];
"""
for j in range(w2.shape[1]):
code += f"logits[{j}] = {b2[j]} + " + " + ".join(f"hidden[{i}] * {v}" for i, v in enumerate(w2[:, j])) + ";\n"
code += f"logits[{j}] = logits[{j}] > 0 ? logits[{j}] : 0;\n"
code += """
max = 0.0;
argmax = 0;
for (int i = 0; i < """ + str(w2.shape[1]) + """; i++) {
if (logits[i] > max) {
max = logits[i];
argmax = i;
}
}
return argmax;
"""
return code
def get_splits(weights, biases):
code = """int perform_inference(float* x) {
float acc;
float max;
int argmax;
<replaceme>
}"""
for index, (array, bias) in enumerate(zip(weights, biases)):
code = code.replace("<replaceme>", get_split_code(array, bias), 1)
return code
class Node:
def __init__(self, array, bias, left, right):
self._array = array
self._bias = bias
self._left = left
self._right = right
def __str__(self):
code = get_split_code(self._array, self._bias)
code += """
if (acc >= 0) {
""" + str(self._left) + """
} else {
""" + str(self._right) + """
}
"""
return code
class Leaf(Node):
def __init__(self, w1, b1, w2, b2):
self._w1 = w1
self._b1 = b1
self._w2 = w2
self._b2 = b2
def __str__(self):
if self._w2 is None:
return f"return {self._w1};\n"
return get_output_code(self._w1, self._b1, self._w2, self._b2)
def print_parameters(params, key, lines, line, flit, skipTruncatedLeaves, sizes_print=False, index_print=True):
# the first check on the sparsity on the weight also consider the non zero values of truncated leaves
weight = params[key]
dim = len(weight.shape)
non_zero_values = np.count_nonzero(weight)
first_dim = weight.shape[0]
sparse = False
if (dim == 2):
weight_row = weight.shape[0]
weight_col = weight.shape[1]
sparse = non_zero_values < ((weight_row * (weight_col - 1) - 1) / 2)
elif (dim == 3):
weight_depth = weight.shape[0]
weight_row = weight.shape[1]
weight_col = weight.shape[2]
size_requested = weight_depth * weight_row * weight_col
sparse = non_zero_values < ((size_requested - weight_depth) / 2)
if (not sparse):
# print the parameters as usal
lines.insert(
line,
"#define " + key + "_SPARSE " + str(0) + "\n"
)
line += 1
line += 1
param = weight
if (key in ['LEAF_HIDDEN_WEIGHTS', 'LEAF_HIDDEN_BIASES', 'LEAF_OUTPUT_WEIGHTS', 'LEAF_OUTPUT_BIASES']):
if (skipTruncatedLeaves):
param = param[params['FASTINFERENCE'] == -1]
param = param.flatten()
tmp = ""
if (flit and key not in ['FASTINFERENCE']):
tmp = ", ".join(["F_LIT(" + str(x) + ")" for x in param])
else:
tmp = ", ".join([str(x) for x in param])
lines.insert(
line,
tmp
)
else:
# CSC or CSR format
leaves_values = np.empty([0], dtype=float)
leaves_offsets = np.empty([0], dtype=int)
leaves_sizes = None
printed_dim = key + "_DIM_1"
if (sizes_print):
leaves_sizes = np.empty([first_dim], dtype=int)
elif(index_print):
leaves_sizes = np.zeros([1], dtype=int)
printed_dim += " + 1"
value_position = 0
actual_non_zero_values = 0
for index, leaf_weight in enumerate(weight): # from 0 to first_dim
if (key in ['LEAF_HIDDEN_WEIGHTS', 'LEAF_HIDDEN_BIASES', 'LEAF_OUTPUT_WEIGHTS', 'LEAF_OUTPUT_BIASES']):
# insert filters non zero values into the fitler sizes
if (params['FASTINFERENCE'][index] != -1 and skipTruncatedLeaves):
leaves_sizes[index] = 0
continue
# insert filters non zero values into the fitler sizes
non_zero_values_here = np.count_nonzero(leaf_weight)
actual_non_zero_values += non_zero_values_here
# flatten the filter
flatten_leaf = leaf_weight.ravel()
offset = 1
if (sizes_print):
# _sizes[DIM_1] = for each node/leaf we save the number of NNZ contained
leaves_sizes[index] = non_zero_values_here
elif (index_print):
# _sizes[DIM_1 + 1] = for each node/leaf we save the index in _data array of the starting value
# _sizes from {0 up to NNZ}
leaves_sizes = np.append(leaves_sizes, actual_non_zero_values)
for value in flatten_leaf: # from 0 to (n_depth * n_height * n_width)
if (value == 0):
# increase offset
offset += 1
else:
# save value, save index, reset offset, increase position
leaves_values = np.append(leaves_values, value)
leaves_offsets = np.append(leaves_offsets, offset)
leaves_values[value_position] = value
leaves_offsets[value_position] = offset
offset = 1
value_position += 1
tmp = ""
# substitute the definition
lines[line] = "#define " + key + "_NNZ " + str(actual_non_zero_values) + "\n"
line+=1
lines.insert(
line,
"#define " + key + "_DIM " + str(dim) + "\n"
)
line+=1
lines.insert(
line,
"#define " + key + "_SPARSE " + str(1) + "\n"
)
for d in range(0, dim):
line+=1
lines.insert(
line,
"#define " + key + "_DIM_" + str(d + 1) + " " + str(weight.shape[d]) + "\n"
)
line+=1
lines.insert(
line,
"__hifram fixed " + key + "_data[" + key + "_NNZ] = {\n"
)
line+=1
if flit:
tmp = ", ".join(["F_LIT(" + str(x) + ")" for x in leaves_values])
else:
tmp = ", ".join([str(x) for x in leaves_values])
lines.insert(
line,
tmp
)
line+=1
line+=1
line+=1
lines.insert(
line,
"\n__hifram fixed " + key + "_offset[" + key + "_NNZ] = {\n"
)
line+=1
if (flit and False):
tmp = ", ".join(["F_LIT(" + str(x) + ")" for x in leaves_offsets])
else:
tmp = ", ".join([str(x) for x in leaves_offsets])
lines.insert(
line,
tmp
)
line+=1
lines.insert(
line,
"\n"
)
line+=1
lines.insert(
line,
"};\n"
)
line+=1
lines.insert(
line,
"\n__hifram fixed " + key + "_sizes[" + printed_dim + "] = {\n"
)
line+=1
if (flit and False):
tmp = ", ".join(["F_LIT(" + str(x) + ")" for x in leaves_sizes])
else:
tmp = ", ".join([str(x) for x in leaves_sizes])
lines.insert(
line,
tmp
)
line+=1
lines.insert(
line,
"\n"
)
line+=1
lines.insert(
line,
"};\n\n"
)
def make_program(wrapped_model, flit=True, skipTruncatedLeaves=False):
mlflow.artifacts.download_artifacts(run_id=run_id, dst_path=".")
wrapped_model = pickle.load(open("./truncated_model.pkl", "rb"))
node_weights = wrapped_model._fff.fff.node_weights.cpu().detach().numpy()
node_biases = wrapped_model._fff.fff.node_biases.cpu().detach().numpy()
w1s = wrapped_model._fff.fff.w1s
b1s = wrapped_model._fff.fff.b1s.cpu().detach().numpy()
w2s = wrapped_model._fff.fff.w2s
b2s = wrapped_model._fff.fff.b2s.cpu().detach().numpy()
fastinference = wrapped_model._fastinference
w1s = w1s.transpose(1, 2).cpu().detach().numpy()
w2s = w2s.transpose(1, 2).cpu().detach().numpy()
params = {}
params['NODE_WEIGHTS'] = node_weights
params['NODE_BIASES'] = node_biases
params['FASTINFERENCE'] = np.array([-1 if x is None else int(x.argmax()) for x in fastinference])
actual_leaves_weights = w1s
actual_leaves_biases = b1s
actual_leaves_out_weights = w2s
actual_leaves_out_biases = b2s
params['LEAF_HIDDEN_WEIGHTS'] = actual_leaves_weights
params['LEAF_HIDDEN_BIASES'] = actual_leaves_biases
params['LEAF_OUTPUT_WEIGHTS'] = actual_leaves_out_weights
params['LEAF_OUTPUT_BIASES'] = actual_leaves_out_biases
with open("weights.h", "w") as f:
with open("weights_template.h") as in_f:
lines = in_f.readlines()
i = 0
while i < len(lines):
i += 1
if "Add definitions here" in lines[i]:
break
lines[i] = (f"""#define DEPTH {wrapped_model._fff.fff.depth.item()}
#define N_LEAVES {2 ** wrapped_model._fff.fff.depth.item()}
#define INPUT_SIZE {wrapped_model._fff.fff.input_width}
#define LEAF_WIDTH {wrapped_model._fff.fff.leaf_width}
#define OUTPUT_SIZE {wrapped_model._fff.fff.output_width}
#define SIMPLIFIED_LEAVES {sum([f is not None for f in fastinference])}""")
i+=1
lines.insert(i, "\n")
# lines.insert(i+7, """
# float FASTINFERENCE[N_LEAVES] = {-1};
# float NODE_WEIGHTS[N_LEAVES-1][INPUT_SIZE];
# float NODE_BIASES[N_LEAVES-1];
# float LEAF_HIDDEN_WEIGHTS[N_LEAVES-SIMPLIFIED_LEAVES][LEAF_WIDTH][INPUT_SIZE];
# float LEAF_OUTPUT_WEIGHTS[N_LEAVES-SIMPLIFIED_LEAVES][OUTPUT_SIZE][LEAF_WIDTH];
# float LEAF_HIDDEN_BIASES[N_LEAVES-SIMPLIFIED_LEAVES][LEAF_WIDTH];
# float LEAF_OUTPUT_BIASES[N_LEAVES-SIMPLIFIED_LEAVES][OUTPUT_SIZE];
# """)
for key in params.keys():
i = 0
while i < len(lines):
if f"fixed {key}" in lines[i]:
break
i += 1
print_parameters(params, key, lines, i, flit, skipTruncatedLeaves)
f.writelines(lines)
return wrapped_model
def main(run_id):
import torch
net = make_program(run_id)
net._fff.eval()
X = np.loadtxt('test.txt')
X = torch.Tensor(X)
with open('ref_outputs.txt', 'w') as f:
y = net(X).argmax(1)
y = [(str(x) + "\n") for x in y.detach().cpu().numpy()]
f.writelines(y)
if __name__ == "__main__":
typer.run(main)