-
Notifications
You must be signed in to change notification settings - Fork 19
/
dump_helper.py
217 lines (180 loc) · 6.77 KB
/
dump_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import json
import mpu
import numpy
from datetime import datetime
import argparse
def pretty_time_delta(seconds):
seconds = int(seconds)
days, seconds = divmod(seconds, 86400)
hours, seconds = divmod(seconds, 3600)
minutes, seconds = divmod(seconds, 60)
if days > 0:
return '%dd%dh%dm%ds' % (days, hours, minutes, seconds)
elif hours > 0:
return '%dh%dm%ds' % (hours, minutes, seconds)
elif minutes > 0:
return '%dm%ds' % (minutes, seconds)
else:
return '%ds' % (seconds,)
def agg_fun1(data):
locations = data['locations']
locs = []
locs_d = dict()
for i in range(0, len(locations)):
l = locations[str(i)]
locs.append(l)
if l["address"] not in locs_d:
locs_d[l["address"]] = []
locs_d[l["address"]].append((l["latitude"], l["longitude"], l["accuracy"]))
print(f'found {len(locs_d)} locations')
aggr_loc = []
for addr in locs_d:
if addr == "Unknown":
continue
l = locs_d[addr]
lat = 0
lon = 0
acc = 0
for entry in l:
lat += entry[0]
lon += entry[1]
acc += entry[2]
lat /= len(l)
lon /= len(l)
acc /= len(l)
if acc < 100:
aggr_loc.append([addr, lat, lon, acc, len(l), True, 1, len(l)])
for i in range(0, len(aggr_loc)):
for j in range(i + 1, len(aggr_loc)):
src = aggr_loc[i]
dest = aggr_loc[j]
if src[5] == False or dest[5] == False:
continue
cross_addr_dist = mpu.haversine_distance((src[1], src[2]), (dest[1], dest[2])) * 1000
if cross_addr_dist < ((src[3] + dest[3]) / 2):
# print(f'clustering {src[0]} and {dest[0]} as they are {cross_addr_dist} apart s0 {src[3]} d0 {dest[3]}')
if src[4] >= dest[4]:
dest[5] = False
src[6] += dest[6]
src[7] += dest[4]
else:
src[5] = False
dest[6] += src[6]
dest[7] += src[4]
for entry in aggr_loc:
if entry[5]:
print(entry)
class Location:
def __init__(self, addr, lat, lon, acc, time):
self.locs = []
self.lat = lat
self.lon = lon
self.acc = acc
self.count = 1
self.startTime = time
self.endTime = time
self.locs.append([addr, 1])
pass
def append(self, addr, lat, lon, acc, time):
cross_addr_dist = mpu.haversine_distance((lat, lon), (self.lat / self.count, self.lon / self.count)) * 1000
acc = (acc + (self.acc / self.count)) / 2
if cross_addr_dist > acc:
return False
self.lat += lat
self.lon += lon
self.count += 1
self.endTime = time
for addr_count in self.locs:
if addr_count[0] == addr:
addr_count[1] += 1
return True
self.locs.append([addr, 1])
return True
def finish(self):
# print(self.locs)
addr = max(self.locs, key=lambda x: x[1])
self.addr = addr[0]
def __str__(self):
self.finish()
start = datetime.utcfromtimestamp(self.startTime / 1000).strftime('%Y-%m-%d %H:%M')
end = datetime.utcfromtimestamp(self.endTime / 1000).strftime('%Y-%m-%d %H:%M')
return f'{self.addr}: addrs:{len(self.locs)} hits:{self.count} from:{start} to:{end}'
def agg_fun2(data):
locations = data['locations']
locs = []
for i in range(0, len(locations)):
l = locations[str(i)]
if l['address'] == 'Unknown':
continue
if len(locs) == 0 or not locs[len(locs) - 1].append(l["address"], l["latitude"], l["longitude"], l["accuracy"], l["time"]):
locs.append(Location(l["address"], l["latitude"], l["longitude"], l["accuracy"], l["time"]))
for l in locs:
print(l)
def show_locs(data):
locations = data['locations']
unique_locs = dict()
locs = []
for i in range(0, len(locations)):
l = locations[str(i)]
if l['address'] == 'Unknown':
continue
addr = l['address']
time = datetime.utcfromtimestamp(l["time"] / 1000).strftime('%Y-%m-%d %H:%M')
if not addr in unique_locs:
unique_locs[addr] = set()
unique_locs[addr].add(time)
for k in unique_locs:
print(f'{k} (count:{len(unique_locs[k])}): {unique_locs[k]}')
def show_stats(data):
locs = []
for i in range(0, len(data['locations'])):
locs.append(data['locations'][str(i)])
print(f'we have {len(locs)} location entries')
initial_time = locs[0]['time']
last_time = locs[len(locs) - 1]['time']
delta_in_secs = (last_time - initial_time) / 1000
avg_t = delta_in_secs / len(locs)
print(f'time range: {pretty_time_delta(delta_in_secs)}')
print(f'avg time per sample: {pretty_time_delta(avg_t)}')
deltas = [(locs[i]['time'] - locs[i - 1]['time']) / 1000 for i in range(1, len(locs))]
deltas.sort()
print(f'Time delta distribution ({len(deltas)} entries)')
bins = 10
for i in range(0, bins):
bin_size = int(len(deltas) / bins)
i_low = int(i * bin_size)
i_high = int(i_low + bin_size)
if i == bins - 1:
i_high = len(deltas) - 1
count = i_high - i_low
low = deltas[i_low]
high = deltas[i_high]
avg = sum(deltas[i_low : i_high]) / (i_high - i_low)
print(f'\tcount:{i_high - i_low} range:{pretty_time_delta(low)} - {pretty_time_delta(high)} avg:{pretty_time_delta(avg)}')
print('histogram')
(hist, edge) = numpy.histogram(deltas, bins=10)
for i in range(0, len(hist)):
right_b = '[' if i < len(hist) - 1 else ']'
left = pretty_time_delta(edge[i])
right = pretty_time_delta(edge[i + 1])
print(f'\t[{left}, {right}{right_b} : {hist[i]}')
parser = argparse.ArgumentParser()
parser.add_argument('--file', '-f', help='File name to parse (default to dump.json)', type=str)
parser.add_argument('--agg1', '-g1', help='Perform time insensitive aggregation', action='store_true')
parser.add_argument('--agg2', '-g2', help='Perform time sensitive aggregation (default)', action='store_true')
parser.add_argument('--locs', '-l', help='Show raw location log', action='store_true')
parser.add_argument('--stats', '-s', help='Show some basic stats', action='store_true')
args = parser.parse_args()
file_name = args.file or 'dump.json'
file_dump = json.load(open(file_name))
#this is uggly
if not args.agg1 and not args.agg2 and not args.locs and not args.stats:
args.agg2 = True
if args.agg1:
agg_fun1(file_dump)
if args.agg2:
agg_fun2(file_dump)
if args.locs:
show_locs(file_dump)
if args.stats:
show_stats(file_dump)