forked from pierotofy/OpenSplat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.cpp
159 lines (127 loc) · 4.78 KB
/
visualizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include "visualizer.hpp"
#include <algorithm>
#include <chrono>
#include <thread>
#include <pangolin/display/display.h>
bool Visualizer::Initialize(int iter_num) {
pangolin::CreateWindowAndBind("OpenSplat", 1200, 1000);
glEnable(GL_DEPTH_TEST);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
cam_state_ = std::make_unique<pangolin::OpenGlRenderState>(
pangolin::ProjectionMatrix(1200, 1000, 420, 420, 600, 500, 0.1f, 1000),
pangolin::ModelViewLookAt(-1, 1, -1, 0, 0, 0, pangolin::AxisNegY));
point_cloud_viewer_ = std::make_unique<pangolin::View>();
point_cloud_viewer_->SetBounds(1 / 4.0f, 1.0f, 0.0f, 1 / 2.0f, true);
point_cloud_viewer_->SetHandler(new pangolin::Handler3D(*cam_state_));
pangolin::DisplayBase().AddDisplay(*point_cloud_viewer_);
render_viewer_ = std::make_unique<pangolin::View>();
render_viewer_->SetBounds(1 / 4.0f, 1.0f, 1 / 2.0f, 1.0f, true);
pangolin::DisplayBase().AddDisplay(*render_viewer_);
loss_log_.SetLabels({"loss"});
float plotter_range_x = iter_num > 0 ? iter_num : 2000.0f;
float plotter_range_y = 0.3;
loss_viewer_ = std::make_unique<pangolin::Plotter>(
&loss_log_, 0.0f, plotter_range_x, 0.0f, plotter_range_y, 1.f, 0.01f);
loss_viewer_->SetBounds(0.0f, 1 / 4.0f, 0.0f, 2 / 3.0f, true);
loss_viewer_->Track("$i");
pangolin::DisplayBase().AddDisplay(*loss_viewer_);
panel_viewer_ = std::make_unique<pangolin::Panel>("panel");
panel_viewer_->SetBounds(0.0f, 1 / 4.0f, 2 / 3.0f, 1.0f, true);
pangolin::DisplayBase().AddDisplay(*panel_viewer_);
step_ = std::make_unique<pangolin::Var<int>>("panel.step", 0);
init_gaussian_num_ =
std::make_unique<pangolin::Var<int>>("panel.init gaussian num", 0);
gaussian_num_ = std::make_unique<pangolin::Var<int>>("panel.gaussian num", 0);
loss_ = std::make_unique<pangolin::Var<float>>("panel.loss", 0.0f);
pause_button_ =
std::make_unique<pangolin::Var<bool>>("panel.Start/Pause", false, false);
return true;
}
void Visualizer::SetLoss(int step, float loss) {
loss_log_.Log(loss);
if (loss_viewer_) {
pangolin::XYRangef& range = loss_viewer_->GetView();
if (loss > range.y.max) {
range.y.max = loss;
}
}
if (loss_) {
*loss_ = loss;
}
if (step_) {
*step_ = step;
}
}
void Visualizer::SetInitialGaussianNum(int num) {
if (init_gaussian_num_) {
*init_gaussian_num_ = num;
}
}
void Visualizer::SetGaussians(const torch::Tensor& means,
const torch::Tensor& covariances,
const torch::Tensor& colors,
const torch::Tensor& opacities) {
means_ = means.cpu();
covariances_ = covariances.cpu();
colors_ = colors.cpu();
opacities_ = opacities.cpu();
if (gaussian_num_) {
*gaussian_num_ = means_.size(0);
}
}
void Visualizer::SetImage(const torch::Tensor& rendered_img,
const torch::Tensor& gt_img) {
rendered_img_ = (rendered_img.cpu() * 255).to(torch::kUInt8);
gt_img_ = (gt_img.cpu() * 255).to(torch::kUInt8);
}
void Visualizer::Draw() {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
DrawGaussians();
DrawImage();
pangolin::FinishFrame();
while (*pause_button_) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
pangolin::WindowInterface* window = pangolin::GetBoundWindow();
if (window) {
window->ProcessEvents();
} else {
break;
}
}
}
bool Visualizer::DrawGaussians() {
if (!point_cloud_viewer_) return false;
static const double c0 = 0.28209479177387814;
auto sh2rgb = [](float sh) {
return static_cast<float>(std::max(std::min(sh * c0 + 0.5, 1.0), 0.0));
};
point_cloud_viewer_->Activate(*cam_state_);
glColor3f(1.0, 1.0, 1.0);
int gaussian_num = means_.size(0);
auto mean_accessor = means_.accessor<float, 2>();
auto color_accessor = colors_.accessor<float, 2>();
glBegin(GL_POINTS);
for (int i = 0; i < gaussian_num; ++i) {
glColor3f(sh2rgb(color_accessor[i][0]), sh2rgb(color_accessor[i][1]),
sh2rgb(color_accessor[i][2]));
glVertex3f(mean_accessor[i][0], mean_accessor[i][1], mean_accessor[i][2]);
}
glEnd();
return true;
}
bool Visualizer::DrawImage() {
if (!render_viewer_) return false;
torch::Tensor concatenated_img;
concatenated_img = torch::cat({rendered_img_, gt_img_}, 0);
const int width = concatenated_img.size(1);
const int height = concatenated_img.size(0);
pangolin::GlTexture imageTexture(width, height, GL_RGB, false, 0, GL_RGB,
GL_UNSIGNED_BYTE);
unsigned char* data = concatenated_img.data_ptr<unsigned char>();
imageTexture.Upload(data, GL_RGB, GL_UNSIGNED_BYTE);
render_viewer_->SetAspect(static_cast<float>(width) / height);
render_viewer_->Activate();
glColor3f(1.0, 1.0, 1.0);
imageTexture.RenderToViewport(true);
return true;
}