diff --git a/std/algebra/emulated/fields_bw6761/doc.go b/std/algebra/emulated/fields_bw6761/doc.go index 29858f7424..3779fdb2dc 100644 --- a/std/algebra/emulated/fields_bw6761/doc.go +++ b/std/algebra/emulated/fields_bw6761/doc.go @@ -2,5 +2,5 @@ // used to compute the pairing over the BW6-761 curve. // // 𝔽p³[u] = 𝔽p/u³+4 -// 𝔽p⁶[v] = 𝔽p²/v²-u +// 𝔽p⁶[v] = 𝔽p³/v²-u package fields_bw6761 diff --git a/std/algebra/emulated/sw_bls12381/hints.go b/std/algebra/emulated/sw_bls12381/hints.go new file mode 100644 index 0000000000..3280da400a --- /dev/null +++ b/std/algebra/emulated/sw_bls12381/hints.go @@ -0,0 +1,142 @@ +package sw_bls12381 + +import ( + "math/big" + + "github.com/consensys/gnark-crypto/ecc/bls12-381" + "github.com/consensys/gnark/constraint/solver" + "github.com/consensys/gnark/std/math/emulated" +) + +func init() { + solver.RegisterHint(GetHints()...) +} + +// GetHints returns all hint functions used in the package. +func GetHints() []solver.Hint { + return []solver.Hint{ + doublePairingCheckHint, + } +} + +func doublePairingCheckHint(nativeMod *big.Int, nativeInputs, nativeOutputs []*big.Int) error { + // This is inspired from https://eprint.iacr.org/2024/640.pdf + // and based on a personal communication with the author Andrija Novakovic. + return emulated.UnwrapHint(nativeInputs, nativeOutputs, + func(mod *big.Int, inputs, outputs []*big.Int) error { + var P0, P1 bls12381.G1Affine + var Q0, Q1 bls12381.G2Affine + + P0.X.SetBigInt(inputs[0]) + P0.Y.SetBigInt(inputs[1]) + P1.X.SetBigInt(inputs[2]) + P1.Y.SetBigInt(inputs[3]) + Q0.X.A0.SetBigInt(inputs[4]) + Q0.X.A1.SetBigInt(inputs[5]) + Q0.Y.A0.SetBigInt(inputs[6]) + Q0.Y.A1.SetBigInt(inputs[7]) + Q1.X.A0.SetBigInt(inputs[8]) + Q1.X.A1.SetBigInt(inputs[9]) + Q1.Y.A0.SetBigInt(inputs[10]) + Q1.Y.A1.SetBigInt(inputs[11]) + + lines0 := bls12381.PrecomputeLines(Q0) + lines1 := bls12381.PrecomputeLines(Q1) + millerLoop, err := bls12381.MillerLoopFixedQ( + []bls12381.G1Affine{P0, P1}, + [][2][len(bls12381.LoopCounter) - 1]bls12381.LineEvaluationAff{lines0, lines1}, + ) + millerLoop.Conjugate(&millerLoop) + if err != nil { + return err + } + + var root, rootPthInverse, root27thInverse, residueWitness, scalingFactor bls12381.E12 + var order3rd, order3rdPower, exponent, exponentInv, finalExpFactor, polyFactor big.Int + // polyFactor = (1-x)/3 + polyFactor.SetString("5044125407647214251", 10) + // finalExpFactor = ((q^12 - 1) / r) / (27 * polyFactor) + finalExpFactor.SetString("2366356426548243601069753987687709088104621721678962410379583120840019275952471579477684846670499039076873213559162845121989217658133790336552276567078487633052653005423051750848782286407340332979263075575489766963251914185767058009683318020965829271737924625612375201545022326908440428522712877494557944965298566001441468676802477524234094954960009227631543471415676620753242466901942121887152806837594306028649150255258504417829961387165043999299071444887652375514277477719817175923289019181393803729926249507024121957184340179467502106891835144220611408665090353102353194448552304429530104218473070114105759487413726485729058069746063140422361472585604626055492939586602274983146215294625774144156395553405525711143696689756441298365274341189385646499074862712688473936093315628166094221735056483459332831845007196600723053356837526749543765815988577005929923802636375670820616189737737304893769679803809426304143627363860243558537831172903494450556755190448279875942974830469855835666815454271389438587399739607656399812689280234103023464545891697941661992848552456326290792224091557256350095392859243101357349751064730561345062266850238821755009430903520645523345000326783803935359711318798844368754833295302563158150573540616830138810935344206231367357992991289265295323280", 10) + + // 1. get pth-root inverse + exponent.Mul(&finalExpFactor, big.NewInt(27)) + root.Exp(millerLoop, &exponent) + if root.IsOne() { + rootPthInverse.SetOne() + } else { + exponentInv.ModInverse(&exponent, &polyFactor) + exponent.Neg(&exponentInv).Mod(&exponent, &polyFactor) + rootPthInverse.Exp(root, &exponent) + } + + // 2.1. get order of 3rd primitive root + var three big.Int + three.SetUint64(3) + exponent.Mul(&polyFactor, &finalExpFactor) + root.Exp(millerLoop, &exponent) + if root.IsOne() { + order3rdPower.SetUint64(0) + } + root.Exp(root, &three) + if root.IsOne() { + order3rdPower.SetUint64(1) + } + root.Exp(root, &three) + if root.IsOne() { + order3rdPower.SetUint64(2) + } + root.Exp(root, &three) + if root.IsOne() { + order3rdPower.SetUint64(3) + } + + // 2.2. get 27th root inverse + if order3rdPower.Uint64() == 0 { + root27thInverse.SetOne() + } else { + order3rd.Exp(&three, &order3rdPower, nil) + exponent.Mul(&polyFactor, &finalExpFactor) + root.Exp(millerLoop, &exponent) + exponentInv.ModInverse(&exponent, &order3rd) + exponent.Neg(&exponentInv).Mod(&exponent, &order3rd) + root27thInverse.Exp(root, &exponent) + } + + // 2.3. shift the Miller loop result so that millerLoop * scalingFactor + // is of order finalExpFactor + scalingFactor.Mul(&rootPthInverse, &root27thInverse) + millerLoop.Mul(&millerLoop, &scalingFactor) + + // 3. get the witness residue + // + // lambda = q - u, the optimal exponent + var lambda big.Int + lambda.SetString("4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129030796414117214202539", 10) + exponent.ModInverse(&lambda, &finalExpFactor) + residueWitness.Exp(millerLoop, &exponent) + + // return the witness residue + residueWitness.C0.B0.A0.BigInt(outputs[0]) + residueWitness.C0.B0.A1.BigInt(outputs[1]) + residueWitness.C0.B1.A0.BigInt(outputs[2]) + residueWitness.C0.B1.A1.BigInt(outputs[3]) + residueWitness.C0.B2.A0.BigInt(outputs[4]) + residueWitness.C0.B2.A1.BigInt(outputs[5]) + residueWitness.C1.B0.A0.BigInt(outputs[6]) + residueWitness.C1.B0.A1.BigInt(outputs[7]) + residueWitness.C1.B1.A0.BigInt(outputs[8]) + residueWitness.C1.B1.A1.BigInt(outputs[9]) + residueWitness.C1.B2.A0.BigInt(outputs[10]) + residueWitness.C1.B2.A1.BigInt(outputs[11]) + + // return the scaling factor + scalingFactor.C0.B0.A0.BigInt(outputs[12]) + scalingFactor.C0.B0.A1.BigInt(outputs[13]) + scalingFactor.C0.B1.A0.BigInt(outputs[14]) + scalingFactor.C0.B1.A1.BigInt(outputs[15]) + scalingFactor.C0.B2.A0.BigInt(outputs[16]) + scalingFactor.C0.B2.A1.BigInt(outputs[17]) + + return nil + }) +} diff --git a/std/algebra/emulated/sw_bls12381/pairing.go b/std/algebra/emulated/sw_bls12381/pairing.go index 4bc99671d6..b59d18c8b4 100644 --- a/std/algebra/emulated/sw_bls12381/pairing.go +++ b/std/algebra/emulated/sw_bls12381/pairing.go @@ -265,6 +265,121 @@ func (pr Pairing) PairingCheck(P []*G1Affine, Q []*G2Affine) error { return nil } +// DoublePairingCheck calculates the reduced pairing for a 2 pairs of points and asserts if the result is One +// e(P0, Q0) * e(P1, Q1) =? 1 +// +// This function doesn't check that the inputs are in the correct subgroups. See AssertIsOnG1 and AssertIsOnG2. +func (pr Pairing) DoublePairingCheck(P [2]*G1Affine, Q [2]*G2Affine) error { + // hint the non-residue witness + hint, err := pr.curveF.NewHint(doublePairingCheckHint, 18, &P[0].X, &P[0].Y, &P[1].X, &P[1].Y, &Q[0].P.X.A0, &Q[0].P.X.A1, &Q[0].P.Y.A0, &Q[0].P.Y.A1, &Q[1].P.X.A0, &Q[1].P.X.A1, &Q[1].P.Y.A0, &Q[1].P.Y.A1) + if err != nil { + // err is non-nil only for invalid number of inputs + panic(err) + } + + residueWitness := fields_bls12381.E12{ + C0: fields_bls12381.E6{ + B0: fields_bls12381.E2{A0: *hint[0], A1: *hint[1]}, + B1: fields_bls12381.E2{A0: *hint[2], A1: *hint[3]}, + B2: fields_bls12381.E2{A0: *hint[4], A1: *hint[5]}, + }, + C1: fields_bls12381.E6{ + B0: fields_bls12381.E2{A0: *hint[6], A1: *hint[7]}, + B1: fields_bls12381.E2{A0: *hint[8], A1: *hint[9]}, + B2: fields_bls12381.E2{A0: *hint[10], A1: *hint[11]}, + }, + } + // constrain scaling factor to be in Fp6 + scalingFactor := fields_bls12381.E12{ + C0: fields_bls12381.E6{ + B0: fields_bls12381.E2{A0: *hint[12], A1: *hint[13]}, + B1: fields_bls12381.E2{A0: *hint[14], A1: *hint[15]}, + B2: fields_bls12381.E2{A0: *hint[16], A1: *hint[17]}, + }, + C1: (*pr.Ext6.Zero()), + } + + // residueWitnessInv = 1 / residueWitness + residueWitnessInv := pr.Inverse(&residueWitness) + + if Q[0].Lines == nil { + Q0lines := pr.computeLines(&Q[0].P) + Q[0].Lines = &Q0lines + } + lines0 := *Q[0].Lines + if Q[1].Lines == nil { + Q1lines := pr.computeLines(&Q[1].P) + Q[1].Lines = &Q1lines + } + lines1 := *Q[1].Lines + + // precomputations + y0Inv := pr.curveF.Inverse(&P[0].Y) + x0NegOverY0 := pr.curveF.Mul(&P[0].X, y0Inv) + x0NegOverY0 = pr.curveF.Neg(x0NegOverY0) + y1Inv := pr.curveF.Inverse(&P[1].Y) + x1NegOverY1 := pr.curveF.Mul(&P[1].X, y1Inv) + x1NegOverY1 = pr.curveF.Neg(x1NegOverY1) + + // init Miller loop accumulator to residueWitnessInv to share the squarings + // of residueWitnessInv^{-x₀} + res := residueWitnessInv + + // Compute f_{x₀,Q}(P) + for i := 62; i >= 0; i-- { + res = pr.Square(res) + + if loopCounter[i] == 0 { + // ℓ × res + res = pr.MulBy014(res, + pr.MulByElement(&lines0[0][i].R1, y0Inv), + pr.MulByElement(&lines0[0][i].R0, x0NegOverY0), + ) + + // ℓ × res + res = pr.MulBy014(res, + pr.MulByElement(&lines1[0][i].R1, y1Inv), + pr.MulByElement(&lines1[0][i].R0, x1NegOverY1), + ) + } else { + // multiply by residueWitnessInv when bit=1 + res = pr.Mul(res, residueWitnessInv) + + res = pr.MulBy014(res, + pr.MulByElement(&lines0[0][i].R1, y0Inv), + pr.MulByElement(&lines0[0][i].R0, x0NegOverY0), + ) + res = pr.MulBy014(res, + pr.MulByElement(&lines0[1][i].R1, y0Inv), + pr.MulByElement(&lines0[1][i].R0, x0NegOverY0), + ) + + res = pr.MulBy014(res, + pr.MulByElement(&lines1[0][i].R1, y1Inv), + pr.MulByElement(&lines1[0][i].R0, x1NegOverY1), + ) + res = pr.MulBy014(res, + pr.MulByElement(&lines1[1][i].R1, y1Inv), + pr.MulByElement(&lines1[1][i].R0, x1NegOverY1), + ) + } + } + + // Check that res * scalingFactor * residueWitnessInv^λ' == 1 + // where λ' = q, with u the BLS12-381 seed + // and residueWitnessInv, scalingFactor from the hint. + // Note that res is already MillerLoop(P,Q) * residueWitnessInv^{x₀} since + // we initialized the Miller loop accumulator with residueWitnessInv. + t0 := pr.Frobenius(residueWitnessInv) + t0 = pr.Mul(t0, res) + t0 = pr.Mul(t0, &scalingFactor) + + pr.AssertIsEqual(t0, pr.One()) + + return nil + +} + func (pr Pairing) AssertIsEqual(x, y *GTEl) { pr.Ext12.AssertIsEqual(x, y) } diff --git a/std/algebra/emulated/sw_bls12381/pairing_test.go b/std/algebra/emulated/sw_bls12381/pairing_test.go index 9ffdd18d56..2eaf6d08fb 100644 --- a/std/algebra/emulated/sw_bls12381/pairing_test.go +++ b/std/algebra/emulated/sw_bls12381/pairing_test.go @@ -165,26 +165,26 @@ func TestMultiPairTestSolve(t *testing.T) { } } -type PairingCheckCircuit struct { +type DoublePairingCheckCircuit struct { In1G1 G1Affine In2G1 G1Affine In1G2 G2Affine In2G2 G2Affine } -func (c *PairingCheckCircuit) Define(api frontend.API) error { +func (c *DoublePairingCheckCircuit) Define(api frontend.API) error { pairing, err := NewPairing(api) if err != nil { return fmt.Errorf("new pairing: %w", err) } - err = pairing.PairingCheck([]*G1Affine{&c.In1G1, &c.In2G1}, []*G2Affine{&c.In1G2, &c.In2G2}) + err = pairing.DoublePairingCheck([2]*G1Affine{&c.In1G1, &c.In2G1}, [2]*G2Affine{&c.In1G2, &c.In2G2}) if err != nil { return fmt.Errorf("pair: %w", err) } return nil } -func TestPairingCheckTestSolve(t *testing.T) { +func TestDoublePairingCheckTestSolve(t *testing.T) { assert := test.NewAssert(t) // e(a,2b) * e(-2a,b) == 1 p1, q1 := randomG1G2Affines() @@ -193,6 +193,41 @@ func TestPairingCheckTestSolve(t *testing.T) { var q2 bls12381.G2Affine q2.Set(&q1) q1.Double(&q1) + witness := DoublePairingCheckCircuit{ + In1G1: NewG1Affine(p1), + In1G2: NewG2Affine(q1), + In2G1: NewG1Affine(p2), + In2G2: NewG2Affine(q2), + } + err := test.IsSolved(&DoublePairingCheckCircuit{}, &witness, ecc.BN254.ScalarField()) + assert.NoError(err) +} + +type PairingCheckCircuit struct { + In1G1 G1Affine + In2G1 G1Affine + In1G2 G2Affine + In2G2 G2Affine +} + +func (c *PairingCheckCircuit) Define(api frontend.API) error { + pairing, err := NewPairing(api) + if err != nil { + return fmt.Errorf("new pairing: %w", err) + } + err = pairing.PairingCheck([]*G1Affine{&c.In1G1, &c.In1G1, &c.In2G1, &c.In2G1}, []*G2Affine{&c.In1G2, &c.In2G2, &c.In1G2, &c.In2G2}) + if err != nil { + return fmt.Errorf("pair: %w", err) + } + return nil +} + +func TestPairingCheckTestSolve(t *testing.T) { + assert := test.NewAssert(t) + p1, q1 := randomG1G2Affines() + _, q2 := randomG1G2Affines() + var p2 bls12381.G1Affine + p2.Neg(&p1) witness := PairingCheckCircuit{ In1G1: NewG1Affine(p1), In1G2: NewG2Affine(q1), diff --git a/std/algebra/emulated/sw_bn254/hints.go b/std/algebra/emulated/sw_bn254/hints.go index 3c4d5642fe..8b918eb7ca 100644 --- a/std/algebra/emulated/sw_bn254/hints.go +++ b/std/algebra/emulated/sw_bn254/hints.go @@ -17,6 +17,7 @@ func init() { func GetHints() []solver.Hint { return []solver.Hint{ millerLoopAndCheckFinalExpHint, + doublePairingCheckHint, } } @@ -135,7 +136,135 @@ func millerLoopAndCheckFinalExpHint(nativeMod *big.Int, nativeInputs, nativeOutp // x is now the cube root of residueWitness residueWitness.Set(&x) + + residueWitness.C0.B0.A0.BigInt(outputs[0]) + residueWitness.C0.B0.A1.BigInt(outputs[1]) + residueWitness.C0.B1.A0.BigInt(outputs[2]) + residueWitness.C0.B1.A1.BigInt(outputs[3]) + residueWitness.C0.B2.A0.BigInt(outputs[4]) + residueWitness.C0.B2.A1.BigInt(outputs[5]) + residueWitness.C1.B0.A0.BigInt(outputs[6]) + residueWitness.C1.B0.A1.BigInt(outputs[7]) + residueWitness.C1.B1.A0.BigInt(outputs[8]) + residueWitness.C1.B1.A1.BigInt(outputs[9]) + residueWitness.C1.B2.A0.BigInt(outputs[10]) + residueWitness.C1.B2.A1.BigInt(outputs[11]) + + // we also need to return the cubic non-residue power + cubicNonResiduePower.C0.B0.A0.BigInt(outputs[12]) + cubicNonResiduePower.C0.B0.A1.BigInt(outputs[13]) + cubicNonResiduePower.C0.B1.A0.BigInt(outputs[14]) + cubicNonResiduePower.C0.B1.A1.BigInt(outputs[15]) + cubicNonResiduePower.C0.B2.A0.BigInt(outputs[16]) + cubicNonResiduePower.C0.B2.A1.BigInt(outputs[17]) + + return nil + }) +} + +func doublePairingCheckHint(nativeMod *big.Int, nativeInputs, nativeOutputs []*big.Int) error { + // This follows section 4.3.2 of https://eprint.iacr.org/2024/640.pdf + return emulated.UnwrapHint(nativeInputs, nativeOutputs, + func(mod *big.Int, inputs, outputs []*big.Int) error { + var tmp, x3, cubicNonResiduePower, x, millerLoop, residueWitness, residueWitnessInv, one, root27thOf1 bn254.E12 + var exp1, exp2, rInv, mInv big.Int + var P0, P1 bn254.G1Affine + var Q0, Q1 bn254.G2Affine + + P0.X.SetBigInt(inputs[0]) + P0.Y.SetBigInt(inputs[1]) + P1.X.SetBigInt(inputs[2]) + P1.Y.SetBigInt(inputs[3]) + Q0.X.A0.SetBigInt(inputs[4]) + Q0.X.A1.SetBigInt(inputs[5]) + Q0.Y.A0.SetBigInt(inputs[6]) + Q0.Y.A1.SetBigInt(inputs[7]) + Q1.X.A0.SetBigInt(inputs[8]) + Q1.X.A1.SetBigInt(inputs[9]) + Q1.Y.A0.SetBigInt(inputs[10]) + Q1.Y.A1.SetBigInt(inputs[11]) + + lines0 := bn254.PrecomputeLines(Q0) + lines1 := bn254.PrecomputeLines(Q1) + millerLoop, err := bn254.MillerLoopFixedQ( + []bn254.G1Affine{P0, P1}, + [][2][len(bn254.LoopCounter)]bn254.LineEvaluationAff{lines0, lines1}, + ) + if err != nil { + return err + } + + // exp1 = (p^12-1)/3 + exp1.SetString("4030969696062745741797811005853058291874379204406359442560681893891674450106959530046539719647151210908190211459382793062006703141168852426020468083171325367934590379984666859998399967609544754664110191464072930598755441160008826659219834762354786403012110463250131961575955268597858015384895449311534622125256548620283853223733396368939858981844663598065852816056384933498610930035891058807598891752166582271931875150099691598048016175399382213304673796601585080509443902692818733420199004555566113537482054218823936116647313678747500267068559627206777530424029211671772692598157901876223857571299238046741502089890557442500582300718504160740314926185458079985126192563953772118929726791041828902047546977272656240744693339962973939047279285351052107950250121751682659529260304162131862468322644288196213423232132152125277136333208005221619443705106431645884840489295409272576227859206166894626854018093044908314720", 10) + // root27thOf1 = (0, c010, c011, 0, 0, 0, 0, 0, 0, 0, 0, 0) + // is a 27-th root of unity which is necessarily a cubic non-residue + // since h/r = (p^12-1)/r = 27·l and 3 does not divide l. + // it was computed as w^((p^12-1)/27) = c2 * w^2 + c8 * w^8 where + // Fp12 = Fp[w]/w^12-18w^6+82 which is isomorphic to our Fp12 tower + // then c010 = (c2 + 9 * c8) % p and c011 = c8 + root27thOf1.C0.B1.A0.SetString("9483667112135124394372960210728142145589475128897916459350428495526310884707") + root27thOf1.C0.B1.A1.SetString("4534159768373982659291990808346042891252278737770656686799127720849666919525") + + if one.Exp(millerLoop, &exp1).IsOne() { + // residueWitness = millerLoop is a cubic residue + cubicNonResiduePower.SetOne() + residueWitness.Set(&millerLoop) + } else if one.Exp(*millerLoop.Mul(&millerLoop, &root27thOf1), &exp1).IsOne() { + // residueWitness = millerLoop * root27thOf1 is a cubic residue + cubicNonResiduePower.Set(&root27thOf1) + residueWitness.Set(&millerLoop) + } else { + // residueWitness = millerLoop * root27thOf1^2 is a cubic residue + cubicNonResiduePower.Square(&root27thOf1) + residueWitness.Mul(&millerLoop, &root27thOf1) + } + + // 1. compute r-th root: + // Exponentiate to rInv where + // rInv = 1/r mod (p^12-1)/r + rInv.SetString("495819184011867778744231927046742333492451180917315223017345540833046880485481720031136878341141903241966521818658471092566752321606779256340158678675679238405722886654128392203338228575623261160538734808887996935946888297414610216445334190959815200956855428635568184508263913274453942864817234480763055154719338281461936129150171789463489422401982681230261920147923652438266934726901346095892093443898852488218812468761027620988447655860644584419583586883569984588067403598284748297179498734419889699245081714359110559679136004228878808158639412436468707589339209058958785568729925402190575720856279605832146553573981587948304340677613460685405477047119496887534881410757668344088436651291444274840864486870663164657544390995506448087189408281061890434467956047582679858345583941396130713046072603335601764495918026585155498301896749919393", 10) + residueWitness.Exp(residueWitness, &rInv) + + // 2. compute m-th root: + // where m = (6x + 2 + q^3 - q^2 + q)/(3r) + // Exponentiate to mInv where + // mInv = 1/m mod p^12-1 + mInv.SetString("17840267520054779749190587238017784600702972825655245554504342129614427201836516118803396948809179149954197175783449826546445899524065131269177708416982407215963288737761615699967145070776364294542559324079147363363059480104341231360692143673915822421222230661528586799190306058519400019024762424366780736540525310403098758015600523609594113357130678138304964034267260758692953579514899054295817541844330584721967571697039986079722203518034173581264955381924826388858518077894154909963532054519350571947910625755075099598588672669612434444513251495355121627496067454526862754597351094345783576387352673894873931328099247263766690688395096280633426669535619271711975898132416216382905928886703963310231865346128293216316379527200971959980873989485521004596686352787540034457467115536116148612884807380187255514888720048664139404687086409399", 10) + residueWitness.Exp(residueWitness, &mInv) + + // 3. compute cube root: + // since gcd(3, (p^12-1)/r) ≠ 1 we use a modified Toneelli-Shanks algorithm + // see Alg.4 of https://eprint.iacr.org/2024/640.pdf + // Typo in the paper: p^k-1 = 3^n * s instead of p-1 = 3^r * s + // where k=12 and n=3 here and exp2 = (s+1)/3 residueWitnessInv.Inverse(&residueWitness) + exp2.SetString("149295173928249842288807815031594751550902933496531831205951181255247201855813315927649619246190785589192230054051214557852100116339587126889646966043382421034614458517950624444385183985538694617189266350521219651805757080000326913304438324531658755667115202342597480058368713651772519088329461085612393412046538837788290860138273939590365147475728281409846400594680923462911515927255224400281440435265428973034513894448136725853630228718495637529802733207466114092942366766400693830377740909465411612499335341437923559875826432546203713595131838044695464089778859691547136762894737106526809539677749557286722299625576201574095640767352005953344997266128077036486155280146436004404804695964512181557316554713802082990544197776406442186936269827816744738898152657469728130713344598597476387715653492155415311971560450078713968012341037230430349766855793764662401499603533676762082513303932107208402000670112774382027", 10) + x.Exp(residueWitness, &exp2) + + // 3^t is ord(x^3 / residueWitness) + x3.Square(&x).Mul(&x3, &x).Mul(&x3, &residueWitnessInv) + t := 0 + for !x3.IsOne() { + t++ + tmp.Square(&x3) + x3.Mul(&tmp, &x3) + } + + for t != 0 { + x.Mul(&x, tmp.Exp(root27thOf1, &exp2)) + + // 3^t is ord(x^3 / residueWitness) + x3.Square(&x).Mul(&x3, &x).Mul(&x3, &residueWitnessInv) + t = 0 + for !x3.IsOne() { + t++ + tmp.Square(&x3) + x3.Mul(&tmp, &x3) + } + } + + // x is now the cube root of residueWitness + residueWitness.Set(&x) residueWitness.C0.B0.A0.BigInt(outputs[0]) residueWitness.C0.B0.A1.BigInt(outputs[1]) diff --git a/std/algebra/emulated/sw_bn254/pairing.go b/std/algebra/emulated/sw_bn254/pairing.go index 61a7e051e6..d0b1c6723c 100644 --- a/std/algebra/emulated/sw_bn254/pairing.go +++ b/std/algebra/emulated/sw_bn254/pairing.go @@ -265,6 +265,190 @@ func (pr Pairing) PairingCheck(P []*G1Affine, Q []*G2Affine) error { return nil } +// DoublePairingCheck calculates the reduced pairing for a 2 pairs of points and asserts if the result is One +// e(P0, Q0) * e(P1, Q1) =? 1 +// +// This function doesn't check that the inputs are in the correct subgroups. See AssertIsOnG1 and AssertIsOnG2. +func (pr Pairing) DoublePairingCheck(P [2]*G1Affine, Q [2]*G2Affine) error { + // hint the non-residue witness + hint, err := pr.curveF.NewHint(doublePairingCheckHint, 18, &P[0].X, &P[0].Y, &P[1].X, &P[1].Y, &Q[0].P.X.A0, &Q[0].P.X.A1, &Q[0].P.Y.A0, &Q[0].P.Y.A1, &Q[1].P.X.A0, &Q[1].P.X.A1, &Q[1].P.Y.A0, &Q[1].P.Y.A1) + if err != nil { + // err is non-nil only for invalid number of inputs + panic(err) + } + + residueWitness := fields_bn254.E12{ + C0: fields_bn254.E6{ + B0: fields_bn254.E2{A0: *hint[0], A1: *hint[1]}, + B1: fields_bn254.E2{A0: *hint[2], A1: *hint[3]}, + B2: fields_bn254.E2{A0: *hint[4], A1: *hint[5]}, + }, + C1: fields_bn254.E6{ + B0: fields_bn254.E2{A0: *hint[6], A1: *hint[7]}, + B1: fields_bn254.E2{A0: *hint[8], A1: *hint[9]}, + B2: fields_bn254.E2{A0: *hint[10], A1: *hint[11]}, + }, + } + // constrain cubicNonResiduePower to be in Fp6 + cubicNonResiduePower := fields_bn254.E12{ + C0: fields_bn254.E6{ + B0: fields_bn254.E2{A0: *hint[12], A1: *hint[13]}, + B1: fields_bn254.E2{A0: *hint[14], A1: *hint[15]}, + B2: fields_bn254.E2{A0: *hint[16], A1: *hint[17]}, + }, + C1: (*pr.Ext6.Zero()), + } + + // residueWitnessInv = 1 / residueWitness + residueWitnessInv := pr.Inverse(&residueWitness) + + if Q[0].Lines == nil { + Q0lines := pr.computeLines(&Q[0].P) + Q[0].Lines = &Q0lines + } + lines0 := *Q[0].Lines + if Q[1].Lines == nil { + Q1lines := pr.computeLines(&Q[1].P) + Q[1].Lines = &Q1lines + } + lines1 := *Q[1].Lines + + // precomputations + y0Inv := pr.curveF.Inverse(&P[0].Y) + x0NegOverY0 := pr.curveF.Mul(&P[0].X, y0Inv) + x0NegOverY0 = pr.curveF.Neg(x0NegOverY0) + y1Inv := pr.curveF.Inverse(&P[1].Y) + x1NegOverY1 := pr.curveF.Mul(&P[1].X, y1Inv) + x1NegOverY1 = pr.curveF.Neg(x1NegOverY1) + + // init Miller loop accumulator to residueWitnessInv to share the squarings + // of residueWitnessInv^{6x₀+2} + res := residueWitnessInv + + // Compute f_{6x₀+2,Q}(P) + for i := 64; i >= 0; i-- { + res = pr.Square(res) + + switch loopCounter[i] { + case 0: + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines0[0][i].R0, x0NegOverY0), + pr.MulByElement(&lines0[0][i].R1, y0Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines1[0][i].R0, x1NegOverY1), + pr.MulByElement(&lines1[0][i].R1, y1Inv), + ) + case 1: + // multiply by residueWitnessInv when bit=1 + res = pr.Mul(res, residueWitnessInv) + + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines0[0][i].R0, x0NegOverY0), + pr.MulByElement(&lines0[0][i].R1, y0Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines0[1][i].R0, x0NegOverY0), + pr.MulByElement(&lines0[1][i].R1, y0Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines1[0][i].R0, x1NegOverY1), + pr.MulByElement(&lines1[0][i].R1, y1Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines1[1][i].R0, x1NegOverY1), + pr.MulByElement(&lines1[1][i].R1, y1Inv), + ) + case -1: + // multiply by residueWitness when bit=-1 + res = pr.Mul(res, &residueWitness) + + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines0[0][i].R0, x0NegOverY0), + pr.MulByElement(&lines0[0][i].R1, y0Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines0[1][i].R0, x0NegOverY0), + pr.MulByElement(&lines0[1][i].R1, y0Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines1[0][i].R0, x1NegOverY1), + pr.MulByElement(&lines1[0][i].R1, y1Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines1[1][i].R0, x1NegOverY1), + pr.MulByElement(&lines1[1][i].R1, y1Inv), + ) + default: + panic(fmt.Sprintf("invalid loop counter value %d", loopCounter[i])) + } + } + + // Compute ℓ_{[6x₀+2]Q,π(Q)}(P) · ℓ_{[6x₀+2]Q+π(Q),-π²(Q)}(P) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines0[0][65].R0, x0NegOverY0), + pr.MulByElement(&lines0[0][65].R1, y0Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines0[1][65].R0, x0NegOverY0), + pr.MulByElement(&lines0[1][65].R1, y0Inv), + ) + res = pr.MulBy034( + res, + pr.MulByElement(&lines1[0][65].R0, x1NegOverY1), + pr.MulByElement(&lines1[0][65].R1, y1Inv), + ) + // ℓ × res + res = pr.MulBy034( + res, + pr.MulByElement(&lines1[1][65].R0, x1NegOverY1), + pr.MulByElement(&lines1[1][65].R1, y1Inv), + ) + + // Check that res * cubicNonResiduePower * residueWitnessInv^λ' == 1 + // where λ' = q^3 - q^2 + q, with u the BN254 seed + // and residueWitnessInv, cubicNonResiduePower from the hint. + // Note that res is already MillerLoop(P,Q) * residueWitnessInv^{6x₀+2} since + // we initialized the Miller loop accumulator with residueWitnessInv. + t2 := pr.Mul(&cubicNonResiduePower, res) + + t1 := pr.FrobeniusCube(residueWitnessInv) + t0 := pr.FrobeniusSquare(residueWitnessInv) + t1 = pr.DivUnchecked(t1, t0) + t0 = pr.Frobenius(residueWitnessInv) + t1 = pr.Mul(t1, t0) + + t2 = pr.Mul(t2, t1) + pr.AssertIsEqual(t2, pr.One()) + + return nil + +} + func (pr Pairing) IsEqual(x, y *GTEl) frontend.Variable { return pr.Ext12.IsEqual(x, y) } @@ -401,7 +585,7 @@ func (pr Pairing) millerLoopLines(P []*G1Affine, lines []lineEvaluations) (*GTEl // The point (x,0) is of order 2. But this function does not check // subgroup membership. yInv[k] = pr.curveF.Inverse(&P[k].Y) - xNegOverY[k] = pr.curveF.MulMod(&P[k].X, yInv[k]) + xNegOverY[k] = pr.curveF.Mul(&P[k].X, yInv[k]) xNegOverY[k] = pr.curveF.Neg(xNegOverY[k]) } @@ -727,7 +911,7 @@ func (pr Pairing) millerLoopAndFinalExpResult(P *G1Affine, Q *G2Affine, previous // precomputations yInv := pr.curveF.Inverse(&P.Y) - xNegOverY := pr.curveF.MulMod(&P.X, yInv) + xNegOverY := pr.curveF.Mul(&P.X, yInv) xNegOverY = pr.curveF.Neg(xNegOverY) // init Miller loop accumulator to residueWitnessInv to share the squarings diff --git a/std/algebra/emulated/sw_bn254/pairing_test.go b/std/algebra/emulated/sw_bn254/pairing_test.go index 8b49607441..c6de7af3ca 100644 --- a/std/algebra/emulated/sw_bn254/pairing_test.go +++ b/std/algebra/emulated/sw_bn254/pairing_test.go @@ -247,26 +247,26 @@ func TestMultiPairTestSolve(t *testing.T) { } } -type PairingCheckCircuit struct { +type DoublePairingCheckCircuit struct { In1G1 G1Affine In2G1 G1Affine In1G2 G2Affine In2G2 G2Affine } -func (c *PairingCheckCircuit) Define(api frontend.API) error { +func (c *DoublePairingCheckCircuit) Define(api frontend.API) error { pairing, err := NewPairing(api) if err != nil { return fmt.Errorf("new pairing: %w", err) } - err = pairing.PairingCheck([]*G1Affine{&c.In1G1, &c.In2G1}, []*G2Affine{&c.In1G2, &c.In2G2}) + err = pairing.DoublePairingCheck([2]*G1Affine{&c.In1G1, &c.In2G1}, [2]*G2Affine{&c.In1G2, &c.In2G2}) if err != nil { return fmt.Errorf("pair: %w", err) } return nil } -func TestPairingCheckTestSolve(t *testing.T) { +func TestDoublePairingCheckTestSolve(t *testing.T) { assert := test.NewAssert(t) // e(a,2b) * e(-2a,b) == 1 p1, q1 := randomG1G2Affines() @@ -275,6 +275,41 @@ func TestPairingCheckTestSolve(t *testing.T) { var q2 bn254.G2Affine q2.Set(&q1) q1.Double(&q1) + witness := DoublePairingCheckCircuit{ + In1G1: NewG1Affine(p1), + In1G2: NewG2Affine(q1), + In2G1: NewG1Affine(p2), + In2G2: NewG2Affine(q2), + } + err := test.IsSolved(&DoublePairingCheckCircuit{}, &witness, ecc.BN254.ScalarField()) + assert.NoError(err) +} + +type PairingCheckCircuit struct { + In1G1 G1Affine + In2G1 G1Affine + In1G2 G2Affine + In2G2 G2Affine +} + +func (c *PairingCheckCircuit) Define(api frontend.API) error { + pairing, err := NewPairing(api) + if err != nil { + return fmt.Errorf("new pairing: %w", err) + } + err = pairing.PairingCheck([]*G1Affine{&c.In1G1, &c.In1G1, &c.In2G1, &c.In2G1}, []*G2Affine{&c.In1G2, &c.In2G2, &c.In1G2, &c.In2G2}) + if err != nil { + return fmt.Errorf("pair: %w", err) + } + return nil +} + +func TestPairingCheckTestSolve(t *testing.T) { + assert := test.NewAssert(t) + p1, q1 := randomG1G2Affines() + _, q2 := randomG1G2Affines() + var p2 bn254.G1Affine + p2.Neg(&p1) witness := PairingCheckCircuit{ In1G1: NewG1Affine(p1), In1G2: NewG2Affine(q1), diff --git a/std/algebra/emulated/sw_bw6761/pairing.go b/std/algebra/emulated/sw_bw6761/pairing.go index 47ad915567..2c481e75b7 100644 --- a/std/algebra/emulated/sw_bw6761/pairing.go +++ b/std/algebra/emulated/sw_bw6761/pairing.go @@ -161,6 +161,14 @@ func (pr Pairing) PairingCheck(P []*G1Affine, Q []*G2Affine) error { return nil } +// DoublePairingCheck calculates the reduced pairing for a 2 pairs of points and asserts if the result is One +// e(P0, Q0) * e(P1, Q1) =? 1 +// +// This function doesn't check that the inputs are in the correct subgroups. See AssertIsOnG1 and AssertIsOnG2. +func (pr Pairing) DoublePairingCheck(P [2]*G1Affine, Q [2]*G2Affine) error { + return pr.PairingCheck(P[:], Q[:]) +} + func (pr Pairing) AssertIsEqual(x, y *GTEl) { pr.Ext6.AssertIsEqual(x, y) } diff --git a/std/algebra/emulated/sw_bw6761/pairing_test.go b/std/algebra/emulated/sw_bw6761/pairing_test.go index 65f087a555..7f2f4683f8 100644 --- a/std/algebra/emulated/sw_bw6761/pairing_test.go +++ b/std/algebra/emulated/sw_bw6761/pairing_test.go @@ -163,26 +163,26 @@ func TestMultiPairTestSolve(t *testing.T) { } } -type PairingCheckCircuit struct { +type DoublePairingCheckCircuit struct { In1G1 G1Affine In2G1 G1Affine In1G2 G2Affine In2G2 G2Affine } -func (c *PairingCheckCircuit) Define(api frontend.API) error { +func (c *DoublePairingCheckCircuit) Define(api frontend.API) error { pairing, err := NewPairing(api) if err != nil { return fmt.Errorf("new pairing: %w", err) } - err = pairing.PairingCheck([]*G1Affine{&c.In1G1, &c.In2G1}, []*G2Affine{&c.In1G2, &c.In2G2}) + err = pairing.DoublePairingCheck([2]*G1Affine{&c.In1G1, &c.In2G1}, [2]*G2Affine{&c.In1G2, &c.In2G2}) if err != nil { return fmt.Errorf("pair: %w", err) } return nil } -func TestPairingCheckTestSolve(t *testing.T) { +func TestDoublePairingCheckTestSolve(t *testing.T) { assert := test.NewAssert(t) // e(a,2b) * e(-2a,b) == 1 p1, q1 := randomG1G2Affines() @@ -191,6 +191,41 @@ func TestPairingCheckTestSolve(t *testing.T) { var q2 bw6761.G2Affine q2.Set(&q1) q1.Double(&q1) + witness := DoublePairingCheckCircuit{ + In1G1: NewG1Affine(p1), + In1G2: NewG2Affine(q1), + In2G1: NewG1Affine(p2), + In2G2: NewG2Affine(q2), + } + err := test.IsSolved(&DoublePairingCheckCircuit{}, &witness, ecc.BN254.ScalarField()) + assert.NoError(err) +} + +type PairingCheckCircuit struct { + In1G1 G1Affine + In2G1 G1Affine + In1G2 G2Affine + In2G2 G2Affine +} + +func (c *PairingCheckCircuit) Define(api frontend.API) error { + pairing, err := NewPairing(api) + if err != nil { + return fmt.Errorf("new pairing: %w", err) + } + err = pairing.PairingCheck([]*G1Affine{&c.In1G1, &c.In1G1, &c.In2G1, &c.In2G1}, []*G2Affine{&c.In1G2, &c.In2G2, &c.In1G2, &c.In2G2}) + if err != nil { + return fmt.Errorf("pair: %w", err) + } + return nil +} + +func TestPairingCheckTestSolve(t *testing.T) { + assert := test.NewAssert(t) + p1, q1 := randomG1G2Affines() + _, q2 := randomG1G2Affines() + var p2 bw6761.G1Affine + p2.Neg(&p1) witness := PairingCheckCircuit{ In1G1: NewG1Affine(p1), In1G2: NewG2Affine(q1), diff --git a/std/algebra/interfaces.go b/std/algebra/interfaces.go index 3775d0f922..666c1ecb5d 100644 --- a/std/algebra/interfaces.go +++ b/std/algebra/interfaces.go @@ -97,6 +97,10 @@ type Pairing[G1El G1ElementT, G2El G2ElementT, GtEl GtElementT] interface { // when the inputs are of mismatching length. It does not modify the inputs. PairingCheck([]*G1El, []*G2El) error + // DoublePairingCheck asserts that the pairing result of 2 pairs of points + // is 1. It does not modify the inputs. + DoublePairingCheck([2]*G1El, [2]*G2El) error + // AssertIsEqual asserts the equality of the inputs. AssertIsEqual(*GtEl, *GtEl) diff --git a/std/algebra/native/sw_bls12377/hints.go b/std/algebra/native/sw_bls12377/hints.go index d59ef955ef..09d2550efd 100644 --- a/std/algebra/native/sw_bls12377/hints.go +++ b/std/algebra/native/sw_bls12377/hints.go @@ -5,6 +5,7 @@ import ( "math/big" "github.com/consensys/gnark-crypto/ecc" + bls12377 "github.com/consensys/gnark-crypto/ecc/bls12-377" "github.com/consensys/gnark/constraint/solver" ) @@ -13,6 +14,7 @@ func GetHints() []solver.Hint { decomposeScalarG1, decomposeScalarG1Simple, decomposeScalarG2, + doublePairingCheckHint, } } @@ -88,3 +90,88 @@ func decomposeScalarG2(scalarField *big.Int, inputs []*big.Int, outputs []*big.I return nil } + +func doublePairingCheckHint(_ *big.Int, inputs, outputs []*big.Int) error { + // This is inspired from https://eprint.iacr.org/2024/640.pdf + // and based on a personal communication with the author Andrija Novakovic. + var P0, P1 bls12377.G1Affine + var Q0, Q1 bls12377.G2Affine + + P0.X.SetBigInt(inputs[0]) + P0.Y.SetBigInt(inputs[1]) + P1.X.SetBigInt(inputs[2]) + P1.Y.SetBigInt(inputs[3]) + Q0.X.A0.SetBigInt(inputs[4]) + Q0.X.A1.SetBigInt(inputs[5]) + Q0.Y.A0.SetBigInt(inputs[6]) + Q0.Y.A1.SetBigInt(inputs[7]) + Q1.X.A0.SetBigInt(inputs[8]) + Q1.X.A1.SetBigInt(inputs[9]) + Q1.Y.A0.SetBigInt(inputs[10]) + Q1.Y.A1.SetBigInt(inputs[11]) + + lines0 := bls12377.PrecomputeLines(Q0) + lines1 := bls12377.PrecomputeLines(Q1) + millerLoop, err := bls12377.MillerLoopFixedQ( + []bls12377.G1Affine{P0, P1}, + [][2][len(bls12377.LoopCounter) - 1]bls12377.LineEvaluationAff{lines0, lines1}, + ) + if err != nil { + return err + } + + var root, rootPthInverse, residueWitness, scalingFactor bls12377.E12 + var exponent, exponentInv, finalExpFactor, polyFactor big.Int + // polyFactor = 12(x-1) + polyFactor.SetString("115033474957087604736", 10) + // finalExpFactor = ((q^12 - 1) / r) / polyFactor + finalExpFactor.SetString("92351561334497520756349650336409370070948672672207914824247073415859727964231807559847070685040742345026775319680739143654748316009031763764029886042408725311062057776702838555815712331129279611544378217895455619058809454575474763035923260395518532422855090028311239234310116353269618927871828693919559964406939845784130633021661399269804065961999062695977580539176029238189119059338698461832966347603096853909366901376879505972606045770762516580639801134008192256366142553202619529638202068488750102055204336502584141399828818871664747496033599618827160583206926869573005874449182200210044444351826855938563862937638034918413235278166699461287943529570559518592586872860190313088429391521694808994276205429071153237122495989095857292965461625387657577981811772819764071512345106346232882471034669258055302790607847924560040527682025558360106509628206144255667203317787586698694011876342903106644003067103035176245790275561392007119121995936066014208972135762663107247939004517852248103325700169848524693333524025685325993207375736519358185783520948988673594976115901587076295116293065682366935313875411927779217584729138600463438806153265891176654957439524358472291492028580820575807385461119025678550977847392818655362610734928283105671242634809807533919011078145", 10) + + // 1. get pth-root inverse + exponent.Set(&finalExpFactor) + root.Exp(millerLoop, &finalExpFactor) + if root.IsOne() { + rootPthInverse.SetOne() + } else { + exponentInv.ModInverse(&exponent, &polyFactor) + exponent.Neg(&exponentInv).Mod(&exponent, &polyFactor) + rootPthInverse.Exp(root, &exponent) + } + + // 3. shift the Miller loop result so that millerLoop * scalingFactor + // is of order finalExpFactor + scalingFactor.Set(&rootPthInverse) + millerLoop.Mul(&millerLoop, &scalingFactor) + + // 4. get the witness residue + // + // lambda = q - u, the optimal exponent + var lambda big.Int + lambda.SetString("258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139563774001527230824448", 10) + exponent.ModInverse(&lambda, &finalExpFactor) + residueWitness.Exp(millerLoop, &exponent) + + // return the witness residue + residueWitness.C0.B0.A0.BigInt(outputs[0]) + residueWitness.C0.B0.A1.BigInt(outputs[1]) + residueWitness.C0.B1.A0.BigInt(outputs[2]) + residueWitness.C0.B1.A1.BigInt(outputs[3]) + residueWitness.C0.B2.A0.BigInt(outputs[4]) + residueWitness.C0.B2.A1.BigInt(outputs[5]) + residueWitness.C1.B0.A0.BigInt(outputs[6]) + residueWitness.C1.B0.A1.BigInt(outputs[7]) + residueWitness.C1.B1.A0.BigInt(outputs[8]) + residueWitness.C1.B1.A1.BigInt(outputs[9]) + residueWitness.C1.B2.A0.BigInt(outputs[10]) + residueWitness.C1.B2.A1.BigInt(outputs[11]) + + // return the scaling factor + scalingFactor.C0.B0.A0.BigInt(outputs[12]) + scalingFactor.C0.B0.A1.BigInt(outputs[13]) + scalingFactor.C0.B1.A0.BigInt(outputs[14]) + scalingFactor.C0.B1.A1.BigInt(outputs[15]) + scalingFactor.C0.B2.A0.BigInt(outputs[16]) + scalingFactor.C0.B2.A1.BigInt(outputs[17]) + + return nil +} diff --git a/std/algebra/native/sw_bls12377/pairing.go b/std/algebra/native/sw_bls12377/pairing.go index 9cd1ce851b..75e2af030a 100644 --- a/std/algebra/native/sw_bls12377/pairing.go +++ b/std/algebra/native/sw_bls12377/pairing.go @@ -273,6 +273,130 @@ func PairingCheck(api frontend.API, P []G1Affine, Q []G2Affine) error { return nil } +// DoublePairingCheck calculates the reduced pairing for 2 pairs of points and asserts if the result is One +// e(P0, Q0) * e(P1, Q1) =? 1 +// +// This function doesn't check that the inputs are in the correct subgroups +func DoublePairingCheck(api frontend.API, P [2]G1Affine, Q [2]G2Affine) error { + // hint the non-residue witness + hint, err := api.NewHint(doublePairingCheckHint, 18, P[0].X, P[0].Y, P[1].X, P[1].Y, Q[0].P.X.A0, Q[0].P.X.A1, Q[0].P.Y.A0, Q[0].P.Y.A1, Q[1].P.X.A0, Q[1].P.X.A1, Q[1].P.Y.A0, Q[1].P.Y.A1) + if err != nil { + // err is non-nil only for invalid number of inputs + panic(err) + } + + var residueWitness, residueWitnessInv, scalingFactor, t0 fields_bls12377.E12 + residueWitness.C0.B0.A0 = hint[0] + residueWitness.C0.B0.A1 = hint[1] + residueWitness.C0.B1.A0 = hint[2] + residueWitness.C0.B1.A1 = hint[3] + residueWitness.C0.B2.A0 = hint[4] + residueWitness.C0.B2.A1 = hint[5] + residueWitness.C1.B0.A0 = hint[6] + residueWitness.C1.B0.A1 = hint[7] + residueWitness.C1.B1.A0 = hint[8] + residueWitness.C1.B1.A1 = hint[9] + residueWitness.C1.B2.A0 = hint[10] + residueWitness.C1.B2.A1 = hint[11] + // constrain cubicNonResiduePower to be in Fp6 + scalingFactor.C0.B0.A0 = hint[12] + scalingFactor.C0.B0.A1 = hint[13] + scalingFactor.C0.B1.A0 = hint[14] + scalingFactor.C0.B1.A1 = hint[15] + scalingFactor.C0.B2.A0 = hint[16] + scalingFactor.C0.B2.A1 = hint[17] + scalingFactor.C1.SetZero() + + // residueWitnessInv = 1 / residueWitness + residueWitnessInv.Inverse(api, residueWitness) + + if Q[0].Lines == nil { + Q0lines := computeLines(api, Q[0].P) + Q[0].Lines = Q0lines + } + lines0 := *Q[0].Lines + if Q[1].Lines == nil { + Q1lines := computeLines(api, Q[1].P) + Q[1].Lines = Q1lines + } + lines1 := *Q[1].Lines + + // precomputations + y0Inv := api.Inverse(P[0].Y) + x0NegOverY0 := api.Mul(P[0].X, y0Inv) + x0NegOverY0 = api.Neg(x0NegOverY0) + y1Inv := api.Inverse(P[1].Y) + x1NegOverY1 := api.Mul(P[1].X, y1Inv) + x1NegOverY1 = api.Neg(x1NegOverY1) + + // init Miller loop accumulator to residueWitness to share the squarings + // of residueWitnessInv^{-x₀} + res := residueWitness + + // Compute f_{x₀,Q}(P) + var prodLines [5]fields_bls12377.E2 + var l0, l1 lineEvaluation + for i := 62; i >= 0; i-- { + // mutualize the square among n Miller loops + // (∏ᵢfᵢ)² + res.Square(api, res) + + if loopCounter[i] == 0 { + // line evaluation at P + // ℓ × res + res.MulBy034(api, + *l0.R0.MulByFp(api, lines0[0][i].R0, x0NegOverY0), + *l0.R1.MulByFp(api, lines0[0][i].R1, y0Inv), + ) + // ℓ × res + res.MulBy034(api, + *l0.R0.MulByFp(api, lines1[0][i].R0, x1NegOverY1), + *l0.R1.MulByFp(api, lines1[0][i].R1, y1Inv), + ) + } else { + // multiply by residueWitness when bit=1 + res.Mul(api, res, residueWitness) + + // lines evaluation at P + // ℓ × ℓ + prodLines = *fields_bls12377.Mul034By034(api, + *l0.R0.MulByFp(api, lines0[0][i].R0, x0NegOverY0), + *l0.R1.MulByFp(api, lines0[0][i].R1, y0Inv), + *l1.R0.MulByFp(api, lines0[1][i].R0, x0NegOverY0), + *l1.R1.MulByFp(api, lines0[1][i].R1, y0Inv), + ) + // (ℓ × ℓ) × res + res.MulBy01234(api, prodLines) + // lines evaluation at P + // ℓ × ℓ + prodLines = *fields_bls12377.Mul034By034(api, + *l0.R0.MulByFp(api, lines1[0][i].R0, x1NegOverY1), + *l0.R1.MulByFp(api, lines1[0][i].R1, y1Inv), + *l1.R0.MulByFp(api, lines1[1][i].R0, x1NegOverY1), + *l1.R1.MulByFp(api, lines1[1][i].R1, y1Inv), + ) + // (ℓ × ℓ) × res + res.MulBy01234(api, prodLines) + } + } + + // Check that res * scalingFactor * residueWitnessInv^λ' == 1 + // where λ' = q, with u the BLS12-377 seed + // and residueWitnessInv, scalingFactor from the hint. + // Note that res is already MillerLoop(P,Q) * residueWitnessInv^{x₀} since + // we initialized the Miller loop accumulator with residueWitnessInv. + t0.Frobenius(api, residueWitnessInv) + t0.Mul(api, t0, res) + t0.Mul(api, t0, scalingFactor) + + var one GT + one.SetOne() + t0.AssertIsEqual(api, one) + + return nil + +} + // doubleAndAddStep doubles p1 and adds p2 to the result in affine coordinates, and evaluates the line in Miller loop // https://eprint.iacr.org/2022/1162 (Section 6.1) func doubleAndAddStep(api frontend.API, p1, p2 *g2AffP) (g2AffP, *lineEvaluation, *lineEvaluation) { diff --git a/std/algebra/native/sw_bls12377/pairing2.go b/std/algebra/native/sw_bls12377/pairing2.go index d057ea13d1..b765d731e7 100644 --- a/std/algebra/native/sw_bls12377/pairing2.go +++ b/std/algebra/native/sw_bls12377/pairing2.go @@ -330,6 +330,19 @@ func (p *Pairing) PairingCheck(P []*G1Affine, Q []*G2Affine) error { return nil } +// DoublePairingCheck computes the multi-pairing of the 2 input pairs and asserts that +// the result is an identity element in the target group. It returns an error if +// there is a mismatch between the lengths of the inputs. +func (p *Pairing) DoublePairingCheck(P [2]*G1Affine, Q [2]*G2Affine) error { + var inP [2]G1Affine + inP[0] = *P[0] + inP[1] = *P[1] + var inQ [2]G2Affine + inQ[0] = *Q[0] + inQ[1] = *Q[1] + return DoublePairingCheck(p.api, inP, inQ) +} + // AssertIsEqual asserts the equality of the target group elements. func (p *Pairing) AssertIsEqual(e1, e2 *GT) { e1.AssertIsEqual(p.api, *e2) diff --git a/std/algebra/native/sw_bls12377/pairing_test.go b/std/algebra/native/sw_bls12377/pairing_test.go index 1956764d2a..02e1ccb1e2 100644 --- a/std/algebra/native/sw_bls12377/pairing_test.go +++ b/std/algebra/native/sw_bls12377/pairing_test.go @@ -57,6 +57,35 @@ func TestFinalExp(t *testing.T) { assert.CheckCircuit(&finalExp{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_761)) } +type millerLoopBLS377 struct { + P G1Affine + Q G2Affine + Res GT +} + +func (circuit *millerLoopBLS377) Define(api frontend.API) error { + pairingRes, _ := MillerLoop(api, []G1Affine{circuit.P}, []G2Affine{circuit.Q}) + pairingRes.AssertIsEqual(api, circuit.Res) + + return nil +} + +func TestMillerLoopBLS377(t *testing.T) { + + // Miller loop test data + P, Q, milRes := millerLoopData() + + // assign values to witness + witness := millerLoopBLS377{ + P: NewG1Affine(P), + Q: NewG2Affine(Q), + Res: NewGTEl(milRes), + } + assert := test.NewAssert(t) + assert.CheckCircuit(&millerLoopBLS377{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_761)) + +} + type pairingBLS377 struct { P G1Affine Q G2Affine @@ -184,12 +213,12 @@ func TestDoublePairingFixedBLS377(t *testing.T) { } -type pairingCheckBLS377 struct { +type pairingCheck struct { P1, P2 G1Affine Q1, Q2 G2Affine } -func (circuit *pairingCheckBLS377) Define(api frontend.API) error { +func (circuit *pairingCheck) Define(api frontend.API) error { err := PairingCheck(api, []G1Affine{circuit.P1, circuit.P2}, []G2Affine{circuit.Q1, circuit.Q2}) @@ -200,19 +229,48 @@ func (circuit *pairingCheckBLS377) Define(api frontend.API) error { return nil } -func TestPairingCheckBLS377(t *testing.T) { +func TestPairingCheck(t *testing.T) { // pairing test data P, Q := pairingCheckData() - witness := pairingCheckBLS377{ + witness := pairingCheck{ P1: NewG1Affine(P[0]), P2: NewG1Affine(P[1]), Q1: NewG2Affine(Q[0]), Q2: NewG2Affine(Q[1]), } assert := test.NewAssert(t) - assert.CheckCircuit(&pairingCheckBLS377{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_761), test.NoProverChecks()) + assert.CheckCircuit(&pairingCheck{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_761), test.NoProverChecks()) +} +type doublePairingCheck struct { + P1, P2 G1Affine + Q1, Q2 G2Affine +} + +func (circuit *doublePairingCheck) Define(api frontend.API) error { + + err := DoublePairingCheck(api, [2]G1Affine{circuit.P1, circuit.P2}, [2]G2Affine{circuit.Q1, circuit.Q2}) + + if err != nil { + return fmt.Errorf("pair: %w", err) + } + + return nil +} + +func TestDoublePairingCheck(t *testing.T) { + + // pairing test data + P, Q := pairingCheckData() + witness := doublePairingCheck{ + P1: NewG1Affine(P[0]), + P2: NewG1Affine(P[1]), + Q1: NewG2Affine(Q[0]), + Q2: NewG2Affine(Q[1]), + } + assert := test.NewAssert(t) + assert.CheckCircuit(&doublePairingCheck{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_761), test.NoProverChecks()) } type groupMembership struct { @@ -243,6 +301,16 @@ func TestGroupMembership(t *testing.T) { } // utils +func millerLoopData() (P bls12377.G1Affine, Q bls12377.G2Affine, milRes bls12377.GT) { + _, _, P, Q = bls12377.Generators() + lines := bls12377.PrecomputeLines(Q) + milRes, _ = bls12377.MillerLoopFixedQ( + []bls12377.G1Affine{P}, + [][2][len(bls12377.LoopCounter) - 1]bls12377.LineEvaluationAff{lines}, + ) + return +} + func pairingData() (P bls12377.G1Affine, Q bls12377.G2Affine, milRes, pairingRes bls12377.GT) { _, _, P, Q = bls12377.Generators() milRes, _ = bls12377.MillerLoop([]bls12377.G1Affine{P}, []bls12377.G2Affine{Q}) diff --git a/std/algebra/native/sw_bls24315/pairing.go b/std/algebra/native/sw_bls24315/pairing.go index 50d741f602..1b8f02f1c0 100644 --- a/std/algebra/native/sw_bls24315/pairing.go +++ b/std/algebra/native/sw_bls24315/pairing.go @@ -171,10 +171,10 @@ func FinalExponentiation(api frontend.API, e1 GT) GT { return result } -// PairingCheck calculates the reduced pairing for a set of points and returns True if the result is One -// ∏ᵢ e(Pᵢ, Qᵢ) =? 1 +// Pair calculates the reduced pairing for a set of points +// ∏ᵢ e(Pᵢ, Qᵢ). // -// This function doesn't check that the inputs are in the correct subgroup. See IsInSubGroup. +// This function doesn't check that the inputs are in the correct subgroup func Pair(api frontend.API, P []G1Affine, Q []G2Affine) (GT, error) { f, err := MillerLoop(api, P, Q) if err != nil { @@ -199,6 +199,14 @@ func PairingCheck(api frontend.API, P []G1Affine, Q []G2Affine) error { return nil } +// DoublePairingCheck calculates the reduced pairing for 2 pairs of points and asserts if the result is One +// e(P0, Q0) * e(P1, Q1) =? 1 +// +// This function doesn't check that the inputs are in the correct subgroups +func DoublePairingCheck(api frontend.API, P [2]G1Affine, Q [2]G2Affine) error { + return PairingCheck(api, P[:], Q[:]) +} + // doubleAndAddStep doubles p1 and adds p2 to the result in affine coordinates, and evaluates the line in Miller loop // https://eprint.iacr.org/2022/1162 (Section 6.1) func doubleAndAddStep(api frontend.API, p1, p2 *g2AffP) (g2AffP, *lineEvaluation, *lineEvaluation) { diff --git a/std/algebra/native/sw_bls24315/pairing2.go b/std/algebra/native/sw_bls24315/pairing2.go index fc5fac0ba8..b86d06ee60 100644 --- a/std/algebra/native/sw_bls24315/pairing2.go +++ b/std/algebra/native/sw_bls24315/pairing2.go @@ -313,6 +313,13 @@ func (p *Pairing) PairingCheck(P []*G1Affine, Q []*G2Affine) error { return nil } +// DoublePairingCheck computes the multi-pairing of the 2 input pairs and asserts that +// the result is an identity element in the target group. It returns an error if +// there is a mismatch between the lengths of the inputs. +func (p *Pairing) DoublePairingCheck(P [2]*G1Affine, Q [2]*G2Affine) error { + return p.PairingCheck(P[:], Q[:]) +} + // AssertIsEqual asserts the equality of the target group elements. func (p *Pairing) AssertIsEqual(e1, e2 *GT) { e1.AssertIsEqual(p.api, *e2) diff --git a/std/algebra/native/sw_bls24315/pairing_test.go b/std/algebra/native/sw_bls24315/pairing_test.go index 6f4ed72d97..c406556e9a 100644 --- a/std/algebra/native/sw_bls24315/pairing_test.go +++ b/std/algebra/native/sw_bls24315/pairing_test.go @@ -182,12 +182,12 @@ func TestDoublePairingFixedBLS315(t *testing.T) { } -type pairingCheckBLS315 struct { +type pairingCheck struct { P1, P2 G1Affine Q1, Q2 G2Affine } -func (circuit *pairingCheckBLS315) Define(api frontend.API) error { +func (circuit *pairingCheck) Define(api frontend.API) error { err := PairingCheck(api, []G1Affine{circuit.P1, circuit.P2}, []G2Affine{circuit.Q1, circuit.Q2}) @@ -198,19 +198,48 @@ func (circuit *pairingCheckBLS315) Define(api frontend.API) error { return nil } -func TestPairingCheckBLS315(t *testing.T) { +func TestPairingCheck(t *testing.T) { // pairing test data P, Q := pairingCheckData() - witness := pairingCheckBLS315{ + witness := pairingCheck{ P1: NewG1Affine(P[0]), P2: NewG1Affine(P[1]), Q1: NewG2Affine(Q[0]), Q2: NewG2Affine(Q[1]), } assert := test.NewAssert(t) - assert.CheckCircuit(&pairingCheckBLS315{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_633), test.NoProverChecks()) + assert.CheckCircuit(&pairingCheck{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_633), test.NoProverChecks()) +} + +type doublePairingCheck struct { + P1, P2 G1Affine + Q1, Q2 G2Affine +} + +func (circuit *doublePairingCheck) Define(api frontend.API) error { + err := DoublePairingCheck(api, [2]G1Affine{circuit.P1, circuit.P2}, [2]G2Affine{circuit.Q1, circuit.Q2}) + + if err != nil { + return fmt.Errorf("pair: %w", err) + } + + return nil +} + +func TestDoublePairingCheck(t *testing.T) { + + // pairing test data + P, Q := pairingCheckData() + witness := doublePairingCheck{ + P1: NewG1Affine(P[0]), + P2: NewG1Affine(P[1]), + Q1: NewG2Affine(Q[0]), + Q2: NewG2Affine(Q[1]), + } + assert := test.NewAssert(t) + assert.CheckCircuit(&doublePairingCheck{}, test.WithValidAssignment(&witness), test.WithCurves(ecc.BW6_633), test.NoProverChecks()) } // utils diff --git a/std/commitments/kzg/verifier.go b/std/commitments/kzg/verifier.go index bf23203a18..ee4c295d46 100644 --- a/std/commitments/kzg/verifier.go +++ b/std/commitments/kzg/verifier.go @@ -436,9 +436,9 @@ func (v *Verifier[FR, G1El, G2El, GTEl]) CheckOpeningProof(commitment Commitment totalG1 = v.curve.Add(totalG1, commitmentNeg) // e([f(a)-f(α)-a*H(α)]G₁], G₂).e([H(α)]G₁, [α]G₂) == 1 - if err := v.pairing.PairingCheck( - []*G1El{totalG1, &proof.Quotient}, - []*G2El{&vk.G2[0], &vk.G2[1]}, + if err := v.pairing.DoublePairingCheck( + [2]*G1El{totalG1, &proof.Quotient}, + [2]*G2El{&vk.G2[0], &vk.G2[1]}, ); err != nil { return fmt.Errorf("pairing check: %w", err) } @@ -580,9 +580,9 @@ func (v *Verifier[FR, G1El, G2El, GTEl]) BatchVerifyMultiPoints(digests []Commit } // pairing check - err = v.pairing.PairingCheck( - []*G1El{foldedDigest, foldedQuotients}, - []*G2El{&vk.G2[0], &vk.G2[1]}, + err = v.pairing.DoublePairingCheck( + [2]*G1El{foldedDigest, foldedQuotients}, + [2]*G2El{&vk.G2[0], &vk.G2[1]}, ) if err != nil { return fmt.Errorf("pairingcheck: %w", err) diff --git a/std/commitments/pedersen/verifier.go b/std/commitments/pedersen/verifier.go index 136ad0a6bc..cfa5e84f85 100644 --- a/std/commitments/pedersen/verifier.go +++ b/std/commitments/pedersen/verifier.go @@ -63,7 +63,7 @@ func (v *Verifier[FR, G1El, G2El, GtEl]) AssertCommitment(commitment Commitment[ v.pairing.AssertIsOnG1(&knowledgeProof.G1El) } - v.pairing.PairingCheck([]*G1El{&commitment.G1El, &knowledgeProof.G1El}, []*G2El{&vk.G, &vk.GRootSigmaNeg}) + v.pairing.DoublePairingCheck([2]*G1El{&commitment.G1El, &knowledgeProof.G1El}, [2]*G2El{&vk.G, &vk.GRootSigmaNeg}) return nil } diff --git a/std/recursion/groth16/verifier.go b/std/recursion/groth16/verifier.go index dfa452174b..c8cdbed213 100644 --- a/std/recursion/groth16/verifier.go +++ b/std/recursion/groth16/verifier.go @@ -163,9 +163,11 @@ func PlaceholderProof[G1El algebra.G1ElementT, G2El algebra.G2ElementT](ccs cons // witness creation use the method [ValueOfVerifyingKey] and for stub // placeholder use [PlaceholderVerifyingKey]. type VerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl algebra.GtElementT] struct { - E GtEl - G1 struct{ K []G1El } - G2 struct{ GammaNeg, DeltaNeg G2El } + G1 struct { + Alpha G1El + K []G1El + } + G2 struct{ GammaNeg, Beta, DeltaNeg G2El } CommitmentKey pedersen.VerifyingKey[G2El] PublicAndCommitmentCommitted [][]int } @@ -179,7 +181,10 @@ func PlaceholderVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, G commitmentWires := commitments.CommitmentIndexes() return VerifyingKey[G1El, G2El, GtEl]{ - G1: struct{ K []G1El }{ + G1: struct { + Alpha G1El + K []G1El + }{ K: make([]G1El, ccs.GetNbPublicVariables()+len(ccs.GetCommitments().(constraint.Groth16Commitments))), }, PublicAndCommitmentCommitted: commitments.GetPublicAndCommitmentCommitted(commitmentWires, ccs.GetNbPublicVariables()), @@ -197,12 +202,10 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl if !ok { return ret, fmt.Errorf("expected bn254.VerifyingKey, got %T", vk) } - // compute E - e, err := bn254.Pair([]bn254.G1Affine{tVk.G1.Alpha}, []bn254.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bn254.NewGTEl(e) + var alpha bn254.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bn254.NewG1Affine(alpha) + s.G2.Beta = sw_bn254.NewG2Affine(tVk.G2.Beta) s.G1.K = make([]sw_bn254.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bn254.NewG1Affine(tVk.G1.K[i]) @@ -212,6 +215,7 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bn254.NewG2Affine(deltaNeg) s.G2.GammaNeg = sw_bn254.NewG2Affine(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKey[sw_bn254.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -219,14 +223,12 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl case *VerifyingKey[sw_bls12377.G1Affine, sw_bls12377.G2Affine, sw_bls12377.GT]: tVk, ok := vk.(*groth16backend_bls12377.VerifyingKey) if !ok { - return ret, fmt.Errorf("expected bn254.VerifyingKey, got %T", vk) + return ret, fmt.Errorf("expected bls12377.VerifyingKey, got %T", vk) } - // compute E - e, err := bls12377.Pair([]bls12377.G1Affine{tVk.G1.Alpha}, []bls12377.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bls12377.NewGTEl(e) + var alpha bls12377.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bls12377.NewG1Affine(alpha) + s.G2.Beta = sw_bls12377.NewG2Affine(tVk.G2.Beta) s.G1.K = make([]sw_bls12377.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bls12377.NewG1Affine(tVk.G1.K[i]) @@ -236,6 +238,7 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bls12377.NewG2Affine(deltaNeg) s.G2.GammaNeg = sw_bls12377.NewG2Affine(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKey[sw_bls12377.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -245,12 +248,10 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl if !ok { return ret, fmt.Errorf("expected bls12381.VerifyingKey, got %T", vk) } - // compute E - e, err := bls12381.Pair([]bls12381.G1Affine{tVk.G1.Alpha}, []bls12381.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bls12381.NewGTEl(e) + var alpha bls12381.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bls12381.NewG1Affine(alpha) + s.G2.Beta = sw_bls12381.NewG2Affine(tVk.G2.Beta) s.G1.K = make([]sw_bls12381.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bls12381.NewG1Affine(tVk.G1.K[i]) @@ -260,6 +261,7 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bls12381.NewG2Affine(deltaNeg) s.G2.GammaNeg = sw_bls12381.NewG2Affine(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKey[sw_bls12381.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -267,14 +269,12 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl case *VerifyingKey[sw_bls24315.G1Affine, sw_bls24315.G2Affine, sw_bls24315.GT]: tVk, ok := vk.(*groth16backend_bls24315.VerifyingKey) if !ok { - return ret, fmt.Errorf("expected bls12381.VerifyingKey, got %T", vk) - } - // compute E - e, err := bls24315.Pair([]bls24315.G1Affine{tVk.G1.Alpha}, []bls24315.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) + return ret, fmt.Errorf("expected bls24315.VerifyingKey, got %T", vk) } - s.E = sw_bls24315.NewGTEl(e) + var alpha bls24315.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bls24315.NewG1Affine(alpha) + s.G2.Beta = sw_bls24315.NewG2Affine(tVk.G2.Beta) s.G1.K = make([]sw_bls24315.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bls24315.NewG1Affine(tVk.G1.K[i]) @@ -284,6 +284,7 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bls24315.NewG2Affine(deltaNeg) s.G2.GammaNeg = sw_bls24315.NewG2Affine(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKey[sw_bls24315.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -293,12 +294,10 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl if !ok { return ret, fmt.Errorf("expected bw6761.VerifyingKey, got %T", vk) } - // compute E - e, err := bw6761.Pair([]bw6761.G1Affine{tVk.G1.Alpha}, []bw6761.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bw6761.NewGTEl(e) + var alpha bw6761.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bw6761.NewG1Affine(alpha) + s.G2.Beta = sw_bw6761.NewG2Affine(tVk.G2.Beta) s.G1.K = make([]sw_bw6761.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bw6761.NewG1Affine(tVk.G1.K[i]) @@ -308,6 +307,7 @@ func ValueOfVerifyingKey[G1El algebra.G1ElementT, G2El algebra.G2ElementT, GtEl gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bw6761.NewG2Affine(deltaNeg) s.G2.GammaNeg = sw_bw6761.NewG2Affine(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKey[sw_bw6761.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -329,12 +329,10 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, if !ok { return ret, fmt.Errorf("expected bn254.VerifyingKey, got %T", vk) } - // compute E - e, err := bn254.Pair([]bn254.G1Affine{tVk.G1.Alpha}, []bn254.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bn254.NewGTEl(e) + var alpha bn254.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bn254.NewG1Affine(alpha) + s.G2.Beta = sw_bn254.NewG2AffineFixed(tVk.G2.Beta) s.G1.K = make([]sw_bn254.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bn254.NewG1Affine(tVk.G1.K[i]) @@ -344,6 +342,7 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bn254.NewG2AffineFixed(deltaNeg) s.G2.GammaNeg = sw_bn254.NewG2AffineFixed(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKeyFixed[sw_bn254.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -351,14 +350,12 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, case *VerifyingKey[sw_bls12377.G1Affine, sw_bls12377.G2Affine, sw_bls12377.GT]: tVk, ok := vk.(*groth16backend_bls12377.VerifyingKey) if !ok { - return ret, fmt.Errorf("expected bn254.VerifyingKey, got %T", vk) - } - // compute E - e, err := bls12377.Pair([]bls12377.G1Affine{tVk.G1.Alpha}, []bls12377.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) + return ret, fmt.Errorf("expected bls12377.VerifyingKey, got %T", vk) } - s.E = sw_bls12377.NewGTEl(e) + var alpha bls12377.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bls12377.NewG1Affine(alpha) + s.G2.Beta = sw_bls12377.NewG2AffineFixed(tVk.G2.Beta) s.G1.K = make([]sw_bls12377.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bls12377.NewG1Affine(tVk.G1.K[i]) @@ -368,6 +365,7 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bls12377.NewG2AffineFixed(deltaNeg) s.G2.GammaNeg = sw_bls12377.NewG2AffineFixed(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKeyFixed[sw_bls12377.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -377,12 +375,10 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, if !ok { return ret, fmt.Errorf("expected bls12381.VerifyingKey, got %T", vk) } - // compute E - e, err := bls12381.Pair([]bls12381.G1Affine{tVk.G1.Alpha}, []bls12381.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bls12381.NewGTEl(e) + var alpha bls12381.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bls12381.NewG1Affine(alpha) + s.G2.Beta = sw_bls12381.NewG2AffineFixed(tVk.G2.Beta) s.G1.K = make([]sw_bls12381.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bls12381.NewG1Affine(tVk.G1.K[i]) @@ -392,6 +388,7 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bls12381.NewG2AffineFixed(deltaNeg) s.G2.GammaNeg = sw_bls12381.NewG2AffineFixed(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKeyFixed[sw_bls12381.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -399,14 +396,12 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, case *VerifyingKey[sw_bls24315.G1Affine, sw_bls24315.G2Affine, sw_bls24315.GT]: tVk, ok := vk.(*groth16backend_bls24315.VerifyingKey) if !ok { - return ret, fmt.Errorf("expected bls12381.VerifyingKey, got %T", vk) + return ret, fmt.Errorf("expected bls24315.VerifyingKey, got %T", vk) } - // compute E - e, err := bls24315.Pair([]bls24315.G1Affine{tVk.G1.Alpha}, []bls24315.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bls24315.NewGTEl(e) + var alpha bls24315.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bls24315.NewG1Affine(alpha) + s.G2.Beta = sw_bls24315.NewG2AffineFixed(tVk.G2.Beta) s.G1.K = make([]sw_bls24315.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bls24315.NewG1Affine(tVk.G1.K[i]) @@ -416,6 +411,7 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bls24315.NewG2AffineFixed(deltaNeg) s.G2.GammaNeg = sw_bls24315.NewG2AffineFixed(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKeyFixed[sw_bls24315.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -425,12 +421,10 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, if !ok { return ret, fmt.Errorf("expected bw6761.VerifyingKey, got %T", vk) } - // compute E - e, err := bw6761.Pair([]bw6761.G1Affine{tVk.G1.Alpha}, []bw6761.G2Affine{tVk.G2.Beta}) - if err != nil { - return ret, fmt.Errorf("precompute pairing: %w", err) - } - s.E = sw_bw6761.NewGTEl(e) + var alpha bw6761.G1Affine + alpha.Neg(&tVk.G1.Alpha) + s.G1.Alpha = sw_bw6761.NewG1Affine(alpha) + s.G2.Beta = sw_bw6761.NewG2AffineFixed(tVk.G2.Beta) s.G1.K = make([]sw_bw6761.G1Affine, len(tVk.G1.K)) for i := range s.G1.K { s.G1.K[i] = sw_bw6761.NewG1Affine(tVk.G1.K[i]) @@ -440,6 +434,7 @@ func ValueOfVerifyingKeyFixed[G1El algebra.G1ElementT, G2El algebra.G2ElementT, gammaNeg.Neg(&tVk.G2.Gamma) s.G2.DeltaNeg = sw_bw6761.NewG2AffineFixed(deltaNeg) s.G2.GammaNeg = sw_bw6761.NewG2AffineFixed(gammaNeg) + var err error s.CommitmentKey, err = pedersen.ValueOfVerifyingKeyFixed[sw_bw6761.G2Affine](&tVk.CommitmentKey) if err != nil { return ret, fmt.Errorf("commitment key: %w", err) @@ -638,10 +633,6 @@ func (v *Verifier[FR, G1El, G2El, GtEl]) AssertProof(vk VerifyingKey[G1El, G2El, v.pairing.AssertIsOnG1(&proof.Krs) v.pairing.AssertIsOnG2(&proof.Bs) } - pairing, err := v.pairing.Pair([]*G1El{kSum, &proof.Krs, &proof.Ar}, []*G2El{&vk.G2.GammaNeg, &vk.G2.DeltaNeg, &proof.Bs}) - if err != nil { - return fmt.Errorf("pairing: %w", err) - } - v.pairing.AssertIsEqual(pairing, &vk.E) + v.pairing.PairingCheck([]*G1El{kSum, &proof.Krs, &proof.Ar, &vk.G1.Alpha}, []*G2El{&vk.G2.GammaNeg, &vk.G2.DeltaNeg, &proof.Bs, &vk.G2.Beta}) return nil }