This repository has been archived by the owner on Nov 13, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot-runtimes.r
49 lines (35 loc) · 1.82 KB
/
plot-runtimes.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
r <- read.csv("runtimes.csv", sep=";")
scaleout.flink <- r[r$framework=="f" & r$files==100 & r$sig=="1" & r$lengthclass=="n" & r$goal=="find sims",]
scaleout.spark <- r[r$framework=="s" & r$files==100 & r$sig=="1" & r$lengthclass=="n" & r$goal=="find sims",]
scaleout.spark <- scaleout.spark[c(2,3,4,5,6),]
scaleout.spark <- scaleout.spark[order(scaleout.spark$cores),]
scaleout.flink <- scaleout.flink[order(scaleout.flink$cores),]
pdf("runtime.pdf")
plot(c(scaleout.spark$cores, scaleout.flink$cores), c(scaleout.spark$time.mins, scaleout.flink$time.mins),
main="Runtime", xlab="Workers", ylab="Runtime in minutes",
ylim=c(0,55), type="n"
)
lines(scaleout.spark$cores, scaleout.spark$time.mins, col="blue", pch=8, type="o")
lines(scaleout.flink$cores, scaleout.flink$time.mins, col="red", pch=19, type="o")
dev.off()
t.spark <- scaleout.spark$time.mins
t.flink <- scaleout.flink$time.mins
pdf("relative-speedup.pdf")
plot(c(scaleout.spark$cores, scaleout.flink$cores), max(t.flink)/c(t.spark, t.flink),
main="Relative Speedup T1/Tn", xlab="Workers", ylab="Speedup",
ylim=c(0,20), type="n",
)
lines(scaleout.spark$cores, max(t.spark)/scaleout.spark$time.mins, col="blue", pch=8, type="o")
lines(scaleout.flink$cores, max(t.flink)/scaleout.flink$time.mins, col="red", pch=19, type="o")
abline(0,1)
dev.off()
dataset.flink <- r[r$framework=="f" & r$sig=="1" & r$lengthclass=="n" & r$goal=="find sims" & r$cores==20, ]
dataset.flink <- dataset.flink[order(dataset.flink$files), ]
pdf("scale-datasize.pdf")
plot(dataset.flink$files/10, dataset.flink$time.mins,
main="Runtime Flink 0.9.0, 20 Workers, 4GB RAM", xlab="data set size (users) in percent", ylab="Runtime in minutes",
ylim=c(0,145)
)
lines(dataset.flink$files/10, dataset.flink$time.mins, col="red", pch=19)
lines(c(10, 20, 50) , c(5.1,5.1 *4, 5.1*25), lty=2, type="o")
dev.off()