forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayesian_glm_logistic-binomial.Rmd
214 lines (167 loc) · 3.83 KB
/
bayesian_glm_logistic-binomial.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# 贝叶斯logistic-binomial模型 {#bayesian-glm-logistic-binomial}
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
library(tidybayes)
library(rstan)
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
theme_set(bayesplot::theme_default())
```
## 企鹅案例
筛选出物种为"Gentoo"的企鹅,并构建gender变量,male 对应1,female对应0
```{r}
library(palmerpenguins)
gentoo <- penguins %>%
filter(species == "Gentoo", !is.na(sex)) %>%
mutate(gender = if_else(sex == "male", 1, 0))
gentoo
```
### dotplots
借鉴ggdist的[Logit dotplots](https://mjskay.github.io/ggdist/articles/dotsinterval.html)
的画法,画出dotplot
```{r}
gentoo %>%
ggplot(aes(x = body_mass_g, y = sex, side = ifelse(sex == "male", "bottom", "top"))) +
geom_dots(scale = 0.5) +
ggtitle(
"geom_dots(scale = 0.5)",
'aes(side = ifelse(sex == "male", "bottom", "top"))'
)
```
$$
\begin{align*}
y_i & = \text{bernoulli}( p_i) \\
p_i & =\text{logit}^{-1}(X_i \beta)
\end{align*}
$$
### bayesian logit模型
```{r}
stan_program <- "
data {
int<lower=0> N;
vector[N] x;
int<lower=0,upper=1> y[N];
int<lower=0> M;
vector[M] new_x;
}
parameters {
real alpha;
real beta;
}
model {
// more efficient and arithmetically stable
y ~ bernoulli_logit(alpha + beta * x);
}
generated quantities {
vector[M] y_epred;
vector[M] mu = alpha + beta * new_x;
for(i in 1:M) {
y_epred[i] = inv_logit(mu[i]);
}
}
"
newdata <- data.frame(
body_mass_g = seq(min(gentoo$body_mass_g), max(gentoo$body_mass_g), length.out = 100)
)
stan_data <- list(
N = nrow(gentoo),
y = gentoo$gender,
x = gentoo$body_mass_g,
M = nrow(newdata),
new_x = newdata$body_mass_g
)
m <- stan(model_code = stan_program, data = stan_data)
```
```{r}
fit <- m %>%
tidybayes::gather_draws(y_epred[i]) %>%
ggdist::mean_qi(.value)
fit
```
两个图画在一起
```{r}
fit %>%
bind_cols(newdata) %>%
ggplot(aes(x = body_mass_g)) +
geom_dots(
data = gentoo,
aes(y = gender, side = ifelse(sex == "male", "bottom", "top")),
scale = 0.4
) +
geom_lineribbon(
aes(y = .value, ymin = .lower, ymax = .upper),
alpha = 1/4,
fill = "#08306b"
) +
labs(
title = "logit dotplot: stat_dots() with stat_lineribbon()",
subtitle = 'aes(side = ifelse(sex == "male", "bottom", "top"))',
x = "Body mass (g) of Gentoo penguins",
y = "Pr(sex = male)"
)
```
## 篮球案例
我们模拟100个选手每人投篮20次,假定命中概率是身高的线性函数,案例来源`chap15.3` of [Regression and Other Stories] (page270).
```{r}
n <- 100
data <-
tibble(size = 20,
height = rnorm(n, mean = 72, sd = 3)) %>%
mutate(y = rbinom(n, size = size, p = 0.4 + 0.1 * (height - 72) / 3))
head(data)
```
### 常规做法
```{r}
fit_glm <- glm(
cbind(y, 20-y) ~ height, family = binomial(link = "logit"),
data = data
)
fit_glm
```
### stan 代码
$$
\begin{align*}
y_i & = \text{Binomial}(n_i, p_i) \\
p_i & =\text{logit}^{-1}(X_i \beta)
\end{align*}
$$
```{r, warning=FALSE, message=FALSE}
stan_program <- "
data {
int<lower=0> N;
int<lower=0> K;
matrix[N, K] X;
int<lower=0> y[N];
int trials[N];
}
parameters {
vector[K] beta;
}
model {
for(i in 1:N) {
target += binomial_logit_lpmf(y[i] | trials[i], X[i] * beta);
}
}
"
stan_data <- data %>%
tidybayes::compose_data(
N = n,
K = 2,
y = y,
trials = size,
X = model.matrix(~ 1 + height)
)
fit <- stan(model_code = stan_program, data = stan_data)
```
```{r}
fit
```
```{r, echo = F}
# remove the objects
# rm(list=ls())
rm(gentoo, fit, m, stan_data, stan_program, data, fit_glm, fit, n)
```
```{r, echo = F, message = F, warning = F, results = "hide"}
ggplot2::theme_set(ggplot2::theme_grey())
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```