forked from NVIDIA/FastPhotoStyle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_stylization_ade20k_ssn.py
213 lines (183 loc) · 8.93 KB
/
process_stylization_ade20k_ssn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.utils as utils
import torch.nn as nn
from smooth_filter import smooth_filter
from process_stylization import Timer, memory_limit_image_resize
from scipy.io import loadmat
colors = loadmat('segmentation/data/color150.mat')['colors']
def overlay(img, pred_color, blend_factor=0.4):
import cv2
edges = cv2.Canny(pred_color, 20, 40)
edges = cv2.dilate(edges, np.ones((5,5),np.uint8), iterations=1)
out = (1-blend_factor)*img + blend_factor * pred_color
edge_pixels = (edges==255)
new_color = [0,0,255]
for i in range(0,3):
timg = out[:,:,i]
timg[edge_pixels]=new_color[i]
out[:,:,i] = timg
return out
def visualize_result(label_map):
label_map = label_map.astype('int')
label_map_rgb = np.zeros((label_map.shape[0], label_map.shape[1], 3), dtype=np.uint8)
for label in np.unique(label_map):
label_map_rgb += (label_map == label)[:, :, np.newaxis] * \
np.tile(colors[label],(label_map.shape[0], label_map.shape[1], 1))
return label_map_rgb
class SegReMapping:
def __init__(self, mapping_name, min_ratio=0.02):
self.label_mapping = np.load(mapping_name)
self.min_ratio = min_ratio
def cross_remapping(self, cont_seg, styl_seg):
cont_label_info = []
new_cont_label_info = []
for label in np.unique(cont_seg):
cont_label_info.append(label)
new_cont_label_info.append(label)
style_label_info = []
new_style_label_info = []
for label in np.unique(styl_seg):
style_label_info.append(label)
new_style_label_info.append(label)
cont_set_diff = set(cont_label_info) - set(style_label_info)
# Find the labels that are not covered by the style
# Assign them to the best matched region in the style region
for s in cont_set_diff:
cont_label_index = cont_label_info.index(s)
for j in range(self.label_mapping.shape[0]):
new_label = self.label_mapping[j, s]
if new_label in style_label_info:
new_cont_label_info[cont_label_index] = new_label
break
new_cont_seg = cont_seg.copy()
for i,current_label in enumerate(cont_label_info):
new_cont_seg[(cont_seg == current_label)] = new_cont_label_info[i]
cont_label_info = []
for label in np.unique(new_cont_seg):
cont_label_info.append(label)
styl_set_diff = set(style_label_info) - set(cont_label_info)
valid_styl_set = set(style_label_info) - set(styl_set_diff)
for s in styl_set_diff:
style_label_index = style_label_info.index(s)
for j in range(self.label_mapping.shape[0]):
new_label = self.label_mapping[j, s]
if new_label in valid_styl_set:
new_style_label_info[style_label_index] = new_label
break
new_styl_seg = styl_seg.copy()
for i,current_label in enumerate(style_label_info):
# print("%d -> %d" %(current_label,new_style_label_info[i]))
new_styl_seg[(styl_seg == current_label)] = new_style_label_info[i]
return new_cont_seg, new_styl_seg
def self_remapping(self, seg):
init_ratio = self.min_ratio
# Assign label with small portions to label with large portion
new_seg = seg.copy()
[h,w] = new_seg.shape
n_pixels = h*w
# First scan through what are the available labels and their sizes
label_info = []
ratio_info = []
new_label_info = []
for label in np.unique(seg):
ratio = np.sum(np.float32((seg == label))[:])/n_pixels
label_info.append(label)
new_label_info.append(label)
ratio_info.append(ratio)
for i,current_label in enumerate(label_info):
if ratio_info[i] < init_ratio:
for j in range(self.label_mapping.shape[0]):
new_label = self.label_mapping[j,current_label]
if new_label in label_info:
index = label_info.index(new_label)
if index >= 0:
if ratio_info[index] >= init_ratio:
new_label_info[i] = new_label
break
for i,current_label in enumerate(label_info):
new_seg[(seg == current_label)] = new_label_info[i]
return new_seg
def stylization(stylization_module, smoothing_module, content_image_path, style_image_path, content_seg_path,
style_seg_path, output_image_path,
cuda, save_intermediate, no_post, label_remapping, output_visualization=False):
# Load image
with torch.no_grad():
cont_img = Image.open(content_image_path).convert('RGB')
styl_img = Image.open(style_image_path).convert('RGB')
new_cw, new_ch = memory_limit_image_resize(cont_img)
new_sw, new_sh = memory_limit_image_resize(styl_img)
cont_pilimg = cont_img.copy()
styl_pilimg = styl_img.copy()
cw = cont_pilimg.width
ch = cont_pilimg.height
try:
cont_seg = Image.open(content_seg_path)
styl_seg = Image.open(style_seg_path)
cont_seg.resize((new_cw, new_ch), Image.NEAREST)
styl_seg.resize((new_sw, new_sh), Image.NEAREST)
except:
cont_seg = []
styl_seg = []
cont_img = transforms.ToTensor()(cont_img).unsqueeze(0)
styl_img = transforms.ToTensor()(styl_img).unsqueeze(0)
if cuda:
cont_img = cont_img.cuda(0)
styl_img = styl_img.cuda(0)
stylization_module.cuda(0)
# cont_img = Variable(cont_img, volatile=True)
# styl_img = Variable(styl_img, volatile=True)
cont_seg = np.asarray(cont_seg)
styl_seg = np.asarray(styl_seg)
cont_seg = label_remapping.self_remapping(cont_seg)
styl_seg = label_remapping.self_remapping(styl_seg)
cont_seg, styl_seg = label_remapping.cross_remapping(cont_seg, styl_seg)
if output_visualization:
import cv2
cont_seg_vis = visualize_result(cont_seg)
styl_seg_vis = visualize_result(styl_seg)
cont_seg_vis = overlay(cv2.imread(content_image_path), cont_seg_vis)
styl_seg_vis = overlay(cv2.imread(style_image_path), styl_seg_vis)
cv2.imwrite(content_seg_path + '.visualization.jpg', cont_seg_vis)
cv2.imwrite(style_seg_path + '.visualization.jpg', styl_seg_vis)
if save_intermediate:
with Timer("Elapsed time in stylization: %f"):
stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg)
if ch != new_ch or cw != new_cw:
print("De-resize image: (%d,%d)->(%d,%d)" % (new_cw, new_ch, cw, ch))
stylized_img = nn.functional.upsample(stylized_img, size=(ch, cw), mode='bilinear')
utils.save_image(stylized_img.data.cpu().float(), output_image_path, nrow=1, padding=0)
with Timer("Elapsed time in propagation: %f"):
out_img = smoothing_module.process(output_image_path, content_image_path)
out_img.save(output_image_path)
if not cuda:
print("NotImplemented: The CPU version of smooth filter has not been implemented currently.")
return
if no_post is False:
with Timer("Elapsed time in post processing: %f"):
out_img = smooth_filter(output_image_path, content_image_path, f_radius=15, f_edge=1e-1)
out_img.save(output_image_path)
else:
with Timer("Elapsed time in stylization: %f"):
stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg)
if ch != new_ch or cw != new_cw:
print("De-resize image: (%d,%d)->(%d,%d)" % (new_cw, new_ch, cw, ch))
stylized_img = nn.functional.upsample(stylized_img, size=(ch, cw), mode='bilinear')
grid = utils.make_grid(stylized_img.data, nrow=1, padding=0)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
out_img = Image.fromarray(ndarr)
with Timer("Elapsed time in propagation: %f"):
out_img = smoothing_module.process(out_img, cont_pilimg)
if no_post is False:
with Timer("Elapsed time in post processing: %f"):
out_img = smooth_filter(out_img, cont_pilimg, f_radius=15, f_edge=1e-1)
out_img.save(output_image_path)
return