From d91ab72f5e31976be816cf583cfadffc2052f624 Mon Sep 17 00:00:00 2001 From: Morten Hjorth-Jensen Date: Wed, 31 Jan 2024 22:28:23 +0100 Subject: [PATCH] update week3 --- doc/pub/week3/html/._week3-bs000.html | 226 +- doc/pub/week3/html/._week3-bs001.html | 235 +- doc/pub/week3/html/._week3-bs002.html | 253 +- doc/pub/week3/html/._week3-bs003.html | 264 +- doc/pub/week3/html/._week3-bs004.html | 257 +- doc/pub/week3/html/._week3-bs005.html | 256 +- doc/pub/week3/html/._week3-bs006.html | 256 +- doc/pub/week3/html/._week3-bs007.html | 491 +++- doc/pub/week3/html/._week3-bs008.html | 267 +- doc/pub/week3/html/._week3-bs009.html | 265 +- doc/pub/week3/html/._week3-bs010.html | 264 +- doc/pub/week3/html/._week3-bs011.html | 251 +- doc/pub/week3/html/._week3-bs012.html | 263 +- doc/pub/week3/html/._week3-bs013.html | 275 +- doc/pub/week3/html/._week3-bs014.html | 274 +- doc/pub/week3/html/._week3-bs015.html | 262 +- doc/pub/week3/html/._week3-bs016.html | 263 +- doc/pub/week3/html/._week3-bs017.html | 257 +- doc/pub/week3/html/._week3-bs018.html | 255 +- doc/pub/week3/html/._week3-bs019.html | 253 +- doc/pub/week3/html/._week3-bs020.html | 255 +- doc/pub/week3/html/._week3-bs021.html | 255 +- doc/pub/week3/html/._week3-bs022.html | 510 ++-- doc/pub/week3/html/._week3-bs023.html | 257 +- doc/pub/week3/html/._week3-bs024.html | 249 +- doc/pub/week3/html/._week3-bs025.html | 254 +- doc/pub/week3/html/._week3-bs026.html | 255 +- doc/pub/week3/html/._week3-bs027.html | 220 +- doc/pub/week3/html/._week3-bs028.html | 216 +- doc/pub/week3/html/._week3-bs029.html | 202 +- doc/pub/week3/html/._week3-bs030.html | 205 +- doc/pub/week3/html/._week3-bs031.html | 219 +- doc/pub/week3/html/._week3-bs032.html | 218 +- doc/pub/week3/html/._week3-bs033.html | 215 +- doc/pub/week3/html/._week3-bs034.html | 209 +- doc/pub/week3/html/._week3-bs035.html | 211 +- doc/pub/week3/html/._week3-bs036.html | 218 +- doc/pub/week3/html/._week3-bs037.html | 209 +- doc/pub/week3/html/._week3-bs038.html | 217 +- doc/pub/week3/html/._week3-bs039.html | 211 +- doc/pub/week3/html/._week3-bs040.html | 210 +- doc/pub/week3/html/._week3-bs041.html | 234 +- doc/pub/week3/html/._week3-bs042.html | 235 +- doc/pub/week3/html/._week3-bs043.html | 242 +- doc/pub/week3/html/._week3-bs044.html | 222 +- doc/pub/week3/html/._week3-bs045.html | 224 +- doc/pub/week3/html/._week3-bs046.html | 232 +- doc/pub/week3/html/._week3-bs047.html | 219 +- doc/pub/week3/html/._week3-bs048.html | 223 +- doc/pub/week3/html/week3-bs.html | 226 +- doc/pub/week3/html/week3-reveal.html | 1397 ++++++++--- doc/pub/week3/html/week3-solarized.html | 1367 +++++++--- doc/pub/week3/html/week3.html | 1367 +++++++--- doc/pub/week3/ipynb/ipynb-week3-src.tar.gz | Bin 191 -> 191 bytes doc/pub/week3/ipynb/week3.ipynb | 2627 +++++++++++++++----- doc/pub/week3/pdf/week3-beamer.pdf | Bin 317980 -> 361741 bytes doc/pub/week3/pdf/week3.pdf | Bin 365961 -> 425122 bytes doc/src/week3/week3.do.txt | 1179 ++++++--- 58 files changed, 12556 insertions(+), 7840 deletions(-) diff --git a/doc/pub/week3/html/._week3-bs000.html b/doc/pub/week3/html/._week3-bs000.html index 59267aee..ba242581 100644 --- a/doc/pub/week3/html/._week3-bs000.html +++ b/doc/pub/week3/html/._week3-bs000.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -167,7 +291,7 @@

Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importa
-

February 6-10

+

February 2


@@ -192,7 +316,7 @@

February 6-10

  • 9
  • 10
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • @@ -206,7 +330,7 @@

    February 6-10

    -->
    - © 1999-2023, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license + © 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license
    diff --git a/doc/pub/week3/html/._week3-bs001.html b/doc/pub/week3/html/._week3-bs001.html index 0361956f..b065dd83 100644 --- a/doc/pub/week3/html/._week3-bs001.html +++ b/doc/pub/week3/html/._week3-bs001.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,12 +273,12 @@

     

     

     

    -

    Overview of week 5

    +

    Overview of week 5, January 29-February 2

      -
    • Markov Chain Monte Carlo
    • +
    • Markov Chain Monte Carlo and repetition from last week
    • Metropolis-Hastings sampling and Importance Sampling
    @@ -168,7 +292,6 @@

    Overview of week 5

  • Overview video on Metropolis algoritm
  • Video of lecture tba
  • Handwritten notes tba
  • -
  • See also Lectures from FYS3150/4150 on the Metropolis Algorithm
  • @@ -190,7 +313,7 @@

    Overview of week 5

  • 10
  • 11
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs002.html b/doc/pub/week3/html/._week3-bs002.html index a1bc757f..507f2c89 100644 --- a/doc/pub/week3/html/._week3-bs002.html +++ b/doc/pub/week3/html/._week3-bs002.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,16 +273,23 @@

     

     

     

    -

    Basics of the Metropolis Algorithm

    +

    Importance Sampling: Overview of what needs to be coded

    -

    The Metropolis et al. -algorithm was invented by Metropolis et. a -and is often simply called the Metropolis algorithm. -It is a method to sample a normalized probability -distribution by a stochastic process. We define \( {\cal P}_i^{(n)} \) to -be the probability for finding the system in the state \( i \) at step \( n \). -The algorithm is then +

    +
    + + +

    For a diffusion process characterized by a time-dependent probability density \( P(x,t) \) in one dimension the Fokker-Planck +equation reads (for one particle /walker)

    +$$ + \frac{\partial P}{\partial t} = D\frac{\partial }{\partial x}\left(\frac{\partial }{\partial x} -F\right)P(x,t), +$$ + +

    where \( F \) is a drift term and \( D \) is the diffusion coefficient.

    +
    +
    +

    @@ -177,7 +308,7 @@

    Basics of the Metropo
  • 11
  • 12
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs003.html b/doc/pub/week3/html/._week3-bs003.html index 040f8567..97975656 100644 --- a/doc/pub/week3/html/._week3-bs003.html +++ b/doc/pub/week3/html/._week3-bs003.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,20 +273,30 @@

     

     

     

    -

    The basic of the Metropolis Algorithm

    +

    Importance sampling

    +
    +
    + +

    The new positions in coordinate space are given as the solutions of the Langevin equation using Euler's method, namely, +we go from the Langevin equation +

    +$$ + \frac{\partial x(t)}{\partial t} = DF(x(t)) +\eta, +$$ -
      -
    • Sample a possible new state \( j \) with some probability \( T_{i\rightarrow j} \).
    • -
    • Accept the new state \( j \) with probability \( A_{i \rightarrow j} \) and use it as the next sample.
    • -
    • With probability \( 1-A_{i\rightarrow j} \) the move is rejected and the original state \( i \) is used again as a sample.
    • -
    -

    We wish to derive the required properties of \( T \) and \( A \) such that -\( {\cal P}_i^{(n\rightarrow \infty)} \rightarrow p_i \) so that starting -from any distribution, the method converges to the correct distribution. -Note that the description here is for a discrete probability distribution. -Replacing probabilities \( p_i \) with expressions like \( p(x_i)dx_i \) will -take all of these over to the corresponding continuum expressions. +

    with \( \eta \) a random variable, +yielding a new position +

    +$$ + y = x+DF(x)\Delta t +\xi\sqrt{\Delta t}, +$$ + +

    where \( \xi \) is gaussian random variable and \( \Delta t \) is a chosen time step. +The quantity \( D \) is, in atomic units, equal to \( 1/2 \) and comes from the factor \( 1/2 \) in the kinetic energy operator. Note that \( \Delta t \) is to be viewed as a parameter. Values of \( \Delta t \in [0.001,0.01] \) yield in general rather stable values of the ground state energy.

    +
    +
    +

    @@ -182,7 +316,7 @@

    The basic of the M
  • 12
  • 13
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs004.html b/doc/pub/week3/html/._week3-bs004.html index 2597e197..9a11a696 100644 --- a/doc/pub/week3/html/._week3-bs004.html +++ b/doc/pub/week3/html/._week3-bs004.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,24 +273,21 @@

     

     

     

    -

    More on the Metropolis

    +

    Importance sampling

    +
    +
    + +

    The process of isotropic diffusion characterized by a time-dependent probability density \( P(\mathbf{x},t) \) obeys (as an approximation) the so-called Fokker-Planck equation

    +$$ + \frac{\partial P}{\partial t} = \sum_i D\frac{\partial }{\partial \mathbf{x_i}}\left(\frac{\partial }{\partial \mathbf{x_i}} -\mathbf{F_i}\right)P(\mathbf{x},t), +$$ -

    The dynamical equation for \( {\cal P}_i^{(n)} \) can be written directly from -the description above. The probability of being in the state \( i \) at step \( n \) -is given by the probability of being in any state \( j \) at the previous step, -and making an accepted transition to \( i \) added to the probability of -being in the state \( i \), making a transition to any state \( j \) and -rejecting the move: -

    +

    where \( \mathbf{F_i} \) is the \( i^{th} \) component of the drift term (drift velocity) caused by an external potential, and \( D \) is the diffusion coefficient. The convergence to a stationary probability density can be obtained by setting the left hand side to zero. The resulting equation will be satisfied if and only if all the terms of the sum are equal zero,

    $$ -\begin{equation} -\tag{1} -{\cal P}^{(n)}_i = \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} -+{\cal P}^{(n-1)}_iT_{i\rightarrow j}\left ( 1- A_{i\rightarrow j} \right) -\right ] \,. -\end{equation} +\frac{\partial^2 P}{\partial {\mathbf{x_i}^2}} = P\frac{\partial}{\partial {\mathbf{x_i}}}\mathbf{F_i} + \mathbf{F_i}\frac{\partial}{\partial {\mathbf{x_i}}}P. $$ +
    +

    @@ -188,7 +309,7 @@

    More on the Metropolis

  • 13
  • 14
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs005.html b/doc/pub/week3/html/._week3-bs005.html index daa435e2..81571ba2 100644 --- a/doc/pub/week3/html/._week3-bs005.html +++ b/doc/pub/week3/html/._week3-bs005.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,22 +273,24 @@

     

     

     

    -

    Metropolis algorithm, setting it up

    -

    Since the probability of making some transition must be 1, -\( \sum_j T_{i\rightarrow j} = 1 \), and Eq. (1) becomes -

    +

    Importance sampling

    +
    +
    + +

    The drift vector should be of the form \( \mathbf{F} = g(\mathbf{x}) \frac{\partial P}{\partial \mathbf{x}} \). Then,

    +$$ +\frac{\partial^2 P}{\partial {\mathbf{x_i}^2}} = P\frac{\partial g}{\partial P}\left( \frac{\partial P}{\partial {\mathbf{x}_i}} \right)^2 + P g \frac{\partial ^2 P}{\partial {\mathbf{x}_i^2}} + g \left( \frac{\partial P}{\partial {\mathbf{x}_i}} \right)^2. +$$ +

    The condition of stationary density means that the left hand side equals zero. In other words, the terms containing first and second derivatives have to cancel each other. It is possible only if \( g = \frac{1}{P} \), which yields

    $$ -\begin{equation} -{\cal P}^{(n)}_i = {\cal P}^{(n-1)}_i + - \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} --{\cal P}^{(n-1)}_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] \,. -\tag{2} -\end{equation} +\mathbf{F} = 2\frac{1}{\Psi_T}\nabla\Psi_T, $$ +

    which is known as the so-called quantum force. This term is responsible for pushing the walker towards regions of configuration space where the trial wave function is large, increasing the efficiency of the simulation in contrast to the Metropolis algorithm where the walker has the same probability of moving in every direction.

    +
    +
    +

    @@ -186,7 +312,7 @@

    Metropolis algorithm,
  • 14
  • 15
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs006.html b/doc/pub/week3/html/._week3-bs006.html index ffc9160e..5eb2a99d 100644 --- a/doc/pub/week3/html/._week3-bs006.html +++ b/doc/pub/week3/html/._week3-bs006.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,20 +273,26 @@

     

     

     

    -

    Metropolis continues

    +

    Importance sampling

    +
    +
    + +

    The Fokker-Planck equation yields a (the solution to the equation) transition probability given by the Green's function

    +$$ + G(y,x,\Delta t) = \frac{1}{(4\pi D\Delta t)^{3N/2}} \exp{\left(-(y-x-D\Delta t F(x))^2/4D\Delta t\right)} +$$ -

    For large \( n \) we require that \( {\cal P}^{(n\rightarrow \infty)}_i = p_i \), -the desired probability distribution. Taking this limit, gives the -balance requirement -

    +

    which in turn means that our brute force Metropolis algorithm

    +$$ + A(y,x) = \mathrm{min}(1,q(y,x))), +$$ +

    with \( q(y,x) = |\Psi_T(y)|^2/|\Psi_T(x)|^2 \) is now replaced by the Metropolis-Hastings algorithm as well as Hasting's article,

    $$ -\begin{equation} -\sum_j \left [p_jT_{j\rightarrow i} A_{j\rightarrow i}-p_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] = 0, -\tag{3} -\end{equation} +q(y,x) = \frac{G(x,y,\Delta t)|\Psi_T(y)|^2}{G(y,x,\Delta t)|\Psi_T(x)|^2} $$ +
    +

    @@ -186,7 +316,7 @@

    Metropolis continues

  • 15
  • 16
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs007.html b/doc/pub/week3/html/._week3-bs007.html index da19fa4a..9a701576 100644 --- a/doc/pub/week3/html/._week3-bs007.html +++ b/doc/pub/week3/html/._week3-bs007.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,21 +273,264 @@

     

     

     

    -

    Detailed Balance

    +

    Code example for the interacting case with importance sampling

    + +

    We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters \( \alpha \) and \( \beta \). After the set up of files

    + + + +
    +
    +
    +
    +
    +
    # Common imports
    +import os
    +
    +# Where to save the figures and data files
    +PROJECT_ROOT_DIR = "Results"
    +FIGURE_ID = "Results/FigureFiles"
    +DATA_ID = "Results/VMCQdotImportance"
    +
    +if not os.path.exists(PROJECT_ROOT_DIR):
    +    os.mkdir(PROJECT_ROOT_DIR)
    +
    +if not os.path.exists(FIGURE_ID):
    +    os.makedirs(FIGURE_ID)
    +
    +if not os.path.exists(DATA_ID):
    +    os.makedirs(DATA_ID)
    +
    +def image_path(fig_id):
    +    return os.path.join(FIGURE_ID, fig_id)
    +
    +def data_path(dat_id):
    +    return os.path.join(DATA_ID, dat_id)
     
    -

    The balance requirement is very weak. Typically the much stronger detailed -balance requirement is enforced, that is rather than the sum being -set to zero, we set each term separately to zero and use this -to determine the acceptance probabilities. Rearranging, the result is -

    +def save_fig(fig_id): + plt.savefig(image_path(fig_id) + ".png", format='png') -$$ -\begin{equation} -\frac{ A_{j\rightarrow i}}{A_{i\rightarrow j}} -= \frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}} \,. -\tag{4} -\end{equation} -$$ +outfile = open(data_path("VMCQdotImportance.dat"),'w') +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    + +

    we move on to the set up of the trial wave function, the analytical expression for the local energy and the analytical expression for the quantum force.

    + + +
    +
    +
    +
    +
    +
    # 2-electron VMC code for 2dim quantum dot with importance sampling
    +# Using gaussian rng for new positions and Metropolis- Hastings 
    +# No energy minimization
    +from math import exp, sqrt
    +from random import random, seed, normalvariate
    +import numpy as np
    +import matplotlib.pyplot as plt
    +from mpl_toolkits.mplot3d import Axes3D
    +from matplotlib import cm
    +from matplotlib.ticker import LinearLocator, FormatStrFormatter
    +import sys
    +
    +
    +# Trial wave function for the 2-electron quantum dot in two dims
    +def WaveFunction(r,alpha,beta):
    +    r1 = r[0,0]**2 + r[0,1]**2
    +    r2 = r[1,0]**2 + r[1,1]**2
    +    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    +    deno = r12/(1+beta*r12)
    +    return exp(-0.5*alpha*(r1+r2)+deno)
    +
    +# Local energy  for the 2-electron quantum dot in two dims, using analytical local energy
    +def LocalEnergy(r,alpha,beta):
    +    
    +    r1 = (r[0,0]**2 + r[0,1]**2)
    +    r2 = (r[1,0]**2 + r[1,1]**2)
    +    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    +    deno = 1.0/(1+beta*r12)
    +    deno2 = deno*deno
    +    return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)
    +
    +# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
    +def QuantumForce(r,alpha,beta):
    +
    +    qforce = np.zeros((NumberParticles,Dimension), np.double)
    +    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    +    deno = 1.0/(1+beta*r12)
    +    qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
    +    qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
    +    return qforce
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    + +

    The Monte Carlo sampling includes now the Metropolis-Hastings algorithm, with the additional complication of having to evaluate the quantum force and the Green's function which is the solution of the Fokker-Planck equation.

    + + + +
    +
    +
    +
    +
    +
    # The Monte Carlo sampling with the Metropolis algo
    +def MonteCarloSampling():
    +
    +    NumberMCcycles= 100000
    +    # Parameters in the Fokker-Planck simulation of the quantum force
    +    D = 0.5
    +    TimeStep = 0.05
    +    # positions
    +    PositionOld = np.zeros((NumberParticles,Dimension), np.double)
    +    PositionNew = np.zeros((NumberParticles,Dimension), np.double)
    +    # Quantum force
    +    QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
    +    QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)
    +
    +    # seed for rng generator 
    +    seed()
    +    # start variational parameter  loops, two parameters here
    +    alpha = 0.9
    +    for ia in range(MaxVariations):
    +        alpha += .025
    +        AlphaValues[ia] = alpha
    +        beta = 0.2 
    +        for jb in range(MaxVariations):
    +            beta += .01
    +            BetaValues[jb] = beta
    +            energy = energy2 = 0.0
    +            DeltaE = 0.0
    +            #Initial position
    +            for i in range(NumberParticles):
    +                for j in range(Dimension):
    +                    PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
    +            wfold = WaveFunction(PositionOld,alpha,beta)
    +            QuantumForceOld = QuantumForce(PositionOld,alpha, beta)
    +
    +            #Loop over MC MCcycles
    +            for MCcycle in range(NumberMCcycles):
    +                #Trial position moving one particle at the time
    +                for i in range(NumberParticles):
    +                    for j in range(Dimension):
    +                        PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\
    +                                           QuantumForceOld[i,j]*TimeStep*D
    +                    wfnew = WaveFunction(PositionNew,alpha,beta)
    +                    QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
    +                    GreensFunction = 0.0
    +                    for j in range(Dimension):
    +                        GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
    +	                              (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
    +                                      PositionNew[i,j]+PositionOld[i,j])
    +      
    +                    GreensFunction = exp(GreensFunction)
    +                    ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
    +                    #Metropolis-Hastings test to see whether we accept the move
    +                    if random() <= ProbabilityRatio:
    +                       for j in range(Dimension):
    +                           PositionOld[i,j] = PositionNew[i,j]
    +                           QuantumForceOld[i,j] = QuantumForceNew[i,j]
    +                       wfold = wfnew
    +                DeltaE = LocalEnergy(PositionOld,alpha,beta)
    +                energy += DeltaE
    +                energy2 += DeltaE**2
    +            # We calculate mean, variance and error (no blocking applied)
    +            energy /= NumberMCcycles
    +            energy2 /= NumberMCcycles
    +            variance = energy2 - energy**2
    +            error = sqrt(variance/NumberMCcycles)
    +            Energies[ia,jb] = energy    
    +            outfile.write('%f %f %f %f %f\n' %(alpha,beta,energy,variance,error))
    +    return Energies, AlphaValues, BetaValues
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    + +

    The main part here contains the setup of the variational parameters, the energies and the variance.

    + + +
    +
    +
    +
    +
    +
    #Here starts the main program with variable declarations
    +NumberParticles = 2
    +Dimension = 2
    +MaxVariations = 10
    +Energies = np.zeros((MaxVariations,MaxVariations))
    +AlphaValues = np.zeros(MaxVariations)
    +BetaValues = np.zeros(MaxVariations)
    +(Energies, AlphaValues, BetaValues) = MonteCarloSampling()
    +outfile.close()
    +# Prepare for plots
    +fig = plt.figure()
    +ax = fig.gca(projection='3d')
    +# Plot the surface.
    +X, Y = np.meshgrid(AlphaValues, BetaValues)
    +surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)
    +# Customize the z axis.
    +zmin = np.matrix(Energies).min()
    +zmax = np.matrix(Energies).max()
    +ax.set_zlim(zmin, zmax)
    +ax.set_xlabel(r'$\alpha$')
    +ax.set_ylabel(r'$\beta$')
    +ax.set_zlabel(r'$\langle E \rangle$')
    +ax.zaxis.set_major_locator(LinearLocator(10))
    +ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    +# Add a color bar which maps values to colors.
    +fig.colorbar(surf, shrink=0.5, aspect=5)
    +save_fig("QdotImportance")
    +plt.show()
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +

    @@ -188,7 +555,7 @@

    Detailed Balance

  • 16
  • 17
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs008.html b/doc/pub/week3/html/._week3-bs008.html index 75983c67..894753bd 100644 --- a/doc/pub/week3/html/._week3-bs008.html +++ b/doc/pub/week3/html/._week3-bs008.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,30 +273,31 @@

     

     

     

    -

    More on Detailed Balance

    - -

    The Metropolis choice is to maximize the \( A \) values, that is

    - +

    Importance sampling, program elements

    +
    +
    + +

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    $$ -\begin{equation} -A_{j \rightarrow i} = \min \left ( 1, -\frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}}\right ). -\tag{5} -\end{equation} +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k} $$ -

    Other choices are possible, but they all correspond to multilplying -\( A_{i\rightarrow j} \) and \( A_{j\rightarrow i} \) by the same constant -smaller than unity. The penalty function method uses just such -a factor to compensate for \( p_i \) that are evaluated stochastically -and are therefore noisy. +

    However, +with our written in way which can be reused later as

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})= \exp{\left\{\sum_{i < j}f(r_{ij})\right\}}, +$$ -

    Having chosen the acceptance probabilities, we have guaranteed that -if the \( {\cal P}_i^{(n)} \) has equilibrated, that is if it is equal to \( p_i \), -it will remain equilibrated. Next we need to find the circumstances for -convergence to equilibrium. +

    the gradient needed for the quantum force and local energy is easy to compute. +The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form.

    +
    +
    +

    @@ -197,7 +322,7 @@

    More on Detailed Balance

  • 17
  • 18
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs009.html b/doc/pub/week3/html/._week3-bs009.html index 8fd0135c..ee9ce811 100644 --- a/doc/pub/week3/html/._week3-bs009.html +++ b/doc/pub/week3/html/._week3-bs009.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,32 +273,27 @@

     

     

     

    -

    Dynamical Equation

    - -

    The dynamical equation can be written as

    - +

    Importance sampling, program elements

    +
    +
    + +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    $$ -\begin{equation} -{\cal P}^{(n)}_i = \sum_j M_{ij}{\cal P}^{(n-1)}_j -\tag{6} -\end{equation} +R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = +\frac{\Psi_{OB}^{new}}{\Psi_{OB}^{old}}\frac{\Psi_{C}^{new}}{\Psi_{C}^{old}} $$ -

    with the matrix \( M \) given by

    - +

    Here \( \Psi_{OB} \) is our onebody part (Slater determinant or product of boson single-particle states) while \( \Psi_{C} \) is our correlation function, or Jastrow factor. +We need to optimize the \( \nabla \Psi_T / \Psi_T \) ratio and the second derivative as well, that is +the \( \mathbf{\nabla}^2 \Psi_T/\Psi_T \) ratio. The first is needed when we compute the so-called quantum force in importance sampling. +The second is needed when we compute the kinetic energy term of the local energy. +

    $$ -\begin{equation} -M_{ij} = \delta_{ij}\left [ 1 -\sum_k T_{i\rightarrow k} A_{i \rightarrow k} -\right ] + T_{j\rightarrow i} A_{j\rightarrow i} \,. -\tag{7} -\end{equation} +\frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ +
    +
    -

    Summing over \( i \) shows that \( \sum_i M_{ij} = 1 \), and since -\( \sum_k T_{i\rightarrow k} = 1 \), and \( A_{i \rightarrow k} \leq 1 \), the -elements of the matrix satisfy \( M_{ij} \geq 0 \). The matrix \( M \) is therefore -a stochastic matrix. -

    @@ -200,7 +319,7 @@

    Dynamical Equation

  • 18
  • 19
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs010.html b/doc/pub/week3/html/._week3-bs010.html index 16e5f12b..1d71147f 100644 --- a/doc/pub/week3/html/._week3-bs010.html +++ b/doc/pub/week3/html/._week3-bs010.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,37 +273,21 @@

     

     

     

    -

    Interpreting the Metropolis Algorithm

    - -

    The Metropolis method is simply the power method for computing the -right eigenvector of \( M \) with the largest magnitude eigenvalue. -By construction, the correct probability distribution is a right eigenvector -with eigenvalue 1. Therefore, for the Metropolis method to converge -to this result, we must show that \( M \) has only one eigenvalue with this -magnitude, and all other eigenvalues are smaller. -

    - -

    Even a defective matrix has at least one left and right eigenvector for -each eigenvalue. An example of a defective matrix is -

    - +

    Importance sampling

    +
    +
    + +

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    $$ -\begin{bmatrix} -0 & 1\\ -0 & 0 \\ -\end{bmatrix}, + \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, $$ -

    with two zero eigenvalues, only one right eigenvector

    - $$ -\begin{bmatrix} -1 \\ -0\\ -\end{bmatrix} +\hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. $$ +
    +
    -

    and only one left eigenvector \( (0\ 1) \).

    @@ -206,7 +314,7 @@

    Interpreting the M
  • 19
  • 20
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs011.html b/doc/pub/week3/html/._week3-bs011.html index dde1420d..923163f7 100644 --- a/doc/pub/week3/html/._week3-bs011.html +++ b/doc/pub/week3/html/._week3-bs011.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,21 +273,18 @@

     

     

     

    -

    Gershgorin bounds and Metropolis

    - -

    The Gershgorin bounds for the eigenvalues can be derived by multiplying on -the left with the eigenvector with the maximum and minimum eigenvalues, -

    - +

    Importance sampling

    +
    +
    + +

    The second derivative which enters the definition of the local energy is

    $$ -\begin{align} -\sum_i \psi^{\rm max}_i M_{ij} =& \lambda_{\rm max} \psi^{\rm max}_j -\nonumber\\ -\sum_i \psi^{\rm min}_i M_{ij} =& \lambda_{\rm min} \psi^{\rm min}_j -\tag{8} -\end{align} +\frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ +

    We discuss here how to calculate these quantities in an optimal way,

    +
    +

    @@ -190,7 +311,7 @@

    Gershgorin bounds and M
  • 20
  • 21
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs012.html b/doc/pub/week3/html/._week3-bs012.html index 373d9e3a..3a486bff 100644 --- a/doc/pub/week3/html/._week3-bs012.html +++ b/doc/pub/week3/html/._week3-bs012.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,30 +273,27 @@

     

     

     

    -

    Normalizing the Eigenvectors

    +

    Importance sampling

    +
    +
    + +

    We have defined the correlated function as

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), +$$ -

    Next we choose the normalization of these eigenvectors so that the -largest element (or one of the equally largest elements) -has value 1. Let's call this element \( k \), and -we can therefore bound the magnitude of the other elements to be less -than or equal to 1. -This leads to the inequalities, using the property that \( M_{ij}\geq 0 \), +

    with +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2} \) in three dimensions or +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2} \) if we work with two-dimensional systems.

    +

    In our particular case we have

    $$ -\begin{eqnarray} -\sum_i M_{ik} \leq \lambda_{\rm max} -\nonumber\\ -M_{kk}-\sum_{i \neq k} M_{ik} \geq \lambda_{\rm min} -\end{eqnarray} +\Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. $$ +
    +
    -

    where the equality from the maximum -will occur only if the eigenvector takes the value 1 for all values of -\( i \) where \( M_{ik} \neq 0 \), and the equality for the minimum will -occur only if the eigenvector takes the value -1 for all values of \( i\neq k \) -where \( M_{ik} \neq 0 \). -

    @@ -199,7 +320,7 @@

    Normalizing the Eigenvector
  • 21
  • 22
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs013.html b/doc/pub/week3/html/._week3-bs013.html index 84225a55..871395ce 100644 --- a/doc/pub/week3/html/._week3-bs013.html +++ b/doc/pub/week3/html/._week3-bs013.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,35 +273,26 @@

     

     

     

    -

    More Metropolis analysis

    +

    Importance sampling

    +
    +
    + +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    +$$ + \mathbf{r} \equiv \begin{pmatrix} + 0 & r_{1,2} & r_{1,3} & \cdots & r_{1,N} \\ + \vdots & 0 & r_{2,3} & \cdots & r_{2,N} \\ + \vdots & \vdots & 0 & \ddots & \vdots \\ + \vdots & \vdots & \vdots & \ddots & r_{N-1,N} \\ + 0 & 0 & 0 & \cdots & 0 + \end{pmatrix}. +$$ -

    That the maximum eigenvalue is 1 follows immediately from the property -that \( \sum_i M_{ik} = 1 \). Similarly the minimum eigenvalue can be -1, -but only if \( M_{kk} = 0 \) and the magnitude of all the other elements -\( \psi_i^{\rm min} \) of -the eigenvector that multiply nonzero elements \( M_{ik} \) are -1. -

    +

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    -

    Let's first see what the properties of \( M \) must be -to eliminate any -1 eigenvalues. -To have a -1 eigenvalue, the left eigenvector must contain only \( \pm 1 \) -and \( 0 \) values. Taking in turn each \( \pm 1 \) value as the maximum, so that -it corresponds to the index \( k \), the nonzero \( M_{ik} \) values must -correspond to \( i \) index values of the eigenvector which have opposite -sign elements. That is, the \( M \) matrix must break up into sets of -states that always make transitions from set A to set B ... back to set A. -In particular, there can be no rejections of these moves in the cycle -since the -1 eigenvalue requires \( M_{kk}=0 \). To guarantee no eigenvalues -with eigenvalue -1, we simply have to make sure that there are no -cycles among states. Notice that this is generally trivial since such -cycles cannot have any rejections at any stage. An example of such -a cycle is sampling a noninteracting Ising spin. If the transition is -taken to flip the spin, and the energy difference is zero, the Boltzmann -factor will not change and the move will always be accepted. The system -will simply flip from up to down to up to down ad infinitum. Including -a rejection probability or using a heat bath algorithm -immediately fixes the problem. -

    +

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    +
    +

    @@ -203,6 +318,8 @@

    More Metropolis analysis

  • 21
  • 22
  • 23
  • +
  • ...
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs014.html b/doc/pub/week3/html/._week3-bs014.html index 0d22be15..4a53b98f 100644 --- a/doc/pub/week3/html/._week3-bs014.html +++ b/doc/pub/week3/html/._week3-bs014.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,24 +273,33 @@

     

     

     

    -

    Final Considerations I

    +

    Importance sampling

    +
    +
    + +

    We have that the ratio between Jastrow factors \( R_C \) is given by

    +$$ +R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\prod_{i=1}^{k-1}\frac{g_{ik}^\mathrm{new}}{g_{ik}^\mathrm{cur}} +\prod_{i=k+1}^{N}\frac{ g_{ki}^\mathrm{new}} {g_{ki}^\mathrm{cur}}. +$$ + +

    For the Pade-Jastrow form

    +$$ + R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\frac{\exp{U_{new}}}{\exp{U_{cur}}} = \exp{\Delta U}, +$$ + +

    where

    +$$ +\Delta U = +\sum_{i=1}^{k-1}\big(f_{ik}^\mathrm{new}-f_{ik}^\mathrm{cur}\big) ++ +\sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) +$$ +
    +
    -

    Next we need to make sure that there is only one left eigenvector -with eigenvalue 1. To get an eigenvalue 1, the left eigenvector must be -constructed from only ones and zeroes. It is straightforward to -see that a vector made up of -ones and zeroes can only be an eigenvector with eigenvalue 1 if the -matrix element \( M_{ij} = 0 \) for all cases where \( \psi_i \neq \psi_j \). -That is we can choose an index \( i \) and take \( \psi_i = 1 \). -We require all elements \( \psi_j \) where \( M_{ij} \neq 0 \) to also have -the value \( 1 \). Continuing we then require all elements \( \psi_\ell \) $M_{j\ell}$ -to have value \( 1 \). Only if the matrix \( M \) can be put into block diagonal -form can there be more than one choice for the left eigenvector with -eigenvalue 1. We therefore require that the transition matrix not -be in block diagonal form. This simply means that we must choose -the transition probability so that we can get from any allowed state -to any other in a series of transitions. -

    @@ -191,6 +324,9 @@

    Final Considerations I

  • 21
  • 22
  • 23
  • +
  • 24
  • +
  • ...
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs015.html b/doc/pub/week3/html/._week3-bs015.html index d3b82f06..9b095f02 100644 --- a/doc/pub/week3/html/._week3-bs015.html +++ b/doc/pub/week3/html/._week3-bs015.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,22 +273,24 @@

     

     

     

    -

    Final Considerations II

    - -

    Finally, we note that for a defective matrix, with more eigenvalues -than independent eigenvectors for eigenvalue 1, -the left and right -eigenvectors of eigenvalue 1 would be orthogonal. -Here the left eigenvector is all 1 -except for states that can never be reached, and the right eigenvector -is \( p_i > 0 \) except for states that give zero probability. We already -require that we can reach -all states that contribute to \( p_i \). Therefore the left and right -eigenvectors with eigenvalue 1 do not correspond to a defective sector -of the matrix and they are unique. The Metropolis algorithm therefore -converges exponentially to the desired distribution. +

    Importance sampling

    +
    +
    + +

    One needs to develop a special algorithm +that runs only through the elements of the upper triangular +matrix \( \mathbf{g} \) and have \( k \) as an index.

    +

    The expression to be derived in the following is of interest when computing the quantum force and the kinetic energy. It has the form

    +$$ +\frac{\mathbf{\nabla}_i\Psi_C}{\Psi_C} = \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_i}, +$$ + +

    for all dimensions and with \( i \) running over all particles.

    +
    +
    +

    diff --git a/doc/pub/week3/html/._week3-bs016.html b/doc/pub/week3/html/._week3-bs016.html index 540e7de2..37ff6430 100644 --- a/doc/pub/week3/html/._week3-bs016.html +++ b/doc/pub/week3/html/._week3-bs016.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,13 +273,31 @@

     

     

     

    -

    Final Considerations III

    +

    Importance sampling

    +
    +
    + +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_k}. +$$ + +

    An equivalent equation is obtained for the exponential form after replacing \( g_{ij} \) by \( \exp(f_{ij}) \), yielding:

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k}, +$$ + +

    with both expressions scaling as \( \mathcal{O}(N) \).

    +
    +
    + -

    The requirements for the transition \( T_{i \rightarrow j} \) are

    -

    diff --git a/doc/pub/week3/html/._week3-bs017.html b/doc/pub/week3/html/._week3-bs017.html index 7e28ebb7..f8efa40e 100644 --- a/doc/pub/week3/html/._week3-bs017.html +++ b/doc/pub/week3/html/._week3-bs017.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,20 +273,29 @@

     

     

     

    -

    Importance Sampling: Overview of what needs to be coded

    - +

    Importance sampling

    -

    For a diffusion process characterized by a time-dependent probability density \( P(x,t) \) in one dimension the Fokker-Planck -equation reads (for one particle /walker) -

    +

    Using the identity

    $$ - \frac{\partial P}{\partial t} = D\frac{\partial }{\partial x}\left(\frac{\partial }{\partial x} -F\right)P(x,t), +\frac{\partial}{\partial x_i}g_{ij} = -\frac{\partial}{\partial x_j}g_{ij}, $$ -

    where \( F \) is a drift term and \( D \) is the diffusion coefficient.

    +

    we get expressions where all the derivatives acting on the particle are represented by the second index of \( g \):

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_i}, +$$ + +

    and for the exponential case:

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. +$$
    @@ -187,6 +320,12 @@

    I
  • 21
  • 22
  • 23
  • +
  • 24
  • +
  • 25
  • +
  • 26
  • +
  • 27
  • +
  • ...
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs018.html b/doc/pub/week3/html/._week3-bs018.html index 447162fa..d218b689 100644 --- a/doc/pub/week3/html/._week3-bs018.html +++ b/doc/pub/week3/html/._week3-bs018.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -153,23 +277,17 @@

    Importance sampling

    -

    The new positions in coordinate space are given as the solutions of the Langevin equation using Euler's method, namely, -we go from the Langevin equation -

    -$$ - \frac{\partial x(t)}{\partial t} = DF(x(t)) +\eta, +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    +$$ +\frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, $$ -

    with \( \eta \) a random variable, -yielding a new position -

    +

    we arrive at

    $$ - y = x+DF(x)\Delta t +\xi\sqrt{\Delta t}, +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. $$ - -

    where \( \xi \) is gaussian random variable and \( \Delta t \) is a chosen time step. -The quantity \( D \) is, in atomic units, equal to \( 1/2 \) and comes from the factor \( 1/2 \) in the kinetic energy operator. Note that \( \Delta t \) is to be viewed as a parameter. Values of \( \Delta t \in [0.001,0.01] \) yield in general rather stable values of the ground state energy. -

    @@ -193,6 +311,13 @@

    Importance sampling

  • 21
  • 22
  • 23
  • +
  • 24
  • +
  • 25
  • +
  • 26
  • +
  • 27
  • +
  • 28
  • +
  • ...
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs019.html b/doc/pub/week3/html/._week3-bs019.html index 5242ec11..58b12125 100644 --- a/doc/pub/week3/html/._week3-bs019.html +++ b/doc/pub/week3/html/._week3-bs019.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -153,15 +277,24 @@

    Importance sampling

    -

    The process of isotropic diffusion characterized by a time-dependent probability density \( P(\mathbf{x},t) \) obeys (as an approximation) the so-called Fokker-Planck equation

    +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    $$ - \frac{\partial P}{\partial t} = \sum_i D\frac{\partial }{\partial \mathbf{x_i}}\left(\frac{\partial }{\partial \mathbf{x_i}} -\mathbf{F_i}\right)P(\mathbf{x},t), +\frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. $$ -

    where \( \mathbf{F_i} \) is the \( i^{th} \) component of the drift term (drift velocity) caused by an external potential, and \( D \) is the diffusion coefficient. The convergence to a stationary probability density can be obtained by setting the left hand side to zero. The resulting equation will be satisfied if and only if all the terms of the sum are equal zero,

    +

    Therefore,

    $$ -\frac{\partial^2 P}{\partial {\mathbf{x_i}^2}} = P\frac{\partial}{\partial {\mathbf{x_i}}}\mathbf{F_i} + \mathbf{F_i}\frac{\partial}{\partial {\mathbf{x_i}}}P. +\frac{1}{\Psi_{C}}\frac{\partial \Psi_{C}}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\mathbf{r_{ik}}}{r_{ik}}\frac{\partial f_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial f_{ki}}{\partial r_{ki}}, $$ + +

    where

    +$$ + \mathbf{r}_{ij} = |\mathbf{r}_j - \mathbf{r}_i| = (x_j - x_i)\mathbf{e}_1 + (y_j - y_i)\mathbf{e}_2 + (z_j - z_i)\mathbf{e}_3 +$$ + +

    is the relative distance.

    @@ -184,6 +317,14 @@

    Importance sampling

  • 21
  • 22
  • 23
  • +
  • 24
  • +
  • 25
  • +
  • 26
  • +
  • 27
  • +
  • 28
  • +
  • 29
  • +
  • ...
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs020.html b/doc/pub/week3/html/._week3-bs020.html index d664fa6b..e4c8d802 100644 --- a/doc/pub/week3/html/._week3-bs020.html +++ b/doc/pub/week3/html/._week3-bs020.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -153,17 +277,17 @@

    Importance sampling

    -

    The drift vector should be of the form \( \mathbf{F} = g(\mathbf{x}) \frac{\partial P}{\partial \mathbf{x}} \). Then,

    +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    $$ -\frac{\partial^2 P}{\partial {\mathbf{x_i}^2}} = P\frac{\partial g}{\partial P}\left( \frac{\partial P}{\partial {\mathbf{x}_i}} \right)^2 + P g \frac{\partial ^2 P}{\partial {\mathbf{x}_i^2}} + g \left( \frac{\partial P}{\partial {\mathbf{x}_i}} \right)^2. +\left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ +2\sum_{k=1}^{N} +\sum_{i=1}^{k-1}\frac{\partial^2 g_{ik}}{\partial x_k^2}\ +\ +\sum_{k=1}^N +\left( +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} - +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} +\right)^2 $$ - -

    The condition of stationary density means that the left hand side equals zero. In other words, the terms containing first and second derivatives have to cancel each other. It is possible only if \( g = \frac{1}{P} \), which yields

    -$$ -\mathbf{F} = 2\frac{1}{\Psi_T}\nabla\Psi_T, -$$ - -

    which is known as the so-called quantum force. This term is responsible for pushing the walker towards regions of configuration space where the trial wave function is large, increasing the efficiency of the simulation in contrast to the Metropolis algorithm where the walker has the same probability of moving in every direction.

    @@ -185,6 +309,15 @@

    Importance sampling

  • 21
  • 22
  • 23
  • +
  • 24
  • +
  • 25
  • +
  • 26
  • +
  • 27
  • +
  • 28
  • +
  • 29
  • +
  • 30
  • +
  • ...
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs021.html b/doc/pub/week3/html/._week3-bs021.html index 06012627..7a53d2c6 100644 --- a/doc/pub/week3/html/._week3-bs021.html +++ b/doc/pub/week3/html/._week3-bs021.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -153,19 +277,18 @@

    Importance sampling

    -

    The Fokker-Planck equation yields a (the solution to the equation) transition probability given by the Green's function

    +

    But we have a simple form for the function, namely

    $$ - G(y,x,\Delta t) = \frac{1}{(4\pi D\Delta t)^{3N/2}} \exp{\left(-(y-x-D\Delta t F(x))^2/4D\Delta t\right)} +\Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, $$ -

    which in turn means that our brute force Metropolis algorithm

    -$$ - A(y,x) = \mathrm{min}(1,q(y,x))), +

    and it is easy to see that for particle \( k \) +we have +

    $$ - -

    with \( q(y,x) = |\Psi_T(y)|^2/|\Psi_T(x)|^2 \) is now replaced by the Metropolis-Hastings algorithm as well as Hasting's article,

    -$$ -q(y,x) = \frac{G(x,y,\Delta t)|\Psi_T(y)|^2}{G(y,x,\Delta t)|\Psi_T(x)|^2} + \frac{\mathbf{\nabla}^2_k \Psi_C}{\Psi_C }= +\sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ +\sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) $$
    @@ -187,6 +310,16 @@

    Importance sampling

  • 21
  • 22
  • 23
  • +
  • 24
  • +
  • 25
  • +
  • 26
  • +
  • 27
  • +
  • 28
  • +
  • 29
  • +
  • 30
  • +
  • 31
  • +
  • ...
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs022.html b/doc/pub/week3/html/._week3-bs022.html index ea4fc2c0..3fa3e00f 100644 --- a/doc/pub/week3/html/._week3-bs022.html +++ b/doc/pub/week3/html/._week3-bs022.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -149,267 +273,25 @@

     

     

     

    -

    Code example for the interacting case with importance sampling

    - -

    We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters \( \alpha \) and \( \beta \). After the set up of files

    - - - -
    -
    -
    -
    -
    -
    # Common imports
    -import os
    -
    -# Where to save the figures and data files
    -PROJECT_ROOT_DIR = "Results"
    -FIGURE_ID = "Results/FigureFiles"
    -DATA_ID = "Results/VMCQdotImportance"
    -
    -if not os.path.exists(PROJECT_ROOT_DIR):
    -    os.mkdir(PROJECT_ROOT_DIR)
    -
    -if not os.path.exists(FIGURE_ID):
    -    os.makedirs(FIGURE_ID)
    -
    -if not os.path.exists(DATA_ID):
    -    os.makedirs(DATA_ID)
    -
    -def image_path(fig_id):
    -    return os.path.join(FIGURE_ID, fig_id)
    -
    -def data_path(dat_id):
    -    return os.path.join(DATA_ID, dat_id)
    -
    -def save_fig(fig_id):
    -    plt.savefig(image_path(fig_id) + ".png", format='png')
    -
    -outfile = open(data_path("VMCQdotImportance.dat"),'w')
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    - -

    we move on to the set up of the trial wave function, the analytical expression for the local energy and the analytical expression for the quantum force.

    - - -
    -
    -
    -
    -
    -
    # 2-electron VMC code for 2dim quantum dot with importance sampling
    -# Using gaussian rng for new positions and Metropolis- Hastings 
    -# No energy minimization
    -from math import exp, sqrt
    -from random import random, seed, normalvariate
    -import numpy as np
    -import matplotlib.pyplot as plt
    -from mpl_toolkits.mplot3d import Axes3D
    -from matplotlib import cm
    -from matplotlib.ticker import LinearLocator, FormatStrFormatter
    -import sys
    -from numba import jit,njit
    -
    -
    -# Trial wave function for the 2-electron quantum dot in two dims
    -def WaveFunction(r,alpha,beta):
    -    r1 = r[0,0]**2 + r[0,1]**2
    -    r2 = r[1,0]**2 + r[1,1]**2
    -    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    -    deno = r12/(1+beta*r12)
    -    return exp(-0.5*alpha*(r1+r2)+deno)
    -
    -# Local energy  for the 2-electron quantum dot in two dims, using analytical local energy
    -def LocalEnergy(r,alpha,beta):
    -    
    -    r1 = (r[0,0]**2 + r[0,1]**2)
    -    r2 = (r[1,0]**2 + r[1,1]**2)
    -    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    -    deno = 1.0/(1+beta*r12)
    -    deno2 = deno*deno
    -    return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)
    -
    -# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
    -def QuantumForce(r,alpha,beta):
    -
    -    qforce = np.zeros((NumberParticles,Dimension), np.double)
    -    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    -    deno = 1.0/(1+beta*r12)
    -    qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
    -    qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
    -    return qforce
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    - -

    The Monte Carlo sampling includes now the Metropolis-Hastings algorithm, with the additional complication of having to evaluate the quantum force and the Green's function which is the solution of the Fokker-Planck equation.

    - - - -
    -
    -
    -
    -
    -
    # The Monte Carlo sampling with the Metropolis algo
    -# jit decorator tells Numba to compile this function.
    -# The argument types will be inferred by Numba when function is called.
    -@jit()
    -def MonteCarloSampling():
    -
    -    NumberMCcycles= 100000
    -    # Parameters in the Fokker-Planck simulation of the quantum force
    -    D = 0.5
    -    TimeStep = 0.05
    -    # positions
    -    PositionOld = np.zeros((NumberParticles,Dimension), np.double)
    -    PositionNew = np.zeros((NumberParticles,Dimension), np.double)
    -    # Quantum force
    -    QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
    -    QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)
    -
    -    # seed for rng generator 
    -    seed()
    -    # start variational parameter  loops, two parameters here
    -    alpha = 0.9
    -    for ia in range(MaxVariations):
    -        alpha += .025
    -        AlphaValues[ia] = alpha
    -        beta = 0.2 
    -        for jb in range(MaxVariations):
    -            beta += .01
    -            BetaValues[jb] = beta
    -            energy = energy2 = 0.0
    -            DeltaE = 0.0
    -            #Initial position
    -            for i in range(NumberParticles):
    -                for j in range(Dimension):
    -                    PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
    -            wfold = WaveFunction(PositionOld,alpha,beta)
    -            QuantumForceOld = QuantumForce(PositionOld,alpha, beta)
    -
    -            #Loop over MC MCcycles
    -            for MCcycle in range(NumberMCcycles):
    -                #Trial position moving one particle at the time
    -                for i in range(NumberParticles):
    -                    for j in range(Dimension):
    -                        PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\
    -                                           QuantumForceOld[i,j]*TimeStep*D
    -                    wfnew = WaveFunction(PositionNew,alpha,beta)
    -                    QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
    -                    GreensFunction = 0.0
    -                    for j in range(Dimension):
    -                        GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
    -	                              (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
    -                                      PositionNew[i,j]+PositionOld[i,j])
    -      
    -                    GreensFunction = exp(GreensFunction)
    -                    ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
    -                    #Metropolis-Hastings test to see whether we accept the move
    -                    if random() <= ProbabilityRatio:
    -                       for j in range(Dimension):
    -                           PositionOld[i,j] = PositionNew[i,j]
    -                           QuantumForceOld[i,j] = QuantumForceNew[i,j]
    -                       wfold = wfnew
    -                DeltaE = LocalEnergy(PositionOld,alpha,beta)
    -                energy += DeltaE
    -                energy2 += DeltaE**2
    -            # We calculate mean, variance and error (no blocking applied)
    -            energy /= NumberMCcycles
    -            energy2 /= NumberMCcycles
    -            variance = energy2 - energy**2
    -            error = sqrt(variance/NumberMCcycles)
    -            Energies[ia,jb] = energy    
    -            outfile.write('%f %f %f %f %f\n' %(alpha,beta,energy,variance,error))
    -    return Energies, AlphaValues, BetaValues
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    - -

    The main part here contains the setup of the variational parameters, the energies and the variance.

    - - -
    -
    -
    -
    -
    -
    #Here starts the main program with variable declarations
    -NumberParticles = 2
    -Dimension = 2
    -MaxVariations = 10
    -Energies = np.zeros((MaxVariations,MaxVariations))
    -AlphaValues = np.zeros(MaxVariations)
    -BetaValues = np.zeros(MaxVariations)
    -(Energies, AlphaValues, BetaValues) = MonteCarloSampling()
    -outfile.close()
    -# Prepare for plots
    -fig = plt.figure()
    -ax = fig.gca(projection='3d')
    -# Plot the surface.
    -X, Y = np.meshgrid(AlphaValues, BetaValues)
    -surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)
    -# Customize the z axis.
    -zmin = np.matrix(Energies).min()
    -zmax = np.matrix(Energies).max()
    -ax.set_zlim(zmin, zmax)
    -ax.set_xlabel(r'$\alpha$')
    -ax.set_ylabel(r'$\beta$')
    -ax.set_zlabel(r'$\langle E \rangle$')
    -ax.zaxis.set_major_locator(LinearLocator(10))
    -ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
    -# Add a color bar which maps values to colors.
    -fig.colorbar(surf, shrink=0.5, aspect=5)
    -save_fig("QdotImportance")
    -plt.show()
    -
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +
    + +

    A stochastic process is simply a function of two variables, one is the time, +the other is a stochastic variable \( X \), defined by specifying +

    +
      +
    • the set \( \left\{x\right\} \) of possible values for \( X \);
    • +
    • the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
    • +
    +

    The set of values \( \left\{x\right\} \) for \( X \) +may be discrete, or continuous. If the set of +values is continuous, then \( w_X (x) \) is a probability density so that +\( w_X (x)dx \) +is the probability that one finds the stochastic variable \( X \) to have values +in the range \( [x, x + dx] \) . +

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    @@ -428,6 +310,18 @@

    21
  • 22
  • 23
  • +
  • 24
  • +
  • 25
  • +
  • 26
  • +
  • 27
  • +
  • 28
  • +
  • 29
  • +
  • 30
  • +
  • 31
  • +
  • 32
  • +
  • ...
  • +
  • 49
  • +
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs023.html b/doc/pub/week3/html/._week3-bs023.html index 2c71ca3d..a21e5fab 100644 --- a/doc/pub/week3/html/._week3-bs023.html +++ b/doc/pub/week3/html/._week3-bs023.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,57 +273,36 @@

     

     

     

    -

    Importance sampling, program elements in C++

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    The full code is this link. Here we include only the parts pertaining to the computation of the quantum force and the Metropolis update. The program is a modfication of our previous c++ program discussed previously. Here we display only the part from the vmcsolver.cpp file. Note the usage of the function GaussianDeviate.

    - - -
    -
    -
    -
    -
    -
    void VMCSolver::runMonteCarloIntegration()
    -{
    -  rOld = zeros<mat>(nParticles, nDimensions);
    -  rNew = zeros<mat>(nParticles, nDimensions);
    -  QForceOld = zeros<mat>(nParticles, nDimensions);
    -  QForceNew = zeros<mat>(nParticles, nDimensions);
    -
    -  double waveFunctionOld = 0;
    -  double waveFunctionNew = 0;
    -
    -  double energySum = 0;
    -  double energySquaredSum = 0;
    +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic +variable. The mapping may also be time-dependent, that is, the mapping +depends on an additional variable \( t \) +

    +$$ + Y_X (t) = f (X, t) . +$$ - double deltaE; +

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, +a stochastic process. A stochastic process is a function of two variables, +one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the +possible values of \( X \) then +

    +$$ + y(t) = f (x, t), +$$ - // initial trial positions - for(int i = 0; i < nParticles; i++) { - for(int j = 0; j < nDimensions; j++) { - rOld(i,j) = GaussianDeviate(&idum)*sqrt(timestep); - } - } - rNew = rOld; -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +

    is a function of \( t \), called a sample function or realization of the process. +In physics one considers the stochastic process to be an ensemble of such +sample functions. +

    +

    diff --git a/doc/pub/week3/html/._week3-bs024.html b/doc/pub/week3/html/._week3-bs024.html index a8b842c1..efe14835 100644 --- a/doc/pub/week3/html/._week3-bs024.html +++ b/doc/pub/week3/html/._week3-bs024.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,50 +273,29 @@

     

     

     

    -

    Importance sampling, program elements

    +

    Importance sampling, Fokker-Planck and Langevin equations

    +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) +as \( t\rightarrow\infty \). In +equilibrium detailed balance constrains the transition rates +

    +$$ + W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), +$$ - -
    -
    -
    -
    -
    -
      for(int cycle = 0; cycle < nCycles; cycle++) {
    +

    where \( W(y'\rightarrow y) \) +is the probability, per unit time, that the system changes +from a state \( |y\rangle \) , characterized by the value \( y \) +for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    - // Store the current value of the wave function - waveFunctionOld = waveFunction(rOld); - QuantumForce(rOld, QForceOld); QForceOld = QForceOld*h/waveFunctionOld; - // New position to test - for(int i = 0; i < nParticles; i++) { - for(int j = 0; j < nDimensions; j++) { - rNew(i,j) = rOld(i,j) + GaussianDeviate(&idum)*sqrt(timestep)+QForceOld(i,j)*timestep*D; - } - // for the other particles we need to set the position to the old position since - // we move only one particle at the time - for (int k = 0; k < nParticles; k++) { - if ( k != i) { - for (int j=0; j < nDimensions; j++) { - rNew(k,j) = rOld(k,j); - } - } - } -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and +the reverse \( W(y\rightarrow y') \) may be very different. +

    @@ -430,7 +325,7 @@

    Importance sampling
  • 33
  • 34
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs025.html b/doc/pub/week3/html/._week3-bs025.html index 1b2bb415..9fb312a8 100644 --- a/doc/pub/week3/html/._week3-bs025.html +++ b/doc/pub/week3/html/._week3-bs025.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,60 +273,30 @@

     

     

     

    -

    Importance sampling, program elements

    +

    Importance sampling, Fokker-Planck and Langevin equations

    +

    Consider, for instance, a simple +system that has only two energy levels \( \epsilon_0 = 0 \) and +\( \epsilon_1 = \Delta E \). +

    - -
    -
    -
    -
    -
    -
      // loop over Monte Carlo cycles
    -      // Recalculate the value of the wave function and the quantum force
    -      waveFunctionNew = waveFunction(rNew);
    -      QuantumForce(rNew,QForceNew) = QForceNew*h/waveFunctionNew;
    -      //  we compute the log of the ratio of the greens functions to be used in the 
    -      //  Metropolis-Hastings algorithm
    -      GreensFunction = 0.0;            
    -      for (int j=0; j < nDimensions; j++) {
    -	GreensFunction += 0.5*(QForceOld(i,j)+QForceNew(i,j))*
    -	  (D*timestep*0.5*(QForceOld(i,j)-QForceNew(i,j))-rNew(i,j)+rOld(i,j));
    -      }
    -      GreensFunction = exp(GreensFunction);
    +

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    +$$ + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} +$$ - // The Metropolis test is performed by moving one particle at the time - if(ran2(&idum) <= GreensFunction*(waveFunctionNew*waveFunctionNew) / (waveFunctionOld*waveFunctionOld)) { - for(int j = 0; j < nDimensions; j++) { - rOld(i,j) = rNew(i,j); - QForceOld(i,j) = QForceNew(i,j); - waveFunctionOld = waveFunctionNew; - } - } else { - for(int j = 0; j < nDimensions; j++) { - rNew(i,j) = rOld(i,j); - QForceNew(i,j) = QForceOld(i,j); - } - } -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +

    We get then

    +$$ + \frac{W(1\rightarrow 0)}{W(0 \rightarrow 1)}=\exp{-(\Delta E/kT)}, +$$ + +

    which goes to zero when \( T \) tends to zero.

    +

    diff --git a/doc/pub/week3/html/._week3-bs026.html b/doc/pub/week3/html/._week3-bs026.html index 1c5d2e56..4a8f3a88 100644 --- a/doc/pub/week3/html/._week3-bs026.html +++ b/doc/pub/week3/html/._week3-bs026.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,55 +273,32 @@

     

     

     

    -

    Importance sampling, program elements

    +

    Importance sampling, Fokker-Planck and Langevin equations

    +

    If we assume a discrete set of events, +our initial probability +distribution function can be given by +

    +$$ + w_i(0) = \delta_{i,0}, +$$ - -
    -
    -
    -
    -
    -
    double VMCSolver::QuantumForce(const mat &r, mat &QForce)
    -{
    -    mat rPlus = zeros<mat>(nParticles, nDimensions);
    -    mat rMinus = zeros<mat>(nParticles, nDimensions);
    -    rPlus = rMinus = r;
    -    double waveFunctionMinus = 0;
    -    double waveFunctionPlus = 0;
    -    double waveFunctionCurrent = waveFunction(r);
    +

    and its time-development after a given time step \( \Delta t=\epsilon \) is

    +$$ + w_i(t) = \sum_{j}W(j\rightarrow i)w_j(t=0). +$$ - // Kinetic energy +

    The continuous analog to \( w_i(0) \) is

    +$$ + w(\mathbf{x})\rightarrow \delta(\mathbf{x}), +$$ - double kineticEnergy = 0; - for(int i = 0; i < nParticles; i++) { - for(int j = 0; j < nDimensions; j++) { - rPlus(i,j) += h; - rMinus(i,j) -= h; - waveFunctionMinus = waveFunction(rMinus); - waveFunctionPlus = waveFunction(rPlus); - QForce(i,j) = (waveFunctionPlus-waveFunctionMinus); - rPlus(i,j) = r(i,j); - rMinus(i,j) = r(i,j); - } - } -} -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +

    where we now have generalized the one-dimensional position \( x \) to a generic-dimensional +vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution +function \( \delta(\mathbf{x}) \) at \( t=0 \). +

    @@ -435,7 +328,7 @@

    Importance sampling
  • 35
  • 36
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs027.html b/doc/pub/week3/html/._week3-bs027.html index b11bf63a..dcb621c9 100644 --- a/doc/pub/week3/html/._week3-bs027.html +++ b/doc/pub/week3/html/._week3-bs027.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,28 +273,30 @@

     

     

     

    -

    Importance sampling, program elements

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition +to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). +The discrete sum of transition probabilities can then be replaced by an integral +and we obtain the new distribution at a time \( t+\Delta t \) as +

    $$ -\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = -\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} -+ -\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k} + w(\mathbf{y},t+\Delta t)= \int W(\mathbf{y},t+\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}, $$ -

    However, -with our written in way which can be reused later as -

    +

    and after \( m \) time steps we have

    $$ -\Psi_C=\prod_{i < j}g(r_{ij})= \exp{\left\{\sum_{i < j}f(r_{ij})\right\}}, + w(\mathbf{y},t+m\Delta t)= \int W(\mathbf{y},t+m\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}. $$ -

    the gradient needed for the quantum force and local energy is easy to compute. -The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form. -

    +

    When equilibrium is reached we have

    +$$ + w(\mathbf{y})= \int W(\mathbf{y}|\mathbf{x}, t)w(\mathbf{x})d\mathbf{x}, +$$ + +

    that is no time-dependence. Note our change of notation for \( W \)

    @@ -408,7 +326,7 @@

    Importance sampling
  • 36
  • 37
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs028.html b/doc/pub/week3/html/._week3-bs028.html index b61504df..671c308f 100644 --- a/doc/pub/week3/html/._week3-bs028.html +++ b/doc/pub/week3/html/._week3-bs028.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,23 +273,29 @@

     

     

     

    -

    Importance sampling, program elements

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to +momentum space. +The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform +\( \tilde{w}(\mathbf{k},t) \) through +

    $$ -R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = -\frac{\Psi_{OB}^{new}}{\Psi_{OB}^{old}}\frac{\Psi_{C}^{new}}{\Psi_{C}^{old}} + w(\mathbf{x},t) = \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}\tilde{w}(\mathbf{k},t), $$ -

    Here \( \Psi_{OB} \) is our onebody part (Slater determinant or product of boson single-particle states) while \( \Psi_{C} \) is our correlation function, or Jastrow factor. -We need to optimize the \( \nabla \Psi_T / \Psi_T \) ratio and the second derivative as well, that is -the \( \mathbf{\nabla}^2 \Psi_T/\Psi_T \) ratio. The first is needed when we compute the so-called quantum force in importance sampling. -The second is needed when we compute the kinetic energy term of the local energy. +

    and using the definition of the +\( \delta \)-function

    $$ -\frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} + \delta(\mathbf{x}) = \frac{1}{2\pi} \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}, +$$ + +

    we see that

    +$$ + \tilde{w}(\mathbf{k},0)=1/2\pi. $$
    @@ -404,7 +326,7 @@

    Importance sampling
  • 37
  • 38
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs029.html b/doc/pub/week3/html/._week3-bs029.html index 9c454b9f..1d9d0ee8 100644 --- a/doc/pub/week3/html/._week3-bs029.html +++ b/doc/pub/week3/html/._week3-bs029.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,17 +273,19 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    +

    We can then use the Fourier-transformed diffusion equation

    $$ - \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, + \frac{\partial \tilde{w}(\mathbf{k},t)}{\partial t} = -D\mathbf{k}^2\tilde{w}(\mathbf{k},t), $$ +

    with the obvious solution

    $$ -\hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. + \tilde{w}(\mathbf{k},t)=\tilde{w}(\mathbf{k},0)\exp{\left[-(D\mathbf{k}^2t)\right)}= + \frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}. $$
    @@ -398,7 +316,7 @@

    Importance sampling

  • 38
  • 39
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs030.html b/doc/pub/week3/html/._week3-bs030.html index 700611fc..844bfb6e 100644 --- a/doc/pub/week3/html/._week3-bs030.html +++ b/doc/pub/week3/html/._week3-bs030.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,19 +273,24 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    The second derivative which enters the definition of the local energy is

    +

    With the Fourier transform we obtain

    $$ -\frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} + w(\mathbf{x},t)=\int_{-\infty}^{\infty}d\mathbf{k} \exp{\left[i\mathbf{kx}\right]}\frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}= + \frac{1}{\sqrt{4\pi Dt}}\exp{\left[-(\mathbf{x}^2/4Dt)\right]}, $$ -

    We discuss here how to calculate these quantities in an optimal way,

    +

    with the normalization condition

    +$$ + \int_{-\infty}^{\infty}w(\mathbf{x},t)d\mathbf{x}=1. +$$
    +

    diff --git a/doc/pub/week3/html/._week3-bs031.html b/doc/pub/week3/html/._week3-bs031.html index 5ed3a8ee..fb247c06 100644 --- a/doc/pub/week3/html/._week3-bs031.html +++ b/doc/pub/week3/html/._week3-bs031.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,24 +273,29 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    We have defined the correlated function as

    -$$ -\Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), -$$ - -

    with -\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2} \) in three dimensions or -\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2} \) if we work with two-dimensional systems. +

    The solution represents the probability of finding +our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution +was placed at \( \mathbf{x}=0 \) at \( t=0 \).

    -

    In our particular case we have

    +

    There is another interesting feature worth observing. The discrete transition probability \( W \) +itself is given by a binomial distribution. +The results from the central limit theorem state that +transition probability in the limit \( n\rightarrow \infty \) converges to the normal +distribution. It is then possible to show that +

    $$ -\Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. + W(il-jl,n\epsilon)\rightarrow W(\mathbf{y},t+\Delta t|\mathbf{x},t)= + \frac{1}{\sqrt{4\pi D\Delta t}}\exp{\left[-((\mathbf{y}-\mathbf{x})^2/4D\Delta t)\right]}, $$ + +

    and that it satisfies the normalization condition and is itself a solution +to the diffusion equation. +

    @@ -404,7 +325,7 @@

    Importance sampling

  • 40
  • 41
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs032.html b/doc/pub/week3/html/._week3-bs032.html index 92ca5d3a..9f26754f 100644 --- a/doc/pub/week3/html/._week3-bs032.html +++ b/doc/pub/week3/html/._week3-bs032.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,27 +273,31 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is +\( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). +We have then +

    $$ - \mathbf{r} \equiv \begin{pmatrix} - 0 & r_{1,2} & r_{1,3} & \cdots & r_{1,N} \\ - \vdots & 0 & r_{2,3} & \cdots & r_{2,N} \\ - \vdots & \vdots & 0 & \ddots & \vdots \\ - \vdots & \vdots & \vdots & \ddots & r_{N-1,N} \\ - 0 & 0 & 0 & \cdots & 0 - \end{pmatrix}. + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}'.t')w(\mathbf{x}',t')d\mathbf{x}', $$ -

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    +

    and

    +$$ + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}_0.t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0, +$$ -

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    +

    and

    +$$ + w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0. +$$
    +

    diff --git a/doc/pub/week3/html/._week3-bs033.html b/doc/pub/week3/html/._week3-bs033.html index 59d11d4e..2d6ff856 100644 --- a/doc/pub/week3/html/._week3-bs033.html +++ b/doc/pub/week3/html/._week3-bs033.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,29 +273,20 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    We have that the ratio between Jastrow factors \( R_C \) is given by

    -$$ -R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = -\prod_{i=1}^{k-1}\frac{g_{ik}^\mathrm{new}}{g_{ik}^\mathrm{cur}} -\prod_{i=k+1}^{N}\frac{ g_{ki}^\mathrm{new}} {g_{ki}^\mathrm{cur}}. -$$ - -

    For the Pade-Jastrow form

    +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

    $$ - R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = -\frac{\exp{U_{new}}}{\exp{U_{cur}}} = \exp{\Delta U}, + W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. $$ -

    where

    +

    We can replace the spatial dependence with a dependence upon say the velocity +(or momentum), that is we have +

    $$ -\Delta U = -\sum_{i=1}^{k-1}\big(f_{ik}^\mathrm{new}-f_{ik}^\mathrm{cur}\big) -+ -\sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) + W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'. $$
    @@ -410,7 +317,7 @@

    Importance sampling

  • 42
  • 43
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs034.html b/doc/pub/week3/html/._week3-bs034.html index 407aed4f..81646da5 100644 --- a/doc/pub/week3/html/._week3-bs034.html +++ b/doc/pub/week3/html/._week3-bs034.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,24 +273,25 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    One needs to develop a special algorithm -that runs only through the elements of the upper triangular -matrix \( \mathbf{g} \) and have \( k \) as an index. +

    We will now derive the Fokker-Planck equation. +We start from the ESKC equation

    - -

    The expression to be derived in the following is of interest when computing the quantum force and the kinetic energy. It has the form

    $$ -\frac{\mathbf{\nabla}_i\Psi_C}{\Psi_C} = \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_i}, + W(\mathbf{x},t|\mathbf{x}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. $$ -

    for all dimensions and with \( i \) running over all particles.

    +

    Define \( s=t'-t_0 \), \( \tau=t-t' \) and \( t-t_0=s+\tau \). We have then

    +$$ + W(\mathbf{x},s+\tau|\mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}')W(\mathbf{x}',s|\mathbf{x}_0)d\mathbf{x}'. +$$
    +

    diff --git a/doc/pub/week3/html/._week3-bs035.html b/doc/pub/week3/html/._week3-bs035.html index 9d6068a9..cd2b8e76 100644 --- a/doc/pub/week3/html/._week3-bs035.html +++ b/doc/pub/week3/html/._week3-bs035.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,27 +273,16 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    -$$ -\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = -\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} -+ -\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_k}. -$$ - -

    An equivalent equation is obtained for the exponential form after replacing \( g_{ij} \) by \( \exp(f_{ij}) \), yielding:

    +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

    $$ -\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = -\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} -+ -\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k}, + W(\mathbf{x},s|\mathbf{x}_0)+\frac{\partial W}{\partial s}\tau +O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0)d\mathbf{x}'. $$ -

    with both expressions scaling as \( \mathcal{O}(N) \).

    +

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    @@ -407,7 +312,7 @@

    Importance sampling

  • 44
  • 45
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs036.html b/doc/pub/week3/html/._week3-bs036.html index 993afc94..daa68a6e 100644 --- a/doc/pub/week3/html/._week3-bs036.html +++ b/doc/pub/week3/html/._week3-bs036.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,28 +273,18 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    - -

    Using the identity

    -$$ -\frac{\partial}{\partial x_i}g_{ij} = -\frac{\partial}{\partial x_j}g_{ij}, -$$ - -

    we get expressions where all the derivatives acting on the particle are represented by the second index of \( g \):

    -$$ -\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = -\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} --\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_i}, -$$ - -

    and for the exponential case:

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    $$ -\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = -\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} --\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. $$
    @@ -409,7 +315,7 @@

    Importance sampling

  • 45
  • 46
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs037.html b/doc/pub/week3/html/._week3-bs037.html index ba291df9..60758ede 100644 --- a/doc/pub/week3/html/._week3-bs037.html +++ b/doc/pub/week3/html/._week3-bs037.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,21 +273,20 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    +

    We can then rewrite the ESKC equation as

    $$ -\frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, +\frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. $$ -

    we arrive at

    -$$ -\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = -\sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} --\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. -$$ +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    @@ -401,7 +316,7 @@

    Importance sampling

  • 46
  • 47
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs038.html b/doc/pub/week3/html/._week3-bs038.html index 8665f6ec..5f4a911a 100644 --- a/doc/pub/week3/html/._week3-bs038.html +++ b/doc/pub/week3/html/._week3-bs038.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,28 +273,19 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    -$$ -\frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. -$$ - -

    Therefore,

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    $$ -\frac{1}{\Psi_{C}}\frac{\partial \Psi_{C}}{\partial x_k} = -\sum_{i=1}^{k-1}\frac{\mathbf{r_{ik}}}{r_{ik}}\frac{\partial f_{ik}}{\partial r_{ik}} --\sum_{i=k+1}^{N}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial f_{ki}}{\partial r_{ki}}, +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. $$ - -

    where

    -$$ - \mathbf{r}_{ij} = |\mathbf{r}_j - \mathbf{r}_i| = (x_j - x_i)\mathbf{e}_1 + (y_j - y_i)\mathbf{e}_2 + (z_j - z_i)\mathbf{e}_3 -$$ - -

    is the relative distance.

    @@ -408,7 +315,7 @@

    Importance sampling

  • 47
  • 48
  • ...
  • -
  • 71
  • +
  • 49
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs039.html b/doc/pub/week3/html/._week3-bs039.html index c934b581..5f807427 100644 --- a/doc/pub/week3/html/._week3-bs039.html +++ b/doc/pub/week3/html/._week3-bs039.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,21 +273,20 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    +

    We can then rewrite the ESKC equation as

    $$ -\left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ -2\sum_{k=1}^{N} -\sum_{i=1}^{k-1}\frac{\partial^2 g_{ik}}{\partial x_k^2}\ +\ -\sum_{k=1}^N -\left( -\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} - -\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} -\right)^2 +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. $$ + +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    @@ -400,8 +315,6 @@

    Importance sampling

  • 47
  • 48
  • 49
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs040.html b/doc/pub/week3/html/._week3-bs040.html index 277e26da..1fe51d09 100644 --- a/doc/pub/week3/html/._week3-bs040.html +++ b/doc/pub/week3/html/._week3-bs040.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,22 +273,21 @@

     

     

     

    -

    Importance sampling

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -

    But we have a simple form for the function, namely

    +

    We simplify the above by introducing the moments

    $$ -\Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, +M_n=\frac{1}{\tau}\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi= +\frac{\langle [\Delta x(\tau)]^n\rangle}{\tau}, $$ -

    and it is easy to see that for particle \( k \) -we have -

    +

    resulting in

    $$ - \frac{\mathbf{\nabla}^2_k \Psi_C}{\Psi_C }= -\sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ -\sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +\sum_{n=1}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)M_n\right]. $$
    @@ -401,9 +316,6 @@

    Importance sampling

  • 47
  • 48
  • 49
  • -
  • 50
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs041.html b/doc/pub/week3/html/._week3-bs041.html index 187c149e..b12f99f2 100644 --- a/doc/pub/week3/html/._week3-bs041.html +++ b/doc/pub/week3/html/._week3-bs041.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,38 +273,22 @@

     

     

     

    -

    Use the C++ random class for random number generations

    +

    Importance sampling, Fokker-Planck and Langevin equations

    +

    When \( \tau \rightarrow 0 \) we assume that \( \langle [\Delta x(\tau)]^n\rangle \rightarrow 0 \) more rapidly than \( \tau \) itself if \( n > 2 \). +When \( \tau \) is much larger than the standard correlation time of +system then \( M_n \) for \( n > 2 \) can normally be neglected. +This means that fluctuations become negligible at large time scales. +

    - - -
    -
    -
    -
    -
    -
     // Initialize the seed and call the Mersienne algo
    -  std::random_device rd;
    -  std::mt19937_64 gen(rd());
    -  // Set up the uniform distribution for x \in [[0, 1]
    -  std::uniform_real_distribution<double> UniformNumberGenerator(0.0,1.0);
    -  std::normal_distribution<double> Normaldistribution(0.0,1.0);
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +

    If we neglect such terms we can rewrite the ESKC equation as

    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +-\frac{\partial M_1W(\mathbf{x},s|\mathbf{x}_0)}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W(\mathbf{x},s|\mathbf{x}_0)}{\partial x^2}. +$$
    @@ -415,10 +315,6 @@

    47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs042.html b/doc/pub/week3/html/._week3-bs042.html index 604a962a..1599b9eb 100644 --- a/doc/pub/week3/html/._week3-bs042.html +++ b/doc/pub/week3/html/._week3-bs042.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,40 +273,20 @@

     

     

     

    -

    Use the C++ random class for RNGs, the Mersenne twister class

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -Finding the new position for importance sampling +

    In a more compact form we have

    +$$ +\frac{\partial W}{\partial s}= +-\frac{\partial M_1W}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W}{\partial x^2}, +$$ - -
    -
    -
    -
    -
    -
     for (int cycles = 1; cycles <= NumberMCsamples; cycles++){ 
    -    // new position 
    -    for (int i = 0; i < NumberParticles; i++) { 
    -      for (int j = 0; j < Dimension; j++) {
    -        // gaussian deviate to compute new positions using a given timestep
    -        NewPosition(i,j) = OldPosition(i,j) + Normaldistribution(gen)*sqrt(timestep)+OldQuantumForce(i,j)*timestep*D;
    -
    -      }  
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +

    which is the Fokker-Planck equation! It is trivial to replace +position with velocity (momentum). +

    @@ -416,11 +312,6 @@

    47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • 52
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs043.html b/doc/pub/week3/html/._week3-bs043.html index 942a7c5e..e962aa3e 100644 --- a/doc/pub/week3/html/._week3-bs043.html +++ b/doc/pub/week3/html/._week3-bs043.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -357,47 +273,17 @@

     

     

     

    -

    Use the C++ random class for RNGs, the Metropolis test

    +

    Importance sampling, Fokker-Planck and Langevin equations

    -Using the uniform distribution for the Metropolis test - - -
    -
    -
    -
    -
    -
          //  Metropolis-Hastings algorithm
    -      double GreensFunction = 0.0;            
    -      for (int j = 0; j < Dimension; j++) {
    -        GreensFunction += 0.5*(OldQuantumForce(i,j)+NewQuantumForce(i,j))*
    -          (D*timestep*0.5*(OldQuantumForce(i,j)-NewQuantumForce(i,j))-NewPosition(i,j)+OldPosition(i,j));
    -      }
    -      GreensFunction = exp(GreensFunction);
    -      // The Metropolis test is performed by moving one particle at the time
    -      if(UniformNumberGenerator(gen) <= GreensFunction*NewWaveFunction*NewWaveFunction/OldWaveFunction/OldWaveFunction ) { 
    -        for (int  j = 0; j < Dimension; j++) {
    -          OldPosition(i,j) = NewPosition(i,j);
    -          OldQuantumForce(i,j) = NewQuantumForce(i,j);
    -        }
    -        OldWaveFunction = NewWaveFunction;
    -      }
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    +

    Consider a particle suspended in a liquid. On its path through the liquid it will continuously collide with the liquid molecules. Because on average the particle will collide more often on the front side than on the back side, it will experience a systematic force proportional with its velocity, and directed opposite to its velocity. Besides this systematic force the particle will experience a stochastic force \( \mathbf{F}(t) \). +The equations of motion are +

    +
      +
    • \( \frac{d\mathbf{r}}{dt}=\mathbf{v} \) and
    • +
    • \( \frac{d\mathbf{v}}{dt}=-\xi \mathbf{v}+\mathbf{F} \).
    • +
    @@ -422,12 +308,6 @@

    Use
  • 47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • 52
  • -
  • 53
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs044.html b/doc/pub/week3/html/._week3-bs044.html index 2848ed71..a78480b0 100644 --- a/doc/pub/week3/html/._week3-bs044.html +++ b/doc/pub/week3/html/._week3-bs044.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -361,20 +277,17 @@

    -

    A stochastic process is simply a function of two variables, one is the time, -the other is a stochastic variable \( X \), defined by specifying -

    -
      -
    • the set \( \left\{x\right\} \) of possible values for \( X \);
    • -
    • the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
    • -
    -

    The set of values \( \left\{x\right\} \) for \( X \) -may be discrete, or continuous. If the set of -values is continuous, then \( w_X (x) \) is a probability density so that -\( w_X (x)dx \) -is the probability that one finds the stochastic variable \( X \) to have values -in the range \( [x, x + dx] \) . -

    +

    From hydrodynamics we know that the friction constant \( \xi \) is given by

    +$$ +\xi =6\pi \eta a/m +$$ + +

    where \( \eta \) is the viscosity of the solvent and a is the radius of the particle .

    + +

    Solving the second equation in the previous slide we get

    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ). +$$

    @@ -398,13 +311,6 @@

    47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • 52
  • -
  • 53
  • -
  • 54
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs045.html b/doc/pub/week3/html/._week3-bs045.html index fd0286e2..c52e83eb 100644 --- a/doc/pub/week3/html/._week3-bs045.html +++ b/doc/pub/week3/html/._week3-bs045.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -361,28 +277,18 @@

    -

    An arbitrary number of other stochastic variables may be derived from -\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic -variable. The mapping may also be time-dependent, that is, the mapping -depends on an additional variable \( t \) +

    If we want to get some useful information out of this, we have to average over all possible realizations of +\( \mathbf{F}(t) \), with the initial velocity as a condition. A useful quantity for example is

    -$$ - Y_X (t) = f (X, t) . +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{-\xi 2t} ++2\int_{0}^{t}d\tau e^{-\xi (2t-\tau)}\mathbf{v}_{0}\cdot \langle \mathbf{F}(\tau )\rangle_{\mathbf{v}_{0}} $$ -

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, -a stochastic process. A stochastic process is a function of two variables, -one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the -possible values of \( X \) then -

    +$$ + +\int_{0}^{t}d\tau ^{\prime }\int_{0}^{t}d\tau e^{-\xi (2t-\tau -\tau ^{\prime })} +\langle \mathbf{F}(\tau )\cdot \mathbf{F}(\tau ^{\prime })\rangle_{ \mathbf{v}_{0}}. $$ - y(t) = f (x, t), -$$ - -

    is a function of \( t \), called a sample function or realization of the process. -In physics one considers the stochastic process to be an ensemble of such -sample functions. -

    @@ -405,14 +311,6 @@

    47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • 52
  • -
  • 53
  • -
  • 54
  • -
  • 55
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs046.html b/doc/pub/week3/html/._week3-bs046.html index ac6a267d..5c259d51 100644 --- a/doc/pub/week3/html/._week3-bs046.html +++ b/doc/pub/week3/html/._week3-bs046.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -361,25 +277,30 @@

    -

    For many physical systems initial distributions of a stochastic -variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) -as \( t\rightarrow\infty \). In -equilibrium detailed balance constrains the transition rates +

    In order to continue we have to make some assumptions about the conditional averages of the stochastic forces. +In view of the chaotic character of the stochastic forces the following +assumptions seem to be appropriate

    +$$ +\langle \mathbf{F}(t)\rangle=0, $$ - W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), + +

    and

    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle_{\mathbf{v}_{0}}= C_{\mathbf{v}_{0}}\delta (t-t^{\prime }). $$ -

    where \( W(y'\rightarrow y) \) -is the probability, per unit time, that the system changes -from a state \( |y\rangle \) , characterized by the value \( y \) -for the stochastic variable \( Y \) , to a state \( |y'\rangle \). -

    +

    We omit the subscript \( \mathbf{v}_{0} \), when the quantity of interest turns out to be independent of \( \mathbf{v}_{0} \). Using the last three equations we get

    +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{2}e^{-2\xi t}+\frac{C_{\mathbf{v}_{0}}}{2\xi }(1-e^{-2\xi t}). +$$ -

    Note that for a system in equilibrium the transition rate -\( W(y'\rightarrow y) \) and -the reverse \( W(y\rightarrow y') \) may be very different. -

    +

    For large t this should be equal to 3kT/m, from which it follows that

    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle =6\frac{kT}{m}\xi \delta (t-t^{\prime }). +$$ + +

    This result is called the fluctuation-dissipation theorem .

    @@ -401,15 +322,6 @@

    47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • 52
  • -
  • 53
  • -
  • 54
  • -
  • 55
  • -
  • 56
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs047.html b/doc/pub/week3/html/._week3-bs047.html index dbf805cf..7c2cdb59 100644 --- a/doc/pub/week3/html/._week3-bs047.html +++ b/doc/pub/week3/html/._week3-bs047.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -361,22 +277,21 @@

    -

    Consider, for instance, a simple -system that has only two energy levels \( \epsilon_0 = 0 \) and -\( \epsilon_1 = \Delta E \). -

    +

    Integrating

    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ), +$$ -

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    +

    we get

    $$ - W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} +\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0}\frac{1}{\xi }(1-e^{-\xi t})+ +\int_0^td\tau \int_0^{\tau}\tau ^{\prime } e^{-\xi (\tau -\tau ^{\prime })}\mathbf{F}(\tau ^{\prime }), $$ -

    We get then

    +

    from which we calculate the mean square displacement

    $$ - \frac{W(1\rightarrow 0)}{W(0 \rightarrow 1)}=\exp{-(\Delta E/kT)}, +\langle ( \mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle _{\mathbf{v}_{0}}=\frac{v_0^2}{\xi}(1-e^{-\xi t})^{2}+\frac{3kT}{m\xi ^{2}}(2\xi t-3+4e^{-\xi t}-e^{-2\xi t}). $$ - -

    which goes to zero when \( T \) tends to zero.

    @@ -397,16 +312,6 @@

    47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • 52
  • -
  • 53
  • -
  • 54
  • -
  • 55
  • -
  • 56
  • -
  • 57
  • -
  • ...
  • -
  • 71
  • »
  • diff --git a/doc/pub/week3/html/._week3-bs048.html b/doc/pub/week3/html/._week3-bs048.html index ec02c619..77fa06e0 100644 --- a/doc/pub/week3/html/._week3-bs048.html +++ b/doc/pub/week3/html/._week3-bs048.html @@ -8,8 +8,8 @@ - -Week 5 January 30-February 3: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations + +Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importance Sampling, Fokker-Planck and Langevin equations @@ -36,43 +36,10 @@
  • Overview of week 5, January 30-February 3
  • -
  • Basics of the Metropolis Algorithm
  • -
  • The basic of the Metropolis Algorithm
  • -
  • More on the Metropolis
  • -
  • Metropolis algorithm, setting it up
  • -
  • Metropolis continues
  • -
  • Detailed Balance
  • -
  • More on Detailed Balance
  • -
  • Dynamical Equation
  • -
  • Interpreting the Metropolis Algorithm
  • -
  • Gershgorin bounds and Metropolis
  • -
  • Normalizing the Eigenvectors
  • -
  • More Metropolis analysis
  • -
  • Final Considerations I
  • -
  • Final Considerations II
  • -
  • Final Considerations III
  • -
  • Importance Sampling: Overview of what needs to be coded
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements in C++
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling, program elements
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Importance sampling
  • -
  • Use the "C++ random class for random number generations":"http://www.cplusplus.com/reference/random/"
  • -
  • Use the C++ random class for RNGs, the Mersenne twister class
  • -
  • Use the C++ random class for RNGs, the Metropolis test
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • -
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Overview of week 5, January 29-February 2
  • +
  • Importance Sampling: Overview of what needs to be coded
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Code example for the interacting case with importance sampling
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling, program elements
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • +
  • Importance sampling, Fokker-Planck and Langevin equations
  • @@ -361,28 +277,17 @@

    -

    If we assume a discrete set of events, -our initial probability -distribution function can be given by -

    +

    For very large \( t \) this becomes

    $$ - w_i(0) = \delta_{i,0}, +\langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =\frac{6kT}{m\xi }t $$ -

    and its time-development after a given time step \( \Delta t=\epsilon \) is

    +

    from which we get the Einstein relation

    $$ - w_i(t) = \sum_{j}W(j\rightarrow i)w_j(t=0). +D= \frac{kT}{m\xi } $$ -

    The continuous analog to \( w_i(0) \) is

    -$$ - w(\mathbf{x})\rightarrow \delta(\mathbf{x}), -$$ - -

    where we now have generalized the one-dimensional position \( x \) to a generic-dimensional -vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution -function \( \delta(\mathbf{x}) \) at \( t=0 \). -

    +

    where we have used \( \langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =6Dt \).

    @@ -402,18 +307,6 @@

    47
  • 48
  • 49
  • -
  • 50
  • -
  • 51
  • -
  • 52
  • -
  • 53
  • -
  • 54
  • -
  • 55
  • -
  • 56
  • -
  • 57
  • -
  • 58
  • -
  • ...
  • -
  • 71
  • -
  • »
  • diff --git a/doc/pub/week3/html/week3-bs.html b/doc/pub/week3/html/week3-bs.html index 59267aee..ba242581 100644 --- a/doc/pub/week3/html/week3-bs.html +++ b/doc/pub/week3/html/week3-bs.html @@ -36,52 +36,150 @@ @@ -116,28 +214,54 @@ @@ -167,7 +291,7 @@

    Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importa
    -

    February 6-10

    +

    February 2


    @@ -192,7 +316,7 @@

    February 6-10

  • 9
  • 10
  • ...
  • -
  • 23
  • +
  • 49
  • »
  • @@ -206,7 +330,7 @@

    February 6-10

    -->
    - © 1999-2023, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license + © 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license
    diff --git a/doc/pub/week3/html/week3-reveal.html b/doc/pub/week3/html/week3-reveal.html index 87a14748..7edc3666 100644 --- a/doc/pub/week3/html/week3-reveal.html +++ b/doc/pub/week3/html/week3-reveal.html @@ -184,23 +184,23 @@

    Week 5 January 29-February 2: Metropolis Algorit
    -

    February 6-10

    +

    February 2


    - © 1999-2023, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license + © 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license
    -

    Overview of week 5

    +

    Overview of week 5, January 29-February 2

    Topics

      -

    • Markov Chain Monte Carlo
    • +

    • Markov Chain Monte Carlo and repetition from last week
    • Metropolis-Hastings sampling and Importance Sampling
    @@ -213,353 +213,10 @@

    Overview of week 5

  • Overview video on Metropolis algoritm
  • Video of lecture tba
  • Handwritten notes tba
  • -

  • See also Lectures from FYS3150/4150 on the Metropolis Algorithm
  • -
    -

    Basics of the Metropolis Algorithm

    - -

    The Metropolis et al. -algorithm was invented by Metropolis et. a -and is often simply called the Metropolis algorithm. -It is a method to sample a normalized probability -distribution by a stochastic process. We define \( {\cal P}_i^{(n)} \) to -be the probability for finding the system in the state \( i \) at step \( n \). -The algorithm is then -

    -
    - -
    -

    The basic of the Metropolis Algorithm

    - -
      -

    • Sample a possible new state \( j \) with some probability \( T_{i\rightarrow j} \).
    • -

    • Accept the new state \( j \) with probability \( A_{i \rightarrow j} \) and use it as the next sample.
    • -

    • With probability \( 1-A_{i\rightarrow j} \) the move is rejected and the original state \( i \) is used again as a sample.
    • -
    -

    -

    We wish to derive the required properties of \( T \) and \( A \) such that -\( {\cal P}_i^{(n\rightarrow \infty)} \rightarrow p_i \) so that starting -from any distribution, the method converges to the correct distribution. -Note that the description here is for a discrete probability distribution. -Replacing probabilities \( p_i \) with expressions like \( p(x_i)dx_i \) will -take all of these over to the corresponding continuum expressions. -

    -
    - -
    -

    More on the Metropolis

    - -

    The dynamical equation for \( {\cal P}_i^{(n)} \) can be written directly from -the description above. The probability of being in the state \( i \) at step \( n \) -is given by the probability of being in any state \( j \) at the previous step, -and making an accepted transition to \( i \) added to the probability of -being in the state \( i \), making a transition to any state \( j \) and -rejecting the move: -

    -

     
    -$$ -\begin{equation} -\tag{1} -{\cal P}^{(n)}_i = \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} -+{\cal P}^{(n-1)}_iT_{i\rightarrow j}\left ( 1- A_{i\rightarrow j} \right) -\right ] \,. -\end{equation} -$$ -

     
    -

    - -
    -

    Metropolis algorithm, setting it up

    -

    Since the probability of making some transition must be 1, -\( \sum_j T_{i\rightarrow j} = 1 \), and Eq. (1) becomes -

    - -

     
    -$$ -\begin{equation} -{\cal P}^{(n)}_i = {\cal P}^{(n-1)}_i + - \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} --{\cal P}^{(n-1)}_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] \,. -\tag{2} -\end{equation} -$$ -

     
    -

    - -
    -

    Metropolis continues

    - -

    For large \( n \) we require that \( {\cal P}^{(n\rightarrow \infty)}_i = p_i \), -the desired probability distribution. Taking this limit, gives the -balance requirement -

    - -

     
    -$$ -\begin{equation} -\sum_j \left [p_jT_{j\rightarrow i} A_{j\rightarrow i}-p_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] = 0, -\tag{3} -\end{equation} -$$ -

     
    -

    - -
    -

    Detailed Balance

    - -

    The balance requirement is very weak. Typically the much stronger detailed -balance requirement is enforced, that is rather than the sum being -set to zero, we set each term separately to zero and use this -to determine the acceptance probabilities. Rearranging, the result is -

    - -

     
    -$$ -\begin{equation} -\frac{ A_{j\rightarrow i}}{A_{i\rightarrow j}} -= \frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}} \,. -\tag{4} -\end{equation} -$$ -

     
    -

    - -
    -

    More on Detailed Balance

    - -

    The Metropolis choice is to maximize the \( A \) values, that is

    - -

     
    -$$ -\begin{equation} -A_{j \rightarrow i} = \min \left ( 1, -\frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}}\right ). -\tag{5} -\end{equation} -$$ -

     
    - -

    Other choices are possible, but they all correspond to multilplying -\( A_{i\rightarrow j} \) and \( A_{j\rightarrow i} \) by the same constant -smaller than unity. The penalty function method uses just such -a factor to compensate for \( p_i \) that are evaluated stochastically -and are therefore noisy. -

    - -

    Having chosen the acceptance probabilities, we have guaranteed that -if the \( {\cal P}_i^{(n)} \) has equilibrated, that is if it is equal to \( p_i \), -it will remain equilibrated. Next we need to find the circumstances for -convergence to equilibrium. -

    -
    - -
    -

    Dynamical Equation

    - -

    The dynamical equation can be written as

    - -

     
    -$$ -\begin{equation} -{\cal P}^{(n)}_i = \sum_j M_{ij}{\cal P}^{(n-1)}_j -\tag{6} -\end{equation} -$$ -

     
    - -

    with the matrix \( M \) given by

    - -

     
    -$$ -\begin{equation} -M_{ij} = \delta_{ij}\left [ 1 -\sum_k T_{i\rightarrow k} A_{i \rightarrow k} -\right ] + T_{j\rightarrow i} A_{j\rightarrow i} \,. -\tag{7} -\end{equation} -$$ -

     
    - -

    Summing over \( i \) shows that \( \sum_i M_{ij} = 1 \), and since -\( \sum_k T_{i\rightarrow k} = 1 \), and \( A_{i \rightarrow k} \leq 1 \), the -elements of the matrix satisfy \( M_{ij} \geq 0 \). The matrix \( M \) is therefore -a stochastic matrix. -

    -
    - -
    -

    Interpreting the Metropolis Algorithm

    - -

    The Metropolis method is simply the power method for computing the -right eigenvector of \( M \) with the largest magnitude eigenvalue. -By construction, the correct probability distribution is a right eigenvector -with eigenvalue 1. Therefore, for the Metropolis method to converge -to this result, we must show that \( M \) has only one eigenvalue with this -magnitude, and all other eigenvalues are smaller. -

    - -

    Even a defective matrix has at least one left and right eigenvector for -each eigenvalue. An example of a defective matrix is -

    - -

     
    -$$ -\begin{bmatrix} -0 & 1\\ -0 & 0 \\ -\end{bmatrix}, -$$ -

     
    - -

    with two zero eigenvalues, only one right eigenvector

    - -

     
    -$$ -\begin{bmatrix} -1 \\ -0\\ -\end{bmatrix} -$$ -

     
    - -

    and only one left eigenvector \( (0\ 1) \).

    -
    - -
    -

    Gershgorin bounds and Metropolis

    - -

    The Gershgorin bounds for the eigenvalues can be derived by multiplying on -the left with the eigenvector with the maximum and minimum eigenvalues, -

    - -

     
    -$$ -\begin{align} -\sum_i \psi^{\rm max}_i M_{ij} =& \lambda_{\rm max} \psi^{\rm max}_j -\nonumber\\ -\sum_i \psi^{\rm min}_i M_{ij} =& \lambda_{\rm min} \psi^{\rm min}_j -\tag{8} -\end{align} -$$ -

     
    -

    - -
    -

    Normalizing the Eigenvectors

    - -

    Next we choose the normalization of these eigenvectors so that the -largest element (or one of the equally largest elements) -has value 1. Let's call this element \( k \), and -we can therefore bound the magnitude of the other elements to be less -than or equal to 1. -This leads to the inequalities, using the property that \( M_{ij}\geq 0 \), -

    - -

     
    -$$ -\begin{eqnarray} -\sum_i M_{ik} \leq \lambda_{\rm max} -\nonumber\\ -M_{kk}-\sum_{i \neq k} M_{ik} \geq \lambda_{\rm min} -\end{eqnarray} -$$ -

     
    - -

    where the equality from the maximum -will occur only if the eigenvector takes the value 1 for all values of -\( i \) where \( M_{ik} \neq 0 \), and the equality for the minimum will -occur only if the eigenvector takes the value -1 for all values of \( i\neq k \) -where \( M_{ik} \neq 0 \). -

    -
    - -
    -

    More Metropolis analysis

    - -

    That the maximum eigenvalue is 1 follows immediately from the property -that \( \sum_i M_{ik} = 1 \). Similarly the minimum eigenvalue can be -1, -but only if \( M_{kk} = 0 \) and the magnitude of all the other elements -\( \psi_i^{\rm min} \) of -the eigenvector that multiply nonzero elements \( M_{ik} \) are -1. -

    - -

    Let's first see what the properties of \( M \) must be -to eliminate any -1 eigenvalues. -To have a -1 eigenvalue, the left eigenvector must contain only \( \pm 1 \) -and \( 0 \) values. Taking in turn each \( \pm 1 \) value as the maximum, so that -it corresponds to the index \( k \), the nonzero \( M_{ik} \) values must -correspond to \( i \) index values of the eigenvector which have opposite -sign elements. That is, the \( M \) matrix must break up into sets of -states that always make transitions from set A to set B ... back to set A. -In particular, there can be no rejections of these moves in the cycle -since the -1 eigenvalue requires \( M_{kk}=0 \). To guarantee no eigenvalues -with eigenvalue -1, we simply have to make sure that there are no -cycles among states. Notice that this is generally trivial since such -cycles cannot have any rejections at any stage. An example of such -a cycle is sampling a noninteracting Ising spin. If the transition is -taken to flip the spin, and the energy difference is zero, the Boltzmann -factor will not change and the move will always be accepted. The system -will simply flip from up to down to up to down ad infinitum. Including -a rejection probability or using a heat bath algorithm -immediately fixes the problem. -

    -
    - -
    -

    Final Considerations I

    - -

    Next we need to make sure that there is only one left eigenvector -with eigenvalue 1. To get an eigenvalue 1, the left eigenvector must be -constructed from only ones and zeroes. It is straightforward to -see that a vector made up of -ones and zeroes can only be an eigenvector with eigenvalue 1 if the -matrix element \( M_{ij} = 0 \) for all cases where \( \psi_i \neq \psi_j \). -That is we can choose an index \( i \) and take \( \psi_i = 1 \). -We require all elements \( \psi_j \) where \( M_{ij} \neq 0 \) to also have -the value \( 1 \). Continuing we then require all elements \( \psi_\ell \) $M_{j\ell}$ -to have value \( 1 \). Only if the matrix \( M \) can be put into block diagonal -form can there be more than one choice for the left eigenvector with -eigenvalue 1. We therefore require that the transition matrix not -be in block diagonal form. This simply means that we must choose -the transition probability so that we can get from any allowed state -to any other in a series of transitions. -

    -
    - -
    -

    Final Considerations II

    - -

    Finally, we note that for a defective matrix, with more eigenvalues -than independent eigenvectors for eigenvalue 1, -the left and right -eigenvectors of eigenvalue 1 would be orthogonal. -Here the left eigenvector is all 1 -except for states that can never be reached, and the right eigenvector -is \( p_i > 0 \) except for states that give zero probability. We already -require that we can reach -all states that contribute to \( p_i \). Therefore the left and right -eigenvectors with eigenvalue 1 do not correspond to a defective sector -of the matrix and they are unique. The Metropolis algorithm therefore -converges exponentially to the desired distribution. -

    -
    - -
    -

    Final Considerations III

    - -

    The requirements for the transition \( T_{i \rightarrow j} \) are

    -
      -

    • A series of transitions must let us to get from any allowed state to any other by a finite series of transitions.
    • -

    • The transitions cannot be grouped into sets of states, A, B, C ,... such that transitions from \( A \) go to \( B \), \( B \) to \( C \) etc and finally back to \( A \). With condition (a) satisfied, this condition will always be satisfied if either \( T_{i \rightarrow i} \neq 0 \) or there are some rejected moves.
    • -
    -
    -

    Importance Sampling: Overview of what needs to be coded

    @@ -754,7 +411,6 @@

    Code exa from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys -from numba import jit,njit # Trial wave function for the 2-electron quantum dot in two dims @@ -809,9 +465,6 @@

    Code exa
    # The Monte Carlo sampling with the Metropolis algo
    -# jit decorator tells Numba to compile this function.
    -# The argument types will be inferred by Numba when function is called.
    -@jit()
     def MonteCarloSampling():
     
         NumberMCcycles= 100000
    @@ -946,6 +599,1048 @@ 

    Code exa

    +
    +

    Importance sampling, program elements

    +
    + +

    +

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +

     
    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k} +$$ +

     
    + +

    However, +with our written in way which can be reused later as +

    +

     
    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})= \exp{\left\{\sum_{i < j}f(r_{ij})\right\}}, +$$ +

     
    + +

    the gradient needed for the quantum force and local energy is easy to compute. +The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form. +

    +
    +
    + +
    +

    Importance sampling, program elements

    +
    + +

    +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    +

     
    +$$ +R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = +\frac{\Psi_{OB}^{new}}{\Psi_{OB}^{old}}\frac{\Psi_{C}^{new}}{\Psi_{C}^{old}} +$$ +

     
    + +

    Here \( \Psi_{OB} \) is our onebody part (Slater determinant or product of boson single-particle states) while \( \Psi_{C} \) is our correlation function, or Jastrow factor. +We need to optimize the \( \nabla \Psi_T / \Psi_T \) ratio and the second derivative as well, that is +the \( \mathbf{\nabla}^2 \Psi_T/\Psi_T \) ratio. The first is needed when we compute the so-called quantum force in importance sampling. +The second is needed when we compute the kinetic energy term of the local energy. +

    +

     
    +$$ +\frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} +$$ +

     
    +

    +
    + +
    +

    Importance sampling

    +
    + +

    +

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    +

     
    +$$ + \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, +$$ +

     
    + +

     
    +$$ +\hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. +$$ +

     
    +

    +
    + +
    +

    Importance sampling

    +
    + +

    +

    The second derivative which enters the definition of the local energy is

    +

     
    +$$ +\frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} +$$ +

     
    + +

    We discuss here how to calculate these quantities in an optimal way,

    +
    +
    + +
    +

    Importance sampling

    +
    + +

    +

    We have defined the correlated function as

    +

     
    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), +$$ +

     
    + +

    with +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2} \) in three dimensions or +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2} \) if we work with two-dimensional systems. +

    + +

    In our particular case we have

    +

     
    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. +$$ +

     
    +

    +
    + +
    +

    Importance sampling

    +
    + +

    +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    +

     
    +$$ + \mathbf{r} \equiv \begin{pmatrix} + 0 & r_{1,2} & r_{1,3} & \cdots & r_{1,N} \\ + \vdots & 0 & r_{2,3} & \cdots & r_{2,N} \\ + \vdots & \vdots & 0 & \ddots & \vdots \\ + \vdots & \vdots & \vdots & \ddots & r_{N-1,N} \\ + 0 & 0 & 0 & \cdots & 0 + \end{pmatrix}. +$$ +

     
    + +

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    + +

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    +
    +
    + +
    +

    Importance sampling

    +
    + +

    +

    We have that the ratio between Jastrow factors \( R_C \) is given by

    +

     
    +$$ +R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\prod_{i=1}^{k-1}\frac{g_{ik}^\mathrm{new}}{g_{ik}^\mathrm{cur}} +\prod_{i=k+1}^{N}\frac{ g_{ki}^\mathrm{new}} {g_{ki}^\mathrm{cur}}. +$$ +

     
    + +

    For the Pade-Jastrow form

    +

     
    +$$ + R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\frac{\exp{U_{new}}}{\exp{U_{cur}}} = \exp{\Delta U}, +$$ +

     
    + +

    where

    +

     
    +$$ +\Delta U = +\sum_{i=1}^{k-1}\big(f_{ik}^\mathrm{new}-f_{ik}^\mathrm{cur}\big) ++ +\sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) +$$ +

     
    +

    +
    + +
    +

    Importance sampling

    +
    + +

    +

    One needs to develop a special algorithm +that runs only through the elements of the upper triangular +matrix \( \mathbf{g} \) and have \( k \) as an index. +

    + +

    The expression to be derived in the following is of interest when computing the quantum force and the kinetic energy. It has the form

    +

     
    +$$ +\frac{\mathbf{\nabla}_i\Psi_C}{\Psi_C} = \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_i}, +$$ +

     
    + +

    for all dimensions and with \( i \) running over all particles.

    +
    +
    + +
    +

    Importance sampling

    +
    + +

    +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    +

     
    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_k}. +$$ +

     
    + +

    An equivalent equation is obtained for the exponential form after replacing \( g_{ij} \) by \( \exp(f_{ij}) \), yielding:

    +

     
    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k}, +$$ +

     
    + +

    with both expressions scaling as \( \mathcal{O}(N) \).

    +
    +
    + +
    +

    Importance sampling

    +
    + +

    + +

    Using the identity

    +

     
    +$$ +\frac{\partial}{\partial x_i}g_{ij} = -\frac{\partial}{\partial x_j}g_{ij}, +$$ +

     
    + +

    we get expressions where all the derivatives acting on the particle are represented by the second index of \( g \):

    +

     
    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_i}, +$$ +

     
    + +

    and for the exponential case:

    +

     
    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. +$$ +

     
    +

    +
    + +
    +

    Importance sampling

    +
    + +

    +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    +

     
    +$$ +\frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, +$$ +

     
    + +

    we arrive at

    +

     
    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. +$$ +

     
    +

    +
    + +
    +

    Importance sampling

    +
    + +

    +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    +

     
    +$$ +\frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. +$$ +

     
    + +

    Therefore,

    +

     
    +$$ +\frac{1}{\Psi_{C}}\frac{\partial \Psi_{C}}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\mathbf{r_{ik}}}{r_{ik}}\frac{\partial f_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial f_{ki}}{\partial r_{ki}}, +$$ +

     
    + +

    where

    +

     
    +$$ + \mathbf{r}_{ij} = |\mathbf{r}_j - \mathbf{r}_i| = (x_j - x_i)\mathbf{e}_1 + (y_j - y_i)\mathbf{e}_2 + (z_j - z_i)\mathbf{e}_3 +$$ +

     
    + +

    is the relative distance.

    +
    +
    + +
    +

    Importance sampling

    +
    + +

    +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    +

     
    +$$ +\left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ +2\sum_{k=1}^{N} +\sum_{i=1}^{k-1}\frac{\partial^2 g_{ik}}{\partial x_k^2}\ +\ +\sum_{k=1}^N +\left( +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} - +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} +\right)^2 +$$ +

     
    +

    +
    + +
    +

    Importance sampling

    +
    + +

    +

    But we have a simple form for the function, namely

    +

     
    +$$ +\Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, +$$ +

     
    + +

    and it is easy to see that for particle \( k \) +we have +

    +

     
    +$$ + \frac{\mathbf{\nabla}^2_k \Psi_C}{\Psi_C }= +\sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ +\sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    A stochastic process is simply a function of two variables, one is the time, +the other is a stochastic variable \( X \), defined by specifying +

    +
      +

    • the set \( \left\{x\right\} \) of possible values for \( X \);
    • +

    • the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
    • +
    +

    +

    The set of values \( \left\{x\right\} \) for \( X \) +may be discrete, or continuous. If the set of +values is continuous, then \( w_X (x) \) is a probability density so that +\( w_X (x)dx \) +is the probability that one finds the stochastic variable \( X \) to have values +in the range \( [x, x + dx] \) . +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic +variable. The mapping may also be time-dependent, that is, the mapping +depends on an additional variable \( t \) +

    +

     
    +$$ + Y_X (t) = f (X, t) . +$$ +

     
    + +

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, +a stochastic process. A stochastic process is a function of two variables, +one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the +possible values of \( X \) then +

    +

     
    +$$ + y(t) = f (x, t), +$$ +

     
    + +

    is a function of \( t \), called a sample function or realization of the process. +In physics one considers the stochastic process to be an ensemble of such +sample functions. +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) +as \( t\rightarrow\infty \). In +equilibrium detailed balance constrains the transition rates +

    +

     
    +$$ + W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), +$$ +

     
    + +

    where \( W(y'\rightarrow y) \) +is the probability, per unit time, that the system changes +from a state \( |y\rangle \) , characterized by the value \( y \) +for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    + +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and +the reverse \( W(y\rightarrow y') \) may be very different. +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Consider, for instance, a simple +system that has only two energy levels \( \epsilon_0 = 0 \) and +\( \epsilon_1 = \Delta E \). +

    + +

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    +

     
    +$$ + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} +$$ +

     
    + +

    We get then

    +

     
    +$$ + \frac{W(1\rightarrow 0)}{W(0 \rightarrow 1)}=\exp{-(\Delta E/kT)}, +$$ +

     
    + +

    which goes to zero when \( T \) tends to zero.

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    If we assume a discrete set of events, +our initial probability +distribution function can be given by +

    +

     
    +$$ + w_i(0) = \delta_{i,0}, +$$ +

     
    + +

    and its time-development after a given time step \( \Delta t=\epsilon \) is

    +

     
    +$$ + w_i(t) = \sum_{j}W(j\rightarrow i)w_j(t=0). +$$ +

     
    + +

    The continuous analog to \( w_i(0) \) is

    +

     
    +$$ + w(\mathbf{x})\rightarrow \delta(\mathbf{x}), +$$ +

     
    + +

    where we now have generalized the one-dimensional position \( x \) to a generic-dimensional +vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution +function \( \delta(\mathbf{x}) \) at \( t=0 \). +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition +to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). +The discrete sum of transition probabilities can then be replaced by an integral +and we obtain the new distribution at a time \( t+\Delta t \) as +

    +

     
    +$$ + w(\mathbf{y},t+\Delta t)= \int W(\mathbf{y},t+\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}, +$$ +

     
    + +

    and after \( m \) time steps we have

    +

     
    +$$ + w(\mathbf{y},t+m\Delta t)= \int W(\mathbf{y},t+m\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}. +$$ +

     
    + +

    When equilibrium is reached we have

    +

     
    +$$ + w(\mathbf{y})= \int W(\mathbf{y}|\mathbf{x}, t)w(\mathbf{x})d\mathbf{x}, +$$ +

     
    + +

    that is no time-dependence. Note our change of notation for \( W \)

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to +momentum space. +The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform +\( \tilde{w}(\mathbf{k},t) \) through +

    +

     
    +$$ + w(\mathbf{x},t) = \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}\tilde{w}(\mathbf{k},t), +$$ +

     
    + +

    and using the definition of the +\( \delta \)-function +

    +

     
    +$$ + \delta(\mathbf{x}) = \frac{1}{2\pi} \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}, +$$ +

     
    + +

    we see that

    +

     
    +$$ + \tilde{w}(\mathbf{k},0)=1/2\pi. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then use the Fourier-transformed diffusion equation

    +

     
    +$$ + \frac{\partial \tilde{w}(\mathbf{k},t)}{\partial t} = -D\mathbf{k}^2\tilde{w}(\mathbf{k},t), +$$ +

     
    + +

    with the obvious solution

    +

     
    +$$ + \tilde{w}(\mathbf{k},t)=\tilde{w}(\mathbf{k},0)\exp{\left[-(D\mathbf{k}^2t)\right)}= + \frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    With the Fourier transform we obtain

    +

     
    +$$ + w(\mathbf{x},t)=\int_{-\infty}^{\infty}d\mathbf{k} \exp{\left[i\mathbf{kx}\right]}\frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}= + \frac{1}{\sqrt{4\pi Dt}}\exp{\left[-(\mathbf{x}^2/4Dt)\right]}, +$$ +

     
    + +

    with the normalization condition

    +

     
    +$$ + \int_{-\infty}^{\infty}w(\mathbf{x},t)d\mathbf{x}=1. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    The solution represents the probability of finding +our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution +was placed at \( \mathbf{x}=0 \) at \( t=0 \). +

    + +

    There is another interesting feature worth observing. The discrete transition probability \( W \) +itself is given by a binomial distribution. +The results from the central limit theorem state that +transition probability in the limit \( n\rightarrow \infty \) converges to the normal +distribution. It is then possible to show that +

    +

     
    +$$ + W(il-jl,n\epsilon)\rightarrow W(\mathbf{y},t+\Delta t|\mathbf{x},t)= + \frac{1}{\sqrt{4\pi D\Delta t}}\exp{\left[-((\mathbf{y}-\mathbf{x})^2/4D\Delta t)\right]}, +$$ +

     
    + +

    and that it satisfies the normalization condition and is itself a solution +to the diffusion equation. +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is +\( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). +We have then +

    +

     
    +$$ + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}'.t')w(\mathbf{x}',t')d\mathbf{x}', +$$ +

     
    + +

    and

    +

     
    +$$ + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}_0.t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0, +$$ +

     
    + +

    and

    +

     
    +$$ + w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

    +

     
    +$$ + W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. +$$ +

     
    + +

    We can replace the spatial dependence with a dependence upon say the velocity +(or momentum), that is we have +

    +

     
    +$$ + W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We will now derive the Fokker-Planck equation. +We start from the ESKC equation +

    +

     
    +$$ + W(\mathbf{x},t|\mathbf{x}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. +$$ +

     
    + +

    Define \( s=t'-t_0 \), \( \tau=t-t' \) and \( t-t_0=s+\tau \). We have then

    +

     
    +$$ + W(\mathbf{x},s+\tau|\mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}')W(\mathbf{x}',s|\mathbf{x}_0)d\mathbf{x}'. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

    +

     
    +$$ + W(\mathbf{x},s|\mathbf{x}_0)+\frac{\partial W}{\partial s}\tau +O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0)d\mathbf{x}'. +$$ +

     
    + +

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    +

     
    +$$ +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then rewrite the ESKC equation as

    +

     
    +$$ +\frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. +$$ +

     
    + +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    +

     
    +$$ +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then rewrite the ESKC equation as

    +

     
    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. +$$ +

     
    + +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We simplify the above by introducing the moments

    +

     
    +$$ +M_n=\frac{1}{\tau}\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi= +\frac{\langle [\Delta x(\tau)]^n\rangle}{\tau}, +$$ +

     
    + +

    resulting in

    +

     
    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +\sum_{n=1}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)M_n\right]. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    When \( \tau \rightarrow 0 \) we assume that \( \langle [\Delta x(\tau)]^n\rangle \rightarrow 0 \) more rapidly than \( \tau \) itself if \( n > 2 \). +When \( \tau \) is much larger than the standard correlation time of +system then \( M_n \) for \( n > 2 \) can normally be neglected. +This means that fluctuations become negligible at large time scales. +

    + +

    If we neglect such terms we can rewrite the ESKC equation as

    +

     
    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +-\frac{\partial M_1W(\mathbf{x},s|\mathbf{x}_0)}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W(\mathbf{x},s|\mathbf{x}_0)}{\partial x^2}. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    In a more compact form we have

    +

     
    +$$ +\frac{\partial W}{\partial s}= +-\frac{\partial M_1W}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W}{\partial x^2}, +$$ +

     
    + +

    which is the Fokker-Planck equation! It is trivial to replace +position with velocity (momentum). +

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    Consider a particle suspended in a liquid. On its path through the liquid it will continuously collide with the liquid molecules. Because on average the particle will collide more often on the front side than on the back side, it will experience a systematic force proportional with its velocity, and directed opposite to its velocity. Besides this systematic force the particle will experience a stochastic force \( \mathbf{F}(t) \). +The equations of motion are +

    +
      +

    • \( \frac{d\mathbf{r}}{dt}=\mathbf{v} \) and
    • +

    • \( \frac{d\mathbf{v}}{dt}=-\xi \mathbf{v}+\mathbf{F} \).
    • +
    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    From hydrodynamics we know that the friction constant \( \xi \) is given by

    +

     
    +$$ +\xi =6\pi \eta a/m +$$ +

     
    + +

    where \( \eta \) is the viscosity of the solvent and a is the radius of the particle .

    + +

    Solving the second equation in the previous slide we get

    +

     
    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ). +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    If we want to get some useful information out of this, we have to average over all possible realizations of +\( \mathbf{F}(t) \), with the initial velocity as a condition. A useful quantity for example is +

    +

     
    +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{-\xi 2t} ++2\int_{0}^{t}d\tau e^{-\xi (2t-\tau)}\mathbf{v}_{0}\cdot \langle \mathbf{F}(\tau )\rangle_{\mathbf{v}_{0}} +$$ +

     
    + +

     
    +$$ + +\int_{0}^{t}d\tau ^{\prime }\int_{0}^{t}d\tau e^{-\xi (2t-\tau -\tau ^{\prime })} +\langle \mathbf{F}(\tau )\cdot \mathbf{F}(\tau ^{\prime })\rangle_{ \mathbf{v}_{0}}. +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    In order to continue we have to make some assumptions about the conditional averages of the stochastic forces. +In view of the chaotic character of the stochastic forces the following +assumptions seem to be appropriate +

    +

     
    +$$ +\langle \mathbf{F}(t)\rangle=0, +$$ +

     
    + +

    and

    +

     
    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle_{\mathbf{v}_{0}}= C_{\mathbf{v}_{0}}\delta (t-t^{\prime }). +$$ +

     
    + +

    We omit the subscript \( \mathbf{v}_{0} \), when the quantity of interest turns out to be independent of \( \mathbf{v}_{0} \). Using the last three equations we get

    +

     
    +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{2}e^{-2\xi t}+\frac{C_{\mathbf{v}_{0}}}{2\xi }(1-e^{-2\xi t}). +$$ +

     
    + +

    For large t this should be equal to 3kT/m, from which it follows that

    +

     
    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle =6\frac{kT}{m}\xi \delta (t-t^{\prime }). +$$ +

     
    + +

    This result is called the fluctuation-dissipation theorem .

    +
    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    Integrating

    +

     
    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ), +$$ +

     
    + +

    we get

    +

     
    +$$ +\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0}\frac{1}{\xi }(1-e^{-\xi t})+ +\int_0^td\tau \int_0^{\tau}\tau ^{\prime } e^{-\xi (\tau -\tau ^{\prime })}\mathbf{F}(\tau ^{\prime }), +$$ +

     
    + +

    from which we calculate the mean square displacement

    +

     
    +$$ +\langle ( \mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle _{\mathbf{v}_{0}}=\frac{v_0^2}{\xi}(1-e^{-\xi t})^{2}+\frac{3kT}{m\xi ^{2}}(2\xi t-3+4e^{-\xi t}-e^{-2\xi t}). +$$ +

     
    +

    +
    + +
    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    For very large \( t \) this becomes

    +

     
    +$$ +\langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =\frac{6kT}{m\xi }t +$$ +

     
    + +

    from which we get the Einstein relation

    +

     
    +$$ +D= \frac{kT}{m\xi } +$$ +

     
    + +

    where we have used \( \langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =6Dt \).

    +
    +
    + diff --git a/doc/pub/week3/html/week3-solarized.html b/doc/pub/week3/html/week3-solarized.html index 4c2dbaaa..c785d65f 100644 --- a/doc/pub/week3/html/week3-solarized.html +++ b/doc/pub/week3/html/week3-solarized.html @@ -63,52 +63,150 @@ @@ -146,17 +244,17 @@

    Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importa
    -

    February 6-10

    +

    February 2












    -

    Overview of week 5

    +

    Overview of week 5, January 29-February 2

    Topics

    @@ -169,319 +267,10 @@

    Overview of week 5

  • Overview video on Metropolis algoritm
  • Video of lecture tba
  • Handwritten notes tba
  • -
  • See also Lectures from FYS3150/4150 on the Metropolis Algorithm
  • -









    -

    Basics of the Metropolis Algorithm

    - -

    The Metropolis et al. -algorithm was invented by Metropolis et. a -and is often simply called the Metropolis algorithm. -It is a method to sample a normalized probability -distribution by a stochastic process. We define \( {\cal P}_i^{(n)} \) to -be the probability for finding the system in the state \( i \) at step \( n \). -The algorithm is then -

    - -









    -

    The basic of the Metropolis Algorithm

    - - -

    We wish to derive the required properties of \( T \) and \( A \) such that -\( {\cal P}_i^{(n\rightarrow \infty)} \rightarrow p_i \) so that starting -from any distribution, the method converges to the correct distribution. -Note that the description here is for a discrete probability distribution. -Replacing probabilities \( p_i \) with expressions like \( p(x_i)dx_i \) will -take all of these over to the corresponding continuum expressions. -

    - -









    -

    More on the Metropolis

    - -

    The dynamical equation for \( {\cal P}_i^{(n)} \) can be written directly from -the description above. The probability of being in the state \( i \) at step \( n \) -is given by the probability of being in any state \( j \) at the previous step, -and making an accepted transition to \( i \) added to the probability of -being in the state \( i \), making a transition to any state \( j \) and -rejecting the move: -

    -$$ -\begin{equation} -\label{eq:eq1} -{\cal P}^{(n)}_i = \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} -+{\cal P}^{(n-1)}_iT_{i\rightarrow j}\left ( 1- A_{i\rightarrow j} \right) -\right ] \,. -\end{equation} -$$ - - -









    -

    Metropolis algorithm, setting it up

    -

    Since the probability of making some transition must be 1, -\( \sum_j T_{i\rightarrow j} = 1 \), and Eq. \eqref{eq:eq1} becomes -

    - -$$ -\begin{equation} -{\cal P}^{(n)}_i = {\cal P}^{(n-1)}_i + - \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} --{\cal P}^{(n-1)}_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] \,. -\label{_auto1} -\end{equation} -$$ - - -









    -

    Metropolis continues

    - -

    For large \( n \) we require that \( {\cal P}^{(n\rightarrow \infty)}_i = p_i \), -the desired probability distribution. Taking this limit, gives the -balance requirement -

    - -$$ -\begin{equation} -\sum_j \left [p_jT_{j\rightarrow i} A_{j\rightarrow i}-p_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] = 0, -\label{_auto2} -\end{equation} -$$ - - -









    -

    Detailed Balance

    - -

    The balance requirement is very weak. Typically the much stronger detailed -balance requirement is enforced, that is rather than the sum being -set to zero, we set each term separately to zero and use this -to determine the acceptance probabilities. Rearranging, the result is -

    - -$$ -\begin{equation} -\frac{ A_{j\rightarrow i}}{A_{i\rightarrow j}} -= \frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}} \,. -\label{_auto3} -\end{equation} -$$ - - -









    -

    More on Detailed Balance

    - -

    The Metropolis choice is to maximize the \( A \) values, that is

    - -$$ -\begin{equation} -A_{j \rightarrow i} = \min \left ( 1, -\frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}}\right ). -\label{_auto4} -\end{equation} -$$ - -

    Other choices are possible, but they all correspond to multilplying -\( A_{i\rightarrow j} \) and \( A_{j\rightarrow i} \) by the same constant -smaller than unity. The penalty function method uses just such -a factor to compensate for \( p_i \) that are evaluated stochastically -and are therefore noisy. -

    - -

    Having chosen the acceptance probabilities, we have guaranteed that -if the \( {\cal P}_i^{(n)} \) has equilibrated, that is if it is equal to \( p_i \), -it will remain equilibrated. Next we need to find the circumstances for -convergence to equilibrium. -

    - -









    -

    Dynamical Equation

    - -

    The dynamical equation can be written as

    - -$$ -\begin{equation} -{\cal P}^{(n)}_i = \sum_j M_{ij}{\cal P}^{(n-1)}_j -\label{_auto5} -\end{equation} -$$ - -

    with the matrix \( M \) given by

    - -$$ -\begin{equation} -M_{ij} = \delta_{ij}\left [ 1 -\sum_k T_{i\rightarrow k} A_{i \rightarrow k} -\right ] + T_{j\rightarrow i} A_{j\rightarrow i} \,. -\label{_auto6} -\end{equation} -$$ - -

    Summing over \( i \) shows that \( \sum_i M_{ij} = 1 \), and since -\( \sum_k T_{i\rightarrow k} = 1 \), and \( A_{i \rightarrow k} \leq 1 \), the -elements of the matrix satisfy \( M_{ij} \geq 0 \). The matrix \( M \) is therefore -a stochastic matrix. -

    - -









    -

    Interpreting the Metropolis Algorithm

    - -

    The Metropolis method is simply the power method for computing the -right eigenvector of \( M \) with the largest magnitude eigenvalue. -By construction, the correct probability distribution is a right eigenvector -with eigenvalue 1. Therefore, for the Metropolis method to converge -to this result, we must show that \( M \) has only one eigenvalue with this -magnitude, and all other eigenvalues are smaller. -

    - -

    Even a defective matrix has at least one left and right eigenvector for -each eigenvalue. An example of a defective matrix is -

    - -$$ -\begin{bmatrix} -0 & 1\\ -0 & 0 \\ -\end{bmatrix}, -$$ - -

    with two zero eigenvalues, only one right eigenvector

    - -$$ -\begin{bmatrix} -1 \\ -0\\ -\end{bmatrix} -$$ - -

    and only one left eigenvector \( (0\ 1) \).

    - -









    -

    Gershgorin bounds and Metropolis

    - -

    The Gershgorin bounds for the eigenvalues can be derived by multiplying on -the left with the eigenvector with the maximum and minimum eigenvalues, -

    - -$$ -\begin{align} -\sum_i \psi^{\rm max}_i M_{ij} =& \lambda_{\rm max} \psi^{\rm max}_j -\nonumber\\ -\sum_i \psi^{\rm min}_i M_{ij} =& \lambda_{\rm min} \psi^{\rm min}_j -\label{_auto7} -\end{align} -$$ - - -









    -

    Normalizing the Eigenvectors

    - -

    Next we choose the normalization of these eigenvectors so that the -largest element (or one of the equally largest elements) -has value 1. Let's call this element \( k \), and -we can therefore bound the magnitude of the other elements to be less -than or equal to 1. -This leads to the inequalities, using the property that \( M_{ij}\geq 0 \), -

    - -$$ -\begin{eqnarray} -\sum_i M_{ik} \leq \lambda_{\rm max} -\nonumber\\ -M_{kk}-\sum_{i \neq k} M_{ik} \geq \lambda_{\rm min} -\end{eqnarray} -$$ - -

    where the equality from the maximum -will occur only if the eigenvector takes the value 1 for all values of -\( i \) where \( M_{ik} \neq 0 \), and the equality for the minimum will -occur only if the eigenvector takes the value -1 for all values of \( i\neq k \) -where \( M_{ik} \neq 0 \). -

    - -









    -

    More Metropolis analysis

    - -

    That the maximum eigenvalue is 1 follows immediately from the property -that \( \sum_i M_{ik} = 1 \). Similarly the minimum eigenvalue can be -1, -but only if \( M_{kk} = 0 \) and the magnitude of all the other elements -\( \psi_i^{\rm min} \) of -the eigenvector that multiply nonzero elements \( M_{ik} \) are -1. -

    - -

    Let's first see what the properties of \( M \) must be -to eliminate any -1 eigenvalues. -To have a -1 eigenvalue, the left eigenvector must contain only \( \pm 1 \) -and \( 0 \) values. Taking in turn each \( \pm 1 \) value as the maximum, so that -it corresponds to the index \( k \), the nonzero \( M_{ik} \) values must -correspond to \( i \) index values of the eigenvector which have opposite -sign elements. That is, the \( M \) matrix must break up into sets of -states that always make transitions from set A to set B ... back to set A. -In particular, there can be no rejections of these moves in the cycle -since the -1 eigenvalue requires \( M_{kk}=0 \). To guarantee no eigenvalues -with eigenvalue -1, we simply have to make sure that there are no -cycles among states. Notice that this is generally trivial since such -cycles cannot have any rejections at any stage. An example of such -a cycle is sampling a noninteracting Ising spin. If the transition is -taken to flip the spin, and the energy difference is zero, the Boltzmann -factor will not change and the move will always be accepted. The system -will simply flip from up to down to up to down ad infinitum. Including -a rejection probability or using a heat bath algorithm -immediately fixes the problem. -

    - -









    -

    Final Considerations I

    - -

    Next we need to make sure that there is only one left eigenvector -with eigenvalue 1. To get an eigenvalue 1, the left eigenvector must be -constructed from only ones and zeroes. It is straightforward to -see that a vector made up of -ones and zeroes can only be an eigenvector with eigenvalue 1 if the -matrix element \( M_{ij} = 0 \) for all cases where \( \psi_i \neq \psi_j \). -That is we can choose an index \( i \) and take \( \psi_i = 1 \). -We require all elements \( \psi_j \) where \( M_{ij} \neq 0 \) to also have -the value \( 1 \). Continuing we then require all elements \( \psi_\ell \) $M_{j\ell}$ -to have value \( 1 \). Only if the matrix \( M \) can be put into block diagonal -form can there be more than one choice for the left eigenvector with -eigenvalue 1. We therefore require that the transition matrix not -be in block diagonal form. This simply means that we must choose -the transition probability so that we can get from any allowed state -to any other in a series of transitions. -

    - -









    -

    Final Considerations II

    - -

    Finally, we note that for a defective matrix, with more eigenvalues -than independent eigenvectors for eigenvalue 1, -the left and right -eigenvectors of eigenvalue 1 would be orthogonal. -Here the left eigenvector is all 1 -except for states that can never be reached, and the right eigenvector -is \( p_i > 0 \) except for states that give zero probability. We already -require that we can reach -all states that contribute to \( p_i \). Therefore the left and right -eigenvectors with eigenvalue 1 do not correspond to a defective sector -of the matrix and they are unique. The Metropolis algorithm therefore -converges exponentially to the desired distribution. -

    - -









    -

    Final Considerations III

    - -

    The requirements for the transition \( T_{i \rightarrow j} \) are

    -









    Importance Sampling: Overview of what needs to be coded

    @@ -656,7 +445,6 @@

    Code exa from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys -from numba import jit,njit # Trial wave function for the 2-electron quantum dot in two dims @@ -711,9 +499,6 @@

    Code exa
    # The Monte Carlo sampling with the Metropolis algo
    -# jit decorator tells Numba to compile this function.
    -# The argument types will be inferred by Numba when function is called.
    -@jit()
     def MonteCarloSampling():
     
         NumberMCcycles= 100000
    @@ -848,9 +633,897 @@ 

    Code exa

    +









    +

    Importance sampling, program elements

    +
    + +

    +

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k} +$$ + +

    However, +with our written in way which can be reused later as +

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})= \exp{\left\{\sum_{i < j}f(r_{ij})\right\}}, +$$ + +

    the gradient needed for the quantum force and local energy is easy to compute. +The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form. +

    +
    + + +









    +

    Importance sampling, program elements

    +
    + +

    +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    +$$ +R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = +\frac{\Psi_{OB}^{new}}{\Psi_{OB}^{old}}\frac{\Psi_{C}^{new}}{\Psi_{C}^{old}} +$$ + +

    Here \( \Psi_{OB} \) is our onebody part (Slater determinant or product of boson single-particle states) while \( \Psi_{C} \) is our correlation function, or Jastrow factor. +We need to optimize the \( \nabla \Psi_T / \Psi_T \) ratio and the second derivative as well, that is +the \( \mathbf{\nabla}^2 \Psi_T/\Psi_T \) ratio. The first is needed when we compute the so-called quantum force in importance sampling. +The second is needed when we compute the kinetic energy term of the local energy. +

    +$$ +\frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    +$$ + \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, +$$ + +$$ +\hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The second derivative which enters the definition of the local energy is

    +$$ +\frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} +$$ + +

    We discuss here how to calculate these quantities in an optimal way,

    +
    + +









    +

    Importance sampling

    +
    + +

    +

    We have defined the correlated function as

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), +$$ + +

    with +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2} \) in three dimensions or +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2} \) if we work with two-dimensional systems. +

    + +

    In our particular case we have

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    +$$ + \mathbf{r} \equiv \begin{pmatrix} + 0 & r_{1,2} & r_{1,3} & \cdots & r_{1,N} \\ + \vdots & 0 & r_{2,3} & \cdots & r_{2,N} \\ + \vdots & \vdots & 0 & \ddots & \vdots \\ + \vdots & \vdots & \vdots & \ddots & r_{N-1,N} \\ + 0 & 0 & 0 & \cdots & 0 + \end{pmatrix}. +$$ + +

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    + +

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    +
    + +









    +

    Importance sampling

    +
    + +

    +

    We have that the ratio between Jastrow factors \( R_C \) is given by

    +$$ +R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\prod_{i=1}^{k-1}\frac{g_{ik}^\mathrm{new}}{g_{ik}^\mathrm{cur}} +\prod_{i=k+1}^{N}\frac{ g_{ki}^\mathrm{new}} {g_{ki}^\mathrm{cur}}. +$$ + +

    For the Pade-Jastrow form

    +$$ + R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\frac{\exp{U_{new}}}{\exp{U_{cur}}} = \exp{\Delta U}, +$$ + +

    where

    +$$ +\Delta U = +\sum_{i=1}^{k-1}\big(f_{ik}^\mathrm{new}-f_{ik}^\mathrm{cur}\big) ++ +\sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    One needs to develop a special algorithm +that runs only through the elements of the upper triangular +matrix \( \mathbf{g} \) and have \( k \) as an index. +

    + +

    The expression to be derived in the following is of interest when computing the quantum force and the kinetic energy. It has the form

    +$$ +\frac{\mathbf{\nabla}_i\Psi_C}{\Psi_C} = \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_i}, +$$ + +

    for all dimensions and with \( i \) running over all particles.

    +
    + +









    +

    Importance sampling

    +
    + +

    +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_k}. +$$ + +

    An equivalent equation is obtained for the exponential form after replacing \( g_{ij} \) by \( \exp(f_{ij}) \), yielding:

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k}, +$$ + +

    with both expressions scaling as \( \mathcal{O}(N) \).

    +
    + + +









    +

    Importance sampling

    +
    + +

    + +

    Using the identity

    +$$ +\frac{\partial}{\partial x_i}g_{ij} = -\frac{\partial}{\partial x_j}g_{ij}, +$$ + +

    we get expressions where all the derivatives acting on the particle are represented by the second index of \( g \):

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_i}, +$$ + +

    and for the exponential case:

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    +$$ +\frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, +$$ + +

    we arrive at

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    +$$ +\frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. +$$ + +

    Therefore,

    +$$ +\frac{1}{\Psi_{C}}\frac{\partial \Psi_{C}}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\mathbf{r_{ik}}}{r_{ik}}\frac{\partial f_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial f_{ki}}{\partial r_{ki}}, +$$ + +

    where

    +$$ + \mathbf{r}_{ij} = |\mathbf{r}_j - \mathbf{r}_i| = (x_j - x_i)\mathbf{e}_1 + (y_j - y_i)\mathbf{e}_2 + (z_j - z_i)\mathbf{e}_3 +$$ + +

    is the relative distance.

    +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    +$$ +\left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ +2\sum_{k=1}^{N} +\sum_{i=1}^{k-1}\frac{\partial^2 g_{ik}}{\partial x_k^2}\ +\ +\sum_{k=1}^N +\left( +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} - +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} +\right)^2 +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    But we have a simple form for the function, namely

    +$$ +\Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, +$$ + +

    and it is easy to see that for particle \( k \) +we have +

    +$$ + \frac{\mathbf{\nabla}^2_k \Psi_C}{\Psi_C }= +\sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ +\sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    A stochastic process is simply a function of two variables, one is the time, +the other is a stochastic variable \( X \), defined by specifying +

    +
      +
    • the set \( \left\{x\right\} \) of possible values for \( X \);
    • +
    • the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
    • +
    +

    The set of values \( \left\{x\right\} \) for \( X \) +may be discrete, or continuous. If the set of +values is continuous, then \( w_X (x) \) is a probability density so that +\( w_X (x)dx \) +is the probability that one finds the stochastic variable \( X \) to have values +in the range \( [x, x + dx] \) . +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic +variable. The mapping may also be time-dependent, that is, the mapping +depends on an additional variable \( t \) +

    +$$ + Y_X (t) = f (X, t) . +$$ + +

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, +a stochastic process. A stochastic process is a function of two variables, +one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the +possible values of \( X \) then +

    +$$ + y(t) = f (x, t), +$$ + +

    is a function of \( t \), called a sample function or realization of the process. +In physics one considers the stochastic process to be an ensemble of such +sample functions. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) +as \( t\rightarrow\infty \). In +equilibrium detailed balance constrains the transition rates +

    +$$ + W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), +$$ + +

    where \( W(y'\rightarrow y) \) +is the probability, per unit time, that the system changes +from a state \( |y\rangle \) , characterized by the value \( y \) +for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    + +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and +the reverse \( W(y\rightarrow y') \) may be very different. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Consider, for instance, a simple +system that has only two energy levels \( \epsilon_0 = 0 \) and +\( \epsilon_1 = \Delta E \). +

    + +

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    +$$ + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} +$$ + +

    We get then

    +$$ + \frac{W(1\rightarrow 0)}{W(0 \rightarrow 1)}=\exp{-(\Delta E/kT)}, +$$ + +

    which goes to zero when \( T \) tends to zero.

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    If we assume a discrete set of events, +our initial probability +distribution function can be given by +

    +$$ + w_i(0) = \delta_{i,0}, +$$ + +

    and its time-development after a given time step \( \Delta t=\epsilon \) is

    +$$ + w_i(t) = \sum_{j}W(j\rightarrow i)w_j(t=0). +$$ + +

    The continuous analog to \( w_i(0) \) is

    +$$ + w(\mathbf{x})\rightarrow \delta(\mathbf{x}), +$$ + +

    where we now have generalized the one-dimensional position \( x \) to a generic-dimensional +vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution +function \( \delta(\mathbf{x}) \) at \( t=0 \). +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition +to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). +The discrete sum of transition probabilities can then be replaced by an integral +and we obtain the new distribution at a time \( t+\Delta t \) as +

    +$$ + w(\mathbf{y},t+\Delta t)= \int W(\mathbf{y},t+\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}, +$$ + +

    and after \( m \) time steps we have

    +$$ + w(\mathbf{y},t+m\Delta t)= \int W(\mathbf{y},t+m\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}. +$$ + +

    When equilibrium is reached we have

    +$$ + w(\mathbf{y})= \int W(\mathbf{y}|\mathbf{x}, t)w(\mathbf{x})d\mathbf{x}, +$$ + +

    that is no time-dependence. Note our change of notation for \( W \)

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to +momentum space. +The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform +\( \tilde{w}(\mathbf{k},t) \) through +

    +$$ + w(\mathbf{x},t) = \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}\tilde{w}(\mathbf{k},t), +$$ + +

    and using the definition of the +\( \delta \)-function +

    +$$ + \delta(\mathbf{x}) = \frac{1}{2\pi} \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}, +$$ + +

    we see that

    +$$ + \tilde{w}(\mathbf{k},0)=1/2\pi. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then use the Fourier-transformed diffusion equation

    +$$ + \frac{\partial \tilde{w}(\mathbf{k},t)}{\partial t} = -D\mathbf{k}^2\tilde{w}(\mathbf{k},t), +$$ + +

    with the obvious solution

    +$$ + \tilde{w}(\mathbf{k},t)=\tilde{w}(\mathbf{k},0)\exp{\left[-(D\mathbf{k}^2t)\right)}= + \frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    With the Fourier transform we obtain

    +$$ + w(\mathbf{x},t)=\int_{-\infty}^{\infty}d\mathbf{k} \exp{\left[i\mathbf{kx}\right]}\frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}= + \frac{1}{\sqrt{4\pi Dt}}\exp{\left[-(\mathbf{x}^2/4Dt)\right]}, +$$ + +

    with the normalization condition

    +$$ + \int_{-\infty}^{\infty}w(\mathbf{x},t)d\mathbf{x}=1. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    The solution represents the probability of finding +our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution +was placed at \( \mathbf{x}=0 \) at \( t=0 \). +

    + +

    There is another interesting feature worth observing. The discrete transition probability \( W \) +itself is given by a binomial distribution. +The results from the central limit theorem state that +transition probability in the limit \( n\rightarrow \infty \) converges to the normal +distribution. It is then possible to show that +

    +$$ + W(il-jl,n\epsilon)\rightarrow W(\mathbf{y},t+\Delta t|\mathbf{x},t)= + \frac{1}{\sqrt{4\pi D\Delta t}}\exp{\left[-((\mathbf{y}-\mathbf{x})^2/4D\Delta t)\right]}, +$$ + +

    and that it satisfies the normalization condition and is itself a solution +to the diffusion equation. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is +\( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). +We have then +

    +$$ + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}'.t')w(\mathbf{x}',t')d\mathbf{x}', +$$ + +

    and

    +$$ + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}_0.t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0, +$$ + +

    and

    +$$ + w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

    +$$ + W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. +$$ + +

    We can replace the spatial dependence with a dependence upon say the velocity +(or momentum), that is we have +

    +$$ + W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We will now derive the Fokker-Planck equation. +We start from the ESKC equation +

    +$$ + W(\mathbf{x},t|\mathbf{x}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. +$$ + +

    Define \( s=t'-t_0 \), \( \tau=t-t' \) and \( t-t_0=s+\tau \). We have then

    +$$ + W(\mathbf{x},s+\tau|\mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}')W(\mathbf{x}',s|\mathbf{x}_0)d\mathbf{x}'. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

    +$$ + W(\mathbf{x},s|\mathbf{x}_0)+\frac{\partial W}{\partial s}\tau +O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0)d\mathbf{x}'. +$$ + +

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    +$$ +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then rewrite the ESKC equation as

    +$$ +\frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. +$$ + +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    +$$ +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then rewrite the ESKC equation as

    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. +$$ + +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We simplify the above by introducing the moments

    +$$ +M_n=\frac{1}{\tau}\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi= +\frac{\langle [\Delta x(\tau)]^n\rangle}{\tau}, +$$ + +

    resulting in

    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +\sum_{n=1}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)M_n\right]. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    When \( \tau \rightarrow 0 \) we assume that \( \langle [\Delta x(\tau)]^n\rangle \rightarrow 0 \) more rapidly than \( \tau \) itself if \( n > 2 \). +When \( \tau \) is much larger than the standard correlation time of +system then \( M_n \) for \( n > 2 \) can normally be neglected. +This means that fluctuations become negligible at large time scales. +

    + +

    If we neglect such terms we can rewrite the ESKC equation as

    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +-\frac{\partial M_1W(\mathbf{x},s|\mathbf{x}_0)}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W(\mathbf{x},s|\mathbf{x}_0)}{\partial x^2}. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    In a more compact form we have

    +$$ +\frac{\partial W}{\partial s}= +-\frac{\partial M_1W}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W}{\partial x^2}, +$$ + +

    which is the Fokker-Planck equation! It is trivial to replace +position with velocity (momentum). +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    Consider a particle suspended in a liquid. On its path through the liquid it will continuously collide with the liquid molecules. Because on average the particle will collide more often on the front side than on the back side, it will experience a systematic force proportional with its velocity, and directed opposite to its velocity. Besides this systematic force the particle will experience a stochastic force \( \mathbf{F}(t) \). +The equations of motion are +

    +
      +
    • \( \frac{d\mathbf{r}}{dt}=\mathbf{v} \) and
    • +
    • \( \frac{d\mathbf{v}}{dt}=-\xi \mathbf{v}+\mathbf{F} \).
    • +
    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    From hydrodynamics we know that the friction constant \( \xi \) is given by

    +$$ +\xi =6\pi \eta a/m +$$ + +

    where \( \eta \) is the viscosity of the solvent and a is the radius of the particle .

    + +

    Solving the second equation in the previous slide we get

    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ). +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    If we want to get some useful information out of this, we have to average over all possible realizations of +\( \mathbf{F}(t) \), with the initial velocity as a condition. A useful quantity for example is +

    +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{-\xi 2t} ++2\int_{0}^{t}d\tau e^{-\xi (2t-\tau)}\mathbf{v}_{0}\cdot \langle \mathbf{F}(\tau )\rangle_{\mathbf{v}_{0}} +$$ + +$$ + +\int_{0}^{t}d\tau ^{\prime }\int_{0}^{t}d\tau e^{-\xi (2t-\tau -\tau ^{\prime })} +\langle \mathbf{F}(\tau )\cdot \mathbf{F}(\tau ^{\prime })\rangle_{ \mathbf{v}_{0}}. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    In order to continue we have to make some assumptions about the conditional averages of the stochastic forces. +In view of the chaotic character of the stochastic forces the following +assumptions seem to be appropriate +

    +$$ +\langle \mathbf{F}(t)\rangle=0, +$$ + +

    and

    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle_{\mathbf{v}_{0}}= C_{\mathbf{v}_{0}}\delta (t-t^{\prime }). +$$ + +

    We omit the subscript \( \mathbf{v}_{0} \), when the quantity of interest turns out to be independent of \( \mathbf{v}_{0} \). Using the last three equations we get

    +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{2}e^{-2\xi t}+\frac{C_{\mathbf{v}_{0}}}{2\xi }(1-e^{-2\xi t}). +$$ + +

    For large t this should be equal to 3kT/m, from which it follows that

    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle =6\frac{kT}{m}\xi \delta (t-t^{\prime }). +$$ + +

    This result is called the fluctuation-dissipation theorem .

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    Integrating

    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ), +$$ + +

    we get

    +$$ +\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0}\frac{1}{\xi }(1-e^{-\xi t})+ +\int_0^td\tau \int_0^{\tau}\tau ^{\prime } e^{-\xi (\tau -\tau ^{\prime })}\mathbf{F}(\tau ^{\prime }), +$$ + +

    from which we calculate the mean square displacement

    +$$ +\langle ( \mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle _{\mathbf{v}_{0}}=\frac{v_0^2}{\xi}(1-e^{-\xi t})^{2}+\frac{3kT}{m\xi ^{2}}(2\xi t-3+4e^{-\xi t}-e^{-2\xi t}). +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    For very large \( t \) this becomes

    +$$ +\langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =\frac{6kT}{m\xi }t +$$ + +

    from which we get the Einstein relation

    +$$ +D= \frac{kT}{m\xi } +$$ + +

    where we have used \( \langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =6Dt \).

    +
    + +
    - © 1999-2023, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license + © 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license
    diff --git a/doc/pub/week3/html/week3.html b/doc/pub/week3/html/week3.html index 07af4caa..8277d863 100644 --- a/doc/pub/week3/html/week3.html +++ b/doc/pub/week3/html/week3.html @@ -140,52 +140,150 @@ @@ -223,17 +321,17 @@

    Week 5 January 29-February 2: Metropolis Algoritm and Markov Chains, Importa
    -

    February 6-10

    +

    February 2












    -

    Overview of week 5

    +

    Overview of week 5, January 29-February 2

    Topics

      -
    • Markov Chain Monte Carlo
    • +
    • Markov Chain Monte Carlo and repetition from last week
    • Metropolis-Hastings sampling and Importance Sampling
    @@ -246,319 +344,10 @@

    Overview of week 5

  • Overview video on Metropolis algoritm
  • Video of lecture tba
  • Handwritten notes tba
  • -
  • See also Lectures from FYS3150/4150 on the Metropolis Algorithm
  • -









    -

    Basics of the Metropolis Algorithm

    - -

    The Metropolis et al. -algorithm was invented by Metropolis et. a -and is often simply called the Metropolis algorithm. -It is a method to sample a normalized probability -distribution by a stochastic process. We define \( {\cal P}_i^{(n)} \) to -be the probability for finding the system in the state \( i \) at step \( n \). -The algorithm is then -

    - -









    -

    The basic of the Metropolis Algorithm

    - - -

    We wish to derive the required properties of \( T \) and \( A \) such that -\( {\cal P}_i^{(n\rightarrow \infty)} \rightarrow p_i \) so that starting -from any distribution, the method converges to the correct distribution. -Note that the description here is for a discrete probability distribution. -Replacing probabilities \( p_i \) with expressions like \( p(x_i)dx_i \) will -take all of these over to the corresponding continuum expressions. -

    - -









    -

    More on the Metropolis

    - -

    The dynamical equation for \( {\cal P}_i^{(n)} \) can be written directly from -the description above. The probability of being in the state \( i \) at step \( n \) -is given by the probability of being in any state \( j \) at the previous step, -and making an accepted transition to \( i \) added to the probability of -being in the state \( i \), making a transition to any state \( j \) and -rejecting the move: -

    -$$ -\begin{equation} -\label{eq:eq1} -{\cal P}^{(n)}_i = \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} -+{\cal P}^{(n-1)}_iT_{i\rightarrow j}\left ( 1- A_{i\rightarrow j} \right) -\right ] \,. -\end{equation} -$$ - - -









    -

    Metropolis algorithm, setting it up

    -

    Since the probability of making some transition must be 1, -\( \sum_j T_{i\rightarrow j} = 1 \), and Eq. \eqref{eq:eq1} becomes -

    - -$$ -\begin{equation} -{\cal P}^{(n)}_i = {\cal P}^{(n-1)}_i + - \sum_j \left [ -{\cal P}^{(n-1)}_jT_{j\rightarrow i} A_{j\rightarrow i} --{\cal P}^{(n-1)}_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] \,. -\label{_auto1} -\end{equation} -$$ - - -









    -

    Metropolis continues

    - -

    For large \( n \) we require that \( {\cal P}^{(n\rightarrow \infty)}_i = p_i \), -the desired probability distribution. Taking this limit, gives the -balance requirement -

    - -$$ -\begin{equation} -\sum_j \left [p_jT_{j\rightarrow i} A_{j\rightarrow i}-p_iT_{i\rightarrow j}A_{i\rightarrow j} -\right ] = 0, -\label{_auto2} -\end{equation} -$$ - - -









    -

    Detailed Balance

    - -

    The balance requirement is very weak. Typically the much stronger detailed -balance requirement is enforced, that is rather than the sum being -set to zero, we set each term separately to zero and use this -to determine the acceptance probabilities. Rearranging, the result is -

    - -$$ -\begin{equation} -\frac{ A_{j\rightarrow i}}{A_{i\rightarrow j}} -= \frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}} \,. -\label{_auto3} -\end{equation} -$$ - - -









    -

    More on Detailed Balance

    - -

    The Metropolis choice is to maximize the \( A \) values, that is

    - -$$ -\begin{equation} -A_{j \rightarrow i} = \min \left ( 1, -\frac{p_iT_{i\rightarrow j}}{ p_jT_{j\rightarrow i}}\right ). -\label{_auto4} -\end{equation} -$$ - -

    Other choices are possible, but they all correspond to multilplying -\( A_{i\rightarrow j} \) and \( A_{j\rightarrow i} \) by the same constant -smaller than unity. The penalty function method uses just such -a factor to compensate for \( p_i \) that are evaluated stochastically -and are therefore noisy. -

    - -

    Having chosen the acceptance probabilities, we have guaranteed that -if the \( {\cal P}_i^{(n)} \) has equilibrated, that is if it is equal to \( p_i \), -it will remain equilibrated. Next we need to find the circumstances for -convergence to equilibrium. -

    - -









    -

    Dynamical Equation

    - -

    The dynamical equation can be written as

    - -$$ -\begin{equation} -{\cal P}^{(n)}_i = \sum_j M_{ij}{\cal P}^{(n-1)}_j -\label{_auto5} -\end{equation} -$$ - -

    with the matrix \( M \) given by

    - -$$ -\begin{equation} -M_{ij} = \delta_{ij}\left [ 1 -\sum_k T_{i\rightarrow k} A_{i \rightarrow k} -\right ] + T_{j\rightarrow i} A_{j\rightarrow i} \,. -\label{_auto6} -\end{equation} -$$ - -

    Summing over \( i \) shows that \( \sum_i M_{ij} = 1 \), and since -\( \sum_k T_{i\rightarrow k} = 1 \), and \( A_{i \rightarrow k} \leq 1 \), the -elements of the matrix satisfy \( M_{ij} \geq 0 \). The matrix \( M \) is therefore -a stochastic matrix. -

    - -









    -

    Interpreting the Metropolis Algorithm

    - -

    The Metropolis method is simply the power method for computing the -right eigenvector of \( M \) with the largest magnitude eigenvalue. -By construction, the correct probability distribution is a right eigenvector -with eigenvalue 1. Therefore, for the Metropolis method to converge -to this result, we must show that \( M \) has only one eigenvalue with this -magnitude, and all other eigenvalues are smaller. -

    - -

    Even a defective matrix has at least one left and right eigenvector for -each eigenvalue. An example of a defective matrix is -

    - -$$ -\begin{bmatrix} -0 & 1\\ -0 & 0 \\ -\end{bmatrix}, -$$ - -

    with two zero eigenvalues, only one right eigenvector

    - -$$ -\begin{bmatrix} -1 \\ -0\\ -\end{bmatrix} -$$ - -

    and only one left eigenvector \( (0\ 1) \).

    - -









    -

    Gershgorin bounds and Metropolis

    - -

    The Gershgorin bounds for the eigenvalues can be derived by multiplying on -the left with the eigenvector with the maximum and minimum eigenvalues, -

    - -$$ -\begin{align} -\sum_i \psi^{\rm max}_i M_{ij} =& \lambda_{\rm max} \psi^{\rm max}_j -\nonumber\\ -\sum_i \psi^{\rm min}_i M_{ij} =& \lambda_{\rm min} \psi^{\rm min}_j -\label{_auto7} -\end{align} -$$ - - -









    -

    Normalizing the Eigenvectors

    - -

    Next we choose the normalization of these eigenvectors so that the -largest element (or one of the equally largest elements) -has value 1. Let's call this element \( k \), and -we can therefore bound the magnitude of the other elements to be less -than or equal to 1. -This leads to the inequalities, using the property that \( M_{ij}\geq 0 \), -

    - -$$ -\begin{eqnarray} -\sum_i M_{ik} \leq \lambda_{\rm max} -\nonumber\\ -M_{kk}-\sum_{i \neq k} M_{ik} \geq \lambda_{\rm min} -\end{eqnarray} -$$ - -

    where the equality from the maximum -will occur only if the eigenvector takes the value 1 for all values of -\( i \) where \( M_{ik} \neq 0 \), and the equality for the minimum will -occur only if the eigenvector takes the value -1 for all values of \( i\neq k \) -where \( M_{ik} \neq 0 \). -

    - -









    -

    More Metropolis analysis

    - -

    That the maximum eigenvalue is 1 follows immediately from the property -that \( \sum_i M_{ik} = 1 \). Similarly the minimum eigenvalue can be -1, -but only if \( M_{kk} = 0 \) and the magnitude of all the other elements -\( \psi_i^{\rm min} \) of -the eigenvector that multiply nonzero elements \( M_{ik} \) are -1. -

    - -

    Let's first see what the properties of \( M \) must be -to eliminate any -1 eigenvalues. -To have a -1 eigenvalue, the left eigenvector must contain only \( \pm 1 \) -and \( 0 \) values. Taking in turn each \( \pm 1 \) value as the maximum, so that -it corresponds to the index \( k \), the nonzero \( M_{ik} \) values must -correspond to \( i \) index values of the eigenvector which have opposite -sign elements. That is, the \( M \) matrix must break up into sets of -states that always make transitions from set A to set B ... back to set A. -In particular, there can be no rejections of these moves in the cycle -since the -1 eigenvalue requires \( M_{kk}=0 \). To guarantee no eigenvalues -with eigenvalue -1, we simply have to make sure that there are no -cycles among states. Notice that this is generally trivial since such -cycles cannot have any rejections at any stage. An example of such -a cycle is sampling a noninteracting Ising spin. If the transition is -taken to flip the spin, and the energy difference is zero, the Boltzmann -factor will not change and the move will always be accepted. The system -will simply flip from up to down to up to down ad infinitum. Including -a rejection probability or using a heat bath algorithm -immediately fixes the problem. -

    - -









    -

    Final Considerations I

    - -

    Next we need to make sure that there is only one left eigenvector -with eigenvalue 1. To get an eigenvalue 1, the left eigenvector must be -constructed from only ones and zeroes. It is straightforward to -see that a vector made up of -ones and zeroes can only be an eigenvector with eigenvalue 1 if the -matrix element \( M_{ij} = 0 \) for all cases where \( \psi_i \neq \psi_j \). -That is we can choose an index \( i \) and take \( \psi_i = 1 \). -We require all elements \( \psi_j \) where \( M_{ij} \neq 0 \) to also have -the value \( 1 \). Continuing we then require all elements \( \psi_\ell \) $M_{j\ell}$ -to have value \( 1 \). Only if the matrix \( M \) can be put into block diagonal -form can there be more than one choice for the left eigenvector with -eigenvalue 1. We therefore require that the transition matrix not -be in block diagonal form. This simply means that we must choose -the transition probability so that we can get from any allowed state -to any other in a series of transitions. -

    - -









    -

    Final Considerations II

    - -

    Finally, we note that for a defective matrix, with more eigenvalues -than independent eigenvectors for eigenvalue 1, -the left and right -eigenvectors of eigenvalue 1 would be orthogonal. -Here the left eigenvector is all 1 -except for states that can never be reached, and the right eigenvector -is \( p_i > 0 \) except for states that give zero probability. We already -require that we can reach -all states that contribute to \( p_i \). Therefore the left and right -eigenvectors with eigenvalue 1 do not correspond to a defective sector -of the matrix and they are unique. The Metropolis algorithm therefore -converges exponentially to the desired distribution. -

    - -









    -

    Final Considerations III

    - -

    The requirements for the transition \( T_{i \rightarrow j} \) are

    -









    Importance Sampling: Overview of what needs to be coded

    @@ -733,7 +522,6 @@

    Code exa from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys -from numba import jit,njit # Trial wave function for the 2-electron quantum dot in two dims @@ -788,9 +576,6 @@

    Code exa
    # The Monte Carlo sampling with the Metropolis algo
    -# jit decorator tells Numba to compile this function.
    -# The argument types will be inferred by Numba when function is called.
    -@jit()
     def MonteCarloSampling():
     
         NumberMCcycles= 100000
    @@ -925,9 +710,897 @@ 

    Code exa

    +









    +

    Importance sampling, program elements

    +
    + +

    +

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k} +$$ + +

    However, +with our written in way which can be reused later as +

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})= \exp{\left\{\sum_{i < j}f(r_{ij})\right\}}, +$$ + +

    the gradient needed for the quantum force and local energy is easy to compute. +The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form. +

    +
    + + +









    +

    Importance sampling, program elements

    +
    + +

    +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    +$$ +R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = +\frac{\Psi_{OB}^{new}}{\Psi_{OB}^{old}}\frac{\Psi_{C}^{new}}{\Psi_{C}^{old}} +$$ + +

    Here \( \Psi_{OB} \) is our onebody part (Slater determinant or product of boson single-particle states) while \( \Psi_{C} \) is our correlation function, or Jastrow factor. +We need to optimize the \( \nabla \Psi_T / \Psi_T \) ratio and the second derivative as well, that is +the \( \mathbf{\nabla}^2 \Psi_T/\Psi_T \) ratio. The first is needed when we compute the so-called quantum force in importance sampling. +The second is needed when we compute the kinetic energy term of the local energy. +

    +$$ +\frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    +$$ + \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, +$$ + +$$ +\hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The second derivative which enters the definition of the local energy is

    +$$ +\frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} +$$ + +

    We discuss here how to calculate these quantities in an optimal way,

    +
    + +









    +

    Importance sampling

    +
    + +

    +

    We have defined the correlated function as

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), +$$ + +

    with +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2+(z_i-z_j)^2} \) in three dimensions or +\( r_{ij}=|\mathbf{r}_i-\mathbf{r}_j|=\sqrt{(x_i-x_j)^2+(y_i-y_j)^2} \) if we work with two-dimensional systems. +

    + +

    In our particular case we have

    +$$ +\Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    +$$ + \mathbf{r} \equiv \begin{pmatrix} + 0 & r_{1,2} & r_{1,3} & \cdots & r_{1,N} \\ + \vdots & 0 & r_{2,3} & \cdots & r_{2,N} \\ + \vdots & \vdots & 0 & \ddots & \vdots \\ + \vdots & \vdots & \vdots & \ddots & r_{N-1,N} \\ + 0 & 0 & 0 & \cdots & 0 + \end{pmatrix}. +$$ + +

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    + +

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    +
    + +









    +

    Importance sampling

    +
    + +

    +

    We have that the ratio between Jastrow factors \( R_C \) is given by

    +$$ +R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\prod_{i=1}^{k-1}\frac{g_{ik}^\mathrm{new}}{g_{ik}^\mathrm{cur}} +\prod_{i=k+1}^{N}\frac{ g_{ki}^\mathrm{new}} {g_{ki}^\mathrm{cur}}. +$$ + +

    For the Pade-Jastrow form

    +$$ + R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = +\frac{\exp{U_{new}}}{\exp{U_{cur}}} = \exp{\Delta U}, +$$ + +

    where

    +$$ +\Delta U = +\sum_{i=1}^{k-1}\big(f_{ik}^\mathrm{new}-f_{ik}^\mathrm{cur}\big) ++ +\sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    One needs to develop a special algorithm +that runs only through the elements of the upper triangular +matrix \( \mathbf{g} \) and have \( k \) as an index. +

    + +

    The expression to be derived in the following is of interest when computing the quantum force and the kinetic energy. It has the form

    +$$ +\frac{\mathbf{\nabla}_i\Psi_C}{\Psi_C} = \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_i}, +$$ + +

    for all dimensions and with \( i \) running over all particles.

    +
    + +









    +

    Importance sampling

    +
    + +

    +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_k}. +$$ + +

    An equivalent equation is obtained for the exponential form after replacing \( g_{ij} \) by \( \exp(f_{ij}) \), yielding:

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k}, +$$ + +

    with both expressions scaling as \( \mathcal{O}(N) \).

    +
    + + +









    +

    Importance sampling

    +
    + +

    + +

    Using the identity

    +$$ +\frac{\partial}{\partial x_i}g_{ij} = -\frac{\partial}{\partial x_j}g_{ij}, +$$ + +

    we get expressions where all the derivatives acting on the particle are represented by the second index of \( g \):

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\partial g_{ki}}{\partial x_i}, +$$ + +

    and for the exponential case:

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} +-\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    +$$ +\frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, +$$ + +

    we arrive at

    +$$ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    +$$ +\frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. +$$ + +

    Therefore,

    +$$ +\frac{1}{\Psi_{C}}\frac{\partial \Psi_{C}}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\mathbf{r_{ik}}}{r_{ik}}\frac{\partial f_{ik}}{\partial r_{ik}} +-\sum_{i=k+1}^{N}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial f_{ki}}{\partial r_{ki}}, +$$ + +

    where

    +$$ + \mathbf{r}_{ij} = |\mathbf{r}_j - \mathbf{r}_i| = (x_j - x_i)\mathbf{e}_1 + (y_j - y_i)\mathbf{e}_2 + (z_j - z_i)\mathbf{e}_3 +$$ + +

    is the relative distance.

    +
    + + +









    +

    Importance sampling

    +
    + +

    +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    +$$ +\left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ +2\sum_{k=1}^{N} +\sum_{i=1}^{k-1}\frac{\partial^2 g_{ik}}{\partial x_k^2}\ +\ +\sum_{k=1}^N +\left( +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} - +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} +\right)^2 +$$ +
    + + +









    +

    Importance sampling

    +
    + +

    +

    But we have a simple form for the function, namely

    +$$ +\Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, +$$ + +

    and it is easy to see that for particle \( k \) +we have +

    +$$ + \frac{\mathbf{\nabla}^2_k \Psi_C}{\Psi_C }= +\sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ +\sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    A stochastic process is simply a function of two variables, one is the time, +the other is a stochastic variable \( X \), defined by specifying +

    +
      +
    • the set \( \left\{x\right\} \) of possible values for \( X \);
    • +
    • the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
    • +
    +

    The set of values \( \left\{x\right\} \) for \( X \) +may be discrete, or continuous. If the set of +values is continuous, then \( w_X (x) \) is a probability density so that +\( w_X (x)dx \) +is the probability that one finds the stochastic variable \( X \) to have values +in the range \( [x, x + dx] \) . +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic +variable. The mapping may also be time-dependent, that is, the mapping +depends on an additional variable \( t \) +

    +$$ + Y_X (t) = f (X, t) . +$$ + +

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, +a stochastic process. A stochastic process is a function of two variables, +one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the +possible values of \( X \) then +

    +$$ + y(t) = f (x, t), +$$ + +

    is a function of \( t \), called a sample function or realization of the process. +In physics one considers the stochastic process to be an ensemble of such +sample functions. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) +as \( t\rightarrow\infty \). In +equilibrium detailed balance constrains the transition rates +

    +$$ + W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), +$$ + +

    where \( W(y'\rightarrow y) \) +is the probability, per unit time, that the system changes +from a state \( |y\rangle \) , characterized by the value \( y \) +for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    + +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and +the reverse \( W(y\rightarrow y') \) may be very different. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Consider, for instance, a simple +system that has only two energy levels \( \epsilon_0 = 0 \) and +\( \epsilon_1 = \Delta E \). +

    + +

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    +$$ + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} +$$ + +

    We get then

    +$$ + \frac{W(1\rightarrow 0)}{W(0 \rightarrow 1)}=\exp{-(\Delta E/kT)}, +$$ + +

    which goes to zero when \( T \) tends to zero.

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    If we assume a discrete set of events, +our initial probability +distribution function can be given by +

    +$$ + w_i(0) = \delta_{i,0}, +$$ + +

    and its time-development after a given time step \( \Delta t=\epsilon \) is

    +$$ + w_i(t) = \sum_{j}W(j\rightarrow i)w_j(t=0). +$$ + +

    The continuous analog to \( w_i(0) \) is

    +$$ + w(\mathbf{x})\rightarrow \delta(\mathbf{x}), +$$ + +

    where we now have generalized the one-dimensional position \( x \) to a generic-dimensional +vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution +function \( \delta(\mathbf{x}) \) at \( t=0 \). +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition +to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). +The discrete sum of transition probabilities can then be replaced by an integral +and we obtain the new distribution at a time \( t+\Delta t \) as +

    +$$ + w(\mathbf{y},t+\Delta t)= \int W(\mathbf{y},t+\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}, +$$ + +

    and after \( m \) time steps we have

    +$$ + w(\mathbf{y},t+m\Delta t)= \int W(\mathbf{y},t+m\Delta t| \mathbf{x},t)w(\mathbf{x},t)d\mathbf{x}. +$$ + +

    When equilibrium is reached we have

    +$$ + w(\mathbf{y})= \int W(\mathbf{y}|\mathbf{x}, t)w(\mathbf{x})d\mathbf{x}, +$$ + +

    that is no time-dependence. Note our change of notation for \( W \)

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to +momentum space. +The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform +\( \tilde{w}(\mathbf{k},t) \) through +

    +$$ + w(\mathbf{x},t) = \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}\tilde{w}(\mathbf{k},t), +$$ + +

    and using the definition of the +\( \delta \)-function +

    +$$ + \delta(\mathbf{x}) = \frac{1}{2\pi} \int_{-\infty}^{\infty}d\mathbf{k} \exp{(i\mathbf{kx})}, +$$ + +

    we see that

    +$$ + \tilde{w}(\mathbf{k},0)=1/2\pi. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then use the Fourier-transformed diffusion equation

    +$$ + \frac{\partial \tilde{w}(\mathbf{k},t)}{\partial t} = -D\mathbf{k}^2\tilde{w}(\mathbf{k},t), +$$ + +

    with the obvious solution

    +$$ + \tilde{w}(\mathbf{k},t)=\tilde{w}(\mathbf{k},0)\exp{\left[-(D\mathbf{k}^2t)\right)}= + \frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    With the Fourier transform we obtain

    +$$ + w(\mathbf{x},t)=\int_{-\infty}^{\infty}d\mathbf{k} \exp{\left[i\mathbf{kx}\right]}\frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}= + \frac{1}{\sqrt{4\pi Dt}}\exp{\left[-(\mathbf{x}^2/4Dt)\right]}, +$$ + +

    with the normalization condition

    +$$ + \int_{-\infty}^{\infty}w(\mathbf{x},t)d\mathbf{x}=1. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    The solution represents the probability of finding +our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution +was placed at \( \mathbf{x}=0 \) at \( t=0 \). +

    + +

    There is another interesting feature worth observing. The discrete transition probability \( W \) +itself is given by a binomial distribution. +The results from the central limit theorem state that +transition probability in the limit \( n\rightarrow \infty \) converges to the normal +distribution. It is then possible to show that +

    +$$ + W(il-jl,n\epsilon)\rightarrow W(\mathbf{y},t+\Delta t|\mathbf{x},t)= + \frac{1}{\sqrt{4\pi D\Delta t}}\exp{\left[-((\mathbf{y}-\mathbf{x})^2/4D\Delta t)\right]}, +$$ + +

    and that it satisfies the normalization condition and is itself a solution +to the diffusion equation. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is +\( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). +We have then +

    +$$ + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}'.t')w(\mathbf{x}',t')d\mathbf{x}', +$$ + +

    and

    +$$ + w(\mathbf{x},t)= \int_{-\infty}^{\infty} W(\mathbf{x}.t|\mathbf{x}_0.t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0, +$$ + +

    and

    +$$ + w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

    +$$ + W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. +$$ + +

    We can replace the spatial dependence with a dependence upon say the velocity +(or momentum), that is we have +

    +$$ + W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We will now derive the Fokker-Planck equation. +We start from the ESKC equation +

    +$$ + W(\mathbf{x},t|\mathbf{x}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. +$$ + +

    Define \( s=t'-t_0 \), \( \tau=t-t' \) and \( t-t_0=s+\tau \). We have then

    +$$ + W(\mathbf{x},s+\tau|\mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}')W(\mathbf{x}',s|\mathbf{x}_0)d\mathbf{x}'. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

    +$$ + W(\mathbf{x},s|\mathbf{x}_0)+\frac{\partial W}{\partial s}\tau +O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0)d\mathbf{x}'. +$$ + +

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    +$$ +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then rewrite the ESKC equation as

    +$$ +\frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. +$$ + +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). +This means that we can make a Taylor expansion in terms of \( \xi \), that is we +expand +

    +$$ +W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0) = +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) +\right]. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We can then rewrite the ESKC equation as

    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ +\sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi\right]. +$$ + +

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) +we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization. +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    We simplify the above by introducing the moments

    +$$ +M_n=\frac{1}{\tau}\int_{-\infty}^{\infty} \xi^nW(\mathbf{x}+\xi,\tau|\mathbf{x})d\xi= +\frac{\langle [\Delta x(\tau)]^n\rangle}{\tau}, +$$ + +

    resulting in

    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +\sum_{n=1}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n} +\left[W(\mathbf{x},s|\mathbf{x}_0)M_n\right]. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    When \( \tau \rightarrow 0 \) we assume that \( \langle [\Delta x(\tau)]^n\rangle \rightarrow 0 \) more rapidly than \( \tau \) itself if \( n > 2 \). +When \( \tau \) is much larger than the standard correlation time of +system then \( M_n \) for \( n > 2 \) can normally be neglected. +This means that fluctuations become negligible at large time scales. +

    + +

    If we neglect such terms we can rewrite the ESKC equation as

    +$$ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +-\frac{\partial M_1W(\mathbf{x},s|\mathbf{x}_0)}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W(\mathbf{x},s|\mathbf{x}_0)}{\partial x^2}. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    + +

    +

    In a more compact form we have

    +$$ +\frac{\partial W}{\partial s}= +-\frac{\partial M_1W}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W}{\partial x^2}, +$$ + +

    which is the Fokker-Planck equation! It is trivial to replace +position with velocity (momentum). +

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    Consider a particle suspended in a liquid. On its path through the liquid it will continuously collide with the liquid molecules. Because on average the particle will collide more often on the front side than on the back side, it will experience a systematic force proportional with its velocity, and directed opposite to its velocity. Besides this systematic force the particle will experience a stochastic force \( \mathbf{F}(t) \). +The equations of motion are +

    +
      +
    • \( \frac{d\mathbf{r}}{dt}=\mathbf{v} \) and
    • +
    • \( \frac{d\mathbf{v}}{dt}=-\xi \mathbf{v}+\mathbf{F} \).
    • +
    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    From hydrodynamics we know that the friction constant \( \xi \) is given by

    +$$ +\xi =6\pi \eta a/m +$$ + +

    where \( \eta \) is the viscosity of the solvent and a is the radius of the particle .

    + +

    Solving the second equation in the previous slide we get

    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ). +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    If we want to get some useful information out of this, we have to average over all possible realizations of +\( \mathbf{F}(t) \), with the initial velocity as a condition. A useful quantity for example is +

    +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{-\xi 2t} ++2\int_{0}^{t}d\tau e^{-\xi (2t-\tau)}\mathbf{v}_{0}\cdot \langle \mathbf{F}(\tau )\rangle_{\mathbf{v}_{0}} +$$ + +$$ + +\int_{0}^{t}d\tau ^{\prime }\int_{0}^{t}d\tau e^{-\xi (2t-\tau -\tau ^{\prime })} +\langle \mathbf{F}(\tau )\cdot \mathbf{F}(\tau ^{\prime })\rangle_{ \mathbf{v}_{0}}. +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    In order to continue we have to make some assumptions about the conditional averages of the stochastic forces. +In view of the chaotic character of the stochastic forces the following +assumptions seem to be appropriate +

    +$$ +\langle \mathbf{F}(t)\rangle=0, +$$ + +

    and

    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle_{\mathbf{v}_{0}}= C_{\mathbf{v}_{0}}\delta (t-t^{\prime }). +$$ + +

    We omit the subscript \( \mathbf{v}_{0} \), when the quantity of interest turns out to be independent of \( \mathbf{v}_{0} \). Using the last three equations we get

    +$$ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{2}e^{-2\xi t}+\frac{C_{\mathbf{v}_{0}}}{2\xi }(1-e^{-2\xi t}). +$$ + +

    For large t this should be equal to 3kT/m, from which it follows that

    +$$ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle =6\frac{kT}{m}\xi \delta (t-t^{\prime }). +$$ + +

    This result is called the fluctuation-dissipation theorem .

    +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    Integrating

    +$$ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ), +$$ + +

    we get

    +$$ +\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0}\frac{1}{\xi }(1-e^{-\xi t})+ +\int_0^td\tau \int_0^{\tau}\tau ^{\prime } e^{-\xi (\tau -\tau ^{\prime })}\mathbf{F}(\tau ^{\prime }), +$$ + +

    from which we calculate the mean square displacement

    +$$ +\langle ( \mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle _{\mathbf{v}_{0}}=\frac{v_0^2}{\xi}(1-e^{-\xi t})^{2}+\frac{3kT}{m\xi ^{2}}(2\xi t-3+4e^{-\xi t}-e^{-2\xi t}). +$$ +
    + + +









    +

    Importance sampling, Fokker-Planck and Langevin equations

    +
    +Langevin equation +

    +

    For very large \( t \) this becomes

    +$$ +\langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =\frac{6kT}{m\xi }t +$$ + +

    from which we get the Einstein relation

    +$$ +D= \frac{kT}{m\xi } +$$ + +

    where we have used \( \langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =6Dt \).

    +
    + +
    - © 1999-2023, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license + © 1999-2024, Morten Hjorth-Jensen Email morten.hjorth-jensen@fys.uio.no. Released under CC Attribution-NonCommercial 4.0 license
    diff --git a/doc/pub/week3/ipynb/ipynb-week3-src.tar.gz b/doc/pub/week3/ipynb/ipynb-week3-src.tar.gz index 5aaf7a079ecd31d8fab8c99ff81aa1dfaaf74561..5f3003029862ecdef0c5316cebd24b8450064319 100644 GIT binary patch literal 191 zcmV;w06_mAiwFQ`ySiln1MSbv3c@f92k@Qu6nTQtx^_DY?%+WX@dY}TxjNU*wnO*! z?gR9sco`z}cli?%LUPE~n_U*Uy9*XW2uT=&G1G)kNmg?`p_Bn-oF_cyoTWf$%oz`W zEO*jNXPq#^DNS`oWl_DG8^+4=!=CvSc;=rtR?@Z<1;4<3SuUSP#BH*?o^SIW1~ z52#boMIzYW<2uT=&DbpmLlY~n>qm%(\n", - "
    \n", - "\n", - "$$\n", - "\\begin{equation}\n", - "\\label{eq:eq1} \\tag{1}\n", - "{\\cal P}^{(n)}_i = \\sum_j \\left [\n", - "{\\cal P}^{(n-1)}_jT_{j\\rightarrow i} A_{j\\rightarrow i} \n", - "+{\\cal P}^{(n-1)}_iT_{i\\rightarrow j}\\left ( 1- A_{i\\rightarrow j} \\right)\n", - "\\right ] \\,.\n", - "\\end{equation}\n", - "$$" + "where $F$ is a drift term and $D$ is the diffusion coefficient." ] }, { "cell_type": "markdown", - "id": "f655ee4f", + "id": "bc0932dc", "metadata": { "editable": true }, "source": [ - "## Metropolis algorithm, setting it up\n", - "Since the probability of making some transition must be 1,\n", - "$\\sum_j T_{i\\rightarrow j} = 1$, and Eq. ([1](#eq:eq1)) becomes" + "## Importance sampling\n", + "The new positions in coordinate space are given as the solutions of the Langevin equation using Euler's method, namely,\n", + "we go from the Langevin equation" ] }, { "cell_type": "markdown", - "id": "188ede6a", + "id": "d134cf8f", "metadata": { "editable": true }, "source": [ - "\n", - "
    \n", - "\n", "$$\n", - "\\begin{equation}\n", - "{\\cal P}^{(n)}_i = {\\cal P}^{(n-1)}_i +\n", - " \\sum_j \\left [\n", - "{\\cal P}^{(n-1)}_jT_{j\\rightarrow i} A_{j\\rightarrow i} \n", - "-{\\cal P}^{(n-1)}_iT_{i\\rightarrow j}A_{i\\rightarrow j}\n", - "\\right ] \\,.\n", - "\\label{_auto1} \\tag{2}\n", - "\\end{equation}\n", + "\\frac{\\partial x(t)}{\\partial t} = DF(x(t)) +\\eta,\n", "$$" ] }, { "cell_type": "markdown", - "id": "579cb342", + "id": "af9dd710", "metadata": { "editable": true }, "source": [ - "## Metropolis continues\n", - "\n", - "For large $n$ we require that ${\\cal P}^{(n\\rightarrow \\infty)}_i = p_i$,\n", - "the desired probability distribution. Taking this limit, gives the\n", - "balance requirement" + "with $\\eta$ a random variable,\n", + "yielding a new position" ] }, { "cell_type": "markdown", - "id": "e36ed395", + "id": "b770dc2d", "metadata": { "editable": true }, "source": [ - "\n", - "
    \n", - "\n", "$$\n", - "\\begin{equation}\n", - "\\sum_j \\left [p_jT_{j\\rightarrow i} A_{j\\rightarrow i}-p_iT_{i\\rightarrow j}A_{i\\rightarrow j}\n", - "\\right ] = 0,\n", - "\\label{_auto2} \\tag{3}\n", - "\\end{equation}\n", + "y = x+DF(x)\\Delta t +\\xi\\sqrt{\\Delta t},\n", "$$" ] }, { "cell_type": "markdown", - "id": "f3eee488", + "id": "14adf436", "metadata": { "editable": true }, "source": [ - "## Detailed Balance\n", - "\n", - "The balance requirement is very weak. Typically the much stronger detailed\n", - "balance requirement is enforced, that is rather than the sum being\n", - "set to zero, we set each term separately to zero and use this\n", - "to determine the acceptance probabilities. Rearranging, the result is" + "where $\\xi$ is gaussian random variable and $\\Delta t$ is a chosen time step. \n", + "The quantity $D$ is, in atomic units, equal to $1/2$ and comes from the factor $1/2$ in the kinetic energy operator. Note that $\\Delta t$ is to be viewed as a parameter. Values of $\\Delta t \\in [0.001,0.01]$ yield in general rather stable values of the ground state energy." ] }, { "cell_type": "markdown", - "id": "107196d5", + "id": "28ed8b44", "metadata": { "editable": true }, "source": [ - "\n", - "
    \n", - "\n", - "$$\n", - "\\begin{equation}\n", - "\\frac{ A_{j\\rightarrow i}}{A_{i\\rightarrow j}}\n", - "= \\frac{p_iT_{i\\rightarrow j}}{ p_jT_{j\\rightarrow i}} \\,.\n", - "\\label{_auto3} \\tag{4}\n", - "\\end{equation}\n", - "$$" + "## Importance sampling\n", + "The process of isotropic diffusion characterized by a time-dependent probability density $P(\\mathbf{x},t)$ obeys (as an approximation) the so-called Fokker-Planck equation" ] }, { "cell_type": "markdown", - "id": "7c167a02", + "id": "88eec3cd", "metadata": { "editable": true }, "source": [ - "## More on Detailed Balance\n", - "\n", - "The Metropolis choice is to maximize the $A$ values, that is" + "$$\n", + "\\frac{\\partial P}{\\partial t} = \\sum_i D\\frac{\\partial }{\\partial \\mathbf{x_i}}\\left(\\frac{\\partial }{\\partial \\mathbf{x_i}} -\\mathbf{F_i}\\right)P(\\mathbf{x},t),\n", + "$$" ] }, { "cell_type": "markdown", - "id": "362f5f13", + "id": "0b14e443", "metadata": { "editable": true }, "source": [ - "\n", - "
    \n", - "\n", - "$$\n", - "\\begin{equation}\n", - "A_{j \\rightarrow i} = \\min \\left ( 1,\n", - "\\frac{p_iT_{i\\rightarrow j}}{ p_jT_{j\\rightarrow i}}\\right ).\n", - "\\label{_auto4} \\tag{5}\n", - "\\end{equation}\n", - "$$" + "where $\\mathbf{F_i}$ is the $i^{th}$ component of the drift term (drift velocity) caused by an external potential, and $D$ is the diffusion coefficient. The convergence to a stationary probability density can be obtained by setting the left hand side to zero. The resulting equation will be satisfied if and only if all the terms of the sum are equal zero," ] }, { "cell_type": "markdown", - "id": "a7ad3974", + "id": "3c3a819e", "metadata": { "editable": true }, "source": [ - "Other choices are possible, but they all correspond to multilplying\n", - "$A_{i\\rightarrow j}$ and $A_{j\\rightarrow i}$ by the same constant\n", - "smaller than unity. The penalty function method uses just such\n", - "a factor to compensate for $p_i$ that are evaluated stochastically\n", - "and are therefore noisy.\n", - "\n", - "Having chosen the acceptance probabilities, we have guaranteed that\n", - "if the ${\\cal P}_i^{(n)}$ has equilibrated, that is if it is equal to $p_i$,\n", - "it will remain equilibrated. Next we need to find the circumstances for\n", - "convergence to equilibrium." + "$$\n", + "\\frac{\\partial^2 P}{\\partial {\\mathbf{x_i}^2}} = P\\frac{\\partial}{\\partial {\\mathbf{x_i}}}\\mathbf{F_i} + \\mathbf{F_i}\\frac{\\partial}{\\partial {\\mathbf{x_i}}}P.\n", + "$$" ] }, { "cell_type": "markdown", - "id": "5a785b1a", + "id": "38fa2f4a", "metadata": { "editable": true }, "source": [ - "## Dynamical Equation\n", - "\n", - "The dynamical equation can be written as" + "## Importance sampling\n", + "The drift vector should be of the form $\\mathbf{F} = g(\\mathbf{x}) \\frac{\\partial P}{\\partial \\mathbf{x}}$. Then," ] }, { "cell_type": "markdown", - "id": "a82de172", + "id": "b379cb3a", "metadata": { "editable": true }, "source": [ - "\n", - "
    \n", - "\n", "$$\n", - "\\begin{equation}\n", - "{\\cal P}^{(n)}_i = \\sum_j M_{ij}{\\cal P}^{(n-1)}_j\n", - "\\label{_auto5} \\tag{6}\n", - "\\end{equation}\n", + "\\frac{\\partial^2 P}{\\partial {\\mathbf{x_i}^2}} = P\\frac{\\partial g}{\\partial P}\\left( \\frac{\\partial P}{\\partial {\\mathbf{x}_i}} \\right)^2 + P g \\frac{\\partial ^2 P}{\\partial {\\mathbf{x}_i^2}} + g \\left( \\frac{\\partial P}{\\partial {\\mathbf{x}_i}} \\right)^2.\n", "$$" ] }, { "cell_type": "markdown", - "id": "18ff6e06", + "id": "187ca6e4", "metadata": { "editable": true }, "source": [ - "with the matrix $M$ given by" + "The condition of stationary density means that the left hand side equals zero. In other words, the terms containing first and second derivatives have to cancel each other. It is possible only if $g = \\frac{1}{P}$, which yields" ] }, { "cell_type": "markdown", - "id": "494f9f0a", + "id": "520404fa", "metadata": { "editable": true }, "source": [ - "\n", - "
    \n", - "\n", "$$\n", - "\\begin{equation}\n", - "M_{ij} = \\delta_{ij}\\left [ 1 -\\sum_k T_{i\\rightarrow k} A_{i \\rightarrow k}\n", - "\\right ] + T_{j\\rightarrow i} A_{j\\rightarrow i} \\,.\n", - "\\label{_auto6} \\tag{7}\n", - "\\end{equation}\n", + "\\mathbf{F} = 2\\frac{1}{\\Psi_T}\\nabla\\Psi_T,\n", "$$" ] }, { "cell_type": "markdown", - "id": "42a29bf6", + "id": "3bbb1eac", "metadata": { "editable": true }, "source": [ - "Summing over $i$ shows that $\\sum_i M_{ij} = 1$, and since\n", - "$\\sum_k T_{i\\rightarrow k} = 1$, and $A_{i \\rightarrow k} \\leq 1$, the\n", - "elements of the matrix satisfy $M_{ij} \\geq 0$. The matrix $M$ is therefore\n", - "a stochastic matrix." + "which is known as the so-called *quantum force*. This term is responsible for pushing the walker towards regions of configuration space where the trial wave function is large, increasing the efficiency of the simulation in contrast to the Metropolis algorithm where the walker has the same probability of moving in every direction." ] }, { "cell_type": "markdown", - "id": "9c6af387", + "id": "a1090b31", "metadata": { "editable": true }, "source": [ - "## Interpreting the Metropolis Algorithm\n", - "\n", - "The Metropolis method is simply the power method for computing the\n", - "right eigenvector of $M$ with the largest magnitude eigenvalue.\n", - "By construction, the correct probability distribution is a right eigenvector\n", - "with eigenvalue 1. Therefore, for the Metropolis method to converge\n", - "to this result, we must show that $M$ has only one eigenvalue with this\n", - "magnitude, and all other eigenvalues are smaller.\n", - "\n", - "Even a defective matrix has at least one left and right eigenvector for\n", - "each eigenvalue. An example of a defective matrix is" + "## Importance sampling\n", + "The Fokker-Planck equation yields a (the solution to the equation) transition probability given by the Green's function" ] }, { "cell_type": "markdown", - "id": "1de2c4b7", + "id": "930bc975", "metadata": { "editable": true }, "source": [ "$$\n", - "\\begin{bmatrix}\n", - "0 & 1\\\\\n", - "0 & 0 \\\\\n", - "\\end{bmatrix},\n", + "G(y,x,\\Delta t) = \\frac{1}{(4\\pi D\\Delta t)^{3N/2}} \\exp{\\left(-(y-x-D\\Delta t F(x))^2/4D\\Delta t\\right)}\n", "$$" ] }, { "cell_type": "markdown", - "id": "43d3eb0c", + "id": "817eb71e", "metadata": { "editable": true }, "source": [ - "with two zero eigenvalues, only one right eigenvector" + "which in turn means that our brute force Metropolis algorithm" ] }, { "cell_type": "markdown", - "id": "1640e2de", + "id": "40840ec1", "metadata": { "editable": true }, "source": [ "$$\n", - "\\begin{bmatrix}\n", - "1 \\\\\n", - "0\\\\\n", - "\\end{bmatrix}\n", + "A(y,x) = \\mathrm{min}(1,q(y,x))),\n", "$$" ] }, { "cell_type": "markdown", - "id": "3e67097e", - "metadata": { - "editable": true - }, - "source": [ - "and only one left eigenvector $(0\\ 1)$." - ] - }, - { - "cell_type": "markdown", - "id": "cf757478", + "id": "af6280a5", "metadata": { "editable": true }, "source": [ - "## Gershgorin bounds and Metropolis\n", - "\n", - "The Gershgorin bounds for the eigenvalues can be derived by multiplying on\n", - "the left with the eigenvector with the maximum and minimum eigenvalues," + "with $q(y,x) = |\\Psi_T(y)|^2/|\\Psi_T(x)|^2$ is now replaced by the [Metropolis-Hastings algorithm](http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114) as well as [Hasting's article](http://biomet.oxfordjournals.org/content/57/1/97.abstract)," ] }, { "cell_type": "markdown", - "id": "d23d767f", + "id": "d2406628", "metadata": { "editable": true }, "source": [ "$$\n", - "\\sum_i \\psi^{\\rm max}_i M_{ij} = \\lambda_{\\rm max} \\psi^{\\rm max}_j\n", - "\\nonumber\n", + "q(y,x) = \\frac{G(x,y,\\Delta t)|\\Psi_T(y)|^2}{G(y,x,\\Delta t)|\\Psi_T(x)|^2}\n", "$$" ] }, { "cell_type": "markdown", - "id": "c8731186", + "id": "dd581966", "metadata": { "editable": true }, "source": [ - "\n", - "
    \n", + "## Code example for the interacting case with importance sampling\n", "\n", - "$$\n", - "\\begin{equation} \n", - "\\sum_i \\psi^{\\rm min}_i M_{ij} = \\lambda_{\\rm min} \\psi^{\\rm min}_j\n", - "\\label{_auto7} \\tag{8}\n", - "\\end{equation}\n", - "$$" + "We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters $\\alpha$ and $\\beta$. After the set up of files" ] }, { - "cell_type": "markdown", - "id": "caf26130", + "cell_type": "code", + "execution_count": 1, + "id": "32f827ec", "metadata": { + "collapsed": false, "editable": true }, + "outputs": [], "source": [ - "## Normalizing the Eigenvectors\n", + "# Common imports\n", + "import os\n", "\n", - "Next we choose the normalization of these eigenvectors so that the\n", - "largest element (or one of the equally largest elements)\n", - "has value 1. Let's call this element $k$, and\n", - "we can therefore bound the magnitude of the other elements to be less\n", - "than or equal to 1.\n", - "This leads to the inequalities, using the property that $M_{ij}\\geq 0$," - ] - }, - { - "cell_type": "markdown", - "id": "51fc4c72", - "metadata": { - "editable": true - }, - "source": [ - "$$\n", - "\\begin{eqnarray}\n", - "\\sum_i M_{ik} \\leq \\lambda_{\\rm max}\n", - "\\nonumber\\\\\n", - "M_{kk}-\\sum_{i \\neq k} M_{ik} \\geq \\lambda_{\\rm min}\n", - "\\end{eqnarray}\n", - "$$" + "# Where to save the figures and data files\n", + "PROJECT_ROOT_DIR = \"Results\"\n", + "FIGURE_ID = \"Results/FigureFiles\"\n", + "DATA_ID = \"Results/VMCQdotImportance\"\n", + "\n", + "if not os.path.exists(PROJECT_ROOT_DIR):\n", + " os.mkdir(PROJECT_ROOT_DIR)\n", + "\n", + "if not os.path.exists(FIGURE_ID):\n", + " os.makedirs(FIGURE_ID)\n", + "\n", + "if not os.path.exists(DATA_ID):\n", + " os.makedirs(DATA_ID)\n", + "\n", + "def image_path(fig_id):\n", + " return os.path.join(FIGURE_ID, fig_id)\n", + "\n", + "def data_path(dat_id):\n", + " return os.path.join(DATA_ID, dat_id)\n", + "\n", + "def save_fig(fig_id):\n", + " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", + "\n", + "outfile = open(data_path(\"VMCQdotImportance.dat\"),'w')" ] }, { "cell_type": "markdown", - "id": "ed34c5a9", + "id": "3d268c3a", "metadata": { "editable": true }, "source": [ - "where the equality from the maximum\n", - "will occur only if the eigenvector takes the value 1 for all values of\n", - "$i$ where $M_{ik} \\neq 0$, and the equality for the minimum will\n", - "occur only if the eigenvector takes the value -1 for all values of $i\\neq k$\n", - "where $M_{ik} \\neq 0$." + "we move on to the set up of the trial wave function, the analytical expression for the local energy and the analytical expression for the quantum force." ] }, { - "cell_type": "markdown", - "id": "f7a42358", + "cell_type": "code", + "execution_count": 2, + "id": "de81309b", "metadata": { + "collapsed": false, "editable": true }, + "outputs": [], "source": [ - "## More Metropolis analysis\n", + "%matplotlib inline\n", + "\n", + "# 2-electron VMC code for 2dim quantum dot with importance sampling\n", + "# Using gaussian rng for new positions and Metropolis- Hastings \n", + "# No energy minimization\n", + "from math import exp, sqrt\n", + "from random import random, seed, normalvariate\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from matplotlib import cm\n", + "from matplotlib.ticker import LinearLocator, FormatStrFormatter\n", + "import sys\n", + "\n", + "\n", + "# Trial wave function for the 2-electron quantum dot in two dims\n", + "def WaveFunction(r,alpha,beta):\n", + " r1 = r[0,0]**2 + r[0,1]**2\n", + " r2 = r[1,0]**2 + r[1,1]**2\n", + " r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)\n", + " deno = r12/(1+beta*r12)\n", + " return exp(-0.5*alpha*(r1+r2)+deno)\n", + "\n", + "# Local energy for the 2-electron quantum dot in two dims, using analytical local energy\n", + "def LocalEnergy(r,alpha,beta):\n", + " \n", + " r1 = (r[0,0]**2 + r[0,1]**2)\n", + " r2 = (r[1,0]**2 + r[1,1]**2)\n", + " r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)\n", + " deno = 1.0/(1+beta*r12)\n", + " deno2 = deno*deno\n", + " return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)\n", "\n", - "That the maximum eigenvalue is 1 follows immediately from the property\n", - "that $\\sum_i M_{ik} = 1$. Similarly the minimum eigenvalue can be -1,\n", - "but only if $M_{kk} = 0$ and the magnitude of all the other elements\n", - "$\\psi_i^{\\rm min}$ of\n", - "the eigenvector that multiply nonzero elements $M_{ik}$ are -1.\n", + "# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector\n", + "def QuantumForce(r,alpha,beta):\n", "\n", - "Let's first see what the properties of $M$ must be\n", - "to eliminate any -1 eigenvalues. \n", - "To have a -1 eigenvalue, the left eigenvector must contain only $\\pm 1$\n", - "and $0$ values. Taking in turn each $\\pm 1$ value as the maximum, so that\n", - "it corresponds to the index $k$, the nonzero $M_{ik}$ values must\n", - "correspond to $i$ index values of the eigenvector which have opposite\n", - "sign elements. That is, the $M$ matrix must break up into sets of\n", - "states that always make transitions from set A to set B ... back to set A.\n", - "In particular, there can be no rejections of these moves in the cycle\n", - "since the -1 eigenvalue requires $M_{kk}=0$. To guarantee no eigenvalues\n", - "with eigenvalue -1, we simply have to make sure that there are no\n", - "cycles among states. Notice that this is generally trivial since such\n", - "cycles cannot have any rejections at any stage. An example of such\n", - "a cycle is sampling a noninteracting Ising spin. If the transition is\n", - "taken to flip the spin, and the energy difference is zero, the Boltzmann\n", - "factor will not change and the move will always be accepted. The system\n", - "will simply flip from up to down to up to down ad infinitum. Including\n", - "a rejection probability or using a heat bath algorithm\n", - "immediately fixes the problem." + " qforce = np.zeros((NumberParticles,Dimension), np.double)\n", + " r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)\n", + " deno = 1.0/(1+beta*r12)\n", + " qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12\n", + " qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12\n", + " return qforce" ] }, { "cell_type": "markdown", - "id": "b112ed29", + "id": "7f0b0ab4", "metadata": { "editable": true }, "source": [ - "## Final Considerations I\n", - "\n", - "Next we need to make sure that there is only one left eigenvector\n", - "with eigenvalue 1. To get an eigenvalue 1, the left eigenvector must be \n", - "constructed from only ones and zeroes. It is straightforward to\n", - "see that a vector made up of\n", - "ones and zeroes can only be an eigenvector with eigenvalue 1 if the \n", - "matrix element $M_{ij} = 0$ for all cases where $\\psi_i \\neq \\psi_j$.\n", - "That is we can choose an index $i$ and take $\\psi_i = 1$.\n", - "We require all elements $\\psi_j$ where $M_{ij} \\neq 0$ to also have\n", - "the value $1$. Continuing we then require all elements $\\psi_\\ell$ $M_{j\\ell}$\n", - "to have value $1$. Only if the matrix $M$ can be put into block diagonal\n", - "form can there be more than one choice for the left eigenvector with\n", - "eigenvalue 1. We therefore require that the transition matrix not\n", - "be in block diagonal form. This simply means that we must choose\n", - "the transition probability so that we can get from any allowed state\n", - "to any other in a series of transitions." + "The Monte Carlo sampling includes now the Metropolis-Hastings algorithm, with the additional complication of having to evaluate the **quantum force** and the Green's function which is the solution of the Fokker-Planck equation." ] }, { - "cell_type": "markdown", - "id": "86c87966", + "cell_type": "code", + "execution_count": 3, + "id": "aaefb97f", "metadata": { + "collapsed": false, "editable": true }, + "outputs": [], "source": [ - "## Final Considerations II\n", + "# The Monte Carlo sampling with the Metropolis algo\n", + "def MonteCarloSampling():\n", + "\n", + " NumberMCcycles= 100000\n", + " # Parameters in the Fokker-Planck simulation of the quantum force\n", + " D = 0.5\n", + " TimeStep = 0.05\n", + " # positions\n", + " PositionOld = np.zeros((NumberParticles,Dimension), np.double)\n", + " PositionNew = np.zeros((NumberParticles,Dimension), np.double)\n", + " # Quantum force\n", + " QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)\n", + " QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)\n", "\n", - "Finally, we note that for a defective matrix, with more eigenvalues\n", - "than independent eigenvectors for eigenvalue 1,\n", - "the left and right\n", - "eigenvectors of eigenvalue 1 would be orthogonal.\n", - "Here the left eigenvector is all 1\n", - "except for states that can never be reached, and the right eigenvector\n", - "is $p_i > 0$ except for states that give zero probability. We already\n", - "require that we can reach\n", - "all states that contribute to $p_i$. Therefore the left and right\n", - "eigenvectors with eigenvalue 1 do not correspond to a defective sector\n", - "of the matrix and they are unique. The Metropolis algorithm therefore\n", - "converges exponentially to the desired distribution." + " # seed for rng generator \n", + " seed()\n", + " # start variational parameter loops, two parameters here\n", + " alpha = 0.9\n", + " for ia in range(MaxVariations):\n", + " alpha += .025\n", + " AlphaValues[ia] = alpha\n", + " beta = 0.2 \n", + " for jb in range(MaxVariations):\n", + " beta += .01\n", + " BetaValues[jb] = beta\n", + " energy = energy2 = 0.0\n", + " DeltaE = 0.0\n", + " #Initial position\n", + " for i in range(NumberParticles):\n", + " for j in range(Dimension):\n", + " PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)\n", + " wfold = WaveFunction(PositionOld,alpha,beta)\n", + " QuantumForceOld = QuantumForce(PositionOld,alpha, beta)\n", + "\n", + " #Loop over MC MCcycles\n", + " for MCcycle in range(NumberMCcycles):\n", + " #Trial position moving one particle at the time\n", + " for i in range(NumberParticles):\n", + " for j in range(Dimension):\n", + " PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\\\n", + " QuantumForceOld[i,j]*TimeStep*D\n", + " wfnew = WaveFunction(PositionNew,alpha,beta)\n", + " QuantumForceNew = QuantumForce(PositionNew,alpha, beta)\n", + " GreensFunction = 0.0\n", + " for j in range(Dimension):\n", + " GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\\\n", + "\t (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\\\n", + " PositionNew[i,j]+PositionOld[i,j])\n", + " \n", + " GreensFunction = exp(GreensFunction)\n", + " ProbabilityRatio = GreensFunction*wfnew**2/wfold**2\n", + " #Metropolis-Hastings test to see whether we accept the move\n", + " if random() <= ProbabilityRatio:\n", + " for j in range(Dimension):\n", + " PositionOld[i,j] = PositionNew[i,j]\n", + " QuantumForceOld[i,j] = QuantumForceNew[i,j]\n", + " wfold = wfnew\n", + " DeltaE = LocalEnergy(PositionOld,alpha,beta)\n", + " energy += DeltaE\n", + " energy2 += DeltaE**2\n", + " # We calculate mean, variance and error (no blocking applied)\n", + " energy /= NumberMCcycles\n", + " energy2 /= NumberMCcycles\n", + " variance = energy2 - energy**2\n", + " error = sqrt(variance/NumberMCcycles)\n", + " Energies[ia,jb] = energy \n", + " outfile.write('%f %f %f %f %f\\n' %(alpha,beta,energy,variance,error))\n", + " return Energies, AlphaValues, BetaValues" ] }, { "cell_type": "markdown", - "id": "9f0536ef", + "id": "f76c4763", "metadata": { "editable": true }, "source": [ - "## Final Considerations III\n", - "\n", - "The requirements for the transition $T_{i \\rightarrow j}$ are\n", - "* A series of transitions must let us to get from any allowed state to any other by a finite series of transitions.\n", - "\n", - "* The transitions cannot be grouped into sets of states, A, B, C ,... such that transitions from $A$ go to $B$, $B$ to $C$ etc and finally back to $A$. With condition (a) satisfied, this condition will always be satisfied if either $T_{i \\rightarrow i} \\neq 0$ or there are some rejected moves." + "The main part here contains the setup of the variational parameters, the energies and the variance." ] }, { - "cell_type": "markdown", - "id": "1e6cda97", + "cell_type": "code", + "execution_count": 4, + "id": "2235b362", "metadata": { + "collapsed": false, "editable": true }, + "outputs": [], "source": [ - "## Importance Sampling: Overview of what needs to be coded\n", - "\n", - "For a diffusion process characterized by a time-dependent probability density $P(x,t)$ in one dimension the Fokker-Planck\n", - "equation reads (for one particle /walker)" + "#Here starts the main program with variable declarations\n", + "NumberParticles = 2\n", + "Dimension = 2\n", + "MaxVariations = 10\n", + "Energies = np.zeros((MaxVariations,MaxVariations))\n", + "AlphaValues = np.zeros(MaxVariations)\n", + "BetaValues = np.zeros(MaxVariations)\n", + "(Energies, AlphaValues, BetaValues) = MonteCarloSampling()\n", + "outfile.close()\n", + "# Prepare for plots\n", + "fig = plt.figure()\n", + "ax = fig.gca(projection='3d')\n", + "# Plot the surface.\n", + "X, Y = np.meshgrid(AlphaValues, BetaValues)\n", + "surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)\n", + "# Customize the z axis.\n", + "zmin = np.matrix(Energies).min()\n", + "zmax = np.matrix(Energies).max()\n", + "ax.set_zlim(zmin, zmax)\n", + "ax.set_xlabel(r'$\\alpha$')\n", + "ax.set_ylabel(r'$\\beta$')\n", + "ax.set_zlabel(r'$\\langle E \\rangle$')\n", + "ax.zaxis.set_major_locator(LinearLocator(10))\n", + "ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))\n", + "# Add a color bar which maps values to colors.\n", + "fig.colorbar(surf, shrink=0.5, aspect=5)\n", + "save_fig(\"QdotImportance\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "1566692e", + "metadata": { + "editable": true + }, + "source": [ + "## Importance sampling, program elements\n", + "The general derivative formula of the Jastrow factor is (the subscript $C$ stands for Correlation)" + ] + }, + { + "cell_type": "markdown", + "id": "d5452fa8", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\frac{1}{\\Psi_C}\\frac{\\partial \\Psi_C}{\\partial x_k} =\n", + "\\sum_{i=1}^{k-1}\\frac{\\partial g_{ik}}{\\partial x_k}\n", + "+\n", + "\\sum_{i=k+1}^{N}\\frac{\\partial g_{ki}}{\\partial x_k}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "600f3d4b", + "metadata": { + "editable": true + }, + "source": [ + "However, \n", + "with our written in way which can be reused later as" + ] + }, + { + "cell_type": "markdown", + "id": "88d739b4", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\Psi_C=\\prod_{i< j}g(r_{ij})= \\exp{\\left\\{\\sum_{i 2$. \n", + "When $\\tau$ is much larger than the standard correlation time of \n", + "system then $M_n$ for $n > 2$ can normally be neglected.\n", + "This means that fluctuations become negligible at large time scales.\n", + "\n", + "If we neglect such terms we can rewrite the ESKC equation as" + ] + }, + { + "cell_type": "markdown", + "id": "3baf7e6d", + "metadata": { + "editable": true + }, + "source": [ + "$$\n", + "\\frac{\\partial W(\\mathbf{x},s|\\mathbf{x}_0)}{\\partial s}=\n", + "-\\frac{\\partial M_1W(\\mathbf{x},s|\\mathbf{x}_0)}{\\partial x}+\n", + "\\frac{1}{2}\\frac{\\partial^2 M_2W(\\mathbf{x},s|\\mathbf{x}_0)}{\\partial x^2}.\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "99b5a7b6", + "metadata": { + "editable": true + }, + "source": [ + "## Importance sampling, Fokker-Planck and Langevin equations\n", + "In a more compact form we have" ] }, { "cell_type": "markdown", - "id": "cdb99106", + "id": "b2202f89", "metadata": { "editable": true }, "source": [ "$$\n", - "\\frac{\\partial P}{\\partial t} = D\\frac{\\partial }{\\partial x}\\left(\\frac{\\partial }{\\partial x} -F\\right)P(x,t),\n", + "\\frac{\\partial W}{\\partial s}=\n", + "-\\frac{\\partial M_1W}{\\partial x}+\n", + "\\frac{1}{2}\\frac{\\partial^2 M_2W}{\\partial x^2},\n", "$$" ] }, { "cell_type": "markdown", - "id": "16a7b9a6", + "id": "4a806f74", "metadata": { "editable": true }, "source": [ - "where $F$ is a drift term and $D$ is the diffusion coefficient." + "which is the Fokker-Planck equation! It is trivial to replace \n", + "position with velocity (momentum)." ] }, { "cell_type": "markdown", - "id": "7dfec96a", + "id": "f5e2836e", "metadata": { "editable": true }, "source": [ - "## Importance sampling\n", - "The new positions in coordinate space are given as the solutions of the Langevin equation using Euler's method, namely,\n", - "we go from the Langevin equation" + "## Importance sampling, Fokker-Planck and Langevin equations\n", + "**Langevin equation.**\n", + "\n", + "Consider a particle suspended in a liquid. On its path through the liquid it will continuously collide with the liquid molecules. Because on average the particle will collide more often on the front side than on the back side, it will experience a systematic force proportional with its velocity, and directed opposite to its velocity. Besides this systematic force the particle will experience a stochastic force $\\mathbf{F}(t)$. \n", + "The equations of motion are \n", + "* $\\frac{d\\mathbf{r}}{dt}=\\mathbf{v}$ and \n", + "\n", + "* $\\frac{d\\mathbf{v}}{dt}=-\\xi \\mathbf{v}+\\mathbf{F}$." + ] + }, + { + "cell_type": "markdown", + "id": "a39a29ba", + "metadata": { + "editable": true + }, + "source": [ + "## Importance sampling, Fokker-Planck and Langevin equations\n", + "**Langevin equation.**\n", + "\n", + "From hydrodynamics we know that the friction constant $\\xi$ is given by" ] }, { "cell_type": "markdown", - "id": "cbe85afa", + "id": "3749cd86", "metadata": { "editable": true }, "source": [ "$$\n", - "\\frac{\\partial x(t)}{\\partial t} = DF(x(t)) +\\eta,\n", + "\\xi =6\\pi \\eta a/m\n", "$$" ] }, { "cell_type": "markdown", - "id": "50c94801", + "id": "0d3ecaf9", "metadata": { "editable": true }, "source": [ - "with $\\eta$ a random variable,\n", - "yielding a new position" + "where $\\eta$ is the viscosity of the solvent and a is the radius of the particle .\n", + "\n", + "Solving the second equation in the previous slide we get" ] }, { "cell_type": "markdown", - "id": "9d132191", + "id": "f29ce820", "metadata": { "editable": true }, "source": [ "$$\n", - "y = x+DF(x)\\Delta t +\\xi\\sqrt{\\Delta t},\n", + "\\mathbf{v}(t)=\\mathbf{v}_{0}e^{-\\xi t}+\\int_{0}^{t}d\\tau e^{-\\xi (t-\\tau )}\\mathbf{F }(\\tau ).\n", "$$" ] }, { "cell_type": "markdown", - "id": "826fee92", + "id": "7e5386b1", "metadata": { "editable": true }, "source": [ - "where $\\xi$ is gaussian random variable and $\\Delta t$ is a chosen time step. \n", - "The quantity $D$ is, in atomic units, equal to $1/2$ and comes from the factor $1/2$ in the kinetic energy operator. Note that $\\Delta t$ is to be viewed as a parameter. Values of $\\Delta t \\in [0.001,0.01]$ yield in general rather stable values of the ground state energy." + "## Importance sampling, Fokker-Planck and Langevin equations\n", + "**Langevin equation.**\n", + "\n", + "If we want to get some useful information out of this, we have to average over all possible realizations of \n", + "$\\mathbf{F}(t)$, with the initial velocity as a condition. A useful quantity for example is" ] }, { "cell_type": "markdown", - "id": "9d94c0c9", + "id": "3fa432d3", "metadata": { "editable": true }, "source": [ - "## Importance sampling\n", - "The process of isotropic diffusion characterized by a time-dependent probability density $P(\\mathbf{x},t)$ obeys (as an approximation) the so-called Fokker-Planck equation" + "$$\n", + "\\langle \\mathbf{v}(t)\\cdot \\mathbf{v}(t)\\rangle_{\\mathbf{v}_{0}}=v_{0}^{-\\xi 2t}\n", + "+2\\int_{0}^{t}d\\tau e^{-\\xi (2t-\\tau)}\\mathbf{v}_{0}\\cdot \\langle \\mathbf{F}(\\tau )\\rangle_{\\mathbf{v}_{0}}\n", + "$$" ] }, { "cell_type": "markdown", - "id": "51f146f9", + "id": "a89e0187", "metadata": { "editable": true }, "source": [ "$$\n", - "\\frac{\\partial P}{\\partial t} = \\sum_i D\\frac{\\partial }{\\partial \\mathbf{x_i}}\\left(\\frac{\\partial }{\\partial \\mathbf{x_i}} -\\mathbf{F_i}\\right)P(\\mathbf{x},t),\n", + "+\\int_{0}^{t}d\\tau ^{\\prime }\\int_{0}^{t}d\\tau e^{-\\xi (2t-\\tau -\\tau ^{\\prime })}\n", + "\\langle \\mathbf{F}(\\tau )\\cdot \\mathbf{F}(\\tau ^{\\prime })\\rangle_{ \\mathbf{v}_{0}}.\n", "$$" ] }, { "cell_type": "markdown", - "id": "6b68d4ae", + "id": "af43ccf1", "metadata": { "editable": true }, "source": [ - "where $\\mathbf{F_i}$ is the $i^{th}$ component of the drift term (drift velocity) caused by an external potential, and $D$ is the diffusion coefficient. The convergence to a stationary probability density can be obtained by setting the left hand side to zero. The resulting equation will be satisfied if and only if all the terms of the sum are equal zero," + "## Importance sampling, Fokker-Planck and Langevin equations\n", + "**Langevin equation.**\n", + "\n", + "In order to continue we have to make some assumptions about the conditional averages of the stochastic forces. \n", + "In view of the chaotic character of the stochastic forces the following \n", + "assumptions seem to be appropriate" ] }, { "cell_type": "markdown", - "id": "64df5289", + "id": "c7831982", "metadata": { "editable": true }, "source": [ "$$\n", - "\\frac{\\partial^2 P}{\\partial {\\mathbf{x_i}^2}} = P\\frac{\\partial}{\\partial {\\mathbf{x_i}}}\\mathbf{F_i} + \\mathbf{F_i}\\frac{\\partial}{\\partial {\\mathbf{x_i}}}P.\n", + "\\langle \\mathbf{F}(t)\\rangle=0,\n", "$$" ] }, { "cell_type": "markdown", - "id": "d30017bd", + "id": "c9e0db2c", "metadata": { "editable": true }, "source": [ - "## Importance sampling\n", - "The drift vector should be of the form $\\mathbf{F} = g(\\mathbf{x}) \\frac{\\partial P}{\\partial \\mathbf{x}}$. Then," + "and" ] }, { "cell_type": "markdown", - "id": "9fe2dd41", + "id": "be1c9346", "metadata": { "editable": true }, "source": [ "$$\n", - "\\frac{\\partial^2 P}{\\partial {\\mathbf{x_i}^2}} = P\\frac{\\partial g}{\\partial P}\\left( \\frac{\\partial P}{\\partial {\\mathbf{x}_i}} \\right)^2 + P g \\frac{\\partial ^2 P}{\\partial {\\mathbf{x}_i^2}} + g \\left( \\frac{\\partial P}{\\partial {\\mathbf{x}_i}} \\right)^2.\n", + "\\langle \\mathbf{F}(t)\\cdot \\mathbf{F}(t^{\\prime })\\rangle_{\\mathbf{v}_{0}}= C_{\\mathbf{v}_{0}}\\delta (t-t^{\\prime }).\n", "$$" ] }, { "cell_type": "markdown", - "id": "4ff0a2ff", + "id": "86097828", "metadata": { "editable": true }, "source": [ - "The condition of stationary density means that the left hand side equals zero. In other words, the terms containing first and second derivatives have to cancel each other. It is possible only if $g = \\frac{1}{P}$, which yields" + "We omit the subscript $\\mathbf{v}_{0}$, when the quantity of interest turns out to be independent of $\\mathbf{v}_{0}$. Using the last three equations we get" ] }, { "cell_type": "markdown", - "id": "01260429", + "id": "a0422cbd", "metadata": { "editable": true }, "source": [ "$$\n", - "\\mathbf{F} = 2\\frac{1}{\\Psi_T}\\nabla\\Psi_T,\n", + "\\langle \\mathbf{v}(t)\\cdot \\mathbf{v}(t)\\rangle_{\\mathbf{v}_{0}}=v_{0}^{2}e^{-2\\xi t}+\\frac{C_{\\mathbf{v}_{0}}}{2\\xi }(1-e^{-2\\xi t}).\n", "$$" ] }, { "cell_type": "markdown", - "id": "44ca8225", + "id": "2c40aafe", "metadata": { "editable": true }, "source": [ - "which is known as the so-called *quantum force*. This term is responsible for pushing the walker towards regions of configuration space where the trial wave function is large, increasing the efficiency of the simulation in contrast to the Metropolis algorithm where the walker has the same probability of moving in every direction." + "For large t this should be equal to 3kT/m, from which it follows that" ] }, { "cell_type": "markdown", - "id": "071339e2", + "id": "4583d7b7", "metadata": { "editable": true }, "source": [ - "## Importance sampling\n", - "The Fokker-Planck equation yields a (the solution to the equation) transition probability given by the Green's function" + "$$\n", + "\\langle \\mathbf{F}(t)\\cdot \\mathbf{F}(t^{\\prime })\\rangle =6\\frac{kT}{m}\\xi \\delta (t-t^{\\prime }).\n", + "$$" ] }, { "cell_type": "markdown", - "id": "ffac4e59", + "id": "d2706393", "metadata": { "editable": true }, "source": [ - "$$\n", - "G(y,x,\\Delta t) = \\frac{1}{(4\\pi D\\Delta t)^{3N/2}} \\exp{\\left(-(y-x-D\\Delta t F(x))^2/4D\\Delta t\\right)}\n", - "$$" + "This result is called the fluctuation-dissipation theorem ." ] }, { "cell_type": "markdown", - "id": "bc0e382d", + "id": "319f884a", "metadata": { "editable": true }, "source": [ - "which in turn means that our brute force Metropolis algorithm" + "## Importance sampling, Fokker-Planck and Langevin equations\n", + "**Langevin equation.**\n", + "\n", + "Integrating" ] }, { "cell_type": "markdown", - "id": "da271d7c", + "id": "d83b9759", "metadata": { "editable": true }, "source": [ "$$\n", - "A(y,x) = \\mathrm{min}(1,q(y,x))),\n", + "\\mathbf{v}(t)=\\mathbf{v}_{0}e^{-\\xi t}+\\int_{0}^{t}d\\tau e^{-\\xi (t-\\tau )}\\mathbf{F }(\\tau ),\n", "$$" ] }, { "cell_type": "markdown", - "id": "1de86a0a", + "id": "b81d603b", "metadata": { "editable": true }, "source": [ - "with $q(y,x) = |\\Psi_T(y)|^2/|\\Psi_T(x)|^2$ is now replaced by the [Metropolis-Hastings algorithm](http://scitation.aip.org/content/aip/journal/jcp/21/6/10.1063/1.1699114) as well as [Hasting's article](http://biomet.oxfordjournals.org/content/57/1/97.abstract)," + "we get" ] }, { "cell_type": "markdown", - "id": "8d934b9e", + "id": "2273016a", "metadata": { "editable": true }, "source": [ "$$\n", - "q(y,x) = \\frac{G(x,y,\\Delta t)|\\Psi_T(y)|^2}{G(y,x,\\Delta t)|\\Psi_T(x)|^2}\n", + "\\mathbf{r}(t)=\\mathbf{r}_{0}+\\mathbf{v}_{0}\\frac{1}{\\xi }(1-e^{-\\xi t})+\n", + "\\int_0^td\\tau \\int_0^{\\tau}\\tau ^{\\prime } e^{-\\xi (\\tau -\\tau ^{\\prime })}\\mathbf{F}(\\tau ^{\\prime }),\n", "$$" ] }, { "cell_type": "markdown", - "id": "afcadcad", - "metadata": { - "editable": true - }, - "source": [ - "## Code example for the interacting case with importance sampling\n", - "\n", - "We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters $\\alpha$ and $\\beta$. After the set up of files" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "e6d3d711", + "id": "a8e9cad2", "metadata": { - "collapsed": false, "editable": true }, - "outputs": [], "source": [ - "# Common imports\n", - "import os\n", - "\n", - "# Where to save the figures and data files\n", - "PROJECT_ROOT_DIR = \"Results\"\n", - "FIGURE_ID = \"Results/FigureFiles\"\n", - "DATA_ID = \"Results/VMCQdotImportance\"\n", - "\n", - "if not os.path.exists(PROJECT_ROOT_DIR):\n", - " os.mkdir(PROJECT_ROOT_DIR)\n", - "\n", - "if not os.path.exists(FIGURE_ID):\n", - " os.makedirs(FIGURE_ID)\n", - "\n", - "if not os.path.exists(DATA_ID):\n", - " os.makedirs(DATA_ID)\n", - "\n", - "def image_path(fig_id):\n", - " return os.path.join(FIGURE_ID, fig_id)\n", - "\n", - "def data_path(dat_id):\n", - " return os.path.join(DATA_ID, dat_id)\n", - "\n", - "def save_fig(fig_id):\n", - " plt.savefig(image_path(fig_id) + \".png\", format='png')\n", - "\n", - "outfile = open(data_path(\"VMCQdotImportance.dat\"),'w')" + "from which we calculate the mean square displacement" ] }, { "cell_type": "markdown", - "id": "b8babb41", + "id": "283ed124", "metadata": { "editable": true }, "source": [ - "we move on to the set up of the trial wave function, the analytical expression for the local energy and the analytical expression for the quantum force." + "$$\n", + "\\langle ( \\mathbf{r}(t)-\\mathbf{r}_{0})^{2}\\rangle _{\\mathbf{v}_{0}}=\\frac{v_0^2}{\\xi}(1-e^{-\\xi t})^{2}+\\frac{3kT}{m\\xi ^{2}}(2\\xi t-3+4e^{-\\xi t}-e^{-2\\xi t}).\n", + "$$" ] }, { - "cell_type": "code", - "execution_count": 2, - "id": "77f36ed9", + "cell_type": "markdown", + "id": "5be6af5b", "metadata": { - "collapsed": false, "editable": true }, - "outputs": [], "source": [ - "%matplotlib inline\n", - "\n", - "# 2-electron VMC code for 2dim quantum dot with importance sampling\n", - "# Using gaussian rng for new positions and Metropolis- Hastings \n", - "# No energy minimization\n", - "from math import exp, sqrt\n", - "from random import random, seed, normalvariate\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "from matplotlib import cm\n", - "from matplotlib.ticker import LinearLocator, FormatStrFormatter\n", - "import sys\n", - "from numba import jit,njit\n", - "\n", - "\n", - "# Trial wave function for the 2-electron quantum dot in two dims\n", - "def WaveFunction(r,alpha,beta):\n", - " r1 = r[0,0]**2 + r[0,1]**2\n", - " r2 = r[1,0]**2 + r[1,1]**2\n", - " r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)\n", - " deno = r12/(1+beta*r12)\n", - " return exp(-0.5*alpha*(r1+r2)+deno)\n", - "\n", - "# Local energy for the 2-electron quantum dot in two dims, using analytical local energy\n", - "def LocalEnergy(r,alpha,beta):\n", - " \n", - " r1 = (r[0,0]**2 + r[0,1]**2)\n", - " r2 = (r[1,0]**2 + r[1,1]**2)\n", - " r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)\n", - " deno = 1.0/(1+beta*r12)\n", - " deno2 = deno*deno\n", - " return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)\n", - "\n", - "# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector\n", - "def QuantumForce(r,alpha,beta):\n", + "## Importance sampling, Fokker-Planck and Langevin equations\n", + "**Langevin equation.**\n", "\n", - " qforce = np.zeros((NumberParticles,Dimension), np.double)\n", - " r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)\n", - " deno = 1.0/(1+beta*r12)\n", - " qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12\n", - " qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12\n", - " return qforce" + "For very large $t$ this becomes" ] }, { "cell_type": "markdown", - "id": "70d37772", + "id": "656105ea", "metadata": { "editable": true }, "source": [ - "The Monte Carlo sampling includes now the Metropolis-Hastings algorithm, with the additional complication of having to evaluate the **quantum force** and the Green's function which is the solution of the Fokker-Planck equation." + "$$\n", + "\\langle (\\mathbf{r}(t)-\\mathbf{r}_{0})^{2}\\rangle =\\frac{6kT}{m\\xi }t\n", + "$$" ] }, { - "cell_type": "code", - "execution_count": 3, - "id": "a1c3f9e1", + "cell_type": "markdown", + "id": "8151af7c", "metadata": { - "collapsed": false, "editable": true }, - "outputs": [], "source": [ - "# The Monte Carlo sampling with the Metropolis algo\n", - "# jit decorator tells Numba to compile this function.\n", - "# The argument types will be inferred by Numba when function is called.\n", - "@jit()\n", - "def MonteCarloSampling():\n", - "\n", - " NumberMCcycles= 100000\n", - " # Parameters in the Fokker-Planck simulation of the quantum force\n", - " D = 0.5\n", - " TimeStep = 0.05\n", - " # positions\n", - " PositionOld = np.zeros((NumberParticles,Dimension), np.double)\n", - " PositionNew = np.zeros((NumberParticles,Dimension), np.double)\n", - " # Quantum force\n", - " QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)\n", - " QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)\n", - "\n", - " # seed for rng generator \n", - " seed()\n", - " # start variational parameter loops, two parameters here\n", - " alpha = 0.9\n", - " for ia in range(MaxVariations):\n", - " alpha += .025\n", - " AlphaValues[ia] = alpha\n", - " beta = 0.2 \n", - " for jb in range(MaxVariations):\n", - " beta += .01\n", - " BetaValues[jb] = beta\n", - " energy = energy2 = 0.0\n", - " DeltaE = 0.0\n", - " #Initial position\n", - " for i in range(NumberParticles):\n", - " for j in range(Dimension):\n", - " PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)\n", - " wfold = WaveFunction(PositionOld,alpha,beta)\n", - " QuantumForceOld = QuantumForce(PositionOld,alpha, beta)\n", - "\n", - " #Loop over MC MCcycles\n", - " for MCcycle in range(NumberMCcycles):\n", - " #Trial position moving one particle at the time\n", - " for i in range(NumberParticles):\n", - " for j in range(Dimension):\n", - " PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\\\n", - " QuantumForceOld[i,j]*TimeStep*D\n", - " wfnew = WaveFunction(PositionNew,alpha,beta)\n", - " QuantumForceNew = QuantumForce(PositionNew,alpha, beta)\n", - " GreensFunction = 0.0\n", - " for j in range(Dimension):\n", - " GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\\\n", - "\t (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\\\n", - " PositionNew[i,j]+PositionOld[i,j])\n", - " \n", - " GreensFunction = exp(GreensFunction)\n", - " ProbabilityRatio = GreensFunction*wfnew**2/wfold**2\n", - " #Metropolis-Hastings test to see whether we accept the move\n", - " if random() <= ProbabilityRatio:\n", - " for j in range(Dimension):\n", - " PositionOld[i,j] = PositionNew[i,j]\n", - " QuantumForceOld[i,j] = QuantumForceNew[i,j]\n", - " wfold = wfnew\n", - " DeltaE = LocalEnergy(PositionOld,alpha,beta)\n", - " energy += DeltaE\n", - " energy2 += DeltaE**2\n", - " # We calculate mean, variance and error (no blocking applied)\n", - " energy /= NumberMCcycles\n", - " energy2 /= NumberMCcycles\n", - " variance = energy2 - energy**2\n", - " error = sqrt(variance/NumberMCcycles)\n", - " Energies[ia,jb] = energy \n", - " outfile.write('%f %f %f %f %f\\n' %(alpha,beta,energy,variance,error))\n", - " return Energies, AlphaValues, BetaValues" + "from which we get the Einstein relation" ] }, { "cell_type": "markdown", - "id": "8e773c1b", + "id": "ec999f4c", "metadata": { "editable": true }, "source": [ - "The main part here contains the setup of the variational parameters, the energies and the variance." + "$$\n", + "D= \\frac{kT}{m\\xi }\n", + "$$" ] }, { - "cell_type": "code", - "execution_count": 4, - "id": "136120ac", + "cell_type": "markdown", + "id": "629910ed", "metadata": { - "collapsed": false, "editable": true }, - "outputs": [], "source": [ - "#Here starts the main program with variable declarations\n", - "NumberParticles = 2\n", - "Dimension = 2\n", - "MaxVariations = 10\n", - "Energies = np.zeros((MaxVariations,MaxVariations))\n", - "AlphaValues = np.zeros(MaxVariations)\n", - "BetaValues = np.zeros(MaxVariations)\n", - "(Energies, AlphaValues, BetaValues) = MonteCarloSampling()\n", - "outfile.close()\n", - "# Prepare for plots\n", - "fig = plt.figure()\n", - "ax = fig.gca(projection='3d')\n", - "# Plot the surface.\n", - "X, Y = np.meshgrid(AlphaValues, BetaValues)\n", - "surf = ax.plot_surface(X, Y, Energies,cmap=cm.coolwarm,linewidth=0, antialiased=False)\n", - "# Customize the z axis.\n", - "zmin = np.matrix(Energies).min()\n", - "zmax = np.matrix(Energies).max()\n", - "ax.set_zlim(zmin, zmax)\n", - "ax.set_xlabel(r'$\\alpha$')\n", - "ax.set_ylabel(r'$\\beta$')\n", - "ax.set_zlabel(r'$\\langle E \\rangle$')\n", - "ax.zaxis.set_major_locator(LinearLocator(10))\n", - "ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))\n", - "# Add a color bar which maps values to colors.\n", - "fig.colorbar(surf, shrink=0.5, aspect=5)\n", - "save_fig(\"QdotImportance\")\n", - "plt.show()" + "where we have used $\\langle (\\mathbf{r}(t)-\\mathbf{r}_{0})^{2}\\rangle =6Dt$." ] } ], diff --git a/doc/pub/week3/pdf/week3-beamer.pdf b/doc/pub/week3/pdf/week3-beamer.pdf index dd89903f735deeb0204667aae9555ac391a894be..c4138cd4648279640458cedc539fa893bab3814e 100644 GIT binary patch delta 285637 zcmZs?Q+TF9yR94Bwr$(C(XrLBoiDa++qP||W7~Eo+5OLdt!o|3UGGU9SJg9Wyrb?X zyBRem5+j}rgq15v7?V0d5grT!nFuVwkP2XC8NlMgH>n?uCINHE@4+$*D}ja?E-gVt zt7N_4^K`sY`Xhi6!ZO%zH*n9@!AF3v8}~w?OPqIDuGQ06KSVRR3MyAC-M0`)#XKq-dzXqu} zrtaOx(PMovzgtxV`~qHxy^v9w`vpi&$W~2uk|$e5p2zOj0NVVB&fbq}3o^;b-RO+6 zi;SZ=oWxS*zag3u9B3nc`|?>zXt9>s_7L+%l}2`9Y*Nab$X3!LQfS7STw>mY#;>0Y zWGd}fDpsNi1=PD!>|?7{+iZgp5IeBGn#3}u;u@AYFEMPyuH0 z(+Y(uC_ITtM(K0s^wy&dGEV!`N3R+4hCG~6BM!h(gp%p_lvNS~gXF>shk6Ql&w``C zSqed@Cc~%Scc~^Jr9cdTgr{ayBm0@7Ui>g!mX_s@?KdcHe8?P8fE4whuOXLpczi3k zI^e#VLA@#UmLP$D^LZdtR|v7?asp<TQge6+*5n6k;kwa+knu0D%>cRRCMFqOP^ zmh;;uTU9M4!zn4XmFKkxnQ5Oza*Td%ms{! z&P~KbWN-W%hK~=1QO?ZH!o`w^ojYwH1dIl-tubM@$%NGNN$Zj9AGuGWvfLuRP3Eu6 zhVBLJrDVE+TsV?~h5Pl1AWostQ{t+V59PDxFpj*N#mUMfEGsr22EDFDU5)m~evdd@ zHWVE*oE%P-Lb+_g_`!*rcg^;W5VYD9-H$53(u7 zO;NI_EsT#QmTIH|NtED=zEVZ5Sk@GPL4(m;)p&+~+XUW|4kH8tgIu)$LjFsOhHZfP zzEBU}2V@xIP-xN-N0i9C!NHLgNeX;BNWDrgNG==V_U5tC@ub=|`bEFYd8N~KXF6x$ zTpfxVrkPrP{i9uc_0MeO!w#3V$)PRySMXDsw4~x5xHK}dhzTUdO5}L7%o`tj-!*bD` zDyJhos#w3BQgOFaJk2a{e`S8Z=?C8S-C%e`;&y=485LG%fx=vmD_EFc5a;BxE_%rVXS{#e(1F9?xiEJHwqa=UbBu-D`Y-bsTa%g9 zqRd^eugFXX8+YZBGb?$-*}`%GZvUPq*Kc-4e{r<_yZi>7`3nwp2PBR%&rOrV6d#4d zjjln!W zaFvn2mp90g0jukgjqZg5sQXb2&n{}S(FwN{0hab^_ns42jq`PN96xrV~+of>R~?#zu1mL;D=-h zv8|gL>TT*PF8$`MX*Y{!lXU}-MU!-e{>MCp&q61y$$&#MPC3Lx2@#i!` zXG;J=iJ*c8J=;nE(RmKha}I51Gem9NmW!T+dQ58(BuayQr;z=J#B#9Jl$AQ%0om@b zhQiPV$S<(oFF@}sJkOd7#BMtGY(Woa&Kh;sdQT1&zn>^SPA;H4hrbc0FA@Kz@@C&ATjL=@{-#>oYgrvdwt0iuy^<<`3L}!px-yc|KD51$@;$~nT>;!`+xQg zpm*-P*^2U$+b5FLs@jo&mCM6ZN4Uskw`9dIX1klkb{IfDZaytaPHh1A8amhmR$-Bn za!cf4ZJ>$-!-yI&ehnKLyvli*-eHWBJ6|Hn!+8H2w#Do{JI+B7yV^9?YP4RYALtz= zdHb8u^_z`?f2n@LRmASd0D<%C;c=k|PzE_$Y|#;V7<;v|P{_&5w{*RpYb95+v(Wuo z@WZ!*yHWIwcMFeiy*Q>xr3>+Qie#s0>?_!JV)ks?aW{@7J74QWvg|4iTjpIc&ChN0 z=6ydgRaOS;ISEdjwfpt{j8kN79tT%-%)F&c2^USwZ*y590=HO8e~u)EsQ^0)kju_a zQM-+sh&X0O{?lTS^asfpuPbhkr@)}vPYl;}qL&P7rf%H~qe+o)gYbZAsxL8AE}s~6 z0ZF@@XnPH}vvx(0=TY@rVv-~4#?=n4*21?F4i%i^yc1iRiK<2@3jM=H7F zu-|?(g=Y4`h&9LgxH?i8Wj4eDK+=)T&^db@FA(U(pJxVln6F&98=`A|< zB83=691f!U>8&BCJ1RYDJpmbR<>3Q#FRSrgtR`^o{l;P*^4W~lfmXQw3;QTAdHz$# zI;Lb}qfH*?r`rtBzzm!QV1nb{BpPBl-u;3_F$rt_69$+{TK(-Y?#} zJhOX>3t?#98UmN68c!I>c%*_XL*$la4PY0G+Id)t9UWvZGbE^cY>>&N(A>-1BPd>$ z=)N|ek9={C#|G!XMA@ zPAmBjqMHqxg{+~YST zcrBRMevcJ1W)-K;lS4b9vZe|DY1midtN^M+A^nYL^K=0PP~p_bb>X;*Hgoy-MPXkb zad|Z&p6$;ZM~3^CL!r5?GM7MZCXw1^GnY9-A^7!?|1pl{Pos78%oe{k3#T5`%d=0kz6W(bnnvjZ``MGoOvU9eW#z>LWK zR+2+fy|SSAJ%+5HP$!P>{PJ71=E^F?3+L?9BBam;fUdzrf<$f0HBiO1?FOwEXe1n* z{>2n^I(SG?8Ntu{D*B?PfS02io+HJGMKCgr!vhiiSG71=9?>km4&05%b0qslP$iOY z@R)kJiR4Ng4?}vGk^30A*A#OqoiFQyh=Dt}|2{}F-N6VO(vQb9<}Z2)kbS96;hXEU zK*bvpfTnhRbw2Lzd|v@k218_%)Pa(1BZ8T#Wl^n-P?!g|SZ7B>!grEj!z?1>y;#m- zu#3{yIzw|~B3K93+&j6Ulp{*v9tiNSh!vd$2=*wA{RizHY$|m+w+g607qHLpd^%7p zHm$uptSRdUa#h=qvaQIi2i4ya*4QMOr(98o0Drc_tvMCaU=1$kXSZt1N()Uc*B5lL z(kUcxmH^8iQ{3X&LA~fXm<))Fw^_$V_}_q6(&)t9L+t06!(hZepjZ{_pL9l;TKem$ zVb)$f@X4D5$cJ9q84$7Q*rKPh>Fr?s^wn5aCzFo$S$sMfRXyxY^>Y>vSBZ*TrhoqE z0|=E~Kz>Nf*MZr>yvaG_n885lN}oa3a)OOx2093s*yDB%s~_F zO#6qd^~18f2hLd6tEVN687Dhk`qDxsBw8*93YD2|#N>q!0qV7WfF zN3c;TbmByp%r|ikHA$xIbu-CYFzq3HK{hP4Lc>jQ90F}SCuZT*;ATt2=RxVt8f3*w zV_Q7#6<^4>p{2zrj_5ZPwEM8v=JV}0^=sE&*=r=Q9kdDm-k{rkX%FwBa)kTWbfm9( zSZbLEx}?rCV4?Off5BY`P9Gl9KFG?b4Vu*1+Q_uc3TddD6|^FwGcgebXEBi-Yv;{u08ih}}@LQ5zCj2vp6_vrUXEi-mGdwb=uDy48q^hv` z&LQ0)Qkd+}3JsGCIIGq$bQHh|7bxwDrIztbWLyo~X+K{k(1Hp|44BFUVDO2clPf}XAF@Y3gp$iMDsegw zoD2WzlQ`BADQ`rSix!!yhBj-gDha5r0fn%;6SD4Rpz71TT7uuhHBuix3y&u*h*0pR zK5VPiJht{c^(qsQ_m|NofO|q`S-e=Ls&3zLwk-hP<++y3x^ShxfdC?wfbhnC@0Yuv z!*reXo=fOu`y1xBtZ!Dbb-QX?r|gB44XziuBzB)q?3sC5xJb%UYf`|)}jEu+fo zH}V0lkKEG}YLVLW(neN*n}))U>P`*@ByEFm8E1B9=()#=`EqL&{`?mI>8T5@E{hLt zzNOpjx^O0FiLEayU^T%XLnsrd=Y-k>3B7cZp?Wfuz72>xQcnp_1?c@Ok}O)A1lk1& zs0Hc%r`Ku-Yc(vZh&BE2`{Mn|OM`6Bsv|+eXroc?tt~_kG`7#|;L zf<_vBCgm`!3J6^XN{9qEo_ftp7oseA>FDZqxhDaWg{&73@J{TPw|}f~jkLtnljCyA zf}w-3l7w=vxdZk%hXDs#jdEAN9bi;M!>WHc1t4Z+8+On|9&!g~yQYcr+X3eum)-eI zoMgw!(UE26f5in-wA~?>ioGbp&_@z_X6jc}Ti$Q3%S<^y64)H`iAExx&|Tc1tXm*v zL}lX&SAx9{U@$Nbcpg^q60JNR8J-!kIsdcnL2YdE$nQBd33l7y5j|Ou zSGt=l+wX2cQr@Pc2 zhN@?UT$9jQf|tANiOjO=W_bJSW;$kq#xcGCleaYA$Wvm~+XEZ9i8D{T9JyQ4`OK2% z=(7099wT|Jm^4#Oz*IF&v)fjjEdiLcY)IJHOBG<`8CY9$y zGZ)JYEVq&%TkJBD*n);>wUaO{Mv_U3VJ$3vKEpAf$z0~o0zmeOPVIhmyJS$X=KXa6 z7-VVTgxX7{SWO(rPc5zolQhqcvr;4}i_=)9Z3V?D&wp>8qYKIMy2;UViQiyKar~*Y z4z=zYUCx`lT$C^=xDmsJttyOIH<0@rW`->!-o4OvD)5EhG^vd2-qhvJF(Gt ztJ_qLfHd&_yr^_!gN@u7x5KW-29yot8Z^U>i^&XEb+w{d6;W@tY3XWU!H!KBFmv9* z!?J>04Oo;K7Kqkez>@Z?$Fb?5+2WY)^mgU80dafVH`VP)V92Zi@#+j#^1u?`qAvJl zlY5_Sf#DvpBR6~^c(xXPxtc_jn}gYrnCkxqF2F#zRDeXa+B9^lDW#%G7DfpSZMZ2zp8uJs$wey(5JKlGr298Rgwvi4^QDjlnZ5p{k`YT1*a0GH_0w>Eyy8h z!BrK+_OF?dWwLrGeGn&kQlL#_gY{bweRB*qAuLwzDpVwKj z$z$v|1gXLZRI#+isjrtXYUA~*Yp{Ah$@j5P!iLlWz{zHsTZ z_BgwJHT^b>o414gim5C0AaVG6IPU8vM*}_rZG6`nougL)a1&Wd-kI;Z8xggc8{Bs6 z864T+(M^Y0{bkl>L};KC`kd7~F`iu=l~q7Fd->N19T6OKBBPhf%DFCm;B=t}xVs$F zy>utP4&h9u0#UlJUH6{ThSd9`a55(UOsRG7*d5R`Rku=9aT*|Kf}-WXL?46W4mj`@ zv}LWy4`EXRv_<$x#Mfrs)_g&i(j+uP&QSR=zp!HAC#dc$QxQTciYTVlX z?1gacplJURd{VJE55#}(-EN8MZoY+E(zhg(xy8zL8SQ99v*s3U&{@=M27t6m~DhW*v36zDCC8@;M@7m!#92`a3kILb!3}14AsR&nIa1m)xzVVZ=-%|xE1J+K#<vS1wrn=V2~4kcTa4WN^+xZX8m$6`jasjydO7xmkYQdL3zkDR53 zjoW3TcF!Ga7xa==kDh!fTUAs{)^dj4W=ze7`GeWZcXEp4>ANe$8}}BK@n}XE79
    52o#0fh0kBE-Ta_o7dAouMDE>G;jA`Op7aCa3XS|I?}!ER{#0h zczFYW~xbv3gwV8pXIP!_J}aP)!x4$g{wyPbNTEvUb#rY1L1P zVYGC-mdN?d)S@>8-G+`O#%rBE3A)13QheGEoS4~!6}#p(2>>gNePzb0 zQ@uf2|KT_4CS`5>q5%grW4OUHpOn=jQwuPV2JH%hbV8>_bt0pvpIrf>Cf1i&N{9xL z?@WVEhvjdzgz18Yu6KrmUWffoVSzy<*XswJ3piuRW+IFb<{^U2W+14S!q-7d0MQC! z88`V=;S8-s4voy>w);S{4^Yq+Masj}S3mKzuz$jha40ZvXH z{(d4phXIk@yO7KUGLCfZAhfPj>F2Jxg=5BP*m>tG=DvtC4gGrkdk|k{W8l(4SL6yN_ z$(X4IWGS@5O{(c{=V!;y>Zp$C$j|D4j2FzHQgEQcc3po+!}REGEbGv9(|epq5l13k zAC`DBhbT5ljMQ7A3lItnb|IdXI~pES|K-S^3@4q)NeG4g2X+P8n&>9u#-EG@??UG{ zXZ=J;j&OC?N5AhFQ2DlD->u3SNQTl0vI%HsXyGpJ@%QG8-L5uY2FyUHpG8OA$<0Sz;qtZ>b~5|}TJOM5&%As+ zSQ{nvC%*mEGoYYg^F7(mGNN?_nRrHTX`_FvHxQv7)Kw%h*~14GEy zy?P3y3t@|bhVrsN(6kp}z1Qv8P2W|02K(~)S0uX6y&Rl>7E}_+$MIyoisL`G2J`DW8M@l$nh?iJ6reF!M_`Zj%G4_f+$Y zij+3gUL{Po(J~W)D$)+_DgG!w^U%a;)HrG zG7NY1u{ocndNNF0Y>;MsO#wY~%SLWtIjU|du1rbc<#7t-t*JY~|2HgSKA!~Ed}-D< z{3w6KlXA=Pf(o28lK)0j>Y)hVKjj`%m>>d&Sq*jcl(= zS&RI)n_nLa0LYc^4;+Vzh@NDX- zN3|VIXNeX+#y#{ZUFo|Go(d1PPX3d1qH+5&FoML}8tBWGBWVq6owq8w{WfTEZd)+IRjz0E*PZ=5g0%S85< zloi($2S`7J$?RYb?!*`*N@nNK9k^;A9xh^`6fz1GS@M}g;%t53_b;P^r*LazCN$W& zr+#1<=BR;fV|fw zI^0-Co~WSh zZM#WXrm>>2*}Pr`B&!KlKx-n9YK@rBPy@2WRZaYOLUFP#Vq4KFrA7;4i2o`!$gk0|v9g)X@Q zcxZQyu1RWk>~76S2?fx9*yyD*P;%(S`u=W|e~HUTrcAQQuYtRL6lNd8x3reim&?&q zqP_o8(SQ6@wm*e~87?^BwvV5~=DSm;lbGGmBrdLl;p0Y%mm>xNW})l+os_!WpHk6i z@hiVdA#ua8$C^Lk^i#W@R<5yg?$-GUARAJgxmY)DSQPsez_!Re$)y6<_+z*>BI7u! zd=Xvr7FBYdU9{Y<{9Sx&JN5rbwwc0OvUh}ZPnqq!C|fv z@y9Hg!t{j$_lEl)?+TRLz{K;t#dI#-QaTdn}cI}>CWHPX{)FVVDjVz z@%8N?U+@=R6I@BwfCsbG>+ZMR%7+wrF7LKtm(!Nw5}lYcB^C{#LJcg^HOu}n3CrxU z1OAYc}H@<^FS7~5!n5No%AejVP!KkK-);Ao3a!s%Cl>YkoT<7Wv^>%9Z_E4V!N`LKvjA|6xjNnm5Qx>vOIx$h z&I$6c0eTJ$Oer9Y@P{RLJn{WP+FDO6#I?7Mp>ZQb6*hIr7> z1e-o{ygtQ%S|}_heoP=L7}@9K9sv>TfxmqPHYdw0aH&+>b6C2^To zrGH$^tLE7mUiZp{4wG(r0h~kO(Vx@|xr=6ocT4=VIKbSb6UvmUsO1zK=2SwShW&1@ z`tUmX;nf%NZHyG@qK71FwlrzK^h_|i|6qNkVN=l@A_l)F*cca-SDmHt=b_7PTH9gK zA?i66P5dMjM=mpDCM^XUWSkAaXJWPyF=|tpL9P{Np{SB_%8GfCywiq%(5A6HCvB=~ zVdU*l0D`~vcC=W29xTJb$U1b#KRHw$vx_m?c~3-V*Efe@4I{z*T!xmZx*DVSqrY?vKrRl(8e$s5DId}Q^H?~Ee;>jz$A$t_S1Ya}!N~eSF z!fAuS0AppPPLC>54gJ#95xc<**IuO#qdAz3@_<`reo~U;b*fQcaz6UPtf>;7gHi(h zzJPsE7HDZ3GVgAI8SO4_-VNa_!~F+Q=3E3qlDy)9{BfhGJyXG{tZJUcL|VMt7V zooKcb@J5Iw?^YRxMMMmst^2sdmI~`vE$Rm~Cv;-3pjgSUNTO5HQPuz+GTR0GQ8pYW zSt{fq6;_Kn=uj!=_`SPMS%G@~IhYVOO21)q6YMO*IjK4tn&+(~s2&qMO|toH@4Pbe z-l#2=FmGmi5!Qj-05ONUlewZR8Wg!ZHVMLrQ-1b_zg;C%0iPQnWWZq<8fC{iFJ5L+ z@`QY$V_TI6T!Ul;xiaO^JiGSX{YNn8NIwd&Ie3g2K!*cSq-f zkqU^I$%uXcTO3?vxe)&9dEUI^IscqJ4Fc&osj$wX;7LTJin4 zKdADU@OXj|{+g;lVss07%PZvbJAX9o*)#JR&Qfqcc$!-s-7U0KO8vi%=KnD{-2XpZ z7$++W(Z7)-PC)@kmABtyf(yOn5k6Jo3eT}IV`lRLZ_v^zB~sxx!O1rMjlbR^ zX2Tk=`sz2c;yHgsk_bAs#I#a{OFgwfHiK`gs~`kL8Zt#nq=l*ahETZPJsISK=r&;i4`z zJVT-+gHP4;BCH_o+2okuHpw>QXl{JH0q>@o={xc6g{*ttyK=O`0?iDv3ZM0Vt}F8H zWz+!J1YFl&=kXOx`nhI2-|N&{x}U#NTHgukc&bjK+;Z>KjhR*-%|wL7qnxIRKek3+ z4-tXoI)grIPdcbEkvqeY{k4_xMv0SyYv8B3WwR7WMHFt#th4xR9lktXj%Uk5>r`&c zYES&eijRAnE#QhB^-K{^Q-8}aKd$tgoCDU!q#si3fg(4MJ0GH}(8TF&t5kpfCZ_(~ zyV00Z&<$m_m@1&Xwep@_*V5{^p00pHm0Ql1X3+;%k0-Z#xf(p!(WCV{2%FN7>rZn)6hSZXE{*S-^)ZC+z52dR2 zK$iBkD!nEPn`K*(+l+ADlS-x+PehllJ^cH@0F+39t|X#6a&PK|Om(*;(5rU^f<&4Y zoM14wwlnT{#O2qIEfEZn2`k}Zo|>=}*+I~!Umb#b+Vcu0%+hPXNgI;8^Qp&w5N^Fe#B^;AoBx?NQ(;6ntd7`h)L~gx~ z0;Lj6ia(9aVhd-U%0dq!4nQC#q8=ZnCjXO@*PAqVNad6n+FhMRGFi?lTAm`ikcWA`t0_N?*op$X=~z_0 z3AvX2oTMB2Toh<6Zjhk$0f`BD2XnJX=jyaXiJwn`7k2yEpcHEqx z!XkS=zzPfpy`H>B$*7eTndU3ej-k`d$7=6f+qk1Y0+EL5kuQLIj)U7gle80c9UDkY z0@`R?@EtJjhcK*c*zlu_E73-xZ37tUOU9l;#u!z(;;7NqD0tzf4)ky3CYHDL_Ukp+f&(U?bwTO^@+ zQk*m`YzeBg@0iIOambx$5cOG)kV8c;Lrdzb@QQf?JIYw(`fqx2E-|h&Qooi#&g;Vc z)7gSvoiudv;q{q;B6ALb|Hy2u0p3Q}8oGWlMfOA*}zng=x#ZHma8WbEZ{wD*6? zl=wsjE9`vH&lI!T*DD2JY$g}Kz^wb+^bZg~HnS?570jocT1J-oIr@h@i8rvxTT*{^ z;d0GcnZ9QFEhoX>SnQew*5K}bO?{1)_F*qC3hhJRyUgqv?Y|?=2vO9?XS8zwh-=CR zKqEJ{Ngq>-Z>1RHBYJ=qWwgPwvbS}snYQr_vg?oC}gTq|+S8mJ?v&8qoG#(F)b++fWINaI!wpNB4 zLDPr~2Mg0$F7j@M76ema>IDfcW^C;%V$>38M5;dlfQqU=p?XFP?vp!qwZgZ zvkre){=$A)23-9|r9haO{)5SaGIOvd4S-Su{!a>VTeqhSK@)l_83|$=SZav~ocZzR zDc{4aPFvc|wqx_}C!DxSYIC#up?Sc+6aoj)LIA;ni%@(X0{LkPK7*f{kDBiX0$Ny? z*`{4gj#Vy0J?-1GrQ7p96ju!VM1;9nmo$hRfE+Fz zNH0F6^W^>F+@y0PXSNCc_o}N* zUZOI>y0QTYZ~n#aRalZVriP*iW-QYxS+&{-)4S$Ev5rG8WF%ReO+(fznAn1X#|M`# zq9Jl1QX=G4EHN27Aj6QA*4Q{iMGk1+Ff1PJw_vn38@Qyg@HLd85{gSKzyj*fom$aQ zBC>p-UNvC29!wUZLxMYXF!aIlYZm=`0d2eYW7Yn;ASjc0y>~5mTW_dq_9g#Oemp&$ z=d{s~#rEI~$WKG>t07FHG(EO!o9tbv#gcQZ^K4(vzjNJzNcxv81ATF84%wD@>YT02~p$IaxMsU7-@NLq>ds#cC6U;k$qy>1=HBFI*1ou^^m; z^ej*1--_&(e-LU%Xhb{T zqa`KNTy8=ZG=b%(+Oyl6$(kw)6!gGk`<-ZZaQEma6@{jJS~`;Nv&$K7n}@Uf?K0k#;qpridEhe!kP6SZYDAMg5*D z^V!|fOe5xxL&0~MLPziip??w?Ba_e^_acT4`wedbrpLmi7$zX+>|n0k!ldhmcm$ug zTo+msF)}pUJ7WuCG=N@abBTsly_;4oU>Tjaom)Hn>p<1Ohv)frocsq4-4rnq=>&3w0BxZ{zj z>*_vZ2+36+cjc=dR;ASx!{)siI#7FN;kHtVkXV?7{8amUQfLFQ=VdHOgd~wws&>u=t5EZ@g?@q9!|FV^+%&^P{VA%9HTcl8S|q)78wwBKb_Hn z6H6O)kBT`vcV14oCl#fQ@j!7D$EX^!UX_6=_|r<5WwQsv^&;do3*Om~3H+v#qtQfgXR1ueu=b7UjC!U3OZH^We*Eo!C<5f_MO2%aH}z(2AnK)*JyZ(7 zNzWfei(oYfoPZPqsHu`n?>}nLPCYz8)UmIJ^{hGrBPT+hcD(O#Rd}n)4w0**B83|) zoNQhWIQwsH!Edf^pWXg;2T6vy!k{N5*NU6jlk>H~N$!W#Vi}mTwgc?V$Hyc9w)XLE z>!s1swuj>o2AgWL*t_UaWKpiL@{^Y~Z>#a%!|jYHEu{z6%I{b@=3F{vP5V`#$gan@ zQW-8+O7-Z{n4rpzL}S;Q=*=_2EhR0#5G-kb#h)WCV$e0;{H}`11Lbh;tg5kPc>5as z-PLbPs5GcF(5wW(Tp{xMXc&zQV9Tcb6w&?F*vaRSu;%9;Ey_5W6QUB0YsLVn!9>29 zG7v>ijpi=A{h#*gze3Gc>2~&Nd5r&|#f?iQF8qJnaWET#d zcwDGxxUkq-R@a?)tm0d*Y_aKPW!Yfy=*dUp>4GBeWZjP)OQJshSKKvD z8goLJ0Fo(VQMw{WPQ==#Q%nHA_mX*glQrH2xiJ`$J#OBMic`T?n`SHMG;36!i?s`> zGb0*-i;bvnJ8>wI4D!eUz(b|Z(bJV(VAXChe(2%F2Rw;b2l~D0CgM z^tHS64c^wE69i+HM5=-e!or+@j0(cek|az)1NeV|UO8U%#ZqFJQD^`#1Ops-+hR~e z%5V^US?p5kzeF!_o6A+U%wg{!MYC#Uvuz`VYJ(_JAa?ri;wq*2+lYWD#PiYUlK)238$4|2?eBrcMj)W zY?JI$+hN>Ub#2vLkswd+eFg4!@2Hn-($%Ks<%u{1K7XOK-)A!o$L!)X$bnKr)LeXG z%TO2So?m&iS1wp4;GHL-W}OCgykg{&N&W&6hGEVR@)G$&YFHCt#G~{y;we);JiB3h z8wTPouY~?Gsxiax_el7PzX*V{sh*+fShxYy2hnEMRufdYd7_8a0*RT!QTxF@-8y5` zgzr~92NayZB%C}ALZ`F7(K%a(4##;()WZzNC2&O&{f|92yWt3NwiD_$s`z=Gh{VmCY6Z6@Dxk$B9hfy;{_~ACOc3^Ec)QA zu>|+m_iR2JUi%qvIJzqGjT0he4=mKz+j^Qr4g3T{hpx)2v+pd_2u=;01h*`@Vzi!v zxVGtB#$sy%uU1yLhuJ+bfAk3))$%SIUGtE6nT6#?C3XL$%ekIZkDgz5d$cwJqlgld zi4}AO{rvoNWu1uITm}UAQpc@Zu#vK$QZe(l_4wkdRwPhllrqcu2@i&c=FaP+FlV5; z2SUM6?(JOgn%Ruz5HFVR;FxFAg7@`=HsT7~J za@G_iq0s;Bgz*hhz=?Flp~@z>z{PulFkhCP=Xa=pUIi%+zyR#%^yKpH8m5#&bPt{M zpl3xaJ6N`Ua3`>cgW24v6$dr-MW{7e#W>YTN#iVin8(JU)n67Q{!rY{_d{bIXhlFO z1}dJX8=tB@QK0hdOuN#??ZUm?n)lOk2|KehZO;SgO%I>x&)`G1Ym(_=FTS!RnmehK z7CbywMqXD2k7{1)YZw-DiVS*ncaV0A=j7F(|-pDZ<{{C?E}B7>ig zA7_)nDZk6a)MEh<=Ji`}egugb>wYap;niVwcJlbP82j0Qfx52nid6 z!C1NK_C;P#zZ!T2XYzXZ4k45SI+WmMG{+4A(qP7kd(nmOD8A``TRSpl(=%<#?o@9d ze=EybWM@v;$xyzZnCoezEyX>yjs55HXMwb%qeNpi36qFcwJDZ}nmNS(A54UfPtQgP zlNq*l&WrhQfY1C<$s8C%F$)bKO*@hLFygajqC949L~6l0DyPefJ%UxDYE68pv8?cK_H{4en1~ zt8z22=5kh!;P&>)D}FYD3p`fa_Y;VWJ;ew~-zK^n5L?lp|3B0JI=bX;JwQmx4!%5O62vD=pYMR!S*mcCH1Gr+EBbNh_)4 z{U&EftrhLp(DGb$Y3zQe@2*2%Q@UNWS!oHBq8?Xjrfkb;mU8=b=)r>;D1V|U{yZ2{ z!u2O3^k20XTge*of<3PQ1Nj1LlFO3ZAWZ|*QghM%@g3;tBAzh0Tlex=53L+R;h6e75uTs zol0?9^(mc%FJ*MdfJW4l0rKNSa$L`RRu1w(SjQ|0LOStcVe#fnneiYqT;`dd{e3F= zOv-jQK{A|1W{;6tND#7E=R!RK{!*_<&nIM&tUxnR8W)DDO5)5Zhn;~&HI2U@d#uXk zF)sF4w9F*cl};Xbw$U=n)im*xSNc78@ao1wLd9J0FtJNz2(O`Q01Ym(-+e2nV5&k` zPs5L53`(Fb*2}23iB6&CI!(gtqUpx^vze8LP8|H)k`aXvT?(e*olo!M7`~lSpP}>F zgjZ0bF*^5SuECBaylcpMjdi#Getou)L!(e##k!^5?!9z@AhYii@CR5tt4Y)UKeo;> zIJ3q{`xD!m*tTuk_DpO$Ik9cqb|%&&nQ&rfVtZo0d7l67)>ge+b$>hew^QAx`|7KI z4c;()xq^J{fpa1Gc11%D%LLH$g|HC0Mp&K>0o7f1RCbqr(zX3BE*~}K)_5{2T&d?n z0*qCQI5l1J#~JB6O?P~&&v@3wIH&VJ?Qp1(&2Sh*`<%{n)rEQQ+yBBH<{>1T;bwEIVyJS2L)NmU+oVxU^MnKC%`XY{LGrIBaybDcUiR2R<`>gp)(lZ_ZUej&-ZxzGSre`?D zpfq^f#fswOTdKuxrYl_Z2-@hm0dxxw*%^?0V@Q^9127IW*^(&JB@DNYYeV(~wrjnM zR$7|MXKqI7ZhtJ#FrPZsY)0KjYZyTCuJtVe#fVM+AjJF6O-<__eSd9x)tWqs8KUtk zme{x9!);r6u+7r4wfR>;Q|>OL9FS416@1NoPQyXC%P{xG-Y=O{w95ZBQmp?jMT4<0 z|6{=W%%%TWPP#wEo*4;ahOkXJlzfXB`b^P)QU)cW$^HgYNo~N!hP3nT0Xs60&dO4I zibjYrRW2@UaO8nY@tcYG*QfK)mRf(!zEg8NV=)Vb8l_-dg#hcu-@pDI{5A)k4`^G0 zm17^g@ydI<&Y$-Wk0;M_>cPn{RGeA#QDrfJq+nVJ{P^R*F5I^s&##I<2+oHe8w96X zZ*2Hbj3mRDqs_9yTzm9mHWfEr)Tb-&mZ-n&GJ_1%Sa<2qR*Q+PV{{HoOtaTT&{ta;*7 zgrT^mWnKl03uVDGe3$QrR1h_2e|v`H5=7z9^12R^3;d&O`61iT@h2YF%)Xm#$*hO zC0T{p^sF(c{Md5bX)fRSdrsm_b81lProcsGir*t+I{&M{Ye#bkmhww14g$oZLJC~S zVRI`acL16bA7k~2NlPKm zPVO=y<*Ev`sI}q;3%OgheKk?r9fEw4KL|H-UV`)TJ(jZ!q8-~@xT!@tLh9+U!&Cy#|R^fC^b#= z%EO+ORu|FnoHo&yRLUC$M8eEzzbEq?ZOfH|CQ(ef2*>3-4@)WF>}f8|@hl5Gpg*iF z?J0o;qc%jEKN&y3!0#vgj-&@yAH(;V!B~e_^%0}4TVs1I-ftb};RL^8!yWvh?05^G zS5Ul1WBIC}cg(dwx{f7!ycyekgBPljtcPC`EXyVAyg2@*D;(l->yZtx$E@pF?H#C) zE-i8V^-zS*m8Uon-W5%tUV-pMa<3)KVqg~@!9?&rcVIQ9+>T<2-}D*9y_@ONtD zCLGACykb zo4(s0F(&3niJyh+PUUXe@><0)K8KJ^RsZu$75*EFJn6Ss@477s$0AW%rablrV4aai zdSY`jb#f5c7+DC6qtux@+P|MBA~NRr?4DZZF!BL$0p>5BC|(9&Xi*WZR>Y#~*4HGg~k#FHRwapS^sbyT!xYr?>5qgoApt>htVW5>{$Z)o3k1x zgL`5liWXP-^GGope2BklEecf+GZKxDP{M@#OW>&W-0>V}7fIUEfvklLS2l@bDDoXl zN3j?XDKPwjUYQC@|Bw}lbK68wa)MNX=0M_j1fA>?Xd`aDiWjs{pq@A0xxYE-sYz%I z&x*cG#$MWUK<))ypen_~L?}e#D{(C2x||GG=eQ55<&zAm3_|p~rLO7}Cm&$gMx!YV zlI0O}ys>R^%HEtN$30LoDx58b5(@C*B7XsXprd<rSA)gRV5)4-qjnytrL_O1*Y35RQL z0A8X#dmH~vYJ#ahd^hwrltl6=Gzdg7BShPMF`g7JyhqTjKibdGo{QCI8SQDo{$_E& z;13p>|LY98s_+@C)I3darx1_p68|m;HG&K}`D`QS%&=yr1z>navAWQW)=Ks&Nk~$2 z5+%hoPCmQ~B9*VMyTp6O6}CxxAhK;3o^nyY+OJCTX7Vb9ANT+cQ*r`mqt_k`k2ZCL zWTdn>;IH^?KgT+-O14_bkX+hrs|f#)}QXL3`z2h4#mdyvih_ z%r5UVmEWn$qvI>Cdh2=vb6$r{#qSVyM+F?;^18C$X|Nq!hS~{$6Gg}4fhw4rP4*8k z$Lr#@e=9CFmVcycP!`Vra`}$i;c}vHywLtgPKeyz&!UG%r_U@j0Jp6a4o--epa^%lJRMd~*rc@y86- zRuRSTm!nSlmO5Ld5wcy`W%G=v42k-gbsl$5w16pM(4C)H9F^x3`J010FkhLNo@^tRaaQA1z2no zpSA;Si81b~MYw9B>9g98kl|$XWEPh5T=5uZD`c+fvQ_nx&j}QcOGQ{j5tfxQ_KPKdeH zu_xlrx~=(Ph#_jD`nGxR58rjoF?Mlr)`piNyG&cbOSQ>bQr?UH_FEF&yV1xj{@`*h z*P(h*Vn-@(1&(VsGHx4=b8>b~egf8IQ6h8Xb=kPK%NyCGdRtv;q+TTau7*c$Ry$!& zGE{zV7}TOOdS_ySFEiZWKo*oeW~7|?pl6`WUQMHA*1TmFS#~6k%I`1L$)bHK-sD$L zv|uk!S>PIeo<<*&;E@I8`>MpeQ(Ky08vAQa2>TLfjLKbAhr>>5ozd&)Z8sZ#FAF>L zyA15c$Mp^L4-oYhc7mTF?5%pq>5&X;q4q*Xj3;efi`IRwPaf}HApk~bDU^TmA|@N> z|4%96X8#X3Zb9?Y9ms{;eW>YR&jQ({>(T(r;D02ha$ARmf|191%8#`sevKC>CB(m&K=DaX8~Mm=z}&U0BTGLdWYA65zWFt2vn@px(%1v$oqt>X zD4McNoq;weAlud*L+fruKS*opp!3;%L4wMDTzn?t6AXnSxPT z1ga)lgP>UNR(-1a-@S%n?%5f<}3?J=FbK4to8)RUqP z`6)kA8l{h9q&7rcv8+6qBKLt@xEYcv$b)chg6wi-3%D)VjG1qs@tP4`Ql{>kP(3!Z#Shj7j8s` z?xlK^44n`p7+wCn9a`d>QXy7=aFj+1!IO1)pq}%ti4A7yx1bkuBE0DHLSc+>YZ&d8 zh!8~h9LXxNL{Ac;@fdgSKIH3ERV8>f2*O0)X71MC7zb0oYP?#4$ZT&{b|T=cPj=3G z-1mj9x%7esHM`Eu#Vmmb3~6{>yS3bI0{EgpLZ*U-GIG*uSIiO-Ga)mzJo0xv?XOB$}S(ZEKF@b>PGVEg){B#CD-&7p3<-KgO#jtFC z*Cx>On^1YKE-4OV9gVI>H<4V-X-rn*LR9mr&H4T2$K+m+IIk)CLA#Y0Z?rXgFCH%j zmVzF)X3hd{gvm=0i_IJ6Z7wI7J;LWcJr+eN?=*pj4g-ltG2T>Zsg77q{nep*qylCu z$qKes`QR&iyR(&WA&+|kPn%$FcGxA}!^_Q99LSh2Jqb8#2k(WV&kXn|Gk4y(_km`l z(<>VK#>kf_LfzJ~Dp~AY z?iK=RS^q-lM(dF7WV1u&7Wf_d)mx_sTes2FJGGD~%|c@C;&91OcKeKU_iO=sQyZct za8a>&FoO+R!73C}IN!L6IxDApi$a;c#7?XZ`MJ6!SjC zo*0u$KbxqXzjHrD)H&7^x5NBmSzHptn$-NLUpFc1dPYs_kxb4bDq3+yzROj7y!K_i z17vg@w%5I$95o3wYH;X#Wr4#zSX`~Cj_f{F|B*zaNmT# zSN|QwFm3Xi*9|>cCZ9@$WMGmk1$e&j_|dF4gIMxHs`gcCl$QQJTNQ+sbjqPvu$fd$+x{Qyu(oP zZzc^@xu~6(4Q-Fjswo9cm<9n0;E)v&wjIyx<5AFso>22ozTj)k?H`!#i*5KaW%#d) zX_Gu));{glI@Ps@Xai2v?Zbhho4kOhzEk2>31^89^mFMhxzKb1NxG3bW!%#m2Ds7<-g(jXW z*84-#nfAv|Q3dEB&Qu3{6bH*qm;?};er!jpga=Rhj&Y%z1s{_l-BjY0I*FT2=tgrX zq7*8$rIUYa^Nc#5#)92aG2sW?vR7XqJ9E>HrUMJH6T`3Zo4&b+ zKrQ6%>JS@@(FNX#=|?O#Fo%^5XVV^hYom8}YQT4vqxGLzZ!5quIDLN-h|3 z8jNfiq2l%FgByUt0l5bf2bZ3e8V|B-5wiut1m^_@7Vw71ejz)Xn1QIfi;|ml;vrN2UC8;nWJT zaQgPdY>v+jaOK6c46cpI0<46>(7g%o8!mKV&hUJo_E%xaw2DP(Dc%b+cag{C9i7f*t+AVzeNN&8;}G994CvKpyOOl&ekaFUugZD6CV!&+q{~+~o5S#(xcoqs>|8Ge#(i!@D7q zH#yjvz)kH>G()~IROP;8F14Ga!Fdb0bl@zce>rUi3ISUzoUMzArA;L>F|_m8P0?~lA1tW zgroRzGVAEi;)uo^Bz6^^Yh+_{DvI%qCkT$NoNp*I3^_?l%CYegMMund07}eWB%DGY zkh#ayKk%0&Xsxt_9Z~=N=fc7}^`>&XC|)*VSSISw`Oz%)Pn`oXbJ=T1JC{p zL6XtW`mks;wD5BS3;uaVFC3yj6Z=ZR7^bBmt0h-vE-c#{*$V?a*^DaL(^0whZ=oJz zkM@37T73yQw7YGCUIMHM~;cz2ZFMZ%3%68heIKS8+E~ZXW`U3SV z2$eIa#_)uC+t73(pH2&=#3$aKK@bjr4{f;qhRzEUZNRBxG8E;asa|jp+0qu~`l$QD zkaQ8Z72-$hSEf$zkrPad-e22lw9jZb7Z8^QNCBX?X08bTlM<3>RA50l{w)zcg z)*K!}7;7A>y;R@@ig52n{EC!uF_RwzjIi=Ree}1V;DgEJpGBPp%=70;fsrywT4r<-Z7f(t^7t z&p2zlQL&dL*Jf%L61QlSv0r+-7%@lhE4{ zlO#=rN67|xu5g;9o*_Zo5Dr+>1z-^$PMAcoQA40))@bMF%JEc`h!*fXb0ncsnlRn1 zv|*e2d#_fli*l(GQf)b$3A+iMJ;e8c<>%s4Z^t9=>|eKkkqL8cU1&jII#mk!iJT56 z0P*m;mmfY%xl|w#xFE4&Px)JT-zAsH5jSw^*u;1?l@|lk%HCAHpb~Ji#A?o}zQgyZ z(5E_=$mt&fwU+&=%P`;J6mXxRhh9Q`X5&33cD!?KhKi;&1|oH;Ce>diCIg12l$4$A zLl@syLA2o%kP$9K2uEBNHZ;=dk7I06e8(9P@f$xDJC0&%Lf(;1Ap^v$97GJV*Xss4 z5xmf0%sQ|AYm};8?=OHBi>M5%=^CpSVRY^?dZH=8G2~9B&i7L&q*_icog37>djkJy z*kWpZI=gEwvhDCxy$ak;6s6^Idt+jI#!j%={o3`&|CtN(*QQf_C>+q5Hc>asPyVVGmqc1r zr!j|zm|TxXm;dAnl)aQTbBJL?Y{l5C+lAbaYv^>$oG%R;o9j0PHH@bKHm6rgi|NMA zgSEBu$q7(Ar$Kz9%RjOZ;os$)yJak;VbdGUJE5{%N02J-GFWc|GqTy^DDxK3DSfDN zq~i#`9NQy<5dp2-^Ezo1cvxHa(}uVVY*GZf$=6lHB8st(O33ww`!TVi4l~imaXln* zOhsp%>3iX&Mo->fQhvOgVA&K9L8j<^dX!XpToLrx-Vk%%k z$666r68-JM&{0tRJnUj3=Ru83oq*hOp%hx>ESjz#1qpz5*uAsvZH8P)eWSD4_>8&!O3c=&BQ$s?FMtZ5J&Q}!y(!5tFb0*CEsZ1#T0xf zN!CtkTc4AIj|xTh2mKNbweA=>UUrqTftM=o=*ju@56WeoBzHvjh2135TV?voY$LcyC*7be_gvfo51;$QI!b7nR4<&Jra7y*ni)f8o4~HI&=Fbm{?Fm*+Q%wa3 zX6FYKHTScE8g&nTE@0s|!1-6UpO;?2s0`X}s z;mn4Yi5_`|DYu@e&eY0|siAfF_tvxd;~&sa{;pYio>WtP!<5ko&Bv3PkG zpm)T3@z6ybiQbn#xZixeHByU4kwo+i49u2>#64%moBXb&_1wnaSK>bSd3W7=34MNa z@%TDF%eOrg0E_sDz|D<$?;a(kcaWbpeD5H*MpjS+HYvGe26+qi)Q>UyAL?dLFltlg z-FnsM$bp+0RYha*JVB6scAkI&)c%Ti-N0Y}2XP z$kA9Y_HVLXaq9MMHjixb(Y(86V>vZ29Hio=k4%2IGqs-3b@L@*&T~UEQ_yb^VDwAH zvTo~(vi=yLpndWw-nU9&M>~R)HKG;8KOj*9ysuHT@&!-`Uq}nIxcXTJ zr&Qt4Ete&}@wR)VlxUd~r2KIqpb4hK7p&%r`;-3&B&TURx&{W6*(qL3jCl2vJXfz} zCGXnxcIh&=-&aL?|E==U=XX_KSZGy}PF>egPhV=1`P)TJ?n~U?wpr79_WVU%D12|j zmNzF&ZcRC{*O!CkspSgE3iE@AGY;5Vd~7>=?(=Fdih70(LN__A5n=BxW))tVp0D&_ zSHKShHbD)~-GhnwC=3lX{$|J&q!z7SJ%)5*ct*s4b(C}bmYuKhv|PCZahVT|dcs(* z)MH~qZOczsHXyxLW>*>cn6f<5W6=1SZF&=|Q(N~X)$cx9r*%natp}+grh+opi&=eh zb{;ElwXng#yXm4eNt;6&PM4UTL0HF!CZkFLSbcR)A9|VOEnc8K{*5s>R=fgfiR*#Q z7RJVLE^WQ?fFdo+h%6}B<+9PLyh3fq^0lo$KT)=;BuTNsNQ~FxO(at{uvyZ#uK5W4 zdF%uHwXh#`L?0B_1#3dz~vUB9`oe+l^FL(0(BT-#(B~*l`GJ$%*roT1@?LOtZfnTSl7)RtLp{RsDy4 z5F7}1@N`PsfcdL2^4`n|Dj((3{&$aMOAAo|^^1I8&EhY$f*k*duZ|3%;MIdd)CF-u zXEj;}yDv60X-viT@hBcdgr1=4xHCU*))V`q(wtI)n6Zw}f6j5V5 zwH%UE#^}=3K6nH6`k6d%67=LdLbJjXy`e@F=*HBg^`6(muOOMT4J|S2dYy* z0e3hYUXfHu{ABJ*0zOukfOqmj8aObf&a-7Tm}4KvWKrxg(g1ttn^jJ=ALL(j}bol9BtT4DoQF|Xwh zKuUhypkYmIXro}NREwNz{ez?!)! zX~jz>{X%D+b_HVtRu@*%*H3$rIl*!{mnN5x@==n>h;wGN((qkG^{(Xie~N|Q-7PM# zcG{kHI6%rjbUO+)Oc*pa!h)(nZSG`O;S8xG z<`}FfrZZb)i^se^Jg?L_Mi_6ky?p%;tZ{l*Oh=dUFMcT#dKN@@MkB2Ih`B+UZeYdz zrveAz{6r(5|8t?|^L!exp!py2*=3!PJ&Th3BSlDI8v071IFhYZewYoSPF5?#+TYsh zjq`&gcPg32k`lBLEuv#_AB3>M%Pj0zDs5C5zwW}KRO9jb?h$O6-~*!&l640oy`-^( zp#?)m4*m5&a&)eH+Uz5!OTo6kZeDi>I$8r{&=uSn4B-&s0Qq*L$nY;01p%^N+e-@S zrBS=UyvnKZjI83oF_S#|OAhh&*BK;vC;n}Um6|1k3H9SV+~n+flXFe=#P4m{VKKno z{wzPH>DTs`ur3C-eZRks&o76y%pF&q)Szbprop=Qg4@wS4UrSAVHh&hO0{xs>p8a4 zj0psjWuzH5Kn%A9TxqdnD|j-7aX9r|IRj6SHiZxlhQm7qG1WosUkBJ!IyZvfH1Ls5 zn_o6-_X}3Ar2MU4e!r~R`sPvI(bNr|(QJlI)voh}8JsT&$o~)*$%4`BuzEV{AHgk_ z^S44+{UObgfz+DiTp3J}$y+)al`=2FW5%KcC;6{W+)JQsL$;LNL2UHpSu{*kccYB?6z^h^*!HgAkyDF?~ zv*M5W8z_NK!jZo%N?94FJ(1!&k$a$>GssHl=mPTFX^)1{!fd5&M_Vs*g<)Six4#KH z9|Z*CGz?yOch~E#4R6tqAp2;nbP|YgeTn7;nK>lA<9+bU#D4KdMV^T zw(`H(&Qz6P1cg1QMQhj3`ng8ucn!~35$_#g6As4#!`@AX%#wc8oge6N45`Gski4+E z*kXAaLpBQwFx&WchWi~guLA9r=lnU)Jbc6G(1RUwWy-PF6;sc;^R?NMu>nf!d2|~o zAO(}B>KB_ysdIo0_Fvf54~?U%Fh{=Y_wf&(4-kC_UfX~BX%rkGU{X`seoX@X6K_(_ z2@7p#mS-Gf06Q<9CW;Gf5kLWzNiZ5su0l-Bdt7&ki%8CZvl6*2%9tr0XaDqvhfGJ3 z?D;8jLL-uP=#KSId^jy+=y&(f?@1!_`uD}Rrru8KcN4_rLB#$sn)4r}f zqWlX3dQ@uFFMl!;;9H`QOwqpWt>WvrTbopRWEI5wysgH8TY>}04#nEVXAJx8#`5$S zFyU)HJj6~cjuPS)>rFrYd86HhZ`-f=xO%A8TMH|^rF`+sYxxxPqvFO5^H{!{T`9_f ze+v4fX4&s3yVO#`MLxW*qR=1%#R?;9KDhYQi8H<|MeTY(MnIM(Irj06aw>|rT!g5r zt6Dm-=%2wZ5iYJ6Lj35(%cjy5dnE7Pbxe7KwbtHGft-V`_POpnh<@!LMo{f#)jqP( zBFbhLiI+0J)~+$@n`$$h*-jmzr>95pCoCW+x<9!_`qip0pZj? z2PO9c8WsD&ONHj3s~}F39_r!)lR=b8DfNsj80F<2siZu;@*f$>k;2sQ@Ue&Wso6nJ zxz!n*|CZG=8Sj-S9Bks9%n{{=KAVcuYY9rU0)*B0@YaxnnF$UMV)wa*f9|yNG);Ar zU#vFM;;Sb(7FMxhTVW-YVM*9GAs<(&dB7e4OR%lq#^Q6T^`$m!Un_E{@w6DJl=}%d zQ!IoWT{FoQsou%;5LHY;4RS-!6!MzXGS#OXX%OUX5m8ldQBzi;)Jo0i1?T4BL1q?? zm>1n!Tgyn*wc8u^W(Y4Dp-xF%Y-M%Lvvv&E+6L~Cm((M2kiB(RwvJdQl(>$D)Kx#R z`bvFoa@P4;LFNbJmPO9$_wjEF1q~hA@a?qIQXJT$JmgV6rHJg;L6d7!wX1o(eIzLB zx1$kQy$dOMvocwm?iTaJ)y$p5@|JyXO+CkEF}W6O7=`(T*VeY~S#*+2-R!j=OdKtx zc}TtiLgHZ04syqiP~2s)Gm?dr!;AhR{%WAa$5kOOQ7pI3&3G}RpRHT8(d?2f?iQh; zd7cJ3EfkAKOWMLm#P}1IYvdhV_HUsltgXkLw;TJvA79{Ut3LiM47mPbCVdVGnYjLQ zt?Yl{NJMBti=`5*rey={W(uiR`}#oTo#IWsYO3kE8}aPleM1YWWMRAGhH-8D^(Ml? z1~cMV^Fqmva8PbvATpZKbzsk-(ut`QzG^fG$+5_32U^9XVtx2E906@w#DUni*6Bx3 zb(hbFODjX;<66XHjuU91W`JyQJrN$Wu!GEuO~4;;z^2vsXJS6=c9~rx%aSoV8o^oP zq?>;7l3+#wJcB4j(8d*#=klMoeb|R;k~x1+CGC1 z=gSQPCk5gM2be!XJvy`LnPfB^-U$4D*6zRblKA8LEPEwJ6odnyC}LtThTE#CR18d) zZVdEuSol>ft-GHtV1p;yoHoc>E~s>BOy8KOVb@gORxS=C{QPI_D30y4mnU^%feth+ zof>RvGtQ=N#`Pj9+;Fy-s&>o+^#Q8rV~2W(A!E|p)X)?S9W5F<6mR*RTh6|hvE)sB z#a7Y{9C~3mO-Kn~G#$~fWofp1hB+tIT*x8-!- z_oZTkAR?98n@gkR@=8cU(wXx1+wMQ;DrDlf<6Sn3pKD5__ zlT~En%#v&C1)tpwQY&|`WXeLTtRSOG7aVRSeClh^(_qX&h8{x5?Eb%gd@i5YzBiQAE;;f>hC}& z;=8;&dz}(sM(Jv-jT<^qj1OGZjj{B&JH4`OFc}D_=t#2tF855;e&_kqF|)kx*1|-> zyV-yp%t3Lu+h-ozH$?K7H0Ul^lK%%>UPJtKqQL5MLu_~i_(-xSWym6m%}D=B<4nsE zS8V%<{_-Q6sEWf1?=*|$gY@j$#fv9X-fugv6yIAw#a2v}iewoqLSA5;?AB3sEeDkA zT9W+sC{8d0Bs=-tX!sDIdc7^kF4lMs((Mh9JltB$dt1*GT9+BA!EZOX8)DQ$C=kfS zMXiqV)%?-fDPGg$vv0K>hD^TBKo^IbyLZS{Z3)7q!AkR`m(*aJ(sQ3$Hrp8s+??jz z{%sL}=X*Azb}8fwP>Qd>DN|~4dT8#K@9JL7U?J79@E%;)7fEX$HvY*C_g=gH*0Q?P znp8KTD$m(|#t^2Sgg`)9c~5gnpG)2+?+smh_A)iPgbVSY>Dtqlby&QAo23tXW#s&m ztHEAwFk<0 zHvnqP(n8E9Tp1I;UiRvCtdav2Dp3qh!F+o_g%VkF_k$uGdWEw= z4X(TCu@Buk260*jw$b^9TubUtn^LlKXOjoYAW21voq0oqaKgO*vG6uCRjAIw_8YK= z{et?Hwvk+hSt&7OZ5gO-y(6(-CZ^^rcMdT=2&551tDo0yzb9KQW(cg4$G}5ZPe{wM zoeABc$vSXJmVp^H!HROP8&N*MR~p<Kf$*tTA*T z-Z8UWiSYWA!lb8>YX|b)%E4QaKmlY@871@1jNakYPp5U_x58c#_(>c-$Tyr>woC1dd?ZPuq?p4jYJ8vH6&^4Y zxJP9-8@N5Y`ka?yd$(HKiBP;@MVzrum>$3Xt#?D?rdt{uEDgTRw=HbU6+Zm1cutXL zGj+}^G<;C4fTX(?g`4RIu&aT%F(BHSOuW_&-lHP%I?xo2n-LmD$Tl`>?Y(=vp(Q<>C-1=;_- zWJnod`3!VOOHkT0ptP|sVeId1$k3~Uv8U0yF$Sksd;n+nuzQZX!G;}X4fwLT3e0PL zSZ6P#LvQ5(g72*k6XxfQY|2u-CStexC;pSmuI^|oqV`J$1-X2+qrEr>sm=#z3O3hS z{y#8h?th&=MsZnj?#|-Ec(T!77^mX$HhMuc1@lM#?JW%3(7=hfSlIqm3N}9D9gX=P zaPH%egyjnU_tMH>WOQXmf7A%kHBl)J+vGY9LV8L+-X_P!Yr7n_d>JAJ?aPa`>#Rf0 z?_o{2!z*E=e}2Grz;^tZLz^lVc2Hq$h6Y8*!l(vr_eUiGABYhyq8Rhr{EqhJhXdP} zqenR&3Un#c_?DN6fP+Y&;9v{F`eE7h-qB}iY{p~`^KAk%N4m{oKe5W@5B6pZWKx#q ze$C{Rjz!b4gVsQ#_PeLpuhd_m`?@)<7F@?6NP?~uoI`^~s27nhrsmA)3I{c(_fI`+ zI555TNqr^tfd#ZrtlRw1mfG%JzJuIQv8&G>%lJ*O36h`0zyk+>Wz8Z$hQJYq#+pJ( z)u3{<4q6up(RTVt7fxS8hL-u%O~$eK7iQa#S93PjLJ<>mAfq{$iZ}DA+`*eA_BRd& zFOX?mJxA&^XH?GM4JmyZU!PJjxl!xs^3VJ3^9)K}X#OfgLWQ5$l1`CVcxc;iVhq3d z?7%$bpqLwBorc%}!yqdfY9VsYeB;PwNH)J9E@?;QEj4k|gu=qU!l?4_6r@r8hlNVm zv&4Dk$WYSzlt}NETh}oYSfyMU#C|8$x%R1b z|64akXB`?_@*)of$mL_5VjMZ>X%TzYJwEoFA}Wj{eJgGN55&Q&Kdh{9RrfuiLc&}%48BfUA48FvXRoWH9hUyep0|D~$NX2XyB z7j4*VD6SK@3vOM6AY+FWzs+G&kN94RqBKcO)6J7u))JoCuMu@1BCgYAGh(4&Qc~U$ zy-6eTlI)@nnvm*WKBALT%7PBbbqOMi3rcCLm7Y~6a%}`L3`RzAOcbBb%wW;@F^+oze}~B?oP6#@Shad- z8@lVp-(E6-PZS)fWb|`6)Dj0Xuvr;KC+{M!VRHKloN`>#wvAdIg#);vDm1!PJ zey16pH^aFOZj)Ru4t=~u`O4G(a;by1ip?xgz;QI9R~GuyC<(hgKDpFH{8((t-P!iK zo=bvUd?~Ro5GvRvZ?p$O&O=JhzX0&lxMlIbj(%&hGh|T&Z|LK~0(cK9qv}qA>6=p& zPj|QQd#@d%*{&iVLg~mXA;0K!|`Ju9d zC71?QnBu|5w@_*spCpO-1Fn<+OstaPXTayHxBiJ#>j`7UUHc_v-CqNwKnyn_!z!yN zoe?&Bj3eB10s{gws}>qH-xU~jwEWG{Fc9Es4a2J*`q2H;(u}x?uW!+?UM+B%e0yL} z3r9ds+276Vd!jRnv%XfmMm@Y9m zuFhULqX#l9V`}e;R6(x+?#`4tU0ST@KQy{Qg!*RgNgW{%Q$*1iaYAIS`T!j#_WVH> zY6Nn4Zyn(y86t<8pV+TbB|3!=<(+8phGYE@#tFZ3Yt@3#>YkXX$t0&}zF8|7JLNqc zON)y;W}Qbb#6Yo8QQDGvb~xccm(!F~cvTi~{+%zaRIPJRWToxWK9xEe4>(0+o1D(mM`pn z{cQogwuMbka(+2!RAd3oQ_i&eQ|`-XvvblS@!lLulyUt{)YXOW>K5RMc9(hS0IlgoZ1%epNg#Z#Q;6$Z@d6 zhTrlTPc&eW|VKTCA8 zKY2uc6;R*uwL@QcJHzbyJQ9}k)7C?Hr6_U&qXGY8dH26`gVOeU|D=P|a$r}r`6Tw` zr{v4li6UMs3Lv(7$JuhviY22+P8kDy!}3M=Cdk(E!M&J7omexU4>M+Gz;uZN{kn)E z|4B>=LjT_qlMpbwb2|UT{wFa>11j;6;o_~f&BJ*VJ|Dz64{H@Kt{0F1H9*!&C7Qwa z64$}AS-mJjz5wHQ%1-0%)^sRBChOKgcYAxv!?7@W5OGrYtIg4X3}bGJs*)AZ`@_w@M&mGxb@jam+ScgOxv-%buYP%UUOiCN}*I8z8Ts)akAI}~v( zg)6u3I=*6@hWz3ZY#N}3!)*RgR#V>QhEiGtSb0~04=m_MUph?e-Qntv)R%J;Czrr_ z)VHQi*Pg}ZI@7hMCO4#e?FII=L($FZRLSf&G1uz^LTJnbg1~u(9IH&^i@WJoA{vRmPr>N`||Ta>8@7!JeH@Aj+QTiIeX1eqtAbK06FJnfJ9LAtT;@kU-` zYs;MN6XrmKFV)33>B7z5`AZu@%>jn)kFID~QrLWH2Mj*oi37b7N z@e4#w1&fdv1t+n~KV1DURT|$V!+uE<&7fNR3PP*ubV~=IJu}&Z#`0A@9Al=lTVK>- zCYT3b@Iu;Wv7o{=O}k{fn4&TNs)6p{=NJ<0V@mW9sQJSzG%+_*iWF#1wACbOL5rf$ zo5~!tUrl{w>uVbJqC#gw-T69<@I{M=!vu5gKOE_{KAHs&@paIp3!Ijn+g~#hsK3>o zbUosWN4T$C=%a%N0Bs22QwqdO~+)?Ko2ifMEr5eq!8U_m;=e@ zQY{Ygqs37>ig6rjT1CP_=-2{gfoT{VV?ySwn5l#{RLyK(D#{U0IE18zn05*|JJB}u zT6vvDYO-RakO9L8xQKf`*`8R6^)zuvsUn2Lv6vEob;osxG)(q%hjk~ut&&y~`={Y! zB51kD`44KpvJ8<5j?&DydsjQb8T}u2)&u`~Au+chLG!yER6+0MAfpg)_2axmUXtEA zlo%ZF7f`MBYT$HXG#9~o8kV1}4W!tHsmK=tjfxETqu_-QS%ht+8lCj;HotxCX?Ar` zY=WZ!;+nbF8We!20Q*`3;WxY#yyHJjhd@y*oC|s*-!~s9&cLa-j;g&t$@=4Ir({o7 z=i11Acr#Lo)3fA^Po-@ucPNce6_S+?@zd8EjUG#?MVUh9mjM$qm!apk54kweX6xgW zZ+nqo$in6Z!YxP+2yv2+10;j*Ok!qwo~JMXwA+r4MR6<`9no#whj3$Xh3Go-xpEC% za~GG64U2;u+}9@|89IBHc+HwF*QSrMZukNphx_$t zTK*1|);B#kepZ144r>D+&Cln$383bZFIT$cpYmGSpRmN>^u{Sh8qYLWE<5jM0HHT< z@ca44g1>zcHN~_6_-iEKV*K}bc%UKu7q)c$16$6wAA_1x%8RT91M(##eDTz31JF>2 zpl5Qn96Kc0alf?(gB9(f)O70e?%5CJn9Gim=k1RZR5ikBhhFf-D3Gv1(xB~xg6^fm zIsIOF?Yb^$(yk2#89o9=kl`t**z~cv!pDP_P6Z=o`*wj)ms?7v15k8`YGfFh-nYK0 zPIAgxZ@xBX9D6zPq(N7q=&y8lpS#e%e65y@(OM^KSz01UM*N+KE7Gjtbg@-V)<66q z`n2b`*gZkm{ysB)MOd%+*vxP9ZU@kAiW&>#Z;3aMrzKtY`h+&eNF_h&T!H<2JdC2@ z&wd<1i%%Y!gDGwUFf^Zv1v!!F96n;OtPq}8|p86SRzIzgiK#0qT&oIU%% zWZ7`~93Sj>x+I~`e2b+NtEnG8c@@;-&Gx~8EK02lVp%oW=HbP5^?pvh2_h{z%1lI< z(ZyNE0S`AE@Mm#}LfQsP7!-iTS76O0qmei1F_219xH3KjeBB7k4-2W&5)E4K#geoQ zWdjZ(3duE`o$qF$A7BQ$#0@y{69OwF(}2ifK^p{I3S?jqq{2sKWstf{ z^Bu!l_fcoIBm~GfZO=dhVNsodJu&aJ0+ZaTuBRDndvWMv7wGNz4-+6J58ON|P129* z=;t`GIC3lj(w;7^p0*^5hw9B1w%D-{v|b8W6AISGCttQy4dm1`qlayU(_|LJAs#D9 zMJFs9CNok+`=e=?zrq<0-&0Ac3NQ+{_6^G3^~)sN>PEx*veRIHfg2Bpb!15_#Y%h+ z1w5%3OMzp-o??;#PqQkx{Ys-UorPl|QlO8M8V3CXpgrW@6KGmxObJs&hoCNBQ=ngX zI;l=c>-MaxDO}KEK*^Y_*`J#wB02`BZVP8n_w%?MFk#_PtOqwkQ${*h2!l zSrp{3sz|5R(KUdaHFUU2#WzGjCGw}`+x2!ki9@s6_PI4orgu!wjTy+drByZ_Vuv$~ z)JmOO0NZ_wmj0O80eNIfiuPQ~26bPHn3A#QnnVn3JjV}0EsT)30yC;ktxd*)R=WM@ z1u(7dqM*t&lU1_>Dt(Hyj7n(tZk$B69ZywkySM1NOLsrx=(28jO>2N%N)ZRiK-kWQ z>&ZpAOHcIX`o$^zWc`~GJ~}L{4dA|_pU%M(X1no2>w{1qP4WDn>cnJX`#;EfnYsRP z$<&Z`&S3mU0vK){n7@EpG$+j>SrRLp;Ze-ui&q+Li~|}Iz45T6E+oJ>6kF($9w~VH z?c%bf;vFc^4q329Ug8Yq5a!U!-VDkpVb>p81bt9|Tua2l>DJMDHnE0N08H7rn-TSX z+iQ!zCiI)RI;}tt(_TXU4j8xwQcNj;NCOlnW)|~GmYMKL#cQSKjrNuiUlcS4`I4^R z8Glzl%oz4bf#@{;055!^fb&fpGFHwBY@ifB;VR&bqeyqp&MU={2gJap z>XtZ2qLse7oH`NAQ|t{q*h_^TuG-QBIx?)xMv{(xsmWum9vUikE@L#AYACViUrPM|GU9;> zg@#HMl>t70L#>Fb;v~aWCD8o~&Z*K=f!HZ*+XpqzBKm38G{mq^OAL)Dq=^I`_q)O9 zSe!%)O$4x2?rlt`%nsv56Q(uKq=hqsIKOJZV?CUb?F_a7I+{7(c7QhErfuLysA~(z zGh7fQ4Qhnb&4rM+7*M2u8U=JfwSb_ZSs*jjVr2?i%gRwL%OJzAv=+rjJuuvPE(VWT z!3@u}KS@SKA*KzX_*d7(Y-d-^O|qdaRp_R_Eo&X)UZxiB3VsmgmTj@m&@ZXsE@P+L zg*?oQ0c%GaiG$DYM7Qq(QZ%TaFx&X9>dmsb$sj7mqp+@ArN5O?x+XZ0a^7ijQk!Qj zr>z{Umnv{NH|&jkAEsoG8dlU21PndT8}{>+CS{B(ap+)BzqV85o0ia;VsyB&j!&fb z;10HdE?J$p%tt5EewmOaEk|XlN$Fa;b+{P4H25(B+2i1tUZJQ07$>tHsLNf+E8CSQ z8GCkODiGatTwR8BulVh6dpw<$s0df2+_E@4e=?5mg=lgaF206fd(E4^*pwH_>*~2P zns?5KDx(auk-eCA`bHD`{#y}L1W(~>~q{0Qiz3y$?$H6ozm8I%SVh5Fx5 zmV6K7?~8n znHw-l-drTVx?xYa8lGz{GV}TsRu$+Q=)1Xs9GF_D!4goKk5wwt0CykTRZZu0i)t;x z*mT9hqu{4wlkPdk$9=*W?Qc9pF1qpk_usN5S_S}}KFmxX_dl`Al|~iUy{FOr9#zHo z7Ikfr9b+#ZG+d^Q{*uJAb3eu#{gsUz zm%lr=o0`jESu<9+?^jxZ_;voJZZBW)ofIks6*pF)NJhiK%nM5uOw`Ddro5I0Zt7-D z831+ivg2J%3@F-?fx1wZJCL8V<7PpxAoZ=I zZwAA_PMfNuuQT#=WrL1=T%6F<)M}HMW!fCtPa7`{C(H7!zEz}^Y|xCftv9P#fY<$N zdp@7GI^k@W;L6o6pZaud2)JUfaS@ccxZ`yH#2F;V>${D!@9iu(Pqx&A@4M-ycQ_kjDS4< zkYwrjV1W?{g;dP~xW&*5a+zbpP|0ZS8t~}~8}FYAl~E2h$+cPig~YOo=y7W19=cit z6oLUsChILN2(c7hA;m}ZXf7o}d568#DOvPdgBpLu8U^Rmp@4ATO|3Tbm5KhO@EAZqAQ3 zh7(fqfm3*&Ap842ufw}pJD}J{?{F! zk?lV^7In=pDh`t0W6g4hq6Fv4tA%1NodPDj7ONyUm_<6|Vlnw3ifQDZ`zxODgQ}#1 zA<@~cxc-ClOCM(+9_i6Qh1)&otPboh?5-NeV3a&AjXWq0Jgg;?l*GtHckjfmC-`KA zZOSW$+*gm!<(#XdZ#D8E50$aU!WL3rt<}gC#FY-_e&-hXb-qormpKM>UU{# ziUP+9C)m}`RO>tr_+_2A_b68M^t_sUQo3{t4x`9ZK5C?x(IW2{Z;mQ8_FF1Qd=8d4 zG@Dj24$kM^CXE>>`~j&2L7m3fJBw@bsm?^vWab$kh(&0W>O=5@4e%$dzk5BnXFUPG znBJ{=f4Ue*U)Phs`AT)FGjIpdfft)z-?^K5Hr!OBAD30RAL>4pCTkw}-o2>Q?~o)1 z%z?C2m3#_@z-jGO;aQkz6{%t;cTBn?3Q}{dcwLBQ|6J?!YjWY(V;}9`YN&(?$~dpb zHIu|Tkn{s2p_7Nst_dg&3uyic1S$fgS7n^2cCE3h*)a62+Ze$_sQRJzQ1XHGD`3dA zI9#eT4Pdy`+?EU0mnRGUvezjK2R66h6PB3KK?as#27dCCH#S1vr^H3;Vp4Z!t71R$st!u4i|gV6PE zi-FP&Oqx;c@p@uM{~WSu`CiU`48R2~Wje<1SzXEQujaX|#h|@2i7He;9UhkdnYmZP zF~Xx{;iOJu7soEJ7}8DAy#ozUx*K068W!}JHt@*uD3>&aO9u^#XCtaw-b=HTimX1> z8)A26>k!*pTE;mBB7bzYO_$WU^8=C*{v{1Mo6J`6$^`h)86y!7?dT(Md>mW1+;7H*$82IVJ!2RxnG7Ge`0 zlO#gzrXXpA;6Pxa(-`iUWk>`{fq<-s+h5TM8)@E zP%hl+#QF`~3%}a#-LH5+3EJK=Nf5icl<``{i<1fg$85wrNhU%}yFvTIJTH%SL?d@hGF-if6~R zX~JFi$fmYN)Btf$uch+3UYT~)#2V=%!Em@8wiT>7O(@o|$-R&glcA6NWE*|t$@qz| z1Nc2fjmzimeg(G6Odu>{)nWVnru|M|G&}g^-=F?^5%lj*&%*N0Pp`gaH_wRVd!?S* zA`(}2^_6f5^MeElQAZ7=><_WcoZHD4m(I@e*?Y*5owHY$QlX5&diXoRG#3kjHx(E8 z&yMxHe|fkA$p6K|H5HX}+kCG-uK8!0{y>3ziG5r%%a(U@Lk#}6ag0L$GfgW39HL}m zMhzdzyGCHE8$@IH$6Z%sDmsu<%qr@;Qm51BzJ1J@Kyq=c?7pq{mz&)n3c4WU6hM$v&0S*NolU%vRnOjGo!DiUsS-C>SvOJ4!p3(z=>xeP-tU1UVRM zZRM$wjHS%KF$#WmHuuwl1yrNOGYFcBVp&ObmVfK)PlXw3%e@=UT$_-l;gmY#?|MZ{ zu9~h^%g}2>@Xugm(=&JJZ^@2lpjJ#jh) z39^DF)2mP z>TiSjO1Ny_9y0UJGN!H{< zu=k`-Npo!Hmu|*wNXISY+8|2YvJy4*Sc8%!?)hMe^Kff?W)3mO519!}UQzT=VctAG z?wA4)nIdnPQiWtd^+Z2#xOwyUvA)$c8Vj(t+2yfyiO*zDFK|8kU&TK(^Z<-`R)9tq7Se=Cb#3Vpwe>RJysYu@ske$aI(G3{ z`vwh6=smMTD9C&L@%TCG2gG1WaP)8SPI!T#eX->@+5Zu+9%yXXe+lRT)B3%gqsIfc zPgUsP5eSpDZiw%UwT8BYVA^gS%TA;`vP<1v;))59A(HDP;4ps%3kT+IF5SC%2qs4o z7;lH6aijf7w><*vv5?c1|1QLox6@hCH8VSYJY5A{u@$TQs+cJUeoa;GiH~zfEp1FrPb+A^ZapA7 zi!1WEK-7(74U>j{88Pa`P$doU*krfc0N?KkT$`yu?DkRw%e#tdU`Wb`3c7F*r0A(A z1V`Q9*3A&KdcOc~4|3eabh+K4iu$CLK77sl{z?WW!o$|PGGY;cT3duLTMDWL0tS3_ zn7m2qIV;D5t4NqjRx|+NvAJ!TXcrUG1h$+^{L}$2>F(~rTkNp)0nac&D6v8f;PmC7 zRt7G&v=5Kc6++r92^E}2M8t`{Yf+GJi9RnO2$$3xbdQhvg*>rgcZF(B9ZRSafO26} z7;X{D;+dhd8mRj$J5UYcTyw=;y^N$J#>lTiz8C2vHqHdy#VR!$$e1#PeybPFTk7lq zP_ZzgfQXr42?)UUgU~qT;s~z;r0RaoCE(1XO5|-_=dwtGzW^Cq#fk3{!DOXEqaRZG z6Ylzh&yT;)85)4Nrsi!Q(`gkq8o8S5BYWnh5{U9UDJz>o1{8)Bo3e>l2jPXOjX7Ej zx)Kb|MtcMo%3hYucw#d`qd+}vfYC7)Abbpu!otjoWX6o>*(u~iH*lB%@V9%588`C( zRLvc(0f*@)42~M8T1}Hyi0VMfpy4T|w(B&GpjA2yqfx>YZMUG83a%`vmdZ=6=>|f> zz>pLgHEWLn=^L=|#6^zJheqJc=LF^V-FlY^?Glv7bvD5CW|IO242S-_jX2}`_1&{HnT=~S8X$5Mgd>c&9p zykkCF&wm(kmJpD=-%*AX(Wc)2tV(tQT$F4z&8qSDr&INU&+Eu65w$O7gUo99s&Pk?!lWhau|DotD<>`Dq^g znk}L&l$d}*pYYKr5Md+DfudrLmrGj(jlZLUyIqGmgXtJ-TqQhHA6KO;Y(5URqi^be z$YVHS>b^U(yB?N`I9UyGVc1)&j*I3Pr@U90o(+4Qg|FC*-Jd#p>*sx(y6+86k-T4C zsXdZfwmq|7MbNs==dNyj@5ijU`rzM&HLxp2NvVqiLrX!4215n?znI|vVuJsR3I6|t z3I3_w_#Cjm40{}+S)OI)YKgx9r_FEC4@&3ck23D;Dth9?zrw)!itgV9OUmBqkh;D0{W z{}&UuKN)#=xNeOh&PA4_^r6J5NKB5p2m)wTWl*ZITm_1qZ;PKi@9dPEbZx$U`Jt;! zR%ZVU95vFn-K$d7s z_I1|AS6egV_vG>Q%fTfL%aLX3`Cco~djEjxAP|yl(#%!OI7IoC>*v9}7AKe=wFyWe zO$)w$k}nfHRmSA;$RcI;grg==!#3r~I0N;!TaNDFHktzo zas@h6IL$Bm8oEqWuF83+aB-nv@{01^ZN^kd@( z?C}*7N1A5|N|aAWG`K8(zTLP9TmfA>t+fu5aH)c(0p!D^{inux{m^l+ zE<=iEPp#{yrB7BVbgH9Z)W$%JIt-+B;$7oWmh!EFyON9DNJXh*Qf0_AQ%cYK$&6b{#;?YJ!IjweDj%$#)rY!m%%ua2jE=o{#skBYtm4JUf&YF zp2W3x-8>xHs6NTd7LMNXx|!Us>I&5$YCS-o0%m~KUC?)KX?TN#g+E&+djcLEB89fR zg+oquaBQ?TqX{&kjECQ-@*N9 zJ}O?ce6acN$dO(5&&a{S^ly7nm;Rf!@K^TNg1(w{{a$LAOZl~H#L1NeFD%^)G8&Ds zvPPG7TK#y18{I%}%U2Vd6Gr5dc*U98%dj_-kh+8-=g*$)P1;G?xkujmuM@lt#{R?k zeQ*93DOZ}(p<`=1@?&RmIpwOvoPqv7>&6qhI>6r}{MWis=4ikC#q!=!$yvAR+f&QR zWO~M6A%=?D+REu(e|_8Q5P$lqQ=e>8SNEe)r0n}RsFa+B>s5ETRcOm3Fa4Y6;yT@T zx{Rkr51;glNvB8_ zprZzodD`8qhVGZrw=R+YD0nyB5LhY#(xL9wpj(o})vm4D|BP&YT;ympz1D_vG(4t4 zX;<+#O<%nys9CI>v!7jiez*ilV$>br%Kc52`rMycm=khB z^ygbAx-v9@BXAiwcS!<~1YNHbA|^Q=tl}b}>J{h)i-j!CeTD^e6YOI_2pXmc9iUD|A)zFYcUqnG9Co zHg9g15w`_G@-4=!z~~o>UdxQ&k%)bH;mj0}nOs={f%remd)#@EMiO{%#?U+bKYiua z+q{;XDco^fv!tTrc2oKa}Z7&0_*!%1=dXJT>lh zEaGl8RT=Ol#)ikTX<*@uX_Gsz`WCrd^t6!qvrZBQ8V%;1H^l~;nPhA;D(Y1 z|IjP!4^BSo&CL@juh`3E5!ch@mjAu-hC%1u8y5vb1B-udy z(vB5}gA~7W&i9cCn{X!7S~TW#fs_bTT(k(`?|y)NQ=b&gRc0^L4ejE#P}lTgm8;H< zsa$_9!e}k&>kQ&N1~5Anj?Wm;)Q2ZIB}em(`9x=8wqf3sz`#!-FmF z5kB9bJ72hx5zRC$`UA8vH+v1eonVxqeJ6{}ZVs zu8AOZUDaUOIR#MM`3VRrDriOsloL6sB4qGUHlL$gkG3ZylYeFtOiCo5-;h!v;5pTa zDOHrbp4AW<2QG%^>Q|3!CiNxt-6Lls4WRdjN)NF1|D;kmvT(gW>J`uN{p$*9pxYm` zb2wSX!9Q7}r}H0I&_fy%KrI;vlVoj?MVAQ2Xw5-Ctts`&)OLwogH`;rlAOqIlY{=^ z(#5S-?JS+?RJrEIM>*P>IevB`u7c4{Z<<87LVBGdCW9 z>sT~jnEn*70VJ*H1m`Pq69&x>jDt&XVlY&SCVU1=avZYXvv)4?fI}y3x77~vlPR>= zIuSG^a)h}BgKFYb=QBk=_Y`#mf6S#oITO0YvA|ooQ@$M%i63=82e0!nU&f?m9t-ib zzaJ9=@s*4=z-nGDY0mK`8E$Nv+S=gmVaa%tyBp^G2=9@p)!RMfBc7L*WUC7ez`7dz z_(7$#{d>w*(r7!p4v>t`4jB=SWtrd7OA^i6obDoo<2;URKqkyvp88p@oD?$vBLQ!_ z8^;oXZR#DDq8;Xm?_b>zX4Lk~nM+XQZ>r&cD9rJ#y=X!Rg9k&nwCMQ4I>V>o_9ar4 z7EQ-M5b{D16pr00`~~qVTaDIT3M;!vsJ0*z0}r))nhOkC1fa^G!V26~GMJ@rTaPf} zsuw#0Tj6g9I%st=nEWvcGQ%OMdz4YV-)alYkY8tD1f!$`FiHM{&Dir0fOQ z!v1AU@!(9h3t(|)is_atL2mSR5}n`CJ9z?sl#gHH}r;}SQuYM;W@=I51L;;XML%n*$LorqYHJ) zuEb!l&3Pm$L2cptbsNiJ(+8L$Z0=P$YrV&KcKpTNsO6b$udYLKUHX z*dQoEodGw$y|H9vj~KO)py^@zJC`4sC`%+^s@PUh^K5XIrrbw$NmH*?wxE1R#6y$<`b1DC&Q!tV;aT!EsUYsa7Ni!%n#od*CF8~oTrv< zmpF(^qEuQ5!98(rq`T9TniA)A*oYT+kIFR+2NY0=+t2u;U|O1EJncs{R{vc5vgwJF z3U(*0?tY3(ydtyaMB{gP3i!_K2IUiwVcuNS&kmOrV-!boNSJ~xN2R_@St>|=Ly&8u ztryU%*}cle)Z@=f)>pu9r#E>xSSDwDIKQ_t@3-yA=Wf9d@WS(Rf&Wq(n%br4aRNht zurs9?RD*p7OsdJ+&k6jM8qsoSZ(mILX+uF1E6&4^QO0vN@@Z7hY5cgDcSL=9obbvT zkV|AGLeS~ZpPpv1H#46Y0X5v8!(PJ%7Vo)1cK@#}>O3}fj<5H_@Bd6p*6Yi()v;MV zSXo*6P|^ZQU$nvkrn)atVXF~<6@vNKH;!IYCPdQeAnF0}4Kma8kaz=T4YEO>8{=*a}sZfwGWH*O=IOH6V(q$I&gLIosEZg zVoA}Kp<#oy&G~_?spcXI2Oom}E>I~h<>vxzkQD9tS9>$0GS zVyRdK%wa#rSZ+ozvcdouFIa_j!3wnc%FO6^g+_oexh=q$RJ3*suek9;8FOLg(@!u8 zI_0ZUtzbt&IQCj)%_jd0l16#cuvZ!@+L9b_)Rc35a~_ZMxRwU12`@ zh44*4)o+?~5JGSyC$31WYB&DY`a}f;=L%}2f@*kVdkiMv!#0Q25t(u5Sj5h>RGg61 z*!)aX6LL!DrGpBPf`a(U1W0CFFH|$r7!PjxhayvqMK=VFF1?`YiM&})UMUQ3%QCAV zBf6;dUC=ACsOf;00@oZ*bTK6%hm}869y9aL%<^XV`Uk_@8Pf@kG}YDcB+n%7v{M=? z#2^8{7rUKf8B^7!>=jxr=^Rr(_5EIxsnk?N)!601rvhG*-D~p(6QnFZb@^X&G!QL$(dh5X68r8XH4=*-P%j>02wE_7 zArHV}P`k+e&?(`AaLO2YVtIorkEA91c8-BiW;6B%29M77>l1@-=NIJiNa(4N;d##> z70zt1T*!hMRg0>c4AYbLcsf%Wc*n2a#>MH^ z+Th77IO`dj*d{Yout!hi6)9HQit~~8o06+SuAb;j*r9O7VuK9fv@_Gg$2+P+>74}-6Kq|G%td;r2?b2$ZGuLO0G>Vozx>kwLPRW&Gj zl#w3zw?4trII?#+0Q2S3r@y5lyV!LduYEtte*G%A{ zW%6|o>ZDapZoZAm=6!}t4g7bsu;z20%q%~6+U$IvyeL*%2A!2Iv|#|kW_sSKo;LH`RDZX^t5e}A=rbcAPc0u(Gx+OChUv;r_ooFc8k;p}SF_GSTX zh+c?aPmzuEQ#kB4l*0Nx;-%fN88d+8r(rUg0C$W}GU;UAAB?}a0dW8XwDb{j`H9NN5T zxErNvB_PByWe#8;>}bVM@bGOZ72D??%$Sdw*D`c=NB`jQTbsa~{_cJ(f6l>Hkn1+f zQ$oT^qa$qF;KytAdggn><%Fm;{s&!ya4`Rkr{`q+=c@m|;^~j!JSyx*CmakznHlkN z_rVSfP`=%>)@cvhmV9O>9dOoHfQ1HN)5llxUUd1k)BH$a%iG_;&WeH)58cDB{;%UyP`N2(D?JVVTjtrBio_2Pl|1^>cz^X2~G7i49+ z)9ma?7e*?+jL+Ffmc9grlVBZ@bGeI3b!jdEo0(0o7N8w6iLb!*S-}Okz(*^n2xAW= z*W}QVA8)uMRe6YfdkhM{HQ9Jc1K_<>W4zC(7y*xj?_4Sn%ESyOuoujNsOB|+FbY3= z=;#gN87mnboh#1fusUQ>0w<4R-Abda-bnD`q01`Ds)&6kKoGd>Oo%(lsK72euYiGg zV5fLB23Sn`ov2@~jyh4jX`rR8ujRRP*P8yilQu}9pZv&!h#>2#N?cFxuABaPZFg6_ zyyjF#^+tbO>!Jgv9|uMtt84|XcKh2N7ia3OoMJ{B(pHu?^>B31L+y~2dToJE*&S=Y;+9wKhF zrhrN|wqpe-Y?h*c-+A7j0p}z<6y6F2c`6_t?6Q;LaX^!xq}`%oVxtzu;zGqijOFq0pQUsI30SnO5HDd0scSo>#g$bsBtNUAiO|B0sS9{2rOUt5n z8XBF}xBK?TZ>gp~8~^(^P0{59h6Lf@_!|TW%E-?6uiLc7{|sMN6eCS$c}sx#GXt{m z*Y<8(c@+<><{W)78Abcd@9hOabhWs#{s0G;s52Ff4X4YKLBs&c)! zyL!|KVl=V6A~CS|J_vA~lCPKaTK=GZP;!)CmF~si&HwqVgcbC~(?jiz(J)BmdV>oo znynu^bPp%7a^Dp-0fVNq#j-2#`nk&F-}fnOJ5Y>!tu;@7>p?Vgy7nyJPzTZX|? z2TjVfHGj>i>7I`b2Z40UGH;l9dadlM#>HmG`c2((%J2qd1VYiimUoGr1#vMWR{eCEDhlGGC4nKykrlN4?2IvO4TIz(HIezk zo@iFziBSK;MI3YTQDROSg|rqF<2c%-%fWtIjD(j94U0l`oC$xDB2s`tC@GPxyc2+o z$3|jyz>S;b8%!Y76@v7f+sYqfX?WSb?ezwhW@4It-=MEEoC?%Jgzk6FK1@L zAXlXwp;s&VAQbcyW2#pVkN1IRQc^YwRu7+50p?^Hv-^YElKd#Vl|}TLg{~a5KGQ}N zT{*?pk;s2Oy0tP#EC-X+DOS2)0hPo{^F{z7yZu1*@Cq8YxsejI9XXJN-z8Z zUWhkJ0d_8nA}E*IXYSR)_gUAjG=8>Y)BHJQ|KM$lX`U*Od;I;W8*w+JWe#xs2Ah_K z`LD1Bm@^Sc1`U*jlkGpZx_1;9d z`@;J?Kv7@$uckVmEuEa*r(HxijdXrn+#*>5$QWZwdnk!#O>jC1-_@#znUV^u;P^8r zbWNW*%~E4e8+8~W7tR;oR1032R12)?7>%AOKAfQwjG47kTa148Ij}Vme#BRsJy&b2 z0G{{QZ6mByWBKL$_*;~vwohJwk{vTAq(v{I*k7rol0*#FkNY*ax!lw7O1h=70s8acGw zKuhy|1;U*xkWF5)z;l*+#N9-HR@O)6q67g?Qbg)wmDl#QT+~pW-J7OE*ccY{;^egi zb!fBM;uGY~WYowyGKG>g_q3j#T0e7bS81}-)hd*=-e~updUX^i6-toQ-&vOeydd`@ zAHXHskzZy7mq?T3t9-iwhP4R^<}E9RF58iq?ZQFnvz?!jD}^dk3@?8d;tzELTOkiW z7Qxe!dm#bAS9>NdB&C2c`6;=@eooz=1dnfrKgSq&;&hp~)IAYaC1CKxu`pCS|fnPPOCef(SJr zB|Vu_vmPmE`|;zsdAGoAA>S#XCkEQ4i@YoGk*d3g+eo7U_5=c!AtYW;F$}TRk@y?FHU;S=znCdu8G)4wqdzYP!h8;alj9vCW2{k`V6BA+xp4 zc9H!sh2ZvFU(}}q?W`8gO+g5KafR$>ShpOT>FNm;X+)oQ95HgzdD`{>L61#aV^73C zf+3WM6Wqa_j|pxbwMbYzki(V|DZPkr>@F327}m)?M>DX%0z8s;ZYov?Y!<7|*soL1 zz!v=g2?Ad02h!M@9W&8)-UjN@{iUSXifWZipYrVD&wV8csy`b%R?x=U_K zkMf{MHLzp6d+&9!83x$7YvuiL>Ff5{=>~Es^joJ(${TSl$HV>E?2V=5+2G~B@tmDW ziasYW_*YB*YnIN;#rBU`x~%ix@S<1sZHZ`UG!37YL}~L=IcC1bA9AwJ+Y*hHbs}r^ zD4*~25>g-%arykrC!+ZS2S$$<{cGUZn#f`wtp-{4F(!4O|03j=?r858w{ zv&e35#LlOTzeZ&D2%nrEPn>Q?Ezg6~>U}8mWpOwoZ|NH4Ukj03EZ5AhLCg8U&zpZ- z(A=HnZTTY7N^#1m*W^LN=8EIY>OS$)vc3X4_5AW-F(aw{tp;9e%ERsKs=Tsi+-imQ z$y~8&%>JzWS@pXQ-NRY?spEs`haqjWTwnJzvH>FPHv``{FtCE()b-2RmtQOkP*WX` zw&jEZQG&M|cN;)x5EtJDZ5E{UQmK|8XNg=H&VsPNj0o94;u!U zc2E!g1;hZAz`(O)3K$6m_<%&o-VqbV)#dOL=m=OVpPj%zHNS0kDC(Yfot`Ekf8_2P z@X0Agd%Uorb6BP3seVCWDqers2Q9` zf|;c(GfO~Zprv{!2I0zwfjFn>RIf}h%r-2?=OX~ZK*X`_t4^t3=pP-<+3{Y(l(5ME z2V3XZ9ahvX+Ss=3G`4N4VPo5FcAUmmW81cEt6^i?xP8yL9OM3l{b7yutUaGOt;0kw zdd=@%;K}7WUqF2lF@FD()abfunzWPVI1ZQcsmeoN$p)=Zo_~b(1~ROoa|Y1L(03F? zCH|82$~A)4pf>}k9~u1gZ zo?F<-+>qZegz17{w#A{S!_*RwSpn z-`v}6uD-3rK4loI*iTsJpvir2(b~k?r(#e*4MaD6af^O!qYe=NPB_iVIjeawwxo>j zakSximFWmqu}~}^2?~&4c056$PAvy@_s=4Y)HoXKp@bY-4k5$wF^AFkBE0+raIUr~ zi--|@VfvAj$UL71r=ln5unV=M3|aJ|gW!n;Jg+Sy4c9#NjI3 zM=KHSk6@>{6)D{VU^AUsHC-oxbj2UDsY@tM<{9%Ik>;JqKEcWP{xr{dA+d%EOnH@;AMC$9qkEIA6^m%1?r|xHqyD52;bvcRf z`T8i*Ki{fR`uyuQi+Sz?gFSUFx;KCRisv!fzr#KI50(D>i#`fwsthy2ae&rQ0Zz)? zV*81+%d0SjdE7~VNA%9w<$R*#X6+^Ue?sZmsQ=BRqm%rlZHw;SM=nS^vt$GMrBsT~ z!tsX!$1F1rkt>G0Kl^%qA6pM9G-@*nOk&=&V3J9pFnnlY7IFVj8W^rQ@xIK)KD$07 z%9(er({_-0`g>+#bPv`|K;D zZ5yF>s?9A%o%7zRXyf8PB(&{%z>|`$_*+dP5P5b*_Au2E(ot76$GU-Z`_`<6aU%zW z76vwEjErKPGs0hp?F7XFIfy7?=mXZNO+$g;laI-S1q0Fo_xI(XzM}YuB=v zPFE7Gg4X2mifu_La5;^-W-HKHgL;?JC1j&SP%h_eZDCm<%$q`lytr%~P-FNMET>c~ zPkBLKV!bNR;VexN%+twiRF=|^+W}a4s&p7ubv59XNfzn%<4ieZI%trkbIhlZ{oVam z-?-4CS72}auoLjU#>RJjECVr&^PZ(zxtp-<6}L?Ra6t;M*Z*kRz&JS)1+A%(x&N<7 z87mLZe*;&)|0|LhdgUGA70AJ}A17uQFP34i1Q}?HWEVsbRi%ufwHmMj+U&3moV$^Q zRfyMDg+$*Q`cNbe?E2m%CfMeH@!Zm?Mm;+gM#Rd0bJwETmlx!VICsjVq3UzWrFf)G zVp~5FAOG__S!nt9B9je(TREJf_ih-;Xfrvh00MjmLG+zSLX2`P;5^j`D9)_wN-h7w zBSpN>WUtn_N&T8`PZgd-)sI98vqeOAy2l|@py6wl|woC~Xc*nqBvxs2SsR03R z0898arLi5{>_j?EA zC9Z@nr>k?`UXTsW!H-Te1W0XRNXbI7@33jQG9ARj$8NOp$W ze^e67KQDKsci9oA}FV^P-3LPM5b_8)-G?HJNU8)TA|*UKp&esrqU1b73$a0$gOIdrJtwo6PrjJHd!Aae zAX>VVpI9m(RVwk2PeRb;kfigk21A*IDobP0;NT0?9P1V%L8(^c6V$-{iO~?2EX~&| zrF#`7gbB;?MI5o`Q$ilObOFNpan~PWHMm*#!eHhwI}bOl*dC;z2Zi6PD-FkpN{`b^R^n{0CSL_4^K zIdJ4pt*Gy!uj?+dEvIKkYI1&t7>CUZWE17ln?{``A=xymD#-6DfdoR>385J@W<@i> zbmDerp_)I8^6UmS!oC;#H)mX-Sb}eSw$54?4ap>7NzpKT)-*bZChAx@p%sn66oq$` zQm+(b3ui*;RI#UvTd|5-IdjUMQFUMO=wqMXD3PmHk?{mXsJ`P#+(?Z(@vn&Lmb&V?&!O~V7OnyLVL-AlvvG4J zIzG|>O_1ssr&yfw9$c#6(lSVdvK}5Q%m~bb2rRB1VU6>Y(k;2cjs7G*63|r1q-j)z zyr;WHTzY`2E8R+t$v1w!?5^#uZ6l+_<-aL)AsfONyUY+=abZdXBqe!<2>amIH?Y^& zH#dK4YmdcHr{lhMxW9#>cp%ddP<@7lWb#1(!L1|vBENjZ5V;X@Pfrj);6VKQ_k>ZM z1O-8ah;vo}gx$+M5U)7wMXcODaOIEz5+d$z&W@S}9;IF2dxA4SH`r<)0Z49I8qA7= zhkq3OAR!!79|#^vF!+Q zB=scL9#ZQJ(yW>av}K#9A%I))W!4M%+`$7vf_&Yx`}z2Z2?O_bfdCe?%UDg4#)M&x zTpPqI2BH&j$`3;ffeixD@L>ky{OAvCzXf#)D_g`(b@e%%kof0EA%VCW>~24J`ETY` z!ypqOm)_Ojc>y794h>+F-;pl&zye759sN!c!`j7qpME|ae7rel89F+oeF2K@%4t=b zHLSJ*KfDkPmARCDMZ9lwKA}ttr3pZQqU@pn#YV+~68-~%LR<@eRRi(bT^$E(Q(R;F z8i?ig(Eq_S^e}*;K(U5y`wIJe1$r9@f^wN1C;TN84&*rc3;Q!*M1iadpXV`W0{Pnm zC>=f1Pfu4!51?r`o3X?wy-#OXJ=@L-{x3KoYHS?L;_th7q zmpk1J=>CbVrrz^IWZ!w30C_V|BOf*Br~s`C@os--st5$xtO-Jx+yY*DqJzC@M1PVr zuPZ~W?$(6Az;it}*-R_rh~r;^emt~;vs-RGz z8=pGtexybqqnm{LkuJd06E&&7(6t}A9jRasG;Z$%co6yJ50Iw=NU-yrOYWXab!m)V zo4-h4Vwt4wF!+N^w*Z%)5dGH<<5TP!@ayf{7YfV@;8@plv#t4QL9vrF*drSLKK70p z`Ni}HHt@L$&iV^^;HhU(D6!El*fqEBe1*GfV(w-KO>pY-&Hbe#VvP8PS20K&t zyual8{mc?S79y{Z_h!_E=K%CC=Ker{6=0WsMt=Wn{tSW#K5cWR0;og&+YY*5L&)272fUqx#VdfAIw-#A{9ZUXSsV;J&B*2wn-zDUOMD^&?)+$84uR_v`eG_=u4ch?OAk^{ zS70gYk6%y&vk1#`-o0?Kl|NEOimrh-_0BLuFY_X76JeWfa?$LRT9R-_+WkKQH$iDZ z_+aEo#btw+&#m9ObtPHtPdF6pVcr4THwjL!26cG=2gaVaQi@_kFqrKKdw~Ly_!37w z$9WHehzc(0C8PR|`p5KZmHOG8PiK*zw4JO(n787sU&4}sJC|Cr^Hxv3ZIfvz%h>dT zqRjZYs1U~Pe)#I!*xeqkU=u=mncx)PJ4WtYo|=?} zT8#mqP$JrxgKO@|;<0?#0~gBGkOn5a^E;dleg9tsbY^^-NMFVT66QE5(&^JOZBx>Y zkSaLRVFtpUhxSu5>KBY4viyib(cIFZ$V=04(y-fpTK1`$(>3yVRud(rtD}!+*n>zF zp>yq{y$ZzY*ir5Sn<&$9sO1&&-^V?(c8F7e_0fxTQmt0&5vp8jHMz+aB_;|st&#a+ zb(rrOQvF*Q9gY)8yW`1Ka&@WG_jmH=krGXL9+9P-Ikl&*93Kq;?{|1NC3G{vpGV?S z64KqaQanC^UUyMBvW!i96tIMeBkJKwRm9)Xczr*zxER)Ye3MCXZjm-TZCwk@I^~0b zA0oSW#QeY~ z^(<98AtZxsW#^ABkHj6b(X1VMmoc*d7Mq=Ik!nnK9I?`DrDHc$_1lS}`$cUuGxxYO zS{l9aWL9+f^H0qfU+t?m=8ES$K3;vcDKcb-f5E$dV=5Br;mb$?;+Uh*7&Kp2u<~r0!SQUP1Is=l&BsuTo&|bdt`pz|9R1L_Lkw za33~9wYyiN&mnb{N>@0vA}o{wu*jvf5Xg-PW-xk$*Awq0woC%tXB^Y-B zH<(2ev{b>^v$g@}>bymJn|}?klE$S0Lx892@z#vVL_(+ehs9gL()A_M6BVJhYUT?3 zeWDkE#l2fUJkYmEvkMwaUuRC0n*OGkg4kG!JzXQldM$2hD5Wc`=9R3;M&(DMlEa*V z?v;nA4bt3d%d-^6Tv`0b`FKRn66L6C6hB9zH=Zw#Gj_(lC@weuJlLrz=z^5S;Wx_8lt`TW# z-005hyvGY!IwoE_n^~pfIt((rsO1)ib(p3AwSC52)`DDa>QHdKR7v7A(g<_cPrHHi$CtvP(7y- z<`*gZn8M;7c=YaiRXP+#;0!*3Jdifd0rgTj(tAHXE{zaN(hVcdPsl0OqwK$N^^w5F z_fvWKqgWTlV?=B{aaG=d;bJCMP@A7_7%)~a#xShCqgOZaAZ&9%V~#l=fV{{v9N*WV zSsXl%k)SCRmPi2KjfBpEoxn=rr!7uW+c18K!Rz{kI>mGvmGL!^#SIYy4E@sq_->dd zV%1dd-#*r>T9l3s(-yrXGV8J4hH9HOQgOFyW&_pes}dO5;|1!K@T{XYMIX+I-qhV= zr7)grw`hE7eiKQrbEQ7T(wZcx9E0Gp{~f|B8_Ohqx3c)P z>t`oV!EPbRA^S7S`juMF8mj55@=BI7f(-3}BavJ20&LdyrTNN+C=XZAcA6Y5p~t9? zp=T=bg@F&ijxuZ-Pr~<1>q##$Chdt6(9#(Do=I@y`hFJDsoF>+*)u&*hN5ZudwlJe zz5MQoM-H$EZA8R2cICD)a|k}ROuNHo*_oMN(v*jvFhS*&WkiD<<-%hlB!9lLq9-rm zKIH!JYeVJxKY{oCH)1r5kh;VqXj0}tU$j?`nO;mFGkJM@r$krZRK6_}y)=sNF+--* zby{2buB^b&U1-G8O-d+`FrFT-;rD10kU}6&+<7PV=2{x z+ybi-Q^$?&WR@0bMdbF5*;K@q44nFsD3{_}j4*hNSMzyXf*On&;*21;Sz2$3S>(0( zWs?h_ypYQ|+l#@sJf?%AtITC^Dao!8hKZc-@Ww7E8z1)mhY|eC2t}vQXs|e)NCTIH zvz5owu$n0kWF3vQ`#Q_*_#rSe^gooD7)8JHS!GBd=Jt8RE`ZxwzMa7@5{dvUS zRz7%KhQrJD%Rs=_s5(_%C{;>BQ?zGf$JMn%S2TTb~ym2e|Q zhfQ%BtU6ZBw)tZbH;t$i#lS|Ir4KLZMkRHh{DMU;Z73#wA(47z^+-4Lep>xn0ywo87ToZB2rNvPn(=m4s|_h{2E9Fx6x$zLaYeGwp*bX> z9x(l0ghTrbuAhr(*)Un}Z@jcdwQTFhzwc9gPCR(s1_#^0BeYYNzY;O34=r2)dk^Ch z@MSL3RL>FV&M68w=V--4I$)(KJeF8@|SFsu#q3%d>$eu}m5 zw8rPqKC8tkll;A8`x&uvq41jlSk;0nOO|P94XvJ0MH>F0IMdov%OwfVmXB`LOoN%9 zVS#2nsA^7&=laZy= zv^TiZhE=t|bsh3Fc}OVldsEe>r7Y;Din$iv}tbl_u)9b?9gm(O?f!#6`DRXYnsonE*^Lt4{$R z`DN^Lg}4i;cqwM?Js6U}#zuK1`Wd+*g!6cI6AK(uL&*5H%Pvir0?I#|-Xha#7a077 z3Ew-Auo?mWmZwm_`K;jl^Gt35{LUUj+xfLznl!AI|7n><)H)=gAI4c%ZXWb%e2Y6t z!g7KhTeuG5kVl9JGjXw3Feao)1AItM4Ft2elvAMoW$QWJ!<|uz#;z47Qj3)3z$(Tr zINR|Wp~)#<-B2Cu$h`ZtRwm>WTF$^~=U|i(6nw{jvu_*7z3F>^D2!h(I)zUqtGW38 zubGQLm{>mwUZyYAsW;GD8!7LXNoYY(Wp07*E`dJBLb;b?gJ=M8<^^?4>J6bK9gT$< zi;t%^W?T5Njhs5pOmcTTw1d1ML)E*jUz&=51#59r?R%+sg-^1iS{*WKn2 z9?nN(_m>@r+)3%ev?nd(So7vHDm#-n+UleZ*^)1NF`0IhHFKUrUcK!fVO7#Kckq3* zXDIbPlIqqW0&k}#)3~}UYqEN7PpIbT@(bkMfp>oV z#-F6fK5R$D{phCf%=JoX^Yg{dBqz5iBv!45g=CUjgg(%hN2~R7Ip&`x_~ZD7yey@P zaQF_`$H*4j27|W?qmZ3y3on-;Iq_+U>#pIuq$+%rihjV8nQ9ly@%#%b{pjO3T^SXI zJ>0V8O4#aCKUUf1Eh^0;MXZ%!DBCUp8r6+U?*_Bs7yYtjCYuzo{Zmv$0;F$dlPbD< z08UOw=q0^k`?J9Fc|x<|cvN3%!t*jqhLa7@qMc0Dn`ji*vpI8@94DdeVr}IwlIv9x zog-{ikqQ1zl-6$(k~7dHNNUgvu~SeIqT6CIJK{W+vuUn&PzU{#TA;jH8x%Y$k@-EO9%ovli?LzV{G8%e_HmO7Bg#Fj#RE2I!$^x z!>OZ|m8fjS0s9wj6JGp|O7m1f5V{R`ix}b?M3%k?BE-65!v!Rn{hdbTX9cOnttnC5 z{N7<1DR~T#T*=STM43j%*&RO8$3E9RQsT*84nqz~hQQU`A8xZ_WCK7tf=*;KGv#kFb9+SRD8Gq$6;ayr&mcqw0V#N_IdbsPpgqRfD@Q z6Ty=IvlPL5W_Y8l-Q=K@?BQlq1Ni^s_5_E zmbaO{Ax75`b3lbDu)BIhq^b@Kh32zOe#DYl$6WCeXmt)wuc2V1(L>$Wo0?6T@q*)4 z?h0XE=|P*13r;(R;|)0wn>OhK1T@Wn@;8_%MW2Z(wQ|En7Sfv8V=mhL_?gLqSW;w) z`GZKU@CtjB9`ApUH}2)9Wz8^+0JqQ)n1E^1a&Ix;${*3Z{t0llTqW5}*e$K!g&MlN zF7Sk^@=?)uV>l+*(GTGEdI=k$PahZ$!-I!oK908N{Yknr`Jra8m=Wgy`dK{uv%N^k zs~3ETYV9cIE;q``lRBfo+YeW7%Xb__U@8cg5^B``oRbONpNJvp1t0hEH#_++y&%%@ z!wgaIZ5ah6q;ZVm0QD>$!-3&K*Y-P-*A7|FvI*&B9^|pOCgcaMX~_9nc0VpPC-#x4 zP;4IVj!?|G{A{xK%dAZEA&iRYKEY2P^9B!> zPtEdz5`9tU{#lc|c&F2@c4GWjU4$E=^!65DT%OD}_?g^rJNzn)i+|LF;x~KuN9NTM zRTsL_gJ#o311l6D4w!0SLk(+t9~wlzJ^w3d{nAZpXGta;%U>&)!y=`!l zXipYYZP=4{tbyX;_L-x=3njp~P24WcgJt^^tF^-_RgtPe@F&l?qpfxp4#BG=C`Fxi z?9=K`kr}k;9o%)f%mW^jR5vv^Sz93|_av>d7b6=7$`eIkItVwZ|M8hxzwhs#?bXM9 z%Y}5v3vIu;h%c z(URckK63;UaDrC4aAMQMHWgDXyM*_D>qWQcc}z8U5>F4W^hZ^%x6r6=lSIiYzQ@{! z=^d^LC)QnnSod>p#`1Q?loE8)9@Kc&=mWtcE#06GB4kVpLSSGH6+sso5hn%ic295d zsvQFFpu5mKygf6qKZd!A zg3wXzh$KPhA^OaZ;nq0vI$yP#S_Ui&I?!Q19OC$W7jpaKGaR54?fAgoX7ij-{yz$ zjHkqOcliFazlSQfnre{Xru%f%qkl=EgBu+6OW&9OG7NjI8eXY%v)&;elghi5We_DD z7avxu3?i~qD(l=9;C+eLNLuG>rxa=EIq1^|5=Sc;I#wYa{cT9K_S6%%?~R^RycEfP zpj6)eGRVm^8}>y&9_cX&v9Ww`l8K2Z_Q8?q3ARl2*m(a$&1cM{S5c53 zxK2u@q3fIRu;y26_DeMTS=o7=8YrU3N^y#=uXt_g@q1;BO+Gp>my@B}Q)3KaZxiJa z!EgQYNf^iTONE-VwzJUHnjeOCVo+Fuo?FuS2_U{`#rySDB|ijZU%PD+Hf#@cX;(QK zmRD<#vCcgQMOb{+Z0JVH%A~$CKS@gi>pW_~2+-|@w(;^N+S%uaS7w38mKnX?Tbyki zGEl2~=lRj`hWE<8f52ij!co+Ao*wlsb*%dsX1dq0jwZ({_en?ZxH_C0^g}^%5t zGCpUr$X1{iut^AVQ+YoW(%BdL&mgTaoj^6o12DoSQ$4u6(nf5YYbt%uY>4Rr63jd?kH-TB66{>NjT#fHE6ju>`1(YH7GfYgPYUHz zx@9?)R|P#Q^$VST{QGbFeW*0Y_l9hKH3mSvL4yu1{nwR{LEL}9K;EgQf8HBnh!o!- z?P{xej_DkiROh;S+bV3BH!sY_S%+D=9)oAZE!3`T+h^N!#H!Sj7Ip6dQ0vQ1$CF-N zE4-iv#`t1+=hE#E=)-&QV*U#Yym3-#OZu*a)=L}XC`s~}pHps!tZmp`un!ccFy{)ifJcw3k_1{9 z*P6;yk+&*xUJF}fR5K=e=1tz_CCgmJQa|c@iYDt3I?S)MV{m;y5^;AUnhb2w+c4Ai_b>|* z=q*3W;o)T$kt6e6FLjpxjayu@a)`ctt}Y}~b$%ThvExOAAU? zh@UaL6dzIUX@d}!h%t0}Ot=!!UdGIXg18ZEPJDOSJzd`pHVQ(W->-!ge0c;qkT^mBY1XfU5fmr_Z2@U~1(AKb zDk(9W!%x@3a5y;YKlv!#WoWJ?!kA`FNLZ%@1EAcQUNz<2?;J_NE45$F;(3Kl7e#7_ zes0RH2zM%xtHqb zStHojOlF;$C+~S{ZOZf+vDYbvWtztX5A<5yph5XNEuFPh%l)_kMOKn>J(IsmrCYfs z%EXyVcizOE!)5KachF@k;9+PmrR((1>#5rf-h;usvVRvu3AVvef|&@LU?rTX!p$Z(u@-nG#)RfdZ~JAa zEhbJGgp0XtboFWmk~f|W7D@sFypO7m7GsxN!*O>9B&hLh^pxE%!vhGT^h1P(JT?%4 zH&1lpwMJJeWDH}CoW{j~jX@6y8@@h!IoU?w;;(P%`fM5=%*%A9@B4+LU_ol|1S zRvykb)1Mt%k*PkTbR#b$5wfew2opKBd_HH<&?|WZ-$l*wFOxKwqI;ss+tkeMTN;>l zt7mzJsUn_R>fMIZHzRMg4c<4Pl%EKoGnf_V(D2Hfv(Zvbe;2`P69o&79a5w`Me=n6 zOGc_c3dZD3=g_)5SZN%X1H{FD8z0?xRQ52Q|G5{cry*opqF74Q?XYFnYA|0T;| z%$|kO|7mSvIdD7TkZrkdqIz)i_D;rz_(a2dOVU}EwK-eIF{aKyB%k|Ze2A^ep}fpe zwgiuY$B~i^_a;%D&u)ifs$9f@Fnm23uzRy^@N(wzzNrpS-3lF5x&7?7BZZqES*n2j zVL@mN?NaPUX*SM>J29jgzHv47ZAhu6`!P7wOPh5Icey3p2#x7ux|;C*^jNLx?o`IEH*-V~N`Zsf+LW`% z3CrdGk((xYc<-71@;59OI;&qj0|pY({d08vuXhS~-s?~p1mt6X`+N?Y7UGBp0hAPf zkv3tL5GDiVcyMF=pWjQLaUdKRfF#}`J-l)L%GbG`DDH&i*w5+J9I1srKa_A%?&nnN z_02*qNgXyTXgO#8E~gc*K#X_3YtPc*{flsa4v(KgZp_P_Z>&uqgL%1t-jCgrsU`1| zo=sxcdKlfjX$HBV)f3Z;afm6Bi@=*3;K)9b;VS<=T2yS-`{IlFHTDN-&_&wEOPTqCi+Qv~ic61xxF3}iuKiA-E06Upt<{N1?6>3=4k4DH2mDp<#2QZE zN{mt0{MZU7vd~i0sR>0N0|XTE(HZ0F^NDH*Nt{d}ZfQg$yc@aa-4Iioq7 zv#F6||H3gRXiJ)JEPM6GFgjXi(OUC3f%B}U$)3$*&4sEAy!J0R7mQh>2OhM>xtQV1 z)TmL$(Hz5AdFr2*p^lDrMGs&8O#havXJM)>{Yzq;X zhj*Syy|&h<=29a&{%)@CFJU%Brs&q&Ydx?C+kzwtjId1RHPd-@o=mRNxt%V;#aakn z%-V2cn&JK8o5qA4mI=eBLj3PG%SNU#cxKboP4O3o-ND*qQKTbFJUL zbFabm`}7R^0+mPb<-V<+tQ}?~((OV{@Z%!bgD&iad<;HHjKM;S$_6*B&Q z>xki4;{&8f0jMJc43q~@hX)=gFjw-%Iu4;ulc5Ksm2rbp`A}(T(owNp$s9N%2Q${b zq0*wQU{Jw_A8XO(kzBF{iCn~j4Af7cFCzVNftKo1z!F9w96T6O@Xm}Sf0Ik~tB_K3 zZ8Tm`G=^spc$~3VVqrh?Z+~6JyIE&e9q5p9h+a2Bf@Dh$VKxJOm?&WQeq5D+!XraLrFeR z1x?zX0MDt!AuPLPzpT6WLbTH3S(p|A9tC!XsQX%UYnZoh=u&yFs3+M)fFWlLTtCh? z4f`T=YOj!eGmX_0s`Qa}ZZ2D{X6Q<_^Nl&$mh4FFy5Nh&^}x*?ZZYVd&0(UXxi@}B zQmUusaLiPeY^P)fTHw_mHg;jQ_m@UkDYaTJP*bOA*IlJ(9LA#29XTl+#EYlvEM~&FUq9VVv}RnL|GdR&K;@hk#dO z{*cgT9lyZ`Mc z(B8;YMa#fKv#H-^mjCY81NGP97w7D;4P-ZS20Tsv%rtSPwgX6{4*g{ryugmR2!Ji$m|)toQI+k`7!W4+R<2W_Y(I0IF-Ldt+K^ zCMr3604G+_tTq4o$1bHtos$@0(FA20FuhY>l06=qXp>0!lk7Pm{?-g8O#Zo|iRAP` zEBse?Wp_?W6b0-7j%}L-O9+v7ebaV3Zc-0JW?t7xPk{vu*%LOk*OtiVx6nlvB%L~i zPq2_jZwhl+*R3vgqsB8CM|BO`pA1QC>LuzeD<1(PC>F$2evTl7I(RJ~Zs@X;K!wta ziU&r?!bLaFN;-r?%!Clk&Nz>V$2((1s7gk&5G>{K8r@GKkh4tYi?GI-bw9>RuE;6M zt5x{!F6U1i3?+KEGEB2~?8fkf{O){hh2?QtW z*PZr8j2!Bg4(zOhoQe!Xuj~Jl(?$~6D}oL1kxgPm+r-3U{JxAK$>691&!+B|JR;Q} z3UwLcWUJwH`xMI4w*C44V8UU8T9^r9HwM8>OY`V9@4iN%I0-@1l<~p9GFN zzj~IRskc#69z${8H9#_ zL#uDV7g6~SCK-HAg;I!*ft2_TEe62Cg67SpvBHEzNbG~pWgUaL(5$cgMX&C1q(Dj#v4w?2MWc?8J^TaV zAz+(8`#^X}lE4Qcy9y9TaSdTw0z{R!zTo<3FZ@MGDPCR#1O#4$8SQ-?3xTe0*vP&A zs&ybZ!hcAlk$*Alc#MJkh=bp+nSX{^1C>NlZV^HZb>vH;hJgjm1+^$egg6X!cM4k* zjRU#A1QA2D^CtoWdrPeRpbmh()^q^@^9B1td`f+~5>{R%o+iP^Z-obgxC`w+2X$Ar zfDu;G$Ur^_*#q@AZ0-psu>iQZ*NOK*19^jbE&GYff7HvrL3J4FUfL>+$;GR3RP%=`^<8Gh3FSk}j=2q&-Cn0)1n#tu$58UQU z7(Wx7#U;Z0ymxG9MAXmdH8Eun)ZEszxK_5P~c^N<{DpeW#=l= zpB%*fn3d#HnGfbQY<2~49~3kZUL6`@L;K<+kc=1A4KiVX7 zgwReQnW6I!s6jwJKi{9mz^a&axhL1&9A1f~CTl8;uf;dc=L{&nR!U1@p1_`O|ACR7 zkP`kNpt-f&!U!Kbz}FRbtjKK7?Q>WS)FcwpGvT>M_p#&$wMA@?c<;+fup{Uvp*(g> z3L`}COUrx?sDwY~F;l>oMc3Ev?HBdkw#vV})Yo>D`es(vSFOvZ%=6c(2&1yaRS%Bk zNqfPpNiMh)GWa=ARvaf}p$Tma@8Rb)|MxQ^e`gwsV_Dw z_Hf0oZpi7lvAsY|Lk0&z8c*UNdcRwsNd{s7dY`r~+WD!><)4ELC6)IB04%Qo+?VJiI2ZO#hqZ|Q_5aJ;3C=lMByUYPS zA}s9B$O$yO^&eM0=$p4+#=;;ycUOU5@VO@B!qONR`?l~+4R3t#PV6x$sDB=N;z+#J zAnqNMTxsp6Nw~s#U@eI;MnA4Nc$-&pkiM+*qxk@|@XK4`Qz?&Up);XNHkd(pV=-<% z$d-6Gw@PF?p$d)MyZud^_~A7fSVH5dnq&1-gkr?A1SY1aTth^x{&Kp7sM%4?UPLe}ztmU!bu6`UO zd!3snyag`N?0eX~=`*<$Wi6c%aaR(b>o5Z@#jfEzS|zJPaK2AG79?Wdl(`tW1ntda1Hj}Xs7?5n1W zLv$~m?UmWjOP*CamdLHWa_<$s>p#T(D&-Tqeuc<^r8yg1xJrf%tK2n7)TvL^JV+9; zeK)3BHBLG^?CIu)%YR)&b{Ih+yQcw=Bf3@}+O~!!A&$|=@O&NVh_+K%ajzP&32DyB z`;)Q`+CC^Z9#xr?)m9}yxqa#M1i_I76E zSY}=VxzkhuW>Y>|!R8-E2c;ZLp*Hz3_O~OOkIv~NzJlSJ+w~r?!RIHI$PIwmB}=-8 z7RzR!!|wN|C(ILth*YN6ps?%TNb=fgezS(vTnDCI2B3tt13BgGCzQ@1#TX4&Yj8x3 z-ovNeRlk)}1-?HDZH?s2$egpub*+3BM?( zvtnc6o9WDOCirn$y}=iR*yI~9nH@*A88BSSQyB+-)F#BU7wX|VVn2=s(wcqU!ncMRTxey?lg|0*o<#dj1Z4R(NpmXe@I{K*R`0QQ9);b@7Qz>Zb^qL^6^fu^j8{?7l@pR`DxGxz4HWNb6~^H&xKa>N65iolzx zNcD%|9AW@>bmTHBgK7*jz%zQpR1(e_&*xsHF#i^#qsc_InyHhil(JeCqqq7^nvG)F z(?{%ZwO;0@tzJqpe14j)1M_$eZtxfT^<<`2GDVajFd5i*iF!+nBHm=j zGV7tH=4J3{*>*(yn>b)S(?=C&ewYl)b0-4sM_tGD71=g{+-^A{_6R3?nrFi4hrb^0 zMwQ4ci^fd-PmaRqq^>jjPA5g()rgvNQv$%xY>J)|`}r2iF}Q2K2ZZIT_c5aeJh|4E z-HScDsKoiCn_v737=6@dT1JAgw&65yBiml135#uo$4tntK~_Dt(J=Ja(`Q8@Alx3p zGbx*|U)yRVqu@{IdUZ5|AWoz`EH1HpVRqg9LBKr`k=tuF!Az6~oeZ@MefaAbUJx^( zaN4REKZ#Qf{|=M8qlslMw`>UQpi%VnpEoeC-xeHP42#|s@ECw(u+7a~Lf;+GO&17N z8jWfp+PdRFO8K*Ss?*@+Hxpw%na@v)XXWM|8SL4L?^7Tk{{BKIOCd|Vcv$x#~pX$k2Kb0ad^+aOU1-fWHz8+ENkTqEI@KT;3HTdlz~ zpZWhh zT6;}*&cEBKZXe8x6ps2q-qkgATFQ$MYx_qLdE4~_U^~?D(rNx)Eg}pUW_#C3)0$pz&)2V}e?frQ3Vz7` zbn81keRpVGV>;|BQyk;aGU*X zw&+w!H?hKT@!;@*S!z3uf2D?vMtCKomY9hy?OXqRuO}x{+}|!!GP@Umf3P1c6|W}K zKA})6@q&x4Ds3d5pyWjI_06qN@3Ja&xrJPI=0#$-i$U7{j(5LSuDT< zjPvd3ve-hS`$4x&PLI+$%9B?oaK1d~r$dEk;DZ6X4l~;+sD}8#2~y=3p_s z!*Rh^RZ!aUBCqv7*gB{7u);Rs#`ZQI_l?Z!@H+icLdvDMi2^!?_$W=`e@ z?1O!>ao_7%%Xbv^K&a0V)orfZBMBfnD(jSIE=rZo)U+Og@|7q1lU_q*S!A8fvY|dW#ZMN6iV0+H%PGanJjqD2wR4g24dy$2uW(?rneUmgE zjai$J-ma~w#J(SYxus)ih9C=8T2sQHm_6R;viiWv>G&3xv>aa8AjdIkG?I45zV9>- zCtB$;gCe14Vn=rSkuqQDC(qoi80yw9r~9H>F6!g9aCauSsS-W|^$c>6Nwn(mVUQg> zkz+kDRR8|^kJR@*7S$U$UID7Kxc2f^AKMe_u>Hm;-gW3l#W3$QyS37mr?wNW?88!_ zU%KViBc(L<6VIz-o6@K?P^?XFrKtQ;?37D*q2w99yFygX9mXfXw8wxkY*dH9q{ORy zu&yWboc#>FOP}O!d%`@c^B&Jx+iv~)Sk9AHO{m|yXj1JFrJZWnNDF9qwexH~G}{-& z;O9q7fr##~R@lX>V=iMxz~HRaZ6%Nn`Zp$4J26}q?Xda2GvKYaifKlh3y=lkdeT>P zgEwph+};Mj$0h5W^z@r;&Um*l`DA>QfarJ$Nyv0zq$^TESJy1_;ZwXsF%uc_`=b+i z`I_oYO#73_KH2@PmjRqzIlLK_U-zd+_q8}7(oNNkG{0Ick!jCSoBd#Q^sBX5eysa( zzF@+K;ygh~5xsU=gq%QHiaDdV%brV6< z|22Kwvh6Flox$0HI&ImHEs>OCuI4(EcD+FK@h-kCD)iQT2n7s4?L14s(UMsksa8m< zs3*7%?C1p4tI>z5M(J>_1X}Pkfv)!CWY(pzl7myU_G!mm_da;S%@U@3Jr>^z+$3hn z*B#nM{2*W~&#Km-4&wGAy^-IVx*hnDvBqF%!Yw$?*s^8q^>-mNKc2(3GF1}(B0tJ| zMc9|58S3ue330%K22o;!ZAK5wJ_lmQJ%KZSUkbsI(G=RF>RdeV$;2zQQXkoud$2BF z>D&gx{6VqIlx$ld+tG*UefROK6cobYBB^;TyxBi6@lB9dTR+AANy7R-&|$NxLPIqN zUHti=5Z%FeY^*?35S`|zI&7MEiv1fbD9z!xXt24`;tGJ>^N06nWNv1Q^43r{b76Pppe02_l8FI9Nqk$zkJpxP-o-N?S1#i)% zBf5H--4ihAL6<*C^#9PGoK*i=Zgv=gSs7bMYs8rDdT?q1;=>5ay^j z>jL>wCeE6WBBI}l*2wYX<#jVvqBeE%yWdUZXJ3r11v9~5nzpmp*W<-$X2&Y} z={#kZ$-kw`r#5Kp?SD4+ZNcT-ODr6fDkIOcfw`ogd9IsgQ1g;<)tE(?s+3WS;IYx^Nrs+wF?&5=aM|!5uG$ zi37g=B(yyCi0j4W(!;ULe;T*-X&+@Ah@V29zY1i>8SgOW!njJPIN&jJyq@Lw;kfFk z_II)lKvcE=**t=TMr@04SV8bk=WAholzj_}LKKN{InwP~5cE=U*1#IS7z4Q{(tS9{ zq7L|jsXVir{&Sv=h2sso=H!Uzm|SKW(;OgQiN6UzJXdKlcjk(rBs4_eC6?(OgV{B!6u9NCs38W9I@L<)a+K}! z822kLA6%z4C2Nj>&G2Z9{;y zXX&!XNR{r8h=c`k34P-*={OiHv+U_DmBU*Fs^1HloKsR+R$4nb7~j4{`Akm1BgJk8 zIo^})m4;~uaXDr+#66zO{x9mz<@{jYA+e9OeEz)OT;9vSIxd>nTle?QZZ0Jf7^C?d zpEb)6X~JD3H<|6xlF~3HtX-nG=qv%L%%Gm?YFMe3cR!|(zn80f2|jClT5vwzIg7gv zMCYd~JlKq=WD|F%^uhStC*6@&q%}Q(Yt+|kNhnRRT@!_$9usnY)B5Jt66RRv(~z6g-{7*-nJ{tBhZd8CPH>UL*YDvK3|hXEjlT?HFAw)p_tdMY{5AyQRx3+W zwZ$o8waW>VEcm)KoZ)onJuHqzk6oHuRRSGxdMDH3$ROqw095VKQlgFGZbgd^?*8j^ z8A;n44TVEL)fh&)nEk2Zp`WA&Y@8xsoOdT$0d+K?O3Qvdbtrk`D4`e&jog z6=2HhjSXI3!bJQ*c)K1MpE-b5>A~=71p+^t`IKQ{?^j3 ztF%R+*xUqT@KqtUHsW<*Kd zf1%rWYf7PSTx0n?20Gh?wz?0&XurIIp07%wI>uW{<~IBVJ0MG3uTAQ7rvAi<=EGZM zR3P>+wX_2)V*Zgnx(TR_0m^ze6)WF6n`<7u1FQM|X@_|hBJJhGj?5PMpvY8nWHSvT z2I^WnQaBVxby8c2pwX#NCFEI1FYl93b=t$|5Cs*drfqw~+S8>7ULuuc!@1#g?LS{! z|8W&8V&uVO-FXZXCte>Z@3;Y`);1c!JEdjTf;+9lafIom;euQDExm?i3y^P6UoMC6T40{FF#O-LR zdjUHsqg8Q(asH3tpRg6)AEd*adOe7vrO-HIWD335Mc9b{usJX)o5moG z@?eL;(R=1S+qLmX&?zZ#AUSN=(T=V`T0M`-FyP?05Fu~if{9Mhw{~-a3ffNV;G>b# z(yGP{n@sCBrb(){ygDT!BZ(-n(!-S8ehW33s=%4k>y5v$pa2tR9eJIjS)W0UfOX+` z9f046y{uB){0i$ggwGBsbW6j5xJpDAEQ_?0)hfi>A5ig7)^lew0keL$PRF$jQ#^qb zVWfPpF&*T=8c|ZA?dIq!Noq9JThy++uEEJk3#JOs6r=U2ay;3TAKsa~2PvV3e9_P* zmvIw!nBKlbh1h>?n&EoA^0)tmeUpu7k?+iuT*H{HF8ZIzfFD zI$M9E%4FSpsYGU@En|VteK}nUeTqM%O@Lx5xqjXQjpylwc*|oh*Dl2fGdkIa3>PiV z+w6GJ@?w1*)$XZ#Cd9~_3-`D2^Wn6#_fvR*^9XaR!l@C){S3XOUvueW*U05W%5AL_i&xeWUj`GMM??)MO&ZPTN)

    SU_qpzzM9O}Gp|q_FlMu-+ZDC?YI+hcni=m_|yF`(RpLH}@$F6wdc)u)lT&jGf zWvz3j=(j>q6hQLRM=C4e1e00QD=B%=g>_mQe$ZLbDt^PzPhN79n_T}&81#HrpbpxOWn|os>kMs%%iO3R5w1 zX3e%+8BD}=XonN-YMY+08r|ZnHLX+F^sx2jy)j*Qu(n}%?}xY2547X0GC#RC`}?0$ zX0^)yC`;MYV1dLaNINm+U#G|Q^8fd0B_h1BiO|syRWjo>)36?6*lei>5Zr3*aY~EWji~r;&EPc_{n~Qgr-H5Pg@vSr0CoZ{+ zXGs}OgmHaFbQfoV0js>amt|Ht!h&%M(^rly^hgecSr!C)siEz!)-g@a@iPg=EH#xxQ?YvGr0*Gj6#=7n8c@t>*DW_H$ zwomD~ZK=GfbPNBL(U*nZT)2I83$xFxm;PlHU-LPXb2k!E-qA$S5a%853*U`te@!gY zp20ZIF8QJQxO4RvqD7~hA2)TKUAi%ZU8X1X)<0<&JrsL0Nv<8yw_${Ivz~X4lB$Zz zQRuVUq*S7O^jw+)3Ky>Ox_J*OGi<$9p#lXI!khM|<&Ligazke2tObwiT z?pO=yH);d?Q#%yg3y^*au)Li)rTc1A4m?)A(5hNicYr48AQ=7sxWq@8`>w z{Hfn6Sy)Ki9TnquQ#b9~f#V2QKT^~gpv^4ZA7#Sb+J%SoY|65A}jg6T-RR9wV6M~(YjrIQ)bhtoj zBwoF<(aFU_fhN!Mij}f1prH+bWN!qa{;)3W6huLRg;f;dDn2YO>WoK$Efy8(_?&&| zzWM(2*>UjRxx*jLIpM2qtG(!$eIUfn?B^vh;dn#cN5Tt6M+5aY@vrcFo+|eLQ-=eC zfCXvqfcw({DU6@dZxX}5pLCvT4fsCFixB*ugN7I}_;J!6#%nN~m0`x8~D?)gm#|JHBZ5JKV2^sCL%m3230bGWHfO%9jST6A# zVt6AY9!VWc6fGFi#~R};{SxY3Cku)nyt#Gc(AUUKKGDHu9u5QwG6%5%3Q4 zMuCsxJ}<2f0Ut_;^VY^|J7~e(+%*tU0aBp!9sQF9744B02QDz5AUlr=nQQ{;1?S8U z0ERYKTrA&UL-$|fflxpygIEYEFx^%uW-{pTFkwM+R!vc|CZgkw{-B(Ec zy1wH!(SCu3>;WQQz2#rDhu&Y zK>p3Sxk>A_4;{oqLt78wEr|J?0xpm{-`#rXXoc3|At zNqUXW{7A|GM+;^YFpB5D!Scqy`Os(U>iP5Z@(vz(a>RfR#*ho#RK^74@A11((2&3e z88Rv$gW$+hDt>r)h3`Vbino0mGArN&2_4*$2zbZx^^KY%?4H!`m(xdy?EMZHnkBG% zg$(c?h>-x2;GgUSgz%}Ng#LbXfY&1_R9)?0IauV?p+kie?Z_YM7x(Kh;&h1sOfdS- zz)J5mIK%(}D7Z{?p@Cz+t6ktl>_n30W>Cu8_%R>5*ic4msPt|drJmQ?xt`QK&VMhl zFbqB0nZ}IiL|i=A(*wO8th=^rSy+sjWv_7JdD}owUISgyyieDLbzmE$ILiit6uIax z1v_4rF3DFEA+S9UTQ*-T(q+;XrG_k@?J(W?I8A6SFejw4zi68F^2v)oR>MiB*EskO zJg4Z&3oIDpu<1v%C<0GJ;>S*fli#RHjA9`roE>MUWYo39y%PS)mB?9@8#_?Zp=Xz} zX?p^8I+W<2jjUIAzd&0fhWsskg?@1_{uoub)-*Kty1)=AdHTddnn-dzJ6mb&=Kk&W zS0YJ+I6Cp?x{!UY_{No;**}I2=((^ZyCAc^eL2&Xrd9XKv6Li`=!E(0t$ok6`Nz(O z{a9H$9_3S&VzSb)KPm5j)i3l`t<9G5tih21b+r9k+BmvP`Y()ZJcmK$_Q$#9ZtvWv zhA1{xrTJ670gfit#Ei`1Yj9`Ma`TGuny%RJ%Z$*?9>~+{94}Q8mja8lny$pggJ_>L z?Ilavfw-Z-Pic`0$=1JbthD`(tl>Se5D^DCy(W<`!v9=*0yA_O8YSigZ55q#MlHdC z=ZoU67@f%t#pW6o*K)f8tDeCtN>6sLTC(kHlrNqMTgCCzbYh42A^Qs>-g0J+$ zHgwOojTVX}<2DEfswC2#kq_Qd|DH5~Ye83NcbwB#at`Ij;g($KfMl-+FL8nR9rOi( z4UKtMNRKmFg95|(&-k2PR{fibr<7S2{y)_mI!5I%x)WOvk7>^EaR_;i;=&wC4omaO zqwxQjM9wc*Ur|zRmNF5RV$R~K+2W(z@q%YPs1%v&mGRxOpl;YlDJPXIl#Aj30dcmA zjXOoSi@FI)kf*+lOLab9`}13dbe;Jw7uT9FMF_3;5itrLza-}0tcsM-EoR;}?IH z8Sc#W^~y#qA0xy_B7b37*-NW2i{6M!Et03lAy?RxRQXmoVfoJgiK9CPIx4n05+T-xC1C@lkZSQkgNZY_;@M4~ zVe&Vqi6=Xb7%rv6H_Pt6$RVH{srItIH~1h#P@_r2UA`{u-tBsCJrB?3q{DlU)mSv} zI$Uh`NM2*geb8mFdMgdP9Yy&)YM3%JXd37N#*ePeE)j#A@rc98vva>6B zA1I~{lz=ArIhhP80*mR}0PELJx88HQAdN%`SAoFx1#EMd6|uveLve+w$s|XUT96c9 zwGL+&*t;%ltl~w#t6K)kOVX4ee;Z*6N|srKn2m`XWKzb z=~MFd+9VzXSqLmZ0G0e@MKn9PzN9%cm|0~+^+U}nR9|Ff=WB2Jw-M9C^KCd-)o;>` z_uwZ>@EvgIRz^9Piv_j+GDt?}3qQv*_hKzTZ`SPq&&PzrD0c&Y{^Q97)gtBk8ZM|g z(;}RvmLynEt*pKd4M24;nD3$odSbbyW z!horo(is z6!O@CdfoMxZaMoOl(_nv9}?0iH^Z0@HcITp4As$wEpcp#FEQ&Ollb|vUj5MOMnwGy zRv_Nd)_Jd)E>o36A=5&ZgucE)us?_|MXHr|?KOI4euziVW3m>U)E`}LPcGN_j(Sf66BMYsxXC7CZ-*Y#bH zCLfX$+3si}8KzX|v;HK@F5I}2SnMa^>b0h2`iKO-2swUk?hD!e5>9L_P!UjOZN>Uq zdym`f7||uKkMfOwS3!0tE16(D>67{pKRf_596jIgR9@HZq}3Rixeu~f(@^|dhV{6q zlayfeI2F3}3RblzmNst=o!K~Rnz-qq!b@3zL)6D6LvKs<>IuL*(M_13n#S~@{^skdoBvXrhd-97}U z4rUjguRz!?6~tLk5akYs(iWc=wD3vIr*Y3Ow0aFJy77o=BqdnJRCqjWb&jQ|Niu@m zAsi^$7v`lvOtYXwHcHHYKKX%&{-}Sq9dX&6H)YQs)@0`z(ugBPFsRcDexJj19k0FY z)g4KjqEA?K+hfr<(NyCEoMLg!QX2zC`;uzuJ2+D;E)$U@%Tbp!B2Th;iuBq6uE&IJ zfn%@~39w$}3#Jvq))OgGwmO>)mnchEhI-k;#iAlUc(~UJpUZ*#LjUf~AM0HEC`G8c ze07yv%v0EFhW2j{8*8Rc!O1NtoXmn(ePym~$k>Ay(bZTI|M5$fCSz@q8mR*kuZ|5T z`YQG}^>f-j0O9(@rf1Y~xtJNRePd%ngb!QFKRaP5=z&aD>phX4|Dc8V9?u)Wc)F~5 zD|`g~)7|SrzLcoeVvgu}H|i7K*nTvB=tPkag#8t9>kHk?*m@#bgAs_)`Z84YW9-Xy zA9hF&G6)x{&A}uLkq)JxiM{{{T6#Fu(BZml3PsFm-bB_sy}>at!AP)Yil4ZR4{G|Wuu1yLsfcgr)Z3?km>_HHS6 z`TRZ$W(6OT_i;MQyS7-PM`Vr{5=VyKDr>7J>6xrGjNBufT;rX4O?+S*=HWEbDXrH( z#v2`*_M5z+#9zRQ&+5&!fyDC<@vog9Iiw8k$LHfTdU1W zGV5j?MXEwZlhG!pXDy{(tSvtIpt##Ka$~#xQLnc)lE{-%I0|Y=Lu$;LeE8KUhK{%* zfiRiL>T7^cPngmxYG9mg5%4|8eIt5}rF?3RuRi?jP9EG?D+q)vJu4qn+k``~&orTE zDsHk`Q;E&^J?JV!(zafWNUvND!*5onTjr$8QxL$7%yJ6vGS09Oii~FE0s^QigM&J+ zEl%!VKKIVl1PAuRv)(Jp!P{@4U6K0*Rp@2!Pt0;V%RAdE;xq8-9uhDTwMCNWX_}$Z z9az@1M!mmSVgY1wIP8`c*Q1^?VJHzP8}WmrM6upy~`J#p4vy4mX64Y7lTN|aJp=9l;2it zuMY+pk%qT2&-A&VpZ=;hmNSJ*Zsdq%vwPA}>^mZ{mjHUhlx$Ng_9YWeB}cR`coraj{uXw)k|lf+wc5J&HY`K*ZaDM$(5mowa^>S^ z?u-XW)|5}!2J14L9!=3y*Wx=44H8bT{jg1Q6UCebo1(8| z_D(BGe_+1-ZiIMuUmUIaKy-_IggZ4sZ~198#j+tQny5sLr&v+>U1h%J#9b#!>aRBbq(bp_-xy{z=|IyXADov)k9wSR}jDoi$;4j$tr^8sT?$86>3Ib zX62$L7;b7~87>@>?=8E;s&g^WIVo+qx=r?>z2~qQUSwBX)Z)WK*3J z4k&vuG%9eO8rg;!r8F6>Y``nxt|_0EteSho@8oRkrnH-it$9nB=idEr+ie%d| zX3T5{4gT^(5&I#(gHl%X9hC_45OJyeI=N6{OM+Bd9n)h+F1ZfrERcce!ge2_>_1Ml zf6Ty#bPp4*twoDA!y^}^Rmjow^TZuXA2``PPL8ulz#1kQsE6WI=|+~a{H~?*vhx59 z$piPIrrnbdp%9Pnl#0}*JM5c+ip_qub3*r%&h}0HBF1)aG3-*qOlk!s^dUn%z|QH$&}>6Pq?91!d7*nEW=Xkt z?v(h$86;z7az0!4c`4Krmg#1ky?0wU6-6I0Sz_LH=isLd*&=5`L{$7d+IiW&8;8}w z6zfcEho2e(^Zq4g&yAwPl@v$CY5y5i37VXtaRiwGk7S9JqY!_@C>MH6Fc61uzd}bF zTlVia_aqp0no;AnAQ$uv-HE0*tiG9=&>D7MDy6whnnY^ztDG-JC5m9T zN9QH!QRaa+g_WAV-KMF7L~CxGaXtpRcgsgorx zS-wDQ6oa4n7qh*9+a7U}m+!6TxXVG2e#)qda^f6n(aUK?A!kzQT~~laEAKj@T6t1=!w5tTr{4s@>_@@ln-_+P=}Y9fc~l z-kR(l_xkS}{eZmir3$Qte|(2ypIK4)M|BHW29*b|dN;7bmtu&yL|ogH9!$deyNQ{Y zs)#?YmM~Kn3RXRm2hu@2ia|&t3u@94O_KYoxj&PAH1MsSBJTZ=IfYkON8Hn`*9tWw zh;G*c7SOxQwPs}9C|Z&>MGUI*;w_c4y?$LUJwwY(R08zKpw1V*ZOyXtv#%eJ#Tyc5 zg23Mek9ni_oI8ozB3GGJ_s@z$@(bVP-i~K?brh29@mLOf*dg8xtJesgm~>Dcm@M$} zjx=qr#Op{2>U!cf+r${&Sn11aj(Kd))tlyoLk};?4z-}0hAo$YeLrZ2`bdtbT5}1$Uad{ofm7_ ze1_U?hzLPufoc~sI_8^e3q@7xLoGLq*V=9r7@)L+7@4lOgF)gvTeqxFyl0c=cC6{B zcA{3R!-gJj$5?xxM<9J44$SWke*FoVulx=oM>X@YW22Q}EZ4eYSpShdZB485pG3QF zD@|$?@oR+A+$WT4le)*z#&aow;WNV2G3B#~%$1gD8S%rp7rUN{LduI^@lIxL6Cc3k z4UnI7uo6f{=eB&f)utp~5E$aN9!Jlvk@r9jmQl1O_b%}Dn5r$i!dmUd%ydCB%Jeb!lTTKO(64S3 zSe-*<3wqTQ?Hy02`WPxvI7LNIR8)B3`{vnZbl^wybfn$*GW-;Ysp*-fd&X28fFz^1 zGy%zFg)RPyN7EPyk=E&7WE;7c{f;_IWv7S)Fm~7Mw;51ZFY1VIciznIzQ1=lUS{e_ z=mTdha*LT+ilz5lf3$InUR3x4L#jwQYJ`_xO9J0jq^NP5GS~bMI|4xDVjVnd0fR-0E(&(sWD#yHBBfH5p0up)K``L3p zGZ`QwRI1TaU0-vSD8$+kv2f}Z?j8=8;$uNMEnTX|Y42gUN@L9*2!=O}BS&D|Gh7jp zxpUTW*llN*B@vRh^B5eKQ9w+H=F9f*Bx zhW;(Uvsz1R(f@h_Ay-7j0cJ=g1<{n8njUkXwe685qvIgEjX2aEtvQJ`E|#)1dVLF( z9S`9)CHb#RoZddybPa;ly()0+81_u}@g<#fPf5lnD^stqM)y>GXjDy{9nUwIg`jmu~K1lzdEmZ=0=(^(5VEvYzphrP487ig4jCLhz>lB*^*APafW3^%~IIHFz`2ewp7keRjQ zV99YnQyXE`>p(p6Y-HTW2SMPjjvVo9#Qo{k6?TZu8VzX%zNYM2abb&$vme}~OBJHC zI1;fY{LeA(5VS_g03U9DOoy<$JQ@wv0`XsoBxx3p&bcC648fk+5PF8(j_m#OCa}CN zPP)wd*_HE+D%T+#uXR1qmbM*OSTU){!v-UqR==VN12J^}TlIy1fW(sKbjTL1EKzQ-Vt)}MVpM+7vJ=+O! z4}H#{f#>_Uh{@K%Lske3QdKZ_gVBNrJ7#0wu=Xj}%Z&^Q*cWg1h+o{=8SIe^76<`M zmyFnGQQ4XBejOtQ+SdUhxqL-enXp&Kz*RNYzO4F;TP}ej+TsIG5whqM`j#5)Dc>KZ;4g4t4y%J6<{)vvXd);cI!xz874A$WP&&*8x(~8-OoC2y!0M5e7_Mfwf zp6Zhfh6u^b%Eth*I=4HQW`=efiekC~@cn~K zsg;SjxvANiRH?PK-mQ_fo_OEM$qC)j$<@T(5%bSWsRSelv12_5O1kDcNSFvfZ7E4B zfu<-)Q-&%Db_pUU#wHR`Gs2caA>x=q0m5wt@;g4g8$Es+z$Zob;#Qsn92`ww*g?73 z{Sqhnho-VFZNd+SRfEZWsmsuS@JQy02sGTabhL5FPi5Pa{iz3ew!Wc-BmJ#;)b@|n z2Bx=KlMnriUPa2-Zw&;-sVR|?6bgEg5fCS7Zk!R|jKapuRDS4==i8(^j!dN8<*$R<<$oqa zW^8tD{+uQB1OC09gvef9S@V3~)PFZU-U#C^V=Rd#lbe5YqkJPpZlwRs)LKtRFK_!O ztd37S1N?zd%;;a=EV6)z%y;Kjug~%K<59Fu)-T>L=QNzJ-}Ey7anFs;KJ8M%!n#A* zd7-&cd1<-XQCVo&X;HC%WZrxat_&@Y!~QwBxBL9II08O^Sxk^!P)7gPPD8taABM@> zSZZgKdOYfoa@_1jWn!HJ2whxTZiRu?oYn@G_U^$>wGqm@NTC4#5A&&BulAolJ5q)i z$bQ^8Z|K7K`KOpWGHKiy6|U({+tomm3BNcfniwO+?NX ze^Et~yg`FDR|DXn*tVUQ=((=f$5j5sdkxV``>fNI2ng zE<=8(=8u=ve?Ylex~o(lX{agCLceoaNRedt7xI6&P-dNq$--6X=69~4C7eyw7E$_e z^heR3a3pw3+}y}yzl@75yg=Q+{v6S>q^7nTKT)>2c~AoD!PfKOYq`e# zR8-G|Z|RS1$#z2LPpc?!Z!}o9$?Fan=9ewSds92VY4RT|AL(arOI2v&_?zNC+y)?{ z5mjrvM1X78AJwb3xUQ4W|LtMdy{obi9qEw~^Hjsyy2_Hh>ch|QMg{h2OM-ia4s_b% zLUVEY##Z2flUBOR-1<+0qphZKt4*R-GvX1U3l+;{nQLK8ETRyM$uXgQe66qi&G8Ri zAF?NL3jCAu+(LL(d@Jr#j(;7EMOM6y6~$z#V_$e*i8>f9U6mG*0(EjRD(T5fTy_fN zHWWiPxC**8r>eJ`MC*fpr3HP8Sd%ixOZqUeJ7vUNW6ud;@gWoNTbcBULX?ScKsDP5@-LsNyh>EaX>zo)x+i>S@wj{P0I_4 zaYY0F-I8fTX#$I|ok)J!H42PJ-f9aPF=k^JER*ux1Vl;So4cy~hV3?n1Hxby?HYf@ zOLUIb4|1)AxZmWZlX~xbeqx!>#CWOiyvGg453UNTZg2^kbZjmZs1N)sWiTOw)iDDv zsrX4gWj#HGQxs zHeNr?4&#?*p75uZB;nN}Q*d{H)KU?)r_njNV^{}@ zxtIWNy*Q@$N}6u=k>Pt<*YVI}2T%EE>ADNE>@??*36ZWZ&UrT>h#abF4Mi3+vidof zP0g|EDN}aco3FTug+;LvKI{K9wq>Vguo!cg5?$`$WM=b}rI6c3$CRI$`bivm1YyCJ zzODU4E3Jdc3BLNT0~gdmXAIX5#UB7^DI>unC%mv;am{w}2TJNkh77&24UF|35bdhE z9c99d3?cNh3Rt6wC26{%kWe`ic(myJK$@l=#quxHF?zWOCYmVc$(R+@$>C-i@Bz+9 zn%_F@7RR}>vZ_c0e>UihuTxkmZ(QZ;?y?PRR7o)COxHs_|AgJ_melbU`)P z_GME9%3&07ICT&2{NPSTH6G5ah38Xuoi4t4QLU?hSKOg|gKJEorT z7JF$;8GW(*?x`@f4SEzYBm|NdvmrY8GB0~7e5>tu<;5@rzEsa!wtKf%TczIIz}2k= zgZjp9u@CVB)D{-C+B^)OgZswaxAm5N@kvDEp>R1Q9)FO6i+LG9oTLNl z%=NgfCb%|C^*$HTC)2-9aUbtKFn&cU>eb>|7w-|xkNi!r!Lbzl(GEoHoRRs$Rx{)ogB%K_MYMKv8#`clvC8#~ftjT&;zEb2ez zigAvNf(|b2ARYgMUfV~`Rl*Z_11lv>f52=Dq?3OYwpHEbt00P*$~{ zHj*#I`@VC^b!Se&?tnpdeCuFp9fNb&z`YrAPF{uL0B)q>;IXEanZ3z~Y#n>-9Z2h! zjve9gP*f_xI^DbGJ_0o4oJO*FUK&MS5svcA<;gS-Lk=t`&G6j=Ip@8uhzbJ>Q->^r znx(p-e&6JT2}NNAh*xfXx?E6i^8+JPR7ysJ-2LxfT?p`O%ti5x7^?Tl2JMd; z78#H+pS$&e_~X~U0-Iab-8&c`r@ReOJP~I*t?nMDY_UG9B1^BLSU5huw^KwqZ&Ai5 zNs23gw(sqk2#nM2gO}AkyG{*)b%Gyg3}QplQwa5^GtBW!M#G|a-5L##N;n+b(6*?A z5`%sDnpeKRa>O<}Yl??In*PUwF~srtt*L_@ZaV(MGy#O02_!9Qxh7-nCyV(S0^Qf> zk7w{I9e>f`_0g!}8|^%wYC;bXw{B;uM~OyDobNf&JYd-RtS+db<^iXrcZ3>#LVxW` zH;BW%o3kKcWTTG(QNBFP9Qv!CEj? z4d3Jk1+!(lWp|0A_}U#VhQ1I*eEyASvHx(N;2uk_O^`he zl!)P&sQ{*#=QGqI!;H(Qc9m|RwD76ubrp~hJ^cl_wTCY&(j_VJKs0hC!g@u?&>xE^ z6MT~)fVE4z&@i%HDiSfa6p&XKfBDtUPpSXEf<6CvE_;CbI%}OXBlIufRBh?=u&0s- zXnkJGydMj9fw1Nmf~0$P{;%T;ir? z*}z1^Ab)b5K(mJ=@k)kmtjhPnmmws2Yfc0{i#!kWO(*-V(@kWtrK{C1%>&MzBi|U^ zjXc57SYr{EaQrOj{60aoa%{pU6ty+mP*z+krBPkC1Zz=_$+tuAq{b!p8Uq!4uCNKO z=y@l)d4fKuL$y?*2VijS7e#2Pn#b48!%HP;PNGm4Tt(x{r z3&cv_Kp`m7_G=P^0SX9v6zStV0*q{kRj@qr9l;noasM8K_&(Rhyc0Wb11 z3pVx(Tev!#Y^7dm_au|pv_>am$`d9uvaElS`rk_fMsEPfaBBg?yqoVwC?e-@>B_{2 z4$ZnEv?fAeVP+K=V)Lw!N5Rbu?pgG(Tu7j1b$}%_+3zEK+^@IYz>Ba%&1g(x7ZD2W zi2a4*%Kg62s}gQ}3_!5sU~WYrCoL$M(J%b#AVOjJpeN!gSdHP_j4e2Y!jqU zWw$Z~v_?|P%`gh&Q(7E$vIzGgkH^u0>9fdwVIiKc3HHA5<)430^$k$G$i;;0EP^k| zuH-kj+w;Cdy^6K3Um>`rk1Egd0ZGFsu9Ckf%WVStP$>pkP`9pnW3}LBf#Ar&)^FE< zrTWJoxW=r|g zvsBa05JA3s%8khf9uHfjHE>VYT69xn@fCRDkkDY0Y^H?Jj=P0ESzePXodM(<4u&p!G?#N=%2f>%RpD%khgv#ygig-fIn1e+KeY5Nsv*D!y&yE}shwd@*Bs4Fq z*j-J@)0LQ3U%3QGeMYicg0|Z2y`RI&BJ~9L0YDAqFVxDyikH&7G2#}$=?N+=03d$u zsmCqaqG8m(3jEhnLG$4)N2%J{Ry(5}KWu`4Wrfvab`PO@y`&RR$*9u-PzZ85WC-c) zn5_kNouFJag{SDHE7xVg96~dD3Ua>&r&2>7{h4)3SH8&#jQ)VP6)fU>LsGgpM}L#4 z1RRO?V+E?QdhEdeBMLRVdB(T(r8+AKy=QZZ1;XLHA`#TD%efSQFeCeihKO4dYkAr8 z&Xu3)ULUvjYtKQ7_iM2Z#bj8xO6=XWv|sQ=jrLxwN&I{9dV@Hy8H-z?veZ-WnP_3S(Gg&ve z{JV0|Rjqx_knNR6dC6R!1@%??e(>oG5?$+=201qe6+Us_%5{q_WqExlqP|6n1sO^7 zA899)G-@R($x{X)T2OjoxB16v&eNF$=A1fS(VZ$8rYS0$S1N26wf5(2GHsj_0(j+M z@CR|<$a{@;Sb~8GUpU(@@K`pUB*K$JD!8lrdN}5>Wj$3qt2S^U`dt=t{y9@1)`f4{ z*kX(UC01UaXRW~H2QeY&(Uz-pe&eOUZgJ_qu5G;5g|jqL8q$@%oVtWNhze~)K*G-e zq}b}3_qkcO3q>P@fGq7LAC{(r0Htk|R2trW##186>(asG>2ybbjgfOuJQH{m2y8Ig zb)1{|NIL(+ogcy^%{!4X+rO{GbBammu0&ok5QlnR2!Rs4Z05q z!!0GrYYvNt-DeCFhn&nyT#)&4GJ(6Fw>^|$=B%$7*$C=4ZO^g2O}&g3fDZh*|DWxw z)2r1DN47@JLjA(et9(2=v!Y-$*9XibdL_AcGDozl%=C}t0r|}pRMVW!U*);t8 z@^^Rek7~oqeu;BLwrjC_;OuQ%3ZjPhwkYatd}c1L$2|) z69;zUFpFBA0Dy<{!P- zDIPAa2fA(Fy}Fr3xR}^cOf|M(%JbJYdyBEP3UDBjHw!zqiSe{v4$XjBxIX?$a87n# zmiEmBcS|x8Wd58#fHubMf(Y$DTuW&L!vf62r~PcX7%U#i_qEmhjUdn>>hG)R}a4l--uL@Z9=?w^}qW)>~i zJSii62zkiS`9%d>mhM76%|zs%smt30cwY8ey`~F{e-4mg10AJ{A|#?u>_n|SQ+Y&; zaZm8NG=>`odk;A|Ng0-bU0U zmxllRZIP^*M>E>LvQDiwh42Xwz`Dht?_ZCuCoIcbcirvNU~} zMY5gF(ZS2j0iv83p(m2&Vkyb1R9wdba{vF*CNqmu_)vHt!6aUg0!*q?V81~=WW=9l zxDkF|YFsQ#EAQo0cbQE@Iau>>-mg<-O40ZC_9l8CQerZO!B_HPQn`C_jqKt1h!B|9 zZbpYRevQ((d~_%yGgM4B?ra@J1|I$OA4f`gpryXF1+1>vim5! znyj$C7V2=dv~3tS6gae_^y`0ocDi}5{7IBu+hFibQ(3i}=EYf~JB*c@hnX!JWNMoJ zBDU&J^BR7L7f!M3Vy4q&5_@0Go;H92&C4Inw$>rOoT~eB*YbbW~Z{E;M(L%ak7j_tDTrFUf{ z-g_I9zoi@z%TnRg@f0JTz|$pGzcJrV(xI(BK-qmG!}G?av^!KNV;?TsTYF4V)uNZC z1eT#z#hR)6!x5cmPn~B=Q?cwR9*koKU3}@B4j}bHNeKZ81@8Nq$S>UP+Q}PqO1Cvc zhjY!>cr5o0y;0NpX3(DrPxM{qfsg1-23%yX{l`&_m5|=}MLiiCai}BMpGgendsOCb zLDNM~Suj!dNWva?@AV(uzkM)Mb+LWXrEiCkwJ#Z8&la&{Gv6KxsaS9Ze`%G}r(ZsN z0k=HY+>2vN%q00tLg~coLrz8;1D*j(W=7$|G#OH0urP}6FxC{D5rlM^e^qV96>gs* zYJULv;gJIwO21zG)V|*R@xX%e>7~UCHNe!{$HauN*q-pvQjO==RH&(fhterF8f8NW zHW_1+dr&;pIw%9R4NPkF42$YqOKHy%fr=l)$`0i%GZ<871{3I9UZagHt-GLvd1N?d zpwM=)33#Cw%H$06&Wg6&2|wYrl5xosgVd94#~#cdsH!Rtod3p$K{T|hs*E$BW0`2` zRJdE&UpdrkmVG!OGN_O^D#s@*iqie3Qre*}HSxv&@i5!m+0n1uam0WSsly9P1^6%7 z!D5W2RcT$DWfInSbRzXTjKNctgPO7eABwQN^6%gfA6uR8h}%rD{zWd?2(!>& zm4Bzig@O&Z)X!45ubl>bK=@|5?{th-9iBwa6(r$Zx9zY~_in_oce(|9`Ao2?`e;@Z zxj4_>X$EqBKWOA3&^Bxk0nc^x=M(n{p2ETLB%NX%0_d4W<5#67AMtFCx+VsrabKXK z@_*7gHDG!!8givh7s_y8u_5_%DaU=p9H~Q<_|IavVwSKGi>9I|4y3 zlp)LFAq#Enr-D^@I@HN6I9t_XLOMa$O=W2{^>xOhzpPk3rg$Ox07V3h(-v*MNM7-u zB!m!8=U>^>9NS1#`|@OF_tNn6o_&E62el|PYXV7saZ4PQAL#2kj}bk$hXSOMha!ys z<2-E{a~6}1SqE6TffZe3avpx-cMnFT%?bZBtjkIg$6jyFY>7BJI}b<&dEmqeWD1~9 zT-qFFh_9*e9EL_Z1rkyb(V{d9s|J3M^$|J56$=(S=bR*f8HW$W` zJltKb)6cQ)p1i@bUe6uR+T&V%y8Kx#_Fs!|&mo~Jo|X2y-+NqbP0y-xZa8ZL}YDsxUEZQG4O z_N)(^VNki&?Vipj7kZi0%-Kh6F&m9WccXSfY~^{e(z5~S%_^1XS>RXTbcxW&n!L>> z!x37D>y(;s4b*MzM2+0hf4cAs+q2fz!b>02Z4~d&`dim*Cu)1R2>)3#W=Da{QHJ4E zIk_Se*i}{sKd=9DTtBb&LA9D8_NRQVmr*)G{&#w)^4yj1y3hXGDEMT}aNPq8$b5ig z4=O06y_7lw7@lXJh3XUu--*dd(6nB#Wr(2=tcG+#G9WMcusnP&&-A#ULx(GMrlUgO zW4Bv+GZFL>2s75ps?|xh3Ra=K!C0Fx*hn!bPDok^Iv^%2j6DtVIjA%iiCHf9NvJka zyV;Q|N3K|aa#cd-qO(c$v!7Ego_!H zT2<@e2uMC`KL3t{lGxWb2E&swE?>;ij*uf2zjwsbeDrq=8b@+Jd4OV|oX}ul+~XlN zbv?BVF4LG!qt7a$(54Z}R!EO;VcEPwJv`?}MRn1>-|ydq0&u(; zIWnYoOWz;?6!y8v7~UnM77%_;8inciebppO;-fKTk4T;}+#c@xl)itCPF+pyw@ z9VqKjOLxw-)Is$)RZ-xbU+D`W#COyo?&rb8u1`~jGU{fZ(^NWpFBm7j6BD*7GEY^k z-zMVe3aK!zbvw$bXVE9ve`;s$W`6sV!Tj5M!Si|Wpw_mt+{R_sUQ7+098P$zfgm}-of7h!K2P! z5v#@fw(F=AR{Fha?8B3GdEZK@>g~h9yLwNcxy?g;rwkb^QLz4<-P_(A#f`swTeYyo zwm{*xYe7%bP#wmx_dX`J%>o;ZLeG5%Qom`7MvH$!)VM?pXm5@7=W2Mr&za))WoXlF zSlZ#-sMed|*}Bu;*+?|8wT7ySq+|A^KR6_BF8`5HjYjS68m*OCSdK8-Z4DYi&+V#M zTUJZOxFWO1W1z(Njkg3q&^`QEo8gAumZo4M(`tEu**`GD( z+WCLvi4QrpwXsCmN>O_tuEG)Pgmjz< zo(8hjY(xzxM*MJ!2%gF23=u=h&N_+fx};sTxWpsg>>t{U26(LZPeaK!lQj^i!5cn$ zCx6;39?elH{JvwBo{F@5I+e(r51MF%Tw{M-s*2+1bAJk1O5-0|Cg0g**Ibmra1qnE zq{3+`u<^)v__<&>;2)@=s+2bN7>>Ny&2krybWDK&Pay`Bo$hw8qHzE+RLn9r1HKX} z%z|Ow?OJqcqa`9193hY$3QK1tb0?~!_`CVlM5z{r+gcE#n`E18EiIV#GZHE%`A>ht z23Fps73E9xIu!}5*ivEgWVFi3&h*q`FH6i~@B9?H(4CKmPO7?w&Zu4wGX9t#S?ga8 zpw)u?MyK;I0g=!#4;c((+S9^&u1~*x-x_tCl;iPn;CJgwvJ+h%99j-Z!o+)xzo0&| z=rLs9j^?qOycRFwJs9Gb!gdt)9W;L|kmVgJt-%3Y62^d^=aoz@4%7M*+FT+D%4-T` zTT^R80uz?++DgFk1tv#$&`@_qle)R`q0SH1n1Dm`cTA3$n@-ro7ZzoIOOQCbjGRN+ z@A%?528!LP4-JW^g19f(jEI*-W?G507QxG&A_~~iRVM6@^0i$AmNIO15=4K(Bc$4o ze}7xUzb%>uQyhxT|Izevrnz_2RlNPY&~(-9{_R~P>7Xt((PF)5CMO494Z)AIq^zeS{C2-NZ{O9vW+t9e?V=2cyAy!^#lVQkaR(2IsId% z_~PbW6t@kE=AH_H$Ce<~#f*OrNayeWeI>xw=6h+(GV(O8gScxdxP&UC#d411YMaQH zSNjkp&N)*!Azj%Y?7dt0Bkdt)ivMA0ST}p(l6bWu;n1OSpuVwS=^?iJ9wM5~{m4#< zA>5&Ocq1+biSa=1bxN$J>o0Wjz&!Pk0Ggr~=HDB|{bz3M+#5wLQ(b=^MI5YY|MEVX z*enE0BN6rdz-8sJiE~o^A{N>|*o^HPm;NFem|AsT8q#Dh;XVFLiF$~1AwxcoXjMAL zW;t@3W`sOiEG6sATbl=U#eXsI!T!;o<`~(>PD$5a zuP0HKiznNdJ;fGQxs^)qiNMlDo0@9^Wlj4saV&o=58-Du)?{BG5g-$) zfO3lpN#FOK(Iv)-$v4`9KB4ES^i7zhLINi1zyD}UK>M`7JRbT9LT2s}{i&Mn&g~IY zv0mXpk^Mwx2#ND6KXHJp?#$R zuf=7>VowX~Y}mwDJP)+}O)P@F6CMi-#|w&EhF5l`Ptand`@CbL z-XhQ1CekqKq%7eVcHwXw3cM@hklDU&5;Rq*&a}%_H#l!8Lzp(U{>#^IT>}czm(|KeUWG)z86HZ z6OA_TbAGi9<5kXGrh|1I^w~D_{-^;$pVW=;2ISvGd8epLhrV8AMuVoI>2G!B+_m^W z3X%;frLKP(1^dNIp%f|S{0N+jBxs~!=*vSQ6rnmwXeyP;3u-sgtQQ|CP?i0sa57TzvvQ(Ef@!Uu$&V_ouW&lA&j zdvy;o6Sj~}PRodkNFTa0l!NZs*A`K>1Csna=aeiW+Y4vdi#(c}wbjQgSILXs*b;wz z5vB$j_}y=pr8{H1n#l!GqKQQ&^G#y7Q)-3{*Vp1$JZJDXFm%y(dc7*}JK}c8{xA*t-+;O&lW!{o^J0rOEy4zQgIAQ^-eE zxvj}guy}4En4F+`f!JcK2_+rPZ4-Zy&tzDUOjI*MajR!RW{oYKzh@z(z7XvbKAYCL z!P?@7m`3p%Mr%nMMET=)cOyafmTX+_pp^PdW`YnTtzjfq&GwBzW!47RSzj0>`+l5^ zjbh_6j9)rQL=p649~&0yS?NIM*dtDj(;<%7yG--tWNAOFC^RLL2t8=^h*4S{5ra+@w%p6Uj2U=+%#$ z^J7NA4E=v{lKqnQg!6xa;62NZ>GT?dZ5F&TtuLSa6W0U3Yb}FSr8M=frt4=m z;lf}N`w@-cUhJ#)bm+CYJ=d*7`%<^qnq`jzxq7Ns|GP%#Cg&lCR7H(m&k81iLG^?j zcYin397F6ha?0^&brLP&j&X4sA2TcoB0Vf?oo#SsYe551M(W89k~n{mXQ3$kHpT67 z-Sl;fV4j5(-bN)iQ(a5}WXQ!fD@6(nuaHT1rH{`-$*YY6f23#o-W!x4!Ug!xo7%u( z3BqiN3&r^rnNnJ~HYdcKmRt^`&*o53eVK)j2nHqfs*pF%Ce#DbmzfH%cy9vO)a5}Z zIPr!ADN>+WVV-hiI5~e;75256LEN#+t{dlVSAeP;HZbGq>E25ipQtHQHDYvh&AX3A#_j1Az^&ku2^`u=1l3W)X>mFt4>jIId~J$Fr0YlM2+0 z3znMkgrBu_XM}i%N3@N&4-;+B_ivvEYZ3RF=$*;UQ?|{cz_x!PPPr=E&W29lKVja! z1CVEOq$5h3G3c2ZrcW2)XfV21NMbHd(wtKXi|F{6?zL%@h;U@#;5@o5hi$uuEYh;Qygn{BOlih@i~FYqyyd*^n<%B6leJ)5iAdE>VuY(PQ`$qV2zsgYLC%D=#YJYX}*6t5UA_!C;fGm)CgCtEZQ`ch|dXmDmQBc7&RRIc?@iHm^*&zucHte4{9*iE`NynxxxS z5wbEfcFlhVRG{j{;r}jN0yR>I*qQZ!{H5Yq;AnNRdSSFG_DB&cmu)-aOKl&mad7DV zG3I+c(|whW5zOfj=Xdl0KN1lTtNaM1n=3dNmv4N8TUm_a;5UYL0&5~K{ggt?o|1qrGWJ3;dGA)@ai}Oemu&^rcON!@wqyq%JW$yFes<6 zU6}$V!SZNjaAUPk2<*#nFz}RqKzw*{9=asbTr+DB>?|BQ#Wa~4VJ{kVZ`O9c2?6#S z4cdP{d4TU0@>E0_?7<>2DS&{2veiz6M|C@#e_S0OKQI>tkq0~4Q;y*nSv<;H!P*!s z%tG#te=p)B5ZcuB{IRhqboClXCXPV<7<9W@JgCbUTEd$>zVXdCLqBqRjvyxb9#z8j z>NNgOMK8q<(%4!RX3004Mp*Mr%AC%>2X(?|AHeYrKxqNn1iOrQGf zK9i2?74?ThwPDlvb^&*qY+1&^89%40c(_3z9SO09%Zcs(1rjQY32aK1cg+j|O45Hs z;aucoz}$P6n*i`pk~G*Xygz=s@&KnDL8c)WF`aP$v{vVa6c6gTO-ICa3;89vWhy6W z4GNZoB`5ZD-#O;VUu5@}_?s)sy<)49ls?4U+5qX-?3dl!jQlBa48+805J`@MeQ{?) zER}`|6uqnOK?t4KZ!6I%y>lO5nkawPP2<$-{B=eEnL7?9KM$#d#P#z6+m}ipLqyZ8 zOF|mqC#sKG%Rq`=8-UPv__B&$-Fzt_tkHI8fxYepW9fzH)sGSYD>6;oUA1~ouW~b) zIJ)bVHUfDW=!dY*T^;}-S`7X17~*CO#h7GUzxS{(VG{*{tkCy@WTSYm9zK6?Zz!PL zzm{Q05`NN20N~3cW+jMxu>Y}@grV${@HHxzB4 zLnD~;suH$uD(V8625DHUHgA8xg1@lA+Nr>7{b|4bb%iy=?@F1Q;mr{#`Dw`U(x>4a zu0&Zec!Yi z)Z))0d(E%YF+{iXmIAGy2+W3bs~m$L>fK8TY8lW2pWoQFz{11=*5;)_k=)qWjazx< z*)Wwx1ra4#OXSwZPe%Gh2|Ck60$sf51?@LgmC73Wtt%-i@+7CE1!t8WR1~e3Vk3WodZKj9O-ViQpJLI? z<^pn7_ZvMoIGd2PC@`i@z_p zMhc(Ip4z5w+?DsYb9NcfL6L5u09*c@1mqn)j(%f-U8cb~wU zwu|1V7wtjotxSKmK)9KXnl;kND5O%dO#O&=pPET%S*=S9qP$>zNm@?!O5_O-%{f9t z5r&g)d61_{d}x`9X$ikPtuOyxgl#N>IL2o)l>&jF>o<{4)_vDVfk33(s`;ACUxGcE z(PX+Fb~7NSA09cb%s=|=&1}F`PK!cq?g7kx(vyD%;{bofm;>ePgiG>y%beWz{W%B* zxlGHw4pIFprpfzx{81z)#}NBCvPMsBiMI;MHld>$^P?w|3N4Zfly$i!Vdl|>gR&k> zO^rWX>8RNFh)xSvQSbY)YOQ5TN}%6r&OmkOr08%1S5!CL>ycQ9SyK#4-pb&hcU?c!H6wpk}jFd8U<9kCX0DoU|c`J#mi5WbS3D|)(-Vx&_J zOnYPk=~Mk+x&;OsxU1$&7ay8ZC6PLt)+-M4Fr9zJ1bEd4{RGCj?#R|d%dZ|O=4(j< zCOK-wGlY=e#c95=>zsaChf_NGZLpLvePv@t`A&-D%|E=6<4(HnKPLoda4!gtrJz`0 zf3q#0iS!VvcYw`Uq3T6_8q)Bj*F|L}i1+VnXi4H(<`x~sgEtXwQ?EP>OI(>3X@7I4@h*&o=tJ*pWEBD{Ps~~L)wI9Mo{y%SI z)=0v6A%Ss@iI!1ij_{Ee2{`0iZ!FMsNJ?FA`bFS2$#r#DFM;-Lyd=J)7-r?Q*Vv`Z zC%w)@O^$@R>I-KjP&FjTRsyl{;au3$-i=}ZEmx`NmH7|#6*e*r>epKWPn=Ock0*Z+ z5#q=OMxpJKOQeuipCc02=uhUSrtovSsvZ=y)&QuYcb}0E)c3{iL7|nAOg|Dz#S9Ae&d==t{eq%kbNCsjWoF!HZA(9 zRZwxFiO}xk8BIEmCEbH-2L0B_QbvEJtC^m{45`4s1YMQjF}HSm#O3Dt@i2$n#&37i z*ia3N!Io>|1MB-K>-2T?{2-OCPoI2cmz9nO^4m51#fcrR#cp0hGK`d)i0}y~%8_1L zG3Iap)u9pS0}~+sCd`K^BH|7K+j2bCpqL-`-{Ya+?;XR-Ox363L;Qh6*GYfkPRWRT zNlth;n^*bE&_nLD;!*XlO2-Qr{&7^SiZyf{fC=@^Tj)Hei-kWZt><&(QDcwdK#{KEamwqP;%O^TS4sJ){D3F zPm_O5Tg8|Cfq}qyPze!o)u)YH&$aSfoH!*Rj0Q2X0jH1QOaA>dp$UI0z~HJRtt;xY z|6DSBq#W;4-h@c&6gQt5nfc>(&v)kt-BW(H#+5mHFW~%#%8CNimKvcRW|D)w4XDal zPOGT6%B9zrAtfA_<){<_EaG$!I&%Wz&Fg^I#0|s{M-0X06=oi}Np)S@J7wOyd6Aid zD?DEY>Ebn0Y`4Z%%=mxnx|%$*0UP>S%_KX~i`|AK86=uhj5i^qjmR5FEl}c@cyaok zP8ohRuO|0U5J!sEVdbD$h+bXvjr%F}g~4t6-$#4K6pV|WKIxnX9ZY!CosF-g4vTHk zuH%C5<{z+!Ppm$4Lo=L8s|9%OlNBK(13sM^rovl%XPq2CxnFnIS;K5Pr`KidxR1M3D#P!KGEVR*bLO(sg~sq3+Oq)+MeCnIz8Fz()?u87~U}t1YuoGr0!3U3dq^S0;Gb9X3=RarFnApX(hX|SKq&7 z%!);JAxJMXo-lu;3&%0dg$WZi&=iXcV7{>5W2Di@>MO zKr;?P~hChGsG;y?o z!G3K)!ul7K9R9ghy?2YB%vX^AyoXKv3g`QTx9f|LE!*HmR(a$8F51vD3-E%L_(=Ik z8Nu+@9X7OTHl8)kIovLmqAxo7B|?-=J*G#V8CBA1-Wk{Z4B;d7?(}ifRo$(wf{I5* z%VuE_ZhL>y4vi+-Q;O2}7ZG$*6k{NOzmY>a)9OTkb+Ubm$|kob)Mn;pDI8o?1r5@* z`U=(1?3>4`Yivft@0QKN#?jaMbNjgP|NX`BpkI;qg~yY12dj-lTTw`Gvg7ESsc_y6 z>3lC^J!JIDPcCSeff$tejwEcKJZ&Y*}#O(I||$`J2Jw`ZsG`%Nf#s06-N(J{2bgou0lU^nf8Zb zd+MD@JcYh-f-pSI12wta6w-O)wqQ3F%14_0@#hT#)4d;9acH&^xNn$vG{nS!{l(aMkhyYYYqa}2hL!=Q3ra!BY0(Q&BM|9moSg|37?oF zTRHzzb$h0s?0WFJOT!2+{XTg$dz63WeE| zU=`KliJdxS=m9bk&6&&@2;}f4UTP;$e6;TE@5)eVoqo}?DM8i-Gn_z5@1DUg9J7DE zQIxn-w>N+|TzGylD+if5)h}!*Uck!1D%5j5e+nz;w65~bxoa-;xk6zk)W6RaPBgd8 z2Z$q2!4g|!=&$6`_jcUqQr#hNbYM)d_LIiIiA(P^)F|a1So>%5;3TXFSN{gw)t+t2 zWkl3MNn=}L9!o{PNF+oW(T;d5j-G#FmBd1ZGSG&=bwfQGW#agPt2iLi?st4bj~MGue0wh7qS2$*(Eh>oIc3l2ws1ah&@{N zI~S*>#+OVj@Lq42VuWXQPd;fAJn9n6Skv9e=gkVrp#CM#gNZ5ZtZVEedD^t9%gX7@RCO3gGm41?_r`Z8G8{|Obmbe(m z79UCw(62|R?O;ft-Bn?(>Nn$}nxk_!VfMdf@aolX|EYnygy9mI?VHU}0E5C`Pgak2 zSIdG2vp3Y39yKPJ3!nbA&0&)H!o;|4P)L;>D&yzqG;%QgXMV4cPkMjPFliJFqHhKD zy3ENQYNm)&oZ?44@nCm0;7X*Ol6@vlW>!?ur<~!JyC!7|sX;G@qHQfm8V{#<|HRB? z6JMA|pI4d-yz9FKXLdo7I@^ac)u#2*o)^XEqA8j)(7E#nNl(4Sp@7M^7<^MeNa7)Q zD4_y(6l!d&N@CzzODul`;S;3%ak6t+ec5uej)s4|nrr-Zqf5KRnU)u%DwVn!X4nm@ z*Y;S)8X8bz?&}?O6$*J##}__ic!-;<`O-T`XJbxqt6Bp8gD~#Ai0OqB3co?=y$cm0#LEX{Eq^a!SZ!Yf7aQ$9|Ve&maG=`9XD>aE^5afpAQ1ul-ad#Gda5*cL|^NiRZ zu=lV%pZ!U5=0XBub(7LwYj(9LEPoOCiyyNHarV6vy7FhA3_JTKo>`rH;BJ>7nRo#& z9o{)sUrJRXF9V=IBY5#aiaBD-9GQO`>?`vn8ns*p)28%^xCoRmLv1w)66jP?ZruUj zD~yz*HMxIN?!s`aM+(03K^!KR6}UFAv}h-dcs;dG36Z#S2+L|Ld6TYW&vEpgcPNp* zXfIn*e)(gK-(|7C=n@+pNFTu|S8A+JRZ=+d%}pNn7R{!{ZhiXwbrX|&LFO0U1kx}SW3g5o9|Xv0)Ta#ana2Knx?ZL)q5vFf0q(qT>e!JV=b_)sUmx0 zGd4G;x`m=0cKjM*&%N-$M3e!;yzU3;{W>8y_A`8-+71FH%2P)d9~b5MnIENe#Io)r znY({}++d37{We;FD`bWV7y6Keg8YHQ*K?>5W*nV_Tlr`!7Rz&E&KyBhNjkq>+;6SQkKt zU%X%`@u=NmzR4|YFc+^#qBg@oo!e{9n>jQuvpQ9eQ<1q$|1~ybr9}cdBj6T2v!{Oz zq7Wj9BXWv}VP9HW>mfz^r#n$UPgMLFrdaHAajlk4FVdW-=tBrc@`gc*9eu(mj|Opl zrD3gk+3Y?4S_zYCi8^D3s`9H8gsM*ERzW(d#kUE&CQaFBt62O~j8A{HrZF%DC+u|o z&PG?vCt3lqhBr=MR*%~QT5O_!jKY5(RU9#mk-`d=R(&(Ww;tS%eX(9n@Q28T# zy8$u-12Mv%@%Bm=pKx3n!m$XJS`>|1ZyiPx_coVD@)gdEkuXs@s3~9{LZFP`1r;qH z8zerC5FLfHj}i}d%o5hBi%Vt6`bHl zd_k|ot>dhL&PbjvVBP{mSonYQ@q;n;k@3dmKn2y_xv2#%)mlpgp1&}=uuyp#om+CJ zG#<#KCuc*glXi-noXiO>Tu^hOLDF%WpgVfuE@4VSY9_jp4xf*q~p4RsL=ikPy>R+hci}7?IqUNrvyyD?2Kftr(Rc`z0g4t+e z23$t>dWhDGOQvn8nhOuohh#D`a zjNR~(Xlx2lFr2|9FelMO;u}X0G5PNw5x8x+f_XW~mdRo1+389E0K&;X?o!IpJ>t>j z0zwN@dq$VE$_b4KnKVdNW$X zP<}GBb#tzG`@ozI;Gd1aMtC#&S)deqFC9d&t=eL!kniO3ZE652o+8l6v(t!tpstew z(gAG-^~zedJQRN_RxjIZi;Cacp|=05hGHVUS}O%K2(NTh#n#Zwm)GSa3v*DmIR!7! zicNqs1QMJDO>uqSz)J*`y+GisrtK(0CaHXCoQ0D%OrSE%aD=9i8Yvq%>8z!W`AZ|A zl!;K)YVi>WLYn}PKlB%STR6M4;mJNmc_zh&c=mRenk0V@5XmRf%b88O{3REngUcqI z&lZ{x-9gE0&&A#iH^8nuDiemoz`MKKN?3b)gK4M)_Pb^nspyWwadQMMC!)a|G_|GO5*ZFyuD+_|yV& zNCMxQ&&NzRxfL2!ejHfR0G8>v?YI_LX66D}O@+(;Ie1m^JHPxMri=kUm(9WcH&%F6(B$?Pzvu+rtF+GC)u5Pm}QkwwMs zs#Fp!KBW1p9mcDC+gnRV(%GC>osEuJTi+IH>%W{^k$~cKqFR%`_`h$Iy5))n7iWL( zGuda~=Y>A=*KM>^b;332J{}6_>gz6rKc?1`nWab97d*ng7-k)kL(08vnz! z>y>M7!6{f)Gkurr_;X_j-@sD7-{Ra2qTmnGhbB`%s&A+LYi(`Y{XKnHLkvoEbeKn0`MnDe-z-Hzm}T^jvIuiPFA z=%MT+6M}5zHEc}y7!*UAVLE+;cHgJu znWX~PC!+YmVRHyLu$cO94vi*b@2r{7DTGYKX{x+_`-4W|NXhFDvERHSQixsSJ&%ZQ${X6JtD`s&*fn@H?l6sB^KJ}I? z{cTouT-T6|B`=1)1jLa(3_}ty^vh93-5G{BX@Ns=oZ5e2cze#5WsYcv+M;3b{OQy8gi3~>Oynb%k*d>JE@dE785;$G5qpK6 z2&YgU7k} zi?y(n#zbi1_+gRj;6!A~oNiJgKNFFNniPf2qYw)`_}hOGNmB~TqIpkSlQ(Mg`i4dE#+sl^DX{d06bY?=sU-RomV4c%UU)p=%LuLEO3K1pTa4Y1cle4qcx5+0Yq~k%PzEt+ zJ7goP5i$IUuN1)h(qzf67v0%=q5rwSPIzT>3?+|hGCCd2Ue z>dt?C*uu&;xWzRkvih4_Eug6%hDabw^vli_E?+HgR>dOg)?eO<8EDlH%!{}4y-`oT z!7B1E)3}AO5QkZWdJYoMp9u8%R63X!4?gdxJBe8Kc%~~3>uAX5Fu4MX$oWZN$UmvB z@*%aWtcMI_JS~lFdV~2Di`FhYBh#$|F*1MbxO!b&S&i6%zZz_8`Ariiat%lcx^SNq zlhbfMWR@ccSet)C1Ktyqcg5$8!Jpu{FMu_!Q95pC%hrC1rx$!KUpguefm=3TJLyb7A&3S!O2rEnJzlP5%aBT0 zpbLqgJf|NkWjw1@zoFm@$T$s^I+TBXbUR^=8Rgg$y?$ck7ZT~-UR_k`N&-0PV2QZw zmzjE05hm5lE+4pc6G`UFB6})Fq+wI|MsSWei)w0;(fo6?dpMpq2c8~AA*1+85d+n2 z%$5LJZCCWF`gpl3#p=!J5_E7rmbT6R7DG2=KGUa;2k~5`vsIggD~mKUx(RmG z`=jq{JadxNJ12$Mip=c&nQLFAh?c&$ZJM-(nMujl{MiwQ z1jaF$ou#|`&dP+=50OnaZD^6yqlw!{lziK$bsEI1M7y5!({)PaBQ(9R8-%*=Frjr@ z!7mp8p?h2(^d)jebo9~!@yIB9B|c6Vy}+wa;)nLjm-aJyARtOjB$a=@Fa7p41j72R zIFOpego?d^;A_dsGhq@!(;?Yy7+*hZ$}{HWU&bynrG_crJKS60S&0n2e71I}+IR>$ zX~h2$baH|O{nM(zp5#$Z^-`)%fW%PvH!wo49@W;#DK-d<6Ke)cm)0q8PyJOcd)a9u zIny{ijx{jy#1z5OFL{3}&|vZwt^2xOZlC-wrwP6qF$ufC@P`*`jdCeVB;DQt173UP z+hTka>JCTv{V-56u*L%ct-7V;!d8E&44(^m5wYOVhkUg6 z|JS56P51Np34*BnAIygHg0?V;TC|K7AOZs-7;x#ApieAReHk6X%Q%BdyVAModyEmS zryBPG&B*2cx`bL#K(Au}lIL?p;^yEQIG7W$n}8EJ0a$IK>P*X6&|w%x^oftDsNDxy z709om8CZMka*}^zGw)+3^-t%paRELf;KAPU|F;ZXh4>Q(D#^Ou67G=@=|jQRxGB{Q zdRLoDK<;|twC#hM>MHA!WCNqi>{n zzW&uCDV;trTUVoe0C{@64A|cms7WtmIsOx{LaR0o3L$^gsP0@yp9ZpQ#-NCs7b(Mp z^*)|Yn{L{e9_xT%*LBrw9q#1(zRSFFT1QCws=B?}Vxv`^y`Tp@y=0+Ng_DM>g_6h9 z;u)2IHH3C{E=|~!14Arb--Oz8?NE(nsYS7Z153pazT|>=7B+c$u*VK=M7SPO7C1_GBwoxdZyTRXHwl{lTp_paln_7GecVrZRK z2KPuke@Gx8qHDM46s*_Z-J>l=$KB*fQ2h$0cGP-i&XhN8kt>v30QA6-0)QUDHfEsT z8!rkgj${||@@1Xz1>~l7m@#oFTH!-c4H&%QFFt?kqI}l@7N(S}>982powXK}0zGyyNnrC}VxFcLTnVFi*Jnnq|UquXZUk-r;B z*UjpG`&y9W1#J|gwsaVDHlYAW=Vs&7W^hX;v>K8DWtyibx+~I}ids8+S^tCT{QCpa zW)pw3QBqoDZlcE1EsV)nLT0T_)9~C#_3T&fV?lD%1PG1g;rG%wd@YNTdVEqhd|QdcNm|%(9^#i>vDXdSy4Wu7mOPBi|VR& zi*@bXKuTeA)aXpwO%J^}B0O@{3}FD~YzTi82LdjC(fB_9#0vT%QcX=<;+BDjxcqqx z%$2Nr(O%5VO><3M30bqAPb6iDB}8e)2ybtvH{;{w8`aT9D-QF_hN&5bbtQkY{5Fy_ z4nd}$C$W2_VM(v!GnB@_YvWSWE3|4VHi~N4bW-rB-E1`Ph}Xkid6pSFiJe6sh&q26 zq*}&%S-zGro^sD7=W4{K_D656U@e_@E#^q}YH*k#4!U)Ip6Im`4XH4$6JNe9CkLQ1 zzg7S!kK!I=3UBJfdh`=Dfij#i z9b%iYD~<07=pQ102ayXcRFeGkizR}yF(lWR(_M8he~eOSyK0-^%>k8sEH;d!7F@M( zk>YUGfKdH_928RSSf)Z~%)W5xRn-4NH(x1RW_~~v=IWROr$ANULqDIP+Y()+XUgKC zCRp2HDs`Em)R&L4BaOrAvK@b0LJUM1#FYAJh;f7S@6~p#f!o~_-85a6-#sH-gHh1@ zg!+D31QRP}sQD$L5i8Esfq0aw!8YSc*H!KPN%I+fLV)!pzH~Y!wI%`c@mx)Qs&&(7 zI~;2r1MBbyF=YX72bO)cHHo|=L(XnONW(b@Tk?^KO^^Jyy8CU*?8bk5Z8sYbDF=86 z)|Q8AnhKAQ)}h)Sz&L|tbELc+9?#P*l1B^}ixm#z-rFSZ-tH_+5k}!iVAyAsm?qLj zK-QRkBvC5(KyVHWv|nxr{b$nA>OZ2+K;d{g0y^(o4T`XW$}qKaiU{)_{u?yHySHqk z1eh76s$Gra<*cb{ODTV~@T>I3F3!n3o$75cksEo7%M7};lND6!=h=*v3WE2h=9Id~ zo+f7)4&}`-#V87R;nxC$iU`b0bMc!Ur{DTFZM!w0u%^v&Yd{>LaOw|k)2Aq7RJ_em z=!QwD2ZyA?l zpXXBEE<-<{HGzLhfNs|fg2ac6fy;#AjtU^^%@?>=ANnt__77yShbtD+>M^A6>cuwU zqMD^j?6?Iz&kMZ5lY19+&c4pd-3EE4R6kRIdv)VnS?Xz5LO|tn8r=k{<`%g?g8VWW z*%2Ot3ejjbrg7P3gwL2Uc*I)7PW5Qka^Mi@fwIUCyNiU(mbH6KGI{`0SG z20P3BOEZ5nWoq*3eO;~-veWCDoq$;OwDFCs6!|wdz&u6Pmug^0+oM-cLD#5^8T~Ca{sRj)Cc-J8 zH6B?U0l9n^kpXTg28;tt!!IOvCn#DD=X;~D>>Gc6{}zd#rUI`ZD^Bs2Q5A9ui#}V< z9#|z0&*!9XbJmWx#523DAn2)~mp4a%A!%LfzH7x*ou|tp*Vz13Z$R-FZvB(B5Orj{ z#W|n&O6`lhFOk3+jFgDvfD|SoH*Wyt-d(^Vue7NoT(f4aYTldgPkrVQ>J~G?nv>MD z-KKx}N6tM1sQO+yPvDSJ4b=*8M51Gl<|wmr3)1wvr8Vr}Sn4euSjHWGEwpuC+W+^z zN=St9o5}XX{5Pq6uK~+U0bnqknjs?zeg5`tE!xW6%HY;geu8M+YJMIn_!8DUmd|-= zCZ}I?4k$AYkmn@v@%kTv7Q~(aLxsGnM09_Pu~)n6z-zw|P9dlx0TuqSGJavsUIpL8 zF1A7(X`L(AAW|v@4aZwZ%jKV<`lr{5^kwjO+^CEq$@d}9<@n{ zREUw&xW}K{)dFbHl3%4G^6Xnu#no2CiQ@`S)Df(X=+=ufy+!{#Vub-E`qejZha!J! zy7Z;tMtD^v;zlNdW9vzo(R*ZE4ghmga{76(Ha7;$N%Ofg#FM$)wZn~TXl-``qS^#rsuX%kW+va4r-{I3{Zb;{dGELo={qln$|G_NjcM7Z_L*|=NdEtqK0A6NzI(vX^UZVuGwIo$ z(>&W#{Y7di$&LuGn0?xt%lFGSU1WIuGuZZDS(IbwX8+d%oNYMVGWt%3%HUc*vNj~v z^nwi(ye%7i6U2iY&R6{OhID_r3=yB>FEV0(P1K6&f%QuE*a4OZ*3{wj9AT(xxu)`f z1w%1Q^9V+s>eiN~8ZqWKF|{ABRQWv~+NC4^v!ZaUHZrwaPF3Z3@Lw8eSXJ(fPl7*^xz!w?{I&I)al15awDD}z;=FgnIuhf4iYH|3W2MF6L$X9s}w=tW4+y>wLc?XolLc>J z-!OQeUwxr|xWI5V^0j_9lq&2CD+KN9a3&mJ0@0@#(<@M;6~%w;??HIwnnio|KrK|H z$Et;N45^`?WBCbDTt%4rU{zjz7*B}7B2sWTp=`(CqQS@2-cfE93;J+d#eA#8+?|HA z#%>A*K@#tdVR3{o1h$uK6+SYH@d1w7s7+@7Q!2A$)s*cI?kq+NBtoky^aw)1XdaD@ zNh-jHhp}_{8Q_130HnaSx7IKb^K5Iol+%jlO*ZAdeFJCE|C$HDB}a6dm~E_}8Mum$ z`OTB;Mcb0X_{cIy#CgjIb2Awe1v=4rF65@?Ue1K7f4OQm700YJp9WI4!c6RChwm=I zRYES+TsEqb&laZ)8FL!6a#rq{-Hvmm21@{YK!m?qE61!5bwIDbwJ}rItDXqe-;=e zC2BvTE)9Jy!VfL_H>b??U!{M!#*ajQql;pQeYr&r2AKrjwsNz?tYJjAm0+fVPZ7N{eC|BW~JG_QSa^O9VjrwoF0 zG!aY3%U3=>&k^<_H;yLx64O;o4qBG|;*MN4>Kf_56Ac(YZ-y=jVBSyT-mPyFkuS4| z2f0`R85(!LcwhKb(d01hLxwdPZZ;=CX(5#i^JF#zRMmVhE*^-60x zkpsD6#Fj)FyL{lo@;eG;Ze(+Ga%Ev{3T19&Z(?c+Gc=Pi_7s;d6#@+fF*i3kG?zgY z0u%%>I5RSrFV_Ppf4FmSrr**v98c^_l8Nrvwr$(a9Zl>^Y}>YNPHfw@ZGOM!ocEl! zp0~cb{^{Mly7ua|yRPcJNeRVlZJbox?SPE5jC2fK0A(>HSq2UU1^@#cGb|~oumjN0 z$->q~#Lx-I1yBc?0F;4t07fPN69WSyEGatbPS4&ZTdaS?EFbf$A~=A-*3Nf`(PIGFz}VKt#NvNAInw=$fQ<{#!Ra4jrVh5& z09jELK{0tbe-(hJFujT}z|h77AS3Zlx{Z?~*FR{Wv4i#hR7V4F`mbeW_+QKDzt(@F z4sQRp=wKNc0VWp4P5>jInS~83{r~7DX=7>&VEeb*#M$mYp??TD{=*MI@sEa-0283; zKWJwwD>*}JAb>*H*4ob53FrWjwKV}c*Z`DltqpDde}gi#wy<*l|Hb_ugrt+<6j%ni^)ic$xBlIw*meY7PT?9HLX-!~kGqWn}?yGIMzS zFS^Fg4h}#Yr+*3lPc8ph|ErOJKsTTJ#&5?>geu9sb;v3|&b{T?WK6l>eYrPUx#UCTn~!!>@l3%T0)2E6fY+h z_pAfRp8@bIGh7Q!AWiW;klm2hrh^$RR7kAuHy|++Ns0|?-BP2^83nN$i!1a+8oq)p z+|Oul#M=G(4(C-+$PvRjX?KGJYXG7T=@+s#t^8-qY96e1T&Uj5^5msPe?JE!^v`TY zG6lb*)wId0y|fIPwZ-U=vW@l`9^~-F#=w%DA8}6CB+LW0Zc|Zv*hY`KbUR5`sNz;P zheI6hK+fd+VoGT1O`={Zg?y$DF6Fkq{%mB+ImNje_&1X$U|AGa8T*u2oT(!9^5lgj@$FN2m;MyV!CFqp9-|k zN@K_fq)M~gQ~Hi>9D#8oC+%9E4%|5#0(;uB-P8~3ClKF=$s1hE7 z@a+C%gHup8FjF0}f0ydq=22_RLxC~6pQT<@j9M_Qkz74s-O9g`#Eo&JGDaw`aeQ7- zfcKoXSq#|688!ZxAjj@Y2CpO;wb`U-vUZsi*$RiWW5V3Eqgkeb{lJhdh}1Ky?3UN9 z!D?;WS<FQkeuokc$HoBadW(?491O}0vrhB3dv|nZCKaJ{5ZrENE40E^ z($j>XCF<+5k%@{{!vaMI5g*-P{BlF%ZpWjk;BY%|e+Y$)60Qn5X!fbcd5jG`$=H5c zkj;&dwM^pHp|sLiB!H)#h12o9EmrC(9#>k8Ypo(AW@XVHCk$2U2*SRY1=sR+7P`ps zZuatBVP4t_S+&4PX`sR#^d(tsUXqrKN!aj$D&J686RP(6&ZK?Gf8rv3leu3=L%DQk@^i&b54!&yn!uaZ zPx0rEbH1QYe6$efcTO6E0~q&nh*PVG&uPf*A5PTF5qI-hX<;NilZm*S8Bv~SRW}9IH ze;#<7ZUwmC)$1g6n(IVs1JXE9^XtBMP}i1*CO2iG_<4BLJMt_s&6}c`0y6V@Vgztl zkuhw<{k=xFX!2XlEL$M5H}Y|H>E;`@!varKLYe!d*0n<<#cUnbli3&Yt{xX+ejLt~ zourIDl&`&3ghpb60SotWsVPzSanu@CyVST8)454pMXG1V!B1B_w$RyGDe$1jQo8*18ongM;~8e z-I0|M!w2ypvh$g|*{7+iaaVA(pNTtAXz|sdvgd*NwlI=9eH_f08Y+6Xg4T z$7b1*!Oa!VO5}#!2vDm@C8}i&!cwKYN%p1&3rCT7fib~>jiws@+=TlO%yAHwT$dgn zmc5}%!0fm5wFc44b;XO1aLWi?9yx$J8tB)pE`q=X%B9D(()`^~4hy^-hX2vA zzfkat1BE?=_U-PzRMUZof5jE&OL001JO~_@u#3hPDGXlxqU;6k0Psg5-L8y%wR}7Y+Y#Mgi_`Ae`BqSv;o_Z2B2=e z2)(P`Jd$by_=H>wr@%dq@jYb^M45v$%eNlNp(2sh<&~GIN)){YF3#EVsHz_`dMv9= zP{|}`5-0kC8GGhYt}z9vK^=lejC>|T0HEA3vk`DyyU|C>3iodf<}PG(G^!7kjuD7b zTQPptqxEopwK}f|e_kQPg)?zL2SkQ%&_9JZyT!x6T_L@`-sBkk0eD2y+~1cE>B-Ul z`kfB&bX@vm5nxuY}ZL92%?;Nuk48INb zFIz{klW!14rdZTaCc1ZpPsX#_R0r&7GuNiNQDqjbc=r*ezrv~tf}^jPjx}rYDT$#Q zMp&m=G|k@yt>mXW-(%uUm_tl z2eN+;Rz{55-C+qU9FZJT+`4~IfjQn*_r`*|m^IiTpN4KEI5ALxkiD~L z=epilBL!F4&C4&GAd<{j9CgBkp~z7b?rO4;OZXB-e{UV+?tl3NMzOZ0{1w8jq7lx; z{LYkrwgk>sjevgiL4TI4R6n9T8)(2op-_Km(=OJmT0N-E;3~ADoLxI>{lItXHK;d* z^pWf6ros!MNhc&P4+RK89qXp+fX=Ra%$jBU6M^61hba=UCE*=hrQ!(rAbTbcP#58^ zOfL5Lf4c4$zEQuh&$;_=aA2&;q$3nZtUtIX7}*}J(PC<%+?bVekD&Jl1-;I3!Q&Fe{ajGDFs4|E^>(0=7PHBtn6H1MO1j3 z4kl>C2NgcNU%dh@O(1A3R)4sF)bgG%grRAvvKJ*K2WCI)HtQy)7iAV5;VLWe@~|{X z@_Ms^C_&134Q`|k3l~*U|=`X1MQitG5cSFqne2zUj$-b1N`g zspZkdZZ4R0uN$@ukHlahSW@2`;q3y;yCmKDz`m|L zJK$M1WxPvx)BvvAypu=sP%nWmZJ3fY?&_lDwCZ!x>g98Q;mZmT+=#Xy&UY?}xGzWy zSpnUJu#!1864bk6mhLf^cz&@K*p2^Moywk6K?%&F#qSc!8=&<+zl3V{Yaz2H2n>)YkB~?r)O2i!FWmhL~tmV|M!4i2eDzUXs4I|2?o!p94Hy2RFq8A zVFGBP7rV&j3g;wHheDpbFP0!lfB7{j03)GRM;j~ISkR!I<4f}je2PWO|CTW$FP}!G zmAa0ql!Euhjg?h&o5=p#pwI-o8ol$Q70E0zrn@$bwuq+sgY9|;A~bS<{_?gqy=dLY z6B-W21iw_#aZlskaC%nLNUyAQJD&1fDhMZl|98-K1rQyRGa;n0CQso%e^Z|Bu6>S@ z@Kf|qHYc0z7l8{z>WK3xyRifPsk2c_`y;;8jZr#TYMX(*J{ws8*N z7VT?4r#xom2(0+~<%W071!f!kZ! z@Aj+$e8C2a>Gw%?1-#fsf3RrE!5(pV6qB|_;oM*OLBGfC-?&;`izw>ylSx_-{k@p# zMN$ZT9oH-HtN_EyX-dr<_HB# ztB0HZV5ry8_V;r!E{9$9Z;dcblGG$>cb3}c3*w%kx;(>!qNoIKe~Dpw6;4p=#uk9L zdEL_+TLmxm~>yZb;h~S9% z3iv6jk%Q!3r-9RHcfm*}VZ#@g=7=bq){~rE%Hz?u;9)YiXo8ndgK;;8v4;fx_7HxFxqgD>c{p)t zmmL^T8p!wfa;D-RjDxB4cV=6pL_*%-$xOw@a|D(gmop4EVu6z1(*YK9L8eA!Wd)GV z_JlSRiO-HJYWqay568kxdnWhO{@_Mi4{ErJxvbkkV;vhze}I~yBq_E|mWAr1@38$@ zCs)oZZJj+7{@C?9%ZW%p*$VsZ4&?8MN4qdP;-y_g&sdw_xcRBs%ktgO_j%2#idd=V z5zczgnBOJdvy{OUiJk>I9^o_c7KqoOSo-uEzH@cGw-HRlcZilKtkqic&-~*Me7V zu;aHW&cv9r)K@+kQkSv9%%=b$&1R1Z7d*L5wTf?cnkcNsLPUfKs8nBjv8uG)U(@Pw zFF21&?OZ<@k}b6k2(&d<=hkUN*XyI}9?XPRv|SAu%=_Rl`jMm4y}0ml@D@LlPdw^} z7V2i5e@)Ypob7<=csY=bh0Ta-6tAQ!APjyWLm>HV9@sBG^M(Onkn@ki{TSFjVZ5uchX+%ll%eI$rmh@E zKj^&dlc=gnC847z7yz^=UhNs(03MBKPE!DRf5G-z;r@FieBSQ6e&F6Ojs77ALfU$F znwCDm*s)~^GVM7wUL(aTk-$UO)jr29{D*euDX@7`Hkq<`#VuRde~x3 zZZk926Nv288F1PmZp9@*5lZ6>Q80tnf3(wz-_d6|AIGwQ_vyLLxi~r6=k=)I6*^EeL#!qBS!?|B3MA!)2Cm&iVDL}DX|P)Q_j_l` z-=-_3|NY8h2=!hc>_rW7tQWBB5n7>eTTel1K^-;xp~m*XcUMz?Ng784SNTjwl`ifo&<(QJWk7W#$eX)YQKZ z{iE+w8{+6PsK#2(3wSR(C36F(MA;ab|MdM}nzJ_|Trh&z&-D;w2ho7&OlZ0I;@&MO z>reNY$ zc7c%8)oA|e#>ZrF39YKBF(vRO7NinQ~ z?~Lj1;;Og;cY?KqZzgc7f5gww7}SUV;gm)o=2G#MKekaGpG=S_1i*aJiQdHo%k{7y@)Z{WnyJSEf7=lWl=2*@f^3sV z!uWTcD$rCToi*i=F)cm3V5gQK+l-AvzhhOb-lLCWsCVJ3C=B`t;N{O0^^IlTSp3vbA@H2DhoqQmuclQ|ZaifDt=wrbV>3C`^?4X) zq)lh*qu+C|d~*9xe^gIS6WGI*!vkOkA`jz7JTFbn<`$sum>|#8W50&!#`@t|KQVp% z<}Y?1_oJx-p;1hkd?;;<^hws|*D1|(tiTB6{Jw|Dj-GkZxj`FUY^dgT&HUxTIQXl^ z=`p!c-#t`6%=h_qoGFg;ch)<@)u~38KjhwdoY%5veKE?3e~bFWK#81fa0Y8{eI~OJ z<~}YO+rAyxV3ycy@reRP2Bw>9i7_+$SHG4h;Db0?82DYdUX;TttU zR;9Esabfa)iF$YsG-L3aB0V}3&(?FmOT>h{l@gM;Lhm?9Vs&sEmg?b<(3O647ovwY zUZZN@pjEdlw@N5^&pen#T0Or zgvF}@JCvUdt~bD>p0mpv1i@^pu~05hYkv6_%H zI}bbzf2L+M#4O2NjX-kDbR09%t0mx;W>KC_i7aS)mMbOo5nLrNAj6g7dmBNq{>3SO zXP0q6ztVFzg4`fh3f$UpVv!xkW{j5}ij2Kp>l$(LX_ddK!O1ro3(XDjMYgG-Gk~a+ z5uY&cN84DFLPGqPs%$!?d)%hV3wq?PlGTSpf9#gvSG$lS4F>_dS()q1W9zQBj+|;@ zjgMYoxiV6Ele01mkxKZ~T{=9cWzqBBjvxPVC zf3aJsG)v8c@C!haNAmcSYcAV9q}o$X&oTPjfEy-k3#X9J*L4jKzySSutX6jc!(_`1 zleR+0dqET<9$6S>dN`S0xGbk+yxQgPpy~UQXC(yRUcpmHaUqDS!p^zXb}x|DFE!8n zJW^);s#@toK=`F|52}|zS0R6~JVHrnf9g8?&^O@BH*thRq=3DKEbXJ=m4=E4IMNYXE-e?^<|1|<_;BW^@!!Px{aZYlLnsURs)dB*X)fAT8;G`b0`L$G;vz8=u=JAoho265bZ<9I|H0nNTo zcL6aaDMXvv-P}yTr9DN;fs0dwtMWYh@|R7ZRoQRsbpe**J)78+j@P6xy>Qjma}{w} zg1CA%4(siF9KAg?Y|5IMCKPQwyow?Qn$ zGI5QpSe-PpV9=+0lfDi(f1pqSg)1bZ_2#O^JrcN-d|rKjFj!)g9nIt9I~cvy7{L`~ ztcnuht!_ZCLw4`J^a;HXpQ-%TpM#$SiWAw z4?rxWTq_EC(iVMVh?Le#$)Zw$+u4C4NSHrkN;{83scy^}UV>$he`5|h{@-`xPped` zn&taj+R(4Vcrt;*w-bK3oVwv(Sjtm1Rx-5_UJc#h`oZxpX{R`kem^MIGGivGN2gh0-%Bt}c&2h^^q?Oi0%)O;!};b%TEzbU$l# z5zxW~V}$t=f5Dnl#|~tbt_76Pj+n}{DeZNu01{8j;pSspbm7B{Q)Q-> z!>~bpqBpF{lRrECw*!n1Oi*ck+Q;mk`Q+YC7ZVucmSUG*qkp=QBvE^Fkp*;3l#r>) ztwEBle|JSAdG3j^+yq|&6O5^~I$s|IrlrOZ1>P-q8q^@85wKLm?9OpPA=g^{exnz( z>j^fsL+z$if;^Uxjf8p+HlCokML_Dmw*-^Rl%hHyCyp(4ba+Or>FpF)~cQyKA_w7T(YL=~d%UXw+ien-zZq8EDCWT-1 zPj@S|0c*whUQ+hMno1_$4C&-OmI7K9=fK?vWQg=pM!JL$5U_09;ifp`K^xC*voq(Z ze_93{CCeBllvi}vvr_IDCMX0tXKyJ`=u%B-f}I~^$3>Gf3~Go&%KsTLhR4Wt3Vosi z$FxeLu&PIgbaUP)lH^&+5cZv?^11bLR_w-USw1Tr;ygS%u^7tNy!mX_5#E|(?YM^n z(Y1qe$ZwPi#X|C9S8l|n$T|`3NoUggf4r%GgH6Dl^$xK6GY!gW*(w2Q1`CO{8UMot z)n*Erq#UJM{vFoSM5qdHE^$I^8XM@?T!GAfB8?m0r_22WqoF5U)Ekq)9W;WZ`l9k1 zQqD?$qnq=*v>IJC?^}kYs*a(Td6xWH1d&QlBgOa=9d}!OMgKyl{rQDe?YYOuf{P=ScQ-9S~?#ks_`N$wj>+*;g?(&JT8F` zU__}k4kjL-CW`3l#0~RkTQJ+T?)dk~-Fi|UhIPlgJ*bYEW)+EwsFela^Cj7u8@F_? zv=glgsVd`>m7mvm3UazBN}Mm?NM0_Gve>}mp9=$g0{lIwQ}$=*Q2O9Oe?MDF9-XhX z`0z4=p5l_gu!z|Q+uY%OGY6;=y>-loN$~lCOGAarHoCpAFI8oPR7b6JUldtcM|mK| z!bhch)|sK#$Ngv}c2Yt(vaSL9gs5=R&^o4VF3D0h;k5VehU_t$ z3zE)#qmM_4#dPY}1jd@Je^#a*>}EFBCtXRjjm$yVvCpWPy7Q*l%UpWpljeF|earFB zBf@ZY;UIDmU)n1<(BDelcWj3>Xi6?4c#0PzB&We=;pX4|p4s@Upq(&i0~qoS;W>2{ z0p?VKbwBa(eMLc|RufK`hM}EBJG}qGS30%>{ci}%x+UQ5PHw;{e|#yucs&0`pr#+N zMM>Dn^fI#XU$3YnI$pKjI^qn$lrr`W5yB0~LWhcleZTkTK1-MSICl;7omXKFNfm@f z`M?Tqhs$k}v5k4>{nnepA>U2ca@GpZZFu)Yd8|dyU;Y`1$lHMj)neRqW<;ZXHOyMG z(rvHj+q=#;{sdFpe|jJ0&3eOEgleS9FrR24d@VEL!#IRF`9`5UYP@prt z>ICAF&S*7rYD5(|^#1I@;plQjpaC}e6h9qRqOHu9n}1LQiFdI$Vj5bufut5+6~W-a zBjLkpj@9~_74$Q6bfDE+S8*9_!Z=vtf6rZ-(W{MH{E!`_f4w3<(zBsv*Yl?@n`xsd z1XoXrTAB>sy9Ff*(VSC>hq_Rm1){x>y!L+BmG1~%q?(f~b#8n6RFWoBx^XTzS9ZOZ zy(v5NCRGb%c~0OmGZo?KG2d+UaBkS)#~ge>B?61Avn-+ra{*7JGDd&!@(0Xj?-bta z)k8dNV4C7Ke_=W>2Rpa!Jizfooj@mEReKK#A-)~OJ{o`WddIt(j1BsassBhre|ac- z9VkDC^zY<1RPotEo8Jl}5!X*#)Gbt*IrqDwiCXt9{9|lFD;@iX;#@EL=Z67u5d5<^ zUL6U9bEsiHOXaHyPT?dMea0a{7E~{kf1@5V(UR}9Bk}lRl>j}_vXieA z2QnGu>h+iOqvUbCY0S+q^T!VtgKIY*73{@$0cJiH9%K=P*P?8&G>@281r5F zG)&^F1kW9w7ww6(tD3_t56MHCo8zQ z7gHhS+AKvl90l=oKk#|GB$d3<`HE|-qb0WTs4GY$tR~A*%)KTip(|1BfG8H22p%du zJnYL$C82Rh)U~BNE=@R6Ug_+ui&*vMV3bjoe*~NkrV^`5Cuk7@#B{ca= z?IftcP}OpKO}>|!xMOq%J9@{wr)~E$OR)~HOQG;Xyf8M5?>T-F!*vz1JCqDZhxfBO zeccB73(OBln$5+4cJje9YeuPbsc)H3{NZ0K(IKHZ;zQ<4x-$$^dc7ehXmlILKbG^{0azr^^RN z+#LFks(WBTQUH@bPtG9$-)|j(9pun!mW4ax@&mH22X(Vfl`THDa>i6;e^;9J4;Ob; z5?pMR87|^V3jO2Jav5g)$cs2`-o#?9e*z+YDyk`{pJ=NiaWxQk9x$d82+~x{gO~-+ z=n5u^;f|*ML~6SgJP>5<{j4eJo5gUpT)CxORVr2HOf?I{jO$E|Wd7N15wt?P8Q|7+ zFdZ`;&i@uN@$g4p6B)Q8FFKtMjI&>`d#%YSl(M>ZGdtxJ8NkX0Ne=9?J zs({`>*kdM8y`wtmA=$iKTHa;{L*Y!R!%n^%K9tFtb3lw}$OHWLMsta*{k~^WGPkM~ z+y!U65{CosadPohE)v2t&Vax^&>D|eZzV2c!}jnf=YIbjZ|QW)koqQ&PJWL67>(P0 z93aND(wJXV2-0s?wZ2~DX6{tae>@r&Sv9dbtzD&P~I^?WBea;be7TiA!?$nrfWaJ881GjPxzTq>S*ge|E4h-;+7x z%*p*@w6vmCez-hwzVNKBTXG2LS|AoO?`tWKLY@{e2VzGCUWuSZ2)HVTT0HTkuGgLZPAe`eaL{-opIvwA5i zuX`1(jS)U1(|cqavp@bOT2RAz`jPn#_gifq8QkH(7wq!0b-iBlY8NCIbt=UGJ0=(4c2-!|G1kPr?wP zlGX*uy&2H}vFWlCe=f;8MLmIxa;0a#vQkxnJ8ei(fUWVlqYz^tyXSnIiu?N;D{ zQ_V_B-pv zCSm_Z;c-EFGsdfm513fwKC*G;mo~J^R}IWw9Vu9Yz3)Y2~J@TH@#_mBG=x*2}09eWzR;WN9DBM&t@`3Xjls#EP(IDf5DQdLt9cNqzl6p#!b^XZlC*< zR09o!1m#NP2Zf0Kr=z%Mx#_r*ElUvm7yOJ&I(?~L^73eGw0}1H=R4j0YPjHwX$5-~ zkysP@KQA(g-t;??wDQ_ld+&ok#hZLYHKwxfe;n}B zl|Q~8f8BaNW7k3oe|;nO{|4Pn;Je1X^S4Eb`R3sIcz#*;Neh_jBk|X_BT@)@ZYiKP zYJYQPSagl~v^8V!68H%i1m7xJPG(x;O#}bywanH0d~^%U!|?PX*r_Pf;PG>finOz4 zj$gEj?OFI5S%0$ zr(>B@!NF}-oWkfV;?V#{!uCW=uFzT5U!LG-(4<4CP`xCduGd_2hml@Td)doB!f ztSV_2Q!^67R-Y`8n!!%Kd1b}FCw9q=hS%Ah?Ae5XUI~dLplmO)j=T@Ay}MM<+h6Z#gB|8DWyHhNzI80B?pKppP*4j9n4z7C@ zJwb>M_@c6vA^RGLNQRgy^QkMfXta496Le!;uGB*id^r5$UiL&aIcvIM zE1z{nl9Ozw)EQ@Elo0bZ9gmo)J> zU4Qa73{f$PbW?(Rq)Q7pZV^1QSsLT!H@x%(SSi;HpB8&av2Q`1QmYHJ6jN%40XnOp? zc7b%d7b~5ug|w7sP=EKOnnKElmsq5WeVmZUn@{;92pgEBDC{egCxuW(FUEG;>P!@&16jS)J!B5r-MheGvh z>dPL23Sl-RyTw@`&t)XXllOH_gg*V^ezW(Ytd(a6dMDH5xhB3}e+flpTS9n;NYfy+qNgV4iSxI_mMFb7JuNhV{QQXA|}EN zjk=)x!vrT4mj1%itzUOgOf78;Pw$bu8vzmLbDG;<940yiTCw^^I4h3KR^;a&ryrR2 zX+hFj-DN&1PtydiZjEaroUy~hOK?`+K-9lfBj`ngF0g7kQgxQ9!rlUlDN#>xdtjMQNH?IO<^ zbJ811$~UvtfA&1q=5Ii$hbWv+E230h#_$0zNb>-4K-p7SwpT-{k z8|T0x$umWi``+ka{oD31VbF3)&hf8rI5YTV$@B)1Y&)=R@P+^t=bOww-?aomN8~cg zcN!=xe|4a+h+uZj49&^KJ_27uPj)S+R!uGx7_7^MeqpgPU=;` zfVB-3?9@+P&dT>Zb&*HO;_hnl8gD&2VZ^5ye@G4H_c}1{Y{wl~4+98#6dNcUNw%K^ zC7S9OQjwaYhc}(%IeGGU)doSI7}^y~P#D56f0}wy%EyD3-oJK)ELEZ1typWIhF!<> z6wH)T1HkZcC9>`Q%xZ%-p{m|=yaq(sj|GKJ4oH|%-m2J$bB4wZ(XLEoH##mu) ze`Bki+K#I~_(gs(b{QiPO4cudS|~?I@QzCi7wSHeJ5S$^ceS`(Tb-f%c-K2?{U%}Q zJOp_T2ZX6?Bsob<@=0##M$!QE|hEAuT|=gVK1l>gG^ap>lFe@8c%iYHB}X9XLh^SDBvL|q_OEFre|Oh%El zx6efJtL{h?P1-`2MWRZpBiIq?HeS^X=7hFe9K3hcsb1SS%(%d{V7@x%X2q(Wz{I`G zGMfPVd5?@$Q1i@kw_gwb(x1D|Q>cs@wG(>#9Z8BPyE9pBySP%ykf!sbK5b;8f6!c* zRA6&4Cmy%J5_+PrJY}B`!7aUvo>xCtJ#U*I2ulB5h$QOjj@59b68iz$(rUh+`tUFR<9Yz5R*}cyL#|BG79GuLLAgJwJ7obEF|G5 zLSUZNR1CAgK-qG`FLL4(|9wx=f7ix<))$w3pn!ZP3VCzO}@T;t10W~rf)UVo0$|od4dibP??Z(S{QSx>MXQ&v$n^i8 z26aiD24t)>gNhvAcD^bO1V=#4d8rdLd1UN_I`}E<PN6^4Ef@kJIIOMimuo1Go@QQe7m0(lyk1UkN(EQFZU;-PBPTvu2vM0tq` z|Mycrt0OHc1mpk@-*j6a<++@ZJIkf0UB&pa+EyXcj~?Ukf5fg)G21b;p%6nOmuV`X zq*${DS|F=U3Ci~9_%8(aZpDV#-55XP_iid{>hAc0R{GQ)GWG3+tutR}3E&r(fXW43 zOK;0LR}pOi<;&h*7a=&|k6;=|mm8j9q|0L-3Dn`fqaqxKCOU=SK7suk+f8*f!reop5POXe=BZhSU#A1Y-_KMs3)Qxj$}lGZm?qwAfhysLA(%~IB4VpH2CO?EiC5+ zhPnrkl$}gK@ut8Ads?zcTt_GF7RqDvU`Kx+>22)6WRC+Z9RrT+W(Ma9JqE+K6X8p3 z>$Mrv#(Oa4)~*fP9JSTpZ+!eV$+Be${2MW?Lg_(eel4m)JRC6EkX-ohbOj}%O3xF$OmTg^uys|ihk5~Ab2oj;y zVp#F;#vsa8(APQE-hNm5oFx&bYi%hiQRfa7OA8 zIV|@h0sm_Y-SoMyc&zvNxZUr7G=rlnVVz#+5LSea){BbjWdu|DByPPgG9$1&J} z`Po0*$Tp5XT_s2cj#J7;Plng&ik@5|oFjb5K2Ruieq74Lzhj6=9zVAW?`+!XlsOyy zf2)3;SUJ&-ZYzH;v^Pr`sW&r*Y%b{r!Cq*mbHmrT6iK{>quttWIa>Ncyk3_`TAPM@ zqkPg(n3SUgHl__XV}yi?h!tGGMdlk;{dOXxpIk$*o$3@}W4<ny zLQJ?aBwU5|yoAXZgkng<<+2KWWE?wUe+m1xBz?5u_?j;;{KxlgdqdBmjPKl(-6Nq{ zNdeMbgIgjlyc8@*+N!zGdr#n&pO~kYaE$@}f**tpn#5EOz3bgTH9ZEjypDS3vOmuU zf=ySbbn!YTit;PxEtRoJ0L^{+;n2|Ch9t>D08{7{e7!U$|HIU_g{Rq|Y)|l6e-FO@ z$B`MjqZ^Kk)B0pi@!Z^K=Z5Q4jljzhlC|evVC1ZAoU+9Tu{;#yNeaRzRkPLhghapT0Fb_0XHdZ+~H$Q=y>USEPtB^XpY~5Z)a|R-`Rs(*XxZX=!8K+KcdooO0DErq0~{DKTb^#QPdT>X5>uPlU64c7-jqI)C?; zD0c%;n|3VXl6Rcomc}`}?d1hbSD!#Rck0m?6x|atKu+WF5-`^E@bugfisQdB>I9 zPLnFQ>6xjH3rmB#MW*tRBShUvL4Tu2+fPDqFe@(#5ACuGeykIclup2!1RUPb2#_*o zXx9><9ypKv%9z^b&=Nk+&XT_&bSRa(xR%t?p+~({_7Wb_39qL|pF18uX)$AqDRh1b ziKnPM*WiA{-EjTARxLc2^hub!Xc|!N+bTH#P->|1d-_|8tv}OTjLq11EPq*|5tEmp ze3Y9*M;M!C-&xy4UdF9=Ma5lwRyOfqJrYI5kGA74_DW2URHG^K8mZU89L#ZS)Vmk% z70Fjk*9sPAkVsu{?Q?AQR7lD>(aDhHfaRR4!8j6(uBh39#arFhCP0`jd{$$Ewj1x% zCH&beH-WmOU8)bP`HiW8)qhK(TZJx9CmJL)5q5#&wh&b|HI(_PMi^D#rqKOXVyi$<2VvH3vQHYJ2fV(pv+hLtPu> zpbfe3%n#W#f--S~aUl5ycWh2-C>Fv^YTjzP!J@hOCtpWl_`_C#34fI2Z7`#^B!_Qj z$Z`B*DOdAz6`I7Kk$==zID2<&QcBy>H-lIN|2SBm7}<|JLB>dA;g1$(dlQYYwtHI` z4avY?2&xC$)ak7$NjpwZ3*Z94w1c zMyteX->hly4Ef1!Mt`}NZzQ{mY zf`-n&&DZqUuJJ4ZF5v+`xcj=;kJr_^g3o<8=o2iKMvhK7NIN_wWn`OEWpN1xfV-mg zkM_B{h(yE$rGLni;4b;2P9Pn`2_M-p8v_9+KCUw({OB9pQF+R}@|#Hkb) zi=Qx>jw^>8*`A)#(*CeXt=uHF~-WK>^jV+E#%w zbleZ2=`^qx1xg!G59Y1Uzs$}zU`xztV(Ox3or2t=Ykz8yn*U~&BzQ5Y*C8chHDD)X z#F>8c=Gcxa(kAqTXwPgnHGGg5Q|0PG0XB!RmNa3Yp;j$^ciWy!$TL`<55&WJo=WNT zVBPZcZ&n^8!_jV?9Qw(Vn{fiE5=B(C(z-dn$+;3nt!K$|d=|j)>DirqvMlLZ!De8O zO`KZPZhv!Q4W8Rj{jDA1K5DVuGV+sdN}qzvnXz8oCvo~nOaFywZ_sm2Bym;23b3{> z2V|nKMY20w@9~w`6IAXeG8SvTZ)kqIX~4d&C;Pf>4UhWm%cpyaE37>Gz0-}CAE4;e zBFYx8p<4g~vv&kB$`>!%9!zjy4Luv2W%4y=^oP`ecz;;Q{>^2a1lN@OWT{sXsM;4wMr5O^lhA8@ zUAvkta+meb-^WErZ+c}V#D{i+uiPoZDrv6M_tqn>p!tf^$++*}_HQNRQb;YLUCDqK16s!O zk|@QM&ZB66I&Wp5u?#s99`vHJO@L$jSuwN^;5kU=h18rw(nKZWs+1d1EN{ayv7}C@ zdm1yxvY$buA4bU847}Su;C~{GqD_o* z_||b|3}pNy&Zsj_VhWn7iTk3jqX;zGYfVhaHm$P7vE9&j>s z9sBOx@c5Y9Agu$nfb!Pu+qLdxp83a$Z_rU+PC)0f>|x0{M{zbpTIDJ&NQ&P@w~Z2# zZ++p-Ch*DmRi?VmrHErD@PASNG$om+{sE z7PrW50-q)WGc_`kVYd^PeU$GnYXX0u%%|H#9Mm!2>9NZFOZ(T-~-Un&1-L zLgVgEaCfI6NYDlvXGUXvoo6zpvC?-M|O>G`{0Q(K6&`~P10cdCD`WRZ}TmKRlJ z_^%%RNlQXZY)!!sbAY5JgS~UY8x6v2 zR}_+e$)Co8TW6cHHx1-QQ6Q9q(Xnu{VEqNc#{!B{bFa$vXVsjin&592a6keZ6D7FI zkZY%um1SQQ`Z3P5%#%tv`yxS1X|`~~;?^E`jE(4}**l0doj%Q{RGoJe&<;Zd#*{@s z?uD`N9ClmykrxOo_aB$^9<(EA~YDdDQk$&&9M!%Nbp7cBeJf1G23-(%#)zDoDI zR7fTD7>{B66pHvnK$l?qkCa0La6y?J_wwiul1mmvO)5Vh#4-s-?z;_n)1(uFu9W6a?;FqC7 zJ`WmK5Ao%J9-_vRrFr9!ag>gk9N}ctsE&qK`G+FqJ`J$;Wa)tT)-d%=A$LpN7z`An z9t|f^Z)m+BFy`7$-Xb+pEdjUgUea;3k0l^3Q`-n)WyjceuGD%x`}s>B;zTxE6-?yxAhztz zvG~I7mjJ&~9e!wO&Jt29JPdCnevAu@+kp}@%pwBfGUIp8lFkJy>^V84e`v9 zCbWLRx!Q=Uc0{;)FfQ{w7b2I4oCRX$U{2sn?kz#ybzG@q@FZi0m~!zNI>BP9) zC-Ld(4;O@hzS-(GZ2PqNIvp5Zn1SZSF#3oK%33giyF{7kHcSOtv-Q(|??NI?Kj^^P zz|!6^clIm1g>#|drh%;G=vBjz#&MAWIKk z)njHWN_I!!`N&ISd9R~?7KaIxwYIm&Xsgd7`@D)J6e3a*uT_``#my*Br+h=GWHXgS z63F2R!06om1?Vb)Ldh0Jb=!eyIcZL^mA#HW8(>H`X}((Hf`b_KbZX)fV-d9)ssGp) z&f2@eq6K?V#QHuzMp~Lxc&Ot~P(z)<*J+n~sA*jvXz!N>d?>Dezk%fsXfzn4IMij_ z3tQ1oh!XTE*&AxjWkk|6)$quIpKtYQXUVh9*I7=t1*YMPNPZ7C!5AJa6F9zqT6-ia zJ_(a2CiG_%K)vjxGc%nc7_^+gze-|TP}S~H$&;G|4L z9r610C|W)=fse?4iH8YZGRtH?>&;%i$sRrych8+!P5$7;?4*~zqN6#oxHTS>mTqH! zt*j}u(7#OzUHnR7OUKKJKzzAOFHcDA33KHY46@`b0}5fwYSBwXdU28UCr_i_XLU|c zWLy*~S;>E&S?o}Zl<)6<@izAGXJClIJ76%k3da#fyE1-%kTuB2$f;;yDRhfTfWOwR zu?QLjs*DS;&pMmnu>}9>)g|U1U4qV}mu{BPCmtb@**DX~RB_jnZ@LLKZu#U=-*9o# z&l)RIeyh-8x>e8NZi!-l-mVyUW+}r!rwE01s-DD5Cpr>mU%@+7*OMfOM>M9ux=Fp9 zU`dBi()vSx?-qB-!jI}`c!F7(^|vLe6vCR<#gSJz(YJ@TuKKxL3B0fR5x&HWFRq6T zc1uA&_kOsKON!{}U}|vRS&`NFmY*NIj}2~h{!O2i7wy-X_KBf3(slIe$ugyd94gHN_db)Pkf zJxVo!1YX@=l6JyP7e8#{Z7BS%u6D|Vhw;>iEB=tDzDrKpAOpKoogH7`FPzD@cVytJ zrW9p=O^P(RnB=56%A+8OLg4gXX|~~(2Qlr-SH75~+T7yOo|VIOlF&M%C9KVzbX)ef za?eN&#TG2`^5`^jxtE8s92JfBs1h1t~ttTva(>*zHTR7nI(HZ3J(W8AiP%WfN6OjkZyXzd^0(619C+ z)WhQEgMyt;BxwHz(hcK8{DvH3PZopBE`<8~>vczjVna?K6_x)cB+z zvViewQ?$ai+y^}cE@+)__&N~dj7$MlZ(fHDkHgzAq|el%Of2);kEW^MJQ&U7)I?37 zJu@dM(A#6I;7D}9EHmT6t0-kk=rg>r^vO(^C^q+ZRH66ZFs!>ROW$}4&JMMHAjbHg zuV1E`@drl*m+W-+{QiJ{Y|&?bY%&FZ11m>#3aoO^#mmEa{_bvEy5PeMu@0`Osj9@y z{NtjN|3L)SAMF2$JdDo1_m4FhtaN!*Tl9dmhWBY7tXEkI8^Vte--Slt>8cf#Du!e=)qfm^-~Lj@imCJk#vqiwTJ@zmWZinZ=a4Cq$l*}vYBO5jFCMg z=&633HzMA5S?_)H*ormXl-*sETP+|)gM@0QdYKA*mlj+bBtYd;c9T_#ds_eK=@Bh9 zfpi?@UIbk+Zk&qUzzp{qCMAAg;@h&O;MJb* zXrc0%>XtpQ0iySn6K=H~MxkGAPW|VT{JTyTu`^60t&^FLqGcJHKW{j^zOZ?17vt2m z*>oxXheuRbg75rfOXMSx!S0lmV+w%xN_@Oed+s{Lplcdl3r~Q;1lF50Qm5=K$ zL&peL)3H8KeSDvya81FuOvjc24(Vrd(t(KYPjCEBTxjK`#l06d+j%#+*iCsV=}{LX zT~jpkd5gKbsFpPslU_HpCR&OXLWP@4XVk7O!%hwwfv+Kdshqm^QEKBsV1x{P*Er z=yK3vy(>gv&ipqv&R*xYiv79q85}hTR#s`Nxx{twEo9sLO6xh0DGfWn(2C02FHpDt zl(4NH_OAEz2ss_o=Xb`4JHbvfYA?7KaJcw_gm52!I{)S!3^w~SABf8sL!O)%)ynW( zLe)ZSeSFBBEa&fX_g=)5@d<1076PpwO@XZ^gE!hIWQcI5!nHwW<<{2DNWnfID;6J( zJyW(R8ZYaPbx=DU+lB4 zW6t=0d-3+#WiipnNob^(30lg|H|g9I4*`!KeVyQus!sm}dMWn8K>nW-Z=Dy$x=m7- z>s?!r;7jIu7eVeGp)c8KDLf+{>`<3QdBwM0S3!;xc?<0AA_3Oz^JwJeEq?5dL_~v8 zz#BR=4WM!-EcK9q@dMuW&?He@^@rQ?kMGleAj-I9fYe^UOD0^(S9(oOLJWLbGfXdQ zIU{ZBavteSUE-j!ws`f1lk5SPLN30s#17@x>mA0H45RB~I(9_K z2V{IcZ$0c8p5-~lYB?zTUl&?OqWRfMwo&h2cyMH$B7R(tB{Iyf+=?8Qb|L7Zj&me` zczrQqt@t6yD3lNHno^h8*OjbN^LvxcaRN3qE#v;0$F$7Q(MrhDGf7v}o~MX13uNQ4 zIXO~o%Ok}o*e9{hF;F1wlPYmUqp5fg4$Gbv>{5oFEZ)tHb|Jw%Cb&R5;qPeVlpOOa ztnB-$m`5+;8c(aV1pCHMTw=n>t6<-MBI3P)infIkn1}C4{e&<0vo95;3Ykup3fDdW zp{lz@2@i8E?^sR7zw^SAhJc{P+#`%yMaBFh69V+qPZqU$6(#bX8OITK1MtQljsUVi)+QSl&gDMPt%`!J`@}*SfG+buq_Obv}8w?R%!nuGozPC(E!OJX|^3{L4t* zy(eVmXR}y4W=V7wCOGVxwRktHBwjo`T*49^^W2u299+ec9~st$cm-$53Oe4eUf&nA-w>o z!Nkf8($wLfhg`}S!tqEu^VB6)dhusl_e-k-hK6m^Z!tzYszr zLMEa5oWHyIlBi`1o29mgkEOd~$MBQ{<3_SMAzJ>KuRQ>N!jC2dJB9w#PGqlO93pZJ z(kq_fjj1|T&(q~_7<3OqK!azq1ZMOo5yES#XkK=-;HfZx)*KDTMG9f5>Zv=R4 zM3W-C@#T(c2`=(38-i)x=@hCwlTBlBzn0`}j*z*^eT{jg)v6ri3ZavEm!oH}(i@G_ z$oUQ*7Lb{Lu{nN$jkp^tn81`GGqJv5xLJMc*_|lx!>G#&H6yxbojUjh_}A|CLpDaPWabuoZ!iEcRdMzvl!m@mRYF}0e3XG-BL004*dyB zPncuf0(E@XD0w!g z(?kO_=N(*45SocCVjm|Qpu!~}^~FAG4FutTn?`P39~Z#BkS~If6b$3(C(&5r%g<4x zKgq)1xQV~U;$}nIWGc>Zq_$-YDJKfEqJPA-8Txl9d{+5N51P_7;ylz2;N%3>eEbItO<8q+Avis(%%MLpw9e$vs>$M zb#58aW|5F9KTnmZ6u3)FK=Pl43e`5H!$~tZ6Blw0Tn~WyWN=I)7t_;VHZ6&dOh$kP@ROvylt~S_Hl}xzUT&YPNA*#^-?y! z?6daoD!2TRYE(6(`DdBwSEl+6LMocVx~=u4%@lebYO7)%avi z^Rb%1Q<&iC+W7bZd%D~^tl{vc3V~}#oOCU6$b7WwI?axTe)q#q-&Gq~9MhqHqDAL% zB^9#Mbc7My#61b*{kgpGK|GE$BXcH{jG~0H3)~vn{p#!PrSofN;|Lm?w_4T=6d-?w zg7H-hkvFEghv80mFjsFy#;nCQ)UGz)rOfC}#t*-iI`x6mS zVHUW{d;nek-jZa>K6Mr@hS_g_?GwH`6AH53L{(``iW~HPjg$v`VVQ4jDwnz;ZaN_Y z*P=vsv8HIJBriu3mG>+~?2v}f*W@xZqAi?44hBKEyOI6gP0_aJWzAV^e}Cl6x-a=_ zR7UY<4`kC|_rLGfu}v}3Yi;tKw+P<@4}El&5xnhyC)-4J1ZOL|O=w?#uk%?yMM--{ z#`oE{10k6-T5+AHyLL&;9i8r)?=qfk!{b3BWY0_ZL@Q=n0@p&n!Pyfu*&TL*^c~^l z3lgsGui==dsGUYL z15Q7~(G7VkKkB~Qft)acKYm_yRg3*3zQVR4Q~?mhMI%#pgv=DWsJt|_gq># zCo*yOC(5ous&Q9;aY|1JGXnPv(KBVe`kERdwF4FDC#*_R+}_)Hd-=cM_plm>^*<)KD(*9UUYj9Ow@FNK{j0<(xU?K%uTV`Ia-rSG z4{(!zoOPfK_#&=uoVs(O)IWayJWm#kqsJ87s{Pz*wYngGSaaG+SwKvh@{Os6-spsE z4?4_@yBs>noBrfFp`6wdH}}U+lxCIA3ZhA~rIA!77dYGiygt^5Y4)1?Z|+8Qu};2h z7XZC`zCj$_OpN?yxHK_F4_t`4xLw0uGx>fabMD+IjZ3AmB^`2nhw3-xS@(V(S&ju2un7{x8Ev zLqRwhl=(y1?L{y$n+^S3OIv`=&^OzGb`O2msq;7B2`@CZM@`?ds5Cty9``N+(ha%c z7tiJtKFBxoD$T~3X4nZbuAUhSk+wxRctYY^v%^$>XG-1nLZMGNv?IT0@vzQWnvECM zG}H)5YjCDlEhM-xZHNTc*Ym(YL`xh2)r9G1IV}uf%3_80)XnAQVk~Zd`pfiFV}27? zse$iYh#^CL*m2f7#h=*(YF$-9P|I2g8Ej1?Si^*6W1O>%&!axNnh;fkXyJkQ6UtnfV2(_Y!bPYnxrYX*sW<7eB)xqhzCV?`4NorSQk*qm9aE7* z+R@s;T1MoMtS$(1Vtn?-6t_(FZaPLSTeTH`X^s}Cb6?yW{gb|I#Edgwv!zZ(eo-$!aw2&m%R)vVIbP#IF`cTf3ou zz3*4^a?MLn6elhoC0b?YO(UAU|7hj9Lv^07BUN*)E-hHCUC&4)Xla)8$He6 z?Dr4iG21M#Sj_j_wH;eOQ5gYIGwrmW)Xj7&$#da|WW;)oI?4!u4OxqTRgGlDkqmCM z_^t)aM>up?6GNzTwKXrqdeQAwzL#Hr@X5^Q6>?`B zZlAxdeG5kvIk||+lTk02dME(%$h%*KQP|N1y*&!A*B?ZBXNtalPbAX%SDNq z_Dri#9;99mtwiG_d;5eS9;oD}8G5r11O=z>TXAr&6yo%&S5G2TkXd>*(~toe%WZQr%7)Av0?YewyzKJQT2h; z!`)7(e}5i2U~cNMRzeV+++;6#hHCoqpzg*?jm4`h^JN2QCnx7OG&ZQLlNk_;e8YP0 z*9C`|i<-;}pNFpdERsIa_Rb!7%zt8()`Zt<;O!~`_0bvY$7A8Axub}G9kgX4LDepC z1%bvXpKJuTBVxwe4vv-yRPnS$?6rzD1cHa+tks1NhuOTJJk44#o1emmA zGCA0eEqHipQbdK?587#8UT0Ie)E~jO;t|-Ii=(@o-{(SlSijW{zE6nUG7wzn1f!Pe z66Z*XAJgWn>5)!jaXLqT@0YZG8+M5ch~tG_@%TU%kS(FSG|Ugq&PIK-Amx>1mk2(j zt}7)=O~LHz+L-*+%i_f|{88-CLjT@rS8qR>YR09E#v^0mEgZQ$9#mvyzKv3K+wC-r zN2zooz_N;eK|aKm3W8+dydX>Z<<{J3t((Tid8S~E5Yc_*=*^UW{lKpdTTKuM&U3C7 ztrXLR{)5YK6W%*dB*SQ=D$XCE;rx_AziQr4Dwb94)F$tpYD16qj=q=*MCcCKWDRDX zPxGG%_FwH{(7ZU3oZ={dK)gyl_*gL@TiVM!(-H%6qY5^Re_6@v)a+YCU_P#?m3(w) z$UNoCTNMvqH)vUZt}R}mJ|dD?B~K~04BUgq94)GgOU!s@{>I%_UDNs|-ST;l{vGm zXreuXI|awn!6l@%sZTg9UjwJV z*m*rb`JwtCO0J|Re4K6)r}4ekIXsjGAhC~W*zkZUsUftW0g994S?%$d%Q%-1MD~vi z93rxk+dV;lBy^=P?U-=z-UC=`qPuO!yD@FRdo;-Kf>mn?zx5hqElmzMqPb>F>^Bop zIi14CJ4}|(MK@H*$v8pd7^WbVK!eL_xJhiEk1l`utD0Z5bApROtWKlP z%KrcvXT5m}Wo~41baG{3Z3<;>WN%_>3Ntk{ATS`4WVaBPe|rNB1Tio(G?zdX0u==@ zFgY|im+)=^D1UWjP#ny*E$+cx2X}|yB)Gdn&|!eVWpE4b?k>UIo#0MzC%8lKAVF`= zckVg2Ue&Aqvt{k-wO6mIrlpj2u!m@RI)XS^IoUV_0UFX88XO-vH~<`M+$glP63!q~ z2-v}1(i8#`1n7Xw0U97j04EoKi-Us`g%%*;;OOZLwtuvO02qLb{}ch*wx;G_JFqiA z+ries4Ggpb2)ntteRgwkWpj2FW&1m%0RjOaRv>@{*cJqkP*K&BQkpD)urvHu1{u}+b>+JFG zhz*646JQPoLI7qUORzl(`@eLPv$t>neEfIW+|}_vt-pj^{_+Db{MC>VU=FhQi*~iO zRW`K)0T?74>>OPoAZLJ*gE`3A9-v`r@A6j>XMeE8f1svzU|Y}sFZh2EauCzMVu;yW z{*{m8-zBh%G}r@Vt_p_y)!V|<_ODL=)OA4rejFu`IoQ?i-}9iqqWpbUa|e4{&;Pyh z?=Jsb$gZOyqbw=M{9hOR)0VOaI+%m)Edd&kzk-@NoBy})Pg~U#{BH~Whs=L01>pR@ zTz|k^@jE*gCBxwA@eX+e`&K^URcq7V{D(^zx7Imj+ni zK`V3P{d3|QP2zlaG_vUcGm-6ITXHweRDY&%Ahg4Y$!N-O!zJR!V(JP@znYCFwSqtO z;YJs5+C+9hWw^_TYe>f0YM?69Bu`fEX^p&7sR)(~XS7LKM;|=qX8g+hZ+jU=Lwf8? z{WmnwE^{^Jj8#bCh1sXaomH5y{Ge^LOIjjhtHSaC$Nez@Krb>NKGD$C~R!zQ} zq8Z_;JDB2h0EM6`a063;O^4<#<6qwV1VH4(0P84ormJG7rtpgExz5MbM1QF$!-s-U z*BpjwlzNmu#zM-!ZV4wE=x2(skOafMwBdHZ{CH2VK`;eOrnJnAag@E%RQ0LR#Y{7? z7qeT!pUU)9Oc^WWtS!i%G<7TPW6bdGP z&9M7*$0lbKXl#__P1z}9&J`d!GUskngM6}yeCHKSk*l)?w!`$nK;iFd=<0jVNC z)%6`FhsUSr?^i1hdoR-24yYgXuCyEd5l3=liYh)QZ%4Pl)PH@{I$n=|T3OF~!q1lg zyt*_KCmtg7yfZmhoQhj-yzV!Su^gj&ozVdY$Rtk`SJ=Ps*aSO!0JRMLd9!*_U!G?E#m<#G2` z5n#H04r()^#eZG=AV3_k^HZ{fGOb+LmHv?i?wj==G;rM{wa8R|%}Vf3$MBZzZ{SL`T61=DB2QR8?(U6Srdt7(X z!6TTDUrpp`kA@^w7tNR~2Y(*|L?Q=TG*^vmxx4OBq-2yrO+mY_j|W}dC^u<8F8B+e zkh9!_p?|^E_+9D-yh*5zpOT6h=~4Aci9Ku(B8*q!FxdJYr89q<(b|Mm1S9Q#RnuvE zqCw%Vth1lU{(U2&u|Ffu`o17OkvdNaPiTi5F=T=U&<#fRo{7VNsf+v1q zi`ORd0jyom9Zjk#7WaHMrXCt1@`l%~67xMM)yOX`#sci*u6rM+{v!;Gl%rEnJJ<_t zhx04lun*RMSu3B0RMz^k)?r_EjtnH4S{9-@djab>I&eWrkgo z{K)7{-vkvp>#LnU=kwW(rRcFj`P3UNmoULyAZZx649jnq^)x^R=jfcYEH&F<#|Qj{ zlVVKtt6;vX2Lb*;(xj|+2rh^yE0zg+Je8jCd^ZR*P&i9*5Of@ zL&ZyYP`lO1==$-#EGX`kKv&+InK)$hVO{)%EM9KElIqihq8|?o9?9YONFdvD&1?1= z3vmwdb+-~(_4e;BMnH!#haV=Qc~?AqPo84GX3%Z zNXnIooj%aE8|2Lf+!Rc?;(eAv)4KOZ`5{@%>T*;;d!{2rR`qt0 z`5c@H&$uV`-Al4K%YypKix-vXNqBbvh}qD*L44@)RWvM&u`{mk_Qxogyrq)zU2&IL zLh&*IzJP)COXe>02s<7wl;M8IM<@gzH)jR2PBbhAHfRFTqcW|1{dh!FkuE_jt ztM>6fhf25OZEH)r&n=WpC>fOFzwY5vI=m0PrQW`plbneM5Md0{Jg*XL{(^8Hu-eVF z{lr{91Y4VYPbBD9KHIiXn16OeBA~M3tougw3K4Meo?BKFwua96X1eo|i$sXhhncYp zg{~YxvaB5SC)R}QkMO&QW{YyXf5+T{JuH5?kEA|ZC4pRhs8&p(?R}Cc2{0&*K}Ld>y3G$M{^$d zct6c{;)B_y#og82LH5$q;MKUO=(z%Pz<)XFl^2mMj=3`UB7Z57r}02vS@e}1i7Zjl zAOftYmi$6^$EjIhv(&9!aGdDDcm23EK)gp0tzN-8t4yFrc~kDQe|V+eN?lM-Uc%it z*!hOnj#I{uytef_apj=@&@q)RJnI%Yq*&OeZcR((Pn>E9!5>s@ast8+3f*PipFgsD zl`$5Lf5}2b^ndP)Gl@pDfKS|iMTTH6Mta_SG09gaL(2C!>d-0AlOXq?sRlBs5E7wn z9#-*x=xXh6scSpHg}W~ONzN9wDanm=hLg}K(o21k3fO321t9|OF7-~3#;)KT)hd*t z>6so`61%{x$fL<}i#H??Oz~SRoLDgU$l!{y`6Da{*?*}*;Q4#_OMBN`wfq>M>$PDgR1cC88bk-c-I-MQPEc^G&Fn}xVF z!gswC(X81&vX;GXV5lavX#RP^Iy&X9OOh>7mB=#vOL+eX6bp*4U3SF~n|bV=yqs4Z zJy8VjMSod1wi0Sx_3!*2D-a)Q<*y{?XCzhMtn?9d$c_d>)(`6{mv<(7+Psa*EPUR6 z%}}!^(5(0Hjni;38D`F9ualb}@zu(dC7&sWT;!x9{3&82I&qa@Ja{XtJa=* z@TsMtc(jEeYl18`Ri#0Nj4xv6wwod^SCOmlh25poroH5AKF&+}pvPUzY*V^<&)C>& zMSom~buBgeZnldHR7~na@Nzc$2S%Uqd*nN_-0w>tiuOcq@<_*PS3F~76Hy&j&X$ms zma%+Ec|S`8WxF%yVvxGmJY4qlZrp`3-{3PiMyD5iN7KfRC`}me1(q7&qKsz(8E$rw zh=R0ypx(rrN0wvuXBInZBIPB#EV-pPt$*3NC=terM)(ejI?Na^_Lv-5AMby*?o=mP zI1-A{;rF#4E4H@4Agd$enlZyhInWV!*F!!FWhOJGBKL~PQj?*1kWsr@UNOJ8|3&{HGf6& z^;FcDdgLPvyuT6#tkH~-5`kLqM`&&Q@am+Fu8|`!lx_t}_OrR`-SgO!v#Pv8RF*Ml z=Jc8jDXa-Eg2uC-d=?f@$c_c47;t6adQxZ4Z3f>YjI$Wv0o%N~^YZu*Nu6H|#0|w7 zL_`&05{4HaosN?Dnf*x^d_GFk%zu$Ld47irJj=jtkyp=Dpyb7VU}^OaMjQ4+EGH|N z7llWiZeI+ba*zL<;89~1B=}qX*8v%Yh>*ju-@OUJ1EG)3$xS+rjqI`0EnL&qLCUD0{Fdb-;OpwSKQC!#NAPFsR6y^fa$QvKJTLv77#bU8%Gcz;DE)_0Xv z4htnbL{}v9wHiytPz0TgF4dx5F{dt+F6Uajv~cMXRf-)_Uf3k*`kOPjxv4ziRu*5; z67NOqekeu}?#&1!@lU`bTw$5CSR3H0?H@a4wW~EK;ONt8gQpw(fGI~5>%@* zag5art&oL27IV%a8gqiVku%4~hO3a7w{P@YcQ~v~l`PnTqVgY*(!I)eJ8NgQ-u$$< zwV4%qM)SoO-qXk!_zbxU!kWFQyTsS3*BW1Eg}A0`xO!KDr_MdtKY#dJkvu3sd03E; z=bANz^B0L9rS4!#4l~gL_`*N+_skFP@e3eOy1aRPa`gj~J_;9XIg$$-%G>PWe9Im* z{&MvGXx&ZA0Yppk>`yD2C=*mAjd{-)hcsMWn-fh_SubQCpG1t0oCq>TNb^SDrDIZk zME`W#5oY89;%gx;b$d+RyNNdSIPeoAk#Q%bhqwfteb#?$t5YjGOLlQ{3&+ zH2GCI=%d*LS?T--)Wx`N3#la;M9s8*h!D>|Vb~#23D= zK!oCDqx?4Z5t-g>t{SMOikLxAmw#z3gVP(yW~H4lk38i{esnX! zgE*pySWPpF!btxBc|eB0x+bf5DtyR@32R-5Om9Wl#o%qicf@H%#NO(zg>2@hokd2g z4`ePyhEh)Pvtvs5jhVBKt*wD6_g}BQj@fC}-wL~*X|2&Uq!8+Jq$T6Lh4j{DI58RQ zOJAT|t4?)>ceQ_a!xdh~hvbQDAH1o8VIuwM7e+yAC2ai*X?jLu*Q^_9hdaGtnkLNiKO@7O zKLF^7-Y0|@OHI{_HBQh%N_s@1CDlR=D+n1B(z1W?7GQtfJ$I0u8@|}mU$X2xQ$U0Z zR3&r#2mcJA%ffG@^AGih#sMl1VO@3$au7&R+%`;w=@9^b%qHgB^p3A3D}EIF(n2o{ z;A4Vo#{=Qk#`$sV`6<}ORkkS@z=tXAvzjiK?lwQj4*J~RYms$_5r4VZ!Gja-Rg;EW2;<-x1;4aMHgH}HUGn~_<=OHpkoN}@hrLGyGW%U7JUS>@od2v z+h>5Bsa?z`NP=5teB_lCS&-6ew?*iD>Ms-;0RW5j*f-l2#?tP}Sz5|?0A`HaTUDOs zEc<`ci$I2g0QVOz$~JK4CaTQJji4EnNw0(M%MAPvrDL!C`3olx;*dj&{oETi<@Rbs z5(Tl|H#cLZ*PdTOR1hL{=jvlKuoQ4Em?(*sH-9U1#p1BLuwNy00&LUtD%+|R}H$$QW~)4iW( z{u$VgsPk5q@xzQwlFV$YL`hRPLXjlnRBKHg8)uU*X0^f{D94bK5 z0e5!JD(jg`og$EPNDvMnXD%F60SK3w(#-nT?59fRMTE~jEao=zV>DAE8s&2orxJhs zc`mk6J|$csk8y^H;@^<|2p%aZ`H+9td1{#V^3ffszvJGASgntqmr@(XZhDD!b(deq zvfTLrrP)50OgZ4mbGDSIVe2R1IcGX746%AwyAtHV3z_UUIXq#7k}|WItTOVxF#_2k zbH1rU@l1!-&HUqWDWCisb3HaTPtSjK$sdV})s+|sgC|nv?W&RB&xhD9@*h$^AH{x0 z9cAR0=O>x4;@z~ODbd(7`X1xO^cj1YH=pe-!$GSO$~gl*E|4|$Gucc%g+_baxo-11 z%|eqPPy0i$08XDH(Ym0C4xLC!)TO^=S7v?^Qc&z>v#vq1qD?{)kkh~j2qS-4->pO& za4k`yc0W;c58YU9GhlSSu7?be9k;g2{fUgU%Y&Vc7uP4@M@#7`IyqoU+Sfb3Lt9!t-yLaQuP~`7+|Cnd`s!$ zu+EkPW+Bs;VW;mH1r3NOf}D<*fox)Nv-7df>M&gl{m@V?XKs7WImE}HeOxs!)>Evc zI~ytW5?=o}(hq%T&o{n()B%_cCkfvQUV&M=xsYWPFxVl7xlU%o!SjEI&J+Z1CYUEn zkp8$~JclLVOjaODNyjU%r|Fkr@#6Y7)G3)8&d$8!KT%SUN0y}}Eik>9fbvmUhk<&! zNa+_1U)H%QJ7RZ1=_)^a6rR`_SyZp+xAl%R(uc-FADGL&NV!)E4c$29Gh1m2yW zwBOylVUu`@>9&Ae5jL<>3T3bT2j6{gBJZiokTdv(+=bkJesguen4aLg$rLw#PP-L{ z5`sc5pgSCmN+pU{={2(c9_838I>u`$YOfV@_ngG)`uh2R0z!?4If;LWcGE&lwhh^q8tV}TGra*p3hHKe-TI=a@ zwSUzms~&_0BlN!Cg1M|XWf}kBeQSclq0O#Db!hn^zjW!Y+s8pZuh2`~lGz?<^Mzu} z>P4Dq6y?$HnxubvCpWxHgvmTEFq38NRCgA^Xt8ttK19eTvdwG7m72}{Q@#+zpre&U zR6j%4Io)76J-r0N0Bd`8{tmu!>`x~uYQ6~;sv~gfph>1I(8=f(5Lv9@zlzAh{x~Wf zTzQzjK@r#{+F8Y}?&~2XwoQNHc#@N}*ulDDywEh=h)1Z3 z-`?}y^*Vc#9zL5#Jo8Duxz+%JV?pLS8)hA7D&I4#*ThxPOiz zh2eJ-o=A{}!Ort;vl%QF^#s-G>n(@B8wiVMPOwS!`MoOdhBuBL0PV$MRb$;Tpa-qa zkpt|PAcTJx+%~H(FriOtH3`d0Sl3-joyTH-AoiD_`6pTigHq_ z$pM6yXk6_YT(b4Zol4~1#;@WWaF|%@+(vvXumgW>sIe(|^b2Zg<9;M4VaH4T^k?u`MMV^k~m~*2@QbO5=<%2C|Zb ztY?4g;Vpzq+XF6fy=d{j9HD=&G|z}=uYi#JY_$U73WGE5g*c@G`G0-SwvTeIg>!gb z`g5LR4?ZZIzIwpSp4~iM;|@;PJb=XjHP){K{oRLsopJV`CEU;Fpy^P6=n}?Qpv3bk zL%KAK-CQ%-J6%)f`sg>Ro!D!ZAFVNsyJ&w)<)eRponbf8wJvJECI*U+Ov;onV|GMj zMa2>_~@Q>kwhjdO)=KhpU6+1lOTW6aJ8xS#7hrgn=gk}-`UT$1ZSXjZij3k z^#cq>$wPh*H72+5?2lJ>`VusNf|>|N*v>zO;EuPLH%`e${n~Il@X1QY=3=_p>_C47 z#V*I7N|C7AR_FeNn0{P&bqn*f%E`P$+Km{I?Wu4>Ap{A3dzekX{Hs}Q?S6RtFc4HaUI9_wD)_S!8g<h+ z+W~{geZPx3Mj^Nc%StA0T+zPwXO&^8__uJig!*;;P!%2O_Cf=uS|0*enPGnw-fD}4 z(K{|5GYqdWpdw+7p1qKNUw6mqI)4sZDm92mBC=}V!lZH1P7=ES%kib>tRstvlSw$| z^7V~Zw>cBkoW?}hDV@br%S}qmSH}es_6z{te3QyNA_Z&qb z^wi<~=8E3Ci(9!)iJ3lsLMnfZn^xBI3>e@)yw%`L{-B2?=0_*WO5?~I(6DBy=+f$s z&M}FxU3=HiX&uKF5urJB-j>?YB;rIy2zGsp*bXf$Xn{IW)ppQT%v(b4VYSReyd<8w z8yaAN`jkt4{Sq#}F!Y=~;=YctW$40X*<^q3j;!Lwuj}_&U}7-Ktqy;|lx*7-K3Zrm zS*GipV``|Ort@Qy^tvXfV$ORfJF2|nS?>HKu-Q`CtVb5nmFYa>QDhvAG*j{gzi5It z#|2D`vf|MjZBGuP^wA6k2mCeJ{a#CZKX$q{FQU@70AYn!aj;OOd16G!M2G&;X>DW;@?i$K~jACjqrh4!nMit zK4%kzGBF=!e3p3QD9mq(ow#$}dgjgoSLJ5cNcT>xAeuwzU)hP3X*{E$RqOryLuvyx zPf{`nY~HXmRgEPcOCV+Sl|YOVGux*k`wbNxy=_u+YI@#oTbF;(Fa9#k#N8xrpq)p$=GjjMId~#kw@{Md;%q zL#d*i$1$57u{Es<=x)8eosooB94^7}Jn1jpuQM=kueVbX9%iWo=9+k5*CQqth_=LV zi4exr6*cm4gt~u6l5|VRMF>17dIxJ&Sz(KC%v#)jXzVMEr=x}a3Ci`u|5>Y6^LaH& z(UpWy`DDtgkmryeIx`_%|1>B8Pz^nJ*6_`-#^Kn3@I~&|NC#c~OzUFb9XP$XRJv2J1m(%491bEjU^`}V~GY9(;91ubncN>;>W>&a6g)ke!0&`yls9foSJa! zzAfcimPaU$-h%GXS%Sd$@2tmP8GRfsIzi}_VnxwuTVDaFK@$ z3Y^h$zOg#U@SOU9bIzuiwkA8S71qSrXZsM!;xDL_P_I3xbWIM(uEw#R==>sH*wfBf zOMh~A^xQsK;A8)?YU`6nyF-ySUC-jVC5=uk_(*^2Q>Kys#v`V_fVy$G|3jw32Ydk! zRIF;_Y8+qbhNn3-@q1wLRb6VVnx=6XM`WiX*eT0uoVzdzFk@8{#H#1zZjCeoo^p zxFvsyr5efhNaaF*Dd+SfE*`{TFSHxU!6yWP4zP*3>b zk>vwTzTb^-QQP-K&T$!O?TGZrlB);mIKEXh%G=E|C6?AZQ*~& zs;x}U)%OO25qVm6I=oi2ox8|yvorcZ~Qozx`Mn=F? z;!r4~zrY}!vR(*oQ!M5As(3e?)9io2m?_rcbFY+*w81OsM$?RbySKC4k~MGXVi{`{*l|QJBB0pODHLs{Pc1}ss{dW;5-06rXVzjh zVeS;o+*YB8-y+7O&X9OSd2z#&KLk&EExTW4wv_zpnP~W%mGU)Nhw?>CAR~XeJkGs` zj>&Cs!Iv6bpCwP&g5vYQuk+3G7D54NSB+0aU9#QG&zx&&6bwrB&4q(uZ z%;)AdbY^WRuZ%tY_=2G%T}A5bC?m0(BOf8{97 zB-D_Muk%L9onc-QO+1$9nuUtJ*Ql#(ide*2saGw9V>0*E_}-|db`IH55^eGzb#MKK zzGbQVzZK59AY=)~+IZ{1P2QO|$ci{h0Kp+Res zcZ0)uJJX%-F-?qn7oBcIB{r!(Kq)Pgma*hbOab=%F#~(4fKYb5f&EWWyxhmrVzaoO z%mv@f)FD7Tk&HcEp3loQ{>~#^@4cj&J>lAR@x#}Tv64y{gBiWYFek+sQ=2)(oiR*> zAaas+=rm1mDRR@mARB*=E^fZYut^Cvq4W`4AqhC3J#8?Hun3jK3Hjg1>!z7 zope{O8&(B9+=yOTF{~q5k_jK=$|F^g_~h2Z!M;g_%>IITWdDC>uoL5c6WK0(eR@c| z73XLjF1O?w3!!tt&baa3y{IOZG)&DJFkhx71&d-<{mZ4wG)2nDPcvgw|0=|Y6+6-5 z&uW^=xFZ_zi!KDndEo;eb#Gr5=jkm3tX2)GIt9hD9-&ipAEP7;onwRd?E3_`pds44lXvNAGq>6?%E1P=%ETmWL&wsg6_!m#vFC7UMvVSk$Mub455HF7+5@)f zH4w5ifsg==&BM4$Zh?is-~LECFPam7b(e zgjTem$#YZ=ztD3xtT1=qd7m`@tJ#c^87?dCiYaT+2=)UfN6TPaL$p+Jigka<;^Hj_ z8|s$ak&bl3UJnAR^VSUk=XxTF$?ssoQ)}e!_CY8%?qv?63!N<*Mw_=r>>wVN~Gfz>U zQsUZ!UjDNj(l_*!%GVyB@8P%m^uPUjXNjzf(5rId<0A4RG9V^M&0<&ij4#E7Gj)bL z)B*zN(EMFN-bt3;IR`%ZWc1QZHji26$S!|()VRw~il$nWA?VRUh5=U`_Ioh}T#jHw zm~U9Y?=4K66a$<#VBVDkpS9($I-==UYsNZ$4MGV!aJ!>2WN%_>3Ntk}lVP_Lmw$T$ z4FxeWF*P`sK@|cN1u-%=G&q;=ZUQKOcV$pr&9*J>9wa~l8+Uhi2_D>aZ(s*^cY?dS zySoH;x8UyXZUJ7-ckVg2Zq=*xXUgd6F-MQCRZT%6X=ClE>ShaKVPIio<^`xos;Dq? zGcyC28QG91D8%eRMvh<`YjGn-5HCOj1O%vnYym8+09IyZ79ur*2gZL0 zSUZF49sd$DwYRYX$V;e-NGd9Sr~)L!m{i38M%F-pob=!2){YLmf6*Wl2Zw)6M-OoP zZ)9oo-^lpC(SN)4uK$i0kyuy&K(L7;z!+o(wnk$5mu}yzO>F?2|1JZaZ2!~xOUU6b zKLGV#4QT*Ckm+BvlclACkrfC)EoNh7>*NTs2gut1LH5=F6(ehhzlzv@gH8VfHL?O* zy8VB_|AYAEX!KVM5o@!*@-hFr1a^=FyMlm9V8_3Dn;KdE)#;zQ2I$|1BM$VIeXPyUaaKpK9ZYb)InZG5oZv>4Ajbve>y)3dz}DI3x0^M)uS(%x4)%wf#+~?X5{R$JCW&e1TjR9I=+?LN8 z?$N~^5{$ZKDgPst7S*x?Zs1h0He-YiQ`y7G- z+s5x=t>omR4mS!uBX~m~XGk%q=sEt@d$of0jPQNjcDsNpG9!HRo7mj}aSextSQu_z zPG7;;OKVxY?DZUU@IErZkVaN1vrDojHW0X^K$oY_gA#vZhG%}*`dZsQO#v%RI@pzU zx%)i)o_uqEdX&0_zvZSAY&`vId+}H>)o9ojy~la=k+l?l?T)ER?}y!baf9x5Mh2;= zW>iB+N?P-RDqm2?V**nxOf3>{>b5Dy=j}DE(HIAzv^(ak)L;q2eiNC47Sdag(n!9v z7Y-j@JcGEo?r!$R6|*pNt;z2Eaaf+zCk=5)CAPqSdF>}r3qq9PAl8?@$9=m(^iH#{I&;!u0t$N1q+Q#UeB`v+(UQKH?Aanbj5kSw zrj(`FRQ@AlEIrZhw7cqrMav?cPd+$-mu_fKS0-vsUoq9(Uih}Oq>L%D_nRh6yr^Y# zY0E5s$NlL8Fz+rvyYr4?i^+K6D^QPl8oxmoMxfk3H5utlh#106dA)mP1_iwn1cE`5C#eA_mg&z6REQ0rMKpL)uvSqIl@0S zDnsdb1M?;Q@0A6{z7-}%r;lftKsjdPGn)~AXx*pUN#+@omG`FA_?Sdkw#&Am9xJHD z@;N!@6&N26SMFA@5$oxQvtAkqqXrdSWfQ@goQ$i^6gjoZ!NZ^CY)+%;q{{ku_R08 z%$PnYReQe8A@+qmXic_U7KEnwEXM)XeXh%bazCFfRTLs^L?o z1ti>Z)FuRC&7=Y8dd@?Fk>;ofL*bE(sOG@l?j7NzToN0la*L~c?fIAw*P-cuR_;o# z_9FhsAjR^){Pv@WH1b7mhL|Z{-9$t`<4lx{v+Gx$;-5NhsLqDwCUbmHW;a{RCERV{ z5ACM)wnJSh2)8WxaU-NN~K38dj0t-W=wFiQpHlV0KRQoEyOW|oYN zS3^(>URT<#RS*jqxj_&(9?S=S+4D?bRW@g&P|Wleb;mXyTE2?4HYUd{8BT1^R+*0I z>eKX3`bwU-)sT*9YtOtruX2s1G*a`zf+;}Rv%tGNO7u<>rRg_e68iOSRsI7$jq?FD z5Z)F{ASqsayQ%melAo=g252W%;Byu(2-(^mRUf|y(ilri>;QrkE>lx~Tc53O)}Iy< z;bYvd( zQ&jz0WVfgPSC0n~7U#__0ga(9GOcLj2f_k0!wrx89UNf^6txE*qzM_l_FO8TKMgzw zBfhMlcrd@Q(4Y-}MK-tyH6igEi{6Z;JL1o>&qEJc3Iv8}WNMK6dS>Qa6&nzta#y4i zOG(;-y2Y{vLJw2It15-c_o->b6;B)&u#@Nd_U%s5hj0|+t55U;Hvx4U%EgiF%qEZu zGLLiB%orTPRL{tdElz*mO5an&6yCe9BqP zz0aG^c-rtMHRulSGQ-rb=&&GcAi_FoGQEg(|E+dikhCJd|A3P_;7mI1!)9|Cy<+jq z5GL_E2;SO~43Yk4fsH!?OX*Q_R?)LP=5D|B2(7%3t~kd>LD&^!_d_SL6jpr~evctf z0@XDc)VMZ(`MRlqXCcM+b&Q>cMGxr@OVUJs#&_)@8Osi7)^XeW4I;+hH!wBaPb%X< zE8|GOB;{8G7=YI2`A;#2;IZF_0N2pk;_D?Vr}TEJv65FmTfaR51rH@AOtYR-nKq`UF+yT(s897Kan8BGtF(!24sp)Vn-T(Q<^~lCEYsHuI z!(Q+_b=PL3FL9IF6*m%7EM4F_iA$hgo6M|n1j#Sd1MKj!I5%5y%7ZeZ!|^x~s4tn1 zKiQUlBE??1WXfF{{Iz6GY%IksC9sf3oai3OT?K_J z3+5S^BBp&>Ggybcj7*I3vr4cjo6uq!C!CRVtFa(f_{e;|A{tQpz@St(SKsKCWk^n3S`qVqqsGO+cWHJ?xxRWD`o5< z_ztQ6eosMtv(iw8i}Z4i`1a$iWE;Hu^pUmcBwHSF4#6$ z)NCYd?QkF_#5x$s@*wR7LI{x9YG5dT)BreNB1VE1W2nRN84X8ePT#lnPUlBbHK=*7 zpcmfxLti0DS#Yf+d=L)8^^~A%JXryKGAOX$-!O#>wiY5tZt^WK8f@a|hDKQ%)Sq1< zy`3LNH?&ktP+RlbUxUPzcPLr}s7hkP<#WHb-HKI=FrKU0>y+Jn8df!PHCqvXOpJa? zfL_UDtMEJ7swtD(e?&^Q)(xf89n|g`-m$X*%5LDwB zASLNukrWBod_b$;8#u3=H^1P2fvA6ANM$A@yv0<+PYtir^H$?EOZ)>zRyAg6UZ69z z%L}F%4JgE|XQ8|^Of@ihH5BDspUh#q!C$m)Cn4KU2)H|nv(_PMV%ca4*YnSF_b}3m z^`?uxdRveFmvN;$)Qs^?j*toY8njt5jMTGIQcs4mEcd6e32E6A5dId5m1Ur~k~TpFP*@2+wGdmf33(7>-@@a~1s~ z+xQ)lyGq$*HW>EdTy(Nxd zH};KMW_4J*%Z{Q;V4`9E?ltbR7>&@2wj}uJij?fXiG79!o#ukAGUdG zajryajawqhX{KMI`3w`!Q z3TBW75|f@JX_#sdBbfBEE;KXMbK+2%vMpKK;DQO;%)x+v{RyoyjBc(s!)@Bu8 zWkVp8Q^PtMKZ^Dg0>iR_RNas5`ZzOVsxDBGFf)TsY6zn zxvxFZn;=s;FZ8j6FQ3!Ck-NfItwlQZE+

    b@5?iKO(MGqVFA7%CU3 z;tQZx_}0V}TQ2JAOQR?|_$jegZQk}-$o+AtH$|)F@foA|8TC_a@d+bNU|*2~ACLBM z8~mbNOn?0bH0gD)%gy`rB$HZ-^>l===R0hFCZOs(XwsZT?AP#{x%J(FrhMKrJvwy~ zYvBgBO{E#{V=Ij%3 zd5N6>bpy?qp0co5)yGt)d-Ql?L}jlm_JvA_7Tug{-9$mW`-J9RV@^-SvBYzX=6BM6 z5qPE@SNR+<@@q&iN$`RNt%Rre@BmSEB;+Pyk!EJbh10>jh2Fk)!0B$nw6Oq5lhqFyk+B_gI2D9mlg@1xy{VPj*oH``KBApSd z3^wB<;=29?Pu|`__3|dMS|WAbV`Ni}(S_OJOfY=JiBkV_S>$$1AfY$rfh5zV5vT^6 zcOWTc>t{>`%rNc{HG$`9(d#zac{=_C*5kD|i&~3=CP0E|Wi5{sJwb7=-Qj+JEKsfS zq*+v;OdU?EXMJ!;lwmq!Ro3eoaTQKIYpCoOOR9wCUK(WbYaOd>kO^HiQ6FcMA0iA7 zJlqt)N~DjjN(q4g`AtBsdgc}u9G!I!36Vb>^}NopEwqsExjp>wMScrpND*3b$hyfT zBbCtbHiOKm=*l$*hG3hrl6PXB?81eOmX4<7jGsjR|?nTIs>7LIhFOOz1jF zC8}O06h6yWvq<%)_#NO`c;p_b#B!l?-c(Xja6nN<{``QJUA2Yn{QRLJ0X_QMz~z%Q zB8rmP^SQeX=N)(BA@#CbSisKwM(7PaUh)f8sWZC^#&@Sn+fBF4dDT6CbIW2MDRuX> z+zHf@tJ`U)swx~ir&e+#YrI>7=@pcV9tk+uuW&0L>Xd{w&DW5W05)4@IBaZ};~pcH zDO=F1Rg_H1k&pu*Un^%y#QhA2#Y^@8q_gY=0BDd1-25L0#GOR_vPh`4+cv0qJ9TLY{U^lGncpWm zTg58ogFhs@=5R@pDWr2RY)Dao3%BJAf-J7hcRqreCwz_*XuC4{^--)XG?2O>T^%ZL3b}?;6id3d`LLFg-FnzmB>wkFGq~Z2TI^V&_ zo-JkvD*?y|=?SKPR@xRnyp}5;B!u=KB)if(do9Ny_)ei=NH1x5ehq1d6m_7oWm`!Q ze1EdhqRSTOOGz^8R92}Rk(_!Hp#wqev1+z<;1Vi^n7?D}*O-7uDBr-D%mOWSevAs0?-a*qTKf4<>-=$! zGd^K!2;arnM$pS}kN^WKa1=uj>zQ>&QWa`t?{QOP94h@{oX`Kjxzwiye z73lhWCK7KnRpV|QS)5xc<Enh7d`AKYEw&RFTV%1ha^89VK`0Oq-?GwXMr`|B8t1Hl!=lU&| zzbR*b*q@&JKj1$GdNL6u9Mo#GUiUrH}3=V#iSim86aoa;Z3gJ(lIS zh_3t_Qi284aMs@KIp_e>@Iah|VSjO6PP48b{lPMnV}}zc$OAacXDAg8r%$e4Xz`mx2rz#5&KVM^i!*aZ88r|jpI5<78G`A5 zLjd_6vL1nF+s$GsQD&}XCe_z-MqdRRyvlF4_5~GxYl%_y zbX#XbwPuZMiqUnJ?L0zb9Uu{koRGiWVfo}o;t?RDbj36s*ws7p+CRo&q2pwckCEa> zsNGP!tCrY+;pYCDx{`@&#;x{>QoKtTI%iE}3 zk&drE@$u-MgCD_I8UT_|P$_1AZCV6+rU=36&m8s|j+haj1^KYAg30Pz5=Z?g&hbwk zNE>#`6z#Y?*Y=UdSSmRZ$+JT4rLyxhvkAPo(^*vKj{r2w1K}18xszKRShNnpQHr&% zsB%KLJ`^N}=X+o<&J}5C@yNMm&%MtxQC<#e{U{J6bh38}&cYLV&XyN{{`2H&A#Izz z6JsA+%*k1t<~;Ewp#Ldu(OAVL_f9~Xe$)H9zQG_$$3V2F7ZV`3aH`Fw*5c<@DxxkDYvt%7{|?g`SxL4F**;_ zynG?l2gu4}?m$yM6=ERCyscwJ?{o6E#x4+|Mxe03PuZX(rj|C*iB64SZ0bV}(Ws6U znY17jzT`CB2I~7{#NWl}t=POZ+d-eAx^`cChuqMBo`|0auFBkht1uD2W=M>gs4y=O zkk@P)ys}M52Fqq?t{P}w_@t;>bHsJUOI@d;2Lz{BIEx)ve+c9e2E2B+k*{`fr5^1` zER*QvDe3MD4vacMY|o1`+NG6zD~)3B&?bfa*-&68yQ>uM<4h38H8Jg_89LZ&Q*2CL z@6YCl&reT)+7g(5A>?TqhZM-X|NM0*BYj@PAz)It;oRtuNvZm`dhsv^Y?)U7RTlQ~ zV?d>^THCDPitTq5s2wvZOP`%q0l1zEy145HCVhth!l-q)5i*$;?^gG14ghpMSpbou zG$h6mc7>JQ9|^;lR`Kt+*0aPH3h6)P8i%~Txa4Z|2AdpzGGO^w34{r}wkT(C>NgN0 zu5V=&#i>1I^`)hYUJW#^%9u9d6UK3_N^k8+Gk7!b^T5G46X4I-nbFX`%lzs`RoU{Q zN$!c5ZeekJofb3>SS1!l=5*^wu%EauC1a=>tSP}zlTi#vzKuWWaFDD$lzjhc%3k#O ziGNU26f)g^dkfk|Mz(XT*_MmjL4lE<<)fL&U!h5Dm9whRMLCjMl>NC}lFxY7@2c&^ zZUMB$e&3`cu+l48rg;5Lm9yxRWL3^l$&GUt4m_z}##Iw0Rf~}O;h-ZMQg!Un0QL%J zcV`N z^V0cAK*O0%`G~eMwxCo?T9QfjedhoSq)g3;oJdqz@6`-KWZw5ARi*lZHQl29y&q0Q z$E`g{7uyJ1`W>QHgO6P0sd6~*YxuXCYR2@*{kvuzzfETa{7(-na9w#eg+s(*bn@RH zU_(5A-8z}Dek6Qx&hSq_8$U#u6KRdz^0^7;-pD@@(fMWr{x zZ}9s!tOO^+n?&NOGz3PT2J*^@Mb<#YvgWpbsdqnv0*@8wQ7SrTd!Fav-{HY zrUmubyS_8;!P@r|H+n!f$6gx*gJT!q6nFPv?Ax>TPxEde z2lKrv(@kt}Zjy3#XZCNYTklpuFE|T1QK`7aj$-lOB|)_CUrG}mrI;cAEE`PE5}3(< zmllcGnK|3t%kk?ZN14|P+JAio7ZzEWWg@|n#fl{VCV~EfEgw9lZ(S$GQ3~H%6e_?- z{9f49BvqjEY;QAnSiPyt2h{zWK*exztiU_=7O=^5c8u_-7}EE#X17162k2n#}p3=lQl(o~)LCxWx@F z!d2Ng+0~cvSRW6ZGk!Ri1Q=rxk^oq((s2X&_mDE)#^QzWVBfGF`Pn!O1XUKcn<)5G2(_x66m-0ehH6 zsEwyZ8?QL&pHtn{frn_GS6O99T>Q=qxzw#G8gd8WOzvO6z~U@O;KwDXh9Me{I+fI4 ze~5u16esr=xr7#1&U&|iU9?-cePujWk~xsB^6d|#;RA-u7E zRLacB(H_(}!$;fI$sh_m9*53$70K@JdlNO(-d$jAaeco>I6Ce(!$JE|iZ5T~Jr;;G z)d?rlI77mrsd(_)=W6bM&)Wv*Pz_H|FeYWgxj47)JtGT6 zg>pWl|1jZAfBDjkYOx;{-``LN-*VR=tGyStex~ddi+@@BAS<(CfcO;}tOq{5n;t_< zJ-sc-_T6pf!H|8^3W+ZK+VO@wGQ4+lD`EIP|Gamy-|6tS3x$1ujuBCb52}Ca&Y<~T zn_Y)vgPT7jmWt|GRNaao(EkwmS->LDDbsB?&P<5Kf*)IjJT?VIZ4Zsk0HH9mqI^cM zmc!gr>Ue6IdQ~$6sj_E&W#Ulb*HpP;>TkS1sYlfzbk%_|pbC7xu?HF@sdaM8F8Oi# zP5R^9p;nFNRpvjX%OpD3n5un)}XlH?Stk8%-Wex7ctdh=_Mv`3qGU z`qkW6>q+uia52JD9#M4@no22OE^QgGUG14I(9f?VTM2wIgbzP!QZrzgFA* z6*f-+l_Q@sw@z^3M&gsBdDI+TVmm6^r)TGip@j$SRqUBWad$g~(_Y9tRQ+zW|8!!x zN45!+Yb8rnh=s9p{XkiDtAGtyUBz-Tk#Oy$&9J_Y<-uHO`yoq~^>bskR{!D+1q9{> zRVmPKLL*FnzhIMusE6ZY-wRz~O^;$X5r8M^{J>;XuEU5M?BgRVw1UG-_PMO~rwM1xRCGq3*A|A8H*PU;lK(_K03+mn zjr?5dz@#K6rg2SSrrcqBEnk){cUmoB{=$C3WtL5U@ago32u@vWLpB;mD}84VZybU( zROr2Cqa>P3(BRt*F`viC^XhQ4wlxrBKusO6ly6vybew2ZMd2x;~x7LW5 z7^Xy(f?!y1%DamxJ3)+8aS%6DGX@o;iji+vCEz8XopuN|0=SnA5B#csnQ3U@PED5g z7patgk1>f#Px;luQr9`lC>9C3Tg3(&u7h@Ud>|TK#n+oScd{T{hKhWT@)|UXbwR1N zFvI}#B0AB>)HXK@(MsgF5i8_a(ja=jOV@9JnX20kUKeC?4SA{X1jqtEpE2!Yb^TD> zrJ**TcbS=k_>GT`pow2&LDQrE`a+NGD#^-!i=7JdI`w;2z(a~)qYr5>g{ei^=9xBS zJd-UB-h$YWf(d;t!H|4}2N z9>xG){h*Cm&vkLKQ8++|VBW+M%_NZ~(Au13(L)Psj~tvaGVM<5nz9n7r>|+ZTWR0; z1JH{yzEYyqI32MCmxp8WJr7ch`WP3zRpS>P%)VI9hd?_ ze5Au}WBj39MkW>Xc=aZA+JH5&T3@MuS|NIc)tlvgrS5jbU+U#T@+*mH0+TUT?ZO@< zH>$`RVj=kU?<1QQjUaY=`u;40F5k~;VbW-$bqjyG!Z>mssTPO3O9AVmkJ_V}L~}d> zQ>0JB?laLgsCH`V&hfzdbx_TmwpZdMg!7E$s4DG1a%gQrmEQbn4u490N3+d;Us=T@*Gim30Pu$ug)sMEq1k-Gr{b;+WA+Us->oOJFL4@cC;ctoh8f|xDYI52 zUsgV;V8Fv#C+#n-M5c&n+gu%|ne#KiN}F*ueHgqw#};)sQ?nTdbJM_nU0=15l^rCK zOdsRYI5n05j-s;p7}(ExtY&|PF@&)~{c$i9gb;Dt+JCL8Z2vM<94|#LJ0>@k#0t#rye4RG^_nT|I zHdE+2)eCwbo64CaBgnV3-yMo#@}8TeLv(OM(Zwv^(d;SLH*$ff&M=b=FI89_v2ABjh62Zgh>WU)mkz!z2( z>i+UVLw>K!Q&MixRE32-5$yz_eqo+^m2aGL86nGxwH>CDf&gGZpTAWSAnc;;dABDH zh-Ga(Gpx^HS;4rSW{yM-Oj_}b_7yfXk#K3PfGNf>81)*i^?%O`Ws?j^f8w$#C%b+~ zP_Bvp;G!9JkMRy$%*~B9k)3C8s!xwIe+h5eB6K6mn&RLwb zSKKHq9>YFd*e)d`ynaTYB)OC=A`-5Rnw1JpvGn5?U>A51M1+&uiMmV>CNzblKs02i z?%8+R9u$eE4;i&<##A3ge}wYNxy!1E;C9mgOv?7~;%ski+)uoVj1@E|&H9iNc$DVV zdz6QkhW#KcBj_XJse#NtyMZ2YACC$thM{vS4e!ElM0Wg6d4h22irvgl|I^-d}v57Q_?O61qYlpF` zoRanwAxd}fldOUu-`GzlhJ-fiT`+iBaA|Cap;uEv*jG$3w--Vkie+5fucqZnp8%S?He*m<{gL5Oz*9 zwVDYlz;~*KmK}MVtXdIXM`d^gZUg~FI3y@r89FwVu?YuzK1dO8yHyp$VAtI5IL^%d zh6kRj#@}jnf9JkD4@kE0hfo+K@>lKR-+T@Sb7v**r5>&2#AR}I-u%AojY`s8;YVlx z@X$wb`(?3SV$^R^v<;uU2jw&e72pz+htKV>S9MP|q`2%-v~aIy%DUTXHd3$kLL&ZM z582?CLd3!NTjNE~vFm^s5Gr+*5`u8tnnHSa2dvMXf4rU@%C-N(e}**2^j*}A6#hQ6 zJOVQoNnClS%x=yqK=o!P%;MADY=WGSgb=3ktONwMPTH)w#|e9_E{i<5#Zu6_d`?ra zs#X}-_CUQ3%Bm}28dvfFG#m{jy_<(5Dzs}rLjJ8i zsSVDt(`VU-yxGkFnG_@xphXu_l?ZFsrwZxjiMWa+Oh30w?g6AL(n`F}KzOFLC+-(p zzSinJww0WhwtHuRq2J;L<6oS6tu1*K%rZw8B2;MzIluS_&4}|h`_pZ|&b$`vNi^%^ zf5{znSJ&%kaY?)VX-upjIp8Q79qp;MoySx=W1l31@&9P+P&CRxxM*Mg4ODs&%gws4%<&Yvumv9GI4gQ&PG` zddW}~6uh7*ZHPU{N^T++xHs5Mv7cz4;XchYkUAn0k$M!&1wbX;KisB0_C~Xni^;Hwc#O zrC!U`1mEU*3pH3PzOu*tNm7wOf4HS{jIw^Ct3C$j7h45lVT;VKGa=IO#$TR44E25t zn?^n_EDeSLW0=*%S$Tl=P&#K!^1pqy9;&YG|X;Ss8~_7V>E66C$s!o1eJjO zvp*`_+K+x@=V*oOPg35 zvoM`4D0RMhaCc1dT^)%~7Izo2j$I5yU5r?#V(#*8M~@1)@kLrG%caNcTg^_78HOK- zb){uZ`9H04Y>$C?iW_05(i$#BU>eDB^2~Ymo6SflQR&Iry%!a-SIX6I@>_ ziE5{w%p=2ICR415ww8STe|ciLpS~^EmGh&=PTjmEwtmKbS-pSTJXR^mh3Rl4Z#zfn zweu72mL@uf0H!boq-$dpvOXs z!Tf2ziVkbP1{I!iQVb*FB| z$v0zIsAUyu_Q1(2e|SvV=zBTR*^Iq;(muAfkIheRfKDwDt99;{?fKyfG6f=Xz^n@- z@NMh?s4SLE_pJise6-1uyy}Q@kcL*$ihvpP$z?}h{aDt#F}xaIKMht!gg?NA$QGlm zwUX`@Xr+3Mp>3v%R#ftA@50+w-ig#5hn&;;iBIU5Y@s9fK^c&=DQEy7ka>66Yd^EO z;B<;z=!z^6%vEkuW6S*Uk<7^nIxZCy`+qm@#DNNBZe(+Ga%Ev{3T19&Z(?c+Gc}Vj z_7s|HI5Edac(uC9WvKo@!^7k>JGl2lAh0nQet05eM) zQ-FwqqNbF*1b|XP{ue;P)Xvn&&<3FBVq{}!43M=nHnjtqQUT2Dod7ofSpbaf?My8H z#R*9NZvu9%rcTcP5HoYKw*|#6%cWMF56&CIDHD$|*u=%* zzpj4>0sr9#p!`QeDu9Wp*+0=PHa7Bxwx$3|5qnz)7iUu^fSkRFsgoT*#n2A;e~%(g zmS+DAHMF&~@%aA@{=X4Y&W8VpA!KL%k9>^(fh>XImhPq|ik8m*=xt_b^N&vd#??*# zb2xIQCYCO?|H(J~N0fh#)x_S;#^e8P`A;qX-jG2{URYj4ndX08@Nc)6ow2=%rJXrI z#rYpW4V_H>2mITuXlVJL7WyxlfB&`=fa(9O(QG9o&Fr+nFPbGL(B-M_Yi$(EK?@W8gG-z{Rh)b`1pJu*e-W~gEo50Fe->CV$p>*;P;IXI zkWfXM*o+R~?@7)&%@7w)Lc;u(=nV{_oUIv3A*OYH^|4c=k(p9aXrh+*+;{>XM1#?$ z`GHW6Ye#sIx-(OQ&LAc!Q$D>1^IY+IkFJNzF8kQcVG zQ3cPsj72A1p$6($;1Gc~@RKQ8Q7N;L7_&y_{s5^$VW6)>e~%xk-qMnettmdDG~{0q z6E2U=N~QMJethDUti_}BiRWyj{^!D+3^{D3Ek*R~It-)2IujMgvl=|41r#AGX2{V< z9bK6@qrW4s2Z_ygKk8VaHlkTv`C$`Z18?_)=zgH#jjLH^VqdhM8GztfJC}+=Be-5x z<^hQB;5jqw*is%w z58|govFB<=*cG<^`)^ZKUIf4BG=!}VZ_WzXxbBzeZ|!vS8jtbl>twvGFJXPi;o6Rd z@T5T}7gsd{S9lz8VbXkw%Ti{5W;sjXd56|ZMoy<{f4SDxFWbMT2d!Xjc*)9d)cT~l z+i23R)M|9=wSdhduEguO!?vB0yWRsuZK{hLn1s$;jm{0C8f|@<3L)-5*7i={xBgDSX%cCUBtfTfz1!qG$#o0Xy8K55Uv}l;%$<+~l4t2F2 z%QfR0Fxem~A>0SephvJ>m4~CsbBd+DQyJsh0~0!nk4=CtALpcuWU5MU^|3L0itTct ze{w=GJF%paqCdj0$e1MYD$yVgO87lu24UJpaImaQ;#Kw`zQF5u+P;}YS%xfNEWT3)JYg}-5r@zQI**pW%$^AU2>fA1gH zSJ6T6wmj_>Ytqi7h0bH$kB;`|?Xv6c={YX?G&>-p^EJ-2Ueo{xmBKLt@I`Zmlw|QS zRPQ<{c;5B1(pS+f8fN?gk(8*_dbGwmvASy~_ugpUDSxQbe2iir^1YBhtg z`gZ3g8bw_HhfO(o~$p~v*1*8 z*vU(sR8slrRb<1u#uto>z)})*MOh054S+)^*Z;+1d8M?(N~%uvazo&Oe>2SM{s@|d zM@-FK8P8LA-t%osFE?1-=8w41h)x_&#t{UMBp^=jk#prk!gWr zboNn{R24cn?BT)}t^R{?f5fX-Ygf^C`O{gtRJQtMU}sdayu?1OC7?MlX0Hyr^umXB z+y;KnkN=NR0r6M-bnLxXHt@|Bi3g?%jy4wNlZKn5D~KfEEL6B^wE2j1FDO)+$brg; zPi6y)7eg7yq7xeSTNxmvrupPIfvS>O|7kEEKvl9~38lO9bN*zC&h;) zNk@UWDF6{8(*&*|fJixHL^`3>Ak+dyKBy&7JN3`6qs2LHLyeW6kGlHCZx?N`2;&hO z^FSN77)YNwTc1o^WPV`HoQE91mp@I&?HIkFE{^ZYFp;l#`NL+<=PeD@CDcr~a_qw= zBIt6kikHM*fzi)$f2~WGBFj}^yGbePTe6_Fq!7t-ErQV6hBW?)Bea&nY5sj^S<7!I z3t>lz_839rr{ujQf${fKTYN5<=%oCiLLXW-h+KDIt8t{k5TFCfgR)zMeM+bi9!pNW zI#0r8p((Ou^X^BksTejpkHTH#lg9Zw+aFGJYIr|Ff97ziTRR5bSsyb|v5@5PTuGDZ zHjb}-y6gX7h-eVeHXSt+&CI?NW5Yih3a^bCL%5CfSlIEY2q>YiG7%*W4HxL?LWW)` zHpjJo@bgX61cfc1+{2B$Kjlx+AW@y1%5wEZlC$P~3$HoXS*0#XMVgHi`dYOujwfOE z_tC>>e?E~HV>i51Te1kP!&i5S5SQ(WjFzD<{iH&b?lF>TPqM>$9XwFZ*#1a~t-i8lm+ z*&uKnO`(g(mVdfo>aXXkP#uh5J3II&@+*3Le_~S!O@slDNz4r#xt~@#u+sA{%gQUE zkQBC#?2lp{z1G3$2#Tzfj#16uCn*c`mss!V@-KKkzfJEDDyps)i1K|%#>JI7o<#4D zlf;pS-egVf&LV|cME{;3kY>d!0k{p#@B?bn9l0m7&Ix7+l@1b-QO zf0m~H#F%G4G#ECVigDbHGVHw3Wa%AvdbI|;ZcUwIgEcU%Ro_mo2s6gK<&fq%Q#}^) zn8njV<}|{z{QhmG2xf_vN@Y@&7|U_aA;*gSe;(uae7d4O=gf5Fjh z;M>T|m=h#op!V;*$2!vM@GSL0!qQl}*Bl`nMyop$6kSqr&hev?XDAruPKq0?1Fgau z$-266@L#nOt6IQTfO||FvP~CD>0kX0?LY}2VyW@vLx?|;CQ*!6OwZ(qy|vyJM;z76 z;VZCN@k~Tqf8I^oN>?ghS!IdUf1ARcPb2&jLXhB;tx)(L#p?`OZ!|aB`94>9#xI4` z`#@epUp7Kro*c`!H?*q2tKNKaC9PR1VfaO|7CU}GSuZ0x7#yuS*`NT_c){hvxFJ9+ zlMH(?>*vEln|4}|$GcrDB!mAca1WR@x5KgV3TyOgL!@*1dtK4D4h@Kbe+w&W!xasp z*$W2lhn$T?S$<9v7Uy^YRAgYl;~d%9oK_)A>%ns*k)yFXT&g^w$R_0hr;k8!|Kk(d zAqvBN3P5C)E~K+m6RnOwf-FDE|7s|@nT34Iw^t=^cEu@6aJ5$8=Iu77L^DT5GGp{9 z^4JL6qwjNPI zFV;SXW1$~a8HBLy+eU3g^1*rsdmBTD`X{~#hMdtMgA7%OL z`_EPB)KY<|x0Z?r#G=#W5&JqjJaiLDhf5nVI&wb)G5?2$zd;!WE=MWX8{e`EhXw-Z?CvrKAT`#6-VYBwS>%BqH^JgLE_RkBq zwFwUm}I5e`BmRk;JWDYJZY?BlAK~C&_G8Ejc&pLdc-&FEj|GvQ6WXAuAnCt%q7K|C1)-O*Z~6)0B6^Nb1MB{e#%|ZBN8Q{@~D8w#xLN1AwWuAfBOB5M&j$h2bIqaitWn-D=kD!r6+dF zM%(^d&asVgXPSR0h=vxk!^*4^Jdf0~rrG%Is|+ZP#751@0;+!77~5#a3ROU_coq=Q zm-qzpI(i%D?A`E&F6&S&>gJVDec**_efy--j9r7*z_H{v8PYrFnmn2ltMrQbg&plP zL?bG5zqMSrh47~^DisE>XWwkctC_c#CR|jA;mJyg*Db*(N^X-Zpr8oLSfEq$XBhhH z`FY+gj*0m4@u6JA9|ABD2Hx+3{Olkknl1wM;Ty#b^P-Uih1Q9?r{&kzS zpL~x{IXl#H;z3`|ky-V`{&#Rce^8~x;19J~skslu7_F&r9sj@pha3=Wuu$lgvhx00+o1LeVw&z-?+Jd-@N3o z%qn?O^b5898v=o|1#dmdUlKRG@9rqkRiOJmVTPjg5VQC=xadkRja8SWe>EeN#Vktr z$y^ZHUa~AV#$4_R@)ke_)mEKAl~c{r-VEbu*kse?cd?}?yvWH%!Ny2cgT?KYTvERI zKyjq|L#0mYq1GwP3*Sb}yJK&yV%sSh5CYG(n-=Du3moE)9PfCCq1@wxt+28MP3Uee zW#%55t~q54G)(oQLj8Ehe^*bdAL>2!aM~-OM8xf_lWfIOj4Q_04AAwfJ5?NbC1$Y% zS_6R_B%Z0r8Zozd0fPp80(Q(|k?Rw_=?X3qK*>f?&!Yt&Euh_0gP0fB5#trV} zkh2HD)X9?6Ru{W!i(z6K1F ziR_u}jo}JRXuBtkR#9<2|E8{0s9JtzX=(B12bDk91p`Xv+ni7t8o}6zWM5fKoe|V@h`qNo;@PKngQNe9f0(A2-|`QCe^;5Gtr`|EPOI~G zpfx6Wi7b#L-8yGWa<<8VJsL@GrZ7c?7An7dGaN>Kc7y&?+~F9}*A~YB0J{ zF+x_ELXX9|zM*GXwi7z-2#=Vxl7~!hKC!}A&&>u z{Y*DE+)}RQu$Tf#-8Oi*QeSvX(H_3Td6AVO+UjRTUld&)!~`yhtFRn|bfDV(XmPI? zxhNbA`pFXF2*#*K*q~(wyP!MZwO)2uVRO)De{{KqYP%z;Mh2---P8%CP?$PJvGAM} zt)A$@I5dVqh}I0$pFzD8!}OO8S_+*th9vi-;7>vAA6R;O%3zMa$c~dVBS{W1PVWtu zW>=gHIUwTQfF=>e+2VoR(J^MOK}H(@I!7(Ke$aIgAZUs|&8ikBU31 z_d6}EuMC$JJ*XdrwEbA4#WSsK-fn#{f7Kf#$JVSRI$#OEJ{Pc_^LjP;ntj%7r?@9! zur4SoY(}T4DQ44P;P31PVM7a3SIo3OH8&27l^%U<9+UPFNinmW$Ht^AtZf;KAM~5l z$8^&Z7jBOtMu&`B-)ah&2MjK#A=`m)-|PP01w7g#6?>>eo$q6g_^mA#xq3rzf9lr` zQN81BLK7CJ<}b^4!(W^^h6ngP{xGKHF-=J1(8(I{wPOzpRe~vqCwJ)UI6YCmdMJ1Z z8{JO%yE3;~;!L-pd1=_xC}MN~@cGj#8x2|tIS7T5l)-gAmCVS?i*z#{SUiqyj%hk2 zTug5sDpJOJoXT*k!j6Nq-Kc8b~ zF{qz>KMl2y#y>{pyxQz&SxDDrX&Ac``y!woSthTCM0KuHCI_3FAMDo@#CJYLKe+K@ zT8_@tEuzz=yuGu{H=~mCTCrM6m!OoCr{N%0tof3yYzHob?5 zoT5299Exg?+=m)<#z;RPaL)~0tDVaNIUE3SjDI{3};~BQkmAn{weT*_kL|6gv zT2!5FmJG3WoT~d~3qzi?j3WLjnR}c#8H~crbYUADxa#6$0Fst*qSY5;8Ng3s=H3l#8;j zLXWA#ZCkk*@oH{0{LAr>8RmqvD=-9(tg3x_D1EOZNreWMC(0bHf4I|g-4{;~v}n!h z!MGVVY(mH(=n*Mf<*BC5FV7zDU%hE2vz;*H#8wzB;YtQ=Se;y5j_MDU)5&-caLry;ER(g9vPtPIRkP{(^N7sTMYt|69i+Tl z)ZTOG1|H5DRS@yBf5j%^Tc3QsBztUiBNv?f*wdSJgBMbMwajWI3SQN~ylq{~c<`9tpz{>c*EMzO2SmG)X z9bbOp29vM&aPQn+`gF;zO~oo#u!t5wDx_UepR==$HC9>q76$$>eQZ}|g!LTV@zM(r z+<=5wgEQzU9!9enl9qrcF}95B=@yGlcG?=m@x^_Je*!v3mNMVFqDVo^=LJP7*FB1? zPP6#L6*saxMvJanuoY1+vG_o|{nAdZzzy>&Rk+Au%=ai<5%%dV+3Pt7z&`_s)5#Zi+e1k%mr>C#`8oU+?x25tAh-;#1z_M<8fF z)un4~+d3TMS^E9!O(xuWyVfI{>09{eA(9eSHCmU9=r zHe`BCgr57QBTcHp&}gDjWruVm{e67;K3eG>a-9_vK7fyU^Gazy|7N(b`zTFC?e9N8^L~F453tHJy7q6Bw*=AW z8=I&X4dLl%WAvIocT=Mo(^tFiApryhleyX-;`D$0e`dWsB2JWpW|f2%)a z07qmzHNM}YI6+<2wCQOrFLla~`-jTWCGs_+kvW+j$7fuRJv4~v3L!Nz7Aj`HIY<4& z{kyn6UORJ}0BWu|A^+Uwn_;n3A45XF_8_~A@QJpy=m?KKKf(L>Lil&yOrayJS#786 zBzT#tc~%K$EO^n)=*Y>5{9a)Ue`c6_c5uKpVe z*O6WX(B%_=qph@u9~TLNQv#`l=;L;b^>ezs~Ld5U{)_Z)-F36Nt&dyE1#+Zf2b3*d(WHbx>T~Qej5qP>&y~O|J+hxbG8Kl`( zesp%HsB%H1*LHsb;*R4~GjlH`-4(tp%?+zPKNe8a4t`s!LEEihs8I*%q`?s9J0gQK zQ}VjqRKUFi+TU^np@nJwe+cvVcX{V<*zPMr!B!TGOFBP<`LU>&z;l#-8bDMdrzVA?325he;ffk^7CFwO0G>G8Z`e`Ho#(E83Z52cxL z>2DC+-`mCXe1MPWRVZxZW{9vC_cTuPI_cg_D%j>1lt_=n(ldlMBAH#9zRO3dnfAh} zWzJS`Eqta4_B>t8TKw{L`}%S-d~r&xoj>1nwGC9FO5{Iqh~yv0;?C3J0@3p!l5hs^ z0O-rzHR7|Jy6^#rf3}Y$jSA$JS)hkFo2BcyVNvRdKd!%f@TnBy?2sV$ua9lt7!7IF zo$=pbAHCW@aK*1ZVp4R2oqhfcU`28L(b*i`Rwi}I2d9^t(ati%0NaL&&B5rmGCI&O zcY(NyCUVxaCE^dQ))k>6@XX%+Z0H(V*|2904Y0{$m#ySJe-IRWI@KA7*(2jY{-HyE z&w)-i&arRudlzJCkBN#-=J+?#RsEk3B{^j7rRrn%E+)40A49}Xk!vJs^~hFN zza@=J&{?^K+HSM$Kmq={$Dp3axub*T3Bcr!aPALv=QpB(aEhgjmZu*7fd{!$3ukExTrgf`{O76_#I~o3XC>Trfa0;y{(}i;oX(T-EDEH z+I7t69Uqs4ni<0|6D%3illH;YwSxDGr2E^``9h4VE&`Mc?zE¼*28O`RVv)0Nt z?xi;4e}CJEw8o!Wf*7ua^uGlA9fYOhTf9zI*&z6lMuHXN1zO%|+{89pt@C(}Th4!; z>(V)-x+o9PtZNw2h7E(#M#UA?h3=1tqTLeCPHw!pih~{#)SO}ACms^xk<^Atyu??- zVt*EKI1uRQSFz#FDlQa@%m!fBcU5al`%s!et2f2&=rlj1{U3m`RcD zY|htT2|Jm2|Ysbd63Y~>=mg%2FrKCZ+E|l%?@Un7}|(^wOlf- zhKB4xZ{j)03uZ>y3j7V(GBLy?W}ytee=oLW89U9`0QdWak|JaAO~G9}4NEfv!;kY- z)`sCrhm~vTu-55?x9Ps=>Sb}%(Oytk-&jR!%29sPkG<3FEp(Oja9WBdRW1ZyA%>IU z0$E|&ji=j4jgP&dD0o%0zZ?OgRn~Tut$Waui(Xr|5W?Ye=!On znr!LvStIo@@X01-e&Wg%a;i|!YhngnN*ZS`Xl?jt+TS_MsG|}y!b+A za++-5ZM3J~QW@0IFqyvaTAk>^e?F+IzrioJZYY*83!W{6t+up`JPdFG8%;GlRBFQ6 z%d?ZmN04$kV-S6fA2wPj^nY^fHB9?>-eE^9uVuZr^91)jD#f{;@`zdju9QTpRtm!D zF*TkY!2Ni?fj3p!fy$R1w&-_uk*mas$zcX>SD+I&*vK=iD4f9uf4_t9e=i5<3{U$h zp=^=&LdS?rMC-eHJs3@p+hWXX6yczWPt^x#<#bhRI3J$)Y-W7OF4{NdeuZdKFzIRx zW9(A^VWxvlf{4RsE*u<4C}C8vEboQu2cu6>lDPXUxx0w)nrlPMzPskRA&pKi0+aaP zEe0v=7&*;mjPV^#HbISAealV)U9nru3qqSz<-8&q z#5+3C1q#ZI+uf0GR_lGF_hCI}J4p|}ITE9Y?lh~ z+@iVs)IiaEd`(OOe>a)VSWSBi)6SaS(wpj*`QG|s9k{(K0U1pmVDUdpR%P#KRS+4} zyJgs@qlc|H9_m~J7a#cU?CIadQrY5TeOApD7m}H+G(TDnUeDs*hL*(1Z$(aRM742AI4+)lwjmJU%a)iW={X)N$DiK zIHPwNo{^ep1M+@e5? zOnWahynKDrTXY$xd?)#FAy8Ap>-QXrrdOU;Oc`yj30e06Z(v`|Z(o%))uThy!QugZ zR?Ej)^JitbnDIqC6c%BqS)w7kJ56yaA%%W;UL^ec*ih&Fa%s|lUyo)N+){Qr46jz3 zlIK-Me^```){$zFubj)mw#y})T<=*9aQ;U;tscJH96$i1*-X67ct`+c5-p}8UQzM+ ziPXtXf7n?ZWDdPqR9hdL6@fQ9mmLU0s_L)kj8r`=CG99oObw1XIGC@S3NLR1=iQ^k zeH*=7+aDJSRVvlz#qnLL%v`E(i>DBfE32nDfBZ);u)HF=En6#lD)x!WBy=~>0(=Zv z7)ph)D*SViAPb*$@XkeLw@HscH#j2?rG449I0y6aN=j^7yUs&nL7Im`>%o#m z;q>6#PRq4R#}FEXvCO4CqB-QuA_^7@orHwS4D+pUi6RtL9(6!cgI)IsL$scdoAvZ+$>n+8Me_~M$ zHu7U)0x9h;l~7qk4{Z^rbiWFa`E`4tQX7VNhA8(i0G-EGESps$eQ<+*7uKnHM+Jm&UNz#y&A(1mLC^s`~8UY=79Na2MeU zd&;$dlcZTihW+KP!kVBwVXkpSf2@-tvla9+)%jETQ}jl0W|9i*NkLc zDFPauTfjaTdqeuL6DNZ;GazAdKD7D;?dfI}+5lSMizIu4!NYM#f`;hiPYP0UXV^?+ zJ-g1P1n^W)?Mgt=IGtQnJJQEg1=ToYD{0nHfcJ3WUE*OVjFS-BF(d&Q7g!pyo7qLeqaFiW!u!<9WOQg4c+uG zS9{!P>)~ECgUv@5??PcNf89?Ke>L7DIQwVi?fKg)YG}UI)P?ds*0&9h1uo5fb?qLk zb~A{~Ej<)M_h_?Xr5Uzxnqz3B3(>YArVAS(E?A9;z#u|++G`67!AF2j#! z>jDCbw#m=VJAM2_>Y{;Fj`-j8RQ74K-hGXQtDV^b`a>n zbyTx-7d8~Y^8;LNJ8*~*#jG*m7lr80z+9k!W%eSr5%Qu)HGrHulKR4M>!3~Mt z5ZU$6QE!)tS)Lm^5GU?22y^5DrE<(OUIe`X?edMvx1VzKf9E50xhpeP=59>c4c!}>T z&m`;A3>@od9O;)WO&6@*$R(IO%WB8VTw)W;sR(`fS5br@{~DnuxyKCHg_P4rZ9M|z zMrEAY-12?ee+mzKStXA3JBRq7Hz`GC8>^3o_^7SSjd1`+9#I`hMVo%q)fkc)kzXTp zXjwjC_ALyM&cr9ZF43$QB&zX!rc;tkDjG2$!E%1Kht%oP3bGC8R(P6aBFTEyP?z}@ z$b3mF1ZlU)e_l+7Ag!9_Mez?cNA`M6AD;AGCStkze{1M`AP4xH2vuFKv?&|`WqFVd zgpZJ*-~aQgo9LP8qNdB&&Zh=Q9>((_z6%GPUtB7qs@>mI^~W86N3~&=A#%#s<$YV? zAmnAOIZV9lxyo9O{T;`k2Hsyt-GMoKciXVsc%68oM$7%@;bSX+Zg~i35z*elW0Fif z1+y;{e}bsGVLK*Xy|CqUKAGKvXkDdPv!{_vUYc{2c@Hw4#glCJJcEXj+#sFf9_lc4 zpiL#ize4X1>_v8WTy&-V0Nob0`Dd zhdEcEE4{Z1gT+)ok{C%WRULDS>~X%BoktE?e}ySol?Ii7@&UBde^1YMN-Wy4(H5<~ z&l$qcych)#_HRc)#?l)&9iQ5DRcC^#pmy#g^y90*4n7(jCRZy@Nm-ki&@BDdR7b*_ z^p%ed;RhELluTn|CH1Yz>wclHT=d*@khh{9a@waR=b_`Vt*K^u2fXZ{_dMQrHmqE> zf5`~_0+hgCGBH@>!tINXK$Ia8p%;xrS|{8bSMgVDE8V%-!IqMgD${jFmrdhBV5oc; zV^zm}k*|{PtJO>exED1{Lp1V1xzN#3dSyeO)ri$s=FjTlvQgg-izG`rMrleev z4jS(7s!0Rrs?794?Q;oa#N0A-`NvJNf4QF_n=oX1`66(NR_^>c$1ejD#WjW0hZZBJ zVNC6k%|FB8e-9Lwqj)l12}urjC+$?BS*iZ9+*Y`-#>epe2=)8*&?A!fcRv)IY7d=n zW8e3AQhR2^^zZ4OCi5Qs=uRNklU;{gQ*uy}UtRv911%vMu0@1GQj!^y12WitfBkns zuN+35uOXF(_>yPC!n&Zt-eI%%vJUR{64DR2!UYSROZf02^PI+9o4F_o2dWCI!L2KJ z%EOyLeP*s+Xxoz}3<)1C@v!w;6c$mbZ_uW}TZR;NL_1UuvHouY>gAf_CIX`7qDK;O z6T2i4p8_0I=stS!UPZTR)*|utf06vHE?1nV{4NPNv8+3*YDf9smkfAwda#Jc9EZ=d z^fGQ)4oA$B!eO%-U9jvn5q16DkOXwz=<}Bp?QgFR&2;lg68v8RpynTmCaqrT_T&Dz z&MipR&)ig;k<*wNhQW1TPu^#W8g(~}P}DyT$n=9;S?7g4`wTkPV-akkf8vqz%TJ#5 zIWGFLmqN6W2I85h0OXByn-B`-FfDF*!2Fh(0#0o&g$YR}NQZ+OGxauBr$|%5gv-^A zA?B=CVneJ2 zZckPE{lPKfwZbXkR%p9(f23E^cGR9@Y#*sqn(0AaqvQOA{3>jnV|OMBlrCf2wv&!+ z+ji11J2u|fwr$(CZQHhU&ziX(=V$D->!|{bv8rbP5;n{k(F_iaSWWU$ORX$zU{idY za#Tmxpb>CgWYN|(sibiickxn1xBgFgHQSv4i8FK|vFb6Lb7KB&1@zdFssjH$1k zCPSMC)y9Orl?&EzD3GQJ^f2;f5iO!CIk`3&L~6&0d^Jq8lgEj~Ac!kzK}@D@bJw*(~e zO3d{E2X-xBh`6t$R>D!6%R=>b%p(Pyv5xmJZO~EcygK$v+@MKKgqVP{;2Wsam0vNEQ`i@>ZR~sn{SYJFhD? zRbF2U0lz94G-t1oN+*~C@y|hO+ICj$0Fli8(RUcyrRIYaDk*6HV-^6!8YJ4a{}hafh~% zZHjAe$+S%iDSH$$fqu&{J*R7)3G&p~oVJa)oxIo4%Zp!E7{opZtm( zV{?_z+cVlUf!)Po=tNcHEzk+1Xu-nsSrazlM)0av4IRgaw>s zCgUU$nQOfp_FLu8b94=)*GwGeNWFA9nPbtna3HY_#IT{-=)Q$u0P1^JU##HW9!6nq zdANvLvgJbfsQD}RdU%fcETi$1eeFMJ77s_ILezQLBn^k>iTEGhs`zb0jSL<;5|YR8 zd&u2z-0&edqvV`qR_01(jEPHfcnCJv1c3|Emc!&nqCKs%}0VdE$digXE1jG!`LO zr{5}x9x(;&2LfdO)>5^IYFm>Mw})Iw;e`}v^?bJ>0``JtN60#Qo{tqIQ5)&R+m_-q zc#&o6x25n%3kiY2?OFW>YEs5Yv!cqqbhlYCMb`I3GA_O0|{JWOn%k}7#E zh-`{OkH^Ht3U%D1wQFfn=38pXDdEg$OKBNi7!@wypb&iZy{cu90F(O7#=I~NUB1C- z(<^_n0WtZN4KX;(&gL9(bmG@CHtvtYza1ERM6${YbSqL;4Y~X@3j%03g{?y_4`^xT z@#n+@67NQa^~PH#q#8>Z4u1H)WM2!b4qHTKdh>VY_*G0T zPfBR8Mw@)sv*z}TCKZZK1!-$gUue$!X4}LlfC}iBL3VPAHIJ;T7Is9oE|iDM7je;+ zWrQ%5-zzJ`7vs80^(XvJaEzbzniMJcP~oRLqAzNF(-o35yG_9g{qGn8HUDmQ?P1YR z<@15KmhpRS3l&m*FL7viS=c5-nVD&dQiA`78k4D_D>s0 z05d}ta0`+-+Vg7zoRD}~PvA3>rh+^pof88U7FwO_u{K8vK42fX8I~|6F$y~%KL;-Se#nP@j7o>91 zQN<+a3`y1pPwfF}i&H8-C29C|L-2a$@iEu=FA$-2`^W#`LttklVkELNvV!5|g<+62 zP5oT~g-YE;1%(CUV&q`_pZq2m7dtz1Vm~Mqz}CZ5F>8C_4}wsD4oU)WKqvTr1y1}B zV2HGSy+DK-ArUBot?mCpoZz8*D7tntUOi4d9j*WP038~&HQk=qKlPOaIMUc&X^|W6?d{?1T%8Tv?Gbf9whLf^ z!1ODIe&j<4aB-??i>Vs%;B%7|7N92mjCH7U2ze(~{~&>ZlZc2Ir?97h>YCg@*1maw z{jUCE!~rZF&Augorr@uR9yHR56Zz2c0Cd&l^o11#;BhG?iwR&re=&f_+k3AWG0pvZ zZ5YSa-whU-Ky`m`*MWa=(|UzmL!j;=zNP+U@GCIImR2C1exM9NK-!~$ zL>5uXZ$3yq63^@}!#e=$fxfTTENrmqXJhoo4(fmo^d3m3Oi1_V!xp;f^Kwz3js9&n zwGghwuTA)O8}Y|_V%NI4E_B`FXEy%7BIc-x9A_SX}?uy0KY?klWATg>JX^m*vv;Q{@>r#*W9r;fEEhM3&9Q@ z-d7h82E9B25F`g8qF-$8=<9C+tfPw~$e`|z!}l%S@A&UJ1>+hh+<9l z<-63WJX#^MTvWOx%d`X0Ol(Uo&Vh($)gRf`*j-(V?)RG*Ii{a=UH5MbfZR_(3=9_R z$PPY1ctH^EY(%=oQMz&Rq6gIy`@Z~zf~0J7WOW}1UepU z@VzNl!IUqnTfxD1gicyd&^R;JB61NfuW=wp`otYYm58JKl$ad{M*KhzWVLbbLR_Zy zDVmS#8p7i5pvdl6?_NhGpjIx@rGVRoWRWGtOVivzGr6)G@BqnlGqvKLg4q)8v5!HUjfc{^J%wAlJ(nxN`y$ zZ{-eToDcrweSAa0L?pzuj$2c@le z&;1|ddrCS)4g%O&Zf)o#0}P(#Egr=H=XF!tmvP7S-prGO{ae;7y*~?BIsvbg2gWXXWVv5yFmlez~6IB0gxN_a0VDHCs6tF`ebw_cy499qJYDP0BoUq4t9)RDOz3Qs;lktCpJ|PCK-dc3 zdYk5tC94IG5yEAwxt+WbG4?%8ukuIjWIvKG%0=oPR6Xn4LxvF+{M@U@J*E|CTrcTd zx^DAYh)T6Z`Cy=4;9sEPIwU3o7ttIS+~MVPByy{}0DN}!q*7MUXKy1I3J1b(lg!7A zPTRSv0jo&0odUxgaQvH9O9Zy5oWNL#n%76=p`IE#t#hIi@UsuYaV>NeNFy{k^&MqK z_l)sCJJ$l?p{+>^eR_D#UT5=P^U^f|ZxaL0A>*+_^-Sr7At zFVXdxb`0kxc5G6Lae|qq=zO=G0Xnw=@esWyfV*OzMx}nKukW~k|1F@OZKU8QWl17# zpVVtP)2Pi>*xfKlof!Jt<|hb{(rWC`*y|{$%kAaTY*&VNgbfCk6FyGerUw~@O2%i} z7=mERdUX;h-I#Z}4$0T8Y?J>ig8BkoRAB~Pay2A~)S2Ox3%0PtwvzfDmq2ymtL178 zpob^&f2nb$J;|)H!5ZWBR?F~|*>$B)WbL4i@JKgm`!Tgob1EV)Uy`{$`m6qjNjBaj zJf}YuSft?7<##3D?^glip9<1R+3_iI#%J9q_057f~GkVS8B6CH#T3o62RsLopFYtb#d7TR{ z_3QmvYMkr_V)&5Lp53PPAPFD`#jLlry{`o(Y3M8Z?Emb9eWRaQU32OBhs|r0 zg?s*&@^D#nqpY_rbZ*c^{$h$J5k4>hLr8g9YKIIWjC=&#HE8l78b0l*Jn z%Tc%NTPfEJgF#PXy75;je4jn8m7*O#^ZgvNYK)o-!jy;RJ{*ObiVsY<*!WZ9n@fIe zGnB`uV@#%ajIi-6;3coMr}~8Vc32JeuXWGfc;{3iN%D8i6O*f+4&ie8win!VQcyF> zL7Azsd1|9ip7uy?*r)#Ns{1X^1I&y4vsvY1y5IRr-r{pQ!to-o3+9I5#@PDaT*h$< z$T7vKc}DzS5CzGso^C{fx09@!d)N&GY_Dzh^XNV6D+@x#+O1fUlFM<+OUY{_!u~;W zGu>kAXj7bB#l1oI=IKCM?-!Eg-2bPtafUcAU8}{E*b@IY8gdol8DQy}0;u@WV5vI_ z=C&#t4zc|en{iA!Nt0L_{rqrw^MKo``=LT`bD9F-@vgGQn_hwR7!d->77oMfZYpH* zTICUo?LK!4vcVgotjPx;jQPnj{*1ZrEM#f32`|$)cwBku@x~jx$7Dtx(%oGJAJDdc zbCgU)>s+&{;;B)0{7e!D0_gN)%x*#Vx|Yaoo0K7(r&9a*m2uN?VvBN=$wl(Kpa;kMwq;#_mzTQeR^WJhLGugCNT$3Yw%jJ+E%Dh!TDP0FPa=6=Ze5VNH{v`u( zqt>9i$`?J}xvzqC19-6z@XN#X7>_NCc=OYg%FzN;Gi++aIuL$xw!hgg$|Wh48OJEb z2`!m&Iqe+-wl|*HM#!zi{Lhm;G-+6V&W6D8mgnCo1qPzpjFpies6Pb7O|2z?G2j#^ zm8V%oxQ}Yb!az)pcHPtJ z=`_#nCu$6-vxX9<2aox=Lue&n!Q#H5HAEBRV1}Ct+Dez%T^?VG&|03`Q)M|yOXG=p zV~aMTZBlQ&noac372783Ud%c@u2=Nal%ngU$!k>=0Z8Lv^fxUReEo&;y~pDZoDf4- zF7h6GPe%B&qF+=E!UEEfjaa)W%4VTlDPu3m^Fe}p)FFrj!s}fcL@}-(Nnh*wcOjVK z8<0(csl+}CqFz0|L9?_u$8y{H7SKW_ODL81@4|2uHAMXUmY0m_PcfnbIkG{mR&l4W zQtZ4P08@{19 z_**^#*}+V)9#?Ev8}$}=sKzQYd&QJ^Q6~94z)#cXjcuYwW!u#aziY!G+-mF(RI~($ zTB|S^L^&Y;u;5Fs?RC>P8MMBAhjFWMHs1M=YV$9pR2AQ>4&hPqEkT@|z!4b^GcH>0 zIMiP@4$WRODaqDEwz9ziwnkB1(NnjRD*l~xXPR2eI2c^OL~)Y_Z9U&4TUxZ&{aLOB zK>uBk!|3|S zji{{0*c=ND(9PJbY91&KB^alM1;aGcMIVxnr^wgU9nw!UPQ`C0NDWgnibBBe$+qnWWhk1!&yaB-`hbZqtg9P zDX|a<(Ta?QAA8+|U~g+<<09d_i(s8(M~CW*C&PM9SpAo`Bwaln-iX?hZ-t`Ew6}+> z9$V6USwuEjv`NN)H)hoW2kb~mt5*4R`q`&Y7P*J%cPGQu!hiH}Y6zk1-E0&b0fp8x z%i{MrTy0(de(&CreaS#@Dj_yV@_3bdnr4t|GAlNE>d#}fAv-BLeKj6mu1D921SRkv zUDCX6l~_0!UzugS@IqfBM<3poS`JAk`*6~;Cz|Ri=Y&!3(%otv=joYiSz8$c&NZ(- z!TxT09)70KXP&#?U`Lp<`?ww(0S4`qMB#F+At4|H`$1gS&ReBxv`k&PfOVuIRkY{F zRyHap!r>uSodrDdCdu3jbC3&H`d>Nri@-^#LZ82Hc9t<-ig=OX~gvkD0)@ z7Z0Y#$L%=xM?J&f9=lrwKqxB1M2)|8u*X-OYweHMFZQ@-@rs=TYv|AkbAJ+8u8Mhj zXR*kjzvNi;8QQRHm1or;pK4t>>%v#lGu(9HQ9YN;V7b-@#4P`2CqqEpj>;%ZRlFZY zq=5891iXZXb*6MT?!VoWH5s^zU_T2yxn3Xt+Xlh~%?nCg#3GFsK&8Lx+M!usCag-9 zDjw@qo~T}a=ixcu0HHM3B3wP+>;CtOZZCwv&d9Ge2^o5v6s4zq06Zm%LC8&b5XWxy zkaJ849T=~$?1g!x@lN~ch_&~Z+UgVS_bI6gQxcs9HE!TKJ7Evz8!>0No>D`_55Z%HFkoQQfL0Ky|Rzp&Ora!e8YDHbBSQ;g8rxb)X`x z#*@(2*p%gg<)!4^MGMu-9z%Ee;v&}mEHMexe&Lz6t=mGtgTSD6f_Y4ZHXZ~hX@*D z&a89TvsFH#Q#*~2bN2QXLuj_EN*l3`TmbB$0wsEy0H5;bEqWrMd(qHyLhuJ+R-GoD z|3tc*k#s_3&s=|MMdI9;qrd=OZ|%QTg=^!^8JZNQ)axsj(a!!#aCBApx5rU{r);=I zH{^dsXN0Klbh5j*f1Xombf*zI&_cum^wNq=(3Bc=Y&#kXbIAc}7wC-+>lmx3M) z4ko$V4uyl*+ff}gVwd-iEk$_Da!Xv2%E)q(hmd9;a#ZanI=k`JSo3IE>(ABu;;7w= zB`~ouHi2^Nb|A+Hb=hKc{s~cRTtEIE zw|-Ru02R}%rI%LzMnHO!aTZrlzOWuPP$1D7Kq~d@*F-_aU(6wR(RGI7QOk2FE{cuX zff>#lpyY7tZ?i12$4dx^MT%uTxG)3Xp%Ese{OFd2&l}=iwR)J3?(Z6T;a=PF9uLe_ zGB~cXC0j^WSlD~UqKQu5 zU?Qr_Aws6P?qc^V)C1@Ub!-WRnt7!Z>5Uy6Q5n+<*TZEqeE``F9bQEmpX0S9QHB)& zE~8-$FtTaSsGX$R%RAe4Zs4ghVb9U)4r%*OsE7YEDs)_fJ-;L+Zr=sLbl=tLq3QW= zZ&Wwh$M`1xi4#RJ7Q=(Cn<~_bAPT%`CPB5<<B*wp>Mhb=^gZO)PZ$n>iaHcm znjiC@>fv{?75k$US>U)t7P`>fSbc7r{vsOZjw$K&x`S_*Cj|u&A9hCJHqEn7t?Vfr z`AD_#+}#PO`Y;YvFt*M(jF_LJJ>*ELtPIw>R=Nn&t*TCo&y4*w`Fq&zVI5WpsGwpQ z`A1q+DKvA5EZWUaG3FLJvjOG8$=R*RB~mZw-#CXl6{!$Eux`_~PV=Dn*v&b%Ce|oM zLQ+z(`@Te>)n}I_IZP;tYH}c5JS8B=cb&gqc@}klP0Vnchv~zOGQb-rVld*}%DfG} zEKvHIv4gH#pfEmzdeCAD0y1p^u-3g9rfLW`quKX-;y}l!();wr{E?ZU*&3N}(WvAP z7cvB~IKd%bx;B`3jln^+yA3HcSl{CM1P8 z#Pea|Lr#}u&Us5Qe5@dX3+@Hduf}I~R*&Aq1+HBsU?!SCvyockaI;|n1t}P>+7i9i z5oGtBn35Pi{aK0uEqX`qBBo+0&f?GNk{eY);CRW1s;B_a<3FXrwj}qgrfOXryL1oX zT~>s|rW#Wf$o{^4+`JoRit)WR6P(dLuoRkV5f{QSLd+R|9@AFh?!V^78l_@Y@|g|{ zw$@$W^`RfB94*T~_oV~@`J@V*&z{=X)_mSgxrHtJq52s%7cNXwP2U&;(kz1lW0C$} zm+;=b{Q9VFg~KqwG7INbz7#<;@6pJk)-^PO4~iH&V`pBRSd zLVO|p)J=nL)#OI{Et-Q``-SRpyVnM@kk&SWkx6#FSe}*9v86Q*^Ws}P?dCJbTBl+K zD+c$aU3dtQ6|)$Czu*!~dWf>?35XG#M=^R(ot#Yk507ToL>E~7J{ zvY*1vBCm53d1mwp{!M@#g`aQdyL6r%jinP4^&)G_Afo|)>Ts|^Iu8WpUC=+p6fV9; zE`a`W5QxBvd?B?Ma_c=aaq(j1{WqE3yDtq)$BB90rI^4=#Wgt;CkmcmPOJG$OK(Ea zqDwQ02uKn@_U5$(zby`S4ZS=#6XToodP^5)4^fqZ5REy7wj{lB*adzhuUAJ6IWd%% z`PDMEVpG8_Vg`A9zynY9Ktg3VaZm@P)-#S!e5UvxL1iOEkr<$97rV=@R#`psc4U7F z*nqp)c>dehR$qhIETt|4Mt<*__0KR4Ze#>#9iUsV3q5k&%n0KBiJ}13 z<55P;6P~+@#zs`0ueiZ%^l6>Lr==<$T6G8%ctVmxklPCo_?O9Pd`}4LGV!e6rVFRk zvaxL!f$_J*cJ6m1Mz**Wb6vrF>Aa_HaurQ+t=ih@@xueU^%KoF$IjwTR^LU96d$wFAbU13Rda6S44F(auV-oXvOcr~CP=kx?BOw>9ymh{IW%rVP7nCabB} zc*ayq%^#D zZnYWblDcT8Od26xh1sZh9YT&W6Ro&M_@Q165{TZ@xY|vPeJB^F0ah-kxNUC(;iz%S zzG?pr(-fJ0F~_I=q76#UA)zHsEz}LDP`$XHta?%;x0{wMb)Zx~g8>`l6WM+{vYIuw?M^ew=AhXfJGK*+7`gistojVs?j zP2Xp4Y*g2H6IM|&jFFJ%{2a`xUpoH|dDW~#bGqY>=9&y?mHzk{dc<57;S_*WYGwMx zvK0=7Z|?f;%Czfya(K&@Ntghrks4Z}*`4yjbrhn~2+OEo({S$g^?xWf3RH!dQ?k5- za#tfqT0vvzb{Y{7-QmQZu8bZs(m@Sfi^X8~|9y*WWv`Q1?>nxc7Rf+%J2%$oVTZUj zQ!Ebo3z23C_7dKD_MsM-<2sIip?7rc5Uuz{hs-;nE7Rpnhno1vPJ|AKvgM>EGWcqL zypX;Vj15@dNydRNnjFn_I*%(Jd*>P#tN3}{a2Rm;+ptZQ3BU$(RFV7=ObeaDq2) zmUqnY1-2Dcu38NBayjUkohNjG6J5P`-M)I%&G=i-P-I=Mc{%-8JA5PYEI>JkGwW5* zK-9seOD)O<-!49jl6GCrPqE7#ob#sdqKT%~HrUPwl;bs@*NXvgQ&V+6L8DXbsmlhw z+CyXlNvJ2uon3rm@U{aAx@(f} zO}wJe-5aIYA{N#w3}1qf$hvo4`PS5f{3z!M{a0{b>}_ zHz<7>Wzvn0@`^X(S zYE^8h73;-yTw7o$I~QLw^>F(G{!RLi$0ik@uiWrDXf~GV2nhz2EVzfeltI5pn5K+P zniS(PVehVK|HO&FqQi#|o>-mjR%!n6_6+5NJu9O^_Av_3I>3_aIrD1KAI%K(usCS< zRxnba3gShcF}zf>4JRh`NB_7-gjcDNo0z)ADNoukO!4ag(l8=%n9{{2orMnRf>C34fx@!d zXAb4B7f1odJmX88_T}McxWNQkjis47)?|IxkM=O&A0@j{^@xC-lTrkc9;v~x!NZ~j z#qnxY_+B-zH}B`=OmKlx=rKV~3fJozF6FJXL9wWXujL}6gF6my7QPe4R+G9`HuWSH z(0erNc$d|UzR@geG>5cRX$zWc*PS7a?5FMUzlK@tznYV7aoRi^=>e_b((AsmLAy1f zQgRl6z?@9cEXdQ-pL9&W#9urCdRv}P!EEg6)?Kj9K3+c}_Qin3kt!ewc4o9*F7 z_nhil>Q|KySg86C5k^WuMv-2F^X&SGq+`i|PhGRlLhf=tQJBip%s+XG_zQwX|6uu}^CW&yRCAEsQC_vUJMqeL* zcCcCtM%Z5Jk*`8m?f`hhF-*r3Djr){E?VsP?kCjGK&o^V@XiaH7yw2lf;P5dxlpr_ z0nJHi2?cU1hGeHx*y;P+yx7m3Xf+`PROlF#pZNtLftG9f6x%MzODORYhe4num> z*+tpPijaijw~t*vu(VZ)y=qVMnGV-~a)OePVVP$ft{55Yj{)MYU6P)@1;se11Ep#w zaRTMqhYmO4f4=^!MJ)Bfxz@Rf4Uviy>j&_qy)eH>1JJG*YF<(f*(uZXCEP0ql(a$J z5|CVU4+1?5bJ6i8rhFgoKjZXFZyCtS&GOEDA@I zgkWZYG)!$v3v&Otym1UcW(5Jj*R_{e*0|W9N|3+lPKP=C?Yfi-`$JWe!ROH?`f#Mp#>0s*QvwN#bc*TfbD_SEp)OoQerod7;^?sXgXdollsm6T6B^(KiQu zxvD5u;>P6b-1##wl-nqPErxX_I6ps;mcd!*xP-VZ5qc1WMSNvAX?N3T%sMjIMTQ$= zj=RB%Ja>3eKr-!8!L0CF3FdM=Ql=->Jkh0_w<=M-9`H~HCOD)MEl5a~Fe&^vO>bPH zg88R@aJa3G`&UUsOR*#Sk+h;%+5Q}C-H&Tch4-$S%YjkB3|ToqSduj0fy1&pr2=Vu zk(45E3 z2WqvJ6>7cy=Jme;AG?g!Fl{jU-FO{ng5-A$zf`B}#b<`yz#!$Qyhc&TDCxZ^uHDq8 zuW#5J8xvQGy$}|F+l6q)Mva>i5v zEyFfK3?h;&l30tQuOoW3=7h>;kBuNmy&7pMkWvOFZGd(n7Elz3q;FV#oU&V&IGXOO2l8PZ$Eu2CIgukkoZvlMyv!mV z3s2WM)2t;xHsQ-ZILks}_s_oBdl$@1A_nd&;V1~w!rF|lGo~wMF&jWvZ%|G!&ZZ@` zAAe?w<4WkV;bq+fsq|W7x&a1vpL!mV3Vgp4WyX(>Slpm!gFyXGstK;}Y$EMil!9-n zhb7-YOn6+ImuuDpnh}?IyAE5dtU2cx*20*_`w0yHq3;)RmbhHt|KiA)6aTiN{%=@^ zlZBo6f5|aUE_RmxCC40174fzj{(w=o@dUE8LAX)2bFZDb$S^RNzU!n zK;M8-avq&{pXNASs&#Mt4>yj;ap{4&*FA52(u`Jj#dyK2BcFMsAC1GwKoRP#=Y?!YIS{ecJ%#A{>vZ&ZuY$j zhaL89@ag^o&(%TA?ddP19aGoqyQ#(V{d`Wih4ghhs{|Q{x1Ig}u`xSvA!7NRU!I5C z|G>#3_Jt*Or4;kuTl6m#b-y)Xp%^4DKl-cM{FR!#Uy$FV<|_POAK_o*$J|7ayB`BU z%|Cc2mnV?42m9|!ard9+AJp_;LK$_8i{r_0S~{@3qtip+yNAd-prBxn?_a|9mYbRy zL#Qjl)!&@CTHXmSTr|sxa1e$W&y$`*c)6D zI{A3`v20tmxLFbgLu}ef!sfLRum;CiD>Z>6sXf~J5zXX5FQvN`loYdCVrfAqi~!k0 zOu9P^FZi7#5sUru=%wwGhswJz1zb&Y*`pMMVDx@^o_&hq>pg`-2w}oppGIDQdirV1 zo4ZW?6m^qL=$hYksTgXRKl&GD`j#9V)eKxXRK07@d`lKE;yosj)tlo>Xd~w|kEk2t z&il2PkJ^lws^|kbYwo`85K)^{{R89VkDE)e2_s+ala7C_tN&V0Br`HA2fY+X`&R6- zJ}IA3)uWW_+7VR8>+u>?N%RFk8JO-*dJxwBmFgs=Hsp1@WTPoD8Ftu_L_WWBV)9?* z6Hn*QX<#;K4H7hT4B47h?hmwOIM|6%7J2&?Uro1sBT8G%0-a?DyV)G*n0az-uGo zu70Z~*l;d*SpITLlnES_q|EpF1!ySl!L#vU!$mA~Smh24BIlF?OUiV--8;dF&2XHa z^`Em~1f8F=( zeULudHsGwLisxGM>xT{ilX4&iA=ZCJBB$Qe#BdT+1R~2r4`svAFGxM$7q*ZJ< zoF-?*@JW^r;H?RJQ80h-XueFVW-!CBci4SvJTwaREDdFj+`7Q>;B+bR+T!w@l8y{M zbc>pEQy^HfY8W*o#cIFF^Hv()cBXj$4u&En ze-0(ACrtM4KgGlcXpOv~b=$CkOa1xmEIwFb2zOMmN5&oA-zvKDhIqReF74Hr2FH@y zy=4FD2O&s&7(XXj20JPCI{llB2+?$5BU|kZVy=CX#_3Dbh)?BcOCgU_J^Cwao*0x^ z@o#WyTpEULij8(0K=Cg#f9zWhYSp6Tt+%Tb?acBy=jcrIjz*AUlBN>{tTjB7MKOtr zHaJO?J(ss?krFR``vi2$O^rDkmC-ky8`24q(yUMfZiLtr^+|1z3pSvpHC_mz-MUwF<8n8x||g-hh@%p zX0&Gv5s2~7ZW}$yKCGSR(~-NP>*YjdaoK^u6c{9tR@*-hI{`g8s3Lv&8NoUX4^zVR znQSQ*#r@k4hj!j{7rZ3};*m|A`yVuPypIPQQwB)5n*#Z(tbq}e&=28_^Wolo=Sm^v zTM(GN)@|1az*4WqXtF+bd#OHCKAo-C+!$v7=?xrPS1R(E*ahhwzLDvFA-HdRe}|1K z+bW@~e5^VCY0S-nHr_p8G7p*HEs+qzLi^X16zL)zDzn>MLB0@FkI1J~iSW(&Wd8M{ za}}--m6KZa!Fk z%xz~R=)+;bDE7yo?sGHmc#?r4q)c52LmBEI2cIj>JmAcwem*OO6)6$BE+_+)tidw@ z{>8{1uwcj;CkzuMXyI%1I>I>9S2Nm}YBy*r=r%+9SyX$CsC=C5C?G>C$E<&SJRlIQ7e|)=ym4cw>z&dku za{7ZamF!Us1Nc0zx|5lPN6zgeRj4hwa?o@Z;Ppg}_;eTJ2vmxvKK#|zR1Y*iC3hnT z!Li6lVMcI=niK1giB(7I?70o3B8bu!yMNQ*ezispX@lr)#Feu^so)0x$+Yl;|N78% z&Qt0t^{6nTquof;SCxu?sUx(blBn**Bky6_KvUAy3F+^)jG!d@6vA!LaTqTNC$HKE zh&GL>Y`fO}JWQ7*K`Co#+=+a|<(5FtS+~?x1j)H}<9TDoZl}@U%b5`pr_#?}Gzekh zt}Snj`p*z!zv2oV3yaaKn%>p(a>IBjoE>2pJ6j4Zj`q#=dxI2h>3J$L4rh@>&9B=A{uOcFWp z>hQQP)Dkc$LNUrJ@zPa;d?)-O0c+FzB+`>aRbd#;6}I-)ezGJcW1W;IAmXG&nM&K()H^5U z)dmJJZEq%ceb*(qURFi*aWp**ugkbz#RwT78?R-T`p_9v_hm-EdO_Bqz{dHu9g= z7MkB0$y4Ro;x!z7c|uCm3+;iq>kMM1fKgjzDc ztU9O@zEl`Q(7=2!_**3D>ms*K@3h^TCgYJO?W?6CwH~G-^kTRBZVE;apqm6TcI9u2 zgTAHw847Z9w?&@j1*7+=+U+ODj!JW$M5TzGgx5Va^qTV1H}l*8`4Dw`-Vq#|)}{za z9|_iC)ixVRX>a{f7a$ z%_~FSvuh|S8Jy$(acKIlq175C6aRL5E74|lV)h7}U2LlWer8gH0R91(fw#)ZGM8al zrDFeS1-8#IaEsh+qY`sEDHK&Y`QyS)NFWggL^)kQ(4U_y^*ubQ;-Pe>it2fdJYM1m zP}&Se_?YlXhGc;Y3D|naT@L>!WhFRXwCD^5oo$nK0X_NHu7Y7-o{f-dE{Jo&#Dn9n z?;aHH&F`P? z?_@@CqGeN6iJe>HVSEm`gBl|x-Juj$4HDz>15U{mJ%exh4RRh>v990aq9*U9VTjZn z6%-L{Zy&dgFIFmPk7Z7sZ3bv0QbhxK7zneec z{u;-}Aa|MGW9bp+jy|rfTNam6j6}kl#A6$YQ}%y8EmQihX_h4UMMILFf}ka~F;O;v z(%L3Ku=K>(B+n=3CjG)qAOM$z?2h;hY4a7kTX|@iFJ>`Hc4We|CTqI(Bm5YXJ-p6! zdsKLXb$+pV4U2s4B)?v`hwRGT^#g)%d?$B~9O%c(xS=%8buLGeZnRKbnls~b+%FW_ zFhwHcg_QxMcI?3UpxCSyrHEigf_yGIJ+~0xrVnH%?JDt4L4cY}Jrt|NXTDn3nawk8 z&2M)@B-UZw(k20u@1v(V5$Pz&xWy1{%A4n-MUX3!isdin?mzlsPrsh<_jh@O>g$v7 zdHsZz%2~-P{EryU{>U@r319GAz15vgw1H8#dy<%ikr%wO+>iT?Nmvfx~rx z(8n=skNH${;ep^o*BvkeFoeE&V>ES2lJ_0R3FYg#T|I&6o^qVk5mQ$msu!0!Im0y@ ze^VLX{DrpQWV(_;ZT2Xx8s0?C9Hu6y8qO9d#gPvg|LTsn+FnDuSY_{J!Ce(`7XYc4 zE7^yS+q^;V9V3092YNSkU7bcMHl{29oz|L+Cr}8~- zkOJmx0)D;3gB_o7gd23exFYQpUIfDXkzK^2yn7%;nbg&~Mr~;e-*ugCtb6Qa&3nH` z&K@C9LMNFL~Y?mU*Y!;h}a+8ZV7&24sFaw&yL)!)4mC-$aWltmy}ii8dtW#8w?!AdsSt%1p`bVEu{~BoJt@31fAU zZn?^fCN_mmrKT!|L>3d~m3~R=oA(~s@C>-W;YSDj#8ecN2DR6%uf9!>|9^AqbVcd~ z@lt4E?c~Io?WIUV3QJT@yb$9Ka+q_!4`XAXU!%02gp$;woHKRjSsLGh`UFFC*^6VN zKOT`_oKRD3?tb1r-^HM4wKwJLCe&*0IRy9>-r#P;2d3lkV55q$uXRYF6WlKJAu4_7 z|FnCAVdh&{o5L^R-lHgQB7go4-`qSNkNl8sDD2`lM=3y=*(C>@@XAX zJGQaC+MH2X^Lxj8eD6Mq*~r~MhU&>;rCD6@0q6&cpo@~EU5WHROD7)kG75u~!@2Ea z{d#DZeUgJdas)4YJxn2d-+ih;W_v(?279_JmlwTgyg^3yiXY4V!hhrs!53&~rX=l# z#qc|h)So`Cog-Y4m>-t9;%w;Yy_S#`b1tih17i`0r}EY2m8(wU4|lrMoFp(I!dF{u zN~AKZA8{1t55(5+%qr_d*`tFbPofn#hi^c)88?E~nsDkR52w54Ir(em*o$aOvuJ_G z>v8|8Ojrv4rlVP#mVXVtK_J(7YusRMml4jrEt!2l^Dxtxm96E09&Ez2Nzt4P_MAIj3OKJA`i z_wIUCkTWzmb)ZE8RhWk2)8rN(0UG1f*~VA9`yo=6))pXv$ev@JqHLojtB)+Hz|uNJ zsc?Tr(oHr1pK_2*w^R`v^0KY-}Odxq8IWit5JOfXwuTfr4Sm5i_2<()|xRk za0cnIFuP&{JWAI6BlvE4T!eq2^^T{5M!UcQ8?8juZ>CkuKgdJz=*MZJg zHYWbR!Cxrf%h=hVO~NBhPQyrJ7DTh27*q-S*ci5-D6Vbmbl3Lndg7hcv*Vu-nkrP@ z!NeEU8rX9J{i>WE+!n5$X5KENrK7fN;4EwvD^e*?Nq_U9^}kYLKJ$<>!+jv{`qbEbgp7YDn*}n3)aL8bqz`6oPe8~uG&$1X?)Yl54Yn?wt_znwI zGc!J}I!wk}T9}`WxV(p^ydON#^)lLVtw*8U=73Hr8$@H#?3UYjJg4>Ri(JXcpSch6 zy?P??0w|Y0J4hL*hLWr}ipDlxe_q`snZM~ECkx3)iDN%GYjJc{& zXFsv;;ro6O{(#6%{1KDMlt}_CaacKq@=T00IB_+zOZ6)d;j>$b<-7u*(~!USSfr7N z>33IO_~`|WH<4ZX#^A~_nWsnm6^(%mgMYjw7s%q!%*Obuw^F+cuI-_G-Szl0ZPWG% z@%C?8<=fIWc|?I$;d7P4MOuDL6IlzCsp<)4S*EypW=+WuR`^hh%(-qLG3|K5IpVOK z&F>Q`kL+3slkgi{wi?P($*Z-M@9KA7=)Nm#OSgrpRtZPLjmCqgJ%}?d8S}}yd=|^;m3eV?}P7@=Xb;* zVFjz`?;_xqB-eVil2vXqOjw`4O2=IfS~q&VAzBP!dDiIA3)*;Gl_W<93NM?+1P03+ z=zJSPEK|PVsHrxlLha9pq7rj|v42w8L=tGKkt{WWf|P@9j;lXlJ2z9}?&I!cnx9@2 ze85;#5qo>NR=~w&sNiVxEihs|@quC~`YQ{sYiY`|`%g#%_ZOF#^%?x)-R?tTcX-Jg zwoQS^-G$UQ$^EJ14pLdmx?n0bMz=xh((riWp1D0wA+%4WE1t)Y{@;vbBY#G_*i^v} zIBMc4r|nc!nC}A{+?s|V(1!%A>a<{+=g2N*QAKniv;V66Vgje$26ASG1zo7 zNiN<_V)Sq4RQ4UC_B#wE^?z3V=|1NddbmW@#GdgdG3GEVD4wEWy#^rqzC zF!+&)UO=_-RErxm&hs~A`n!TWg1&D`=+dbJ1SiPKtZ&eCw@#&`d+4V1GOZ=Ck95X6 z2g(;0Uwz-P5UF=s*?%GlE#+EgGa3MKTzIP?=0=q3{T?~A1fFuZ*dk*1zbt;MT{n(W z$vN8D-`K;$Xf!^^pc(7x9l_<2xZ0)kYuhonLO$baZ}Ze;t6^fk8E-xXV>Fu=}&^rKFow|_U_caMX+9d-s)@J$Tadrb$` z9K}9;E6ve|V;YJ69?r)=ByLZgY7u>bx~f=em1~)qg?ocP=tr}B0M9j^<~0r2dWyL& zpjvoKC(}9g)R}FHP-`|Kc{GVQ>7*FA4{7@XWeB0IC<%@*b47DpHL+!c2hlfj=?D7< zKfUgI?0-QN>9ifIp&L;>T1W#wtAv!N4dom+U$}cg1)jd&6Ty3vh=eF077&@o^~Ez{ z(YIeoXRTT&7u7@~56^MOzAM_F_ZF=L3uZ@WexBXQY4Uw+6^lXvUy%}fkMeTdd|hj{ z(>+(F+-FggwGSwgxu~p%GjQERWrvO8=|nmH|O!_XYZ0aiB=d()XLgPvp}#~NO#Iyrc` z-*nzk$#pg zk$+LBApqm2gc_Lc2xNJ7VkaX@nY_QEn-0i|Utenr_FFs!a|Olsi;P@t*nzTs{QPYX zt~;4x-kS47Mk2knm~EAMz>_!Z2try{2O88!Wl`@|W)I-X=ayc)uBtVAl%PYJ!hwJJ zSYvV(6Mza2#(4E40wfqPJa6_|Yoish%73%MMwwS0hw~{El5UHxNEN|UvMq3BH}TEK z+PRA}S_*G}qe$}A*I9otUHZ_{+6$}hO1Ineb*UWvI6i<0F4mFys2+ID;Zevx{X{5G z79jUSrcP^=uibCllAAoQP&-&_|9M~d9sO4W)2u#E9jy(1$f;rX9T{wrH>S3cJAY`F zRH=(AqX43Er7ae;U3>ZcxjZb^m7e4Ce97~1=$l-rM9=jBu2Qy`^zhib@*z~Y6*zh} z1L!BmWojh~z9s}@hw-kJ=!vA;HH9b6#!qvTQ*Uic7(o+cE-63!le+ZoGK9|5jyDBw zs5u%Z_Pf5iXo()^cAp6a7;R6;d4G8I=jMw<#DHQ!EZoL)0ro(%#Gc`cwKZ1vnY)mB zk(^!AmS!~uDKryl{_|@)WK1hI7s?BeR+x+y)X#8`quYCC^V7@pujv@Md7L&9XZZ0S z_^FbYS?Qp}RS?9^Eq)|F3@%&bGfV$7X#6g_5don@3fnSwE&6s|X%XFsw|~ZE86;9xf=fBwx~tkf zUPiG!^_)8;V=?cwbkFV`@ih0!LR~DH)`zl)O7Vz0Wrn@g6w)SHKCXu*VaB!JUw>7W zP5IvA-=sIh(WX9qel5h4kbix~9EgMF^g_GLUYjf(Ixe?`|EH(hCK6w@VMn@#YI*cb zOFX}(HBT2tC-m+y>cT> zbkongK+m8MpB^JnGT6OwR)lCMtE&U=r8Vowixv@&u{_(#O&j=U<37Xf?G&FYqdw-f z$-Hd71%9O6G;uP-SbzA*yhhwgpgyh@rcKW35gY_J1IqOB)1%=w#sjbJ(x-+N^-mx2v5%TFE!dCm$~}95E!b7McjBBCYax<`Wu90D zZ{uUQ%@h3ZmuDP@EQo%v6_BfQrAQd$4%10fZCEA#G{Cr!r+-7i5|DlA8F*>wwBJGN zf$PbMb0m>5>fPaGv>zS5iy`KcnzSwL!MzQn(u1kY;KFam-lQ2^y&Tis zomiB&_@>IaQU^XW*6`8L+ATjios>RC`1sgOmWl<`Xb9eRE_O2Hc#c7xU^WSAxrn&z1}srD>3F z)Bk%k4-xN{6@vJqe^oL&@G1RdTfD+vWO|*LHCbIa#`w8)>ZL1W0HcninT2$B8+E~H z33nq&78=QdQj&gm?98(pQ*FgkSha?r@Fm&OxYsTuik#UwMqsDX(DBZdcUr7W75E9O_D+w3F}9)tsp?*Lvf28^`yHm#XYTs-WYEz60XgD9UkYVz zWOHmq8T*6a_Ol zHa9r8FxLb50SCoIbwp&9=(jN01LHn_n1lgvAkmp`Y}>YN+qP}nwr$(CZQHi(+pYJi z?)En%m2@ZF?F$my$!IM#B|KKfrq*QS+`84OCA7sDxjEV^w>4#hr>4`Cw7P#)qi-pI zh6^CTl9acoL@1fI^8~K(AbwlXm!{`wmOK^p?p#?tmgJgSqaftTE-6b0BLl{NesYqz z;;-%)SOq?eEn;t*)otWxIv&_x*`t4jo1tBC56^&x?t#KGqP58RX#cu) z*-%H%=l<5bX8%~tisEXbvJMGKJkmbis7>C-z2KA9=>IQPd@(7A6MxZvDaPuvf)ctC zo6gN{18j*B&E}hc%3f_=U%+ zC)UQ-uc)!^ed;i5QvFA z2T>zrq3fc?%{6+Kzz}4BYo6f&!}&y4dk;~p3p#ih=e=dUeQX7Pl$}y`dw)szl(TBx zuWSXGaaw;$g#6GsE0Qqab?u}a=XjM8iuLoEQ~Wv<^lgk{=NVoCA448TS9D`7b~VI8 z+pNn2v?YB_S>3fB^dPEi=TYT#Vlp6gD2f8@e}Tr>YLrvx5hLk3lk+HXI^5(JQ*K3oQNOo;>`cmHjVV0(t#{uT0fW@(VGInp)+Az z6<>>lSME)wRVDZ#YdIMgcgZ^bDx%F9h6X&=ql_`!+!vx`F%?6LSzQP;@bgp$-anc) zEFrvdx`*Bv(muo+{ViA?Z$E7k_a99t?5^yyuKlH!s4xG2=3b}|f&MhI!f3=}6W1xE zkwHAI0Cy{I_)@VyLb?#0HcTO4e;gZ2C~ESX3>B4-i=m_3CvaY-bFh{U62?munm_Mo zq*rm5-5)~AH-8F!XE&o`F(>FG_qw?!S$Q5o$f=5AIV_H^J8u{y6-H1)7o_79Ctwq( zE(%dBfIN_YQ}8v(2F{=rRD(jIwM$$Pqb8je(!G&i8_g${&I|pe%r1rQVWw@=GeaA! zB5-PwOc2)KeODkIJ>gVQ6xDpFkWI|nsp0Ki5UzsjMj_WR34hJbhOUQ5kAkV?>rBE~ zVYvT{D4=Z5@+#+{ubMmwtOuX_5H_|Shv-0iXxmDE`U&!@2Tj4D7j+)W0{$;7Z7gAJ zt8!{2;6}2quZBt60*`A<^(ECpCn`4CY>sEm*C$Me^ah~Dzx;}X?gqp-b-*gsK+0%X zlCyzowmGp4)s00o^^w_CZ^7#5al*qwJe|n(A{_thx7|se%2aBVwQ@?Za^ZuFOs~*w z6TxwR3ti{3*e~Z)vBFVwv3q;Y1BPvKSHZ@tRK zNIV%(%WlX-dkkP~L4bIBb5M|m$9tl$yh*LwTypW&qvxI#WiyTA>pfy1@~rtpj)%a> zn6y^7fye;(n0ne~kuwW5{%d>vLWDc9x-E)->4HEUfrhNZ*40vwxiRS5-icov7h_!* z>t6=be!o7F)RR~Gg40&76PG!?{VQ68Akk&4114#2ABZ_icR#R$puM}xT32&iC1#M^ zVQ}Q`m$6G$(8`71c)0K@slGwt|iiceOnUU)NPLIEf%H?W+Sab^<)mz7gG0)(_Q}PnElm%OdS2& zva+@U+Lb>)=6^*-#jw_L9S>MsY%?SHwFxd57biHtEHE-K(Ld$siU5Vap`cF z3=FCot)hV`vjDQ5wOr#JS3y#LRur9`e7Z%{pW}RRL=#f_P}DeKPe3ZbBF%C*j)j0_ zrZ7kv1K6h_e$9ZCrLNI9>8*ds{|6^}|Kv*yTjaGY^ zpTALm5uegpSzz?=xrPC1rc|xagUR8R%4-rxn^-{1kl?B4dD8k)2{nz-``n6dVvX5Q zY$S=4i58`a6-SIl9<_dz#bUkf;gf)yGlHLVR$%(;(#t(PFQl6+j)zk4-mC!H zrKTrzX2=zp8isv;ZOkhC5n>%d%%M-Gtv}sJb{a5gw1Hj;BmFaxF-Vlk{ug2(5p zL>N#GLVN4lGG(Tkfz8?gfO}*L?6kFP_~Vyj{`wSnZA22SqdNnTB1kKb#zmmIn2}`9 z15bp6*1fzcj+DKqD)*kX3ntzP5DRbUmGArz@N3-xA*i)~FrGoo8GKsa3*k%pO`tch z_d7L-&ID1*Ps&nHuX>QFJDwCH&~zb>KZNP?julZ5bi~*{{L=)1t4u*N>@NT~3xWX4 z-sRlzQ~I8t-T`}QU~CdIQP@60wL}v+wvfaH72rhtg2J_5Y*4hR1t$Par07!zoKkFQ zZkaPJz@+wn>gd;v&f88!K#@3z;1+!AiS>KG`Nd|>lED(8Bi2|m%6 zbHA9dcT$|G!A@&yUjvn6yF5?9`kQPTeP958D;J<})*FZP0U-NvG|9~gFk;Ai$FJUo z*jlTstrV%5Q_e3Nv}Uso+$~iWNtx}Gb?6wBAt44O+%=HtrFS&H47Bi8S@GgA9mz`k z+~Enhd2gx`(2fRNVS9``Y)5@*DT^P!P<7<7{x_xE7*iz4gsXL(P|AdDwces?u#&ic z$>X)l)ZRcR+NH_)Fd)v)^*UI=p>qTGU5wQ@QNZ9?V)dN^P(c{4iA8>C3UhOYGq-Hq z^bucVbX3i^^h#t@f*SZU_1KFbg;HzS?g;u5gAT=3oHd1Nirc8FZ`;b<8qb_0t3m7t z8Y>{O!)n!r&R>b(6YJ^&{)jH23k1S{*&$4A@9F+E@5NtBm8QCXKEG`>Lo#M{4s6Mr zFwrYUli0fjs0aBD*)K&cW*{WVQaIfOsKRdY&cKaWD{T+pb}WkZ-Sz^Q$S2iyOX|J% z(np@(^&}2=geVJOuQL>nUsPM7r;3pq;pQPxKYnTx3MVynvA&h?i_{O>Awc+lUUg_l zQ2C$RqIJJs;|*FZ@5)3cyMedrWLaQSW5=${J(jD+{_6TaAW9o`?HhsZ3Mmj~;U_Zn z<8>5NtB9kvKWp z5rlK&M!%=##IW64Lvod@u5}`Rbm;h+%X()TLgj$O0FCNZ4|Rrrlk? zHaIlsKE3wL)}tIweRu3)Dj|8#X&;iy=-s3D3Byymma|M^wIY-Ls`3E*zF}S%7hIL$ zNp6@FovnFJEBy9`2x!b)Lv_Z5FTk9**8GIyjeB2U#8z*#p#-|@Q21Mkm0)ENZ@44Z z5hb9>z?Gn$*}5GGMdb2-Ak{NqQNHeb%2%Ib^z@XXO~=A9OJUNh0)-sj$pKRe+K7I1 ziXvlj8>`r+kIA@r)`G~Hhu50F9}$3U)CBtnE`v*^*%o`3i{K&i`es=r00LaJiquQ4 z?Zh`PeMMLv_1(Ed2!09+NedJZ)A+9S!xqUlh1Ja9o5e$+dlp;7HOS{?{)Rdc+XSUrb!Aq{99o@(2JdwtZK8Wx z(Cg3BTTHo0kJW({*XpHX9t)QLku>e9~H9M(OQ}rY| z3%A*`WkvoSY5}UHN=Gy6(&Q5ie;`$@7~ATGd~$aWoV=0kv`n7qF1I_mbJ zb=LmAE`1cYKeztU-PGjx29H~--EpRyoru>fE8@V07Dej=$$d}XiVt+vfGleIHCP8P zd0M7_>&~6GmDOohV&M`F8pwV#_=>_--w8}A5Ei+6)Ezqp_QV_>W46?Ju_ol6XH^he z7IMwlRfO2+y%_&3cfL}V4Guly&wrV@zS0w%S2N!GT!!6^R-WcLsaS&wJiWW|_v1`+ zhQT1JvrUpWp_H^Zas(;If0Gmp5GVwxW(lr;8c)GWtpMd5dWmKdlNhwbHeXW;eVcb8 zY1r+*wEPklP`xS0e;Z$Fsjy0b7*KbIPR2NzcB6r+$@=CX-9el|LShEq4Ap;gT&x1b zZ0vR`->oP|i=TsAQ>z;06dN-j*@s;G3xT4xd`-XZc1N<-^5(0rPo235r)iRf4@-l8 z*Ix?vElufe{)$(N9bx=sZGu>)6e|JfBV{hbCY)@^;Z)=V-RgNtRGEq ztVM24p@$TzjiDoaUG$X0vP&y2o~KxU@{x^HCP?}7NUkxz6}eow-)Qi)JI$~MLSnLQ zD83Vy`cUREH}(p;(-O&vn zu^5?ez&GUDQdf51e^h}u2*x7PfhA-(i z&eZE(QChct-02!Um}p7=e!LPm4{2SMmusp#_HTi8+=5~v``Hn`9!yEReNaI^YSlaB z89=_#6GNYzQ`6u%miZX@lH?66ji_vJd0655#od)$iu2| zUh;PV26mH$!g$|Tf7lE55mC~A?GH%%(t;QZG)@-AU@6lLVl&Cgx-2KgO!&#yd@N&C zyJwrd-o^RGqg7#5E8K6merMQ9C=`6q7(!~G4sIuSaEN!|2e#d`L> zY_TnRRK@UIzr_ACwBY1|+84uJ&00IoP z3hPl7s5~%LQHB?lbj7QXg&E~;KH%Q)o)1~9zAVpA0ZEF#4w~c7u>oq&1!?zmqa|?e za)Ry^hDrv#jS}n*XpbX*Ir7cKJVydIf}vfZcOGtz$(h_DreUi7kFe2+5%%GO1DFT@ zlv(XYvqD4o#yK4M%3^${dFL<)61m?+4B^!~kSb-I`sa^YPd-&d{w83d=n{Z-|9t4Da)xYc;f}BW^{FOL?6pg7>d=ibpD?62>`K7%+>7cig@9tx7sF+ zT_`?ehD;_SrDLqdRrham4BN*5(YGn77MvihS}O9dv#eo%$`L-ky+l2K-I_zzx%+{E zMuV8c52CslFTIDEAjs%cSt-uA)gU)a^2eiNtKrb54D;63=WRz2t%!;Vm3ufb0>-zb zw~{Z26CRH7`uWn~KfZ@phbFCfGbLp`wDUUla}l=dkI&`Wi!16y@FzmqhZE)<`$ZW$ zXI~js5O`33*f)X*e;BqWwh>QPK%u>3tEv+rC$N|`VBr9M45sQ@}`1Q*U+OTVh%iTUM28+`P$iy z(*&+U7VDX#_qQ7rdK6b+*Yrr{zp`}?vp_-F%rMb_D0|r7Lw#QpU_2i3U)dUTqa!s0 zExLw(xYr3>1<-bbK74V2Z}*j=!${4_AsbR<7s!w;@dK($EFV|I^d!m(pAG-t znLH#-QY}8Qcyc=vWo)cvcDGpJFAG|T!3{|o&=nv1l3-mUnaAxqLTEaGfg(HV7Wxgn zRAN}L=uce(IxKHz4#L>!1os&$z7O3W@clgUvB=vQC4v#*>_EfxWwPvuHX@O%tHV zkO(*Pz8v$Vdb{luBHagM3{h#Cn$2K;f#Q@hkX=p};F8Ca-DbQ4NnM0A;v^t1yH{3u z`L7_DeG{P_J+In{;`h?>S=#!xZAt+EnloK5(Cx5=e&7eyY99B=Q=f_Ok!kKGgjCU}c~@k`*{ z(*zied1p`Iz2D22we3U5=r+~Fwtl)r-R?IM3zE(Bg3?35ngT^7zoobz7ZG=qAG)*a zX7<7EKcF_0Pnzy&J@f@#>%%?()2*0XG)$ZA`5IfG8QQC7H}#_8W*&+=&CtfuO0vJ@ zVJ97eL$ACAIIuOKB8KkX+7-=zNRYZdFy3=ldX9mOQD3JEuH|{hY{wm)Y!CW6BGJk~ zb{@s#aPm{gi#{WU4x<`gZcbvYM9U@fk zXho#XavrK1LHP~v>8Es;>=utnHUN<=%zbumj1n19IyX02h7DcF00*j-;mccv0x14=CU;-KJQ3sD27ACV?2z)`(9-ES2y9-r& zro7D5aMlovEfDfBH!`SyHM3BMTxC)Sojl)yHPOS=h#}hm_;0=W|E3ebcEQ_X0o}#= zj6pp<_5-{AJ6qeZP3QhYLJyW@hGyaJ2M(%n+H*AQ7fmCbf~pf`U=4~%i*-ceM&yzA zy9^G%Xex>`4PIl#!+sBffs{}OC)_MVj^1A20{E3*xW_V3WdKrtkhU&KhPHk%eyJcX zKSW0VkvzmBYbdfbG%>NYYEMy!6msAyww+?OIz%gc+T+%$2Dj#R$GRK{)tNt~R|I=q zZrVOL;^(V-Modn_Wjvyf25C)-`pvVdkrhD=4)x+<7h<^7#j5&8sWqj=JcZbHPbIdu z5sgS&g4w{Z7kJ-)4CRSJKhYc!suosF#r2>GU_$9sox(r-55EWMd0S9FEc1D7ZY-dI z*NqvK5uCiiGi~RgfnO5L3lSDq}{? zL4}__)@Z-+wT}~kNlvD5w)tf2yDvb8)!N^!dRGyi56z8#aiY9mauA{+1ONfC*M_>* zm+?xBh>rWPiSYYljtw8cF`F;TW`mi><6bv8qZLBwSz`>wp~xR(&@L;y8YLs=^?wj#;}e z?}P5Q#ba)N9?8{BXv2(SP|-#N5@=->QRBN%g1gox)AS*^U*=e|^-?g9IBXTxHtThw zn$W9yrqK~X2vd%yo{46CV$-h&aZyC%6-)KIz1=||*C@AkgP~TU>YP#-h9Rc5ZaU%l z9EfBU<9mBx3J zqm0|S(B%yayrGy5@6@jsMPlpN>#^QSGJBvZd>oWzrhlk%WZdeq+Zp`6h?SP|g5~zE zP%e%9cHh&ov9uo3&wH8^+_E*%x8!$1S++f3``-VP$_q3Y>ozxnxwQ%@y`B>XbQ?TZD!80R4XXfQY&Uyfb(Y@%6bON-cyR7_Uq1 zC0dt~=PMrtFRmZ7%F|q%teMdDKJa>u6|kFs5tn&&QVI)A;liE^CX7=gCDM3=g6Ili_uEWLAx_)Sp# zPk?tGTfQCP^3HKoXEox#iFke7)WV;B2#J%k111qZv2Vjs=n<2{k~#x8Mu%+PKGSsjsiQ!22@CerM8TAlJXoVqn)V2eTGw<{%!Lkd z)34PZ86h9CT1j4Mhhvx$Wu^pghM7*PHXhP9-3znDA`X%kQl)>`80aEKdy-Rs**@7C zt*FXiGkI;$Rp?T0Qd4I?`+DAhSp$T{c6Aj0aA6V;A5xft7+b5#l>j$k0^9!a*4c1l=<18CG7pLs@x$%i`{pP`?bB(_`Xs`)lOT9j75AqF~IrUA|3ZbXxIn~%jH@0 zUijNCXY1GfKct{Y%TTqjBY~%X<2c?OydQ`lw*NNb189n% zo>>#S`CIW;JW(7|Y-J%t#}xS# zMAU$qt+ggEiA;{gceTq9i@T0;W5fUFQcXYL=dSuMp~(D4#)dCl8?44uFK2P2Hgn_V zfxOI+RTZ}&WCV|P%8?j#@@Jm|kan)Y*#YJ>Z=wH7Gk z4M}_61(Rei;XKj}1XbjgV<_)3ZRcSGtZoV<=p1o14Ls#3eYFV z=FCiFh49Lx9#14m^6haV_9u)-%oBsAxtKB2m~;cNVt;?YI##f?P;9{M`t6Ay2eF!r z3J^Ai6yJcet*1(92omHz$ zIyI5Vuvyt$?AI)RrPax^88bweA17Zxiw2e}AUx<_TaJtoN$3|%=7Eh8NFJGBqXl#vKH z^x`6@;#6m<8D^TAxJi>kLHE(V0WgX90Kq~m3ZY7|iqQOj;F#Fooc{=yr4tZ(W%7_c z!J8SLkJuSV@I}x$R_W=GKq_j-|D=Ezs&d^aDBlLuJ}?ql)qScBS5wt|AUW`4gyqc) z8=ie+-U_1!Bm62;48>e@f4O7oH-I~T7`7q8e$=s>tli6g5nj*scS?ZO z^!{9EY5X>_8Hn8%AY0jrqEQ$LZDE!msFe8811>rOls_ZggqlDv+77V(}(ZH-Es>&O#%sZ!jvtDn>$GkiEtY&iLfbQx`?i@8|@MR zFl0n10PzN=1}{&!bi?-o#l>U^=&^C=k*=J7MEk?Egxs;4w;41*T82HC7-yTtw2CJB zSn&8%4w?LBbJ21f8Rm}Dx!=+ydadui6)lTaWvrEA^@*a3N?o7%a5LMWDVzE;vo~lG z3ZdlIpvQL)28tyFYd-2__`hWiH_@gs_?f@uFv0->KSSVb({~eA9I0m%Lro9Jg58>b zK3t8;_&jf%W3Q8*h+YmkgXsKw8hdS>0=(Fke2Yd zzX2K-iA>agloO&#n=4jI+$k=5Be?Se?k3h}2feuy^N%^Q+0|NX!zp!kA8cOy*=S!V z1f>D%VbJqZMgvm79xKw$@E}^Qb*D^!s^IK)&>u!+CO-Z}67-aW)uQ-`?bS6}Y!4z= zs`rA+h(f1r?o$h zV2@xORa?U(jUi%tuRa%IeLCfFfN-FndwyYwqct@nRvP@;!7mNG=Vs`C1ff`e6KFj+ z1E;k`!JsW+Fz|h->C91$l1VUPFcZ%&sZSyFU{x5=dZQtRgZ4@XGhPqA13mPC-scm> zt6FKqm8*Csx={Gs?($UF45hZIn$EcCaLGZ=*IvK1)@BJ>Q}N%fWecYSlto&G7dZy9 zllAz#^P$r#{A^|BtPo!fBNtMC8DSkp@)?k@8LdSXoi~MHlMm;lcDR-SVTz^}6o`xx zSh+ffh)Dc2TOtz; zF)7=nR zj-a>-!wP0M=EfBF)J_A5R@%UUFT{A?38+zv!7$y=h&>-p@8n`~j~vZ?f!6$D;g6R! zv7wrVt#xEeY~!?lThmt?3|$`|zS-?mEErDNB+l~uEURc6<34#88Fkf|up))^POfW0 zgPHZ1DSc=z?s5u1@^CDvONBn^Jm;M^?!`L`lPK}T9>Ut|UCx+~K?<4`L$V7Hc=9~< zXNWlw9^uvADtcASd{E#c&L%#A6&An??tz z6~J?Tu{pdc{LSfXxYR%=?M4Am2DF3Cf0&vfmnYEa3!mrnTt!B5U-rNq3-3DLL9{tQ zZFRn!VVY!rg98I}EYq6(MD)-#EH$&=&Kz3z+R(zIWEv~SLW6%)1&?`rX&E# zN0q&~aD_TATMfBiGJA_$tl5Q!@?h^~T;BN$(T~Nmh+#IaOWV-O-xa72(@ zpX+Lf&s8Y2Q$V%Ft_$AyZZT*Oh~G>ykC;9vV-HP#5@+Q5-kOgOauat{ur|m{lK z!P)8xf+?*&h({Z8mtJjVw^@+223>o^WFCgen=sVgov4>|Y;pzHxh(y=ca)odCG^!Q z55xsqZ0Mm-E48h-=QjK%bg40%{RK%3bMm>e1OBhIQ#pJ<vx$;Cgj=z%kD=A<0V{-4;a&!VL$_S zRO4zOTHUZkQ<0b@e?DKRMuLJi7C_5@|R*`$*oSVt(8IKS#A2NwDkxc7&V?|vN zX07WVUqQT~$rRUYv*6*qG`8F-6+%xIT??9jOuP39N=NgD5+jmcX*l*0^J$|7IN-5} zCG0JT?(1WocC9gl0{=DqA$r4_8TXMwJ{m;lvGPU;}pbvO{-*UC8vw(xWXafeGG zk0Ky)V0=4uN3~2U`7U2@n%8EVq=ISs@sp$u**y44rqxcvt(D5OV?d;wXqhv(((bE2 zbnIrdStB=oEsyK|*$zJZ6XC7=y^_^7&xspy&~HvQ2XYt#Gq#GOH(u)>SbDgWPC$AS zBU4&qEEy}lPA0#pn@IJi++nMYt&^~OYGpdws}62OdIyq> zp2^zPaEHmb{jMYRgFlbF|0A4xLHp1Qx;|_)L>})1TOu-?1(~vX&|ssbQGrny^pJ_% zLgxhoDd;tKbCC@pzG8&w-}&z$>=@|dba*QpAMGb@K_&m}NN7Xl)oi1)-I^jM52)o^BnYU0u+^2;E7&^} z8{sC=kyk^oXyeDP*Lm(yj;iZ(p%$T+QR-O`3buC94{o7!v;sIgKUIotgnF~4$A~At z0CP#`&vcEl>}h!`Ltv`AAFVroK7*6xM`g?nn{q7*pF>1HLAq*%JXzd0$~oy{>}W~! z$mu-`vw_*mnE@hQmQ%4=lKI$H@`8)_RFH2_hyJadKu3Vl>%ZbbKEiOXIva#}Zh^-v zse_RChztD>Tr!Pu%shGWJ~5nA)4(4r;SKfJ* zLa^pG>(Xf*rOtC#=BG2~|E?r!TmRagZ5}@RyDfu)nmpLWgth3)!7$J_mm3}~e+bgM zNdV;zjq+9}BT0g4_D#SoRxo=o4=sK;LFq!e`b35nuuvsyC}0s&mNX?;X;oSg_A%vU zZfxeXeWb_0YJ&1-8 zg`$ffSP}bb}am4lRe@C>3GgYjoKh zv4b$PnZF40i_|A9u~8Pqba1sFZ)Gm+mo=%CXqDg6Wdrb|(Qh30y`H#sFv0!hvh|Md zMsM0x`77&=!vQ>*xOQ*f$as;6enmi%vqBThxx+yc>X3q9kwvVcR9p}x$$7&dAP_LX z(L`4=IBb{|!84J?J^Iv0?pD?nn@{>G2ySObZO;|;hvm6uoZzh6MIPf*Ny#-#vbZkl zhrpoguOz7UKZK`XOPx=J)esW?zzZT9V{$`;`*y;0bpK4sczR*GR2 zoFBsm-q+DJcznPQO~u8mf((pt{9OL^X+fER0yJ2g-a9PO{mMEI{b_ivdsb4BSE)<$ zksiBfh#Ds+Q;5t9@;xIKoKaJg(+>Xjq#o3&)TPBneSUb6uPg8sDtQp6j|GH7H;JvR z7y_s@X*6wO1SbB>y6rjkOKpeGZYnt$VOUfgBKJs#8#kP9;v#N01C~!h6BUXTd1fAX zB_5atgIZ*nWw?Cps!P@QbQa^ksfz9DrmEP+$m(%4qe>wj-&jtM0A1Fv_xTlhUk3y8 zoa16@`?yI(ZD@g^hlHErv_&ZopYrpt%N0?;8C^$P$sbzXBPFPbxNOhz zOPu?>9A3kx!8W)L1wRg|m`q(X$O7`oLQ7@eJ3*msrPSuhbr>Ra!J>Te*w6`o-&6|n zC-Hb^a**&JJp_`R2qW{EA>q)vwcrTbA#ynCqfe~eK!d)i;7O9>r-UkSt8&{8(T++No3KHG126MHe>Uv4e- zX^3DS7$Yu{QMPZTmaV(U8xD}Dtrs}x!J63oi@O>x*Q$S_P-&{ICShX@#j4W@k9h^a zrJ@uD`yP=6>eS%QEZxXq)K;{YJ4{O6^ExJ`oQ>^|vv_4RwaX(lW z7NEwz#c)Cu_86@fAiA=05_J6ZiKswU)6Rei+55<3e?1kpu(H~>q*m$jL#6REr6nYD zU`@Sq|N!43;#{{Lk3(0M+LNO(?}XFjB+d^n3|v)etxjy$fT^RV+5j zdD#qJW=;my5yY;f;_^4-*EWL_zlc>fg>R#QH;U{0^-tX1Z`-ME*F&}dly;6)M&D#7 z)IH_JSFj)fDyE0v;Y&Z_UC2Co3I8#LkjL&A(I-dDs}{_l}L zQ$`4_(ITO}%xh{St?xjNR06sSu?{JWH{ofx2mHGa>mnFNiI%YN#C{0hDoZwPUrvD* z?%lXF3-1&{PH~zj)kI?I85=@`evRWd8k`QrPdn|1u}rtD^H2J9k5KZEIR?}bBUx3c z3bQ?l2clp+T3*2GVlnB@<^p_9N4-HN$4pTMztMtM@OJ)#t16&e@e<{$-Q@_+qFMRq z-1!+PZxOWeNp+%`TAR114|Cz20rr8jeleTV6YeUe z8A}ay!TDS$XgG9A<6J#tW0NL3-&Q&564Oo6yd36NP#6ZmZdFHBXMqe~@>i?uWklnb>B95O4&>_r&CW`<;SO#iNL( zdFM*yw$y?~B*6+!(!9G9Ak=~>-NE`7|7S*WXCtkI(q@moEb{!j0T?=!FMf^qvK6>- zh^CQM0}+sJz$&r#a)bX4dfCygeU8R)q7mSKa#T7PejkJ}DWWtj??G8=XdL7h`4_Ho z{@L_VjEo6zBQ=rM9@Ebtm8+W>G~g&=k*vdIc;rOluN>rH*uIs<>D>^i< zuB}~k2dlBM=Jd7Y`I8T0!BsQG75b0sfl;H?G=AeWmGGpkRBri1jEhK8j1J6q8QH^w z3PegN>wL7PylOuo0*7~b`Z_xJ6J3upk7YYRrS7q`EdL|U*pHvvPwJ$nN5b7& z3v2l;LHR#9#|w>On|)E;|a{mCBRGLau{5cNLsc5J(V5}>IW7w zEvo-*9p#G>JC4$N#2TcU#^&AYp|ve#tPdwqe);+Qq3;wLTY|fv=RB{0vFLfDrAt9v zlXDR~S$lSar(;JZ@T{r!>Q1J4ZPrp2A^>-W?0PXTg*Q2V~Qd3ufVjF-PghZtL=J;nW7;v=(ouwE1Sgmbo%9XSo(`n>{AZl3igC!k4ZaHgIKf437Y3AqTTtU^ z!WN8|K@I?P-uYQVPJf~;;qc^6*>z9r4fz+Q!THt$Tj;|*V>Ymr7|Ld>+6-8s!CqA+ zzPQZo5~97XE~y@X+h5Z1Sa6wRiQfv@NBw)gMQRy^?ypt^jrhB-XAX3O9ihI8w?9K` zeutC>Zto9qypGwSQ`l@x#lJi{=OUs3MZ_wdWpMf^Be4`vsY?+Zb&FA^J*ckS2;K$TyK-*42H+SdMcHv^9 zhV+=464L;!_CmiOoe#Fl+&DpkWol|r*XV*h{byJ9W9Qg=JG8N>=hIGoM?hXXqqUt zl=!tX^s@koGvwV8c6Q@ zv!xb_XJ*Qj;86~+0z!Br1txF$UzQEJAGZlu(a^!Ig+>~VF)TMvRL z62bRALCOQuOwO}H2`}U|NI)YTB6(OJq976{Q7{k8r~s2gwq1qwOK#xgs}v8<$f+1G zD>-gac3%35G8IDkcs^coXQh?B&@*KunG36>_}oz*XOdlQb$FNB_~K$|MH5)s69xuA zhx3Rc%AC_d)-Cc%GNsR#Suf1w>khb-KhS?V9*IvbYCVmd;HrlrUR`uz64m%Y4E16f zm5%C`>)7Cf4L{ebA0XqE*>L+)k_Ec9{bh@oE^E zJu50acunF}jss&?(*h3oEgQi0?NI<~90I_67Hi;LLQ}e;Hxaa_)_tZ$$SKnmD%}ua z;>=1MFHJm~He0q0cl5&W$7OuiKR&a9_MoyTMcYy0rqoZwJr9Tk=P{F1-HbDqmT4C= zApR#SOOKIOXg<*mCA+i1LK^|ZK$WccPG*IZem{U>u0X}MV1{-JrxStAjMoX&i(@92 zx3)uo);foFlpft>8@Vb)_C+E>;ld>O6qC0Ym<=+uBBnNU-qQI6E?y^c7f(s zyec=0Bp{{76DZ(j-F#QIul4aOfs}Y(k_T>NvO9jJT2A%!WMX_J?nMGqyZMksl4h5? zmY6mBa5~M6ivxY|FEXeTFoN-q5gEQcA9=1XTnZNSHVo&@X0`cz_d9c;72HD~HOM6K zB@61~_%m5gzu>?*H77k{oj)~iCb2mQ8Sc>??>?|<6LPV_+KT^4xia-MmMV*hJW-=H zG-k-^%$wpfw$ME4gxnGPf8Dr z$TS|b6MsSFx*%8j#1$QwpG2?o9Zl{fqnGu3WD zLwiAqA+VDpnlSa9Grw4(uJ?q@gpwCFc|t7yM3iVEX!q4|TpJ3As3d-Rf<%q#-!JgN$AO#`8d{7fqrRPN&J{5wnKs`ZMd9D0%Ta;E-^0^tb<1;3Ee|(8_|^aFfKY1ua2|MC>9DG? z=M&m?Orp!sJG41=LTDKK+gP>bg|yXRBYYu7grw`F>!gwgT!aOPJ#JftEfhG>abDRB z&SC5LRV>45dE#{Y!=Dg9epZGVWP-dU#~p$4H-q@T7a3%Ej!B-Ad(cyWr(}BtEf2oP zi^#Qat#TzzFr)Ur z?A38ddyrnY8f?>4>zIwh9Qnf~zj2ZfiLXlB-@CQ|DgRJOT(z7pTQ|v*r(12fSRbc=F@%!A@TB;Caym5yKZdK| z%qi=WL-3^Fu8wg{+(NNBN2?&8Y#GYZ`W_xw7TR45*e#v|>)B+EAg+AMSs9Dh4e6gB zBboINRBlT53Y^1?l8ywcUY_`$*%V^X*!$iZz`SXc^UqnUd7Z=oowylm`tlj+MTqFR zeHT=`2hYsH7FSlN`uRSpqv{zH3NXXXgh}BGwx;f$C+8ePfooaRQ-W>PA3BlloQONk4*n4fvwWIrZB0?d6SJLPjbI}it(HYN zz!xjc^2#9w)|CfbIuvN5Vr7_~)2Y|MJm|!IWuHqr_O&lk@-*T3Zq#J+m6u6R0*Ld2YnC*ifGU6{Mw5pt5c@bLpZ6XbC{LJUUoFkwowDnRNWFtuWhQ zXRGLg*Y*$K_ReBRU-$ZH(IbsZ#`omv+>g6m8smcDfefK|wM2wUnO5S*YgeYl;hbg_ zN49Jxh1!%Byl{qshY*l9ll&st&NkCkL#_7L>Ui!aPe!)Q?zt*{*ZwH-@far>uoaGC z76A}j`+YU1aEg?MPY+K;_N%}=PEG^ax*O4q6@$^BF!m3l-&ocuOOU;q?3e);6;<94 zM7%?o!pmS2x^}R&NM0ZI#qULL_iYzL}nU?I|B7Nm{SLY z0J<0u_3nZ9?iFJf?s~O;dm`&kAO^S7!s4(A{;e_er;HRFGvrn+1fO!(YFdV0q@bN{ zkd5{jxsCj8IL6qcGu}XV!Gbh#ypq$;@iXB%D?0Y_ZyLI?nm1b?M~;RKR$h-V{u)^> zfy6DQ1_L9U$E3o;tQn@dJE!&J;TxFLJe@0z_BzdLle}_3j0$Q*9H6j@%&~ zM8FD7FNkJUDU*g;=b?m6k0lZ8s6#$9Ez9QBt$bx=(Q^#ESLSSOVRd}L!{yQ1tM($N zEo}jxT+xLbcA@QKCMvYuBW5P&!qSCa@RI*iY5xEdE5&@()^6$x=-siL9KEkLO45q3HKey!^+2y@*yWuS84$3 zRjIj4lB0{RqFUOUP(PzfYg>n9 zvRQL&-8ERIH}(-H_azBSEGj95g_H;I$k!V48h0lkr91}Cbrb~2$1|O+Ss*+jo=N+o zP(I}4KRjxqd8j*5QmE)-*y5c$Hd%@bONFp7S*zlU*%wp(iK5U zWA&Gd#;x0SL~vK2ifgH>`zT3HV3iJMGrt8}tU(8_%>S7ByNaLYb6j$;fPPr}xRwDI zTx`D`xLlrqy+Y29-+tW8xnQPqL1Gvs`4njOqixNwVVfO)9izdgHg)Ngkcb4`(oW); zAg;x!+P`eMf9+?cuv%{HTC|4ii;D#e%z&BcR;G=FWK6EX6~G4e!C;YY6A%nLp?0D$ zD*F$+^P3z&-X+8|G5!*_5psOD$kMSa3Y)QW}jj>$F+f`?q4KU_aj z`*YR99IcV5bJmXWUe0_{ncS!W9 z#0zvi(0G*fD~Zpw#0-(}cz+$35&`AIKEMLy684%IKK8GQ2C@oi?ra#A!`s9WwSz!l z>-LaQRnNsUx)Q8Jp5w-VXlqH9)d&X>UB!CkGiU46IQFCJEpH>+ib3y4P(oDVU}-&S z@=bex@r!oVzG-REFaZsGg=5v8?YAJsXK3>?kWywj*k+^ai_`QMef280!Xv$TQ0{`1 z=xGP3oN37-HJH#Ioc}`3TC&Qn)M)j<+P;0lSUtL?KGIM?uB?yQneW?w0>RA85-ee!tnMeK_+LOYsV%)4p_RiY}k^WT&TpCw)ag>5k zmB5&OEi*HAAvcQptu(oRv~CMKARE8rFkQ&dkpg}6oz^x=bL1)R&%tN7mjjYjSZDCi zGp_L(*pe7_bK95qWrO#&pt2ksci><+KF`Xs@@_<&(NTXZ`O14!>#;aGYM8>iw9; zIlAo0`OT)nRq%`qydA!w|lp$tG$sV0#}Qm{PHN zeJ%4~Tcfrt{*vj7%Z|O{6wTtR(n-h}+4|txZR`zhGJlIjYE&LXMZc3O%y(SRY zRUKI^#OJ$n-R%Li!0Fi@Wiv4zD)4>1vTe;fx37f}m$>t?FuP z7w_d0QwV0L)pG~J5;#oR1$xT^7uS#Z(!uPcg?H9b7HUyFL2+MLfi7X2)y9N1?qNAKV<9^35iVAwJSAP;>ripwHPmx zidv*V9#bXiawb=4ZRK$jJMw~lk-E$HTP*K z{!US%p69g#zeDDnA$wy48k5Th9SlVyq<&wn8`Z>)BW=2FK~QxnV<>aDlkb~tawht7 z-k*q*u=!QT@DyDMPtjtQud+px*>Cs^qn(>ql5wHksir)o%x&ekN69MR@v(ZIzc?bP|Mkk0AJ!0Dv zd_JGl=x6TX1t8WykMUwl78rvckQFf9HHOGaLY`a=sIOA?BjrtwoqyDOM7IG5qo`2| zU@XwiwDIt@znE4vJuW={f5>Pu8=M%0*no%wXk5O?kSO7fdI>17tx4_AYFswWSY;0y z!1Yf{yb3v+zBg}j(n?L&v3~_4z}BjM%Wd4IfV>tga-AdnXz*HvjP;~6oL&KXvR$7D zuHQ176e`#NNz_sgQV?LQQb$5${rsOY@7SljZK@=>2391wiU+IAN(c$|q@dcOxWDIA zT)0#Z=B+g1Wrr8%yOc%gq+#WR0!(~+K4A%NL53yc4%>w!jjaID$~&0jY;T+NpF>}0 ztGbE7KIaG+; z%_vX}HcGD#xJ(cJ6V2+eO9q7bJpv5Oze9@_(WWXX9tpACN37nBt-HO=G~O>H_ODXy zS!}MhBy#4_LYeLNnKso7_L5P$ANX}kYRi!!@bI(JRYZL95(MlezS8|8-Hem9KV)`! z+gBNYR(gAHL`f%w9;XqZEm*bVRhRN`O^b+!aQO71*I7`b(+2b|1|gH{B!Bx1fFP3E zm-=JOi%M7nYe>SW>WXSh8`&fc(mIaQtLpwy?jgZxxj7gTaS}~W2rWqR=)&BqN!L6n z$-_yBnULzm5T}BxiVu2OCR%=|q!5p4&y1SDa-MF68|U5C&83lSy8QdA(S~emN@-mH zo{s_Vsa+9u-k%V2{4c=IK(M6p+m)#~eN2_ATeKTf;gcb|LO3($R`U!C^XfB1`I!S=CZ&?8@AruMWo_ZL2eJ?a;fIoUiC zM75^0QBaW^0CR1m$Rs6RN{z5M%mbKxA5Fg1P|u71RzMg3T@!ZML5rWOTN+H8{ug| zj3tuP&pzYz`jtIk@%(>9 zbrU7g+jJcu=)nGo>hh!~x9gJtBW(tr5O)7{u(ka& z+5YQbPhSg!m};B#hkynLW9LpbM#Ms`NL8EVKd^o)2*U7uokUJ8xzglZABT0q`DyO-$OW{M1) ziN6_B-4cjl{xIplcrdiO^UT_b+&eM(GCe=wh^gEELN>QLy7L8eOVpz@YSoAn8>$Qd zIX+&ln4;dKz;{&gc94}V-!-NyH(%~N*W8^p;_4c-WIE8MX3W)x8@_Gi`F8FXUCXo5 z%Tuvdry@j546BnwYY?asE>7YACr@xG+i~-hRRptto4OCZNDT^y+10^V%)))jt`3uw z?fW9qtN8*s%`09vR(5UQx(PgW##r06uP>DT7@QZB9`%};O!?_X{Z27d7PL_}!ScAn z1OOH%@iTtwHwOU;Y<>+4r210tQjYZ&P2E_p2Hu1FAXpqm#J8j@ImfsFoowRHc~6{Y&in3}jjVE}Z^C zCjAiNSpSZlXyQ1slk7Zlt-6~dL|(XBKb>7lF~IPyIsMg-&l+?0TtN5?eOV;r4O@4^ z)a!2>^$p7CbSCvbEJJa1{%LIYU(>#{W8K6aP8D*#Rv7^HL>*QrlL_ z|9V*eZJVERAc&$hB0h|_=c1+f3WZk>XEZZLMhKk}ld|4XD1 zPoGPHaBf2^fjIjQ&G`@AhEN8P_iuK9|7LI2hEnyv!*aJ7)j|mT=TH7`8EI^Qp!;uF zo@7)x^tStE2p$M{=#qNJ=$3q8%_P=mEtZn~HVsJ1X?qor0Dij`8035U2PkRej zOA<~_R`zt|0SH>4p0>*-pw<7SZr8M|(*%uAX@yfglF-8NsH91a2qW8_gHhJ{hXVD> z?>|ieXwn%`C1&OZDyhOGo-jENxtIkExUR~WY#E|9uPC7}p)@5Ap$sLOp+Q*h1K2Vf zqU!2}DPfArmf)tT3~~w3l`0YiPO1?yvZq?7I0dzOq%mVaDPug+dh`O*0LlKr_9V3W zqQtcUiP!+7>S`yGLU=}kIFj&DkufaE-Hky^NpjOc?9u)p8Hn9c5d6lVxKN%FnrgV) zl$6jXD9aMM9ITbVq*BM7BE8yM9Wr^E?qJANFdQ)Fa$$xFa926hW@xSy`k+aZ3^@|hu6_bB4B;fWz%OHo1SJ?#V@hyEn3H;F#c?SDFDGzxt#>%PV^Oy1r!mE+1R`u zXAhHs?k+7bld$@z<`EjKW`>VqB(pocnd&h}JZ+awZEZ+9xSyz+a+m56Y#e)DNllm+ z1j8FBEfs|Wfq%9!WbMGi84Pe0;5zsMC7PNi=rC*Te?0PM4ozA1~Eh2%iJ<<}L)83<)6xm2Z$`5w~m%Hsn6Y>liG z{!2na;|a)s`{jM)Xh6-{Riv(y=PhxA&~|L(@S8ZgqD!=5a|{Hr2$7nI~fPFMs<==xmS-y(gY4SUn|B@7!!^~oAWyY zac>7i z+T*x=yd5hoCwDy8MU52N{uAdV`#fuTPof$xI&F=_k?O?+V*3c)CXN{J2&Pp|q)292 z&la7^ixZo_Gn>={3LPpNbZpp2G-dFB0Tev0ENEQG#)~L=)6P|AZK>$b&?q7`433?x zFjqH;B;$7-ir5|T> z(1KFu>e1_+q;bC1T-6uA18YJ{ceOus2BYQ=2lZ!Y^HK}Z@WQ&92mPgeA=)NZW^C|5y zqpqf4Jj^3jHn+8@j|?m!9uf?~5CZWFMCDfSTak9l;}nD06lV4hhW^xiIO@uY7~8y& zJ_rWW@m99e?+b3gHQI_Nu!aMTq>FL&=Buw0w<0EfLR<=ZlF&9YYI}i67dliE7}M+D z0#XAJzZAr>e=I_7lb>%V$}9h5@?2f!aBy_l=QSA>iDh7v(4l%TDhy8zi!agjmF4;~Neo0Jo91_IJI}X>$3)i(^#VM_6 z^*lB;wt&L1Vd$!7@xV~Hi@|^4#&Kr(wH`KWnjvX+8;WqYX&f2W1v*!zFCHkhPY_j6 z<~jF^#r}yF zCoT2^raGZ6cjh4R3z&#{R_g~1?2~6oN4({H-c+O4553y6rMtjF-alP{ zsOxCl@*-a01my#1kdcYw2~5s5xMieLkqpZUd^!o;RpAxbrwWPRx`eT1x{t&*UD+<{ z)=vLYDmU%_J$0{MX^6Q`n+3QLAuWGXpoeE;xF zSm?ZVVktY$tS`kk1K__-)|arNO&RQO%_bIU(^`C?ep$uKXtT}lg|*mB?$YebM%}p1 z9=vhD9F(+0a4i9T(L`63mOPVUYxImlIi-PI;864R={%upjEoXxe1XJtNOEo})%$l3x49I#utl)olr=%NavP7f ze5=gqn1A2Yk{z4oMn*!n+077Y2drrfsI*NwA%kGGPWH^dAEPgnJ?~OQailHFnA|gS-Q1-{%O~fHK{$ga^mqS=E-Z@1#MPJR>^rBF=kC1JtF84aQg-*#j-#4-cNQebkH>1dyVd2vpS^$; z^vAxbt-W1;B=C zqYH2As^StjDa48s$gLXO!RTtrrtq9K?a2SZ&mgoiW$eWT$vXAmjqukS*oqTdhOWFH zJLM&yxBB3$$BY%R?i`}i(@tYy#IW?>%teQNu($8hL12(>C}rn)$#jbl2c@V$gvRe5 z%udQHswM6m17LmRym`KT-V`&_qEtGSlyaCtvSxvJU9HFem5D2Mcn)l zzopN&;xmTrNHrTZdK!0VZ_=cWoV@DzX>Zcwr^=3+?!DfMeAV;P{_X#SrrM6W&`h8* zh9tbS{h6eW`lk9OoxIc)Ci|wmU^kfiQod6RryP#HTN2l4?R(ol&L1Bm63e@qY?H8wQ|7VEKq|v!IGWf?wO}-QhFKR6iDyxrljJDk`HgZ;bWAxO5efy zQqFU<;gLX{`!dR_fIAtl-2@6uODGM!X4E*dCriNg4=aG-Z=xSw%7guwEP=fo?`#CW zlbi71!lD<OSq;57#EO&-6Om+R-p(m-yRK<{q!W>&9e^(keOjA?*eC?{1#tB>rJKQo9f zF&S&-gNg4>nswRQ^ZR;su_kpNvI0?_Mq%YUI)Ps_Uf=jdivk3C(JzT^Ju79Ib%#{O zvr6|hp`d_oV1cieU}3^{k*_uq&0$|)0rC?WM7I`Gt?2iOL(|+7#J(Z=H}!AL{PQ;x z*T};9I^kWo#vhndz)}3yI(#l8ZzySbVFhUzyAF3aL+Y1r{@$0ILo{_3pg_g^2Tl6wE2H9Deu_=Vr2P*w z_b8*Wmm8tp2Q-SotTIiq`8m5!d>CV42I57U(#pR{U1!WbVO1dti-~`^xV*R1+{!?n zPjP1>s{O_wSGcT~N-y?b`bUTpgZsb|!>5Mp=1Q9! zE{kG@fFqCIdAx6Z_|(Mm)&Ul9c8^EP$phgRZ_S8n3JrI6xdT4qs}Nd!`0z{Ztjoh9 z6v}^KI~1QBTB{tSweIvi0A&0+R}G+A@rSUmeu;`&jW0e{NEA0UQ)~ zfQE|c4FnRQ4Chs-%sn`McCD}6^k-0*GN@Ap0!*0bBU^8E4hgm8x6wp ztEtq+t;W39-N(E@#7T4(H*>+hHcy!U2m#E`TCS6Kx=xqqg!^B}o~%|BjLqXQO7ESa zf%521MooI@Ja#q^_ym3xK6FG#VNKZ=nOtUkN3kCcM8x^sBI7&uw>DeQbnlxS(ae%h zt5C(Qfzu)OVd5-nfUn~kd)>iYu)ho29v(!-`YxS?Flj~Bl|~ku>bJ;0NA2&j!>UK= z0D3(ofIlG&f`4(CSYjByz+B!SHjUy4fPXD438Q)QKhdVDOc$Tj%mb`jsFW2!KmwG1F9|@?S31gU;jD92e zd`R4h@J9V1=wgh_7MsEJ~W;l|Vj2Xx;yksup@k4~jZQS#mdyh9|eScSLQH|=i z3h~+at$(-)oAko^^%B+Ci5$`vKC#^5DI_6Y)r@CYF;CRDfj`3IuM1rdz$G4^%ll%k zJySH#O8i~cuBPPtVmF>iUxUmvd1~eIsAl=Y5@L$+_U0~^Okz2=j_FIfkTm1akSS|? zrfniU^D#L>CV3*FO00}iHhQkVT(;M!hYwA~Oxc;J|EF;C4r+SY;y6t@2wX(KfDsHL zErrljnvn45O+YD9qaYD)A zRj$?}?2)}({5H4Bsm=$aqY;^mz+Zz+-JKq7^TOTNjw00S-*)HLHVK&g#1$zc^!NHg zGYZ({U9CV67c|K?XG#?BGX)_0DBdwIOIr_B$p?$1k}+PfS-8^Lw%T1EEdamn@6{hRQ9>pwxxgX}}CMX`^ z1RwWHa}nWaE)mDr+VmX^&3i`JsrQhvY&_u5lg1>bHh;0EuZWsE?_!@r*cUHS*Z@6^t8l3 zHTpz}1SJHruBZs*1!SWL!=;iE4r^z$St5*j|4c0*;ThOwh7B1c3@!^tAP@?2a*{Ck zH5lyLbylc8)=AUe2Ll$@yn%or{>vrf8Id889to4D28TiXvaC?FiZp|5s%hmW+Td@5l7Obf? z6cuOW#f$J5OqTldA_|(Uw?OG$s}5QJvA(eOK4eV=Fp)JYc0R*;6i4A5OI3sVxbPPu zz754sYCcYCGpbYaPZ@3h71$uKeamS=pD$tSuKM;aQk>tcn_$k9dPkDF+xZD<0wlYc zm@h2@J4u-HZ(TW@;Y&zgdh;7CBO0Dz$*!ngh7(~)RIZb^R5sz-n@pXVC|F5GF8dP+ z95E8W(P1hRTUnmmpS&QX8?S7J6ZTree=e}Ju_cOeu0-mCNMZVdR4e`Z+HOi}!FuUQ z*9|!TG)Y~Zc)iM;rWpVAHI0Gk;u3Eprgkk(^u_ZdP>`4qc$mL7q$0?L;sC`J$EIp5 zLwlKa8gkN)=zH|n9hc{xhX(-G2f@B)z|7IxlcvGh406uAW8=Mw`>AAOwq?VQ`vY3* z1>5l5$3Ass)lSO(M~p?#fv-A*7a?;Kjy{KZ0v3g#nk!m``_1GR2{?b(zLuNj*s%oF zQ-YtzZo@>aVOeMQn&rkl$w~LflZ(=gok5GCHp)IVIjid{?v&c#zl|~PC<9mBgpm`hw--At97wE*T;mxM%Bu>xo$x;x7&BaqC2cxvvoJ? zm}J7;utCfbi$W*nf%Mv;H|Q`~fy9{K2!bi7eVm zrBYM_xu3UI{0-}rJ!c$(rdu6lsux8jcZsMjs!>Nxs3g1Ff~hScgH(`A1y1Ai7q3&h z`XAC|+cfz>bJn+XXZ@Nv1EkOBXU(fvSus2wPTv2MWkMn{EPgOt0gwo|4J*{tHWq^)-EL5aC)wcU6O>oYlDO=)A$oUXsY5(%T}v}ey=O!ess)9Z>srga^gkAo9Z42j~g2T29V z^0URH+rs1AOW__%5p8Y>d1?>}wmF|G-tJ~<3CZIGRAkhFDb6g-wJzHCoibO0jB5;h zoiQkhv8mK3noZBKrhktcVJcSoi^Er9`0~N^odJNjE6(1g$X?|fj!x@mRBd3%8r^O6 z2GyyT>FhyNG3VE!4V*2O6GH}Rk8;^|%eE)>+G!P;Lz_L)!l!~CGatXc)#k&?S;nrq zP3B&Tp7Yeh9KVGg=H~Q1hrfxUO{a?-CbP_u7>*!%>;0fjh3YU)t!b!zdCN^}_Bf z>GTW6?@Fu%Ff+bcrN`U{sf;gs8Y!WfQM_L}BQIUB`q;Aq5Q_W?{0eM(O%7o5Y_s(s zuyL>HJ*&NQ-Bz?oB^U74z#3am9Z#--Bw*T5wIh(~KChN*#Rhu+daE01;>ml$c)j99;JNXdx zI5bs!I>#QXoyD33RIx!$jh5MTkY{s+l9Z`OU0Yi?Z1D2v% z!w4Stn4^R5Db#fUA$|2E=ij>0c}<7_*0Nea{GM*ZwKcB*R)o(8-EKoF(kv&@zN+Ln z4%!72T;)k>GW%u7%dELv@wxmuxxB~94MIJ6bjReo=VtWxM@m&Y42Da6b4tyQRzpgS zZ3K7m<~w60hK+YrPe+Px3@4&Suk(oHO0$ zAxv!IQ3b8~IhJxO4eQ^96Blj>d6%2W5)Fgn!FY3pCArbj7GixFiTN5O8(ClFRuBF%SqD80J|TW#6ticgRE+ zdBzZfW$O6QB2bY@ieGlJOE=|fSpKDaw&_CsiThRROUo@Oq6jV)vUy*Ir~~G#e`2vJ zQ6IkyF`zlyb3DD*`Ki{SCoWD*EGyI5AwO;z(*I*#0yPox0jV9OYgfuv1RMudofK|xD0p#hXy2dlXY$Qj2XNI@M6daF^mDy1bx zVdt>r6|WS%olR9M{tYOBD@_gE4mosj^%3CfAi7oz6JsbQo8s-tBd@HOgd2t|766|` z2pHQ%%QLsrhDELEUqFV-&+>IZGurb+Cp1X;nZJooywj`WpOF{~@1Kqm;gHX=D&pwaE5hF57d_F<+qT2q}?VRO2HHwI-;5Jj~W58UTOJ+4kQ z_Vd89%koaW;%ye+)60c*P{2YFh1}#I1~MRRp-xpPiKaS z%39!=2tb1u6)LSpjr}$_5v>dRi+KcdI=)G{+al9Dxm$xXOkrExb9V|P z7!5$aFhf9EVv!*O^$=_Jw9bCCe%j4M;qWjHEptnnz>0-91us&6S(E|KI{Fc>|@JT-`T-If<%L3WuV9bl2m<&^wq3W)cGoV9Sl z&ceC;$b`jNIpG@rd6p22%He>Ui6UgteK!DB$)YZA-t(kPzMW+=^i0voYoQK|l^Q|K@(u!xs$v?7^K&oxdN4~3YL%3*E@TByDF=Qx|HNoO%pS8wSH+%X z{7H4-dm<`HA5~n1a~OdP3Dz?zlS;xhp4q`h(aOr@wkr>kH`vD;Cm!9MvDJ5Hs#kgA zr532`hnVzO1~sqQmdmFuC4j4Fp0%I|zF_#-_a$7i-v_Q7{&yHKuReC%$4+3F5C}fX zx;T-+Dhi2?#X`bD;$&tECm;aFtYG12}E`t}B>0wbR39j&v+Oj{~ly^qBiyL83AEWO4;|~zR zCDf2zWC60nDgxrjuTyf%)dsbM+6^d|HTvM)o*fBkz8w7LpHafOp$*W_;s_Jx$%81! zz_lp$eCOXPdN+A0ak4r0L2wE!uxU>x$K)Bq_i5LyDC z!6OP!vG_l1%J|}+7aOsoXayooHW@bvkQ7%P4S*o;rIWum)-V;>1bl3uXZ=ae%6NUU z2X`o|2}sBdMxwb8L$}znM!0T8)mrO|B|vrT_gk622piiF8DY`~KPxo#FH6B&2fD`b zU$|^Gy0f^UY*JFEz}hS`G}z6z(pHMCwx~31e<^amBn0zfkUrwx_nf^+yuR-|5Ib;= zp8(F=%*ep;VQUwU&Ln$@y)X@LL2KI+ceW$XljSxujK!l z$~i=;B^F0F=vDlsbUVXnqN{3Z!X&nZ0*6?AhD z=%Kmxg;uRbrJ?Rc;U@S`myn}1n}XUl<6Tx0ryLLUN@|l#pW7K0a8W;rIUr`I9&HWA z%B=}0O$I`>0f`oi!Y>J{(5&TCZPC9yX5lcF4Z@+Od;&XNo%LE?$em)ThdJ^QRZz4H zFwzPr25K71fV0bYBYvP;HbePHms5mh?bpEYjP&8`mrV+5=Z*el(Y+$@mb*qLzgC!l zd$$U?eb}%R)EAK+HqlMUr=(%4K8P5h6g*D{E|7;ClOjvGn+d3 z@i)RgzzaFYxGh4BML7t!K}a&8TLO{^9*vMi8w}QfqL-RX#vOem9N%4wci$bJhrm)S z770WQTZAp#f>uS#Os~v!6N2;B>L=`MaLTL^q}p}_Us$)KEo=jmFqi>{%W#n&jhX{6 zpgX&0yZMnSmP8|uZJIK-J?y$pZ_ejhy*0es7=sDIQY~InXS%k(hDI9sT3WN$Dl!VDv42rFIUo^Bl<<9H94Ojy)uyT3PNu*o3I z425%|cw$eGv!7pL!kZ|&RE>_7;_&CpdxKWUC?iM(Ey#&rL0QNYVHq!!r3jTRL+8e^ zE&{mOWbUAf&vvf&9vqZ8X#pI9mw(!Pt*W%|D-rje01QtM%p_6kY2 z0y|+pNb(Wy16gA#L>`8f(5Z80J$gQVvcG27|;*iQj0I@!Cv}k4;nE>g}k|--f zAD7^SBsj5|Mbt_uR}#R2l4gKG+iwRqeDlXx*I>2d3wmiL^&4Ev7?WT5|gxU=^%CEy3dQPNN5ff~o4 zx24-Z&Fzvy6*^c0FS&0gF-rC=L1-fjs4qCgRYOe~DD&wWF@d+B>m;2ZM&4|{5~GYie}6jzQElvhfX}A z2H@xrB)qKb|JA1vZN-E|8I+#cdTYn{eo1Wr_X3d!7zITMmTq!`bk^GXv!Mb?d7~=A9^1l@F41 z^Hj%ex`t|iTP~p!56v5_$^tL$k-+=ehoMRXOI>yEnZ%HLs;!7Z=yC{oL}(^=8I$#h zV0+9A!UxfB0RxJ*^5lw08 z3Zd6#fro%BXm$r_OSCZUo_vSl1hQ9mClMu<0}2n5ZqrKWCm|iI+-h1Zs6;ZlW!%~( z2b$01IZs*W$=j-m%Wl7BrYe8U-L1%SMa>;3XS_BVFnLvS9Qgs&kQ>7K$FC|nPr>xe zAEaVF8AD{6aDH$SO?IM8%*|5=Wfj?xA9qDt1g?N)StI-U!NB>>8b7ob53N%|I!lAP zIkXyLooF#L(T*LGYQM-grW0j4*GRV}svEU^P9A>AP~VO}ewtgy;CmX2Up0w_%{~Z_ zN(Ii~7(60L4*b(Z5g`?;JWul;1aOSb@goeKpLH~VYw$-gnmyN1|IqCip=ys;m+UW` zwMzg$lYZ@kVXhaJN1DUSNTJ~cn-+wxyw!T%?5VFH1P$_W*ik3d%vIDy{8=~Vb?2+_ zPILu=bE#4p(?Din2e#W8Ow-K~p*g2x2)b-Zg@Dd5tvT{@2#)jB&zc82v{2H*F5#he z_d4Sd_l1zOlAggJQZMROwfyq52i95+Kph}W{pYH?$(0V{-wV1HbasknEDIZrh7Yu# zwjyfbl_c?LS$ly;NP@7~zr0lY#+*xcmc!^5wobogoi*S0afkV-v8XX^x!swiCQ#Lc zq>vOZrOHOH45a@kgiusTUonv1Fwo$=(S{te&y6j^;vI{h%#u06NF7>AdvW1z*h>Li zjHH`UwZ6I631(V!y>#}+)&&xFOgG@y7q?8lXK#MyUCX?zxphe^zS0%>^WOZv$-Cq+ zP9}>zAV|!sVhb)9Mkwvv>l#YsH4(&@x}M#+=++7-TCk{ASzKVHid8&Mj)Sb9g&DI% zs&P{{^~dai-qv(Xr`p=N5ow-?eru22qiUysiM?pbB!%G4h*`m0?sJKA23H~>4eeLH} z?Q$3xw$dSCg4ND+H{pL;7>G(NBdV6zO^s+ZDJNo)>5dlGV$W&OJYOyyna2o<3oUzz zN$W{$rF`8@m=Ldw$yO+8L%;4lih{7JfQMuRXt<~R&r0q# z`_Z(C3lP;V1KHq;n{go0h8sGqsOhpbQPvpI(4p9n+%OvlDAPG@*@tG>jFEj0- zTIZoqeiFk4XLn;xp6V7C@&R@B7^_5GDj2|RWu2UbJQqlGlpS6q9$J)r z(!vYhNhO!4s$KI;jE;q;6%g5`qS(h{rKy!DxP}q7lH@U_$kR5oiQdaUa-Np}(rR*a zw6jwS!Z_(YDq4_0=I}%;3^nl*uxicG&tQJg!Ivb=cN0%T+h|bJD7TOZ-j}}~R?&;m zlNB9`dTwhiU9?K{36aXxZDCYFvIpI?MM)B6eIcXBa|o6DCCc;m@5?f@F&Kp*^msh8 zS@N?7QQKpv0VvXNi?#izULewdCsA&^@0&QTqo~nP9!*z(ERCyW${i619MG;{_jU@CbhGKNEnlAR?7SOLk*;~o#K71c9bGaX7? zc75{f1NN@%w06cq*uW>Qzpk-2x;XD7yBasX6LVNK<)mSh^1s-K;O(QRsq%n0Fpyl8Zq%pzvjn%H*{l9`!M)JPL# z$T4?641%#jejpjHLBC_!CT8rBq)BKtrF{u$8I6iGia&3{7?Lbfn42`XK)HjXYuGfD^`>T6}H~KDQVQ4&Ub*byKdSRP=)JOw-X8G!F0Urt> zLX>Jr>yA#94Q+tyK`pS*501=a)Nzhr$J*$E1;)RT1<^k9=@T9BEFjrWkn2EEWU$tV zez-cX5CJy0!9q_Zh{5~~W-4TbB$oFu-vLVq%0hY8^Vn|Uv~hV!Ur(vHRGv~sW%Wi* z5ea2Z=Wplvt9Sr*@to4p9JNC!Td7sdD%_*e?6Arm85b+g0wK)4)&f@<7t)sSU{J$~G&GCO=nCpM$uUbt- zw?&qJsXHp0ebN4p&D6AW0k}m3{z&^m=mpKs0T;EALiIpFJ9#C8)e_u2G~R{B&330& zBf0djWMyjb%M8`8z>_s_f=wP)m)TEjKyq$4EYa1A)xyn`{l=Eq{ifNnYhR<&rv^c7grw zRFnx#m00tOZR3i%P!iXbJ}o<^^nI<>+huxss}vz7t#rLoxV$-%XBg`{X|KP&{`23j$TO z`d*Rxix-@&f*mdQ6%n(ynRJ;AyK%NP+J?5dSWigi7@Bv$8(Z6lEyv5^q)o2ZlbtPW z3sr1S>}W6Z9tNu_N=tu$O9?LQ?Ukc(1cfRL8B@LH=T#nS_=|1|u9Gj5!PyJwuSAH2 zu(o~(Z?Z%}G(5)vuY}~P$b-ZS2+futZgLL1A32^uMGnacxX;4mGuT0<#jta7MG~O2 zTn4>)TRW<3W8%|DB~cUR@P_Cb3gN?J$^Ij=5}Q?_M_{^iB&wf)nynwo>oHp#g2L^4 z@rePVuoSUL7&uu=MLTgTB|nEzYOE^`Jt?w6aAwZ1OK`~1NoX7iRM#s&lc!kg0GuW& z25}e$x#|W3D(ynLTOupWH}paiR;9S_6s<3^dB-WA^@>3VHT6_b0}J1hKKONukEFpu zlc`<`yEIBvpQeFK&z~*`Tuvfe2*qo&rQf47m!TMT@A#Ph^FjXyka_>L8&dFN=>a|3 z@=lvlD7}~3_D&cm4$qP|O_Ion8!a%2Ewb)0ZUq%-tx&{B#7bMnyX(-j$(95>Fuo1i zWLBqdGu-4Mb*Q2M$MJ&_XEh$-0rU{>!G;4?vt-jrv?XizjqU*FbD(k!$^e28_npb- z!%ZVM^K>phCtlCC3te$nQ+agYs-Y!Z zz>~7^4@s?K-w&6+7p&4)Orh5}stpn~wdh5(S|NqG&NtqdAI+T8Hcxt9iUGiFR?Ova zo3EiygKPm9gxRi*JO;XE<}!}I5$)USJ};jZIn#=2)0ux}bw6gN7`8%4GyrT-TNaY_ zn^vJKHTbpl6}zg*VvU#^E+IZ-mRe>%DU>K(lF`^FM2Y0lN*udWqo~yo%H@#qK3j^U zOp{7NgJ9>QD&=8MxVmFd{*v!e4 zo3Ub<_X2d~^+ISn7(k;YraeW8q4gG{2-A6$X|+s zs&`Hj1UZBy+rCJlX(dKUfNJ{~zq_~mUuEV{je0|GEzma0L%&0-;i)F0M;sqIANOawNv7a#XjXp1(wpwhD) ze|sZ4T_GW_TEJ?);wt7hM*B!lW!-9(1c_Sw;VZ4cLuf;{Ld7tJVtLR6Nv3ARNM#~? z$k%QKa~`_9-15@#5Efw4i&%~YA&ZOtk4jzDbraoEGh<;qI91RqJ)pi`;dGgXXrB>* z`6MD;JU#5(j5>=kOD2-4wP0RT%e~kKFZZ49Ha5Es3%ZMcRq5u8_~{y?KfCw3`?zg( z7M!Lho&lOr{_nBE)^x={Q$kY9s&K1!TnH?YmK4D?<8&7t#60R=X zdh<7QetvTsJMU4zS;+;@j@Et~y?v50QDX#g$-?SsG$z_jM=&VxfN#`JUfx=L=Nu5WQG^1g?Bk z1M2#s4)N?)g*CHt#>T$vyB5!2{UilACpxHD5NAg)^w*T^z&RZe(dx8$=(Q)55qG7E z>$&=dDYQ4t{I&>v+xw*txl;5OMD&QX?tjw@ zPs-m&%#3~+NVc^dw*p?aN&v6-fE4xB)ZX!}4{!C@@mqt+ zAfl0>0n$i;{l$p?tHYD0@s?2ph8(+Syw9cYU>I~{GN!f2C5jzKElo69Xo`}GZw(WZ zxP)(Vs0%N0eIGKs4Ya1WUu#WvS#)1&HCN~1YLu)5UEDY577*n&pg}E9_bxpq2!wBj zV=Z%08&K!Nve;%`CgNMtwZionOH4uWXEZ1$DmG;>_&x$Nk41lTd0sWE4T_OKayWCL zStm!a212(MR7(mHIQuIR3L{Nh1`?`xU6+Gh&})!g)IzFe$0EmPPUalGL7+@4|2U`| zjK`;s3rK!f1uX#DjP6a8tCLhvkh{GWW&cv5259$4z}XTD-2UgPH{rDCI_LbUzINI^ zM~%6=BufTXE@%PAzV5;juVc$zf|Wko;){NjLB4mUEzfJ60fi?zZo=lPc_TWCRWJ%FbAg1C4G|mDI*2w&GGbi+DtsbLB8yN6pG`9yk`gn80`59=dx(Iq z1OO-AESgBf-7IqyWlzhnbEKvG^K!F5Vyjj{(I4B6QV(_DD@n7cB)C+cmW~jUf3l-F z2yHb=CmSI}g1{ZhrJZ(9bQH02&K|Mp?d;Fd<*-lQjFg^-@Op_!q*e z7jtA%TP`Fy3h|{7Sv>J@U1aTk@0ch>hq4zR_-S9orTlawDIK5F%7Zgic?s3_#{evj zxDh~w06!|j9PVoEr|@jKkh>h!qYbxv8Mt9Vh1=c_dK$^NXlkh#D@P6QyAI9e?TCV} zOH%LRAKQ#?^cmhfrfv9A9!4`&KIk6JnMc@({fv6!+9_8%BnW@>rgr#T3lN<95Gq&# z{7eZVAd3tD%3-~>ihj&x0oy&wv|_S5NNeSF(hIim%S~Af8)>$qPJcQ4Ir-kfrT3KLQ}ns1KzUMJ7U==GT8eJ} zT*Uq};-0~9=k5y}eFh z2x*HdnAQIATyj@(_X&v_A~xYn05?n)L7P%BPt)`6$#veB&m#rF?(Iav5-8Ba?b_be z6HKxBc&JcRzx@o7 zt!H{zfpQACz}(!3G)c*>c>>h+_C`97LW;mjfP$TiltfYSoFG7In30u+w_bpTJ;9I= zfrvExv!8#gjY35Pb1{33WCw7I!*Xv%=4ZrLI5KI-eh_eX)lF^pYC{0lKyQK~bnb=+ z@$I)(ZH=$zPo_2YGo86gx`TeR>xEye zu3xNx(k!=4&IA^hduueVc9f&2V42~Kl`GurKy_)_WqoZNd3Xdgp@lXYWk7WxMtjn) z&R*~`yDlPj(Pa}vAI$Ly#*r`6SaurP9~PJR2SY7%~2{o|?j^IrNdSg&#i1lS+0 zfw)b`pd$>5@jQZ?;I{Buqr7w2HU;Y!Zw8odT`&`3W$4{FIAyL{{suT!vB~$E2n;5E zA@`1_x&;~r-+pkh%evs)tNUEaF~jr9OiKx&lk>_|xrS5}IadRMYwD!OLLA$gW^`;_ z^~E5!_evW-LhB;HR^<60`H!Hj2GxR_jjrd$^?1dx^bmpltQIKpGYEhAfgYf$e62-V zmskGA!O)dn`kkrTkmU(P+~1OH?qU%>D>2;20(>@ZtpQzbnUs!1lQj0|bXlO@AXK?;EahP? zGb{ST70>0-?Mv*YR-cFZY`9~6twzs8x#4$3sa2J0JmtRDGVDlSN*WUZUJRd@OEp=3 z3=g(+KN+heXgLp7;|$TYuauYV#apn=)T26b_*ZTi0u2X*uGj$U;eMjT)?1ejG6U^e z3BgwbL7P`-OnVl@r0KdLR!I-H0=P2qZp@9gHUMOV+^i`jOppqUlOscv>mN0o`Tw1b zXBzP32q(2jBRCFFxT86dNH9fYTZv7CAG~SD9B&_WV*KeEBZ%)HzO1#|`&ZMhlB_yl zp)t7lwK-Z!m)y}TiBbhAcww01;lZOrX3zKKihVsr;1MC;+!)@09eim%8MD8Cmx9-+ z(2!)3EnX4NMg9z62kvh6+H@|KR`1=5l~D`sw5Rj&#d;Zn$S zRdy&9r`sZHg%|EP zk|Aq0Ojsewf;JP@<||k$6JWLH_VSV>ARFpO2xA--8{ zG(hjnifp#jVL*-^#x&A}EqjHXOeSb>`t`A)QiH`3rRxA}YdxMLxk8l?eh)JLnVC z-vNlTzwb{o%k@7=gk^2{gnyid-rM@SxEhJrT~8!~ zL=ad|v%{46FYkVkmkD zmyw2jG}ajw3%F|rz1$w4$60;;8c7IltXBhz!cP8%PaBWlLkPYE` zlCsDd*JZU9rM3YTAx+^x?))t1t1)tlhtYA1kSjJrd)o(gvF-()p$meavBRur=uhwY zM#EMulmT&)=TW!I?~mnP`F_5gO9gQQz@CdNZ+a12yu&}HgM(kBTb;wzN?Tx2G(4Fs z3FS0!Wpse9Aatm~q>u1o=EN$Kr}*7kgR)p~t$2S=b33y3_Rk55gG$chUF)`Rv?}9% zG=}10Buq-5^TPyuC6yRT1g2M&kN7GmJEpuTmA9Ax(&*(gTe0RglElpwT?5(+KnNNW zd7l8kgNc@P&6*d{TEBkN643FaIwe!8pfMN%Bt<}XLY)sU2mZ!D?P(0y=zU<~gEv~V z9)x8VL>9;pOElY;nLZAyWhOuTmYF6Z)?4%qo#|~1D7l=A)V_cz9?@1-epyC0_wwWZ z`o-d*#W+e+mZqfF{SzmSqmJVqkO=4R{=*FMwq2Uj7)&9mk(LI8z@FF?J8UB7J=ILs zqAOV-e)I`PUCoju?IwIhM|1ulGS&|czMS(==jV|z7c;2}4`?d;W1@)%1KErRlMaq6 zNW3#jZIq0!SBtb#Y!1Xgn)51M0n5o{f&oUUYGxwb0ijew<0Q?+)@?$$xrB(W zJ#&KbZ|RmIKHi?;b)1-{2OA=_K}LnY4RJpB0e!@Nq#RSElK)}VX^qZsG+PyFwPAa1 zFbRD2wJCnpoMH-|sCB^<;Mf$~v&$3Rfuq{~Fl8V?cQe)l*z3u@IeVid2uH%f=PdyB zMaDA(R!6MoQ8$h{9$_wT>nbU0URE6js5rfu)%wYp@x{{ zInnAr+1n|g5sQDRVhx8SY!m){=V%#@Oy6FURe~Wcxmm3@<_;U6g$ccN61$b#m)n2G zo(>aDWl5HD>4zXsr4+3VIhwbIMNbv$@bKe$o6y!((S+j;=wD%Sip91IN|+ZF7q#JG8A;~44?x4s%b_Bq7` zQueQS3Y^u}@;wl&rPO|hFd7uWAn)c{z*|YUFXmw)$-R|K)m=HQNu8&#Avc{}4GoZW zsC5%m7lAyEoXr2eY|?;c)Ymk)j_#rZl!NyNHrUIPqm5bjAE%e%Kk;l=bX_~udwXtf zLOFH&%#LiuQIK(*1W_pBIzF&7#YmFKP>H#xCufd2V^IoVbSQ0lO!xzF)&@hPSS%Ia zJDT*R%<}pzC1BcD1({-A!46Q!5ZM>IoUWTJD0~mmg3NTpCa%-n+TJuXx)Q+wBuKrq zbQ|3SX$D!Kdd}%+Sr$<&v(6uaW-;>ZPe{-ozoB~BZdd{ghNvL}T`ugu*qm=x2Ta4L zpXdi*=ecZ<;3aVGo_@G*64sb6&oeQ=A$P$^wGL5}k?qU-YZS^^Y>c|b{dU+dp!IJ# zeo2h%po_Emh96`HMVK@Ll0(=5Aj=q?!9BO(1_i`?zso5KRcB@L4%kjN&(P3Bj;|B_ zTm3FvJFlX(j16=YErhDOnwE5VfU!?ppdNAulzhg&5F0ZPapg}zr9C%c2BC1Uu+W&g zD?TeWoP1SHQTvJRyUqj5?H6gnL#5rZ^T-)kJaFe49$?Li(zXlrEVvW_5U{!@s+(@0 zgM6q3S2?)qY6FV;`>a(#2wVk$Jd87#r|nA%$gZ^L_hKOB297ldSB~lpIObmI$XrJY z$MwvhUPRn*9`?qj6MKUSk%T)w7J9JVxg4O2rbz=XauQie=O|QmnWbUkfjlmc58M(T zRz&JgIy-i5gOR^u+p4btG83QOmMDs5Xp-w0I>Ul7mhZIq+AgV-6y+4t$&_MkEPCD9 zw!b_~TEhkFp^{gt2CB4vh1SM99FNFlhx+OjQ-!(+{OZm!goS}{qxZ+^C^25gzp&!y zc{P5(@1BY(@ULhRTeFQV%x!d#kc_Q}BEp1!uS!Z)O;*&<$CN_>sIf*673Pp_PEUd9 zXZ&8G968h_@9RfTM@^6VC#uU)!^Bk)=XkAAtQ=peWnf5_5K@y3lth1;-bBFTr83ec zQyQ#9%4n+nlY;yZ*sn9;*L}^TWXvm@;$FzV!NbK>^{3xfZ?0jqp03IJiZta5R~y@y zXOa^e#FY_ouZVsT@VZS*5E9z{sA01B3FK5I8y4%#c>7|DEJK7f62{rO58*6Z_OZ&Y z1SWy~sWEK|n(-w!Z?9XoRWk5AUj zWXL!-;)gC~WE5Ju)L(u1(cT(Ld`dwBEV>dMFbsIX5djYz0EmsA#g{A2>|~yz=yu*} z0gk>_#cR8I4W3~iJq_*K%VI71aJ@!X4c zyoVBLayc$xO_9#D+|~eO;oa_8;yaDyxu!19z7=FWEFwb^`L3-HcD)b=F3pb`RTgdO zLdv)?0j^a}Kx+T5l%}MBONeV(uxX=6L0s~D)vW+xt}nl~yo4V3B?=Y7JM5YeX?iYy z>rt<)7_OBp~3Ym8uRv6WW_ zH&fTSUgN+jYvBwOD*8xQBhR3@jewe1m+9GsoTX?(0P}dfJW=~R$pYAiJ@o>7Qi@L< zQ!QUC=j6VNgP!L5=FFl!(jmoF+bDz0b)xXzEGRS4wuMih0VT4M>_>0k-(h+}WCbI4 z=zLA`nN^aeKI~`Ldib;1_eqNh0eJD%SHHY8`Sc$5CW;vJHWm_%V|W0+Z%lsKWTg>1 ztS@8;iLkrT=V7X7hE(!5vT}&9-wFCZHdp@gKP=q`T9vbw`5(z(W&Lkl@SoV=f8&Ds z35$FvfxE{0V;X#%y~oe}@KJ&XGSCoJ!{7w4?H>BfoeV#xm_B`TUXyt)8U0X{U2@N- zx!HFOLi$lj?p`qU1R4X)zCNp*PzrE^Ar(O48j>Sm1(YgVUHq18_)aLnxuL1z$4_rXsYfIY)dRnjCyPu?e-+@*{v` zK0WVFkF%7Q@HrbMa1B}sP~gx(@;WSFE2#r)>{z=|ex+&ZIa{?dc`$B{VQbkbwlmEq z#+J7qZdS?{!)g4mUbN8NsT2dU=Ej-_Cdc6d(I?q!Ht>2b+#O}2fO^(&T6)9| z{z@e`Q={BkJOpjKQJE%POpZpB1Toy^Zl5D%fKLf24q6cHfysrNQ<9Um9pev=D|b%~ zuN_+KM)B2^-!_NeC@}Nc{5v|0#6@;-d4W%m)b(izJJbHQHFo$0M9LQ?An_9ihpaLf zvcC5u>{|ksjcv5s`ty&q07(D4^$SB9@s2Fe00tg@>_^&T(bU0Ih9Co(W>He)nBipu zkB6P_aF8TkIt-_LK^X4o(+!&js_^hTd;ClObVzxOsbGuJJmY`8_zpE{Am7 z70uF!%g=?_9A<))4*oPL7IcR69;}xj)h;rLh80YAGLYNu$#o@9gnt!ZxTfs=a(K1b z{d(Osv18%9xRVM3VEL9m@dxF|^=2gYKF0qHR#V05&tFUiph1K3KW|4|iD0EB!OWz@ zLpoU}s(12~KC>;#ZuOGhO3S;GXLPy7C|AcES8)&*NhT$?l)`P6yV+$D z*Ja|5Ce?6IwhqrA%8fSPaJwYON)l8m9bXcbZ?4#QjGw-kA1G?==qt80;E?*}2%$Tk zPw)ISy~xmkfW?hc2Rke@en$J+%<)t4qp=U4R9Umt@{Rh0ENw^qYm0!(^b9@g4^rb4!eHi}?46X)FIxgQ4d_Eu*7;4#8sf)obtr;hB|srLcwxmw)4rlS7NZ`|nj^ zqk1lFVbHckhnN2n26sxPpb#KebK>7*Mb8JlcWQ7ZY2|VTksgO(5D^~ES>c&zn-m(T zq&p3td|xklQZl8kY_x$wG|}&eoo-TcNYkUK=ozhe`msMm$~gDrqUgdDWLT*&QPw1H z7pEhoUiBQLv2a^<0ysjB#viALjvfJr)M3y|$Yi3Pyt3BgU}R!a?SPyswuen%l80U` zw@^Zla+Tu`C_YX!uWQ|d0DUKkus(q2uJM#=;Q6VhVb1sVvDjRjl=qlXP(P zsmFnzHqO-P&Y|8g(ON)l?B*{vPS1?$6_L$^B_`Y>XO@Qn+}%>Csq)|XcSNPM+pIeZ z0@tx3SSrFL%dlB(On_9ujf1Yz$=E_FJ5typrHP7kE+F{-`mPfr?b2Yu2)LK65 zaU7Wv$M?W@4BCiz14OHlFv7y-qolF28<@+E6|NV1YD#RjJ<;3^@2bDBeW_3{uhv0f zU#Ke!oeqUA4guqV1$D*ND~Q;#%nhC@oK;=`ywv*i@c~|ZmizoI2z1A?ijO6$bbPC0 zmbEmRaDO&dCU^Rit^f-*ck_xv@)Mq@P)b(AGj4Sys4DD;Kb3`z=(2zA<9vNc;Oc*k zry`pVX;N$r8x)yWpg81z;5guSDJZvg3lHFO_`QS2YN?GWHC81fg|yJwqrr@9?=2Pi zdq#a0pTrzjA}9xJ^F&#^xGGE%(@Yi&NO@FRH8nDZGvl=;ti>Q-VP!{4T~}kRLp%CA ze>|gq`Lw@7j~1Z%{DW?c3}XUF%>No}JzDbrI@G-%+7;Y>qxMf?Xpuz83X8H%Gu~y9 zWzc3*NR^0)dzKHkK$4#!aoc0=zM^KW@18H4&?-%&sonW=p=tY*&H+-elwvL{WK;%j zCI(3h$$yRx=l@Az44}Xfyime*WdPl%wPPkm;#k6DQPfW~tCB_*^!jBU5kM)+vi9bv>gUS)H;eoI9BOEx;`>Y%4oQ4-yFoOT;x=CST4rvM8#Kj`Hw{5~}`g++bD`&GNe=jEH^P0$DL%&jnm=oO1K~ z_Qx1c8)7cAh!74~N3*@)u}#&bVgwkOjkQjVo1Ieg)+P%}!P}88U7rLSK*OeX>!w5P z?$wv7VTZ>d(yO~67C*JzqjulAV@yPF234)+GEc0M)R{U1`l+I3c`JaB?ETVT&jj|> z%-h-otct&+>lHOH9cy@Z;G04A>&HZfH?ofxoqx?FRNRQsOJbpliG@`q`HD-IC{+-k?P;e}Aq2Ni^lXFj-#`-liaMCt^!6K=C3&g?r)P>O3z5;g46I(MnZ{=x^A^IW( zd`;f?)c6rhM*!=P1ZR(cQF34pxamrEGL;u;1$Pnzg`Kph~+OM;kDv3D? zmhPrTeDPefo*MNHQGNYQ^K_<7p(14Z`WPVbp4Tn#y*=A6 zi`I$EA`_8dco^)p`|bM5d{ERG_aEK-=RMAV3xS^A;WnI3O}MQgXFNVs=Wh zg@J>LuILc@C`5=F+pm0O%x8_gHK*4W{9{uUiC!>P`d7Wu?ZL8%C-JCwl|xWQ;}cHg z*#U=&pt4NhXVrCh^o>OcPyhHVtCxUC-a=H=W)Ej6e>mY-OnUbEO^s2=qH{b^sQ^(_ z&-5q3e3+vx!6_TS2!JNgOp_c;;V&!Ft01WS(_F{3tQ{RRUSC(oy{Ms)Td}c*YVn{9 z8+TQ?vCief*YpuIUUJpHOWs-#v^CZ}e_gblYp(EVY@#Z>j1PsP2fd`%O)_Jp|4&kO z-DOSHyyue$*|Q?{nc{9#7K;OKZM104QTE!TjgBEmOn>|CDxgyoI{Wt?KKmFiO!4`! z()!HJwZ!>7{>A*=r}*_%((-HC)tdA*$JGe`OhI@?)n+v1QoO)Y|0!6P8zI*ncu@#F zEgQw2IooEca##T|0w zo*Z{vZ&TnRQ;4!T2w@~Q*#q8(4hEoQCP--4Wq<$rDXB`)pu>O#6lTEkwVI#jXYO4r zRSxyXJ9=dAEcU7iu8dCGRmb;mpP^Vq?Mw>f-FcpJ0#NS? z@-|5k4y`cwnRqIl_^dTkVVP61ZEv7C7M+GxdsnFB}@5><9B+ zNnOdiO5Gv>9TWFp6w$eL8jQk7Bpoz9<lSED%GevXha|Fn$q}&yq~!A`dKDyw{AZhO^Mbr?=HF7&M492DE0*$Z zSFFWX2=Hob-(p`@pN?Rhwfh+j34#KOMJy(L&QdA#zt65XQ{0ax;lE(Z0isW;I8SSY z6cz9f9K5j3UG@_N#oW2sB$wrXD)4aS#Fkj!$CGzHATrFL1$S*&?tRB zjuTvuQ+gwr#kD%*W0K@av*OZ3nPgydky}<&s%ir_OYUd&pONv=0nV^PbF2<*-Ap67 z?18La*ws-DX@R1k`~9(ovnnCOBjL@ckw?^^pxql408JVrjUpA{-W1$O;se7?I0khIXp0KYt6pN`H6Q=VU{t!^z%ACjZ#D)yw|)R?ET_%qH(5Q{L`RA&Qb zWRM3B#uG;e7;CNYC|{aHQ%O{};&v#r*5XoLi*L@F){^~3nKgWH$sHu5OnQM?3mbo! zEgdN|rAH0)$N{~{e*#3u+t)$QU$@Xt=OL-OnKdMN06GbmfR*-9k2>!vAE7nUSvSmO z%NK;% zsZ+%*;`{*~o|*AkSV|R%z^|3e>C*O$4Jkh>)-~Jm66WfX%sEO}S4{Q{qlJcj74Axq zDm3y75c{VC0E`;977;hsRf|P~H$}?o=BUT>fk15k|0C-i-~0Z;F70n@voRYrw%ORW z+1Sn}w(T@YW2dpr#J#kKdk&b3y$L?V(OKGms?nnLW5*CZx~ zoCJQ1MBm#>#ES%!^~z$X*C`QwMixVg@p7h7G(w0?eJ4Uug#O9>M6V<(VFk7K4lS5Y zS6xDD#*Q1O?(T1CRTVkmgVcq}*^dng$~RSrBS^|P+Hz*VYwYJZp*c6+jf~oxwcdbby^-0+MGnW*pFY#qE$4i*TpYnMrapgo#4Nrbr&9dj=P^DQHC)zQCju(8x+NWZE)g}+K! z0m?T|gIW?$_X8sbPxysI#RXNe_Ag(C=|?!~U*h5&S&wxw_BsoT>Zx4mh{7axCunSnBR?gDVr0-`h!IQ_o}Ab-4Yo(R zax;>rRIBzjZRvDEsLr@f<|pbO(q#!qvyX{@G{*&Iop5ZKH|#wK}cRT>YJ89#zzg@1mF^kOdo~43asoZ@76-EbJ^ddfS#b z^PeZsxIckVl~epMG~!ALCgr3jsR4$>hI&GjrDvXM!P@y&@rGW=3z4#%b}2>@AafOp zCw+4O0vG479K+mtMvBl}BcKmKMJ7{U#bFbmn8HScw+JfRc5)`yy3G;SL8Sbtp9a~_WUrGsjisS?y`bDV`r#!Ps)jgG_9S0cHD7KsLdCO=1=Th$m{2Bw zC(Rgyd!%1;VRj#~lP&SoS_8(AOZ6LI?lXq2#`{yHh75hjFk&K&4DFf3m-)opg5Nr} z-H%yIso=!Z!6%iR+kPuc&6=CU1IMh~C><-6+g-(<#4#6DXAiN{%e!)i*hD8$6pQ%{ zMfqNhmk$5pH%#|Iuf6BBP8WE$+4QEplGmXBHf$%+jX|foO7DKtFGpzXzs3eYiq&|V zmYHW^--R-nuKfl3MMYuEt)>0m?-_S%#7%7EP3*b8N{ln}G~*4sIg(623kCDprtjO@>?P*xG*jo zJQWRpCHVAFzG%((R6Vd3inCgv<2Qn%p65tN5G`6R*%SuU@8FaZcrkHE-MTm#Wpmt( zZ?(6vjnA+mS_L$AVU<4SKdf1u*R1yCFAR_H2}0_wgY;|O;bJ!ns2xj)V!gwv;~?;? zEU&rdMA8*6#>{tq?e54e_XKG?Z7=Y9xT5H91ZkvsO4&GB@*(@ZGz=2~^=FyfwsOsu zTRzME@N1h=oB0f6YIqyiL`OC_%fc#G(zEi7(6Kj64y!jipU|<6PY@DcP0;ctEwNF+ zVR!PA(@G|P(~CO8PEu;jj!&>B~h-v`Dv9oSM^9^(q)qInyscf z;j(kmmM!^Jh{$H(MY*ttghNM4PSr3LV(OvxR#kX`Wt1xd@>4O6*sbG0Pm$+Nu+Nox-u=-?Dzs>nu zk~QNbw$0Bxl}X3wMZRq-k5IqN@~GKdOUz1?-ur0{E%SU^Rt&7!z>{n#vWZ>nuyp zEfELdb{Gr*f*`eR-9y>(lfi+Bpu&^ta|ar-%(3O7`QUsx=etpTs8Yp_sJV`hCC$EWr)oHvW}_O1|wcuXpDM&ng~ZO4~Ye(&1v zuI)YtMF}*{f49o|qn(_8f2f|lVkqj?_%B^od(A2Jy#Zj*9*hOud;^8hTm{c zh{83ht0Z%ARQiwe$bCIAFr|?hL3py{ZToR@?Z51gJQN9E{w6l{d5!UL`zFwlvl3-r z`xMIrpe1Uncz*K0XLADoHyQoUBsp@T`oZmiHSbv1-mF9UR)$SQ4 zE(QDJC9*=&(zDiTBt!VBG|_mhiJlvcTyA&OhD-HKqIsIF@Mjvb>&vDlBkMkV8SoLp zyg_K&C;ffnn6zPq(7^~o4@AzxN@Tz$YN*<@d~f@*)gZy&95h&t{vvXF1>k zhWx0(YoaQTgOq+VQ+rHBD1 zK-5V5Peft4xfogJgZaQC^>XpIgai?4J@v_ObU7C*4s5w!eu`oc-GwRLZ$D4#i~sq& z182Ur!sWPKNNUBTQJnM@6N{wzuF$a@cu4Td!tMJ+F42LHTXHoZ?bTWnY0{rg-9nKq z+In+a%j{lnWgUDQ9TP08k*OA4lOv0vp-K(Y?uGr4FY1wIc8a<7g${w=tB<}f4f_W- zR<;TAj@=dt%v^9+b`hL4=0cDZ9>X^k1J(4o$>X`Q%JBuYagVn1*dY*{9m=NiK`At?(FAr*q++pm70}K+iUa08wYF zBdU6}pN^DhVN6axO=zu|*3^uaj21U4#{IBr`=>hlt^7A!4rYR6g8TZZx8>mmjps~X z`K&tS?#(H7G4f3ystu_0xjIK!bm_rv?sT&S!NiS<+U=$U%g$ex*cfCZGp*^s@XG^( zKpbj=8M!R=2d5aa4(t(^8jL110IO$nnOMeg!)8}TEtgj(w!!$K{5O%RW8U&!-L}{b z>u#$R^w*epw;2dNO4h%e`P-Oe2!h-t(}jVOra zD(pw+%_>p82DbU%bJ+b^CbAQ#E(uC<&88nAOY;je_HMpAu6_SV{0+8l1r!CUo5`Cu ziK9djgz@Kdd8v~2j&y%y*E2Jx5G*7ur!RuuLM=Jp&<#m2Y~|LO zW*I-{&#a(L%`r)ih}OAiIwP`Cp7)Ud?cfy^5NtIzk-cF%$aTR)J3Os-P)$(ntsQUK zGS3?})aBDUe!3?xz?;RE0oFKiyN`L)Fd1NPZpBe((J<;Vj6+L^A{8e{EUb(yYZNaQ ztvF;xYNwu^oOOb|Nnb5%vYDEO#==kDqF@^sn2OST3ze80^^v63|Ix&G+e^|^SN3Jn zls7Tv>Uzk-N*7mK4fH|B=v`S3j};fS2hCOqdy+_^`@0?P%p;g|0BO%V&1m`sl9T%o zVR!S>Stnq*F}{IAB_4S1Hc#}G5*qXoDz^HqTiBRlV5=jQuCdnslT}m4Y=}akLt_>K z^+{EKM0$8wvxr}p5$|ddZMhm~LlzLCuB$gFfXkgxl?33U_-eW3+CrS!1^BydG57*I2yqhi{h||^Eb;Cu}$HF7dclmTrX?P z7yg2To7J2$qUd+)je*Z1RLtBm#M|uF5oe`nilv%Q9f>p?!;<0;WFLF3TR5f4J0v7}2B(2%14URdNx z8WdqO7x5a?Z%7MwLXVFJ2P{ybba6ctt6DX3Ma$Taik#8YiKTuu6exs%Iz9_>Tsw(- zH>`FmzP-{E02M_Nt+)}Nv@77G;-|*TF&`xCEvCG;6!mTC5i+3}C#H!Kov4y~m7DwG zb}JVTmbRvVV&lYWh!xMOWyjiJR6_$X`$l#%A#HIHcj}C6qz<=eG3%^&lTsu2y9>wo z!BB`PORmEfm895E?YtnOklqkDO;L+HX;WxdrRmbbFPE2!b7y6&d{hePbyz#t0gD8D z-Sc79G-prKA+L_$p!`RrvchzIR`ImwWQV`iufV+>_IE~KFAm>i5Z;&Mjb_S_Cc;Uf z1AWmN8bj25S&STR3CS{qy2t0xP1J<_?bH#~)(47r>ZaQN(!SojX^>g}PfQv!7svln zCxHcR9cK(qOuwg^X%!fvco!EOjAI9@-#Mu)!Sal

    ;Ww%t-nsHCg*xPjjmQjhvy4 zOW)0hA{MPrB#+)E<=V+cDaZ#Kj7@KZ_i%sedKJ4E{>gwJP&F0TDMoZwW;V-+3!oV; zs3Sc1rZkP%orIig6_`yelOSJmW7%nf_W^)I6_bDWw+xCPH?t<(@CHB8r_*&GHxB#vFHdNzZust81S z#$hLcp<~SYM#rJitHz7h{hr=6_lM6cg($5AvqUS$wZ|oCz`mA1!XkxKStFS-_5n$v z?TLmXlH~;ZBtqug#0kZy47q?3RZvCISG5!+XGQ5jax5odSQsE@qEd`_H#AlB${rbi zdE9L?*+R0rWXm8qk17!uK34l5#Q@p6X<~*VIJHu_f4EE`W@wn{&-lwAnL|n=#`Jh5 zxp-zh$Q}?O93SLCsVFVj_arzp1n6HFvM`0D5)c>`q!Kc^e|9ugs3}c$QB^E(Rgy>1 z^G%b9=pbj6JU2+w#bh5vnf_QNE`0O11>YC4yr0fO+(u>?4XBeou{?xlk^#aS;NY>6 z{slM5huUGJE}l&Gf?-I=@{JoD$?}=mlgQO;$Pyq&nmk^U`dx)DX%t3Bq;1SqlIQOC zli_1yz{(Kv?y7N&mhAa)NOh@izR>f2b0I!TJC}2kzraKped^c+UAI7Z?p-?c9kO;y z{}p=1Rovb?!JVp-D{n~!y5@KzTnW%0ahl_$#PuSJZ@L(f2Oy84(FR+SXdIstp{|=?aF^03?@A9ElizUO=>Ace}4*TX=&Nkcxgy~WZ9e&43Dy#5q!Jp zhOxNceJX6mNh_I>2Y}ej~Tf?X>fa_Ou|s1e7b0fC(3-gd`dLQV-c&i|{mk zsb_|dSK8$9qfXfdePxIBe~A=NGz88UyRT>5gqRj{`Vogo@BPOID+{L6dC5yET;R~I zQ%9UB$2mv*j$Ur|kfJ%^Nga&2?qO6wEQ~|JPE<#a+`c^h7%<*n$(idmtPvR}ziC@- z8(y1}OvFt(OTOxuRG+e+IPY~TqEpI^H_@=;JOT3(GnTpV;so&_0%(;tDz*6M3Kr0|=+j5sSYj2_dNZDm-|qV_#yZ-wzglPD-5kH#xILU3 zRDVlHApElEv+ZfE%u$y~{jTb}R(cNU&}y_$3(vB)~_2R}U&>=K_=n~q#6LI)cx zI9+Q6bU+iqi#F=huQ!61!-Q6&CHo#Fat7@^V(aHO!foQrJ>o99cl-Mgwa-RUiTp!y zBNzenOyEs&`c417X4g{9ZuQqD9D5!-?{(SqdP(2r^E@qJ)%h))oj8K`I$?QTqF{4) zwKCGP_QxwD_B+0laQ!0_R}+9M>*Q&Toh1k!>B#t3nliEKHkwujLCZ2r$11VcVJ5J3ta<>gRo=+`BUw{6?5RZx1|sL+fK+^nerDBz{QF1mIU?j0vN#`cUgRetPQcYJ z|23}L)Zp8vBsIEx{Qh#4m2kFhw4uWthAL4c+mn!Sbr^g=Nq^>l`zZW<;`+d&v@50? zpOqvi-%1>cf}@SiKe+C1gS!F9_15PCmFrI)8V>~_=vAj~bb7RewKmN^>mJA^R&B-m zzQ9~}mofim-coV@zh(?(5@rrAj{koKvygDI{1?M@!w8NE$;HCKoVFti{sX`~#b%%h zbSWGF&9aNShq(m(L1cmu{nx|f!l_)4I7=znJc|UM2o9czJ{#CT!gud+$-Viu=w&~l z&3borwYK&7)EyL}B#|dEiEV_WB;KRMN233mOGsGdgcKGQ1PLgOLyeZ$Cu?^=64eoY0Q;?(XmRp?KSG$l~2*3D!Xh0PYykZy3iQ5`K~< z|2!IqhMvjzt+JclIuPQyksSc`3QIkP5giP&LzHL2hh4uI8YHws5C*p^fVfv<2dy%o zJ{y?Ebi=OuZ^c1?ZUR5apVr<=P!T`JzuA}sIk;e$EF-3hJ&w=z{`vNAj)9vQ%Wd?WjEQV$VD1J!k3dfzDmTPu6+7`0!ysK`Be+S=h+iy@%puM-#N->B1v zhY0sy8&}=BpZ2z&DhFRHCttqgX6{ra23&6j!C$?-lT1`sThUpIt`Zy30pEAcakszZ z*hAmh+cQyh(%bKV!gA{C39gaei|o(4cqUG>bO2{S9VWEC?yJJ&vmXC5o1F@mpdiR0 z=wqD$M1=a^?JiIFuW)VJpf+bUy+aAx9Ue`^OFQ5PUrY(_;h;nNCrH+EZpvlY%Zq>v zrYFQ!MLPW0S^VR0VudzZKz6ftFhXdO9eM0fU{GK_i;}f5c zUm@=h5u2s0t-QQntIthLoH$gqPl6=Z1|;yiA+I6tN~rkm`!NisOVjJBXIFPM?63hI z!Zz3D#i$(UM#$_&^cHGPPkf$>p+y2fZRNKTr|aiQ5}l21j9m&xRrBBo6Fj)oA=aaTavv^y0(mj4D@jU=WSak8iIv} z692^S-PltJG~AU$a`@_5r--m>RyPwBuE>iQU6$xV7Or$tqwfa34Q0aM$kpxx+7|N4 ztQ#UX(;J5r8&71JTmmmbnfy)@zaNtkrT{AW-_uJj5rUsSvld&O$BX=t2hF+m1vxi+twz%*OJ8 zr*ny2Z^Aly8~h~W`pU9+eC*rym<-cZTdRiWx(BvC<4`Z8SR3?`t?NkWje8ht}{hv@J^sN*INg=9i(1!9-4&w;J{UHBef^Oy zP7@P|f?`P$Ychl*JmL|^qR@b%Dl?|Bbf*Ws>d7(L=(xPDFOe&0-BDltxIVwLF247# zXI!3Y;xq6__Pxvt?U#ujQ4wrteP9ZFThZ)D#3=Wu$uta7^~+RH@m-ZE^J49aeR z|K=k(nxkQ%*CudRctWg7spXIr#(JiY^rGhkG+$TtzKZbp7irlEAY}_Gp={Zdh0!ST zFJwKIg+D{vTxy{t?yPHaZ32Ua;kFWSKG0E-2r3sSLFqG4^W0JxZI2rms%hu!AJ@1z zV4|RnmydRSx3bsbnU{FI^rA~xE?d+Lg_%0%jC-eym4OKI`6=IKu7>n=4z00TJ~fzE z*(o5Mmpk2x@!I?yP_4C#M6s9Q){>pQ`V&JsV9;G1wN9((MWllKrrKcrC^pIBxjzgi ztlF&wPdt;ExEVjN2GKde6(J^4EMWAwsnK})WQvI!_J{KPoO|{AjapBPf#cwITMh0Z zFNLUS+2Rv9%gQJ&g~d$a?(Efz<4=cYh0}W^@x;5oUFA(hfP$NAQ>(72z7l0ajn(q8 zzKTFVss6Rt$&&Gm*~E4jbB{)M$I~5sgHd>(m-hf1I2}V<6Fpx8xf$}IiL8_a5sD>q z#id$pepb|kXIJ|%@={rki>H%E$cAa-0zBPTud%@a@qAyg@KXTxp>IWWiuE^-U*GT8 zu6?#w1u3tCfbd1CSbd^-W{Ci^vP9bUgLPIp)`Fis9%os$5SDdXYi@6y!g()pTiLC= zlExu4pOJ1!qFGb$olqakA)RLT2e?Pmjl`-)L_yb1LHxWBp6%acELGAuJOdn8avXL! zz#cr?85^0NK4MOeP*1$6jB=0CKXf0DZls z$5nzF^Fg$USDQxq9kO6&;*Lo9!t%&waJbslSaWuQ;PssDIP_W*wsQKV-UG&23&C)p zME?BWnjv*Ndv!e}a~0Q)Hr|Gg{}f*QpAe^on%JdJl1U=#S&0__R|bu zRxtvo06!!fed?1Q{Rm}kj<$8@V2xX%ZXK;J80yTM!`n@*SBB&{i~8v>6$@4d{J5-ZG3InpIS z9?b(NJ9w7nWqdwj)Cx@N6n&G9RJ&yBQ6hR=^f$AO6*^DD0vU51Txw94I!?HHQ| zMk`@)4R>p`VjQD_*5#~C2x@ihwo0OuFv2@+}3s?_`{4HvdWeCR8k!U8m zKoV*vId6OVcOo|Bp|-)hU_E9`Sf5UV4is0_-~FVV2$R*4xpxH-ITlH`k;iPvKGzou zgqomSd?O_`n!z}hsgb*umUr!oz(tb6s>o6Y&DUV<;34#fu&Wvqwt+if7Myk=rK!F-lS!g zZ*znB2|v9GO3}-J3W=vrk9dUF&cxALHv*&4Ge!$FFs?V*$gB&uBrTF#O6dVeY~r+I zqo3FH_t{eB*04hxVc&GI$P0DU4yg8aY~$8=2J=;mP^8#+kKACLMVFR_RKjWj?(J5{t2Iyg^glW}S%PKh9*usfLd0xONnV$PvCfb^XEkx1k3~hZPJz zS}poi(6qY(cI>q>6MyWMVln=zq*yFcYu5R-boaJ+j)%+YgmrI({~u5Sdu-WFsMdhd z*v=(FGR&JX=>P~^?R9Z;;b+yW0N~zX7ca9WmSyKoUYW!9NA<^abHpjg?hX6aKSU5l zpFBIadSYXs+87-|dK8=@^mbB@p3%b&MOKmQH_CdiEvIe3gM9Uf>JFQ&py}0dn{EWQY0k zeSY&^hTb*xI{irBH~wQ-$0C|}DldZxCL{Bkk>v159PC^J?E2U_tbOVF#ASjXPDKn1 z^H7DgamSCz`)x(=bnP_B%_=ilE{@p-BZ_TXd(B!cW<2|JipC&| zelgC0MJywV%F(>>3d(XZ`Hu%*w#i@oNl-tfXRFDWMJ~4>L?6&|fu|>*nvB7yu9U0= z2I!vl{(q=n#W%3rr=}f*Vk@(zh<|!NNzqhY6V&MLNaUkV8?ThVE_sSSI?n|blDW;P zG&h!zu2zp!S(~p6$Vag$&lK5CW@^KZw=c6d&~A0!R}uw(CFKdf3Ub`{Ink1O z-zOwbYY4tDI_f9S{V(yiH~Y^>i+6>pbb>2J-GMP&Qu0DuPl|_^GGN!mS3K}*uT_ca z4EsIMM!A$I#`4ggI!37yF(jb4HF&3Rl07E5XETQv89O|~fw!%LXuqm6!EqA2`|l$* z%sP%+#B(qD3c$qRW`B&nlG|BEh9|JvW$R$#gyE29<=**ii(haq^{p&x(uO&?-%f#p z1yb~<&c+cJ9HXUcXCaz~;FOc#jmP^p&Y(>SHlvaq>9TRY&RrgyQ2oLEn=vLcMG>Ei zij2#E%`o;lD{Tq3wWe_Asn|bYQH)Fq^)#7NWDO)aivaP$zos(nroRtCge+!cq%Uf> zel%%1qXtx)As$U5t?k_@kL<^44X9Ran|{sq?Hzk>?;Y=tToaMZk-Ivj#Rytr$Tl45 zIX|9~$Fs8{dj{u4?p?jz^-Wq!V&=$;+Ii>F2<=0IRGHGRa)9h-#f_B(p*FQok+D9p z;AB>EKLGw)xi^#{+hWceYUnvX19zRMLHz<|;ng#!dwiu*1)|itFlKl}GqOn^6P9ix z+5WbVED&`sZzS;kypgbWs*lD#EH5js7%voRnZ*%5s3>FPWtdbEWr0noiyDp zr5%=Kn(o5uzixKdsSHa$Gju8gzsWM(<&=2Gg-;Ih`fE=~IL!DXBH`TY8xu}RN|P$999Tq6rM z&sD&4e|(tLFOggJji9$7-}r|yH-&20Nt4lQUjPOh%AV;vxpAv{J=h&F>iT5<)^Ff7fZkiH{pUx|Y zf;S)sCMR$_gLq|#lTPayaJqRqj$83 zO<03)dOB$u}8&{HjL3T+%p76;OMy}X|w4%IK*0uLwgLRJn{?hlEqK3h0t#L25OZ;i6mH$-YJMxm3A zWCTB@Gm%VXuhj8`(nhX^=m%`nYihO3JAX(E3Z(XwQ(v9;4s4bD(u26-_;czhVT$3y zl7p2Oedgwcx8-L1%?J7GSX6d|Yb30LE!sDN`Nc^gzHmwZ?SWN}KyEFUba&{%B0xjs zd5xrZkEbgPC(fWfprSND)?3r5XwB^5V;I$R)v2Gg#6#ATzTlX^v9McCYB*D8p9PEv6upmxMIn8%&&J9{Jm`RE*|7erb zUbvH+!|5F|(FQo>UaHd1BD_3i(&iuL`awF8B*y%P%RVkzjn9K0on9-fE$1uhcNW=Dxtg@R%4FYA1caC|;5z&lx0&INoI~1{Y zGr5AAC_*-ja;&G+TUCc;m!n)#2;Y%AJJzt1W|?1W1PieE$F545G2s}a>fDk#;ID zgjMf7$+?>F!8;1@$~wGzZV8xN{S4qs`iKoNH>a8lxDa7O%g-p}{%0!Ami;*_GYme{g-6VU?N<)h&e)4;r z@20ghQJR(KY)*ZqRP2W>JVNMpd?yX`$N6S*pFjpQJvMI{Hz=fNCqymlaTSTDb-#R|H9jYw8wovY+nlm?KpLxy!by7zJ&FnG3~O^8GkvX`18mO` zMd}w2tQqhkFRB5z;`O=#7o9zXOB2^)lxuI36*)HGwx}%6X3yAQwdBYT<3o`vS$@^! zV;RATC-j{05HT9$+~ueJsytM2Tp{3okdTv@!f-EIkSW9(ny(+rTkc4HtKh-3uUWO{ zd$7Ud!C7~N9ZlZe?n7+K;Bg0o+AMpCl@bTIOy0=nv{N*&>lWrkU-Ms`NFS60@$Z7s z5Ky~Zy3o-LdfdOEEIkE4)<`;FFgQ3*7_CR{15~zD_dnaZSZ7s`)?*I$7?wI;&dWnQey{BT=1xn~!=2Q_)0rcMZvA zPiXv@$hOVi<^i1u`z$TDABF;1kivM5`SKB93GFc2W88o2WTPshMq@>+0u^$guYU74 zv>vV`oiyY-Qc&tHqRCssVKy4K5TOCV#|3q!oxaYw?Z4RhSJ$_!Df%mF+MR2+dQhc8 z)jM)Ei)`*hW*LlSY;T=g(b#X#N0(bdK2FYW$$rhqNo->psoe)jask5Ia6D7mQgppq z^bobKUL;P!Vzoc_r0=Z9(2>GbGFdg1iu9?E!EX8;7X_L*70URxoQSfE_62}5Jl&L* z=El<@eWKw?a=|(1S_#WS&4PtoHupU@mG-#&98`wuNCP4QN(oMPF-^z|@xMuXCc` zs*jZ+E)1;vt)8qpc}#2UTeL`Vop@^4c_+*L>p1VEm-653U1$-C7xZOz8Sg#8EY3Sj z4rXmEw&9RfGB8@Dv(w0GH}6-RvT*4w=_NT5=wqy}hatt^BK5|u;I;r_$qed5)9BbO zTTQLgH0fkb_@YIW+EIeVRGl24Mbj_8V8f9q`P4pGZJy$1;NdYTKOVUrj}RPAa)Ie1 zUDFquLsvY-v)t7pdD+-a<5P=!XD6MgAT_Isx%4z?Pmki=iC@*kk#%J%-pV8mr|B$|$@#X*FRXYw7&@|f+K=kfvX5HHVsFR5x?Dw8V-(V$Q zLhf`V5T4 zfz!-PpD9W3hClO{tl|=~M#HkKJGJ%sh1KMk7oM*YD}%m$^yzxEb7#qDmf~w@m52I& zpW&gdo@!dtp?P35Rb%s_b4g*O8u{f^3s)|U_Nc{ORLrwA7rzF>tV0`J5E?6}!5}v* zfgRoipt_e)xqTEw&ZHce`@}<+eu>!A5j}Bu&3eZ3aUJSW!OkQu&XTa+IQiw$VDnU{ z5y@~4HNLX)j@`ECcEyipXVckTQ8Y9vW)zOv?@WJHtOd`qYLb8`{X#Xt!ZIJK*9tw{ioKzrc!`y*PGaKMVQ7 zeCZt!(zJm5;?@0b1VSO|zv&BGkRD}}WO});$7fQde^bh=BcnH?Ij<#L`&i~6cdCN6 zAU^m~r)u6ejY?(rEon$SYM({nA?-+`5GD`4Qz#m!%nf)(k(Veqr=ve^6p%VoS(sEoFN_3Hh4{l{GY0P+H$ zNP8nf)?6|x%*pNW$`fdK{Zl)=lmnnMG)D(ij!t$*1ndnhcr78-J{_X^)c zF9iBlk26%`$>W3w4t9_K*zL9;b~s06D0=uv{#J%N z{FiM&*q4%&1q%otyhrU0LQ+T^d3Rhl%2`#1>~(6|lBe}C$m)FzG8VxQ=IE+d`r){| z+L6@P;qDPx`ef0?Zhnv2Zdq`&$Ie02d^&26sq=40ta;tU>4Lo7tkSPV4=eH~76ffn&JydY1a z{T<%QADx$GRNGnxWw88oHCMdUNkc3$I|uP+cX>`kImK)Xwh$_=imBzajk3lfi@4h5 zcwIJiVDh64LOVPqqE-I|#SY}TwEFAQgROpRs|%_&aI>Wl{3JdMg~(gcPq2e{L=Tr`pWrHU`gPNNL*Wv(2a(! z6iSomG}!QH7X%MsIzOM>;twK;4}*Z+A2KqX4Tmh_q|USyibV4A0HO;H4D}i4SFPSokShPj_l7e4~IBxlpN5< zr$@rk1iQ}z2!f~6Yk_n{M8Fw8VPPb>1NBH!NvQnsV2u#m#HuafoIuAy^rVKtM?jGw zcH>VH!@lh7%gajw5(zFCV17_M`v9tkFt8TNGHAyThqD%I+kF(|8c+UQGt1?G3)a?z z`kaSMSjyfpt87nZM5%{li6uT4f0Mcy&hw%O@JZ_*wxJherR2us97}ias$I8_@~(LJ#3KW@NQOEkN(5=b*TfZv;U4&-VNOfmi1B_YiQnDCjvdtfjzx6$?? z{BytzQDk%`w-A71uf86DtJSZ61kb0_ND;ROPYZe(#~4ZcbK9d|*v=5tH;8q9_F+E^ z=y2)kg6P62!41Kh0=RbGlL+C0s=gW$j;_FOK)7HDw|n3q0QkH!4OC6Xnjh`GBYq{8 z_*YiLNKW|?c~O)2wU?Y4>ILdp@oWJ*U-uCL;lyj80wn%E*B@7WnIt0yZ_gT)iAn63 z*SsrNA7uCsPq`bP=wNpS7=7T+SEi?me_VP&hd{C&;y#2nS$E54-ovNF$XDJ!z~ZHw z_5*OIxH{dw4$FH{==&N*aSG=0_#70HUc&lM#bT#+!p;6n`vv-Rc3bFCN7WeqdY~m0 z8gYyVoa%+8GjpQSAV%J(kORg=`FhkdQG<&v^6FnOmfrXskWr~>zhff5_zsd3`uBX@ zke2+LCGw2vNmzZKg9;>Am%;20vg_P+Q6(~=2Jfdqz4zqhXQU^)Hgz@wjGwlTmR z$V%343^4UUC0NTl1_TUXprdY+=L9JmKZAsk%g-1`@-!z9x3=a-RH!T@MC*UmN-%Wc zjSqq{@MMmE%zvwYiQSQsjsUWM{&5>!12%r9PAw3yc5ezGmgeES;IGs4qKYVl`XT_3 zBwU&7z7S+!WLk!>iD2bLYQ%(Vsz9*oE=?$Ku-L-I8sw5}XWBO>re_-zxgU+ms-ieH zwU{VN9-Vr08qHdDEtBCj*#F_j`>0=2Vs*XGZ&H%5Ri9ty!RiY<8nVp1WhdIbIwFke z1YuhJ+Cfhfz?3Ve4z#m@qstN?92y1$rp~;~(Kj+Ar4OKzMOPPi+pVSls!Gv>+&`%| zqE%rBwc-0vnNB%t5bgyo7Q~P%FR&h~it#c!qOVuLrNV?lAHjK-35Y>aw?o+xumqFA z9*9BHn0XSbpG_U@ZSAMFT$rPJ>QJM~Txvh0FxLIioi8I^sV2V2oMxeNMOX$hsk9`V zFFf^>(fSUh{>@@2pioFia{SrJgj-u;^dL(pd;B5Yc@vhlrgf+mfzvljzDD--0zM%vN*JSYjx;O9GL^^5*6Jw*@~EgDG&Vo1FyM+TTd+Cx<4#L>C-kU%1N@6ef}{p zL`^RKIADp7^DMEIjTp2}MY&`QLjDnx?(ZfQ<{C;3o{Pi5HDCoaO}S)>-exfAzoGYD zE)Tm`mdJtqKC@!Y7J!G*XZ*O>qo=yqJ7A#wi(6~z%1>9GrXcN84;EagWf@HAM#8Vc zqe|rlH+e_NFez{qV%6|dWGH{hfestioh$gio;_#VFx()^&o z+wlRfyrke{{jaz4%SWK6JfdmTU?7sSTd4W?=11OjR3jZHx|d7}*W!y68b=MI0ui3L z28QR(3PdjUFS#GBPZ2@cZ}iWcEyl^!+7fE8=^_+81|^fg-e8}5rB0R@%7v<(F%|B) z4#6b$w+VTIZ?dqnA&bl2LAM;at3j$^21!!}#V39<`?sHXLbCF^$v9}dDdd7jw)tz! zvvx7x+Fn^}W_d+iebQ(;+VL$$m~<>{OFdpreYzc`bjkcZ>^g-x?afi!YA$k_>&T)p z#B<>6_M;~d5Oep*9CYePhTLZXX0QbkNuqnQi;T)N8_vi zKeo=PInX8yu))N(olI;ynb^j}wlQ(u*tTukwrx)AWMU`#Eo%2>e?Z@LRaZTIo^v>* zVQ8Le?`Mw}_kD-SWK*_fnW^5C4W}|M_IH%^&weA|3O1%k;%R#_OCqi#D>3iWioW5~A(F=(51IRRGY<$tFo;SPTeCX`i3eQ$TNb zTgbGH?X3B_jB0fPOMGVeG%5G}+L4c7U)(a|ldY_3LCkD_2_16~ipI<#l&gcEGP-Ci z8WW3!k3e?Ml-dd7hNb-ed3ZN%T0cbfI|@$vaJK1*qcO1}E;Q(11y>U?QeSCR+8L11 zW%P$Txn+LJf>D!Q_AZSTh)&hxke@byT54b{?^y!W%<4z2(~Q}`TnOsPFj6y{YVT_c z*)K2DeHPbUZvPPLF*YC5IV0p@9y=6QN^+mF`JSY&!>wH0^!ECPO6Jd+i~SODw-EP{ zwE$WEd3KSBu2&5TcdjNoekcX2;tA*^MCapY{VF2`H2u$(f_8q}JYHiZxLla`->d{-daW^j z_^e!1JLXG0&uNkMTt=27Lm1XeQ8EXmeDx#jKO3H)(mAI!#R>%3g}G6gl_*fehej85 z)w`pHLe7(_#%{@E?1IzSTM+Flp50iv6<9d->#V@_sU%)H@}}x(WdKF_enC^Zxit(5L>) zASa>i$G+jGnS}jZB7G-W8wN1!z_#a{B(h0I)Xv6+y6z;=!(W;~W%PtQDorc)J3POf zzWC&b_#Pgoys+gS^VY+^0p)it_hx(CWmk?Jx!bhej-&1V zES-P{!tyh`B-0$n4`RS~JZ4Q=VY8;Z>fmW2=M95MCkQo!tYR?sua(QGE)!rMUyl=> zuo+U&B*Pl%R)Oxphhb|yz{V6SPnHDistO}Ry z+?c!2?a~6Hb=s@+MO(NSRF8lf&yhh5JJu~_6epr+(m_p$n{4+3*)IMkKZGo!ukoEm z-WU$ik<$@WM&C5J1FC$256cE>y0w&tbE$ z`0?>Y_Md^QwlW1Jz2(u@-Q6<`)&{*>73^7jPAU5u@)=+_67kB$LY%d4?vm!S^SyQ3 z3z@_wZb3{^E#GO~ME-u7JWr&y%>D(r=dpo)lVOOHX!M2bmy+4ZUjH10D-UJNZ($gJ@4 z#^>r&b(9?VsCo(GtRh~q*0SSm95m9;UWe_+Y)T93jSI>Y=>DhJb`pj(?Aaw#;z*cr zOJlWL<0+RT>ell~y8{O~CydPAN-m|N({kJjI@eS3U z%@i3}hQ*>bGs-WU-x@O1DGibSnP_>+KrphKDFEr)q2Ij%DKfo{s=lF9l`}y8)FZ2| zX8v1YJW8Oy%7=5?%FhuJE}O4qbP5TVAZenI#2|-VNgH^I{>RJ#I==pax9B%fPaS=z z6$%71>hlj%DM-t8zZ@2T=Xfx0K_F^>>HI+4ybvAO=P5!|vX#;K+eSjLcZ@xei*|Ea zxS=h9erQ9P-a?-9BNzlWEVYtqDzR~uJh;GOF>fTHBAj?z70vd?^^S3E&H2e;717M2 z=&$vokulC+sQEXp^y*k0FDsRqopwBJi9EpY#p}B4(rPZ zHXRrWrA9r3rdcw#zWm81Xm>E-ZgX1>xh~ytg8&{ZvO)C zqV$?+^HY6Y?ratnqar$2S@TRDo^^ld0);hvZ&omtovhp>!cfWLQ@q#(>BQLQyT(VA zV6m>*aPp9q4r^e~$`Tz;t;!n7Nwj)J=IM9@^C65eymt*H9EN8c5}Xl-w8KJvQqJsd z=sVlFGaA~(QV6q3+=m4o2s{^7Uts_+G)$=Ced3#fS5KUkpQt&KJx(2;V+Q31y)yk0 z+9`31kg_p4*@^J^a+Y`6slz#WSm+)PZ&yl#pUn8#G^;M9;#1&|1P^;PhlkFg<%baLW^XZjr+7gjGS^m`CKb>JVi}8vgRtd^zHosx3ga;o z+v8ZlZrmnU4{vF_AUW_FJiQ?)gqe65BX{TyVjA3^nE7Hfw zETZAqCe>6*HB{L_-!=3KL5F9y-x(Y;8KKU+yw|%@hYnNdVqKh1<0t!Byg)}Vc6gu;dO>%rCi0)ff z_t#3q`4wCr}WBSd%0ECIO!*~hJ_8g7-wziObcs<@oh9vzU(NN)|7lrMm0{OTANbk znp2$(1*DIE*t0F8{1F0L-S`z#oRlQIt4w!0^?)BSB zm@Oq<$Q7Wc**{&bEr(PwuPF{0IMt|FSkuqfW5{52qHx;kaiV&}oIPa+-FcM$Xy~7J zS34jMSeS^h&pLy4@um(`%Pyf^5}gM27zXzfDe3KxV`Ou$rD_6_JeKtYv0)aY61+#` zq7GiZFx5X1a%}I4eS3==_zMea@kI3*BzsW*yMl>m*Dgd8GdN_)jpPGzQ&;7uC@MVL zF;q%~OoAUtCSwIxj&*5upODq7;F^s~GHPy$Ogv;==qFvhpYE zii`fV?BfI{kVsBUmWv;$EN+SA(wfaE?8N#0>dDXQ`E_12t9?C%!?7e(C^Lo)E?^4WNZt8VP5g)TWQ_+dPug8G)vQ#b3n z5ia&fldy2>mIB zCQ*g4wynRoU)91LNawwq3b(~tI0LoH=*HH8RhI|`V0be*8wUm8OSFV-MwFMo?erW3OTBPp}BwFm(x7hBwB&Erx^U0uzcZ$)QH@WISZJwTHMLpe zwSRJ2Whi)}l4PyubC@9*O<@!3=owbEB8=DSinnsh(Enz+fl$#NG}gf#zO0tx!|M!) zGJD)GEQL&s$+-+Je&&?6tEuS9Sa|HO(T92i)6_aro}Zwc)1loX%E=)7FGa#w*-UP` zllF0O$m|z6zaAs_R1F%+l>M*No*imjT&|Q&R%0~bFliSh{c42T^L8)lI3FwzCO>r% z$B7^;bJ*sW9$lN(X!JR;fU&|U^Z!~~t!oAp827@WDqVH>3O`UEK?yRDtZ)Se#U3|- zEhQSrwvoh{-G#b^p>aVt9%)m?t5-ch>SY6N0*g(PO<&Jm&0n1OndjCstUQ$50kW~T z=-+;`6>aE`IzxXSD_i+donsW~JU>=V&ce7R(WL@tEJ%?hcE*@hViyFqDG};XBoA&j zK5RZzK40Xoh;Akuj}#4N8?v$jA)^)msj3tqEhNVs1Mdex47^AX6cfV6dd!@P+WBUu zU5V@bHqaHw8+xYhvH^M5Idz3!{*wg;uPf@(Rv{LuYCQ>qqe3fOLLw-?f^TXlvFkXU zWoK0h3)5R$=xqzqr_&uqM!_iF)JJ(U!12-(5qJACw}pamJhpX(_wQ&zNOe5mr}Aaj zH4xt12V+~yP~(yRyC>sZ2t zoJ;^_Ah^_0N=5#js-`z=)iElN+kCVveVgL-aZ@60vts0Cu)X3eQzmcWMwRXTsS{gG z1FL-iR6Jax;*{^Zw{RJAO1g0}KS&Aym;yt+a@KX7QLJyr($`Wdy~-D$-@}pC6x&Gf zhRkk-Iq8jt@8L-3Dh6>Y(_TI@oA_ufP$f4q_D5crLE3_-7U*`Yb4Y-=(fkB#YJn(9 zK@d|zo&Y&$e6?wX2l);n;#_)piJp|AZxg9eH!5N#B%wnlv^&#H^X-5`B^$)%Z))zj z?UypAzk`?srS*?LE41?az*i!FCg+atu4PaR_v2qW&ozX%Rr98stIZM?mUdk|yJ3@Z zof5G=d6i5*1@%`$Wsm~eNdo3*9YL-qI1cTJtq=t;z=MeT_PA-}qrqX-1a0la6RE}1 z0F_^PTP$_eyRY-zNO~cS)oDP5^`5oT+TzZ9!8T|pxero~%JyZ0gn3j2rru#1CXXH( zLV@BQrwR{&yl=k($+bWRzLmt)y_rza*Z7pT$x$$vv@eK%yGWW{GT);Z%E z&ahgjwNuvi=eOYAG}Rf#kKQ(1id6GK4Kkzr&(ECoR@hOD_MR2DA&GyBx{8dpi525HN`$pCXBb$L!tgVQIU!sS&$nNtzNQ=QstEB z{O=@(i1(aP4i-*Nq@Fwfd-TC=+HYYj*pQ?=EjNwt0*2$iUh9$Ol)0|HZ;*{94dF*i zG5|JD4|a$EHloIj*bkjB`nkN6qHcGs zlwm_NeN|no%)_U9ytVMwl)q&%#3zh?EPnH}@Gx}n0zr~x5{umWzDvu6%y~Pb`9k4d zcLusDbbC&jmDtvN;McV5}D7QXL$wTX!2Ndz_JZNAM#tpKGv0X=Uorb5qd*+ zL_P|T@3y>(WAn)`o!N_8kGcDxW`K5<3U`tyO5L|DR6lc9yi`6}X1a&7>R(obsM-+b zQ&{mgMq310^RHEMVm=*jDz4<}_0YYWGJJRgY*_?v|IhI3G{I_M1aR_KlKC7 zHWqG$nIKnB-kD4EFjmgV5fobC8)goRb=#2`rHAdF9|s8|^@XtJ^5ZA635X;w&YIX6&{|Z1FNcJu4XTJ4!Kyf>ipDq=Uu^*j?X_twkYc%rA>VlYq}+8UL>EtxX62fAY4jric$MmZdXJb}25o`32C}x9o5M z(D_)$^QP+Bhdr7GG$qjW@_VT2BxC}k0&~*pjMAtyGtcgH_GTz=S z{hwJs;-PX+sh&A{RHZX-PTzNyED|{Oe1MM@T1#@>9-9}p{GPj> zmGVB&gR^ZTflq8zbG|_nTU<#0%~#Nd7=HBYiv{~P7=0$BsD)9ELpoHOv5Z#t7E0Ch z?MRA{UsJ`eqg`eiKH2wVJ5Q2UA5m-^xdd1!26Ax?ugzLx3;MsbML6!NWIF?|%n?O9 z2IISiVfA;r^8oJXA;y`f^%SbFm)bF^l=g|jRuk_48)3%Vll?}|P$qF)Vf&a{jx;Rsbe+)He40R7>^L5T{4EodLQx zSDAG!$Sjx9B#mp8TOKb=3~xJp;>-DwN4y?ZaSc9YUIBl&Z5W>*Jg%RovJXY02Eg^* z)_l=C8P|Ctt5204@9Ew#G_`a8E5{Qd{Kc9*zT;w6ja%bqZ6!BaOh!{d>El2|6{QMJ z!T2EF81Ue4)^D!&Z0pk@H{z;`643i+BvEg%WRJPcJ?dTfAA4@T zhC>q1tzVEm1Zo+8TZ0($!>90E69E}8BXDz zcPwkV{~$ZMl|o@W#&f2kZ;TI`jQ356Fj~j>!>QBH`!b}w2HE?gEdnObk5jC<=l1+3 z&nDWIzdY^FP`&LR4DNE!V3o}ubx+03=YWg{7t;)R!U_kj6!ht_V_`dbgA4A$C5y5( zMHW)}npJ#$*+C`ALfC}1!4l_;$APbwkj9j)7-^iH%|J{dVRnAM;7*$NPMrex;kec5 z%=f-Z$Wthvlm94P-0E~LSo;-+hl?LqB`0cn4EvdbItj>H;LSJ4tSIa>tf`%ebE3L3 zV&YdC8v1{%5*zFPRh_XAbFi}fFIEWyjFmZc9v_qjQ2n2zQmc3z8x;k)x8Z44eo>J~ zhl-USC}aqZK}gCqs-m<|#}61#P>3_cGj#GFKhRO)AlnOlzyGJ~!mZkCwd!$ZeKw}? znS0h*Grj52-PBfTg^2(WhFWq)e_nkVn5wFkEjx z8dw;S#JY(>ov!V_Pl(u;9N$`C_#9avqOzBSvo|h6D>%oHt^TB-2vj4W$5Gq!kP#pc ziX0BuBkx2MT;v2y*jSFfz6uHo0%fcjNJoGf%@3ik4BwTlHEK4JhN0(q?o`dmEegycS;7v(OuS|N_gdh=3pBT_$c}l>V zcNr9VjGvYC(zE`Qw^acHa0$S2UfO&cR^s>TtmyLJ}?4;CBH^44Y7r= z={yw_RgwML!I&8FpuY5v9=ml7db5EzeWpKPg8EoVa0a0SV8>9cfrj6b-t&q`*nW=A zp|7uBZli+qsL(&^f;SC7tkd}MrS9BZ>EIjRjg1+15w0Qlei*kyf%f(Ke(R+hpP5Gf zBJKJ{{PyYn==e#aCGE5Y{QPQFkVia%c)5dx2JHeHFaQDb_w)B!3*Hr+v=9OIfM(Dy zUJVG#P_Vk&-p%2h#a^wamq<{2pga)m#hh6VJ*9=o@4!AK(?7VMV-4x>d-`#g`WtT; zP`@hQ6!Oh^@+`bfQ zVId>b0_YY9C(ZQ2kcl);kpM&q+Wu~XmJNrf=s}{HkA4JSO9W7ffhHx3m)cQ?ObE#D zP$XI=JjzS(fDzRDSh$Fh3WWQ2TwtB4D(7oGlym{o^j*dsY=9JGX&T{NE}+}9iUR)S zR~>9~u*YW!N8fCys9_y7$R9JoKExyOyNirrQ4rrDqU}$oj}g%z5Wp9!3=a}fY;EA` z@@s?yL=YELjQ2zQYd$2pGZU|6cK5RX>4owA*%&0yqu)l-tW=Q$H9uxKUv5;b!6m25 z`iA1xZQ;KqZ1-I(O=QCk^ijIh+*AJ9EEQU{jH@83-&`#g6YYfNK3O}@y4CI47xXS; zUK*BzUp1}+OGkUj;XrAR#KV+I5dv4cIJHyM{;-`c*9JVZN%hb|%ag8WRZ;9(C9heI zXTvs)Qb#H7O40h3mRdr&ycna|i>nyc{YZxfAol`=;Pn*Y>^)Yh*;uAJ?PA70evFnt znUicH!~fZRf0zw#%Pd?$*l)f2dw}^c0=4@A_E%7H$h`;WEYKLq-&3UWqD8ARp>k$< z$a1z2_b_on(Y>C}%nOBr%WEdi%}4S2OXQ7#@zXgUoQCO9RI!a;l#SghfO|k-V^!Tr zSc~Y5d@1LN~}a=yhAKZc5^FP<0D8K9MX2g7APY`iVQtFKEuw}N+3Rx%p z48J_%9}j549NGfiUkWCt$RfbI%22E_>_}O;LesuY#Nwq&1O6~dfip!ji4m+mSh zG|~i)efYN6Zr3;QWJ>??s;AiTH6?6fpG}r<9G=ZtIY6rPajT2TKy*lcGZ{02!>PwY zUM4B+%yaoFj?RqEsyJ2z`5<$Zi7Ln}B%{w;fc>9`^Sksf3|G?Mh?ZjSP zKK@FQ4UE4UUXP5MRC`D)pwt1_w(Tbd7VOnv>+1YE-PjrQ^!o{yF5^#+aRME7;=5&A z30A&c?djCTAjpeGAvHMY{=U~?h)SXVRHw50caChS?!mHDkY8m;=0escOtP~8E6atD zUr`b4^RwV!lh&ksu{SbPqj~P)Y)GnXECgtDz$`z!5|?#V_aS2Ya5v9C+P+M9L*wz- z?P5k0h5oa17n1z!A@I;cd%L4^72%K zY@w)_y4n97@r)t7r-6Y*`wPq}pYi;c6;k$U3uct}%jw@UQ9~}4*Rk|< zZ-Ltr`Q;f29}n4kGbnyxZ-p#ZSQY68?^24nh&>?`Y!o7pg5-rdnO)Dvhh=!A?dtTC zXCT1xhi^5{bH;p!&_N#=38ckIW*Y0r#MpbmA|vrQ_fOvbW{~%sA4by1Lw^e}0ar?J z`-d3%2o@SbWP^XUi`OYR8E!mhycaZMKh18gKqm0L-2~QKz=w!ksnZEl7w?aaolh#FOlC#jx-cT$0qq zMyFvMjI0XdAtc=BY0zU z=e-@PiflH``%3yVkc;mI`^C~FG$IR4X=2+4awL0l^K0R;K7t;JJx_@ON`2^dDBt(& z@ozl^0&TC$r>aC$^uJ{Rpq77GrE8uf8RZiW=9?Ub!>Msm6wwF)EZ2jQKW2=U5@EjL zwGbH&d{pfMK{G5&hzZ=SxXoqoD|$jtxMfmp=O*GN>iLC;L-)|D$@FDuvh0dubi=;| zmk|sam~t*mMkR;*?4z*aSx+`&qrdkkF-dok4ZQop`&A|3PlU+`jGv|^jWNt7O-hWj z%|f(XV~axZqrj<4rNzDDj}g-~K)ty<-I0ww6f)tldcExF6cc%9W`0hF<_f;=!fVx7 z>Uj8#p0!qU60$UR^9!F$C$Cl`O17LmMn5bF?l-|+{-R>Uo6UNtRwue%HoJdqzJ1?e zW|U0(HK)3Sq7sYwU;03${?wf+CK|7&Q2(4`JOyXXZuIj~Vs@J54~ws%5aLeZmEMPY zxuM8b{lYr-8={e;l7~-*_drY3PS7!m*VtlW9LxAU(a*zm)d&+Uh=hhNI*m%SwRcRT z&9SDbGHLmYBh|y&8b~Nr{<|m)-5TaGZ2ReT#<^q?-P+L^j)kH+2;6DCX=+jbC|48GTzT_^ zu5B{(0h^!skNX_Pr*gKvSFqad$aF5@_Pe5hu9#a~i9kn7uFr(~$Wyl@gjd9Hjw-y} zzG1<&a%JZp(1c~ds4}t1eSD<~xry5Ezp5Q@nVm-d5hOc8B)Y@BCr{}*or)%}hct2x zqc!549-iTC3p&G&AU}s^rYo6F+nIYV`Io}R#-t!Fy;XP&-D8e;9K{7J)9DmBJaPiK zQp{E1q}Oo!DdL{VL29lmWL>H7%mKCdGkSx*rs7o^7#YQ~M3730@r|4fV&!yeO{Ylf z({cGE|G|ZQl);*CEMp~FTvh>NIZ#OH>?XC70#g}295ljuDXTnnbIomzni17|iX*xM zmgE^*(W%b3P28=m~u~+8(jbM_@0jh`2_CG)1vkGE~5_yt<(&_u(kV4#}_q za*G!X{BDLp2wcVM6l~oGF&x~D-8mZBnb@!}S}?OB6dw}q>yfriqyKYI9Z)qiGHcbA z9f9k@tK0~JOC{eL2CQnq?DVv{bg_CAQa#DI7NiWJFJoPuP36(?|7eX?8+|&X= z6-IZV|5HjW|GL3o1ImW}5e%i+zG=su_ToIypRo zNJJtigko4rEjd$TAfE!|wvt+9WyTN#U@K71$6iESy%bDrz{Kkl*ythZq#TkwV+0?_ z2JZ{g1)cZ?Tvm%c9%bX+WJY`pKHoWBQ6k#rl%ClnE!hbiYRe;^7?=3qY-p;Siv1$G zGTHbzSYCjqr9~_*PKdOsfBIDJ;_MD%SqOX0D`vcO-fn6MKirB$vL1+FlolBRD4rZU zAd8xJ-k@uDc}N#=_e2Hr&U$KC_kT5u|6ANIYb1Qt>kfe_Wm-)snGV%sk@{!%et?td zMY5YI*tkO;zv_kE%&Q$zr1tWw3(NVZgMEnHUy8=qo;9*jjdO6LNG!;vo2Ygc_}Gbl;oc;GfnlsV%xy1vx|9O>Qn5@h9@PJ>tv;~b z^Q_G{kGMe52a;+f{SYBjLjRv zWLMW-$qY^75dEHFet+!Nkw1H2O!dyOFl46aV7er1(hgUmXOy}$J(MLK7!UX5*#({) zc+F|IF)~%trU=|`yN!}x#PPudYl9=shPN`p^`^zRl+kJ(*t!1rP(b{+HQ7TeSG%1c z9>r_w!Q-M5$eZJ2#eLiNUBrAZMqGYcb-*j2X7G_I1@RY~QeVceig;A=I|!TuGrJL8 zqf4Vya$hQY89~|Y`wH&|{@yRXOhJ!xHD-!g{le4rq48?1!Oq}k9vgjrW@L>i>Dj_C zwc=PDZDCIP?UH(-)>%UI}5EdMqW4p-|lw*8jvR`vcn^Yzs2 ze72s=wQlmQj9V42jTNRcd?;> zMi;K97+R_DT~GiISe4?|#f!hSxDGdTG|ZqXU4g?C%Z{OFT!EDo!6F#-C{1zv941J} zDb5uNp}GiOg1lQt7wClYO*7CWksT>sj^y}Fs!i(pFM9?S&&+oHUYZT*R`M`GHUMX= zbHZh~!PYn7gx6RC7b9qEoi&N2Pyk#+n9JoiC#iOUW$$Y`;FS&Kb-J|9ciALz+}@C`&DSGsM_9pcg;Ef3{XIOOhg`fAa|oLAt~FH279>jOHk^q=~i6u-$QbpmK551Fdv~ z=EL#fOm|K^?kto&Cx06*yD_(8nfqwa*;S*{UKBz+K^njPtE9YeEQxrB2ZMIPE&U`25Gyf$Lj63+bQr^3xwtWRQl zf~Ok-DlfQa!Q?S}^U~I>dikHw*e>t8=`%vbfBQ&ghm9rv^QPm}oi>toKD;$8f3#yc zQI`1#k;kQJ*Kd0pr3~~tc@9_=)J;GTbwZe=Nri3}*+R`Cve(;LBb?~6XTKv66?4js znymW}81=K*VGesw^O}C&DPdFg3{n&3K-Mh-biSD7elcA<-6Fae6cmqC~V=ju=u49DJ>`!epC zaLZMn8RhM;J&vg*cvbqUaH}ne@!Y za2MD5iW2_IR`d2swxSC(`w5r~U@KhuWv%kVr1yW>cXZC%e)_wWwj zt3i)rt-^#zYGJIoPg7Uc97f4>NiUsCFJi1)`|^B{xym47FvNe8BS1@eOiA}cb(0S5 zu8q9Una>U{a5S5V)tajr*v`Ye$-grL5sOggSPU3U&)jU&QXb|b`Xq8~rW)>G6v4E{ z43!I)Hr(pZ4-~iZC!B8+0m{n(6$VSI7Lk=c3RxGSgE&ge)65AByg|Yh;w<(wkdB(2 z%2=2USq_S=TaSYpC!+^oXaA6X?cJ|VqQ81s7vilT(gfkhTgUUzr_H#rYDu2}%ETy6 zw&3fuQzMPqI0%8}@%JB2n3T5o?zi>hES&Lld8f?E=h;xUL|7cK34NluR(Mw%C0p(# z>b8#9sRvJxC+YgZzUz)YZd2JI0;xSAbX587Cq$cG1^Kj;*5aGYE2 z4jrr9!n^kSW_6c`yV6l=8|o(j7qtf^NR`{25$;iFkvq|hrHL&5jgQlAs=#DXNQiz> z?qrgg&yZkusM7Pg6NQ6E7`0fWXm+Z$1TiRjGoPNdzMNqt)z}bfr80{NJ zzgzzs9W{8RG8q423jQGA?Sy9Ss9pD94H6zc7g!5f_8q!l8@lFoEdU7x_)Rh|DZe@p z@g8lFUuRuXC9BsueE5*i(zBqNQqfkzLCq86Cy-+QXo@dRF9pBfE8BGoX7gqag_GCQ z4jtK3Vvwxz@IA;&<442Jf3s1gJW*Xw=~%<|j?#?Rdpoy4{u&{`iMMm%4ccyzWc^&U zfs(LcHmZkH)*@NuEEO^a412P64@H_rw@VmQA*2vy3+Ft{g!ZISCpA4CWVk=e@ezy{ zkD^~oLmDpIcOMWVW_3r$6Ki=rs|Z?y9Rx}$@{!-vo4uSrjwNN$uGrTKr99m=;0OjL zviX7p&G=!6mQNW>xm5~dCoS_s1t%u4LmnPF|F&aVR;=f_dx?Gl6R{J8)<0MGU2Y9) zeKsf&d*L_;3NNsAz$D~5HEV!QWN5qvA7Z&_sKbsR4Aa1kHumw2auo$E1LX~`S35SM zCpFLC-IhIBV>-hg{)hCHG*zcM^Jt#zn|hpk+TXr3HFJmWBDm*>)%J+_!4Zs@d-dy? zW`|8W=uUb{ZFedF*{l#FB=^Ut&~xYJH9X}Gm;1)Nt&RE??@@QreUH5Ry>o2|>vK`bXruD55-Xu8;Z_79J7G7aw=ymF^g+G?p_ zLS-?7t8SJ1chJTR;p)1beSWkJ&2(cZ6RifWRl8eH+omWW#>LZV%-U8AH(03Kr*R@} z5lg#oKz7FJkD;1Hu{Xl>neSRpNMOv&;w3X<^xl#=EFtT0W_>jGVrVIbv6$&(MX`?k zgT|fE{nWcLBGKtUiQArd%0SZRY{Jc)&~nIwjP%WAqii6l1L@AcJ$oPUfDV;jeb)ZK zeO>_ZvMmsi88fd#u3(yM38Zn0(A?hXp?vA=^ivq zZE&(a;WRUmr1Y{KtB(#9Pu>rv4sE%>+z+~HL6sX=`wwxIcZPLuSkMt892}}uf+0(p z@r|(pyjBI=6X{>|mSDcGB4jtt9|mj5BNV#ZWLW?z=-5Bfnr15-otP0?sRtwX5l$_Q zPrVRHAvZz^L5yCOEYn4HSkXj0s{Sh^h0=kJX1~=Nj^u;*Jr`mSkkpmUhT0!%XqO^0 zodv0uZcs~lmI;mBc;}~>^tP&YdpDo0-8U6u;ad9oy*=Teoo(0o** zvS9&Mtb+T}fk@x+u%opr1AfBvY(CbW7LkLjSh#NO{memB^!PJZkyU{=|1ckA3Y+2^ zdz%iN$#}CvSL;smO)f3Qog2MuIHPcx&YCe}v}}gBzni*G#i4H9gufq+1(tF77KhTfD!Z3(}9oc8Ix+#~#H86`=}+e8P7B0mIN z?qpz{P6jHqS)_El1WBSZ00w$a-RuqFrCo1FMXzT?kv_8&oXu-5U03?3Yl$z;K?I<5 zRIQGRLd^ah^|lNbpHdIebK_2;rl0WIf~fdq&y8t`Pf+WQ&#B=P>llY*Z(4mVA31LG z&t5o95}Dz*7zd%=tKmBR+`J>FZt%mfR^nu*X(KttVgd*w&nq1{T}X$=*{zGR883gZLdYxFpL1AE;=A$ z$I;ZwyN!%#B!-KUexHvsm&YirAC^hpP&<7_RDsGvQ^8LCOcjfZA=@)eRg+sK8?E7{ z9X(NfUzTAqex5(yg~e^G4yGNgU*0O^ZZ(V4qf&1!YFlNmcKQ!B>9Q7(i-V`0%{g(*V)vR^5+#d? z7;}+4Y}|>dynRG9JA&SH=S>-pqitB`Uge z?J|rHEcPB6^Z)H?;Q0T#8kji$pR0kBjf>^~WG2{I{*SA{?Y|#T+g1)zVv22OMC$1| zgoK4{{yq?qDG*i{slcGW#MukdQe={W#1znyQj(mKq3+_lZ#y^Nt32lal_q9)-Zwn- z-}Pqem@F` z{(-0(Dl*}xiV^;|0|e^mAewjg@d$0uXbSZ&JUrat^AFTmN5Fr*2x2NB@F0gDodql# z0XiU_Oxn=cd+)W#HVHA%L77~PwXLn3NMjf?;P(!3fY}L{y9ja&h%OWUhgPHZ)6=1HFpXZ}du&o+u2m$oOUqr|EaqOKI-fAjBk=G-w zk`_C{@8GLK0dyas&_s7OcvT*MflhR#-3%O&q?NX5sv>8Y&C--2CW4u3ATMX z#9?9k{rmR=>g~I9Zx@w;h^PS$g#n@&+*zLjQaL>C?~c z&81U>ZwwUH_5Sw%7BJGIutnfzH=PmG{@SFXgt`ZPafZ7GZF>#&17T)n_6v){CjPez z7&ZyV2~NHsX<(G`!xKMAG?y`ds@1RNq8q$B3$B5F#}vbepkTopyoa6~3z6i}pGV$& zPd)82db z;O`$L%zmj*up)UnAZ1TrpifLlTl(e`P=D1xI*EmPn|d*fK=f?64vA18>TUs$b)G;a zw<7+1qVB%kH^G?~MsT8t(yqU~Vte`tos{P$-=NT-?j+wN1uPw3WCd-LaGyx=M12=e ztyEzw9r@REr@dAvhwm!yH_|_pC_38R2fkrOVx68}>A$Q)T5<@f%!llA3L!sIKi+r1 z0)6^g+E`VXw8I@rGybhaTKxvJ?5~>*tA>wS(nJ$?EJ%J_r1Ak0k6t(mBilz+S2Sgi zD$S*nq@yKZ7Tiya;@(rdjlVFJlblg3BD!gvLbqPQQ%AEA4Lo_VqX)|*t)^gag%c17 z@|$r&*2#+Im*j#ZQ~Sh^JojQbUP8*(5c@C`y~T&(enp0*PFrpY$Fc*4272P&Y|NC> z#J5Z`_e&bg*q{D{a8g{U*3pGM54y}UlHV_n)_}UceMR51hSj#(07iV#l8J8xJa-_Y zfMO!0X*tKhyyj8R%;97l7!=yJg-0M!{fOHwxUEZvf=h!+_w~qD_o|JxcdFTF9f`+x zzNZR4M|2sNZ1}eJLAV)K4LCA`NG2={m}k5@O>Li3TGtHVIGck}5YwS`QB>5B^~ zF6*4FK1X`?a0Y7;5nca@oJG`j(_Vvd?nlq?AH8ftAwbqgAri!xdMcs?ee(~}*70$g zr=&SU?N|P;l=ZPW()(Lo;SGPR;>@M`^GEI0bOdt1qt*CvYk8oyihQ9oN`qxqs+~y4 zB0f}e_R7s8X%RTOjhh@*i(A(9O0Yx5E0HuM7UWv&iUQa3dI zVJ(We2;gE~Ye0`voVPq>#g^x$`Oh?8y&ExP5dtoxQnVBC!WR$bzR& zmWt6fOBN?ev9mPg<^6pMw=Mk|BqX5=#B6RIF_p?O^F#dJe_m7^)N;EIo(6HNy=zkQ z0TWmG_NS#r7TDj8#c0v~x}xc8Oy)`eAs$K-yVO2gr%zvP8_NFZ#>wG))Am zD-*}PkmP*LJU^lzk~@DHGgSUTF2O>Vj_ovmV|gjZ#5~iIHs2jjh?brb1R6IgHvYto zG~hH!mvlpIJ?^4T*rXm$=2E|fZii*C%KAUpI;X}k0yYcBY17zgY@@Ml+ivVM=ESyb z+qP|+jcspt_hR?ryP01wb20BZ=XsJ?<7{l!!yY|HpOTu|@wYn*_?&CHR~1kcmyb7` z7So)zDb`@nT`D~bB1EQ*th|3gYyaxL^fUkyH+X3LU@Q{)g+tMv$I2;h^$({H`#r`v z!7OxvvxtP~M}%$IhkLofVzP&%>kdGUV_vbq!(;Ry+sMGqT%+V!o!hyvI2BfW!3{ zY8K)oD3Y+YLs!ASt4FxfEx5~NRF<+OPP}~&!!X?ok297l$bF$s4 zKsNNY^FXY9#wlt2flpJAn!`z71;|jmC+}?3y zM}^aEoaOCngz7H;IeoL`K#2Qq0X8Len-t6oVm8DdM=9$sB0zR)*Rbl!^tfAv-p>Q9aqMvW<8W~*(izsq!T#-^K^xbYQW<3Q3vBK@TubgNF&BiG zvO}GMEedJKIC|k#4vTK@+Y5U1I_qR~?M*$z@o41E&R}48T zyfGCZ_Qr{yIpipv!jm1<5bP;Ps9NV|`uHb);7&A|Li*0#4@DJlM9ED|6RtSXdbnxV zCrgY?wNpdoIpGn99J<_nba;+;n9CkTqK^w3;ekRvfDP`Q)~@6!2$vNxhkFRh!V7;5 z=XPa6c3rkh_Mku*zJ2ebCfWX-KxfaEt-)-NJvPCn@U5!&W5uqR{y8x$l{)zHbIwHl zH7}Fn<6ly$!#D)oq(Ece%!b-&DnZ6CKb`T8tJ=abJ}r6DY-C4ewr$tWP{73O9qYF4 zM0xf{HOy_i&vX|&j7a>d-OQ3_vc#tDTzOw)Gs@|aH&*x(mT2}iRV;K_iD=w>r))Hh zDmEx7vfNzo$?l_kcb)C`O|CMg;bh6KayNw6rNlj7xP*ED3yCj@d=x0qC z)g_T}0mJ{91F!t z)V2#FfC(2#?`dOq2U(T))X70S;iZCuBr8T{E=7z4T37xxV*E6m`;J)_)nc~EOIWs1 zMfh7JmWCN{Q(faI;bcbABmdZEY!$}fTwAPO9+#Pmqk!snj)!2S&<(8DgQxOdW8VZl7={k{vtxE?PPCps<}NH2z10*Wpl3 zqW)qn<4%cJ@Jgb(o@)EsMt*5BqJm1F7b%jrJ3I!EMw|Ek%Xa_JhMKceG`q4?sUV}~ zL>+zZHIEfF;}8cucC=B2*L?IU@8}IHW0+|sey&yJ7PtC{q8u>X6n1eH&y`1XCgWZF zS2Dg%<8E2y9Wxr=G#9QVk_TIED^rsVpdkQh;$M+{6ZLh1L6``jBzi!q)bRJDV2J5x z6LbJjDLwD0W>zWB(etehtBga(=Jl}%Y@U1tgSqeSm``KJC36Nc8IHE#OUtY(_Nswu@3 z#H7bz8Yr$C=Az{gVU|PGOUBTU{sUTVCUH!vRLbkkT1*TUo+!kcqQ9{@b`p3N$?E%ErTb%ux41bl`RUW z_`7*D5e_eUlBl|BR(|Q`hnyeeQJ<=eviQ62%DZT}B$wq0UYz-df+!LLTyfkkXJL4y zUAG1o^1qj`@9X2;p}W}!{^qRo%@|{F^*fB1dvN2Ed649vb|xzvt5O(`g(0r@P|-y8 zUIepoh~R2dMC|o0VShE>AAj9>x03xFqyGP-6E@h04r%3dgdDVn))*UL^?j_6~a&A1f>{zpA4vP_&Xi zpeN+k{Ho7PyC^RfOb`lAQ{jgG6)~H1wnLFfAr$gN-fvPDWh@w@g4-;7bB)pOyQfco2ip2B%5ciEm0f42 zxO=~KDs>w?%eK)p(w>BaNr3(J_NH0s4yQl%9a;NZH|r&2{(5&`5VbNYXV46`GCqDI z2A34V zGJ#;?hMkkxKGdmOR6Ll_3M5GpF_A8g-YoSIZFGYuic9o0N^%fh5q`48dAiMXBSu^? zE2z;w4G(*V4g5o8A2!ekq_e*5S%)}|I23Byr13N$rp16%o*)_#0EN?_!qS6e3S(mXJM*O%fuMn_4{fOZYY@;1?{tSseK#aL26eyR+RvkLDF% z)aR>2zmMr8(7zBz6yWJeZ0O`*JnLaK6GGUre2T zrL7~#%)kXnpe0(0-sOc87GWD>BC=H4fzVfEK&T0Wn{`l)!`oxah9s9ZCFkPIx&yM| z>J}O=IF1rs!tm@F2ww9|Z#h+Xb91Q#o%A#1=tOB96|=#CsOq#A;N=c0*mOHW|4F>O zy2V+CQ@&Eh>Y;FTSxX*Wbi5NBWnxULUCi9jW^`;I@Ie^|$iIlms_JSSnsl z(q0!t3tGA1oj3Q1Q2LKq7eONVFISpdSaCBvIt*5)@&?zUlE98cbr4QmdhzDa22AO* z=6d$-cSZc4n$pgOr-p~qqQ=Tzs8FM9Kl_q3Y~1xN>XKMJ#FfHcmUKVgl*Tkh4M!ri;0e4^_+KjlT_)Fi@*Z^1~#jE)Q^CFGZlS!V$E zuNX=<_Yv_nI)$dXfG3^2#Oe!?`{69;F@~vXoQp2S6t*j=c|y)qFy&4fAyXW%y?{&* zvFJk2Z99K_{>fDO7?HyU{>y-ZG{Net-l>tCIHk>XU?NNVs>adMGj6EmARSjC%)B_2 zC;XW4Vn6kcYKzP2e8Gb2?Bv5nTF2;O*v@PswmFRYdo#8>u6BuBToJ@5>hk3=(u25Z z=unMhpvgdgd@ z)a!-P02VeSooAyL3l!Xe%>K_Plg2-n!QucM za36~Kpi!W+Lmmc$OZSp9OT#G8Q+e4VPu+G+>hj1ZJ&=_{aOx_^n!B$4?JjG*%!?!r zXwLVtHkJ5;>dsrrJmsjy{759wW?Yf96&qgvE4-c-35+m7Axw|@IS_oLLl)+?&}leE z4b(5*xW=@J1Y>z%cMC&6YYfk|Y*ir_Q;kRJKvQqvMeWZ-9k(ACq~Gvnc7^=CS5t1T zmoV8?LFqBC_$kFw{z&X>&!y%tx&!)^H8L!zg$!)DIY!h^Rrd3`@iaF8>^eix zRGA(xvYNg53H0Wf11c<%{wJ7l&#cT*7Z%dF$sX}nDE}0E-Y&(eS607ob!X*XB@V?- z%aAQv$WXD~S0nTSLdnbdory30_(S|H&sK%Y!9Y{btB>|f#Lmb5P(#JBxH)^2A!wg4 zS}FXa&5en+yDEc&6pC1WThJ;FIBnh-!_E%w1agwjeOifVuX=9zr$o$LP;F%X=o5@{ zzw3H#ye<-+VS@B`GK}btFV?P9CTBawjU?s6AN#J{UmElcZFZWeJv)07?cNG3x(un5 zh9tpzvQ>fYfb-VNt7;b`%(0 z(ZT@A;46Gz=qG={?`7o(u>HW{4l*F739MFc3}|BE{8i|h!?ZfdlcUTO3+1xjQy&s1 z@{4eKCGOIH2=%?O{IyK3=J|8Xi8ep#*u2xYQD?Ub-u7l9&AGiuu>-rMG}$L03wnK& zf1v@@5}V1vJvmAz>CMSN6&nRqX3}x%lj>Z@$sC#MAKl$FEl_eBpc1un_0dgMa0{J- z*tV)5beF7_ejctcelI6JvwrE(u_@BT;0=DxRjj}<^*zP1$5B|KUV_GetcHDD5JBj= ztkI)}ITSgw7{B;ySOxG3eDpVsFcb<+v9~-wJB<%5POO~M%`YTdQ)d}P_kbvizW44q z%fvX%(ETY}J*FH6j`xT!NV->A)3&InBe(FGY~zb+x~!7%H`j~Ksq3z5j^dJz;PhAA z`(iYP4#V4X5QFHivIss7=RuJc*_tN)O_3X#arp?^kY>aEj4_leOz(tJ^69eV;%TKu zvXo?b-N$74io~e$8;yC3*FmE5uM4gAwc;7jsdcJF_05g|8p4y}mq>G*>Pxl$^{04i zPN_JfepA3g?e!8t(jJbHR~#XoeNu+_#$nsP(Q6iFNbpPvdnnWP>UKvVT2cOU|}ofg)botl#I8=g)|wN5!k z!WBNPpV}e|z#iiHhKA`>ve59R6I@Fi$@@^C@S+BEn!#Jk5sfy1&TX6i|8eppMHZO*5&qzC@Q^YU8aH)6N5>{95Iw-b3nn&o98_0Wjz(zu|udF%& zwtZt9@nenMF$^sj9&q-R_k~E``|Y-ttvEhM+D`BSpPIQ4or@rQ1uqJe?98*$Ys^^Fz6w?6Pv+3L1B?cM`NwX6;Ua^M~M!LH=oHwiy=~R6k8pA z`|8+3et1V@(yZvbIFz}i(vstQfKqh|IW)GHv~8q3|6^$0Chqw&8Q=3@KBQGf(bfmg z%^%3q<{ze!o(nORG0m1V3Tj>!j0qL+EXoBCDXGIYEfzEchtuDBbB5V^?FKY=SsHJu zz|rMzD# zDxmMT0UckXEBE?bz&68EZz>-tH{%)V9S`|y0=2J#{oO^VuL_w3L@O%Ktetgrk>1~9 z{-K`;rc%}GZ-EVh;N_IZRXha56d52Jw<}_H10n7`u#(!xP90_8*7ng8o|bikvU+D63*pO5;yH4pvLwu|U7Pb12tohY^N2LC6NE_a$9c8m!;KW&kbhyRrFAFP z9&%5n=}sMvP$zd4PhADE`jI1BjVL~0oZ-cb5=nDU`sUkfPlid$qb*DEau38q+*B>Q z`4HH*(hYa-{Ub zlI?mj=@n6@$8Zjq7psCNShIV2B^}D5$JA-yUsYophrk~W*ZC~qY2;K#|=jIa2z-)o1h#qwIlN@ z)8b?YOc)|?FpjZbKLIV5=e$?x<$Hojqj#MH;v1#KKks_;%4$ez8iRZ!pE`) zyqI1*v+Mi%9jp5PAO|1R4}uYk<)hN zJhvh{*iltH>ujqM*U=(+=w_6@Pu5Ux9u{5qy~oEg6W(!)ntITox7;e~WuuE$yEmv4 z>hI`_fok+bggK6QG6@bO%XZ}uX5)kB?^5qpqI8DXMOz2Y2iPjBx^jHKKmAFI$jE23U zk~NV#%1kZeXHj4}LtJ?YeWV)!MH=|8#_hVz41j**3_#=Vu}2$*KC@F_3@(CV8&yI%Ici?k>5$cnrfB5T&an-b7$m%Pn4a3=0jkfi9(qa zOMVtc|3p>HB)9JS%<|?sS(@C1IHc0mtR4-Xa`Tu{tm-P;Ov=9h++fyXvJ)0AZ`P^= ztH1QF3yHEZ_4eKTl115780k~+5>0WYVt1D$2WVx7^?6HBPGg|pK8g35 zFWz8fX885rWsZMicGh?#1j^(ZeNYG>;p&l&RI>k@_}%O#ta!*j%?1$%1JeW|QxB|; zqTd`XEx}w!0R^t2Ur0hg4s(bPvfls@;o$w{aH(^)#bP<>c~zg?xs5yhx%3kc{+i;;=`+Q4tvt$}>hCLLaQZhx?y=Vn?m_--!zDv6xXo5w8c< zci_EOX4b9(VE_ec2Slxa7&h=t+fDNuz28`Bv4_eQ1Eg^Y7RdK>>C0S}t6xXJDtZ#4oToV`IaBiZ1j@&F54=K7q9C z%vZ}7?XaNRMBP9p+^)GYI%i5U9Ewy}EqQ7wh{`sInlK z4-syy5BS9QP@)fVPWYhSuMGSCC*fBx)jjqL36Q;R-Y@UE-q9anqOGqVLSH<3zpTBO zz=f1@`Ov=Bi^{?tA;E-=dVE4i)Nx`ElVc%_j7fZQzF>dD3VZ@GLhtx`xTrXABOjya z%SC|k`G*?FJCG~{@;t2`WR_uJ0P@90)Qk=t&b8M?^4VSZxqkRnbgifGsYmp66~Nr7 ztplXL0P9}}OapKyr%%Z~D3uuK%^*-_8$WYC)7`NjP0iu-i8_=(`nBR$;&!K zzx5QLTk88qSO}>6M-PSaadj7b7q=H0%Ix9yfv~~IW!T;(f*KH3Fr%4*>`BCc=$Xwb z=q3w8@xz?x|FP_X^Nt;h4n448e+7|14IA|Vo%kI738Ws;Kl9z%-QNyi)pjTPN!{ul zZF?a2zx3fq@JZ+4q7h|S5^H)dlrX%7RKTLpds=wJn5|;N4c*G}!1EvLP0jthlWz=G z{RL}`DVMwnuwjkRJU8ag0$9mhASZq82U**>j>hs`!ihUH!EaX9 z`Z+qKRF&|jAWdB`&nY28%oLxjaV+m$Hg-J|sa)-q@TZlE%cO_W^82P%R}=!53c7#W z^8`1#*)vSJTQ#VYmxdr!OHUWD#;q-E5~zW1#gGa1Gg+qe+t%SCjB#A`}I@vgY@H*v~S*gT&}*M z#5Rb-!Fqn;?8n4leOb2;yRt1p0$`5C10lvmU(Q{0-F2Q1iLB=Pecw8jAr^?-F0Bp~ z-FF0+sMBl7mBQ`jI|bYB3A+%k!sXl$0GjB;8;(13IY}esB+M=^@5exq^$22wcUt3h z2Fj`V`KZI;rjL-@*Q51jqx@=SC{5Lp+6pzj<sxC9A&w0LYfU z#|mYqTQqc%T#TUUuZ(@0gG#ooBSZgY$@thtWrv#FfTqRZFH8e2O2mshJH;lVtH|bV zILWN)mhLcf#Gyw1>o1Z$n9O(G15XmUKKEHpwUEJ<*P|ud=PmzPLAOZP57qZMr(Qz; zqum4QR41efFv_OdnQk6YQnjrTQ*Cs_uwA)spWH%3O% z!$r-88-C>lZmRB%9+QE;W7+1kIh7MDgATUD{+Ip4t{UBpMW?XiU?;EXmvIsrRdC}O zC-j>35Bo&&yC#x;@LmZmHNDL=Zu&WwJnlM>Zo7A_Swg1pB;!^gQQJt%<3nxb6| zP4uAG8R-8Cuf02R!-BVbX9n2HF%8{KG;BK8k?C+OEJ$qfRsn;pinu=~bF{o8D#Ho6 z6-RMq2~7T0tx30K7hGe}1%~nW`0W!m(kY~!EGg*J*_lDz-mO(wz0F*dZkTZO3A~{z zmO^nqzjLf}0VQ`^B*8d%Zv)=I2`#&z*a52Oovu{H6jS_Z=3v`#C(vPRH0t52;W~eg z6H%4%VEQLgmC-!!TE3w>w#Cx@_eXEO>fa_A=m^%|{$h2V1nwq(U@;f5 z9sgRscu!sD&JNv9>IBF*&dxHSI?F^T9cCi@=aUDeF60<0=oeDia&~wk%hQLGSfSu@ z7K34G+&T?@x)cgfUP!^LJ&AEx75=lk56=efLs?@dGwD@f5TUYR^VrO@6>V?=Xxco{ zX=qD04D*zep-u^$si-#QK~R)@sD&J>(;8_bpYG7M)sQw63IHARtp4zjnJ2wdc4!at zn1x!c+CPF^6Jo$Z1F45-70v}=oNMrN6K1`UA(Z0hFUyEn(vjftilDpK8=HkkbRxfa zff92o7;2al9vabnW?!=L?@Nn;Re@%UCbjl+d)1CnouiRFwz^R}ro zBC1~#yN|HJE?D$XyxlUFAOVe@wS&h^Q<(!ajo+u51$ljBm0uGj` z^}j3!D*1(4v!kJ2H$s+twoXvB)_Qc%&(FP*5*4)EPXK5&@vVa27+RfJ`^UIQ1aO&HN=s0UH~oSnhKV&~<&+tgUSn@MB;JZuu{sawmG za~h4_nxAI)*})ssZ1KE2_k<>I%V9P3+hKLwW>qYP5|WJJxZf2oCtsTn$ZA7q-9D2UL z;vEEtdQ4pwdFgw!F;U{^v03I!D@O35+X7U7N}Lb(O9LBiPTAM(&9BM=q5QlbHvi4B z$Jd0Y1vZVxcm*!W4mQbuXmCbhC@aj%bQG2(9(xsXi};4ZB#p&m5M0M*#x`mE_{cGT z<~I1dD#&P?g^`TN7fqs*qO*eVc=0(r#GU)ljNhV_W?_`O~s%c87SpmAHK)XUZ_6YAlLxLV*Zk+81|V;jxPFR zvXjxUm#(E^=z|TUGZVaX7OCqfU16CX$pgbG+L4_K$#l8cyYVqxWJ^|2d;XYPf{5Cs z#Wvl#LM+Mw{sM+R>-dgTToX`(ER@IUQA+>VPj`jR^L|78_}gq*P10hpXeGitSo+!7 zk&c>4x2@i8$X!ORgh%Jz^{KUo|Ayqdy7izC6~W(Lu6(;%^d?4*y!J`W8s#Feb-KZ) z{EJ6qd%r@i>40h8E9GOMgF~YsaX-hCRKB=MyYMl3*7(LQ1J|hrOGu#h&LFzVeML;4 znhbyQ5j54Tvo@po+<#+Fx$X$nbv_>2iwRz5pDPpzZ~smL3wG{C;i232Ldkk%3M6f|Sn@OPOpKXl_fJc{;ojoPc+5k|1YzYlSXoo#0m z>z~C2i)ET>8^YeW5ejI+)l)oDv%uZuAT&RQx`tCM@7HOV&!NXnC{~Q*?R=D7>8ipi ztEuQh*CxXDZ^D?@T-A#X=AtdBaCS_cQH9h=R#N1|^(m~D%CZR_^md+pZR&+=P)G@` zdsB3ird8*b2Jzc$>|o(+M5V}sp6)ZXs)L`*u3TN6cZry!6a#WMN~XO_XlhwYH?T^h z={b5kesC{Q8^Y|H{2sYvtfUJ|HAp^lQ~O{U-(^=BqxM3WY(kb&BBD?}OkOz{qmx<0Ly->^ah*p63N;?km_^@bhKq@b>6D{d zZ^;kXvpOue&#MS2yo>h5waz7+U1Snz-Uu{KGSw2d4+CE!@$iWVl=yYRZw`^UeG6zgN3iQ$pT&+dHrV=LeMM95p z#eJa4g=3*~+IQYqrm@x{w%0IOjXUMYB(Z(shmDm*EI#eptbmoL5%r2IYo4)$!@E`y z6wEJbPaM5Zrng8I=jE%-XgD9Rp&+Lq=Ah_v+0t=^9BH23qPN^lO{W4zhptl>I4Wqe z)b2AqTtH#b+$OeK#s|7r^d_7LdFb@4(rJ=saE=Q#wGtf3wp>2ieWzYtz+zS#%v|>J zUM&2@cQ=M23HlLoqL(qWGjV85(N9c|>Gy|GN~$L8c7yh24gt&IaR#UO0f9PC`6#bh zHB)leLyQU5<+FmL!{)V}Hc&V;o<#IlLI70cPsO!3)f<$@0DSE59tory5hGdj-s! zTA9Z0p36PblcSAI@7hcFAnDmo_j^tlKTB;7fBAer+l3FmIxX9v2gg3BN;jQ*R%w59 zO95~&T7&g?>Fxh=b-ES3WXcOcIc-!PRcDHHUP#1yA)0ztBRC)EZ13lI$h_7Kb@c_; zG8}1!2Tbm-LP6i{{&*6zl~9yxMhIK5xRazG#Oh3Nk3w=Ykg6;6|I#Uq6qcgb>!t@a z80#Oy)u>DSq%-MFU`;k^5K|jnT1xB-2n0qd>TLH1B0@7V;5-7q_TC#*X-Y*>oKm$m z=d>t~&vKLPOA-&Xl`Bao_>)(!ms%-SSO2Pk#CMYUs#kJ$uO5Uh&kr~+WE=FY{^V3@ zE+Dv{;`BI{R1F)qEQ2|;xpg&H`*34y6uAmbKY`Cn;Wg*%zic`be^~k*a(i?fkA}UqLyuZkL=h8#{@~NEl+1?Ydx^jZ;u~T&_Ck zXKc3KYUtUU6FK9m*vRwew}F3Q)5;w=oIzN=|C3x9qKaYJs0nWz*r|2CXFEEQ{M9(a zbaUle(RjHO=XqVnG#(0>$wrz&-?z0Ia4l>*iE)IHIvF?WIPoYgx++ekz>fqD-fOh+ zso@~S0Q-==gC0ehtakbeb&{P})ny8aM#&*1zHKu)x*7MO=00EUM1c84(~~)*Iu0ei z-3G#9%QK;F)$2e%-)7+DF<-l>!ZU1>bY*I@YNwi-O|@@{!cY?Jg#Gzv*bU@X@$^=c z=O6abt44HvW?gC?n}_#Cw)F@@4|b844JD8gIgm+yfh1wYizAM4$5u%9?uGG~eB7(IQou;*t0`cJ(y#F0?_QY69LuAwQ zmZ6}7AEWz5JW3E4wEMu=2RH>?foAj*m~C!Wacn7b6*GnLz*8jrh2H73r_SssbGciB z&-7psah^M+9Ps*0FHo)T!md7T%`riK#0;;jh!CQNCvh*;e(Cgu8H!}Hr$5{2d^!n@ zkiKoh{ZO9utAOyBj(f43V*$hch4sqbZ zb@G#l3BB3xZ5m7CO7e|m1h3v?z8{kwab(U*?3;ST8%A%wYRTr^eDIwMVx4~venW&_ zn>x>7LIF$*3*}~7oA5+jhqUqtB*Fyj=&gnCAx{n23p7f9b*O!PcqL#(khY;NNG-i$ z=b8??J0x+j`RGkBaAbuwh^PvSNRuT@yQuScK)ZO&y_^Kj%@@H93wmf9)jfafxLrjK z!8mJCxcvJAcbS0|Gu%qSv5-{6kP%Qwkj4*QjOG{5^f z(M7lJFgXdaAvov`sE851kjqWO^dtuT7UueAg@qR>T*akolx!)5n@G`d z2#9!JN@1aH(gB~&!?{fq=QDo9`=)iQU$)tvDS#;eXUd}-f`|$xYn7OXYF2vqXq4U* z;sMB4{zh!e*4cRFy^$=HJUZ~C{MK$R1lFQ`TDun2o`7hA7p79FJ?Wx?S(DwUT$7H6=VM!iW(e^4#Uhx zb5WHl7lV+Pguukg2==EeZM|U@v^s`b&DNlBvdyCA$riq3Y5YwEt-rblC&i*nX@CnP zMiiq&X|`SmqmgpEz4=~H-h!{esxF_CLd0=m;q(P387L0zhzvqwz4w+_)kgH7=9)O3 zEGVUE7Zrz?K=`EFheYS{oZ0bQIE(rk>I$c8{olISwKbL@t)b;PVX^(y-_B+eQPaPP(}Z-kYg(NB71nIl${g#1(eQ zYlyo~{--bYER{o?U%4d1JhsYylZtI(!2sbI~e8rRL;YLFgD zusNEYN09&TF7yTB24T9q?nS3gTsj-~W~vdrwRp05SQ39g;5RaAwpS=nwc z!l`L9dw7h#dEo3R?PFxYLn#vSoCwkPrx&}xt@yBV=eL+)zxscb=p5Q~WWV>9vE`G% zcY3!gG6$uA`>_o<)^zBqDOJVOR#9FZFyaZkapU3bS=YIXEdu=(eE?pO)a)pampooI zxhrp#Yv`jeqow0KsMhT8!o(ttgZuQQEax+1(z3S4V;-eL!OSNV{{jh@k8Qv&=S zhij^+EJc{#6*sF zJCt1e61MnOe6>IY=`EWEjc8pA|c&UFqwSsmo-&Aps zHz+SJt3U+_dkfhM#eMfg!q8z71Su2tG&jPfa$C4io9TIuHXNopzq*&6Dk~B@rYD%{ zO&`5Y$PJ2?=MLkV{MY$WcNpa87}&&7DaxzL%VD8F1qgU;5JNC}CMuvG9E093Kp3$3 zH+XXFQjWVR>Mj99OSu4*V z0ls7kPT9Ag01w1Oqoq8XYoT`*rFI6u^Q~yI;;#t_K|I3W*hC1!D&P9~#{*vsax;#EPp&IMo-{0@IzS!%9a{*jpjP@a3`FU`CIS~;;+Svx+ zpWDrIf*OAu@O9dQr}(-@$w%|?wAp#c;aj?VLo~1pS`*aA3&EsM!5zR2QO7GOuYg)` z4D9(NDgThzf%t6X;%8uczH$UazGNW+Kai}fEq}P!HwL{37{K#;lrTY*l;#XwoScn* zZwOlbAOkeHJbI9BmbRAUO)aq@cB9uSePQO-_$`IQ0hVKfGkB+m`<+K0&M%v|BbT28 zyyN}nM!R%$h$+R;J1$;-KOMTJ_3iLezP4xZVCw6?HbXL#siS#ePya$H zB)x?PFo1s6a`1Eef)OB!V@4-F&!3;@= z`t9Gjt^3oPQ7mKv9^T>cE%goBCEii`rD31XKsrt`%`D6LcM64D7i^oqXs0sk?JN9+AgLx0qX&{Kk7g9Tx zIEYcWEBF_m)Ms?e7hmDm)GdJV_LWqyb9nv^?fXDK^cAds0p|4h7VZ~QolI_sy09DK z>+?ashI2t5@Yr-g1#%kO+Z*vg z>=(X~fZRh9|DA*1dkaqS<=$XuAt!mt(i#2$!olnt_Qz$)@TFc1!pQzLeFz2o zD}6}G)QKKq?L<95Ao#*v1N?(2M4xpN5Y?~$dn6w5#b6+vz0vv>q89bQJY zxPPX69}swl{<5DIAm~EW>H*GCH&kghN~tsVl2Qa zxjKoz1lbyyiG**q$26E3UavD0p5wGRrrv<5mvNfJd1WCcQ+zA!uma}H%-^)*3PmMp z4Qrb7_BCwh%bV%0!!t--21!2$Eh;n|(?rSq%Us9N2u6#+fYRb_m#m!lA|5j3K`yJ0 z5X!!Ie%*>>&8RQ?z}|PRjr9$~t4(P^09z!lxZPO?-xO7E8=b9t^Zgh`v{r{CTxPm@)_cD*8vrhP~RNz!N@fLSQWCbK}N>WQrxq7a@Z%wFw_dlwq;M z+=DjKY&2(`&ZN#$ z_x#7a9gHzr+OKEyT5iveovlr02#jbh`zf?F@(2ZdM(tne~`& zYYXKkO_Qz4hQGzkif-az#o1XoY_MYQF?%7HFM?^l@WtpI!U2P`eapzE?rxqSmGLL? zy*mAQI*Ge^KF}ajXQQ3@Bj`mMF)EkIy_r2KWZ8=+JnoITkZX`mlPdHxJ+!9PjkSB) z;g<6pl6@)oN-Gm`pi6n0>FAn`+`V|~FamK=y~;Yq?SgivWmzpNUDR<*6HD{^SzL}W zoDxspDryU2nA=vBroJf%L3(snub|tL=P>h&VK5r_1VHenL$tLCQE~c`z)ZM4$6Z_8 zEu;B%eP=g$Y!noLq~R5SNxWX|z`cXCn~|xmeL+_X{{)jmoBjD6jjgtRm4M#0zQq7& z@Gjwn#;{yDS_?a9BzvSjrrrWVZz zQC;jp1BOuOb&HKlyY35ZGtuAbSpye~cS%hdEmyA*OJ%4oy`|F14q_i@iWbA{6_`}; z+_hA;2Vo0p<$-{Ybi%P5wg5j=7d#bMi9T5aFogmG&=vWz1-sta!;XQSa_sV z8>km1?I~Cx!Oz}H*{P8Bh)$*dzN&f)+h$;ei5qM?K#~C+Et4Gr))yq(9pvPy9F0nv z`jeZHHJssSS|w(*M+QZj%G&uyqk^nlU8Qc#x7tW-r^2-doV~sMsj(%VpL_!KBFMCe z5(Vk3+v6jts9TTZjtF|&jF$Tkf)1oO0pk{h3Her!UXBr{|-#(5O$2aSiDiT2^(xZRXI%?-U~ zW0yzkPBn1f{_SK9iq^b+%jcm;a&*IT?evrs8m%TEcp6=pet*}wgO$IFqW!#Q0vUn^0lfH(g*j~;4CEV6T z3ErkJOX?FRZ^A)?J6zC!Uz8q#_5;*LX)mWN4-3cDe?Tjy5L@@7p%L}vWlnr@WYLN7QSqB)C#;r$D#tmpvhZ_KoidfDK_M&rb z<%2g*Sqr{Cs-Z))0!!wLICn} z{ez=$wK$Q+;pj^k6|7+<91ZrzEjei3^@@OitdY&o&))|EdE`Llfuxz)S9IplexoOA zW!rL*Wx+D}M}!3Zq&O4hU5I$A@mq)aeHNS_H`yvOcu#2vx}EOzVpmaz%S}43n>=XM zkCX>SM;KB#+-hQ*nktTL%!GW#=HlUX7ZjXZCH}= zlGCLQ8BOs5#j?OCF8un!S0?RYpFoMmvak}xxCKE?+-*|g@}|dPAW>qgaZ@MMJFlI0 znL@l^}T~n1s{l8r=ZQoV?DxChUX%ED=k;>_8OC$kq{vaKN8#-+f9~}Kv#W*i- zuhSKW@)2InxML4pJY`{xesKR<;kL9~Ezpwa1^Fg&<(ARrpwH$!!xy>*6aBYVo+fef z3!*F2*}|huQd@cRYq?`?N9^3fZ2IyPdJ}^XQwm*NViJb}b%}Q-xjWo99p|E5R5kRY ziQ?O5Q}HAq>nC2ZV9^_ZxZz1kuO1P2K)|P8=dnL6{_hSpNmJg-=NUDM7%SAc%NHrM6htUv^)+wX0foxUHBX3 zD1QU-FMDeFX+@&VbDSbC&`Po8vV7eQe04rma*G(0X=dcxoM$q^uM|Fj()Tjd@(KNJ zqv*4vW^J{-9(G;ah)CelT_7c$Cq~QJZsvg?UOSKZP08vt^SbBUm#bbaDN>0F?|W?- zWt;-|a&mAcM#3?dffkW13H=O-rB`265}5NJdbW;{d4=quG1t_nXykUE%5zVsrjXu0 z#1dg}ovmL@^+=-obkPI^nsIvy5Bp)&kVnTE8LHql&e2L^MvtNkCXD-wwAI1_%eFYx zoq>3vuqvez?ihz0)prC=S)sa`hWP_{%{ssevk3|`frpRBJ^Bu%$LZG(w;!=T$>3>f znkQTD@HA;T%l-dQf&l0D7hYe%ex+-xS82Ct##>U}A7E(%S)-w}(msg$V(d)Jn9EFN zXJc^5ysLq4&BPWmj1~>!9|TisDUmMjqUsS@y4X^Ze($qMLJl@i49h^^E6wW5HSpe;p5$o<(OPz)*GN{7?s;UI zdyOrALOo&i8j`F?!t7d84BiyDD`1fIR9RiuCv`etn(9QiLmQQ##u z73q6fh-U_b#m&;SoVKPm`nix(CwGcnX`=!abGOFz-*)Jip2=gD%~@G^GC=IK=YEeE zlT@w0g!6a7{=RlyFH2 zs;1e6AYtrqVbEjE6~D(Jdt{a}~2A)Er9zuj1$vm* z>Wt@`2X>M%1*shl6Z>St?bgV+D&BaaWiOe9{XKBmBX=}aOlElUP6Biz*^uBl;Y$Xs z^mlVQhR`)5zvL}&`L;0pa-FCPedXaU-s6!FJqlzC;%)=wd+&fukT>5G5`>6f$_@r# zZ=?y~QiM`R+;qCM;ks!(AG_v(Z^5$Th3cmdOO9fkV<=GuJ${YBI`#HnM!|D4*Ie{3 zg=ca{T9I0f=3DxRdOuw0gDwpQp!1ryMvh_eeV*PVul0O|<0DNSMSGo;9$4?s691(d zWG)WmdG%cBk_v#KCNUpqa8R-c-rpWbu6JF@PsLiOBb5F_pF;@rv>!|95*bP2t=@ND ze2g+-aEoMt^plt&p+>5@2&?nl-9=BR4*7Es>SgdbW-5BeWOqr!M9)0Nx=o$3$&HDK z=r&)ymmE?UU0L=QLFLnvC@I~ePyTlcx9{dme+x%ExAuUTegVj!zju=y*!pEGS?GeF z-kg^hnY$S*xwsHG_yQeUf)M!gKVzkt7Y!}`B>5^CG1{vbPO!f#(-_d*0fMq4^hV@i zD2H*$;@+jx=l3Jy8Dx(xjj^043U&16yZz{w!hhZ52;S^c3-5$`Zb~4yr=iiT+@rOm zc)a>1i%o$g>(6eT)Z0bd;VEeDQ;1LLr=;VJz~8}f+_?I0+Y#FEZoy0kX+PA%P3VUL z@zryKSJZ-p)>}ufm@)z;BRqOK{kWbGrd%eE(y^uneIRxwEhS&2P^b^})(f{)W8<`U zodmn&4s+lR`66q=*+gMU5S5(ieE$SI6DbG++$?;*!duPcNsqExt3VDCUbm}{g zA@m>FWqyA5<+l@1tz(5Od+c(6?GRW$j@i26-1!{^e};RDa4CTm#5X*m8y-+3Zf%bx zno$O1aqL23AF{E25SiFu%BLdz5Yi2=Yx#op9OPBH@Ggd6tcPO6!d9e}e`=IcpwfLj z!}ORAc;nIuXs#k+@b*QsWa?W^Ca;~r9<))p*$wP=Y5n#HJumTLX-T9^dt2wphGsZW zS8*1#o7wd4RbG5*V)ClSzc1fpz_M>OQSAQ7- zBCjl`Hzj;zWE9)%f4E~b+`5orNA?Z+gFT^;od+H&M7)4sYkWfu%7L^-`2~L;^=O61 zYIfYilO!P%vD(yNdpyG?9IFXYMc#d+w8t?#CN}6+?Wl{~D4M0@w)MeVQkv>%yUePu z1+{sOPF-aSrYt@m7JhmirF&_f1y3*oUC<$HG>UTT&4N2PN?fCa+p!-b&V#Q-Hml@V zhf^T8e=Z$|&y_?(VCac^#hae$@8_q`pBu`RUfDMKT*Fo;&;mTQiv5 za2;m=MuTW$-mpS@f;u7muww1pw#_oJ?*}aPD`uS}uNZq zC06MPYn!BLwG6|K2If8-Fl1bg+I~1C(eJpamm+?DJo726u-GZ92e}x*0oi| z>!Vy}7i+*{*lt1BaSQ|>MUsw{svK-ou>B=p2zCqMg5-ht-HK9`hRY)BB zPSn_W=^N0zm{jh7v@Axc(vu+o9R6qIZo#Jt1U=dHlVPoj`<@BdM6)Y?z1%@&Ej4u$ zvA(RSMDBQs;$P?VvdNI`31T#8X7*JoJIR8_AO3wT!z2| zLJ2~hD1J-B1XV1=A4O)2CXSgRsXNf8GI$mQ0$35?(E5A_Znz6zx2clZu7C6>giI93ulsXWwROU46E694Bg& zHApfdqkRwHsF@}x#XHz3es;=&7g^bck{?juSP?6jr4c{!(*(Whqi5(U_V5- z6$(Euw-?m1CN%pPq9SMR9F?((H!IVETQsPk?r%K9_v1n^WoKaa z!o)rFqbKr2w?Kw~0tpb+r+84NU48o5`vjq7LnH2g%~Q_%-^0KD=F8Edr+~DRj{Pu! zy(~dxF1?H^X(yu&RM?ecU)eISRW_j{AKU6&z~cd|!kmmv2d~QB*8MJ%p`X0SuI{|G zo_M_xjEJPl^ek%r#K7OjycJ!N`Ly)br>#O>=lewDIAq}fwHMJV1-2*DCQAk4Dn;*% z%8l-n16L(HDigoI_0kSGms<|TSC!tQWR(aO2r=Z%jY+tBPYG2@B@VIb-;~6Jw&QP6 zvSh&-Zb)R{8u5d{7)~u%R4ElRg1RooF9ES}ewX}n6o>!13|1T*ZL%duH`ivo(VN1u zNA84*j^Nz@yU<|?ZDqO)o5 zprULYtMELn)z zqvZk^kDS6_#xO=unHnJHoCGG362bY9DJz-eCy~;?2mn6{vvnO9R!%cN0PY>JFAt88P2_tJY8;8eH((1hixdI`ES}dbxw)0JbSB`18QMz92%V)PGhB} zKcEF_wMu@n3H7#As5_<~SXtp6c9D-G=tBZ8lA|QGckDh9{w}TAPG$82(Io&^|EXri z77bbXIW@}6ysZGY4TLmZxubeTlFZHlv`mS^(A1C#rw4h%}!x+w2;>c_dtqNQOjFX{`1pV_78ggx})0)A=&)5j^2Md z(-?C04F^`q`q+xK4!=H#VzilGMYMBKIX|>sxvy&ba~vgW-js%mQW~eECin@T;w7`g zJ5CV`6ch6g(({fz*VHyVPWea4rpEnK{sAwtd%`%v7>^L~Pvq6iLEV@oj3o_vh7VQr zr?Zh39=Db^8eKSC3iKuXuY&15P`m&QxvS}6Niz&tG>8IMmQl1@SNh|9Xkj6poZ1_r zDoZX7*GLN4Clql^`lwcR{2TGQ#+BHCR0Vs(6^t)Ovd4(W#OinTv7m1D_T2HLLf*8% z>sHdA?*#*aSZHYNi3^qeUMN2kjoOyIN16k9wZZX=YE3NbPz|_!*~THr|;? zG@n`NTl7h^g-avG6Hc?kG6Bnr%M0j>c*tgD*v)>-*qQXBCK}Uc^1|SbK=qp;Qn8kH zkEi6H_n)RLahM!J7p^{|RZ>9cF7AXRBpa>+*sq)Q(~DhZ9Oa?`rwr_Gw6Qshm8}W1`!HOVq)2WzMc01E_7&3E|`i(eqrrrXmERLxX@E-kP;Tk7V;k z5Z}((_GjA^9_pwHHaDr|Uf1$+U-WX@Q&m9*zYSlsSwe_EvL86eOA+Wo8YqthyZ~w2{@SxG-<{ z;4|x?_%>}dib)9x5CI_%^>=;t7_+0Ji?Ou)bFD!rug5hU@i9bl-wfAekn-2h@4}4FnOltWB(kr+ijC` zHfKhkLqEYBjt4Aq!VxjDbvlQfsXgZ(dR^a@iZ;z9==JwRexAYVbwpi6=ZC@D#vJ-@ zm-j&R`u?#J{9UX~$d9QBQreA1=*4UQ)R{oc(qc&U>>Qx)RI!3Q3)Mv$B9p}m&N%}! zM3^?>b8zS2Tn@K}=>a!}c81Y@?(YY!+%JHYaBARWlE{_Ccirn&`HhC!B>Dn-YX~Q^ z?`H3ktvc5h=eJAjb7tD137eM6pP#ZME`9{SLZ!>TK(%@)sxc~57X(eIasp< z?@;7@t&Y|#=)B47D@xSNdMQF!lq<-oS@_}|x%7A4=QDm9me!v)DFg<%K_G4_sE5pf zFPZ@EtG0*Vmv2n$ODo`|Ov%0S1ZT#z;Th4$ zt<;;@Q5AI4Wis;aGC-5ogIb1i##9lgpXk%>}WDo95$m-B4;b#IPq$ADsf0 z9aVtiRlzEepB^N5XL&47#8kI?5;y>%1vH1Tp=E<#dZ64=_9B8MtLald?&#T7*ZdEd ztlS5?NOgJPyB{Ndhej727wjx>dNRqjl58VEDd9id1(`;RQi`NbOE^rAw@o<6+1qp; z&fDcVri9a_JquL7dur}%HsxP#dHb4BbJQ+k6efI`L?ZIZ;NaHo<3`gZ;j#ckxgYm^ zVw5ED9N8<1cxjeYZ6toC-S2DJYbuVjU8K3QCw#YUWR9kMLRHeT{*t1>y=Xfs&&&m8 zRWVzk?xb4CD4}*=$UauYsz|keH5CtA<0G>vT(_jj=s*GW8Sc1~BE&Xco?GD-sn~*j z;cvbZRK^iA?fd5u`&3Kf31)zFX%!eb+U)vo;{yg~O6<>JrlgRg;@_9*5$J0(G_NY5 zyK}D7uct#D)TS5&P%+CRksoU9-G5+F*^+Z;T9Q4?!uBIHXLxfXTfH&R^-OFr9@c9X zH#jKcu`RfCt%q6$ri@Ld>O~wlzmfpU5tNYGR*I% zeCSuB28qj7^T7f253Gsc=}B){Q*b_kzd3~47iGiJbk75wzL`G5IjKCm5|~^+WDEI^ z;iimyQim2^h23ad#~yZksm&|0SmGdRW0t`_?G&^TzumR^4w8D&wB8 zD+HBDZWiC`{$#S@E4~hYDeS=fAi4hn`EV9MSrK&qXN5+*_rBV`u+M?N`B5e7QMZ67_|-tGqS zcHHG{oEHMz9w1EQLxj^}tz_%`DE8axV}6+PI5*~2-a(aq{sOZfNTGtOn0wz`#6Z*` zsmS5|9eZGJgnLnJ|16yNb(cftUIYk#h%7z_{sDjY-~kCjy3KJ0B)?>X#6J*2`V1`0 zv8YF(e%FIr$9;zu)|LrG+Kbu&&82>3BAp*0@WB9(9)d`-ayiw5wu;0+DKvFKJQsFy zKHB=%V;QmC1l`(ROM(Een4sZUn9(7Mo zECcGdmX8I<^?xw{SGW*-XlPmk}HM?PE?YK zzlwLg7p!BMs4k2RFH9WJ=T{010sZVoN&rybPKo{jpepjMXZ)Ut9`tnQ^*OvgX~3d| zxPs80-543}lblgN{%*-~LBRzYsv`}5X;2fGnz65`w zd=u*js?z;xp+Q`n0$-8!5ME(nz?}x1{0Wug~72f4BP{s)Fd&TLx3xp0h`#Oijwf1;TJQ;4Gn~40 ztv~UHe|^3B@wH{Yn)d_l>obfPdGlY;<{ko<66a76Z_!hSLGEg>gV*`$HD-Pf3anG? zTk>-%;b4rK+>iSPR-v*KT7@2eYE52ei;*@$^Qj+~FIDp!RZl3q`&|`{fUVmSrQz=F z^{Phv){IRtj3S#__6-{kRQK-ka{P)yZB4C|juDyCUjLwM@nZ3Pr5g+|jOF(ggh zGhZ;K6@Rudhit~JG*hzMz!IBzv$s6_>>4advpp1V@bdPZlXPk00StZBlE#{Ya(~il zCXQDx8h}!$`qJ794>ZxOZP6O5Uf>g8GrRcIp&2;j<49%2%L|$Ck?7*}EFbWW06utx!y&1GQ_E z-K;hX2#`8NCR;PF>QZTf=aH|CRmNU==g+ShN3X%=U|Oe z(j>0WT;?S1+az=yljkYYoMe&fVD{?N`DdeNm!-k9`Pn2@f%+wQs>}GWqET%LXNRce zHb%Or*b+l0A*`kNax=BXq4e7p0ZQ&10UON9m&3$|yTf4Q1a2wbj*;37{qph)NQSr) z)2aTSmsS`eelp6VZ9l#2Xt?+C6-9ANEpDGi+GS4G%yzC6!-Q5|_6AR-Axa4MaS$u$ z;6BjK@bbR90J#M7>yWa&vM#xlZLVX(iKN15Jjs6@)f!c zGTUEJMvs+EGxDa51N2FsH@iFe5tZ3v2J{KTTs`Y^U^D{lBI4A@f1BZ2ooA}7TS*-^ z7#g;Yk7&yUn&mS6Ds|qSsXoG;WAyiq^^*vp0&S_`iyt_rzx;y#Dk_F1v+eDrl+&x5 ziaj#Bi^OUbQ?(D#tcz6Tz3WxXl|nC^y_F9&Qtw<_Rioct7Tit1M`N#A4ks#g1Dyk*g$wbtu~V2{(1dyTxyPELKZj+7sJDzIlko^T$Ctz!(kxx}X| zYC`YUsiHKQi!aYD=oRK0Rdle#2Uz*>bMa|RjVF7e#n_KeaqYh?0u?RjG0!)YYWr08 zM0ph65v;NaExf*)H7&BGjRij=_8kIJUub?P0!WNk3!c9_IbKiysFfFCbiZF5QswNU zOgeI0PC0JH8Cw6TlXc6PY3O)7i?K;2Z`*a_xa4HAJI%3b)~rlb4NR74DXUyxHfw)i zWv30L5(0tMMhPq2e~z>Fvo9&hZlE#<}S(vIdQr&~%keTQQiJ z@>uM#*b8jRR@c+<_!&dyWBQDi%YaXHN5k}tY3}9#-U88dUUi2_`F3JatTi^v1@(D7 z$zs$(x{vo_!Rcc;TDv4!EfShC41Y0b4Ac8cJ6m2|;Ja%o9vmVJf)rup!N*m6faEq_R;30U&p@cb~$Hj6;4?^BX{ z6M#9){XS?9d6r;v059%Qh;dV&5!_DeA%40iozr($B4m;s(nj6Dp5E|a&M5UTUxJvu zb8)fktsm6>ol2@3Hw?$xeZB(H&D~yU0kni_U7t3;f^d{`2XiOU?0AL78d%D-UQ*4N zk9TzlZPH3pnbJdTUJkZsLtBQ?tanz_exexmeqEln>h4_Z*LQNr8fgu0=>qX{f?n%< z!k-CiqCnr?L=XRMLmv7Uw!*kB&T)1+CL`mQY;z?ef{;T?J}*&g&gai}Y=^m+pG*B) zcNwcA!kb30$?`#^)Z~KeD*!ZqX4!itdxG)VU2E@d#Il?$30@`&ryG8JO2Ej^M8X*D zY2<>BY!=>CYEa)v=eu^srJDZ1ZWjIC6=FQfP=vYxF8)D<3O#-5ta&G0nLT}#tW}do zb{d{g(*cJug`$b1J3?K~Aqj08eOMl5N~3hjm!f=UmUzO{6Al>lVgNVan3?rNYfbc* z#<^p$bmoKCPR+)>jgn6$*lgWC8?F2hQ|A?_b`naC5FPlBR8HneUWgXC7Pp2*^ zksRKlqe8jKn;#lMKfWiLKCzojgbd-<8X@*CSdw z^5-3MD1AM)$td*md&J%=j$AHgo?Q3y?I(F~^lwh|Tpheq2eI4&J!*Ly0!M=ZNUi4H z6PaT5pq*0{dtgD8yyaKkqy=mDw~412jHr}K1|Aww?~PC=T$YhTglwq`x37P%fbQFLnCe9>9vH|D|C38fghP*T*P`5|FfNn0-CxvJ`4*>5Ts+ z%FGiSxF43HHYVhXJYih^cCLgU#FElcNyXQ}8YnJB9{_iqF7$Y_zv84Cq;6xd9O>ms z4$`5o|J5DOBB>6UAhCYodn0nra`N}`IgVz=d2OELgn|>M7Xbpsb75222XKlq1KU+6 zY`xt^7ijgWHWnAs!=lUf_gaX}P;)WPwt>Y$6c6G(w!y1RWf!FIs2FuGNr@T%_z;u? zkLv+{HXyY85pqw3R0K-Gih!4+PAnfIFY#px(yFqbv`JKu_<`}O*xV+e9xgA!wepAU zSS9Cu|Mkj~)4ak(Si|$bFLh4mi?x5$h&+O~CAs{MPu-rF!35hE4O%G(msHFm`T5u3 zoud%dEfi)@Ymx3LG>pCr0I{m>-%$#~6A_+I2FPfaO;d0($k}bWj63>v^%~fR^czMb zIOHYUeRdIKspzV-U!Y;W&O&YlRHV9+MuH`@jokdVAk7|a{3oxkBHH)& z3ZQAx9l`3|FB7JUlH?-l>cu~pcFB>fKgF#`yERV6CZD+b%Dg&o;#4MXqlP3i2msuFKU7@=sdmT4s2?Jy7knfn!lUMeiH&kp zBXHNKjENr@QWgf>S-=_ewwT^#7Z;X&J4Tuo@kPa}#MIY}xn)dIJu z?L{X)TH3eKtMS2+@brc52(O>xHN8-J7}bYyg$to~#}6L+AC~CtVa|=gTi|4Dy+#K5yO|mFQVjid3fT zxv3=i)=X1Eju!5}=X4aHA+n?y_n!v)I`tV;oV-^4bZopkP}`S0+sxG=?=h3sNm_!V zsT%jlfjU^bNPqVkKf{M+46oxvx(r2}hr|DZ_G&oCe@k!BS4T z;1tBm7izWFXK*azYrp?)MZAd*m=mc%HA`8is;!bCqK4X{1TRlXg7WKAO>77vN?$cLb&gwDX{6R^;)UFat+QAj$qb;0%zlyi> z*UW))UPhab)+g&QM97M*-xDB5bcp7!Bs42tcZ^?dx`rV~>y!r-+ZxhBV;BABWlSmK z&ePnp^ESFP=iuAQsjdET`=e`lWqO_a(y0#8+O}?vP{LD{O1-W&0jAQ;r-S%TcRX;1 zC<)15r^pV)GA`(r==C%x9xf4zc*KB6iltB}kP{w%iMD*~s)7g(OA!!-u{LQ-{5j?e zd4}JVO_Pu{{2YT0*)oURea2GXu{D~Q1s;N(3&{sgoweJ|4QC&7=wGCW_C~Iaa6JJ2 zA;{hpz5{=w$)x1Fi?h=-ZR~#`T?Nr#MO6GRj`bAk;xol8QADIt7esV5=_1g^>>@;|BzL?Z6hU-Q$X#fW(4b=KGlvh|hLP zrypBAS-{vq%@^b!N zNAvSgjZQT6z;I?p^a8jepI#?WGe~zcW@nvCZC|?KR>HbMa2R$-B6d7`BvZ{>O^sW6 zm~DDHe%coUMF(7~1m8l5^U@AySLPT-0V$W zDGRsRT`V7Pw0M7~ZL^%u8U4+Cg9=%km~-C8Y+w7M&eh9JntIaT)lsimq!*f)GF6&x zH4BSRK`UVVq~Fvi%0D0xk6`=LaU(lG3L+TQ+j3WBK*hf7i`;b=1R^rr?zLwe5N9;5 zJc7%SD+KV$r@1^gq9?Cs0)ZLw7Dcq8%%RP?l(pEZmCZ+fz7KJwDU{pej#DHrSYs(Z zTTN*lxh?NNkxz|Ia+exK>(Mb(Pm;Jc++?p?DzGloXirq>ni;hWn)(Q$XT5OM9VOSL zdUtHz#VTRfyTzxhK?+p93JfvAy24#*nDM=JMSu$H2)Z!|FDFn%W~+U5AFwCW!+kGFuMiisFhkRp}qnsKw%{Z_KO~-A0~3rP82L0E0wjWgu`5b7#dG*vip+ukPk?nJH-eK|`*p1gH3o1k2x}WL#~kE+tL8Li$QiC%gHjqaE$! zsIL&=L>hQ#83+i9b?&^5Lf&hCPk-%^dXRfnJ?~GQIN7K*G><|6)nVgOK5iaX%K#$7 z20$T#C#>c4=^8QntKKX9gD|5F*C{EFtZWU!_q-m2z?JF#BS6hoj&8cu$y+K5X2jRh zOaKyQD^flRabb;A!b73NnB#anRl&+xW6fvAuyd*T9n@JQbaQe(skW*Q+{4k@j>x4& z109k7Jv&mxKVv9TV0cbaD)XgV9rzN!__edP%?F)ef6{rvOqT>n56VB@HPtGdu9Wjd z%Q|LwowcHI;ZmBJXjlouNky+LSWZ|xRcDDRFNqCGrt4z=E5gIHbqpw={zoFIHFIf( z-g)Ex6lI46)7^Y0e_o2Et48%ECly zBRFp$uLHC3$alJ3hm_%DdpBqIF5oAqyrQVK?OE#7SEz#oy|u^Y`7a`Q1@DmwQblXshJhjVCEReB*QZzmQ%X%UR$}? z-aH?!-WB7Gs8k7)kuoJ@0b(Z3tecB@hL1o{O@Gb$^uViUTbmwb=au>s2Opv2Js za(>1~GemyIw&b&48Hy3?DjIJOY7K{zbQ_rD!FzO?Zg(-^%4gG7;=wj86ditw)s&4& zqm(&{$j2lRP7~dA%bO~*{aAgZU1olLOv7WSGvOW^-yIdF!04&319m^^S3*mO)~xrJ zd*%_bx_eFo*9+QZ-kSDs&I$=@;6(JGS~WW!3PkfK4ONXPD+P+YgWU;}fS|J>^rj(>gEWrnF2RO-^Bl(t;u4uRA(*1;C; zQgUsNoOC;jM~Po2;7tCq?fXGiIR}sNZh^oyMmewR$cqJ8T#KkhYhb%|cT#df?#hJ^ ziFUi4U1R&bneE8#|^{jhO#}UU^C``88lJrnB15x%Cfto`4cX0C;f9ghf-<=no zHzmYc`pRT+qKgXez5g=ey3otF8>&heA}x)OjU}XU70s3xk&*}VV2`VTt5|lsqjl38 z{z?Yl?{h92z>T8yv5VSwggt`we^5OmcKU$NG|>@BS?zMG1XPDjFXDAn z_WT#By+J(1k|(5c5&ma49@d?k?A(~iHS-HE*_W)_6dTtzu{L)Ch8?}x;^jd~?9tw zu;n*nG)qdclS(d23f}A35;CQ>o=u-1$44>8`lnqzvg^+JemsaRgzV6l03)sSvQ*q6 zKf&ujkwhTi6)R21q>bZ9XuD3bA&n0r5*5QT$XP$nxvn*e&Fzer}gC@D=>`kGR|gSyRW@Vts?kPv0&Pbj|)P1WE4_ z1Xw(YadQ)E=;U*<7jL4u5J3wn)O+}evL=+%u=>%4LDduG1W$7>`$-)Q*(C|xG%q09 zWi)y9u{2&W!mrbG!}3Rw!E?)0AE@e*2SAHT#!sHHNR_TlcmW}7ve<4Z&VS5NU+ z&Rwk@`>ltXlG}xjm%dDb8mFpbUjPBuiI_erlPIplE975N#vnx{jeT=TJ}M2?{ZyMSoA!CGF7{xxU^RK1LuTUeD`>%$;6Qc!&*~FYkquqNB^8 zx8>F^0LuP^B0t9ET&~g?E%9=n+hQupKe|}R}++QCRE26(~Bs|+FMMx;Y zsACvhYZ+9FC^=C4DUx7K4UCBYD&wHQW1R5@Yqz~`{^`0Q7n(lZS@7e$5qTQw?@s+F zTPiTk^Sf}})1#8gL3bIULV99V&gCIw*~V`6DPRBG7nzX?Sj(MTVRh#-J(wKv-Ch%j z6%G4>F^}iH_$w~eoz+RiD9v4#k3dRi&6!P_3rU)=vJr8_8JVewOjB9mpUiN6aO3zp z<#B>G1S9>iI?Zw(&>01|ecsS$INO>IzChmYf2{mxW2aFT0{g#$WSl9gnn4 zs!Fmp5}}@RpNn^1pI=U!Py3nsZ*7+!Z8dM-zb~h{Ah;i#BR31|bAtw;gNM*Xs2lS!!4MUn{-qRx zK)^^*!SYdsiG`7&(ZA$Sb{IhwAv{DcK(xF;Tp;iR$PHA4TVGqn2=JATxd8z%?p_@b zPzQ$@sGbQ>M@D2fYHSE73xCCEWGrWKW@t!eVZS`&#Hk(~dqGF>JROSXm#)svXJJNZ z!Jv*n_9Xz^4-5SOdODPtOzu({6hM-dOVYeWFv!&Zh)h1Kjj1fInWRgAg+qcum*4retj^X zH_;&^k3ieui6sr0pBP85r0axAA7yhnNA7u{CPR@ zvj_dWki+vgV}$tgf;2+}9_(*$pYi7_?XpMV6QKV(H~=VK0rSFh(7=ymr_a3WuVE2J z#nh=BT#G}`+-a5EVBsmS_a0S+f9la{%mKvHo!c#C4s>V%1V?))_5zP@gtwqXz^A`h z+^C{mSQaDtH`n(-4q#id=MVuhSj-tk`nU!muo(>OOD=?vwU*5@f_P^BogpCC{CLYD zY1<%Zqs9;o9TU`VeM3YL;#jZXM<0j~=>5-Ckxn21=g$bMDpcQD%;Cp301iX~*6y^P75INd|y%YXy zff51f;Tyi>%JB97YNx3U?cn3x+Deqv-}_g5;DZIb3Gsu$JVG%TVJ=Al3<=a-9G&$# z*Y>#2@N{Q>n}I9!Q9rs(ec*FAG^m=b@7tXJx{NYAX8b8GKlL`}K%}SOE_6A9peLt3 zA!SI7U_DB7hY1e|oH_V0uaa00P)e}nbB#pD-(yQ#)7LU^E6X1OK@pFz7oE=<-W$Q| zELdAmtst^Y(rI%iiZ_mchwfWyo!NLLUMWh$-@+eP?b;@u*yT71dd5SdIeMdR12f(a zD~;~y9QEz5ly3IKV#ke&1vP4glmVF`ed<{}cI+NuA*?j&9~h{Cx_Zx|d87<+!Nmg< z0X_(0lFk=z);k7Xv$3&K34zU`*92Kq#uJ1H&^sPwotsT6o@Z46et*ro_>)$A0Rhpx zY3*pk!m6Q8qzT~yZ13&czt%J;H-hdMmsUeq{jD6E!g$dk_c~Rcs2WkprS8grITZ}F zR0z}JnG!aZ_%f@4l zWfspP(m=o@HxmZ<&VDhzd9@|ySw!i5lRTcPEd!xibAvczGm#XV!i-m%lM`CCwpm1K z$w=4DJQ#04FRpAL{Wz)U1VyHTw2(b#?rI0Ea+$zx95-ZIx*2e#|e3XQh$fW$tKGrp=*_dViP*ZQf7(u`6#j z6MQT>zm_lm(-XTF~L z+}FvGw&ShZ^z8!snA~yydvN(3CBXXxX@;eRuH?mA2wl>aiAj67qPoUpsA)1!Ff0z zhNFEm!4^zLV~MJ8--0!^C5Eiwn~Ll4MIZetd0Ra_zxt3b_!6rmL|N>+r>@Y-dwx?L zkvBeai0=BsC;K~=CT?_!AzH0CQDzU<%g!QN$O_F8=Ee$5b$^wPHLnFXtp!`})U;M0 zRMY$j1gO1dXefsFIJ!GLX#Cp|L{}HzOthI8^s|*xPfHK7S`%h5&%d*$Zf3%mly9gW z2WpaG>N^U&U{ubtJt?i34B&}`5h+|*0!mAkdpYsK=soS{5TQKwllOA9_79jE0xn@P z^kD9_D3-$-tA9ZK>W`L{E)iR#Z=q#j8kIW3Gf$b-?!>*EeffRo-WPqcpVp{Z6UnUZ zv6IXp4_VIpl_>79GV<9wM$dEo{5QXR(F*_xZ7Y|2Ql@P|2z$a^<}> zA0!)?myFk@eiA9PjZlOdBN{T6J=^j=C(HCUq%ujS=6}{pjjl*P2pilitLl2pQuVbt zEt`5;|KPT#zCzkU33jfYq9Xwf@vN-%gS;WC(Oi;F=etz#w)U_cIkhWYE6mD`UuGl4m3ux+ z)RXufwbZh%05V`xg(O9`SUXwR>R2c(+Hku;%)TuGKLya{OrvBlV9YN6`7*r%K4+MLVv%ktPk>OqkHoK-(C+c<{<^`ITX%( z);`o(551UuA!`X{6icax(~7!rgwlMxr4jYxp|g$@^})|7*?A*Ca`_7E!KyAoDRzze zqci5)EN)^^JU1+hC1#w@m)~AZEbPucMzn`my<>gF9=CmVYDp#rOH0^#g=}RH3+v%e z{D1JliYuGhaJxSUM0AF^QGK{L)v!So+-bm4Aepe6_QS&p!yuYKPWUuSL|%$)xzH27 zoMpI)SCf@cKiR<&K7Cn1Zpn``&Knru7d1UNESo=@&J#%D7xWb2*HydZ) z&-qmnX;*|`967QfzgB)a&I4eyzT40)rhf|A+O9TU+L{;&?FLn3Tb}RA%sn8)JUF#Q z6~Iz59Z5x!ZgiqNd#%fG^goR?h$k8Vtgv(snDtyQ@p}^KE?eD2E<1W8OB&46ce@9- zJQoDcbCi}Qb(kc$W+XSRI(HscmPDvc=hgnvy=GgkGD9Es|h4@2OOMkqW zck9!~MdC+G^mTVxKfY>}xaoY$HQf1B>HflQi5*9E-*z`0Z)-E*8$k?yx&Z*&$rE-K$vH#KLc{wnowZGx%w8WTFFe|n4`@jLtj>?Cl5vE#zQqJyseQEU( zM>M|tD-F$yzB8JA=3)M=(SM4!7zZEnl6>6&Djm2s$IzM^d}}$A8`_Ah#*1orvq7`a zBDa;=+S7@Gb=6O(UKdzk7zTSIC$tI~!gZs$8=pfU6$z#GrCk_a&P$Q^7_U?XxJ2>F z6QC^dQ+-DvtU!i^pTUh)ea14-?z?xReb08p1_%7ROQh{?oO}$k<9~zunv7kBK4xst zxRs4LD2&h~oh2PDyl%_BCGLB>ecLcfVJ(oqAN8ayX&^J=b{T?!`yfL+ZqR*lPA#?o z;Z$pMpm9O&?NrdlhyMU){EEj`pl<%<31OdF4op$=NY5NgDEP8jmluvW?>Oz`cr<0! zxsC(j{Vc$LMI4te8h;$ett5Ou!!Giq81XdS&r+dMn)N4^GQO_^^Hdaf5uy!a_O?^Z zTVCz&!3X0d<28s=v4jB)FFl9Vc-LHR0V{Ii5We}CsAm(s`}KsH#?epC-`xDTav`FC zfhLG7*(g5qv6R{*wpUoc(0c`?52W34eSI^&8k&GbKQsP<>*OPS zp<%%RM(Kr}fJT0yb5+$?jMHjhRUsZ79Oz43sq%thgUK!WRl+`~!bI;An{U|cJ@uEZ z3#P@ig}p*3H6LJqR}mlf?EUBgiH*@$dnxBoyF)VT6!w)Ye?=;LAcBGQ^WhE|aPOKBF?;o9h zvQmVWUt5$OOCTRTTWJyOWj>);Gm8A?pM#NpALpyEaevsp{j^cco||rPz~zq_f2o_e zZ1nG$USS=7-9DUMWVZN88ROG{t?d+U0tOxjSGk}Ebq{)^{GF-FZ zrPnrPEYOn%@_pi0E~ld#ZXE>{rla(8H`-z_`B><^AcT&zG~L9yLC+yu^DeHZhw71t zM%lXh4}a;wH`d2{ax;NKWgqk?KXuD98lOL5Jr-9gY@Q^<2{JM?P1%+8#up zRDayPlJd?0zS6-XOq6zGNq-bf@Fi)Bvz(e`Bp0>T6-i*TLE*<6v-CxH6KzO54o+6W z9D6yp)l-I{B#s|oSqzd7_kOUy8uov*J~2?7aoNQ+N)uxal#jo5vTVEyKNB*QRxj|C zSyVg-lG45kztw3ACt`^AbECF3@!}rPc-s0XAx@bK0WA~MOG}oPn6YO%jX#o`-o1|*o&n-IP;HJ8E zGYvAl1wTbSqMM6zKIO-gsStFb;eW~-owPr1tvyKF_)vJ|bDwjw)`o4#uab_mjJZRP zF_$06j$HR{J-6SHui~kmbB{ezT0gQtO)ojr+Xdq=H@1M&|8dch^puIspo&>wIN0T7S~+C~!EE z0hM;3!g2XQ;c5Nti-8D94 zsrHcGp+WgboQuVa0u_w~UB`we+Km=1*lHuzdr?6Oc*llRzH2k~_bbGk zeIBT>Y~q)zHM=Gx^DZI2LhID>tAq)SBn6o#Q(`!2=55mtlDEU;nUe9N%S_1=_;fea zBxUlM4U3}ye0N?Usee9WT^Lzzy$DT~nl_F3dFMJ=xbbyNkb968O4>)NHiCOI*j53n z>xmUnCu)FB&b__>#?gE=P@4AR?AGJ+%Z2=5dd*pUk?EjQj(GLL!v5YbuX3y94NLhX+R3X>fd8h;qAXyB

    %Oe8r&8&h|)u3a(*(oPzKV6?caZMmYVX!egunkr{F9{&fjW z-7$Di(pFU}w|^GI@-p^_3Tkn*Jh#_5ov2Y|p_}UfqLax&_{l+z<%H#c9_EOj{ zB-$t!V!pVdr!~j;`W9W(Q<(_uM^5)Y;{D_Z+3D{Ps3Bh9tL6R6b9BSSbWTpGm=6F)a?)s>!tJDlUI zDep+g^rBK15^)TSbSA)q#7=?=E*2&4t8_%AgPl#jIhPbxbYhO0)^dctJY*=P$|a%f zePmSj@_(K7vX~~q&S@F>j#!8^QkpR9J{|2z`ZS8eG|i4uoJUEt{#bhp2QSMmPRwt> z@-)t+^%;L8&7Hv$(!BO}Pbo|6Xgz6S%`hWy%+fD@GI=3f$pl}zmO75&v*n!;;hEkRl)REN)_8QTOoaxum?6UVnm4MT*eZZf^NILJgrF@OCWLSLY8pbl74pF!m^Ah zwLR{}zy8#|S7p5?_-OiSJbjP{oAfh^zPGZ@VluZriblQQXN8VzF`HJBTFBZbB2;P9 zf`2DYXvExO+E#ws&FQ{VEn{WM5uotR1dp@YwxEf)w0(L&#VY{m)K!1;xezL{x$35^ zz^O8#w9lWVtnuUdVd6YN{?M=m<*a6mV?O3nv%8cHTnh+cQD@5apDFj*0&!K7A7ebI z_MY%RN7f>}4@y+?9w}>(ZEi&_+#Wx0EPuPxYA!N$FC4?=!P>N=0k4Vq-2`H+3H5s% zuj(#Gq{_EeytKEUHGp81649(zI>PI^TVY;()>F|+z!+wYHKFLKQ5LK1>8}oMKgEId z_DX}ClCCULKS%7r@Az_@RgedB3ZwhMn=$x0Ur+XJ?vCJpnPg64VQSyBs?ccvHq`>s-kaOIY@oZIX~PgugXlv1R} zBmA2sZLmoO2tB{ET`?`y8d@BH=W#5LLLitiEGijBv`+EsRXAZjF~=xR?>Pw%JG~?- z4|5-DikF6VEGd;mwmdsMIuVu&uzycOOS>NqcPw>nO6Cdy#sNYc7k|@0CtMYn{&gH$hVU^4>-g?>D>q zcuY}x19<0N@(xo;A3ClLu7BI}a#-F~!g6enFMK6i>oe7S<{m4(yWKOo7wzg^?yN=l zN)|`97sCGfxlmdrtZyV5WpMeipN%2-fNPiERe$JeZSi#_%RRv+4}wf3NV4!1Pyb>a zvdsLHgBFjXzP0R2=KCGnD7}}o=f`yhu)FzA0~dfq8d_gmPZ|u;wSS-wPuTd#HGCgy zQxwF6?flrhq*B_$eXt2J7MvlI(xOI?b5ZaHtAmG(-xo{F&>AfYPPa%83q-wplfpvM zt!L8qJXGiU%XHF1ZXMt6ZG7OCGbeCrl^Oew^_7K%N%Dlxds6$NcT>&oWi?)0y*b`{ zASVnTQCnAzN#oCz`F}AMleIx)2}1HUYV-e8m}|!*Mp3U^tA?ux1HA(v47TEU83r`$ zUvsPRJ_Q4}-Mijbsh2UT1|{7NKF8FqdE6~y^^oH*ch|OJxP6l8HHU=8jE$Eoc+!wO zJ%M>;+4_d?LN$}F?kc7=el;c{>Fg(iU-|&mQov8uZWnVDB7gOL;@Y0*NLAN*Qodf^ z(5tRRTd4F(uDMQe8RPS?m=wDRd>uaj(QeooQJ>d{V2m2Fb;-BERC zt+3M(uDsdq?;S$oQcjaApEUDj#u9Z1 zvjW?X7`I*c=*k5+qywW8+7Yib_b0EhNNk!m4Xn3B&VRkHiBFg^J*QC~RN+;A++X3O zH($h)JiFY)2|UyEe8O3}_^UCCC;7a?bH}@pBaXyJv1`wB+uj_Ikvs^<7*;IvI{9ck zzI2V;A!oVV8w#`)aq8bA)U#yEjQSd3EcP5g%rDrHH`D;tS(4Bc#(H6ia?zUb_hEf& z0rLo0YJbX~<8uB~MB>j()Dc~_6Iwj}IlcgEd{@JXp(KB!rDu?ZBTkCgdX>pccZn-^ z+=R6YpYyQ9-%?pKY^V?FwD1TuRB0;QBm5*^(fw4nfvHZxOf+b)7ZzTO6DdBbtVdiY z_%d%sxjZXV<3?Owv>}F!q7%DE^H~X%2F_Eu>i;Fy1N1m9k2?}yS%uDez?V9}BjH-tzxHj20Tz7f*C;k2wUjotG}E_fY@h#aR_ zRDYG3dSP@1rwNeb9rig^sY|6wwslEvL1uU7tk>fp#$}L+eU%OevEjG4^L|i9m}}~?#To+$f7eX#uE~;?6@NQcC(o>{7D^bWM0KlB!WL`| zYot{#yWs57x+EWI@Y`L)Yxdk8R9Y}h_B)_eCo>0*I@JoH4WdTJow8?dRlIaADdbY&ms~pzFaB~!vv*77vUrvw+sVHm&w=&1;d-fHy?Ii9-zoA zG#gOQvgBITK{F}&tOb%=LprlkRGM{%Yg>#UV%!P1J$Ah$Y!ol2ut)07R7}~|cKZhO1mR-mu*ePY>xKJ3=cVCy;ILq`Pa^XeV-u=*YQsJ9_3IiR!mCYFS&V_df`!h%*)CLgR>RO- zm&jdV5Xy_M4Hcik(o@;*zWcBb?|embHH}b`8g(~nfPGmfKiti@#9S4twxEBI2?W?X znaA&GZXmW3dxIUP39dd@g(|F2>Row`2VBG#k#BUsd@8=M>F3s?^)WsV+k_I zOFvsaX%@uR3s<}rKlEf_w{(}|%m72oz|7DfU4oP} zh!O(Q2#CCtv`8ZoA|W85l+x)x#{0eh`<=7aIqO+#p69-H+E78U~u3yT6cInCf0ci0~oz-a+Pq2Wk`?EimqP(#7M7%Zj^ z#$f#nkO-izw>wZo3@9QgDfD>ru0!RPG zO_5F*UoZ*=!~*Vc2n>P7MtCEjFcc8GInY!`A86ud1sv$i*UA9=pHL z@5#C$kiLk(KMN-~0_ya$38=THkU0YGbo6Ab$T1fsz{Fdzoy4GRwZ--ds$03sql zC>(+T-h(;A5rBWPV_}%n?=^P#D7YWcRv61Y5uotT=RaTeSb9N`2zUQ~+<(niNKMyT zM^l~ucgO#+sj4FVfPsQy!azY82??Nxh_nPyN=gP8{O^A>Mqv1#GKBw$)j>ERfil0V z#U9h&75n@l0M8$B@B;sx>kbmjS{RV$AClV%O9(@-KO+C%RR0z7e`EO1EdMW(|93%} z-tO+d%sjvB|A!gu0eAQRE#N{_-e&gmprREMtz>JV+_|Llq8zn6KUpB11Aa2PKXoQ5AqfPdP+)(6FqTfD*m(zvU&Y}CnO5+bF5-wKp|`t()ahUu(n??RslkA1Xh1KaO^n#28Dq_9&m&=`agh#I8X=y zbN+QTqTRu0mtU5D)d%rLp|CprMI&tSf3JUC3NV--3<8*)LPF#sU0+1Dp46%^`3im> zCR+T|9+zz08!Lg~ntmGSqJJ$%Yr;$QF0|_AV5ZT`^XT!ZASS+@lMz3=&b+XN4DBZv z9F2e871ce#f`QZhPG{I{D3Z~6R4OxWg>pB=_!jwHTLN3|N0w6;QBqxE>(y(;m+k0v z8=0>_4`9g=1#1Qq=AlY{`&YbpYgUd=n77t;6p2(Q+bnN09rMvkym)xxv1)4q!>Rv@ zZDRJ@`S~|_eZ84t-wXA+Yb2|psTpVjbXkA%2UGhQXjAfZo6tC1suD+P&(o9H7@m1V zb1mS5d%I_CWtv}aV!#Y}*BJojXqQY38W1-qPHf#@5_hs-PEqVvBPS*+V3hkX)a=*N>1xuZ;tYR{ zRTg9qDVMDnsQQ?g8^;`=(tYgXS9eH6UP~PvuVi8cGmEY%q~v01c@Lh>teov|ts7z> zy5TQ(Xal-);MZ6|nPCy5FYoE)!F&kuP1xv$858)kEys1A4Tyc6W5HQVBrpt?K(L#J z+I5N0CGI_US9cv`6p1)0t?W$g+h~8|dir^|uhdQJKw^x)1QNrpn7 z(5H87HVwRm=@M6&bhkgW;sT|61_JhI@+ zXuNEE&s45dEuJlp2WwJ!vxI-P;U26G3TX+7Um*<-0Bqq3Y$PAvd-jD^&#Y_TzPMCE zDFGesC&#Bd+SV|%bx>wUs0ZYB`T%m>I)nlokTqG#2220^x{nE~&-6V)k+^ zF7>{LS4k|;jkbrU9ytMrFk?95UBB}`7+{0->TeSngWGecN>fk@s=L;w*KXNPC=(en6j=_(dj%zYe z@6~!NSVGhmZ9)=-K`wu&o31(%)JS*L&?gyhXbA&> z2$?)SSA$SAfvxTyx?J=9^BK!hl@6*7?y20g-i0>CrRnC7tW-VLytXPjUC?}FI zANCf&QH+CktNx(pM%}an3y;B_HQWHrOiOt6c>=*rmUjzEi%(@R)FiZ!3SRo14+@uA-EPJA;;?BSK4Hm+91zcymNgV7eR}S5T{|>Kgf9uNGa2>yGG-x? zJNy&AL!0E(sO5j)NJl!=HkqBZ$2V&erDy&vIjmYh2`FblD&>~m+~K{cAEk$lFKqF( z@nlD|7#r>b?Js)pLOVims`MFhNDj&&`FGwmCaja$gcS#jk&4(J%Zaasc{*$~-r4m$ zFZWVa2U3x9&%~X~(Q-eGSs2a@p|nap?Rn_d5LCRTg+qT}oZe^D5W4x{vbINqNj$d0 zA&IAU=PoGZ!E;*hVue1L4go>kYW?-&5|GPS!qVKH9MOc5RO$_+2e45YFJu96?=(0Ik z-jja>wx=4B!;a)pglHgB zWuYsa1K+n)>E=#t9Gwa?port_d1WGHm0^DuQKRxYL~$ZnL-fYnluoYwOOw_94*oaE z-TGNhveyem(ASv^+a=(ZK>hgv{7V`qc^mSyvmDJd0$84QGz0gMF~v<+8M`iDujwaG z<|&_y9jzXD!F*GrnAgDBy9uhGS*qJBY^1y<-5esX^H;<_#XYHxdRCn&+hyf_IkA6Q zQM>l~RY0RA8}nQX8{ISRaSJiQFP?DI;|@WA?6E6>Z}s+(;Y=B^!#pbliXuKnx4A^! ziDWAqmO6zMN6g}to5-yMmlee)trALW;3=Ej8vlwI*&jRMk~2Ww7GbQj!GMPk2OLo zJbdaLGryJ5FNpNLtOsjkzo5A{O;U#zcySDoN{jZNF=C{iIZn<7TP?L4XBa-=xg9@v zMPA@{6z|sQ1!XdpI)(Ur1C*uE9}wHO2EIzIl3yDo3%cdJ!SGejYV0<$%rk##d-_39 zZO9}fAa^#9s@sx?)K>OcxJfB%x^Cfta37v0M5GY%ShdGO58r|{m)NYTYt22PC(8O| z355d~u@J-@P2y4f_a-hPHl{R2y61Nv*ayKKrCE^UhJ3lEK06F-{dl&x6U=Wcnh_>sIEU` zWy;?gQ$7;fp<<22yWi(^pS{egSFqh%>v8kL3C!Y?UHCTwflfFV4$`VY<{Lj)5p5@O zWE>4lC`f*HXMX#Ocu&*_EL~W;arp$3`(|k?KDFa6&AK*#An8c1X7qpVkG!hNXbngb z>v<+cQ|R*iF6BM^OgEYc3bXdnw8Fb50ex&a7`7cmw2+k!^E-G#;F&A>hn^CrxU|? zb+dZhH(0++-TfZgacYnmW4GQ^B#qpRe8?!&dDZHqb?7p^(jI@CT$gVgT98Oal|(>$ z^)aAW@nZ1hNTha0YEJQyEh3!gQ479heLulmRndL48fYS0xz_xwwa&nedgwj>Q|JA~ zm?PKvHD_ZSHJnCIgw0%x-C|iltpgHov`J!I-n@O8e!Oa2{x+G3L!mkL5ASjizF$SA zr*+zx_BJpxmTiC2c1+_iH_gEXPhk5(2Ue88Ma7Ds=Loypw@|eA-D|(*z*e=w)m^9_ zQ21cRy?pADBMJ)P=;4O-Erx`KRf4trtyL7fVxLm%aa9kC53BD4DMx37d_ZOd>ZXD^Lv>;LwkK?iH+M{vgwN1@Yzr@Tuv1<8V>K zY+HVJ(C1u1^$B9;096{y2EdD6Gm+O{63k)G5ag^$exYsyVj}?C$j~Y_xvp zZ5POCI)QDFuzLGcpfdu?snN$Q8S&M#)>eI;&-u01LUD?mDP7bvM>renRWxx@ABnQP z=NG=!NRvm>ej2HmT|9k4Y_h&8PwqR>`Xq?WryqaE0Ds6b`!@<(Bg5N`bXj?k7x~M&2J;rDkVDuvz1aFE+ zfKsi6#H>5R#)&)h01ISe51y}KU3BT>2J>O`&Mq8JZY_j zB)WeS6>S!7d)AUIPJ2wv>`2cJKfCm?R=s56x~af8UBmvmzbS2T3`8^L%B&dvBy<6zznN-EB;Li=l<)o(mg z3Ldo~yxwr6*qh;9;27R2`N~<~`bu-Nfw_NY?;xXK9q2=8lt+=YN70KbQ5o5D@J`^n zy2_9P-_c!b?Sk5+sD{+=g^Yq^F?NX-{YWH@n>o8>;wXeVjkYaZ*)W9z5A}rTW8LGL zjsZb-&)vSEt?EqOavC7jx&|w8{W<^44{__P52M_I;&u*7xbsdK37cfcuEgvqX)S;5 zzJck_jYg?0k&OX)1rhjrTt5DNWP}se&t>(IIWq_*Wq@Q${LL=KnL2Bwu=unW1 zw7A7z-QV>q9>x_Xdy%t5d7qv)9XfxCnp|BB-i5c!$pM$ng_XOUPk4m+dd6ZIOExcfsR+>*R_sn03_GylAq(PEJD$jpKin=;RI0 zLjfcmLNazxvHiv#MKB>j1+BxrS39Mr#mh@`W*Puh|MkTFH>Mh6gSe>I#5-S1k=6L5 z(Goejy$8Iw8AN&~Qt?SLI)Z(TeC`)L9EE1j6RyDZqx2Xz_HPFiocj_Uss>P+k=gXK zB$-M{2zRE%rkvo9s>%NJQ$c??oxDTW`aKFm?f%;E6~^SESGN75rfX$3%duY>l@V^` z(4uFW-<5hUn8b0~)2H)goxc&EBrC>I?kLn=)fQKo{!H zxtjFAc|EqhhMW=`(Jmv=9aBRl+x)t+AhJ38+a zB{$4TWy*YN{4UXFOy|L))(;$#uRa{x?8d9M$ymcDr}srj^ha)>xu)K|Zn|t=m5cG8 ze4Aj;%<$TpC7S!X)ZrUJs@FcAhS!Xb*#LH6|B4SI+x_+%k5sFMGUYVmE*Vr;j%wTg zai!GdF-q6qqH_LKMPdmd@? z4aop9I_&$2)Z%)l3I#Ji-kyAJGU96c{-#@)+kM(f)-)kD!p+Il6I_v4PbSiYgv*1t z$9n@7oVed9D*&g{?T&_GM5~9>!rFZ5Da6aA2X8@=~)(^_9}v~^sH0@XrdI5yJbR&)wD-&{PN zDs#P5=}yQo-%EdQ;V5EN76>+B3nQ-%?3kww6maW{((e{+Y1q|0vM{g|B_zYuT~$eP z3c4j*qSHgAN;|}NbB0i>8%pTdlE?@(X`}i0RzMF2ejF_=HtS!Pr_% zO_z}U>C#}(v@v?Si8ln97M#6WV95W`*Pfz@o_dzVyQcDKS%Xj^Kwdcv&!+Ot{I-hf z=&t5)!w?$7QoOD*5=>0@=1Y5;OtI|A0@)AfLV3*@Ry19g7T>3Lm3>7a-Jpq=7J8;k zew0=t=5>FK*T(?*EkAsFW@#6L{{qu&=e$L}-_^@{>++iZMBuD>Qs3+=spK_>VYR;o z4tUmKQT^HX*fHt&Z}&EzD{*@ihH=9%?t~g*zP%m#S@BY05m5aOJvVOekONGiMZ-yVA z&xmdpPE(!^u{*El&Czppct1v$S?i!X19sdR;uP+vWyNW97=cM z)*3p-W?K72yz`-#NaH9aJ;(xhtHcUjY$^_w^;UyXa5}Jq{(?>6odX?;M#WNxzRJ+e zEdGC3iYwyiI?_V{!l2>`MPA~y&XIc-U4J!v(b4bm*4mQoO7#a7iYxL1rmm=a-v{TW z;RH19wCe9EToFIm@l7KQHJabuymn8eb-%Hc2q&9FIl`)q4H;P1@Z$A(pO~qU<60JcaF&#sPCyJ$ZEqSo*c~S@)xd<0OA2H>GI^nnHBtzXf)k-Ru)9xV>a{$tJNC z389$TQ~5&ebi=Z-=Nj6`zc975^WHq=SkXIGXI^sVRJ{>UxUA0lxV>>gwH$ZEXY>SH z5qoX5+n!&A{L80}bJK>7AKvrL`@DoUY_GlD8SXFM3|sEsiDTg75D}KbzZ0x+_f&rs zN0~!%%JS<H_tjYu`|sayFl3O*AO0Zu>w*Dhh*jUKvFb`vtuzbUwv+yy)6&?(H`* z|7iZY@wE>~pSYyvn0B&2!bbJcO((p=?__NQF*C?7jbt3`dh^ihs(79Wi6!-oDPb7u z_W2u;=&Kv~UMJHKGC0{ahJ~y`RS$nTI*Dn7R1<~ONplcmTn4gdekI%O>;O{YtxiE} z?2dcuu#Lwe;(KW0XbAU5qerA+r;(cD+WK_C=RGi&jP&F@b;gN|DBX zViB)X`{%8X)NY*=u74-}t{`dV@p;Je-n&c#?eGG>sM?_Kx>c^t58rKk$L+|kUMD2m zu&p_*B=z2}V7~7#QOvqdp0p@Sc1QT&%GHKqPw3Vg5@Ca^X**9e55D3i1&!^}n9-1F zwPx#4iI%NOs$oZo`2G(+4$FUdpuwtU^ojFwxe`V9^tFB72hAA?zN6(vEHr%FB`w60 zK=x*R2jcoNoc_5J>gOI}zOt2*INTlIjaB*{I-9lcEw)IE)iBdm`)KiliceNfH(Fd0 zo;P$D2Za&Okp<#(?u99@ExvuAZXpz=i}`>Wq~&khmQtvwd=Dm2@ zC;bXX{yz}Pz6Eiy1z>@B&)p$k4rM&Qjk4wNt+08;gt1=PU8jKCK`!1N_8$qG)t*Y6RZZP^r58USZ`uLYV$o0*u_ki$m59tk(bGKxpV>3a`0?z|$ZHG4QWiF+#>NtOPXH80UuBc4=Q-Uwv zgKJ}o3dl;d{N~*oYmVJI7I5E$kS*598pDc@4Jw$m?ox!N$VUuQB*W zYDomlh;PcDvq=_%p7!-4mX}f{sBJu^A5*4P3DNhiwi8LCu=wmdQxv~^us7Tzg6naj z-W9!2s@&`w;^RZrVjn z1XVIvlVPnB0x&qYq)Y;79h0l26ql$u0}llzG6a_LgI5{(ukrXF?Y`SxB zZr!py9NTuD*mkmGbH{e_#I|kQPIheD_Kxjj$HtDo_nh;)=hm(IYW>qax_i#iV|LY= zwQ5n2NZ8xCsCqg8Sr}LtnRx*!64I*7Jj~1hW=1wR3JOstpplEEy`7km3y>F}0W<}u z0384PKW)?UKfT+ELr<0|BxrGaW+JxrcAVA&5$kfu-(g~n$Z)5LfX<`BR;pXNh zz+A7W-s_O<|daaCb|iJuCp0C7Ys8u7iZpovVkU+F8}I|9^mp{%f{%xmhpeB|3;lW{$nx1v9JJ4Elpei z#z1pRJ2<9)=_YMwW)I-}4{Yk{@IRq{2s!`54?z8ohBN?EpxHm!t~NFbMz%lzwWz(V zgR2YB2_SE83Usmq{7ZX(cPGn#A<`~J|1|kO6-Ks}HlF{#HUBT;Kk34D=KrY3z{1YR z%>EzT(pkdN18Ayf>GF^EE>5n%|G*l+|D2ON(A3h^_CIR?|Iz246E?NCv+?|Y+y2wm zzc*!)R}hvG)1dqBK>Rx_Zf9a|YH4QTRGzkQbf z_2rFRoGd*6I?Rm!8W-k&J^y3r{co0th`on511AT7fsKO)z{1AE2H<9A_x(R?OT6KTmgX|Kohw26?+rD5UcdounIr%;`vHQy7^f{HM$iR(AAmV8y!^3 zVGC1(qbt07RlEX!cLc(@Kx6*B%U$XF7E+^lAi~MibPP#^-U{B|Uu2c$ezn_gN`bSNh3J^DucP^P5>p_aN)9l%K=e079W&Eg;EHQ@Vodb|4I|*xxk9LwYdQ@mx z+FuC31G*ZNd5h4ZYh%H``|Dug1;Kj=Hx#%A7DW|-4oBgC+Jz05x@Go1c!vG$GrPlo zm)>xM)ojTO9SHKh8`5jqA~VQ^Tg2>JJ|xKwt@%Xk3AVMAXj(tX-DXTTjY38>zb zLshy!Uc#PXakUv$I>efZ7Vorcn#0}YeoRQ+{v1NXT*U#sQagzP zkKM5}oLyg|7CNs|@AM3RO0@!;ri?v)*Uhfe?H>!N~L zM9IfyoMX4ODX-?P;zto@rDr=y7LF*Lvhq zOGzr1{W(0HToksvr)i5sv_XMVk(Jc)+n`d~Oo+!apsGyKtKhjWw414ilIB=vq@d)E zTiCH%&)pKSPT z1IT_)4G!!ZCYvF2UksBUuhEZk;ydx-**+gs>S!xow)P{TcaawZ^U}t-h=>MSdEQ}F z0wZAZG$h+ZL^khSf5#f(yTJ@pf09_5pMs5lbQrr(LokamgQpXB9)dbup<&DUtfaA? z%#tf+mYsS#J}6J$5L7+lxNTu0LW5|zSlCCVT;kO0Wa!ZFFYiTmHw_CcTP5s4D+~2amWgsO z-R2eR_1(UT57eKZ%@J_kIznIcOr(pK9nLl1_WLELvu@KbLB5&B8FUwF0_-ehqym)? zf0ksDgHVz}d9+BN^x_V*sDk2BxX$B$U$jegVtN0#AZMmfReEcPi{)4Bln>40@}3%( z;Ly+dW6}{T6Y+QYkG>N!=)|w`6*Y4vQVU(j-G%IqY!1_nu6L;{J#AE)qZVhNUmbS~ z@R*ip#I0kk|385r%RpkLGiel;uv0@Z4W|NUiqwZaH~}Q;?S@XhfFD_|vWxQ&z=6 zisbY5V7g?fM)I&MYfC`)A(ZWZiA>$EZ76`sM!d=rDHS0Lqo#{I9#Z3d8*5%&;$#aC z!3DbI8}GB64sP#-{k(tG!HWlejw1fA{i(*zly7^jcM(s4cr*cn=dCY&NAyn1Ojj*17NX(;lx|6`v zXO}%t)vpl_{LY91%Kw$Rt@E$*^{tfdujg*5pAZ-s{)C=K(n@+-3pY>fS}41b%jUOf z9X3V7-`}r1h$E&f(jbQft9nId#A+*y;5zf~OeQhou`H!4Cb4h1@w}M>KchMMJq6Ed zl-HvMUtu^c+7Mf^14ko&Xd_qNpHAwRpo))jR3V2^7Mp7ev%DU*d!zU)x&=MHcI+cIIk5rWBKWjBuR&tw4@Uj|F}aW>uj)Ok5+` z08v1$znLm%(~Fxag~N^<)ABR_Ppn!B$Y&M->W*OTwe{wNcL2|Wo`OxUe=F1r+pN4D zp@e;*LlllbNALu7wG!S~j2bTQS{tJ)3x0yVd5j07^~XljFc)^b?9g86_Yzk)IFQz= zL<7w<0WHOtYW5&+)_Czu2v{Lbm@mnh?;@glnTge9da+Wo68i#KS|&3YRg4o^?240; zkRbR60YSACJE_s3#Kx{Uf5r|>D{|mBW%oJx3V-(@*xBI<_rCseW=F|>`7^w&w{5J) zpEh$EuopK!#bJ>W6E+E64g{Rx{_af2G4iG=!K41?L}u=2>pc*pP+qD?Ubwv#;B+zjTNq5buY!yPi+-*nTbRD6!p4 zUg$^+W3DEP>!Q#udBaT-;U)%vlC#-Wv3O(#Et_G)e|zJl z4&ZP68cIFZtQ;mhe{vCMHd{I>p{ngTf$yt!%7XD%wto{L3EpUmsG#*W@Jl1ms1#BhZcxS#*4mRm&B@#czeHMuQ?Z&@m~3tT{?x6?)4L6oIR-)i;<}7tk9HH zR8C+Xg)&l9>bIf2_eq)*Q~Ytw4oD|DMA2o_%c^4cf12fPp0tfI;O?MfpKI^HPV8mQ zt^#i41uR$nc1Mh!^ug6CSv<2$_}O{CyfM{h92SY`u&l-JVT6UYocEl(N09nA^BF?? zkHo%hMVmRlz2zLbiaJ9akd`!$^^A$jmLUjPUN=Ly6ayl$WHVrjGrfC)85ZZe;w{#$ zA*G@8e&?H>Pz+8NBRWAMd!Qh5Qhps~?FFgvD4TmA@1_&ZBg z%srL9HSD}bpj_qHQcvzdhPSi*rS+~rs0RX>fArbGsh#->U~^KWcF$1vbpeeXI4(ia zqZN|*TuJc`zP270!oINvLWA;sLCI~lmehcN&XsVq=jE3)p-nn!r9}HM&H?d>(0_H} zF1X87Svs+C!@cd6WI7UH0yZHb*f6Oa{|vO`4ieLk3FsChNLrr>%d&%tPu0KaNvKNK ze^cmET|5vu6ESwe`^{~$MxgHyiqRO|5qO4ZUESOwhPC*GOBffS33+q4tq&Ord(PU7 zD!N8xu@*EU;vgqgC&dhoFxvT<&b~Dk0e4`Vkd$wN>$Po&icXIFI(`ps4k>$*lC*97 zfh?dlO!8$d3*Hw!5c@D!`fjr*b=qQHf5lP9(Cr+bE_!2q3J)xh71b1eW+8cc4_}>Z zg3V1{UA+y~bgWAmdHHc{Gs<1U8}EyhnaXPkulm?2NbXOBnRkH!^GOuHq7;n}Ea0n^ zN?c~0zt{9!^Fh)p8U)s19l^3YK2e|;>v zADgz}%ZdN!bKW*1Tx7Sm91HR3Hwk3sZ6@bJ1<`VwgGB!oM5Yr(+tBWPJ48SLQ{*Vg ze6X>jTaKKNP0$wgh^w9#=|V@&mcGPHi%(@$e&rw$a5V3l0t*$hXO^lp6+|1DO}RF@ zBB$h8cyE#>>C$}(9p;kbPkUwPe^&jd;SL;z4!UPqW3`_*;nn|Stg(~CIZ+AxcooFX zl}nS^2;p=QHF!CN9bcB>R}i55Qj`FE<;TCUvuAq0dXUgOdhsyS?7^=V?8~UOG zusg$>S2k{T4-g+6)$l955Fg@zU@(Z4HRyi$<#96`L|9>0@`mUg?MKp&e*I%T%rL9F zs&5jkG={iSVmV1|2MmEY8Ic)qckni9Dg660TpY2j-w9gB)^B8xf618h`lZV4l0W)B zl<}sV9w{fjs-V)9QfmS}sJUxJLm>#eY@zE2M=bfnX2qRDn*ACM_1K?$KhN{eb5qDZ zc&oGR7|B?MJL4y^4!JDbw{=~qE}p?_JnroTK>ms=oa_AX+`o`d3u~aXIa!0_$5Z0~ znzBkME^%1KJg>J4f4b(_pMp{h$;U=J$=rfIeC%);iha}H+X~_Qg+aiq)z{lyW^Y)@ zKaZnAfz}Mc>412IpQlb(?k8(l@t2^uSA^|vgb*d1=W5Wdi|{{^%rjUm$UlJ$fA_cv z%q94tA!HtL{~~ICJ@;%J5fuGBGX1a%+DCstezRW(eg2J-f9a(=E>HBSvgNuh;v>1s z7k9Nmeq^;XR^6TU9M zu$N8>E;zmYo}?pk@+(7^#wKJLIrb?2$8IkqedagoI|C_J@t&sk?PglQsYn2cnw3_P zTUPM$fN}WKe<|7n(o$5pZbRH5fEw9u-wD#aepi|MC+|6^nx1bB2g0*Of z9S!r`kiz3_Q|EmcuYc#Wk?6_S%pa`RAwxQ&qyyj0f>5^eBnA+wHK3O6%U5Wct$mEZ z72Fs*e~5u&U|^Xki=Jye@WG-Pf9o`^W>MK;piHBC*090W(YMESRlUw@F8w}1U_Gmk z6Y{L?`|EZIhpKId5!}%Nj^6RQFYlT_XY%_=Q{W8|34%8RgKHy_*6tuoL8kyQq`7oG zZS*u~Jo^_V_#U%WTMx4ki;9{+ce}(Gi^0sNe=)Oj27aA~DU5^i za37V_`dd&JS?rwfF__H{4S6%GPpLD;V@{@8VtzjUEZy4BfUnpxg=!fr0hpsJ zf5{Is0WNV*aESPT$(V^swU=^Ba$Bmg$!-E6%p`jhJGv+ex#%i=Vh+2o+sP3aqvuFe z(6;SkbF7fstQXmzAP#lbg#teId&~ap#SC1lXxqgy)G_lNimi<+bK|DT`!kYh+-2Df5hYnP2I;E5N;Ra4o1>!f3ov5 zP|VczR3LHht1%EraCKG<*?V-1B@9G;w4_D-ny}}v@bXFKIY)3YSv+F{3DlvH>>fg; z%wmbnz~tkQMlsj1V)>l6VXJ@3d_duud!m*p>j(EwySLG`M;OnYx8_ltd^sekm%JfJwX9gucn|( z1kvUTabwH6r0{4FvhCn9R?+3-{WcuZ@Nn>%`nZ zxM6i8l=>!f|K=W8iDEEx3XiHfgJ@XcKi>!YRzUta9q9S-o5|(ohEpRce|yC71lyv3 zmqt3Fk5F3@FcYnqv={Gm3XI@Mx{uxsMMxh8wTJNRxn{41OG!Pxd)kAl-;gPpged~5qmDNm z-y?duPf5iE;=vF7?$wKue+@{J+?bwD6NQx7Uq5*CWd{8~L9}1!Q;}OAkDmASq|{XF z<@MjhV$y`&3Mi3Qqkn0}lNfXfNZQ7V<0!Zpjd!=47fNPiz%NE0>gK>FbFP`|&x`(z zTZp5FLt@ZqM?JsXTUk>ZZ|k})J~bqHN`2ja^t%=%n>Wi(hN^W=e|=&k6YV9?QOG`` zu~aFk`7}dKv?S6%QpbCmoyWoeqA_N#04b-6Sz!i1pXtfp_=aJI9cx^=c+1_hmG@0q zuuhC8NB%a*rcy}oAM7R{`$+{1;=^lC1qz;?j&Zt1AJYWdD|cbwZA`nRj$e1^5k$3m z_PM)!az zW3_$W*&JmM0qeWn$;So4&J61=5AtaKR!9c*P4oS6TU+b|e8B%>;)bN^%{ z$-`?Dw+)jAs;gxseA4^Q#G|)81wlN@1fN9o>uP?&YWsybC7^M|O0&teJ~#0ZamCY} z4UPH$C4lohe{n>u&LXlKX=%704f+QHbFzNt54S|t>(m>osQ5oxHji3(IiEx(@V`lV zPVz518Q#|;4@$6vTMU{Vu?Qa;foz6KYUuF=~BPH6=eovSVT)Tf3}i+-X5OEePop>U65A(#an)0!znI(NsrJHOxo8K5K>XMuodkCqyT?^7u+E_6|5 zJCY*{UYQvslSELNZpiy+^C+yV<8;)Xhyu2?T~xs@6BcDz{7doH;M(J2t5Es-8d0cR zjbTx2k;pg(zV_O!oyzinp%3H9xxj%wX*` zF6!02P;CqFVa+XMwTMgEjlO{N{EurHBEBD1%#Mf+`W$wmZVrBBe(4|W5ZngJOrBnc zf1;D(I&W$c;&trQ0P6t4UiW&Ktv!Y;P`8U63NoV}1H?Ys{6}bCf=}nj1@p6(T37@| zv^t&-Fud-+#`&0Sp@lo|&Jq+q8Vzpw0Dttfy82iLs>cSnXkr*rMey#YR7aA{T_{KA zFZ}dryTxlHmUDlf6{uOU*s-f{`>pU6GjZd(`jJ1T6s;^` zvKUu+mw{O1hNp(SMZE?WJON)}<~OzeYw<9+dJg=P%xzOMDi)>hmYA0k%5|~VCV1KC zg5nS24#|Oaw^_;eC$YsZ8ibQR-=zF5L%!^u35K^R(^U0ksgjn_eaB}Fmi&(se}Ph* z$S!~UquQt|%S)O~6(+{)YUu(^T+Su8@8Ne`-a`Q$#lS&syX3Ptax@a+!Qij%-vdqkLbwkN_oQ@fJ_SsV&!%6IUv9vuT-1wFSZC(D9lyG2y~ zJ232mp&2FGOKPwm0@h0de;T3_*`L=0P!pl9N82LGrS?!FVkX{Qoxl`{Y$t`Djmkj{ zjwn1>CoOobgp1=<@ULZZG$Bi7tHDQKQ`3EE++x&3&VUM`31 zl(l)_DOvZ85*^=m#~@pJ%l3iW1!6Q>qk5u%qI2vli!`;~4qP~=f1?>or;_fl-FimD zc&Gk`pCKfM*XM<$aoFur|4JactM}w~UhNP>Hu()yf#(!b4)u8(DG21$)qr{|gn4YV z6+hawrV&Ic>`&~H;!{nQ;S@~!kT##VzVX1)YcbqBB4D&&l5a#n0fN%ii-3k6Xj&yp zh|hWHIdPL$p_-wXe^3I>l4QkG((kHb^{1FRY3}9>rF3rU_TE>>(>G;e!a*d|pBgQl zl4}7~sjb*o$>CX(;Uf=`(LiCNp`nW=p#IS>=!+Gp4*hO6s?Xfo?+ztVK#2BK66L4| z=L_~ee=LSU1V)PED+%*A)N+b4NdyQboe6vC*}*G#A@ZyWf8$Hm=Why0^W3*Ji+X61 zpX34>O5~|Cp4*B}BFFM_8d-ILa>U6F1n0jEUj8WK%)*89ikR79suiN+G)?}|7c0S| zP%(fp7t#o>0w`{)2z9_@M%vEuv_(*;e@8^rZp(`Y^B7Ds`e31cK$m2+%cKM#I)ixs zG&KC6;o7$Nf9)jt`?WLxQDOK?n8IDI+Nsfc58S=fz~f|!Dc3y$!i%NpQbC0zzMbn&Tl(A&D2nLY5%KCMTBY<0mq^df0BTta{y4`g z4FniC9gY2@r1I1%yPvF=mR5z>@0U@!5#3cA=~W+Yf47oqT_IodowRIb1a-Ecc+YsWQ_&v(zWf6@M|QP<8VPkhL+wUsr>R*J?0c@=>~ zCy)D!>}~N##h-OIwg1%-lNlKL@DXNUw^ zcFsv$*Cp+$*(DzN=HSR?G{9q{Zw5xbiM*aj4bkw?JNd(A@pztEq5qCWdMeWL=~N=~ ze|OMC1N0i(Qe_lpulrNTQX2ozGR5v5hvuRTmW!CiB{g1SfsIGT!}kT_A^$)%b%nIC z$8hAuUY5Ifq+<#cWC{te^mMOl6@wF)p<2^#*3yFce;^~FVv_$fY+&V0T2a14uS1c@iaixBPe!YZ z{7g?R_Oiq*_RdeC6Vv%*=uc(m&>8jL!;EPY6l?v<0gM`meoT4~6EF!K^N_(n=6x-K z=eqRUx9w5KNjY902Y$ESBsQ3Z2fuo)3A zjm)$XYbipMJw+C$mox3X zqpsrZ$AzY=Zdbo|k))GGKHPHKIK9u@4EEt~f`$?;M}a%H7yc^Ad)fMd9)e?k$kCrEX& zU;@+m`}(g0*js%sjaf&Y#&wYQOa+(Fg|t}DQCw{kf8^CXM2U0F7EVZ4^aXqGReVc( z$e9wpTN>8R{c%aWT9I&QS2mO{!{)NwQ5e-VCdLRvLvY+r4f2Kq;M7EG2p9ff#&aqjJ+@T$zh!#r=(pM$qk@Lq{ z6oA=r2uDmRYzfPQfyT1y|Q?SV)J)5?OaXw~fO+IWx?e^Ca}td&v)PK{lT z;i#6sRSyKmx*1O7BAL?E4^VK-W&b6bzvOR3hk%5yKK=#Y*~fbr^_)t9GUvJ>=QS+q z92gX)1`x`67-6#17{X&rxccrrE!~;9s&sRV?B$@M@2k_3D9t61ZOEQt53ATtW$;8| z?WD+`K-xL`b<5>re_%^(P4_Z!A}tT)XEoMnUmy`66RLoAiw@1u`<2lt#)bW3v>9_k z&r|7(I7@{TLe~G_(UyqrX@O-t^aG6C+#~u!HQk-ZBdC0%+=DXviQW(z?`MAQYKN`* z?%ry!xP^ypMOwsw`0ze5qhIb{V`TZ7%t2L{-g(Bhm3o3^fA5*`9LhBj$LwncO?y4U zIygaC)qEq?+-C?yu&}9l1;pllUD?q%^$q{F2w-F1zNbp%*yk#Di{KB$T)RT#pB~8F z&G2(!6Jznbu=Y2xNcK(ytgM_bXl@x^*_l2;i;?cX9UJr(dDpg3hS4Wwi9aE8pCGly zM2Esm1Q)mHf7?LTBB|)_=?5#Ue7!Tvp*8ECq@W3DY~ zY2DA0M_L`dMI{6f9_E>#Ol2B2J_D;7U!l|0e=BVQ9T4SP^4M+2IuAe6=?JI+#OuGz z-&Ze|ya=A|EL~$opAuZ1CSZax4cNU--d3jaTQLbQ42YhJeyG>BDD1JTKM1+aZCQ{6 z{zl;rE`=LtMr|Bp=s#klGzn=8^VM_Lt=`d4ifouXt86WS=eE&2)YQP9^TKPfOvwf$ zf2Z%&wf((UzI0Ibqv~fTnKx34>X9MK&OnF7o8W~9Yp>@d<9DmCH|W+&nV75 zVsdMrf9idXyW~Z0Y>A-=TLS~~uHR+p&X}NjazPX@ zvB+$`MS^fj!?@{Mvxh`O+Bx7&!h*%h84Fv}wFLiazv*|%AnwKlT6@31VazurHCCec zMCCenH`UwbaTN=H_eXsT&&WalWC?L;^5DAnXlC~m`cYMGd$I!}o<|5SC#X&!f3_HB zLPRFIQV_RqaEaaCjRNI8lmUV8hw)hdYQT(RSTGA#UfBf!l zBhz5%4v+5k7}6RYIFkBg~6Y+Q!vQzr=!!9f1LX|a)& z4swn=;?yt`;)uJ){JV@i?VAmaf3{>22_WcCo%J*2!)PVP=18&uqel(Ioag8p*xbSMTY_Yinn| zONs8KcCjVP9uIo;RIjeT?=GC6 zVcQ@KrV=oglg-FKJ+;~hceH_c^Kw8ev_l~I$ue344@^+aBC{QtUu4fvI}rudx-Old)o$&wvyxZ0N(qB9 z+wmw4lHH}p6aVd}$*^YtHZP9Wn6QXy1VMzb2i1yxf6|OTM@sI>qJW}bpd*MEelecb zFq~#^g{=sRSMAk6e~6ANt}$NrNLy4+HJ~e>I2>*m*mI+9Mn4sx3q9WzgGMKkPEEq0 zuv8b4Q134%=#(SZvEZ>1mB?Z9ms#!9X4%%qH*DmgM2wA0^Eoi1`N_P4xHa{NQ_Gvj zA$gX6ug^oZ@8^qEEO4tK11!_>&xwU#O>-e(#V=E?TAffRf3&=;+KRNdv=faXEb z2e*!`zucvpmkKEaLakUrUR4Mq`FRJ5HOPB|X{@Mhbj0#;d$BGd-DD_Qi%^!JOUcuk zYa1Ez=Vfw;FGW0AHzTk;S{cZBM4sF>AGl(-x;xOk*n_qqpwUrS?gYd) zP+h{wFX*A9e`s137qr%$gaPq3Y3?0wKyq|HLdjXi(_%-g?Ma-mBVF*bZYYvKGi4up zJ&gM7nf#k?zAS$YUSq73So3o$o<5J^j$;Y<74cF0N8Pa81!_f{UOtDD3tbj_VC;sH ztz;7+N*eAtBBDPJCFV?mjVl=9h~VW;gNe{e=ej*?e_14a%<$Vy@KTBTl!vbXCfKJX26qnda!sgqUiitFm6efN(ze%UN#MZ) zgIpJ1@0yX5eHJo$c);@-tyRH2SgHW}Lwr;-FA=3$k{XK82?F=TiowAzWQf*5>vY>R z<>2752$62$(tMrT;YwZ@pJ4qui-J6bb<2&Q(Sy-6J}4_2QIR&ONzB6*6Z{Ca1$H$; ze@}J;{|ndhgkOnB!Fhsymap=f(8s^8oqX<`Z2ymRy49~5mW(MGnt7lu=bcM!-Bwje^QL< zJ`6fH|3Y@3yY36o=7m3>_B3ags{a0GvsRRS3m*JH!J+yRs)c{**Uz0-R>D&|I zPY02SN(ePKFBss3W^SIiE^-&mE>mm7Qr(+!8QCVMIEkuf8EDrb2=H%tre(<^p`RG| zT7!bC@<5JruJIs*nxDe7U9telf9=y=IxO1#$in&cP}JF%-|8*G#1D>T{Zn`uH6tR3 z_2YwBwMHD!&e6SJ>axql&Q%H62iA)TD(LD$Px(w|5_D>{(KIyeY88)N@81psK~8)> z>jW#uT|lex>xqv3ptB>OA~8J{EHvBYh(|cbzVx9Vw1bL7tkVdo^9qJwe;4Ci2J!02 zY}5DYO|?dkaD508`9dfOA`>Qw=|oz}DW!biJh7-2TK{g@fkEkpK>NnKxhBp8$JMW- z(DLSt{0q&Hqe+lk?d$_tZw~d*AN<7b3g3s$@CPxIfu%$FG;Px=Yrug|AMR}2PPHz{!A|4TY16CqleV7_aW~E6 zt#^Gd>#|&_63@#O_fT|}h+_l_$WsU{zII2X?oX{k5Ew&3cKwlQBPn!Lv9qsbZOyWG zvMW|8UOp%FNKx4zW(6@RU-0Zj<`nfJ(EA>C*KhW3IvO@yyjfy3}CB3MN>=gpuI7QnGclO$(m@Q*> zUnf4k%?2B8xuXoq8oF}tadvA?7*O-YVyj8-m9hc>?~Ks&0rx#y0YtWPbiW@ z;h4?A7nX~CF$!a4jVYcMb9Dq^ETYVTS{)0j+##9sJNAxTe`KE5?)Hf4<=1R_Ud{+S z($ScXV9a_(_SJ-lo8?FXBZYco5;BQ)J@x(huRY4}aW7UCPMn&9$nG=hMV7X^&U(Nk z2=ib=6!s)atE|*1MC<@t)Oh-K$W^W|ZZsBXF zlRnLSo-1DcfA=%Gb>5LS!LPFOdQA-Y{j#ZyMav_;1p6k4MQb`Xsx$s={EaC*q_17m zMQc%Pa%*i%M=nUGu%7rnZAF|^R{J_CCD*YZ9VOFs2XtF9TU)qxJw?V+V!7Qb*XlVI zAlx~9Xk)Er6#VRI2I0EF5IZFgqKxbpM-Y;QW|7^Ee{v*S;|d)TRYJ7g`8|A#f4Sne zTsC(CDbdnpBmQ5CKu^L)oe91=uW^%`kGdS+$n%roQi) z_dg!+jP!4pl2}F0)@51@G2>vtGZqm6sRxJteZ)k-Z-9BHc|H>9%%`7BSDm~?@uIqR z!ECI{e>tY?vWp7aFybv4?Mw{)!ED+9W$cP*0(|aq>n937!~R3FQwC!=70u63Bcr}q zItYVG%UJCCp++v4x~@on6#RBLROI@6{88#sfR{F}X@Si_sCu5u-Jcu+fdfyiv6f=q z5bFoS;o*+QFGs}d>j9*er-qt*<1HsvBQ_4Je@;E7X_?s)Ih`8hSZ4Razt-&=606ey z`f&)m4cA!z3Sh5$$z#w!J`YzA#9Czt2gIsK((96WnAR*$T-oa7s738Pe8+O%K)9jzjEj(}L}l9F`H?{;S)@xX zW0<-b?=&4VXvpE=fqgk?*wc)y$&&;SLG`J^w&F+9(JNpQ@Ed^&$H%qwDlkX}#}hWw z>b9wjX`rG5LrJt9+S|?wUHrI6he%|ZV+ zvJVWIe&)7P4Dl2zvF!alL-A7(7rE<*l`+91gRT3HB3#d(0e`#?8 z;+z~HV!IvrK@6g+4z}`%HbI5V#ni&8KnGo`dQwTJzi6o(o{D^9%&Q1VwuBOBu%>{T z*}%Z{1j=y#-6QTyB(s}Jf?PH@VKc%$22!t9LE?-So(@TvjNhhYb+KVnDuX*^M@+a) zx#2+XogkX!=q5&z-a=jv-s$z!_7kk({wCnahMK%KaYsf1$rfrwKDD7cEK=*eT^Wy^f#(4fAA;Xk)Nry z|HFMf40-^LChmaJk$v0?|#PCPIJNr7}?WhwdPZdZI$gu+Vkt7 zRN3rod#e*41GH2(WVhl`&D4@+0TC}?wR|YnU8V&i=4ap&XZ0;q0-I3kbjo2J1jOE% zZF+lK5TiN@&h4y|*v5ui1pM=+_9}`{RS|LjYmL-23Gu7a3Ct*~e+#E&@aYu_&PkX6 zeK!Sjpe;y*2U7TF)m=C!H^w{khe0tV!B?MXaAv_^RDZKY1y$95emzqnx(Gu#B9Ido zQio25Qr1et7{sYf5rWDU$mOp&h~}|cTlp!Yfch#FMpZi%1vBHJF364A0|YpZ2sd8 zjw%ZvVBJDv$Fbr-LGwil6+*)-bcD!W#8AshnHc&ElH^menkWO?k4N9T9xeOIj{=uL zBbVCf4B2Hm*6e57VGa$}4J}R=>^stA05!@U3F|R~hmZNae#py?o4x*80)6HE7a1bsL>=D^z zD~K*D=_{sH*fb^znia{b`UXU+-XLvutCauULREl$R6*)|$x2#oLL3*fxkIvg@ zNy=ZtMlZ{w&qJygr9UO(mfcbEid(xWs#6ce}zLgc>x?B{7#F;R|~kj8z)bd1fzBX8PS&->C-x>~qro-;YyD(~=8Ga|#?Q z$1Y_fbe%bhF`P;V8vbVy5#A>8^AbA_m&0_&;I6LnxC<)Y^lgtp;dit(4?b?^Zy46# z#e4^+f92tvE*%wrSvktZD=r9+K}s0VWG!}VPP5XvN+Z{a2Q9)_JHh1S*&ET7#`~NC z>Gg^6EsB4U@;b2T40;ps_*rx{P%GuhO(3MfTXWSI#26}gD-Y|RUfVr(nT?I*E3t49 zArhd^GsSlsVvrLBM57d!U@4B3d*8L6Ur9$mf77+8)Eto!X~h|86JOMD-yo0Xz`pVK z2(TY)W?^*TKJjsUhXay8N5mDtDX_OQ`HeQJI0Sw5 zCXN1@uL>;v5Fl|rzOv3a2Oj;z;Vv6WdPAMf@R=&2*AU&QI;qxvzd-f3yt7RjbS*0nrOmp9g3~_iv+%jZ(|xgGpEQ;O&sq9> z3y%9diYvyRb|WE@5nk(EbCN>oF|02i%d)#rkapwA^*(F@Etl;UhFF!@ScYSH;BkDc zM~zdg*lpg-I@z3zs28~4)g^e+jlRK2f1E_Tzpk%tsD(<&4zgjH>v3n!SZ&zRQ1b`P zeT;nn*hdMHt8h;N6u;`2Kt|HqacB54y6EO?Xsb=E?#+Z}=UBqzWMeVjD$-6A7eNGW z(giR>U`Q@9xIRAc6fjN5YNIQH&G|jnD`JmN)xu9sr`(w#{Y;+zLtiEOJ;Qcge|9@d z2x~IU6?0M&QmtJDl4+FEI#M?UKz-btuBED&R2_9kXIdJW3Wf=^B26)0E|=!x7j8_L zM0iy(JI*e{hfM?nRi%86D|e6wkd!4Y%M5@&2*^>j6RGbdzPtqc9k<)Ocf~?8UuY%h- zNc3V2rl>M~>vIvvb6MZO&y5-H1$&1G5wr!U>afN5e(w{JD-2^0pHsC^f6L98iwxeu z6wK69e>DZ})s0oq&BeA?(Ae(9f`qE};sGXl_f0;~gr7GkeJLvFdb%?w!h$OQ`&T z%-iB-x;HGK-WSHl{^L)mq$bj@@$+Z120Q7cz$JH;>9@gE$bH0NZYHoo!$7YSdOOSa zuul~BtyRuKbuK#&f0WjT_fqK)`F(B1r`qmov8s=N+l^W&kVdc%ytVj;LZ}};~UaTv74P;_R7N6!zjK}YdSpSSk`;Lp}%-Hm(9K(nZmhtNdm#Uv<$dB# zJ`&87ZMlq|np7V3Cw82h0EW5XvIgGk5%jB=9Tu{b(P|@Fl3!xsZ0tx zjm>6k5kc7fU-I%nOdR3t1?I)JbO ze;FIqBox0Hc9LxMS&l1V3ISy5)!MC@_j7DjHrMyrU2OoT|6c%)AaLK^1m@iW)}-Rq z{*0gGbfTfS8qp9X7h?Xw!Iw~Sn_m5*KjzResGYMM>BY4fm`)HN_hr$+B=E&@SbDIj zhW4v5e~d_NF;Pl}=X7Q~;n%K?ITZ)yfBA3GqYKSS4+0R$Gr78=0Yic;;?k>Vy<++f zK;BVzm{!pn?ldd*QH36VUK?HwOf&=P(`dqa0y-LH&ZK$fxD>-lrXw=@*?wNMCcp9F z)>iVX#}yqk11(7vAK3mO9O)c?V{tq2l%4yiBALdK9~E2K*^B+o8b(>}iQ#sTfB6Aq zfqfJ*dodTW6*GcgO5oDxQv?j+?Ne`|yb_Xk4e!QuvRXb^h2+rn9XWh(JG00RFJ`}x zvSbHRuWgst@MzZmIv2WZkL6+LP&(`fwr{g^;n*2N8^Re69AtAaN*?vrI-J>NK0&`s1x8>cy9bj!ZifFB%DuV(ceDBs#zbc%^1iWZ zD}#?%Ks+0D-1Dn(m^R7bmo5-70l=4^jOxM<-hytXjkpHvQYCX>5_*UDs z;!JWKpk3s>-g?e5}Ie-tHh2#9&zGi_V)&vVRu-XLxM ziPBviif8Vr=Irj!7~pwwN2ClhGVsHZWVnl)qN`!0_EeddWk{CcfAczC_`8uV2h$ch zJP%Zd%v1EbbZY_9U5CCXVCx;TTHxflSN>sZ#Uv&aA|adFk@3_t^5C@W8?CY@Z}BvA zChbY6Q4UC?9yHX-#H$*0lHjxIe8WBNc5m$Rt;Ls*yZb*?0t7aHIWddc_$|pii;iEo zEsVL<%o|JHXPe&Se|RDK+tGFM!b5XxsAVg&U z1s9%}!(1y)Or;Uh;O1A^qgC9Wa14%ytfH}+nMg8lmOf7v^=+?Ljxfw9U>^Ed8w{c+#U&VMv}r z*?(P4NWR6ufzXrX+<+5e54zSPp0#*yUo@GQ!zsaZinOe_s-9tUD*+DKJ;P;^3e?di z8j}->SD8Wn&{w-m#dBvYJsjYHW^tOf0#}87_L9W#Ii6!3FrW7&xy>&(bH*hrdEwxt8jJZMB zp}h-SISS$EDPt3b1@D00f381FIT6p_UI`>MvV}q&w?Zbrs3Pxf-ab3^eEh}i6|$C! zmnZGbe-QHtI#})n#J?485HB*0%-!5mtp&w9A(Oo=u!>iE3`k6Hbvmq+gf&$w8OBt* z(g^&WRkF-2tlz*6{zIKt5halbSewSyQ3L8nS%X{l`~K^hvrQgkPs~N;a)S}1Gfpo@ z`fVswQKrN#qBF1kho&Xm*;_T!tM59aXUT9!e{!*7n4!&W#hQSjTNJ|gJG@6f;!A~9 z7$Ao|01AA4sL}FVjm<+%Mhgp<&N2kCy@AY2H>N+y>NFAW#}982PDW{$aT#V!PJcRj z@c4?RFE8zS8|Kcro(=YR33#0oZ;X`75oq?z_ldSdM$J()D4rLl>pDtS5yuOkA~Y)P ze`xz?%Ad099!o%c42T7$4p2WC;Hz~FQ^ZJ$04e{tvI7BTp=%rHhZ@Z!#9<2#zvn*& z;BD6dAQ`VkI?^yQrz-%47fUTqahst1O$9^0u}XfzjGf=*QnR4S+($f$FyuC=)doVl z;C-0!ZlNaxW>16I+;mj(){LlRP-EiIe;N1`2x#8Fdo#A4XUK{seikqi8(|cIIq**e zpAM0NgWy0#P66D7TKvhJNZL(GPiSPsJpWCIDPN?GwJu#RCi4k(-t-xDf)UDmxy(Rf zf)M`kgSBp?)aNmno6VBOUgBIs6nXZU13E)*DS_njJyi@au8)#+!NwYX=7Qdke+~|+ zUY1|CX+o`KetHTs)1P{|1&hxU@tAJg$H86;+Rn)wf zQ2-^v*h`Y;wM}aSFcge6J%ADzs>i%el|fF-%LdkNNYb1f>NO31Y)Yd0s3k|b=7|Nh z@qCudp-&CFkrrHFNJKF;wz(oP>^}vI?P^P$*N%`{@C;8nNVM?S{9Z9f6?CJvxqrzX ztn!a8eE=5xfQ{tDkYmJB#Y6Mi7*tiYvBF^|yZdhGPM1wXWTN74!M9Sq*@;zG+?ElF(!!iyBH%idF)IT;7XlWf< zBVmuO=Lg~-6FLxDBrpY_?pD`jV1LNHEJVf9>(jm8^T<(I=Kv}IM?HTF^+joGAbHx9 zxkiqr8Es1cT3V(q=&+(Z0!Y-GU3{%pbVADSnmBDmQvA%B6tTGht1q*q3J$vbP$HA#cJHyh|Z&9sUXB$*StvVO>ZkneVy)`xYxW6LB{9TClmW=OUw%2jIojVe zrJw_?F`t#HAMq&-t6F{$oPVW-XbYu-aYR~;oCF|*ahpbS1%+#BvOp7t1g4>zz9@2A zKqtE67MJz(B=eeg7Jt-kwg6&4J!&jcE5ug{Z~0koYRMZ2bMVV{rd1ZP96je0v?_xCpS}h|v$D=j>S2tAAB72S1m(mE%kV zWSr@{TdDe;((ZA}(IQyfw(kYK;ijE#f;bC^Ji1ZWbgx&!i4#BY{5Ce8>#T`Bd3b%< zSp|=*mj27Ad05`Qk|NlY^#ZW{rt^nXDg{9 zaj3}~@hAkj1r(PHkNZr7%$Is!XeA|W?2}CP{1xq7om;~=7=L`0oMWttT!;ILcV8fQ zdvl5}n$9lI3bo{Qu5tH3x!GkM5{OeylbCvQ@y;)1pu80@p=Khtz8ow(**rcXg>h4w z^9lcDl1lH~z3Ux@UKZf8rzwc%k*v5W;H^%?+RTaI$k3s7qO0IbFd@_GB;&MPlH zr=P&wj3e3ulfu^Q0q2|==Ggbf#(ev+mvdWcT}fm|eQ7-6VJF2D67l+1A>Kmex-jjl zW>)%j6xIYRU9uIfEPvjZe|VR9RaJB1SZ@`3hE?e03V-TuZS2RvbVsU*Rs0~>g4N}vI?i}Np{<8v;V*^ z>*f*~Bwaw2Gg+yo)^}Xkj?MLh-DG-8agU|!Jb&Ze&nZAeu)iPj{ogE36g>l*_&)_% zpgqXw{loL-2?Xj38k3x_&5Csie4c;26M*}qG7Vt11k1m!8LL7Qr^5GQR+YwI^~dWB z6|AztBnWPZF^DyWw=3W0(424qOEIL1UbBu066VouP!CAE%22IyPEoJ6)ugRo5ZpsU zP=8nBuQ?_mpz0m#tj3`Ty%7?;hFIg}URuoIn6Q)n9pd{#K+&=I|F*B9jC#ntLl#Fkvi9He9jD&QY#PlJH9q`HcSQPTeMG?AomrlagDbUIobq zvl~R2D?Z0am(Ec~k(r&IP5_M6NX$C!w|{_ya=;+qlB47n(Avk;`)KPLK+n0Ir4G=m z=*Jy_yWmUVr4w20+*lu?CD-LDHhm??=Nv-!4SifVJSo8>fT@qhI^^%sV{-wvVC=@P zi4unrH7qO&+SWg$*e`6g)#7{RJm(=!ouvLSD<-V9biVv~JE5NzyZ~qfiqF(s?SFBB zU(x$Gnn7?L{j7>lm{=gj+4~w&LhGVpFzgp#vn1|tYT7W1OIsY?8(xZI!2-Jfn1kqUEFQ|3g!PM}H*-*yliZOyJaoR4Sw2!EiCG3+4AN{@v zm{W|)%fDX{S{UNo#tE2MYQ7*fqLP3wSyI?Jkhu~3^d#)Wn(EvRv9E!VV1I>sXcCQZ z*Tp8=$W@npLBjcUr|JVH{l!mZA+U%z8s#K8kSBip_;@;;fim`*w;}9^MNSmInN<)6 z{!W?oT@JsEQ9$rg7K47Yqw&cw>@c)JQy!ZW&K0T0EnEqSs8qx6bAQDHadCn_RMIZ4 z=?W7Qv)e9$MOZKqZpbA~-haRpWc~kc@Os9Mp7)qlUin^RWVQe$G?E3zi>`**DJzDl z3urb3dX8#IEU$J^Ms=riOC`B)#2PLpJb%qr?~z({Wg6XUKr0Gy?@)a~=SVGi^41Wbepdy}>D-Gx> zf)#?20S z%os`jAR)cL+#ai;-Vy8@Uu$1=%%IxWbX~FGiW!^NC#6Ym%cDMEE$GBqgl5?eYmRqg z7#GnW<7crt4}X#L+I1am5DEXx>=K#R*W2khKm-;_-uMcdI>oWUM>ERI=4TLPa{@t@tVf^G#IN|N4Wqo)cSj4t|tK6k2 zU-7l9Tz>{OTU7rsXDwU<)NIoZF@+bP28JEoAdP%_3!!8D;8!)x>M%xbJ>I4XSfdnLNn%+q75I8l%L0-)-F zv}UikZ}emN%Gs87^%h%QAY=P*6ynwYR;fK!v47#u7xfALqtDIEhH#kjsVS-kQu*WKkWQRg7#Uket8?!% zsvbCoL5Jaw_3|zxW4Ea;ONK!*!9v}MlHw{J1)w`7<~{btY1poqFyH1HP}0%2urmF& zCx3|iYQJ5-ydMOWd|b;sN^hgNj_+;u-1r)-njTQR9GBT7ImeYLgVPovhq&Q7G}zqP zbQi~YH-f!EC!O7}8LZ3x-T$a^VU6BO7BY%mt5Bj#;b6z0@EP8Q>DyOgCXr(A2IAGh z`r{1S;pbt-J+?R$TC@yoZkgG6$URavQGWo@i}h~+T|1b$G(($@70o6E>{-;n<2rAw zuwdM%F3{HZ@pBVKE;&#jQIoxk+4uj+q2Iny?>i- zTO-9(Uha0XnE*irD`VN2Fta5ILV?J@PgG(t^QAQe(66v_>K}jGp&c)IwGn)V{iII8 zTdTu;&@?4)7_EAWyU?lkMWoc@RZgindf_pQF;w+8@Bd%Z3D6WsRYO0B4Mo{HR0FN> zQt#|4j_pcv1$ergz;!eew2TjK0)HAX3naGx!gh&y63oE%W|P77cds07SKvi^W&euV zlA(3wiZeucgv(+Y_^Q*#F?O-BU);OEbOpwJAKuMQn>CwP$w_)YK8;4@vqk1amAVAu zzlUdr%W|+xwCrpvJGSsq0S;EAUbv8Uow3@1*2UW*D=10V zATjZScDpg_#?kCe;aI57_M$fUC%S$(^u%xbx_``j!HNpE@edR2uRj7K7ui-nlZYtisp&V~lh*9*HwS7- zgqVP0xq03q++YhAAs!gP_ZQ6vEkvcnm{-8$Nsf}(qQO@E;4d{#cDDC-K`;nWhS-k< z;3ASqc@{oz{aX!d z@u};06Ji4+5B8dfx{=;hy*U9FawOa^>?(?*Odd4?^oNv6TkAXC|FDzMCQbr^T2&!q zA#WYipQDg7PsQDDzvVq-p;6_`aewT;K1!K~iu6sn^!VA)ucOsgtmY=UN?givS5L6~U3T9F4PjV{ zbnTFQto5Q7lUCx9M_>ipmakssqyQxX?~ z*Lbj1-cK{9DuSwguu)@d;bGs(U=JqGp=j6b6bkohfoq>vIe+i%8fAjJ2ZcS#Vg0k|}4Xh|lL8qBtoYEHsxF9pNU*ylqo zPMKPyQhKOQ$q?;#M3Dj$-c)S*82kkqWKY7J?|A zm1v)<4dEHs%>3_)7f~@Rb~(Wn=O)H3W&5$3{m@Q!oSaeGm!>oX3{QQrIm%F7 z4qTy}LD7!d)aIsp`K!^#NzsTYm1KH9__dYB&ze8CG3WF)cq_Rd1k=Tn^zq<%-F7@` zX&Z+!J7gEw;Vz{dT%j!G<}OH|h%}(O8Gmh#mw4f2Deg^ib$&~j*ayULd_w>GU=^?!Q8rO#qc=~;lRbP!S}|rN5mq=_>__!2%)mtM)9nsTYyyiL z$sZ1%GGpuz8Vup>Im`p_!0NH$36qj%64=x+y61%G1> z-2pW~LPJAb3d#Z|sc-hc1)SXcL1uU$E3YKk+K3Af*F>8ghTN{D8t*Qxfza=fBR{r3 z5o9L5K^2Y>@d7nOG8pevxzo&4vV`-Y&ST`%FdVVaWS_zp-Px})L5O^ClSVvmJ9^I9}?6JPU8K+`sS^Q9YBBSi~c+?#>o(Gu(1 zAMY+i)3AaaUKBRQvk7?kX_6K889PB|gn-p^1bIN8wRt~0W}tJ4Yg+tq!7ktE{}HDh z;^xDwUn@O2XUNg{x%el#rU)>TL~X!`Q{OQhcOIALT?%aiW8-x>OX4z8gMZd&$)>Rc z)Xl0D)r^xfq0X9*O2HS!N+Vt7jLHD#XDk!vc3InqUb8rX$k}zY-M$YfYLs+!$>0j(*9h8=l>(Xg(xJXc)^HPmF3?hEfO!|qD*#H!_EuzQ3Mq|WTs}6C!vTEB3`T_C5jVZFMiQ5y z2Q{I3l_2W&Vh-xu;SYbq)8Nml&j?GvQ2-uZ{z;@`a>Yq(4z8YDv47Z;OBEI2=eGOM z4-R4a8#GAA0F)p=Fv>LgQpE#>5k!St$omF_`0-vpEg+-H=ZT&>mHg@acSqBJMe=8< zvD(mk_(DMJVMxj!9=ydvk9${YQMjSIM8%+}%A) z0%O0NTe|asC@}*RqkmZNiNA=W@FW;sH~{e692wVLLCdE2G_%^4XgEn&BNWfLxqzO=74G7 z4;!wIc7Dbq&A*`dEOoOpt2(uuRt_IHT1^hlzI7qDGv6L2ritRuQM+xG3;VRTa!z2c zKMks+n8vJL=kI9Yi3x^_jep!^=Ml*dX*iAi=H2U`slkRlRunbLavkW7eKltn$g=*8 z;TgJ7&wo8g{0JSo+rf($?}S%i$Mln?18m%Kl4BuKswhiTKOTiM<5;)g@V014llmNG z5+s6ug&)2D>0A-Dg2C`7*05|( zGBP+ZHItDPCx2|aV~{XivNhVaZTHi*ZQHhO+qP}nwr$&Z+IHXf%$ze{OvH`)lZ?G` z?Tm`5+F7K8qIR~<${zM63^WY1^qd4rqKY!~?DX^m^t4P+q@+TQCI-$HcDBL>&L*4$ zY9_`6N+$LM42%Sf^z;l+qy$2C_8yKFX6DWWf$|#s5jSb#~(XC)&iw(dK`uqb6|vk7RA|AIb1P(to^;?*Eo( zp%@qlj4h0u2@FllENr3Z{)aaSTT?p%)_21Pm-J%mf@v>^}bm z*T}`u(ZtsIUxfct%m3;BY9tdAcM~J1ja54%u3*cw*3b%Hk)ruZP^$S^eHE%z2EetM z-din1i(zwPz2j@F2W6~$HyGTx07IVrtA9O-hZZ7(I1`xDsp)9KaGh1Gw-Vw?GvC^s z4~2sFhH%{*5LHYYBUzB!h7EXm|IdzJ@dkf0Q=)GjYk&pc8fO&2_PNEllDL zFyUf*FNdfpMZXw51K$yiF{p%iILFMKa9p6ni28a*EurTh6W-ZqJus@p0eGn_xTU1H z;I(fZHqxOd_G3#j_+>_W^GrSZhJWwqRXpz&;XA(*ABSA@sYp*0%Mp|!CI4xgq+lqT zxn6#HKf3S8FF56S)6Fj+&BY3qBo$m%7NbIfAPOTnt91|nH{D{{<>xGTR}WFrh3=WT zyL)BvA5?F*>t53M0EFNnFGOAP%{`;?S^($XH9?dyjiAV{SuH?k4?*kb5q}GtlTX+A z$`DY{hzF1Z?Epi*yyQIHS|bgS@<3%_%JaPQeQRDCuzi0z;=0=?)1u6)pi|~R{wEyl zNx!`+3fHv&`K2Gs?&cqMh>!+Dm&*nRao{PKke+{d)h8hBg~t z;CjxtqcF>JRO;w>2z#f{j&?f*Cq$Zk6%>TmGxL4?G#r(^lPgi{;eYr>2mb=hm=9Zj zrg4~MvLg_S`^3WVDJW)U25a_oGlZ-83D?0gms3szLbf5t-bem+Xs*0cgGk7ot1UOU z5QHn+gr<3!Mmt|v?HMK|AwDG(g3I=jWp4+=BJ#4#`PGVL!PS>pk9GklCEuP@{khM! zV|1Hh9VZjrrF4oelz(8Fgz@nHlIPGfx(PG$T-4Ibc?{*f>g#P!4SF4Yx*^jrPY&did|9{I+4VkFxesVBefHEszJEi z5b+PUzMP-K{fmrIu<;%Q%>?cQX!07KTIJek6Zy-!q^lx}ZGZASFC%{qA1}lG8%}Kc zjJZX}byjO)D(}wZ1aROR3AFiq-O-`_F~ZUvC5PQi^a*a1q%_?re7Q46NNR-Dic$HV z$Ao*dXpw@o``ZPJGaes|HM-?6DPUo<-iXir|RS`rt#q$uY zxw2DZ2MUWjY=0wSTaEo`2u;%O#))dlY>q0oADZ;x>nmFB7*(lXRGhnPLj$^oZhbFratRHQcGqFT-C~g&M!#;Lhl&0 zri)Vf-hW_$4{%mPZuutq<|hxMy3T@3KJ2>9u@KOr2fq(w`I? zMh%v3xRY7~s_lc0_#=sf{e|_Wy9=^)n4;BbqMpq8-VaOIl%^lcXrO&EJ(0(ial76F zz(mFToWVgX2jQ(kq3)jiWNNYe>H@bzN9x-fTYp1$#M8W}{`KdhW$)k}57&bRI@a0k zicoJgy&jq|t(B0|X+V?ENHoPOc=mTtH0AwI{1rGRFIT12DO0q_Er8JwSiezs2l8%~2$0cHiXvd^`$1=Fawc^-|H{hd*m(}RyPo1#%oT%HFH<3K7uZMv9@H*~W z5W(4^$F09$cF99Hd0IS&)fbwhi%9D#N?-XrhY6ovSaC#2Iif~K;Jk&h+5(`?gh@&P zRzZ*V#7qRxLO_XUqO{aDLi~H*qJXPHyMJe|kx_;?5xPIAIEEP-TViMy>M)t792|N1 zHU7E9>=e@&Of1!R%Fq?8uWHiVY+_ep2XgJ((kDh8OuTj~1hIC7agNHgUUFb)=$F!u7Fa3jnQ+n{cR!V^lbohg6S{#}&g$WEo)#)_+!- zGCj|+6ZF(|oGc+p{O_ny;G5O3x21BflvyYbMt9f@DAE8}^S8Cnq9%&$mw|t_SmcEw z;^N0`<9BnH0O&&QuA_lqAh8x#o+z(6LR5G+#z;HZRL&XHf=zLDIP^!gZsp9i#pjsr z1h?CQWQ<62puGUpHD=OVSj~-<|h2gk6ITGNO{8 z13ha8DcovrIc&OWnRnZC3t_RKp72NwzKVPYPxc@GDds9|+EJ*nibVMKsqs2p- zUL_27Fj{Bu$}PxC>n{^QMe8YCUH(zoq86OG%C70d7`nyI-xusf{CMAAynpK8w!DN| zBvv&V@ko&2Si{kIA+zmexP%Z^1>whoZ|Kvf%I2q61v+KoW_D*%d$Zw&!=oa^i66I%{ih z%NP0S*pKcJSI&(R`(hQgFVL0(G*ek$bM=Ge@BGLWBBel&dWSyc-ha~&o{&BWZT9t% z)!c3#yxaY3Z8`VY`D>A=dWG~{YcP5&9LR6XB;WP2U<@S&N1%_$9TZh!?Oo!b-CDx89xyBCg!&Wj*pL17+y>z zm`^lqGj=7E5m2C$b;%8t7SCE8X|WUui{}UVGs( zC91s|u0u_3oc>urC4#d=q()foq(}bf3JC~d5&;JzFLrG2On(J~q0?zwJ?ozwm! z?c16F9NdJ$EcYI9jqAWD4xfN&PYWXX12+%$<<9`=w+YSLK0A(?C=WP@^rOPt=%`ti|WZwSTiX4rF292qS&@9N0}?up?^$(vrM_rsJoNEnQ|WTwNS;i zoAP8WIQ}wuuv!O8r0qFz8Vp1l*CJql~mjL7WUH2N-rwMW~n1A z%9RotR%#?k$EcEPsP(72Wy-29y4+wkxb|EyY&np&cg9i~%4~|d$P98ZUdX}4Q@E6A z(;+8SJ%1ip8jQNoz~~&2sUcsDhRygvv4}7pO`Q_kw|u+o^dmNeg7!H$%aamvj)IY{s_zW5?4V#KF&+44-gUcIA zb4nPs_fF5nj zIX}2-`+@G768i~=sjyw7$W1EpMiV_q)fx=z$7rt9yzYA@0x?ZCmYjuwM(9NKs<<5C zg~vOD2wzMaBu&YzFrXgvXY;k{%A$!a*GR88asDYz4&iB1KYjK!DMCdxJ$#@_uZTWt zS%0%@2i!2+oDGi{{81OJ49O-ZlDhOo_9WzU!zD8$Qvxb)i-y=C*E4kFRNZhC*UzA_+Mm#E!Y9uB^fbqNw{?FBj1nGc$ChM!81H z*_Lx@!h;MtKZj@F({mqY4OQB*ebnk{Ie%|nTme~6QQ)yQSBRQYqoh8|iXuTl@K+}G z+-*LrRdAz${*N?Ov2SU3m`$qJapBnvHRi3SC(ZXU0se2ZWjJETp&mVuYAzAvflh)-h0O#)I^2cjP89||Q**$5v!$FrnUp?_cG z`HPS9!L`^N*?ba8@Bv}iTZdIJLoTH<1WUlVb8k>4^57wGkkQ?|phE(2;y?mTVys^D zb$bic51inKE^g%m1`WrBT}is7JC&k=Zt-b!6Z)aC%4)*cetX3rc1SYj``Q>bIOGfZ z!7A1uuH8SRQOuYa;b3YXkj&K10)L0bjj?as$I!ftUHRZbG;n%o6Mw*>$S*>&F}!zd zT)&GGm2!tej$Fsv!7ySInv6cQk=!HfY5`{stp=7g&OY<&t@!?YVi;D*O|9pXIUWJ} zXmlQm|J*a!(_Lz`T43@7-tHubHnT5t+j@X;6L#n}bfn?aa`p^Qa$9ze&3~%--Z7h7 zJNQ_Atq-6vZsNlr#8eWR%jb2iYwtJxFxy?uz*JP-ED`4W5KoF~6^y}Ukzz2X$^?_W z@sk!-4YhJSk-i|ER265(@Z_10_?z7XV{w`Be=M$i&j6nANA2{q?wa)0Zjr6PM#)ky*3#_V|qKu+}_+S}_jFMsJ8f3t!*RTJBy-{|>aDa6)nL&>w@MSnl_Wbb?U9^DG) zah=b%Pz79+?g(`$4MB(S|MB160JHMuKM$_Vf5GQ+>Ej=UE(+{xcxg_mZmzay z+5`v`(~!qk$NwZ=tJ~)(h)2BOq&?YI-+Eu=bz7o|Ak1_&(72Oi!;U(kM)r(+lBGS~ zBcG3;t1e!s>R5Z=5`R^0G^rXCH`ZE`?)9T)mPh(J+VXu7XlcOdgChIA!L~UFSpRbg z7y>p%tKmrTP!C9UvCF;+U>{7V=Xe+>t*^;nD6gB#Pz^(9(CS7W{Y;LY^u2CB$Lbj4 zIkqisaFLXjH?^mT{SC$9-#74G8$sd3neXFX;Pa<{2a_thV1H~;VF>GSctV`XcyE=C zW3V#GNxwy#P`-9mE>pL)pc~##g$x10NPe2}au(&@Pp%93OfHNibf$xS(u}o@w!^h< z1S*&uR^i7WQP!^)NJ#lwyu-*$I6TUjq!+U+hdh1iWi;(4`Gx|bOIeJ!?2`>0bmsB$ilHA@8&x zopH-Vu+VXmt*YJEG_}y5`g-SFP#_=Wq;jw#rK3M89e)^!)OG&XB1QOlHEOO?pKpcS zWDU6z0VROr=WZ&OVTVJc{X9#9O9L`igW$%@jwp&z2^aW65ZD=XRLT25(h%o?l8?*r zk~xiptA%z!fuX=%B8mIYa4_yPzmzARs=&QkwVNBp) z6jC!#1o{V0e$cLv6IYhl1@r`;M9iwXstpq~W9MYAByzO&XFGc%S!ax^3K99y<9u(m z2sb)+#uA~d4@XeMdCz=ThM>s~+E&{p7gKPoDu0%5rG?}wbxGbOk2NRKbgUNRM|s8& z_=;|~xJ37QczCy3qcN>}25+#8nHT$?c#rj@5kciS_Rg?8W-xZsV80RNjy?!P@<1z$U zYASw!IZqLv?^@pQiGFy@7X_@JlTC1g?b}O)n^_i%mW|7V^;zwo*i(->7TUsO2q1HaV?Uq8J3F@6;{|ds}qy9 zPc%0Lj-sk9Yc}E(``jE=_Ee>(@ge%HK8AA9<3xQaArtU>FMi+fecbdy=|r+;SR zo!T6p_ic}tSs##nzjvnH=e=&>5*^_lZyC|1NzFc3okBZeu-M-?w)|%MjXhHI002{U zCJZY{IvHofgmR)bZLSz*{DNC$af2-oq6RPiZ;eTiv>*8ma?wl%_W7%1&=AXH0;QgE zM1yOTp8GY2f<^{Oco++VNoDH#Cx5W;-p>hRLmx{()unXwcoQ9wrJa;%Ihe-mFy z$iuRmjxm4u2)^Jp;#sr4Fdn znIk(1H!J@7lC8NR5_*FCNq(%Em-g*0c6LtcJI#gYFPVx$d)#=(^ZwMK=I~3BII4*z zj7*t89{cN!#DJ=BG)x&bcTO=Z4&!qVi6f_cFGSGeSS?z66^^goZ<2z$^;G7 z_@&(urfGt~+u)RTCx1b5K1;P4>&Ae=S6SqX+|bkkP!yXFy8;>7%PP;>j}J?XupXnU zBqL4|g!C#ss+c}W6Hp;IOrs>xIt0#pG#{iv=fyh$KA{iF;<6E)T^X&Sk94EUurc&< zo)0Z3LYD=B71rjnj#@av+P=QKG%UR%VUCn-LuXG~1>tX4-G3O%A$D&_5d850V-{+I zWM+TmXljMkyK1EE*+XoI*sMZqiNYF}b&GHXBl^_)tq1tkAN0)Z0^Ns9a|WA1!#pO< z+3tAX%8}0bwprb9m43-Pz4tz?Kfx|ttuuUAB@8Ajeut^rk$|! z3+FUom8=#!X0a)|lcUCh3F?yK8T2k&6%q!F=scT9qZGrrF#!9B#fB>}UaK)sP4ixX zRa-Vt^hABAV_#r0`a?_ZbO|+pJAJ)&)1*1C^2zFo(SJ?>3KN8F3R8F-#rD<{7ebQ^ zx7zvgwr%L;`f#_B$b5A3EJH!78}Th&dA1s^jQI8BAP1`|#UbV3%UVh4DI^fgMb(T2 z?m=QWil~UTUde)(e)CvqpzLOi(gBE{CM(!oUwOqqHiDB`)ne4YfW^A^2eSM%Mi4Xo zZ3lMn8h@T$J&^2?*M?=fweIJ8HX7rY7IesUB6}Xsc)Rsz({v>!bf1MXU7L@jC5}{$ zJX`;wb@I=(PU;ErRGC5TmwYsnpo1=+;@CPP&~!T|pc3W6D3*mbc< zL*-@_=Cs`3%W{Vjn}C8nfUI?4xExUy@hVYk(tllLp>eF?s03|vmnD{;`k+!IOJm2| zM4|*j;x$@#I666)&PkN)yLzY(k7FTg6XTJZhffYHLykZ?BJwQocv&iEMGOZ&wl`*1 z!x%?~rqE6wr5(h-T}zzx;|^8A=)Q91ovs!8QBz0RJyiC&{cvN`P4$Q1eU~mxW^v{A zV}C^gK-)sabWlzp*j(U@T`usH#0FH{kIJ=^qi%OBgk~pPEe5*u?jXA7H$!_8q41oH z{FOuBIeSf%=FOc1Yp&u)&Wv-*sMZOJWxkSXp4DTms@fl&>sUttS%bZn*z?OFyp!NO z!zB5Rm9JKM^$N_|o9C4#tM=$StF8oPO`)OUigJqXGm?-wVlpCeYb$>Pv{lfw!#Eo=>*e*Uj}w4M^JteNOuI2 zwu9b1&hK^f3U~lqOQ!sJ0Hr|<#QAD=_xCm*-yM|LBCJ^E!ka^o#73Srn8&>>3Z~w? zoC?AIIeY4%^$UJ1GS|G@dbUdW9)F&l!pog0dm7gDMmkO^c2&S2rXr0$(XAlMCou;! z^qd*|zCFWTP@3m4+3ee-6#iJeMSApOShmrOy{2UWYCLkn`y$O+YT)uH{?-% zpaEn1NVvriiJ>@J4odZ4k>0d5kVs?Y(z2vJiEfU4lCJnGaNRk(YsyYm@}N~=s9M5e z5SnWD3FX{k z4P#C)*jo}7hK;(9<^&}wI4e6L5|Kn{8sC?XoIkPPBD5LAsICK)0ikw*xte#3+DwB8 zKKqMA<%Tiu(*%{YvyE3#n}#b|hMDek#grHIBS|aR25$DPBXK-S7Jp2wO%*<27reMo z9zShj&XMw0jww`_!bsGJ`6U~khy^k6u&LyjFbXB61VwRDQhS^(XXN6wFfQQ7>|s z`!8tu2W#~mSUeMd%764f56kn-E)VtIx8cCgq!m~E<;X?p9@{?zMe(ay0+&>J#E#@0 zl-ER6x9mh!8v|=mkw+~>*?$Rz(KsZI6U21`1vQ4I*f1r*VL@Ah)U2EYri7ee>vgP7 zpd&Z2h4k;gf^=5XAorNyH3e>Y+JEK9lOE{=r+UD$2C)?3 zEUR#+I#JpQnDk7~?wqO*o~C$R{4P;j39ZV);QS1d*eCV2jr&%q;0?QJ{Yh`@DHN8} z!awW)`^Z|#HGqhjV|9qvalVH7J}1C=Jmf#KHRy&q$cM$yc%vb>w%}$)ll${~u%aze z0mDk6R9zg3s(&e|-fFJ|;-^*6XL68y%xuK*-;3_N4>`wQiKVRBp?@P<-bgJcZ-*>Hz1zP zt+le(qm8xb8YXV<5DEKoJfLSxJHkjX?kuk5Wj6PNF(__cI1t;hKRbs`w{NXUc6;k% z*xai(9)EXfhHR8vFMN^uGdXK5JXzb3@2q7DuN3u-*5|wcS4+QJKGK15yru%fPMhRS ziBuQV*T=ROUu*7rtv5DQA+Hly9M~R6OE^}XSqSb`6i*ux-1RMOu5xsY!0^vEyBBl%QRW2b|?H=KVp{SRI7!;P_LoESyBG=IJUHV~{}qifuVD-DsWSe;UyMe^BK zeiR^$tJjjWT|=w`yS~368~92&%;C~##@dWl(??(<`?n<7lQ?CdLx76CJ^uS1gs(zs zkhbC>+3~SrGaL_}RS$T{Xi6uw@g{k65u0(2VBo(w)Wmc?+T&C6DiY0#Fz71bzsZ8f z%YOy=-BUM+oK8{xiKa(+|M!o1_TK{`-hz#>9VH=IV3ySaEg9pJm!MMD9`726M+{V8 zt`D-Kv%}0^_|^9U4p53jQW3HFOL@JxH)t~Ks$-(ZW}Xu_<{5IUGLYKAHYLe}Hib?* zhkzwD{ySa8p(gCh-gHN|vLCZS+AYDPY=23YE!fU4ejF3T_h0JyoW5hIt;AeF=#O=C zTL*q8mM~u^Q`?JLU{&OeP4r-SbL0g2(dspON1OFP>!#bv?>Rb=Ad z!nlR1Ug_H!!CZB)yb<0Qmjbl37B_5Hj%Gs3vCwzW-~Me0IvHPv;6LBqJC(OQntybf zCz0QhOvc5o{^vB%L51qE*Ku#bJm1r#*z$UL+GcYvLoro#b{$yKb2_BRVAQK$v)KW| zXkV551k#_!6hciuzYaJ^rLg^3{bjmvG8-vt*_b-c-nljP?{B3`yy6a$_tj;yMIEtH1gY>anRZ5hHS(-b2%`(xCxzvKswFCQ-~(ZabRovw0PF;>otEi&}|0uw~W=K0*rqR=uWY4QcaolAzcUTzh8 za4gv{Mp{Ci7p93V1KF-n`STcLOvzk!ge#EROo%6~H-G4WF=L_Q0@u>w!+*)Yp0z@K z2i|&2sEvs&6TpI{p0u75Tfg^Q5oc$;7ZmEtBi83vr-+w zp3Zu(p)ORDho%4Jz*@yWmng+%&shJ{qIrisJpy#Gyx2!GCFK$s;neyQtn@{bXw0bi4RGS!%53-F0bvU%mB9-!=uCv>z+ zx}IG9oKrZ*->&c}>i&kvO+saj+o6UrN@A_5KDdg|0o#!U#%hR;eV*!HX;dtWmRyU~ z5e<@+y_kc$Qb_6qpH;sbid6~Ck7}6%qdRpDvTSXAJYahP#eZz4;Z~%+la=^l3#z9M z?fiOdZOa5@>)Na=-HjbiE={#%lEIQHkAZTPl+rC4!|A9k_`75IHKfDko_}69w7Ri3 zTmm1?K4~=*i|sIM`tDPwh1a70s>d1rDH6B7Y@9U@i$U zqrAyypKCAQ0yMMaeN2B!18zwA**Lwcv9=|;t25TyD&tk}c2!;hOF7*Eecf$Z@MkRk zlE*r zh43#fFt}OG&&4$`@Pr#gsTDX*!RV#ez;s!tozWTNU@Oh|uEBp`AePf6e9h7Yz(8?; zLG81{*3}2|7!Yu@tDVcwk;w2uEHUbHU{WN#b^r+v(gknUFWD_11T&3!%Xoyv%m_CB z8!pJZ*+-uRb-1@-5Zzrw(Fa2Y>*hG;PDI}TJ19bIZaV(!L2L2(J(J z5Pc;OoReSAK`-76C#6>59)K)P?mp;))VrM2q!X?+csZx;BVjo?79|t@LbAMQb4*H$ zB}g{nF9Ij1o?0|=hRm7yxJ7-}Ex9YW7S}~_fik@UP|1IYEzPTH0IXM;bxg_>>-Tck zqQm6Z#NR$38N<2*Brp;dvAxLq1${^-N5vainUj9v0k)y?M1gO1mJY@K z_$K{hR)l{qdJ-0@bBq*5Udp)>$ziocq66aY4?uA3?xH+M#0kY8l!QnVwCDD*iNRSc z=mymfsNDV>`SrYaI(8YK1z{sMSUzM@d#XOAp1a^PYiVb>tWtR&XvQ4*U(LDzNV0Fq$ zfSuP;+Ta3fqpFz;CfO{L@p{c%h=O~KS9R;|umYtyAQ-yDWMyR#H0fU&Yruv{xB)3* zl&rgSQ6K4HT4Y2%^cO{c2l~wCB;ZR%#(luU9e{reRhXuVwRW3x z0t5oA8A-#qKUUvvjy~UCMadqGYNos3o5LG}kK7O{3aSJX-P-)7_D2hWKiBG)E|*9E zFe!FV$bE{~8@w0>XlKE38Wn&?g{P0p$`^k<`CXTd%V=1{M=n!k84M<}N%5r((5z97 zZ^O^DJcVqDM=tQMAyJ7>EI5uu`4!eWMMgQJJ{rw=_S+ z;nLCBJG|R-Ji$jnCg>kz>sTqm%kt@$+9sB};+&$-PeWaD%Yk_N?j488vD5E97?^+6 zPhf!ufyC^K>{}O|raf)<*lyTkkT$G2NPEZ3IO6mvOpsX={r5JH3~emj@XCmzx*;FI zJbic&(?+yv*ew<9h0DGSPHV`EpO8U78<^Wc9#T7PPy#Q8E{Q4f1k{?9Ze%PZ!Zyl( zj|)__rc)domD&6}|IR_47===%kIH{V{h)L)ksrufR1g9Dtov;5fk>4bPMdiuqKb>H2J0&c_Y)L8|f)HTyrMUW2&MlFA7dbF-0 z|Mns&Od%jmnsA`&7)+%;zq6pd7=|{lPp?A^O=Tr6Hku6>_rLDeptb1zW1P zu>eqW)WFypxh(MYC~TIEZO#V+4>e0ZJA5x}Pw<#o#rSeWInX<%iY0&aImGnUPJBG@ z9F{_9lO;3`n+86SzjMUX9(-{Np{Ns|><_neZVh2knsu*CJ+q*v)?jd_jbW z7=8h1@)s`M+8FaR>yRBN*)RZ!WXONf6BosriaW2(M=i$u=kJ%oxa&dos5m`Ht>B0LX)iZGLUbj@|bP;i{V;x;eIgG+)U_1W7>d(^3k55`&#f)<`*> z@b7#N@PmKH@}S4^A|!H86seq0f0XZ7Te9(s^(iiLei!iyNOJGfSwPT^J^tPN*Sxv< zoZQ+tLcj5Q0+koJ{K0Qw+JoQl%ql>66U=x`+Pa!?kvF(Lf~=W8j1@>fEnVvvrtKaS z`PM0Ah=5U9CvZP0h5dbNN6tUgD%&!}fBY?_5G-6qFQV@lDU?2$W|bBx5}NRw z%~AxLU8N?&_0WW#7$bf44CJS&*hUYKHs(2QGIvZffOPw`QY-xEq<5OzBW>G_ znVd1lO?p72v*3xjxYCjf7AH>u6l}`|w}5{c*!%0@NooGoa~!!0NFghYW>#SY6ZSgm zFZ%c4@R&bvHx*8psb})p%<~B8q#^6<)9gu8vv0n6=zj-BziZoRk@AZQRHge;I+Lg@I(k zibZx>m3O!TpT(WZ5eLzinNtw&w;5+T>wO1fU)L%PqLxcKbl9X zNUrHTcsc6j5*!`@58Nca!H~*xNl^D2b6>rKMeI94W2lEeh1ew36B!WsCn9-eJYZF5 zb6n=Fj^TR^7$NY?U*>R(Lgj~p4bdcg6@s??ZhrjKz5S7KuTq8{Dm@@KD5!se1H@(q z>yLdd6wA2ohJ61#8GRcB1(C6==CFG8Yy7Yp9weq(3ORaHPJ1{-;zS9L>EybD?}jMt zK?3Ns=A(*_kw38%+rb834UCJM;_;3T{|)(drx1QDY$z=?<@iJ zP7q}%_p27{tevbJv1-H$yc&O&_Ge&eZ%4CXD+%NV(&~4KD3w6Oash-NG+|{(P?1kJ z(|JI=JaPbUr-eib+CQev?zJeO<{@|RWGS+p-+5SCu~(B}gUu@brbPB3&0rzIJnO!;AmR}~@Jg%^Lt?ZD0Thq@UOC2Sq*J^Lo!mlDExBW;k|S}qfs`x7^}G;v)} z0we4gP|~^d|LC|&tTA_|3p?k%_S1=nuS9}V$kpbPeo<$$c>lqvoDiXbfCEScaoVvV z9gS?iTaRedkn!9s3Y{D#HW6Y;M?#|oBi21w2i51N*CPoY{lb5->>OxRz2Z(Def^+; zsspC*S(eT!rEyZpTuRUYbE%5=mP-x>6XCXiJ#nN?JG{N0OnsJ+G@h^)pqcM(u_q~4 zeFIm>U2t=J-1nXr!v0v3s@eTif;%gWt9V6!pEsZp%LAm5w(rR0d_ys0EnE;nKmosj zN;((!og?o-rEY({RuP1UjuEA9gy(J)h4D2{_j@J1cSkQ7FlZ*|0987nqK^;IxxUqL zDnqaM3`HqZ^KESc0TSYK2<+J`^Jy&c1Ko4=uEe^-{f_KC)&}=daGqpKiGyZZ6LWA` zN@bqzE}3bOGyn}BySnmYEG^4l6%$>onPgy2mog{*riOpP`f`{53e03HR{UyTLP4~k zbo@RwLu1z}EuQ0BZ;DW~0!(Z?9~K6TvD0@29^{*q*<_Ye`OGT)+GdZaLga}4*SGAX z_2biOiO#CU-IlG@YAn5XBYrHn!I$qtNwhLUbQUKW{;3PsR>MC+dO6_- zr`u6}4$*uyJLVmHT{z#r>oZeui3vqNVad3gO9Fp(_x)e2g)mvJ?FXCh+(dB{enZlV zTX;UJ;i7V3q}%e zh-ZK9rX*SqF6%`qvoUL!W}qWKw`7dFv@v&{b>M*cz1`y2E3igsL*2=}H0M~z6YH(m zwToM6P=)@__-WX^LSaIDt~2QvUKge5CXMGK;gv>uPZfHVB-qa}5$-DTnDvbWDFte> z)qwV9o1$>O1HN(R1y?iGhrt2K`wR*47kn5Oe0(zZ@MAhtXR zas)2u6o9a!M3w+beM1XBsq569_3@o{kLL3REpYXs844knmw}qx3QP;S3x7aBs5*ZD zQQYrZiyUWxs?>?}lCMsT|NSBSC0g}Tcg*J*10*yv7K3%0M;OF=oU8QnUMh#YsXTvy z04xL=sT?$#Nm14=+!Jdx&B01Tbb8Ej`k8dP1r z=thRgvka99z%iqGM-LjdT)6oU>h*uHsA|R}uI@8gA1oa9_Z(L+)#W2bko>yonlcW@ zn#tuoc`a-G7paM~C#kb@423VClyA4pD7)I?jv)rK(~eO=A8X#4jYQ?&dlKybJ-+V8 zg9^|b&PRX143gu6zo_UfP6FW6^N6|u)!|bMsQa^+d067Be`B>aH2J4mF!z6?XD!`L zl{BdE%}RE;w|$j#O-Eb4T0w67!6rHZa(4|bYn#Hohj-|9jBvrS{I+llsF!uM4FM)s zaC~pTHmyKl3o_p@?_k;ZLI?X5PZdo@1^CFFi!{SkLYsV%rb6C^Y-w*CezE+AFF@3` zq!;M}faHs_`QmRcIj{h(Nr8WPlNl!D3T~C?TB7Uv?)a{Pr^HzFl)yWvmY@~Rc`z$4 zS*NFA7>fnyK_7D#g3flnTdo;dz7JxI90{vl+qlso!$?_Ky@-_Acm~%4C)UfIbdP|= z9ErWwz6cSy9txH)j+Fq8Vcwu9Aemi9dgJEZcm{cy>q| z7*8`DgF6dnx0XK>`jsEg!M*OVmT|!YT-9Y|Gf20Dyd#phM)Tj^eM?2MosP?i3Ltrd zIMf9JJ7RHNlm?a{Xn_J#uOFSwTY?IPR4%sM29-Rwjva97RcS5&k+){p#qs1~$=;#k z%>a^^yo;qeZ8~wonL8T2Kp~rs(Ry-TFZ0ad8uN#T zdm9sD=QX9$0Q~IK%@}2$K>i($b_zq;Ir=gC6b_<0MCb@ehjJnY^tm1wAv+|R!aNVQ z_dS61m-6f_iq51! zQNMj$x;C3|-bNomh$d-X=h9<$tfYaN@ODB_x$6KBofs}3ZJ+i_ixCnQeks6_WntxY z;I6wl$|TqLxM1S6M$Tm{8Yi3|iTHp4**j}gZyvwgG>d;ee+2YT{L;xswtXsrbk( zwu{2CGxUErle0Sd>|>K%IUPG{37=q;5gG|s2z z?pD=Fk0EWC=9*mS{V0=f*H(Q2~a^z8v-A3)AS`B05>*?yA)x%W|>UFnyx;~$`yR^8hz*jMh zAQ1Y&NE`tH7#j?tl9=P4_GJ zFOPws2WWtgBXs(V{lhdNULY9xiq?faFdu*awIl42o3ZKO{E#29G^VC}%~X#ho2O4R zL8li5X2QYPL)jIJ-U_yP~s)@bt+;RCe!nQhRL9G3 zer9|vg!>u6m6-fyT=#cg)ReBz!_dyK3C&^%_CSvpIbS zwXCb#xQylM{BXvONTI*8(|~_Xrpm@}AP@)zRdp36S!rl?)XB9NTfYeHxk9KQ`YDkB zB#+bu@VVLbY9+gkC9`jfaJ%c)agT!%S$_`=7#WX4t>6RiRY!9xG(X$*xx;d1@}4)1 zJwmn?1yjIdAViERI{`$NiQ*kJ&M1a*)Z>X>{EjPj4>YVyu*FjQ@ehA%Z9s9Z?M<{F zfra4ePtVvdN?1v$r^Tl^?l8P|H+_iqnHzZ#t(~H{-Fd)~y4$v=YX+~HO<$~XCQn3f zt$BIp>xxIu&S9Kd2$ttm>1n%V*^^%6-|)!i=ZKL~U%WyYq}>VL8>C0&c7}b%*J>zM zB>Xufb=S#m?ivw%LP>vcq?m}m<18dp<3@v)Al4fA@=Yn;Z%y@LPo4K&+3q_1m0dAm z{=Wck7?9_}G|FzpXT^yZVr~dO^6KUMUDN&`LB!J%c{2{$3WKw3pDeM##4p5^zPhB9 zbXHRA`UD}6zpfj%@}6r>C-Ak*Q=PuJ`432PtRuVARZuV&WEg*AnM?tCz1tEo_d1dc zBWa-4)YICq@vmR&o>T+IH(T-e=+BQS!J%(y8LY^2V0@q{kVJedX}2#dhM@z`tIhQ) z42SSnaf!v0p!_)SkvZ(tPTWjQmGIduk1m?TSW@KNS(Aox;s>kfJZ3DClDM>&G>jsy z%LX}yqW1svW}koJ$U~#Z4#PV1g?e{>4!C{Ureq?;lv^AG*;`vS8CC${&_ZU5PWyxKxQ2--V;z-M=-@a|0};(b@Smj?y^ zii5nr(3o{mZ~bs>C!ru%yEVj9l1 z?3)!o=@^GR=PD@Yk=*cJ4|nQQW$G$6!o_xv2>eHmX*{QbjFyxK-=}_AeaJOh0R#oj za?%JKu#+PB4QBS~I^yVGu$$TOVY~#?LoZ3!^d}Q`XN@=zb!b9Byb~hmvRBX?f(?30 z&^S|h;x2zRW#>O;f8ajwyvaw+EEC&l$l&(zPEp%m_vnn%}pe~Ms7EK=qdm*oM3x> zxzS>p59l7n;3~Xt3a(#<-O*Tgi+zQ{x7b?-)#bpAi{H(=B!M^Esd|$xB)jPz*I4 zIhKDg7HseJ?qU2TNGd0&Cy1zQAI1YfRyM{CGEOAvA?}x%lu2km#a??a8r?IP!7RL! zbSH2GD`;>GdfRPcXvW9-Fd8r+@qhgL!5c-AP}pFDAtw?AdF%jvj6(3kR!T+8&j$#z zuCWx(`j6m4%o4OJuse|*k4OvDqjzJ#2eW@ujupAe0(kVZRss35trRrEo(d6^STVGo z_i7E~7Tjw`T6*O0bc&VW1I1}cEIr&~xMuhEF8;D>mgelLwPQ?2LqxNvc25hji8PMP zS6@Bhju%gDQHTf7Cji0BwwcFP&`*4}O4g37Ln~LblW4|A($L0fa$=Me?6|K#?1z5} zv#{>~EeJqPkD!4G*Crh0$!1u*6T;Zb*s<%cu;Kdhpw(?vOGvVGYj`4UaBNy#$(yfM z$isHN1sk(Z{l&F);;hx1xp62ZMPrD?Gcq-skAN`_FGEmu<%(ISJhOx3B$kNyJ>LlV zt3k#z%hC*@A$5dVG{jyjb@nSoAK`ynKj}ajq24(SG&0Ft4EExdUxoC5X9-*-2nE`L zlR(fFz;t`c$$l8+wnhs2HgU{|`-LBPB`)tgCbdbvEx(pyWA%gV{(K+NwO^+0m=4u! zL?`&4QikG;bx5~oS!4m_!&fBETz^_8GK+pgg~jLT zo2hrLTM&vKSiK%n%qSO_AwMNC$L8)o4{Il~H`QHn;LR(4%HPWq4m^im-(cjcEAxn! z%oj<+$xR>8A9>XDaZuAYUQ2)4R8#Uq%K7NrZ)$3PmxX(>n;qM<16R}(hy4Y#CVm0R zE@fi>KQ9{>TPwB+6{JKy!Ay@g>Qmr{9T1I{J+UglO!bb~PqQZp%vkq7cj~8V0+`O( zUbb-x7%;e(stvTyb1Y824u=^z&?s{ZH<0U4xc6PjPz#&#JWOjFPg;LksMO}wL-M;c zhf{T9H^IL(T&o9iNz;8oU0JmqtkZGvcg|8eF zyV$TTrg;)+c!Pic{|B&r+L<{3T&IBdWn@^j&||%Z7S2a(8pHkMiU>R)5CYts_vPhM z9xKE|Bko@05Av(X8FSjQgCjkfi~DNr;(O@+F}R}z9Ix=e#48Y;u5L~GpwAGN`Dps5 zxpzCHX>@&Ve)ywBfi8EM|3PrrDHD8$l;smV|C{Q( zd#+)p>JdOEOh6 z#jg=?M9_a{zxntiPQ~)|5=L*1&87qzEH^n0KXrJX3otRDeK@J&NFmsr@Y$XRLPw+; z>s9O*>-lXLHpQX&o4mZ*Hn6=xX7;jay5P=bK0pHy%*MqS8RH|f8v8g1r~Ernn~GcS zl^HZX1_mEpK%UNLb}2I6+e{2XGipA}5J+rvqQHL)(E63XjgeoKC)|6EZ(*nsb6WLX z$J8yN7grPo@xXM{@n%-@FIP#;Q1T|9APkpzURp^1H!|yMv z;fM|~O(Ke`fBr2biA4cko$k5oCU~W_PcCg6#1>@|d2h2IcweNsdn^t|Zyie^@dGft zRliVJbEVsT2O7B;Yn#7WNW#XH6MEhybp3yNAuN4_RV5G|lIMVB{balX*&Pp*fHVBD zZeNz?hIE4Y_-!QC46>}ZFP)41E)tUS~d!r{+ zto*-syG&2AZ6Th%=+~&8<54#R+ABO{(H0&aZifI?CneoruQ7)%26MTsOu!XY(JX)8 z?JR{`E5hV(%Z3&v5Z9eJb8`JuM~|n2@xU9;$MHIbF$uDVW0j zbx4LYg}-{xkpPY}G^{w-QXh!s?*ksdRDOi)3rl`2-M)~=tXpg4=xIE!<7dR)83!d5 zTXWXazh`kZl6NKSyzg?>l@-}5&&^aLG*RlVjx=YzXiv)@dP!-sl^$7<^TdBHM(qK3 z;(q89xh`E=<6QiKmVpnP1R3 zWejei5$a1J)8==Lg63GhSX$PpfPd0_)*&PUR$3GMyH%Zh)rhDRJWB>uAy z25wZVG95+fLw z4*CZt)pNq+wu9mUpz+I95eY!Mw*>Xd6~g~ougtcLk)+39z!QJ7@){EOk|?mSX-ku1 z2lS8v_~#$>GDsC9tmicin{Dt6kgD(4!68IW<8ry8T#SOBuW$(28!Ew%DfNQwgQEY( zEmEi&k6iI=CCZ^7-$6)HgHWnowqeL*$Sjdp$J?j9HB`c}Dr| zG<)0)$qqp;KKCkF@&5!t?=K_bdWvVE8lOhAMJ9H#hIx>sYWU$BrvTH1p7Q3Hbk6I6 zI|FGB?dTDPyRM_r8o<#dkhi;sO(hX4$ovJh3e$n}l`Vfq#=>d-5VN-sDBtjTt(pX< z&EA0W9*{EwWM(2dg6SifA^up*3lp^>x%v zL^n(uL_ra}r+1p{&Nlm54${4( zpsV5=0O`bbd%<`4UYj4Uiba+h;C9zvdHxgYmFmo(|UxB z<~vq^pKhSAdsyY2y{v#7%h-fDN)Z%2aFH2z>RNw&4vJc!@|tx3@F4z=BusCLi6gtm zej-ycqT|vy>RH3J&%9=L@f)OEjer$XP0oFEmx%L@wfJ`fG*|ljekvBg>NTUpDjL%} z5rb#tCmES-B$N0-oSrSvgI3zvY4O0sCAA>OSQN3HndeFz|6rB zl|1gD_8CyXTe<#QpBs~;tb_?uEKy$nklKQK_|yUe6M&}nDYyYeKGO1w8=l+sKm9ff zD8{qJO_mcN^*?M7Z|8VORv^20Unj?iEve9^nddXA zWVe9~Zwn3vN#MII@W50hF8o?{{`EFjFI>`Dw^RVIpZv((*^d`<2Jz@xbE%IW44d+9 zkvdU$XeEO&HLb9i0xo-m+0Jpl{NaBdqY!~ont#d)f(qzIXc!XXuu?F~nz73I7t4T} zZ5S_xHZcSf%Z+FV#~um?qxLCI?gzqI-LPA&|+PLHhL*oNP-Z=JXG#-U~Ox$q>&Df7pp>qx0YJ(`bXk90Y=}Kkh$hgw#Vi z{~1)F|7Ey>$MkkOHp62n5r*a=e^&n(fhUj(6yY&*UA6dsir?f(f}hbo-2!`lEeY`6bCRH^6tAn zr5Q5$xi@v6v}(Jazx-mXZ3=a}gi+7#DKq>-4H2dRvSb+y7*_p@_h5 zc~+X`ky$b4@96qvBUFExO(jWo7xOFUfX9f@6dh0OZR$3Qae8TU_Q)j~9{r67{ckj^ zhrF4QB$Nemu zZ06O&h^Jzpnn*AKtoEtNoD8ON39P6O^t_rVVO04-_A%ZdI+K5}Pa)b!Zp=}34UBg8 zq&+#sfzQKm0Wv{<#FlP$YB2 z(=HuZ9cF}g&{H}3(N667aOZzL=_5{ww;!p{F5OYYlf8d|qZ8$Avetb6-)}6mgNZ@N zP2QN*wr`CMWd}R&q`o|R1okv9>2L$?@;>S}JL$Lmm(rOd*4P)k$7aduE6H5^DXqLT zAE`dnNP!)EwgvX92@@Wp7t!Z(=ercb58(&H9Y^o-lg6=>hxdfs4r_meqW6qArtGcN z0&_yUn81H#Y|QId#U~Qvapg>5NORQDWIYWsJ`v%5H4cn}aW7kRU=Hk|UTti02-0Nl ze0)GjeRby zvv!`=cG#{`@63dH%noZ1VdI!zOw3#xU@?X6t1W*iUWv@}y8Ufrs=NP(`Qxv7R-sn9 z{eCo|y$%T$eUqdPB3Ckp-I0m70g_@eu!WwR=JN^;_&nU_D^~OUd{lUmZqe?v zOCls@dHb}EG%VT){{Z*D9T%+_6VQR^$_Ilev6{belh=!fxy2qpT~@bJ%dW2p-45nP zTl}{3OX7ip(b&9+P+aSH?4(6gk!#~$4avFFf{}XIKIrZ~q#u8p zj~nVrV2MxaZx)9F$^Ns6$WGzcWl;>Mw0}yBS9l-2rIpX=K@MHq*x1~H2(LXz3KxhS z5c|q9{QO(jUF~JF@s?Bqd4As~0!znwEx}K}En04KbMkVJ=b5fwUOH1qj~RHF?IMqb z_nJPz5VG0PJbO_1Wj=Q`y3P`tQ@?+Q!tY-`PNy#a+9^u{Ah3?f6RDsBcsxYOs^;$q z^U;KhK>#Q91b>KdYX$vt#4<*27i3OcB{CRosi6!}ioF9bSjAvGQJ_&?-#9~a2N17p zWEn;4BvwKjhR|3I`?vSHyg!TJg~YDnipGaZFDS>b{pKX~oxQCTPTn=ApYu?21&~jl z)wjsu*P_d8)w|H!V#T@Vf*5AQG>L(f_P73BN`{a|qg<`h5kB1f9DslxK5r=>r%L^C zXc51G%jySO`%q*3=`d9)@Tn6Bt8V&}VXYGaF*LW}5(Bg*0x~g|4{8D-1UEG`IhXM- z0u%%|F*Y}s@elD#4u(NTY z(b7sfflXYX_I6SxE?_}`HrO1X0d@dzZ~{2l**VZ?0h0C(f1XZIONa}A!Hn_mAOK`z zVh**1IsriTHui2%GYCM)&CN~B&DoXB$yJ2yrAY$}2Dm`L01K!M7$B*trYo-^3t*5{ z(E`YV?Z8eZHUKqOQyZumKnZFFwsQtE0xayE05<cVCM#Qa(Mw} z;bd%TE3dLY-xx9$<4dsLKoU7A7_?jQt(g2LH1rWw1Ha)%Kqg zz%TT?EZE%M&c^e9FMXNn?<;}g(kc>4ip>A&;qSDxoteEk)Xoy1;qpSQiIe%ifxpvg zCeVMxe*|Fv?{R(%kaNd5)$?v-mDxv+yGWCP7VME z4<|c-UqHb3|G+hKb#emRx%|!l%Pjx#|JD^4>;X1ITbj2wdmmzz))ZFeCtWaEj?6qc zZmh*T&jG(M)^(zf3+;!P8~r*WIoBk~b;lr|e+V=c-Z)&BKX0Tmi3ekBkBr7pMi|bM z+!RrlTl#%jz59@NTO0B57zspdYo>y95_#s5vAh(d#x%;E1>66k;8-GzE6WjMT-w%y zjI)-oICE(y%Vl+*S+9j ze`pa{bluj~qWMCLE{D6~*b_app(O)PUwwo&bN;h?Zl*1N0?o|M9#O5z!iVV%JewU6 zH8RnwhGE>IF@Ho|;M7gV>&y?B3%M;fREt^b)B7{pb0%YMeWpFjj4+&Rz1Xk887phXo9yh|fK z9drTb-b_UDy$w^e}K^a z1@^fET^Hm*mp79@3`$#W~Z+F^taXJkfN__|C>Q z#p@E)K2503MEN(#jUl@8V&2yJQ3N;^1A1=K-lzs)P~w?`A|x|TJ%ynDO4|8HA22i- zrek7fZO-wW`CI3YHAZ%95yquVf0a2X>YR`jUWTRzT3z#|XgHKtagGQ!$jweC^v!xR zbCN?;L#6F(=H2@~)bU)7YJ|9{0etzNdy?~8??Z#j^#tK%xyvZ5332?<1aXdWF20pn z;Fb`RWij!QH37B#CcHX+?~c`=_Y)UgH}nHFsRNupsm%3m%`YEIPE5w6e^79J4*>Y0 zFr1B7GSEW4_KqVdcG}o}8zI^G6~>&EImC5`Gxx)#$VppizFk z;TkiE4W~{-|E1F)C``tjs!7_ljP3oUlA7E2bGXAGKzOvkd7Yq)gt?H6g?8fnIu&!W zc{r-EfQeCU(&VVajN$s6XIr1u-gv?4BpO1gzsDh=#(3t(~Wcn@-y!l2=ZroHIIwVJRb-^g9X zo(VN(oUr^+>-H8k{`SDkEfEs`BhK)qFNVE$8K{kTT*Ce|H%d{SQ@o=WLR?FiA<*TJ zzoTW-5at-11-dS6e>g`J3~e$Rpx)7E`4zovm=Z4>Q1)xEEuRHV%Ushd2YIf|uLD?M zQ>eF;Z4b&K5|j3hFvA%ds1Vw_x?Q;;E!~fqVYuu$(+8nO4whzbwdt*N%e8POR&sIA>hV2!Rpbd-cf#M;75>OtLL< zhGfI!a=$IKaMe5w6r0Z@Ok45X8XAxH``MGkDle2;%{LmjJgqPsk2;jY4z1*v8I|F% z4m8r(7{!N^9jo{!>wD6K2}wtl*w^WnQmhzJ%G!Jke=Z0XA;Gk}L*s0!?0>8U71~tKEdU! zZt*368B3?FEI7}gd^Bu8r#DK=?s3)A3dP1pLP^oAV5D|$pz-5egCf%?d^kEUsm=br z!g*yre-ZTnMJ@sr!$-2}!lK(mqcMdN9~2ejC@_15=S4xq0?`}7tE9^#B$(ek$|Q;_ z{mi~R#dc@BNoN`&6;V(diP+zu(7)3n^D5T@5&M08pY}7xeBsq5;hNH)ni>}vGJ>yW za_OrAjV&sQMmfZvHMyUPLPTK#zjlp+)K%hbe<;u<7Sdd_M);JZF^FBBzF4ez6xf;f z6{;T3(5`Rr=*%b(xJYRqGLY2ePk1baSbKiXjKUW#@$>33aXXs|&8U`8_pHIlp+@4= z%IwKxwb+dRndHzau7Q+XD#mPqM9QerI<@1|p@5V{S^Un?8NSLLE}9rFOE79ss|TBW ze=UJo@AFQKHkytQFbgHj6;mQV^~dOIa{WXfwFn_u zAh$hfllaOV#6#2Z;2cEM4Wv0WTzJQark%nW*^1(XdSah-Qr`bCTBL9t)l>ZV{znS(s`6rIjQzeCGuf z=?0YmBEWHa+gIGuBU@B&cUn9|t0dX=kj!~5F!8XM6cDTGnVLm=^D<_#S*AXwe-=WQ z>Wi}!DZ-d>=n{JL5ib+RhHIloIB61{vbb5dG(T2}2R^4qft7FMPOF`89Dd7k7L{K_ zuSKj?7{}kI<&u7p8EL1Je1u!kCvAVHZ16@<01k03mAK<0SU;K@^&@(sBV{5wrwHaB z-LuYE<;J`)TH26xySx)iJ*PV`f2}UZL=nsBx_Fg+WdL>tQur##&{-JHA*B+g!JHlk zA(y{#WS=>tLIU>Dr+G4>06{A~GgS-Z$i__p^7k4o+7XvY%gj{=6dEgY=o2e@!BvBPx&{ zfT}(72@Brdd3&0c&j+yC*+kUVR(~OYJ-g`@z7j(Wfrj8wMKe0~KHE?t%2rmlCw!CD z^grlB^sC6=K=FwTnr{Lf{II5VxBJY8u4HDl{)#Pa{=@Zt?1weAOH?uWGbz(p3^|x@ zDrU!ybLdVeTzD3r;Tjn6TWQa9inHVFXKKGxFIlA6d0Iiem6k8D5If84e*o1THmnkZ(e zKa@~IA5(Fa9UZfA!wp29Pg;QM5-gmN;kONA{IQ>cmJFUo_N>{n%{e`_c-2D_HOXmz z)-2INFS8=*!i8u9D$aAt2@V==e7zDR#?kiTJxk!L#!NHu8`+Q^qGcqv&4OB2l>9mh zU0jm8w_zw>i$)^bf2-<+BBZ~52`!W|7lx?4qrKn^YqT@a+^XL!(0!zG%2J)ZD8XE4)NhKLle zFCNmlw+^{DX@)&SW`A<)U&X7Bg+oz3Yv)z>e}#umYyala+yMMmV#j9h)&|~qBT;eL zaJqQJ-k;=FNQkq>nydDXpUEMpiC8{~oRdVFjyltJH{;0pCzBYCvcA@?kzFKiO1v(# z){^2#So@4e3U&8z$>G>n zOP)AD-4zx=w8}V%%e>;3`X(-{VPPPXCt)b@PTx6i?0>0rbLFIzba+21&d&@hciPjme!@b4*;@6z?Xs|ZTLf+?$_D)v1PB&i3I!&@Td8fW?5X5ZOJWKDDnqU9I-d zI*0Q(VrJIot1~|H3S(z$5i8#`eQ`&=5}F*at<(C%aE(2m42y7|)GF7vBH4gUsa<+4 zkUt3iOaaRiV)a63Dj(zEgiEAyr zqUqGsEMK#tz)uDO)f?1QsCuTIhdq_J|G@L3RCb=tJ9ivy3~VthoS&b4YFu28qFBfY z)h_Qu@8ql8TJw0A=YX4|Eo09p3*Q$hc7JK+k#N5$=O37l+<`Hf#BuwYXdbsk9U6*m zEtdKXPW7VMSj@6|xBMc6u>I5kn(1=PlbYUolrX1T=ahD=^v$L>C7r;TnZk)afG9+T z5_>8ky%WoWkXdZ^YbU87*>2SN+@s;V)02s(YJuC~!=$s-rmLy8clW!mx|hO@bAMEr zdaj0wpy=L?re~dVQ|kBG%56(JMD=5E5v&Y&3*ys+5kM<$V09t9HF_>X8j5I{6*Oc= zi1K_$pyg>9TOC1LEna2ZzdQ~xEjh_2uRX7NZR2+q%eDOh7eZ)#_+<%h-MK*C8}K%w zs#lxv!|-niq?lQFXF$F6n}oS_LNLpF#y`i(b%M-&7qrUUOST@JYsL43gg9~ zM?$)h2cVo4Ho4404(|Q(Zw434(J9M==1!xzhfei^J~x^6KMsQ|rhBIR`#BLOz^g~3s(&&v%l^o?l!g7K+RKc(Bo3+6W&m|)jyxv3#E2L10@QM!y!#++kZFe6g;b< z5;dhA)6=4&1VY99(Gh8GGqgPFc#J zHc0hSUsBTySlgc;19{R)+O3Fy8Gjb=oE`B^I93}-z7PMFV=2aJRqNY=x@Abae3JAB)rL^a zz17arW@fHcK2EtUY`bMEQy=XX&{djFrZJNcxY5ko!mhb9qyW8~C6eogVfwaPqWt)I zQ~!ON6ON{R^B)No2igUQx8tW4X!$P$O!|Y>f60M*b z-CHE|iSL2qJ5H~E+c|zU@=4k}no_uGxZ7{KjMYG|{ZiUreT!L}n8Ht~Y<376SRP28 z@=6Qu#Z~6csoD>y-M#s4U1pif59Y0@h;8B_y^NfI>vQ$?2qIU{6}8Chh#AfH#82ca ziy(;Oa6z?to~zpiA%BmgM7Tr+>ZEd3u?&*BhZ~em^CwpCX%y&lISqJ5qhKL(Sb;wG zs1Pgkc^JICH60^>POdQ&xUbkwsl)6r3?7LI+es(H_&-%TtEadrx~&Ok`Dasq;G1Y3 zP5!>9XuFHfQyFB+FRNbdq)-f>&cBo}{U*D~G>b}L=XxHU4S%2OJJf`?sfra!BQ~8B z6itxRx0>69fjoq{q*Obse@NwOF-uTNtF7})UxoIE95FYj)s>1u3OlCryyf_Ul_58f zJP;xA7Vt;t4KZTBkIfoC?DvcT3m!@AWx_`gP@fcu0)46Fuu1%B)9jYR& znc~(C@V-M&E)d7u04t|J7Rmbm8(A zY@sWeCP;LK8OXa}UqP>PpSiGSH41@bC^^#^-&s(mw=J-BH5XY?VX zWaekC;sM;Q4R+;WCfXJiQk4fQBR7{>aa~Ju_S0|uX$V}wa07mO{F1!^cTEPGp{yv` zQc>w02C^(bhF{S$8@ZdwwmCZjdvlT5SyBD8tq`L$JO0C0H2{4q*d zq?qnYp{nEL>|*yb1gGSU@TtnKz<;aJ*U9CiDHw0IG>;GsyYaPAW~o^$gVwsSMPjjl zrSKrDpg+i?>Nbifcmk(xU5YKL4#_ek)(?C8fiPoVY4xE`2xxM{Xd4Fap2D{R# zvJw;i74r1QD`T1gZb+opBPv&S03Ek3ij031&fLB1=$D2-H*zm8^ROONHX2sWsJspF z86d3m!Q+4SNFmK8k<3~Sd(I|LXwK@>3~6q`z$3Y}y6&1Y?DXo&tYlgU%fwd%M-K(t z>YWs#Z6~}n+RH#lj`OU}Gk;uhI({d7C0+Afg41Xm0^}95>7IAZ- z*72pn^dz$-f%KYvru8!N*G|tcW)XmFITg%&8`}P=*=46{(ydP@fXFJws2l;FuBAMD&$0oj>*QO$L zK7tPNWHbI^zPtP-r|RJi>@CVBxYdk5;HQ74hJJiLMGfOo)qnaTSF-h9h)=G*o%f!S z^Y;b5*TH53Lgc59aR~g^mlSSeVlmP!WTXckx+jqQF0_$Drx7iyh!qEwP}uizmS{0O z@duL5Ho9o4}&Ez3kmJ4$Mm3+b(1#R>UG7W2ucZ-;Dl`gP*Q>mVr)-va?69J*umnBC zYsS}k2(prDVy1;@GcL-bFDd=wgA2oG4Q`9`xi#urWe<%w@KgJb2e~{-j;%XGkwGlI zqFh(o>3P48}!}D}7huL7FBZV;X>`dbgTLd^bSons%dy^0Um9SE;7aZ>;_|@^bFg{0G$> zFAiNQ2ZsPAM4@uU+}AZJp9%UOwFJcYb*pp*2!A}^wynp`86{NtQATE37+usdo0`A8 z-1f|ZMU^~~{1~%>r16zi6iC9?X4Zk!E+@RvFqVup&7OD>9Rc_d?`yiSFz^L9YtjP- zzOzvVtI`$VxgI<8rIG_Yhnq~`oFp@+M%`7hI#A)9aB@0%bGheevZk!?aj5P*CI&}7 zH-GH=eoupv9k%L1fq=omeF}+b;*!=uK2Lw zGfg`asz!7l*;Emdg4TS-&F+*%t390LP^E*wCDS)m_m#a>9;qn1A2b7l*A`p$pVChQ-N%G{*9>Y+wag-Wxgmhr% zh*3YjSB7fg!q{`W|g(-h&;v3?+o+80x)fwpGe|EIWJJ?kr zYE9XSm=?JWS-p_@)0&C&c3RQP9?Fkzl(TB-aJ1f36cMpWO{pQZ$sR0pq3c zV;OwC1BJ*QYuao<+tGmEjQvBHTO)qr{{YMTm$j2&trG$I2 zz}bWgpk`tWP%^OxFfjv|85x;i$pFH3_U?`rX6DWSN+YU&e}Vv2YXf5o8w*E(s-3l+ ztA&v{fXCIEqw`;4rjB+t09jFG zK{2_X$^cP+VFqPkfPt+sKt|$kxvjGk*I%@Wk(1NErlSQo|JSlM_^)O7U+ceFN4I}l z^sr1!0AmXyXMmxJnT0JZ!@qQsv^BK@u>U)3>|+0))L%kQfB69@|7u7DFg7v$i*~WL z{%K%i0-zMOv$1z^HgN>V+8LWT+5(geY@Plp;%H%i`X8u)jfJ)Q{}=o}2uWvyzhVg5 zn*EiJ@!uf}Cou~*6JvP`=f8TJ8d(3;>7Tfo$-h5G*2LJt#pd7jCVxfw`>n=yw$|?d z)AH{u|1@M!5L6dd{z>!SE%+xbYHMU?Y+-8#P;&k&sDY#Le*^!dyve9SaKwfawPZ3xJd5hu8l@ z*T}`u(ZtsIAJzZP@*n@7Z89-&Gckf)TedUe4zx^Z4leT+EtoBbq?w)8SD{&E0$rKv z25O;L44ND39bDqvD&yq-g2$inGvwX5*p|G1Z6Y>^F@Zmtn2aO})mg@QE+Q#6^RC`} zRmgj(3)Q`XQ2lOW^b-OYcH^A3zUD7aJ;|DpeO4{yP{NBM&J?L%+TI6=ycN5;aBnM4 zr9*+5uK5XXvPV;eJZm15e`U!3yt@V#k{hrC4sjeeoUSVOj~z0*t4R_Cao$c44r_=pAmVz_Zt7&+$_r! zWD%bc@+k2p3LMtZ1r_rZU4m6?6-INbHX;l+(-!0_VNkoZUhtQrd(sH(9aS@GdG26h z(8QGCM4xgdrEVw$0qv&9S$91%it`@)Mc|4-&IA5cue>K++_zue^tCwb?htN|X@6P*)S`r%!Fx_+_ml%z$hw{~1FlzawZzu2^0GYx1)NTccO50CMD(VewZ z@m(AQr*4>}XQtE0N5x_zv zxL~_G--x$PP>^A>6-6`96{jekm(QkTSt$qk)_9UEEW3FUe9^jJ5EsrAe1$@|^eIL| zW2${Wy^Z(zox}ToBry7HrynIpYKPG$LjB5*6)zy7g!J3lf$NrkaCW>ml_^Uw6@!FnCef&aj^; zhcq+v=k6apht)xNT4#u}L;NWw><`};?OmdAX;wA*4c)VUi6hw2Anf^l{vZ)Dk_-J% zq(P!@QL4A%&+jr zcKb_X416%5vXD-5K7ZTuD&c!&i*ZO#`hI-(#{8^(9fb8~cDjo1%<0ASA1}k}z8(&| z&lNbrtp728{rHgv@8ta6n;LbsLA1|h%Kd(H1vzJL2jL>7P}$ECk@y3<@~cJ!nFSY* zKZ0XPJ@EAic>1~ey}PcmC-vvqG|~%l^zt-G4Aba*Wmn{er+)m#v}fj}kT3;y;X5gx zE_=E{J5^v}ZReGCI?_Y!$4bB5=SiqDrJN(#W)1Cs#ZtW2H+J8Lov~-cKL4YVaNUOJ z$M$SX22bkM6Zybsgb8BD1%~_D;`)UZAVa65<6izta!d;TnuHjYnsc>q@|NrGXi;d1 z0Kbt@avA@D$zm$h`=6g1s%N>>RWd$KX(Rks?wa zq6z+xwU>v6fzmt+d{|Ne%j*h>4pH6sS+zF`!7iT3hm373x4d==67WH3`X?*Zd`?9o zC;NVXoj2RL?F}NUMx6^tXN8}W_N{uBU?`Y>p3Gp;d(I?WbYw_o#R+x}cT9+Xz03Ns z$hy)HkLi<$dG1o#<$WI)o>A_BhJV@-|Z3-X!Cjd5cw6$@fUTXG4C zI~zY$7S6YB&0uwVZ3)wft#luo2i2e?<<3U?G_T%!=!3@;jMLh=IZJnMCuVvRZ+vop zr*K|Oc?BpIR_~(Wi~!@L<(39S%Dz@66P_OQtYTJ-@qFF*`6S;+irv!=bmp+cB}qjE`$^j zw@kdRE~Ex2O!i1L$7f&IQmfNQUdntIO90m*$iK8l>8D#6+vZ<4{9*RYjRI1C`9{sY zHe1RAeu!o6-ppZosCZNMHtqy`*{8?q7I+*95x-nCdIs+hgzqwpnbUNKxhCkEs3|Fy z#Q(n2@4pE>yjboytn{mnhAA=a06#&H+j;yRr|{>++eSqC3`%p=DR`$pTp$J2N84Tq z?~rJ+4-?8~^#sk$LMaYy=x79gqi-ehBVy2Z;XXG;v5s*H=i6UA+e!K|0_{$v&rbDJ zuS2!6iOGHrdL<>==*>ZUAYyEl=r9>!atmHvj@fr;XHvuds*p+QsmD@B8)j8%3&^T% zjgg6*yWJBdBu#QZK@!tJo#5FJ322D$Vu#Y{=~rNc;3NrR>Pg^mWQosz*q!6oee+>I zL_RMI(^}w^4tiBLm7e$14)C&_o`gDH=w*pmRpDW-*iefG&Hz?P`|nwGEgDYjmLcdY zkuMV*f|wP0Iq+RP6>ar-(-o5Agq+c)i8`mf?eWZtka_2HtYWN9Ypy}+m@2pAZ*i!} zdeY&E&qWHeHH1=6I0PYokygK5_#l|DT((k5!48y@SH|KiiH{%A^xf@Cnpn^wk^=BX zXTj=orflmW11T{)#Bj99!K!f(SU=g4H-fP9 zYD`v6w#s|c2%-e*d_1sG3@Di(E)&uxm%dZ^IGkse%wWP-Www3?yt0mIOuSKAv?$6* zD-QsF^ER(i!B(o?*DBgL%vv*0r_OU?S7Xseyd=$4T`I1qO#99ZFyws1coURJ%XUN% zdJp=83mZ7rGJNxYODrre!yZ4P|0E&Sz`?6&-9fc$NX;9-#Oz@MTO6GDUz=eGVd4w-bkBZ?7ORy-wT*k3E{J146;+%yu7BqzS zXL7-`&=!Ax;MIdNOWl}OB1`GPb0CqWu{>NZKOsL*$9{u8v8nLMrMfmN)>JU1o+DLt zTt$Lc+?xK7b<-3S_^xf~HHlUqE-AWEgE;|44<<>{TBTY_LBdm;@rIu4cyUk>-@R2ii<*j~$)Fk2JO)aaoaYY&n&f&HGT;fSE*l>pdmgmhv|y znsbk9ORO>l{z$~WsZM*!MbA#SL8X4G<-de2sWKO(nwnaQhoV% zAGh$=Nt5T8JSKd{nG6{2GHv&li;K*=SOh@mL?_*y(q~NCz*`nEj9_n?csB`^gNRJip6vE+AFW*kOF!~xZB-%urt1uH&TaoPDA_P8*j|fPA z_>W$s{5CP+>%z5+IWd{&<)9<`i4qjJXT5~Y5s|V}D@ibD$wp_Y93*~AC%l{uAT`9MUPy(`>qDdc;0q=lv0ZtSijeP$qk{B@auqgU z3}#aP?~x-kDSQ+lDWiKVCop#@9UcyUnjwLC6~}`;^E}U&cEjL>*=6lQg@dYc7~fX` z--HgS1)q#piuNV=HqTrIg7`hmq(cD$t)v(nV0B} zLXKU?!k1K~k{)Kgasf8DJdTul@DZU6duW#c|Eub_E(F4guYwqaH~Ve-n4J7?ZmET7#iF$ZgpZPoVFGCh z;$FHr`1R37C+{PIoVV7rKhURtZQ8oh6n1Z4rB{u(Z0zd3>!Wxtb{{Xl3K`a;q9=3r zfFCU+6raUBCTD9PXefc(P#e&VugNY&#Ezd~`8)Gtz)DN6;as*A!Hj zU{j&;v3IYqfXl(ERNXN(rePzrBNG?+h4g+_GdAaZhb%PnlZc2+o?4OydCNC2U_z$F z!=T;=`n8m@-84$!n+vpm@nZVLbzfWCs*CO{dy*$jtg_=;tKK0?=G$yN4^F5s#>neJ zGcbGSteff}Hjn+(y6`jqbSYl%5^@2)53S z>35KElpS#2akKcJazeVxxk*6UGqj3^9*{oqqvEsS{7pfq6G8TWlNB|v?T)ktEh-pg zI4Ta2a-6$d;w7t0Iq*-2Vlqk;L(bu$?&v>#vKba z7W4c~o!dU^^TJ05V;niqe@{4HnRtG3g3PYOf6>QCMpW~E%Evg-RF)E&uSt8SUR;?} zxYJ=iV6X_vDmq<|^I6As#8+UX0Y6M47b%tLP4AZxNAc0H0!6r649Ekv-|#x_Vy)sk zG+luKjwP~BACXwq+T;}9kfWT3VqfRw%H%>{599h-zGX&mb1kZr<%li&ku9I^mV7nH zqid%4Q_u{5LI~@}EI)B+i9NJz($mA0@^`!U2@fFbnbXdg$@6tk#PH#=3<*j|^aG<$ z<)|sJJgRO}khK3Ct&VfQiqI|4A|*kUa<@%9`%ZnF{i<5 z4L{C-W75IZ^k7lo5xV=hB%V))TA^G=VYtyM)y3Pw8BdV(RI;nuvy`DuN%%%AaOY~J zxJ^d z4Q_#dDA%&AgQ__H#cvdV?wWwS5D^LIA4H2NP^cTyzuw>bf1TSkI?RK5m7cp16#B7J z;5JT^iy(-S4_?c@&KampdM!3*^5T5;5rw)AW54iPeUHY18-b|mxOoFLos7vh#>+_K z33nYcB+*-CW-y?r70Z4w?}|5@74~q}!x`y+xJH$#tos*1%3)sK-6UOKotgvI**ku- z2^#hJzQXBG8q6J!MT32;j?@inf~7uUZhn=W)_(Yc7CU@er&zVx%)uYI_n_cX1=E4z zfgkyN9_)eTYRM|iYETw*;kbsHg_InRlC!2)K~Zdng&zj(Q*XPurn(zz!F7vlTz|F^2kWQjWv&fDLfKc8co{7>Zf$ic1DBK|B~HHC)ya}{0NUK7 zACVcqV<=L1E$gyjQ+oD5tADDN7RBWzFwvl!^eMm5T#pvgnlsn=bum=kG3m6envyU`!s`6&YbXMt6Se`U(7j&>@mz(F7*D1Rdp*ORP@6 znXe~_L}gcFSH#0netB3~p=)BgkQViMona#Q{Wc_5je-Q~8oZk_<@>PU)Gcl)IhT~G zHkSs6j46=x&|XO|fsnBMz&&o`0&6`R50bpIFy|pj0hu8-L^85}pJ)?$B2_29sX;Y7 zO!`v`c5n}ppynk4^6Iqawj*Rh-IR$6{3Gk&|DrSnUCi+v&-&@o>oFYBfwLk$TY1bw z_uMob5L%A*42s)~^UREC2vV1y-WkA%lh1}M+8+_l--!RxOsxBmGdA4*mdV)(pNf@! z;C;An`t=>I4dkwW&&n4%uov<2O|VLUyvQKa2F`bSS!zMG4}pq@bo5*>ZD^cJcwhLk zM69HipZq?nCqibOSj%`p21q<6hJL8pjofl~+*g#X4LApV7KoMr>tu4csGHQy;gC9gcv{;fU@|6wpwEd14){CK#)-TROT^ z@cLB%QOmUJ0rXH^a1LzRw!IMlzWiqR5$m&|1J^72{;}zf-wE+Vh@o(pEpX|&wWqYy z`Bc_o6ET*5a}O6~@3}Z@EpWIgO=;2P0L+w{2$;+OHRyGGpe!LPUgZ7Z8Qwopu!GIJ z>B)iNEj!~@g2)fr)$&9#FLJZq?_#e;P(B!rL+Zb^5%HKa^pbdab&msR_k#YZeG@tS z8|csF6hdMW~v+M^XOc{RUpuP?;e@s z6wAZ17(hR_o^w_C}9}8Y%a8w9(NAvFi@(9rogFESojKO(p6V!qLv?WYR zNU+5t51YGMOQ#?R|R(1~Ey!_#VSm7q7#&(_awdC! zeP5b?;3qEWZ&Z8xx-57R^$;IG-mN{2WuaDF>CTa(RZx3mSFgbQmNp-$Ew>N_@=_Sv zS;s^w0b$`_?^7|)$yrfTzuRZpL9cei)|_`ZbGHK(YSt!xy&FmksIKf(o#jNTSfpxo zR8|db{wnZwY26UEzjjPto?)v1&ir%n7|r;x$7NCldd!WLFYoQ1;uqfQUG=OV^~o;MzBpOJ?6IW5*w z%!)38QwL<$F}S~bb)R!k@flis%{A(3Lv@37lJCSFMh3}A3Fojt%w0oU#v zNTK1_;y{X4r0d+TlBX7klOg{3K3xKO^U>l{%B2LA$^G2n9GwT?7hbwxGo2u-T5Te`$D^Y=S+ksF%px9ggLE8OLV04(2sRI}0Ax0Jo4lmh#{ z4E<-Zb^Zt9wEUEgqA5B^22US;Bi?VHfj85{F%%IpOAdHmmJXMfTsFU1wYf=*xbE^k z#Cs5ahO4Tplu0S$ySZFT8z_J^WVEhKkGJXi^IWwQJH85Nmt3>2A3cF7ctCb(N1z5+ z8er3D>h(cHY300s_Ih;qvzUO-ax#>%c{EMq*5VE%5pV>7f_Hc&_B|@sZ5+|);4nou zCUu1tI#o!3|MX6(t9nKQkDd&s6YFES!KNtIA5Z^e)D)hKAx=0PW+%@Tcj6Q$2@1F)ERb=3M(#%_PPNGRZe73kGHE|r z9xd9R8l>pK-V5&jN7gyds}d7>$QW6~={uif6;1`rrHil@Zb#bcp3JetyxGUnY%ZPc zGgZ+P^-7U|3a+Dt?)zwLM!uPlcwm7n<7LGLh_r{+C&!S54ZcsCM{nFHsc`ps%4Gk& zp>G=(Lz85G>7MF-SLwZj_=*+qSQHxU{m<-xV>N~VZUtvqgwl00TyLYi_#FkYe(VNB zY*rS<8-6yDbqd#^D-{~YE^T1P$7+r!-&ZO$YtwDG%GJJF@PS%_Ko5fSBxAlyZVrCzN1*!Xg6^WtxKaz zcznyfqXV7O3_q7J#b7HuA~lXVg9?(VxPIpjW{9R;IXs{(8T5t(^5zQni7w>;2$b<^j|-r%KgxcxIY?DVl(a?|GcpaHG#Ynq_lY*+~Wtx}Rgu8L0$l=mr`)8TKIS zr>O$iO4loW1trrSWKOjBV675n#AK;VCTwGWoUGW^4ud2kob;`n)Nx-V!93?RJQ~z; zd0c+qz>CV2;%gq4)xX!F3MG^$3$(H+g4l?lW7uh!xIhT9S6vStp|6U>YfvZM!0b{a zM^d)v#hXEmESFBDHMX?M%Jhu3A26lCA(^M&9#96OQCm!Sbrt?zTs`XK^8=WRe5hosq86d*!$xt$*b8}2!NJ@HXS#AV!*{#5k>dyM+#0kGZKisGh~M2*kIHD zg3*ejswj5-tG(C|MQH}*qcSqyb~6iUhne$-6=^oB%UZ4#-PMikjVc{t$J6P5WXO?* z&^GvyAKHcv*~i=wGXL_uNcKR+faZB@jwchXQjc2 zV}Eg52qkOHtv7Q;j;*_;cair;YNclA6|S4GHd&;@=zDGGP-l9&SP9(=%I~U|U4~nf zL$@!$2;&crl9w+&$6HSGjA7n?Kg+_r!IfscyXdvt2h``kavMQhHYwpoR1nTMFryBq zSXUPG!~7$2a%8^JsjyqDM8y#RN3CFg932|ozSSP&0m)VvQ%3u$-dg9SdtkBKQBt;* z9JbPRiE(E(3U;o-9Y^W<@LytfDijH|Q&NKr6p{LGOqWQhQwij@KKV(1_9?~mwEU9u zK_a<-V63kgIo&+O)}c`VJ6|9z<2P0pTV>?wNEfoTGWF_fM!Cmx>?{?q5c!dJs3fDQ z(Nx931aN%UWot~Ps~N_`;iM%sl}{4{Zs5*iN&DB^T1wn!dlJvko_PyI>|Hv!Exnk+ zzuz+z2P#kjt;|o6^%?N9z-WkGLWhFXS zNjSD_tdjB9wa2M1ZOttBCr9&1=d6HUxTp zR0DU)LI;hlTFl32VhE%igt2IsVf}(nhhUJV|BT@7{06RNj%F>Ln0|l11*DTsWp#y;jX=fKfAP<~ z&16=MolG8Y0kRkPy!017w@w$ssYv@y@|vEb1I_-N@kYr$3p#aKdp@jXW((QJ;?J{{ z9k5N}&_$PTZ|6Vl{;Fp&&wBwL5KAxiN%;FAa0<6hGASqp=WK#;8x@eSvB8tXMTNua6iKc z+yFNAjPKQ~>#u}tzPehOZ0HeQH5#KD@VJHS`dDAVX0as#&GYIx{YAsGSp#>&Ajmj> z|1uiJM*=wr$_E_Tc91adaGM^mThZC$B$eRXd_e_x8)*L7swIqmP~b_q+9!562%T?N zmBm$koLs0Ih4pShE4BI3k?0Wyd*Qm^C=D5W4$M=4J1L*vfXSN*w=7eC`6-bB+rg@$ zh4Gc+PuVK#*O`fm`-YP3$%@2}&*HsYcjtx>W2AGKv}o zmDI4AdX}%0$f{T0IgB9wicp34d~0x(dG9{75ig16+%f@$PiQS(MZer!>>j_sEIYX) zw)i`6Kx~-hE6FtFRA3~EAmdw0H7H$??NBQB_F*v+G5$rg)^xtg7=r$DRP8%|NW1=u z*AESG?xCk(zUh$^f7b?-Ln8H3W)d=OQ~^j1KoB3|M3Oo&o5$L$6n83QxAKWAsxEwp zeV-znxw|rkL$7df93UGZ))FMtvDC5b{TG)$JW;$z)WKoHmmHb1lgr)AAGarTrenhU z?{ri{2#40eh=;0ZML@1xqJ_QWkIv5Z(JItz3Q_S+RA*l%$yJ-Rg=<5eGZpYS%E*^M_gdZ zkL+5|rEBaPrjQX*7oKX1u;YQb+is)o2$IeoG(uHSci!9U1p3BRpo39Xs=jG{Ga&@+ z2gH@s84}E?92+@riTN%pM}(i$OGiQZt5;)gA;^b5JhlyVKC2i8dAWwZ ze5ga$yW>d$SPoXdD|OgsIFR0&64KyES-7&Zyp|T2>tDLar}dV#1Xzj^{}206NZ^xU zttOY?$^rzJp!x#~1Tir;HJ1QnK%2ktF9H<>F)}kVF_&>%11NuZWl$YVwk_`N8V>Fb zA-KD{I|n$(!QBJFgA?4{-Q6v?1qtr%8sKHVxihcst5^MJ%i7gzuin+w)zsut4q#Ue zFGnCdGdl|#A3$A7U7hU<8ykR)g%gRITHG0E>I!lIOPIO>`2gBL3xGP%5x~v?;9z58 zN1_IZJ2-kdgRFn7T>*6F^#23_T6U%uAbXHAK+D0-!5w674G?g5cNcMYabt0I6Jq&W zqz(iET&;lsOOPE9Ag-*UE2|_8pp#b81V{tHKxb1sfQp-$9mpJ@05S)HU4ZleO9y9w z-M<}xxdYe&^e;{>EdLMyy91qF{}QuwcCZI1N@|EoDJy?z03^j(HN*j?U<-hP%-?db zs|(*>G|=3|kFezbzIdc6NXT$lMiR2DAc!ky!twn=IJU z0r2_XVGB3M|D^sBa{0>-K=)TedVmGc@-N!W&Q8hH9tfZlcd&PKa|JpB6df#p&R~GL zDcI$&BF=vx%l|-4?Ll^4|6lO`AY@%l|B4|Bw)!g{+rL8~7b%b@&_V^|`d4pDQ@g)9 z{S(&){`+tgffgV)`+wI1|BCYWSS=jDc3%Ip<=TL1fz&~jfQ_#Oh=s#rsGg1Kd|LcD%nz}lJJOTP_EdQDjwtubvScd-> zB_`(J>BG#y&JAGZ3c-cAq{ufOYD%#liip4n4m#x3*)_Wq8kmOTn`k|=^!(~t+P$p zn(^w$N!NkvK@^Hf?qNgItax4Gp-!H0p&voHO7cg3c_U1}3ml4;lX{#$=RTzG9 zWn`aJ%Q=+@VoI||o0PWq!D4L0{hGf6OVb?|%JJ}~+z)`aT4J1qS@ z3Yprk)rTQjuvz*++N`PP9$msE$?WGL|3N@4QqsCS$ZSvQi^@ar(UdSwu})6p=^slZjB2A?b((-J5K~o@axA!Uv&D*kGtuz`B|{@CkpB zqb7$$inTjRxD9nG}{fF^%D==`Bkd{GnZsNvw4+bx0P|x6N?@Z?EZ1X1EAty>Vw{ z#=kI}H<7s+ApM1COcl%e;RxX+GRa!%@8)kjF^jU+o1M-dM-?do(h+~D$M=6ZuBtbQ z^ed_!<g3PEAo8mtbYDVX%-RNGudKi7SN?;#7i~Rz*dnW%n{VHa^#9~;bec19;pJwp>uJV zdMR60YQ5v(MI;RA+H#j!;wp@hd~4A4@#_}m{l?YkWU`i40_eF)S^`j*6oQTqPrlT*28-fe&q zCWcLee`OD0W7wCbhOV)eK2fMpIa#RG? zalE?4@T%*ObYH_(4CJYNHqt3RhYZU!B_ zKKatls$10cGLedukcJKaPZDPLdWzVg>X1|p>Q zsU%%}dbupQtyF*OVp@)1^T>O$ZC#aG{s~|jg|V&2;$(a=oJcEk^L`EWi6f0ftss~e z{oP1L!00V~ky%1n;F*Au(FSdY0fXvBNaYU`Y33qfbwugSrfO`6?=|?YfC*QCzLC%g zVn!VO0br&>*^i+ow%w}cb4JN4f{SUxF;Ce2%Yj1Vfg`$f|MR3wjP^9YJ?F6V_!F2{Cmm~P(aG( z#QDGc*i$$~W9WFAIVTvQI!QTfNJM^~iemHHV;oLWc30)Tjw{t~uh;jNvo5YT*;9e` zmCjB~WW|5R(t?(3iP0n`Sjfes5d?jRf58u`jJ9yOMU!ZhNJ__eK1ze=+?euiZ!|lx zY{wyBu)o`0$azDV&(r7yV5Y9gLO?(58>eQekSw9poc_Ev-}{X5hy8%Qrb=DM{WtCa zZn*uc={`ztOc$CpYezx-p~3mJ(C|n8-TnT=R+oReK+PQHub3_rkr}TgjYA8}q?FM9 zhZVcV@y5dGqKggm+SeXGCc|9?12KeE6Vh#RRc4oxdc%bN&c`O#5@S~IVk}Ly?XjH* zqnV5n;+`=a=>cP|seHb?CYAk*xS$8aqc($B<6UZUtvrgdBsAJd`xJeep#ix1!uH$E zWyODO6#XuD`?>Me>Wi7jM!MkHLhu%H+YD{SiEYt3)fNICo^WvH)0n-c+Q~(Ze=2>T zDtU7=R-dY>K;MHwQH{OhpGm1n)1X1haZ8Z_RJd$tK=a^HZWpjGt*N?(HL{~tv}q&4 zAwWpP%f$6L^t-ya`zvizPcPy#`=tvbXt#fe6oj@cU1t)m@`Whw_6qA@X>VvnN4;I4 zTH!fbF5{r9ME$eX)}L=@1&wM()kT??BV2=#1)4WLyb7KoqzT+IWI(S*AveEz+#Aaf z7NM&|(XBUk7lAx6zr+oMLN2gVEK!Z%15-BvU%>t(cyQB;YKdj@6y~&?$g~qdyzGC& zVnyLc##P0tZ~OTsfQKiD*GTR$5{ir`Ot4C!h0E@vvOayJn2noP-w8YFdLufw#@4q| zYK)#7c|o)Pvk}CUp?24*g{W`HlQ;%9x?`@C3nQk1QXtJ7=OJvv21H2N(UdDpPKzzT zH62MbKuvi=HrxpVvg!!A)RO`N9J+rfg7xR!-nnf-l9|Ss+sbMFi&~ZO8*%UsTNFSb zmb&uFn~ufhPnxYECaFQ6I6cO!JKehxvfha_p{S+hIaYwj%l1Byp7cmY^DLWI2G|hJ z;Fi~sz*#qH%YH(+^>FBzKBxe-y9`vYa|@$)hTw!*H>xEkkO@pute56*Hre13bDp~SeY zELs}8!NK+uubrUi8|w4&m$l`(%ywB<#)jS#V=?Yt!lsQ9y^FE=4sENB8ov;wfK`=3 zM7@1OCPiherdGG;u%&1lbwqz{qlWM$3jPuGr5@n{w+m*L%tcYtmhCB8&L2mg-53kLaSEL5yP?$4 zGRgLVHwwrEa+I?+@@FkCa3xGCtrIGcwq{B(>=OJX*3ZtZ1C$R zSHstuWS+I&MfhEXmpMKs)6^9YmLiL(M0X} zs8p>d(JWYRQDJ{~(4EHhtbaK27p>kc?hc0+^&DjO))2JrId}L>8~Rp4Qyp} z=uA9mZQ+$5>SKC#&6Cbw^*;g=@)s4G3TK5Ww}94q$|tPvgG4(m{XM4}s5dp!VH6Pe z)k*!m^}9hlDCU)2O{?N58G6_nP<>LaU0#V!_6!iIG~<7)Cbf8G@Q>GAZsXfjj20W$ zJW0v9aZ_vsc#Xbnnx(^N@Q*BJNPyT5M{JL^jXo;=k1^bU0x*M42riMNm>S~*cE_Gr zKZD0$=B9&2vzy};L(*dU86_dF=#KwsN^C6L+UqvYiyLrsldi&^+W?w7md1nP`KxB~9G7d!8m4y9b;6B>?c@EkcUOuGY?i)& zWoeLN2>soKaU8(!3zj#sB`u%9mh@yZ6;Bg~UMz7@V>BeEA)V9uN=$t6|Gsgh`&ylZ z7ZDB#RCmZD5TPZb+c>%Vm=73v=;SngO|v~Kf;@k}@@H41J}`(U9BzE(gL!Gc!r>{x z&o6p^hAM(${YG@JJvz4gb9ZOVgI~}i(}z>b!^ObLF&dJ)(KzXd-xMAf#UI{Cyk(B9 z?cIgGV$nAvHf;)Ic_LI*5%xBQw^R$+1M}T%>f!P!Y0G9?^-Cf;g=Nte&35%5fkQYV z6xx4-$Jc!Tw`^K>T%5QUSu6Jr9cqo*&w%p2uE+c++e@jeN{-2&HH^>mZQAOWre#B( zEtxa7pYc4)$-j|Jmwoq6%;Q2jU4&3MB3O(yu{08%;TON6LW3F};A0QTsGjx-QIa%J z6On9o7$UM!+;po)Od?m2HGqiSyU#lPvUq>ZNE)I=$x{0+Z8X(lr`3zj)6Jm0=D~c! zb;^*HtF1h~ey2cAXange2Fvkv`whjtzT?f(h@9sYrTU_xcl`{rPuk})|7|qqCHLtwxRhN0SFms>;02yjQp#F7AAk) zR)uDx5Iut|1ZkncQ>k6TuV@!sIdrb9jJ zS`w^mmE2Ta$ZiOa3ZjKmFU!>BK;Q2oEGIcD?HUnlaNiFtzaq^>L$rFbqUJk{T49r3 zLet}YSAFE>Yg3Ol_b-b$)__3gu26rHf|Hi*j#YtBhRbtUHpD}miq|~%E2*JSvBKqg@E6T>XT&rR*g+ZtpTCsTav*>mGzuiD=|EhZ}@~TlR#U?WfyH z=^Q$JLhDvaPQfeq&uc78E5J4#F`7wyh;c8j{)9@6=oPtxU8b?TwU}c4dRs89m^Q)qwB2y4rJ-KR#C+E@K7NCig>2aJ*|IlTQm0$4EV{JKT6!q ze!8SKNZ=?alzKzAJmak*igceO4`-vsblGtILTnwl?==1}iLOs|2azanR+SVd)XK{M zwTBBS^Y#5KItj$z{;PTps;e^Kkq)BK@gb23_wYkWEiUFrA#CtDSyF#<%J3Ono_J)m z|JuPesGc4xNE3gCMG-~s)c;{e4lP|-(~+neh@ie(sdZbP=row<@Ds*LwKNKKy^WRs zhl~LlmSj~GvN(JP)wmTn|n&r=hi=J!YpvSjDCS+PL#@ ziVM)BMH+Uy=jpmnmwF##64RHPuo`!;V%^ze=w3zg*@Mu-E~C0_mJ+($d^SOIwK{Qy z8?^-;R4{+WoVZVdoS#C}fcQUR+bh?vu!j_aDz+;cjgDG_vKPnN224pNQzTBq%U9Pm5ew5PspPCO zw~mbD4D#S)`UwJ;EL=cJOuPQF92JW#j+-n~^59=sQIY)9v9$#wYau{y)P<|-&^fB3 zk@|nS%?HN{i|mu7U5fb3#5g2x1`&Zf)4N-gB?9Spk-wKr+f&&kGChY`V|KKuA+|Sk z6%K_-b_+PYPE{)A)=+G#(kQMOB21q2Z)p7^(?Z2blRY`cPCmf0@t_f7($cM8q8DA! z{PB>;{zHBIz1&j&02H@A6CvJ&4m13;5X*l|;>G25znL?86;Ye5p~f*H?~_y*iJ8)V zGOAclnX;sfP2G@!Gd?R^^znS%!No<4^|bE*M=*@U>oipESmK-1ff09nVS_l%#(vEW zK#@Z1WqkakWi6b6&8}2+;%;?a2^VBFMJ&vNL-_xESPbRg`4}@3NM$Ka?Fiuo)qv0f}~+?ZYwM@7&GI z&cnBAdWQ>A$KwNa@lNfqRDu{2tXbdq@||(#?2KH#{#iLh*YW4m#$gpH7mKe(??J z(`KNSCEj7!B9QMtup5_JOkYl`S6eVY5W$f;X|qT%ohuH# zWU6nU8tsJ&vXk4q1XB7oG+T9zB!Y;Sm7<irJ7_(5A3OUdlj+c8G|8!D9 zA``zyzSJHXwi>UlE+-@+Y&b2IvdXJ75b-NgmP>FSx_#27lYc)zHu>mtFn==Fg);NA zl%}c)C5%8Nburtz?E&LR^94tI`LkGaJNFKw-^DRUJ=9(v2kp?j>p=}>q! zIRniPHP$^nd`t$o$N(Na?1y!&4t){t_|}K1yBR!Eno?c zNBgVgmD+^6Z?~t;y%&E%xed8Le^+<51)kFrc8Izmb+{^8&$Y>Sicnm@g>5=4%W!D> zZsScna+V5D#c=Gpm&n#h61?yFKz>cJwTKuVE&Z|-9tcBMd}_l~fY^wl`&U>Bq!1SG z7$Y3ob73^CnO%kU$HDHp{iXkuKVHo+ida z1BwE};@a|Chuc1{wB6=AKy+{(%Zn3j6)CvEE(s3ig$|+mZR=gUpM**sX+E|aLm1g) zAT0FfI6I;A)k1%mvSnO_Ye>?e9Fc3WU2jpH7`jp%$+vzn7zZv*p6}&QMMkW7q#2p- z->GkZDSFYJDzWzBT5FM&vvm=SShU+Tc?BW(v$6Ft2iuu$)%Sc>(CidP{i`-zjULJQB#TDoz!z^>rrY}~_l7J!>?f%l&-1D^X&CJukw_ajQH4{>ZCqt%U^oWz-R6*nBe0SC6LlQp)(Nh0&@B+RGJqsBXd0rPk{k`V zG?Ew5$T@$&oAxb^{O-sXXINTTKQI%?pi!2b zHMNk4$q91c2hxpXA6-Pz#??4MVlfkJ4J`9CR8opkLzq-eBSU_KIbu@=sZK}(|2_4ST)BR0ql5*`_D^$#LSS=f0T=T#>{ z^9p}PhI<8jHDg^JYU;oA5}JFRU_}na^-5AFc2@{h(B%WyWXUTkcPHf9e(&~=I^qy) zdYTbTc$U=CeIlf6FfAnQ=G2T9x451*<2O4VNEyK?HE`Ol-Q6TapQQfO{k&3a>sJ_* zzUn=UvS;2>MT8?c1P4b*=G?iGLGoGAvKfCLy*PvisG3@^n24a-7g^BBM!Rb*Xl5>S zua}hv@|HWA4~fRen;6WZI+m`h(0v=9 z)}!;Qd7?4Qlz=!tZU~KHI4XIzSXc~MWO$95+RMRay3izce^jZ?=C@ks6$P6{E_SaM zNpte0^wozK1J})ZwEd8&^#LX=ay>G|s~&?k{c4KP?nU7+H_-{`RwH!O3?p0qY=)A~ zntHtzyNx=ImF#tX(NpTN(!9SNy{p$-&KXS0xiVUR$5y8+UWT5m8Edvba1iDWGA;rtcrWBGTdpUh=KAtEK6nH!;IQY1c7 zjmcV0UN{E7TF)fDinYO?JcoaV@VIsf*h^L;b+Z%Z;-&21EF`f;GpDR5SElsdyu_#~ z%2ZSqf4jpAr9RbJqWHGhxoL5~g)I`o0*D9X&V|qV+jK{FDo(vZ8?>w-XEx1bq~ou& zh}8TaE+-+$-mGwxb{c7-;$1egP3(R2D+L>>MkG4SgGK^GWoa(TC&Yi5nOe@r6~Dec zkVL&COusV&={w_B|3EFupw%) z;SHe7YKYNa`TK@FRj%O4ghRy1ENrU;tns$J6c0iigN-D&9Z7#S)%o~kkKY+`c?-#r zH|nS`ON9+`<60SVeKB81dOyYrR>?j$)CH=Jk)KPdGt(D?(es0SgK1~UdDg*n1JTo( zl``+5Q<|kM+F0nG9NcaXEEHTJE?b;rp=D!kHMWit!*+(AtkGpoc1A+zEjq9HOh+zA zN_R$0wS|OT?eKq-tzA(zx+ep|BMHSdEZ>*em(vCvh49EWWARF*IAi{~)8mkqNXBu2 zRc?x5Em)Bdn?@elQ3d)fkr6ON!x`8w7<_KHw2@sSFhweTf4mT{qaO-<7+2TP*eu3UL2SUpT0 z`{kw9+k6&PB926;nj&maq;Cag_Jx1OxMo?^V=cSpKCy0NKBFsTGNoM;#@!2_XLdR4 zR3;OC0S$k1(0>fnuPmBIsXq&Uu^b?gu+`U?T}9~eQZP=m?mNj;gM2C3Sfa{e4a+da z_y1^8E<>0mAJg9wjY~xId6Q`?7rnr6~mEl9X2C|PUaW0{~cRLBV zNMTdIr^%y{S8g(xv%_%y&g-w|GO{pua7)SS>pgh3rcFZuazs%teG_ zn6i2Y7DoJF;ZdZHpY3dYBRk9b{;X;Ahar!&1gAr`80yZ!&=!ls?qpWYqL2WEISPaO zG0uPO^yv?k)Pc`$=(53R$9mn%a;IX{nElF`2z3sf)R*yfjgFD`JB))F*s+E(HZ*U> zkrLk4D-;61CrR%5uo(S|b#n(-u=`jDgsNQvqCIn^VXO3~qyE*cgtOS|pt602{gqZM z#U&)CW-=oWZ;Sh5ax=$d*G14Q+!m&ZtlWP@c+(uO94;|s5Pq)5k@`-$diMn^!ih># zWv64?G*GC_wJ+TlcbMMxl^Rc_(8N5CdqN&j`&i!V$KlHGF*b9}*rtbS8BP8z ziv7aP8Xf$1MCvZhZTl`zll0NY5tx!lBX|u&hHZq6L2O)=BfGQmBF{Wl6L{^H{e*v4 zgJ~xj+m7f;b{$#K+O#>*E#>i3X;I;}6LMG*r=<34X7B_TOL^+2X+Wohe-)F&s)d?C zF<4&BJj%#c{on^555*%sCoR`j3lx6b{g*wPnlxw{^rXz-Z$SN{l(Hk;lI+m$``0Z4 zVoh6YZX|Ic`HjT|F)YlVXC>&wVvK)uB^E`M1V=05CyJD!6v9T|oN7QGp=%|v_{9P4 z0S;AaOInN7GR_?3x+p0%tbMPsOmyo~kTyum_CRO-R$df?FD&1Jr}zc0Pj>`Tf}35> z!yXdQU7Tg{nXi#;rRv=QmEA^dT=WSfcWn_7rDT2BlQsqw1oecGqzRgC{Nyce6n9J$LBH1O~UXFq7#$LH*4}L(Dea8e&*H@vnXlQllCm- z<7^JTeFA9@T=?NSHG-Bg@fV4nDd0{so(my_XH2FYBZqD>BT3^x~}WQVaAA*3^z`dr0Ms)}zj=3o*(8 z?I4Ljs4!_P9?pp$QG3I+S9Z0oXL5o<4gnlH&ka&rpJFLeqYQsWfcrHg%d zAT)uxr6KA&GZUh?Z=quYziK-jz;pSNyG43fcX-s*|=KV&uH08GR}?&X$GXgHALp619L)= z|MSpOJO`)=k&=Yl3yQo zbUZ+rzjvH5r`(HoLb7Db4tBq$$rS-fo5khyGvJ1|!s?;imf}uj=@1$q`;*^2`Sgc1 zSj{bh)4_=6s{W4+;D&c%;d46&<}cj{zOx=ob0*x2y0YN z*`17=J#+IgGg00U9p>@~*~Zz``g+5?H(&LSHHBN;CaQBO>N-xJp5qh2ls3YDUJwcpT2hB&)c zKMUKsY#4v&=+*Sd{V1eIq3)*LS&CICerN9Rc~Jg+_IYoSCa5(zx;WvLFBN4kw9Qzu zmNJs%u8k!g5TukQgPdUyPkLJ$(9r zOHFdCYhQuKyP-zl!xfj36|#{yyo9K6uQJe6XtjTt+q1VDpI+z;qc4adwm@wy<|$AiFaia z=!17c&5GKlIp~^?s7>gzxek;AtEo(cr&<@;6+ z>{^Y!o_U%`E2IcPwU0;oaiyRJR0x0WtqdE)Mb{cM7ECZ~4yBDWe!8cc_<5%k zH}PbrZ4>66^u&LX0_sz6pgOO$F&NH`;h4cgReNSF=Q89QK8~U0w_tAa5bX^N^<IcGAz{9bLw%R^k;Ca#9!i=Gi&LXPC7{{|<|j!enufzj)HtE~;UILyYG@yl1IK_EWfUYQ`y*XZo*5a4uq4 z!Zo$}Wfn^>0$?F_HNUuPr)gsIV8ve%=JdJ74pyP|!(CNWU6w3wEG63Vx7d>Z{`sO2 z!r`FAuQ$8}%GEgQ%l^!uaZgTi(F1>9``-H<7E#Q{lk>A{Aq`t7OGXW{oO1h{{U`h( zf%uM@fZrJu<=A%l4B16%5hz?C84{vEx?_L7Ow)_zV_&WyvVuOXE-Y1-z{& ze%LZh!hLhFFS!oAgL$RiFy{AaUd&VDgK;RiR;^cG63|m}4p|f2$xy<6e-D3P?T_u7 zGEy~qUcv(BAkB4T=-gV83TwM@r~oMF31gN{j$-#YR;Fe+-hZ^jJI$?s{f(06DIMO1&)uWlt5BF%2nAS~%gnlLh7-|R{^WQq#IVT~ZY6i7MN z1a#v&Je-^f3AGA2P#?Zfp_pGa+A@o|YjU?3fI~H719w1ib$BG0Zy%GSF&^YWsHofU znU;#ei8C}OP>)V2q1kPXo?)K5Y6tV_*uJ~PyTfp*uj8j4s-A@}1O(=EL?uq?kq{R1LP!!F1b(fOJq3Z45o1{NT^^}Ja{8k6 zcbB9E!wNMwG81W@u0x@wwnek;7~}KhYn=zn)Ff?o-DRq-ZQWY=U&;$Hrc=6<4txZ^ zR8$lGqJwfBsgqv=`R0F#5y#eh*e+fn;=J2a1MhKTbxhGd>e?bjp#Mf;d7~%?OHe&68WoGgO(6X-a3DhunwuhI*aHb8~8I1EyuUDiTh962k*#?j< zo%1t6#%A4>CULf8LMmPs^NPZ1mHnnx%-cfT%oJOhr5q0@OksbUVqIzX;fZ0%mLUV( zVF;;oiuX&si*4pTb4b4D+h>Q{6Z1(TCJ~h0x8z~h6(_Zn?J~nT-k`#BakgMJ3iI#^ ztxP?(o=hQocRgp5gL)PE3v@XC9AaOSX-T1!z}$GDu6yUGp&Ri&$|3ayJlsYt-1@S8 z)XGzwh_41(;DCQS{5UH|=~2y`%7x##QHXi-loMiMe3-d97$FcunoGWV=LQSbF%qN% zEjvSo8PnIOkxPaGWekC7B)e*2%iac;Ep3f+L~+{zG1_;kwprT63`sXUQdpy# z)U2$Fg7tsSnM_<>9zs9FO4}t?ZYychV2Nup(PLNwkdusU0 z9`=73WYLw?y$-nc3knkj@glYwLqyoBQdQyt*nLGMwW04&pFPp$H@%#=`ztxAzG6a_IhIWRbrkrXF?Y`1f8rr#1R9NTu@U}D>LCbs#;wr$&)WTFWswr$(CZGFFU z&OPVWt@`Tur}yga+N;;@diL%gBog*^E~=gmKxTSo1|}YWiiC;^GZQyEfQf+>?#B;N zC!mpwrM;b)kqeLqpaC=mr~n-R%q##FCMIUM9{^E%2TvzUa|;)L0F?>#zd?YyjghIP zt)&w{-QLFD&CbfMaF`m|B{+0E~g=mUeKA|I$s`&deUb@gLaK)#1Oce+W7M!w*39kA~C$ zQ=r*D(XKW&@1E?6;Isc=7h?Aw+e?yIIEp0sie}n%| zgtUv%KVk^mng1gn(|;gKX9-IWpsAvz%RhRX8QJ`!)4y>I;C~KB4rprWYWtsj;6I}L zbF8NJb~c{>XUl(T`S*s5l9F1o@>;b2>w-(>z_kW{AMC?7h=~@24=~-Er0nBWi zoB%FvF5mx$u8FIY6VT4(->Uyp%YWDZ?j|76184%bx@2#{8)B8-6jtUZUN}<@Njo!T zs7AZQ47xnob*+PHIbdOGaBzutr;3;FjzBmaXw1KVbFnRb*GOs<4@5W`pNJue&|AWL zDJCm7_p91`Q~Lc{8=-#%p^j^7A`fvLdFzt7wi={JGr^Yq>#Rz~@ee<$By)^mXyefkdDRbi*^cs;U`-KWdD!PkbM4MotJgqOc$2=MsQvT`xH2C^js|9{WsLA| zwa$5~b`c}qO2I0qlmXWjyI;@%b#_ zyQylOHe~-G{B3r#rOTmAZMH1IoJ<5!SN5SBWu`Wg-q89J6w0S#Hr^#EOS!gJw`SYJ zT^&HF@Qa#!-6qbE>XV#ZEF1)p3}q!&q=S9y^K?hx!w~YqHZJ=2vmR67NoSa$1`aqx z&<*@Vs&;hhOcdsf@p%A1xLvi2^cr-#CrpowPB5l!nT31Nc4i1dVC_;O294l$S)K=Ak#-Fo4`9WAbnjtb z*C^hiW)eC;Wcvd}cq8x^y_zjgJ$?f7!6ta8jMz1Mib$E03o1Oc9iQ(2xSHIzyfT3E}$NCc1mjbT!Xple#bYgK;D`%TACHB$ptur_=@N^jJArMp^b)34Mk^=h@9n}*#; z*YSsJJEV4f`U_iC7df$sUAP-u>cli#d$Zo}biCrwY||2I96w-TfsnCX+*7=GRn(#! zy2@->v-Wd#mQZ=lZL8LiS#@i(K?ivdl*&WS7L!Cmuo-Fl+Y%HpIvM4En()mTVmS{* zxol>L$7OH`S4>Z&Djm2FTCjS^g;W_k85^nm*L@UL6O+j>DlEF0U;^M%?^l!QHBzce zD)Gi(c;$~C-Wk?RGANW^`A)4kA!bAPd`Jy&pHcl75LKBR4dqL?%75YS>^(xno_~{j zNtO^h{4D3qD4`_{4_RV=r%ko_fQ~O|yR&DC%iBA|l>~tXS5aEjwctUyyi-yf>F(~H zCOM#fWEd%&>?N^|-Y*fF3G0yH@GM}2dLYoIWrnBFK)@R8Y&n)|A~a;SK~zGx51z(| zWWOqnK$GVZPkW~}!MAr#>?k@mb$9pa!^z%zCLrgiw2PKiMiyW7nVXs-K$rAB0bZXV-$TUJR6vQ|8z*?;AbjMhUn#4#$az_fTSw9}L$VFsYPza#A~seQGnRhV0P~m_sAS zLK2)>a~8;OR! zSN){Xk2xXSm&iXTei_>yT}h~N-x2zgq+BVSAhaJ}W_v&EmWAPTc-iwhFv`K?t8f>g z%m{qDEw+Sz4J7z{)eYH`lbkV-2Os9%}98o%-OO%QCzfTYrF z$@>uwZ{Y2cA5qj%dY%wr-R_OK(~|gLO(X4qQZ=1r(rE76fJiWFm*y#LGA!81k0!*Z zus9KZBHVjwwGm&&K(1)S>)jPUwZrSXQ0eWteW7dFu{OunMcm$%hnZ#jrN$JX=M5@c z!^S&*2W`ymZOU8*6%Sfuq4nZikd>odI^%lO5?#gtCMXKt-JuZaFKY+19E3jIaTx|x z7sXzL(o&3KT`XUe1EgPl`1wk9S@9a7OFjZC6OUNs+Hz*q>&>NP`00ha5`9dU*QYhmoO$i-ZoTbS_K``Q&AmZhVA z1crF|u77jD&|my!H+I-{$?YIrh`l5~U|S7!X0~Au}_7yvzd!NIPJM;4@ znu#=5=DS9$h+2L0PVq>+;Z3e}S?bF# zI&@6dS$w+1#|Ovya+o}E{La2*8!C0|ngzCz^G)=QleD)1J(%+Y0dos~tZh(mB}Y-> z_QZDsIU%<~zZS*T4Z_u~cr7RiZRt~!`mf9U#Z>eiNTqu3{?EgUzwNw*T=~h8BF2$kdEu_U@P9SK@C*OaAia1{t-~Sa; z?{KpH-26)XqHlz8=4QDS9^X)(Q3Q0$|GNn>ri(?HX&k+H5X5@eZwr*dg`I zF#zp#2853aP$=WoJeM~1D*oN6a|6C4J~>}T*jqpBf!_h7s+!5o3Telqrs&62_mM_f z7gj?^rsh{htL-MKiYT?z=f%z1M=D9(O{Pk#3L78%Q576gI1w7n;e4kZfO}n1=&U3)ltGw zDN|k+8Zg>;)QF76Uzk-P(^qwS#!Zv4%hO1ABS>|PW1y(TTbhH0y9qu&ZB!X+Uc3cf zPCQ+8E0)Q!JlPWe{R#$+Yea9oI!u>8pG%wx?iN&k=JpG@u+cUnWpqG36CDCN7%8+_+*xDheS zbSQ+N;ZR$#1o`xDpSds!&6_DqF$-9G5K^Xi(1I(~)QlqboX9PZV>W||K2Q55S4cJS zNMF728jMZ9e~UA`3YpPtthdktn>)@%4%{z+n>tJDJYGNEyT0W=vPCX>w`fo(<$p$4 zT0y0}2(RqLC;JO}@9j`R@X9~4yj7}wTpEtL!rkL;hcTTKG48mVdmJ%-I7sgU=0g$Z z3dXbuVbDDHVY5#B*pDC~U&TP3x z&x2CJ+K>`aqU01&>d=~O(B|_&qJ;94I3xe~5EHOX%MDSoYO&Zl=VqLuZvD(L@awZ3d zYd>q$c^j$>$IWbW!XZ!yCdJlc^ei;{6w-R$e{y&d4gD53ao|X|#1%9H2=zd26`zg{ zXe^Clsquj413gT_id9qihF-e@k!`OValMo2D*+#t`b~?!e>T-;gqROjOoIotocKV7 zP(l`bHCTpp;C9=w9UAjn#B}Ct{{G3mp`(#cLDa+yv$RhMxe%J;`hc*7yXN{9iEVtt zf6Wdyd%pivOrU@Qp_GDN+P`vKQ``I#H_SBL_IP-WNSN>UA+PEWxD*74;v{I{7LTJv zhQ%7l9O_}b3KyGaX>PY#NR&TVcwE9UwpqhlwVTd}xE(c)k4{1lOJ0k}*zf8vi_jj$ zXgWy;4e;VgV zHEwa5?&dO+aJI$idw-aV9#C+lsq!8ox=s=F3xSS#g$uMkH=`*C$l+;0p}yW-kOA>Z zVoyxlmw?Zp{i6T$j#M44_=l+QuO#e6t_RsBKg)HlN|k z=8jQ%UQdnLXMo#VN{%%%UqJAT8CHXh%{~ZBjUKbI>wWX}&QM4YaP}tbf4;^=bMQw2 zKWre{P@sp6hnEfNUm3^L1~1mvbU{9f{pRU}(?9fy3aMMU-UDhxe~o-hv;5}Asq(QO zDeo5^Rl*KN&x%N7R@7z=H{SC!?BT1;|F#;M+N(NIPofMl6IHk7n+*m{_jVWv&e3Fo z21-GiGz(qxuKikZG}6-?e~hW@yH2*{USG2c=XLeC5}AlDyyNwY|9p%}ark=l_4aE| zl-(Pv%Oiz#vlUyE(HcxI_{klgM`)@#Q@a~LFzJf!P0SJTgM| zWbp1S(&DGa?;{xzIaUibv?@@abNlXW!M$2By=|5VMGViS^g4+}zVV)HGV@my@qR9# z9+t^q&yqXh-*Z(gam{cl`x|?~|0Fa&(DO%1#J003Q@pW{e;=j~M~|?WYIP@!FsnSuxD{HO9hI*SB5a9_V_K8vFc!{kg9vAa|~q` z(36)NNmG|ne=BZ{9t{f~e@)M78|%WjWt`N!8MP{lD;D0MW6jV%8Tx$?cnBKn?76^I zW>*OsQ%fo~)EsWBo+vVUjB^0#hS)-kK|DK$d7pKqzitgD7c))9I9x;ah_{fS#K?*` zNlA-&n->KgVTk>Zvv}RW&Pq(EOrCN}ro%OCFGYqOe{D2lez}cCBlBmASL|xCDM~kB zih1;)4}-;=bwI5nANj()A=!!FtO^wxdgckyErY9Q@BMB4epA}b@WP9z(753`u0^Og z)txQ*vW#?95TB-Sv8)=NF~&(WBQjFvD-F)!xOhLPz8=dyS+L;DG9f~tn^60lENb`) z1A_=`e@KWcUZl&9LV(tw`p#<4q^_-=cGcn0O!l$0lfmPpn`RIVAiQIaRd2Cc118I@ zg!)YyR_f?i(3@y?n0fKg>pKaOU4IMm2MQB`_Ivp2cTt=BTtAZm@!1j_ z31PA0&`{Wc&*s%RYKh44To=S&|C&IP5JsgIjZz{W%ck)2c-JSer(j}vI~hZ==i*6W ze=*4FY0hkqJY>#YZQRuh5%O1^0F5<}vD}w;$}T2hy|iyQR_Wk?%xM^<+NXiPbqO@{ z1NvbvkpVcww|$1&h-VSj?fu6bu0afBT69wOTU5{(;HU}m7(6hWd8EolNc@TZeUA`l z^6@6II(I>ierz*7)rh4N)Hd{+E;O0KIUkmO zFF6P^V6evI)zS&~^_rNkzShoxEVVOl{$9mhE8CP^uL9ylaB;q#|--#0c;kvE);;u%FXLia2g%Dna|p4g%G zbsMN1y22o&Vnj+v<6~1s+s3yw1UvOFSDXu6w9(Oy64kMf{cI*YkB>dpQu;hG{%1|O z4(i?)FU$Ra^1w%2ol*~M1!pzKFst4dsB`q`OqQqr_f5u-e>%>%&gA;W=%f^k%fC?) z`E05)e04Y>dWv-{2scvPFT=tc$Up7%yV3rp{-CI;YM#iZIQF(yg;Ea&)%eP|$k z-H4>h*9^xXUoZ4svm%2ju=2g^Ns*ELTA}G@yPxLMW#a4juS(sCT`JWtebLN z>a8gfk?eM!lj16JC$&<#R_?%1?UGbCx3W*Ioo=#Ye{CQISdlnLG?&pY>rl4v1{n=g zhd8Z@@?BXFGK@b{XVIK|3|yw3$2jmK*L-3ro#VgZ44bcW*x5@He3AZml4&`)awHF2 zbdbes*+yn{C)h39b~M0MMBsI<#1f%t6d_6SMWM6sDDh~}sRNvkZ2}xerZz4wxB9|# z2^t(%e_NaGAJK)G;+7Uw&w0kHHH%41WSEZtBN<-LZLYcS0*@Uoygn{p@gB%~25X@9 zk7mD&rc;YUbt-PEOI7?LbuW|-&*GJ)H`imF>xg5Mf6ExU#5;IgkJLd6O44{|GIV># z)Vv_;4RF$|R!|jyJFt_1@Ps#&T)!7>v)cV2f5}%fHdn!hnIJ6C|6^t2aAuK7@1ya% zEnJHjw?k&eNNELs58$cUpbDx?LcmH00L9#DW ze~ye0>&T!I@%V`yJC&}C8>c|ljFqxuN&nnT^cPpilwy}SeHwTQZFvK4_?MVB=o+WX zt-q*ES5q&}%mQ;Kva%d6Q*9tH?sq!UEUuzUfuMWwm8&g6jQ*I};EMC6u(WiL+;=`v^wRFO~Y#Da0V#nf7Z&MeUC`E)7H(YrASy>;3Tm%bJQy{>;%kZ zOGt!KWM(m#iC>i7P!R8b>j({n)c@F^+}EQ8RW4|&^IPSPZ~eZho(&=MuDkKuDTYKB zDxx_s@SP_HcLqaA_b0oGH;IldX_nLsjt+7;ehnn!Q%wB8n`7IXILCa3 zEbI#`4?qPrvjM+7&NqH5`*&!EHNMcj3eKKo$=W=CA`j!$3Q|1eUN;vk2I|}fWeG{; zzenjKy`PukFPnz_pzloxIalYEe@CcP%&b^X*4fjuU;vi_sTEzdB&>hWWtMWuIztP3 z(^_n)+{D%X9O~z$J6g|q(9nQyTmybp$%t<4+z%{F78+EyfCP8|*8L4EWCwxD{AraR zXpXpZ#){hZ_Qq4;w`*yEQ@H&P~A5+{XY_`ZiLsDvhf4=q+Zs0k8 zy*}p)b6Qxeep1P?MD~o_v+5UI8qOqgnXiP!EBX-bc4aYefby^i;*;->eeeIe(oj4D zZ#>+*kPe#eICC01Z{$$%3rIi5U=lYX91UE}o%MzaBcMgF)a0rz(->Rq5GP)9yS`xx z`X0Y~vz#ah*&K|%Na{TQf5@|ZYuk5!+7j0m#Cyr(9Ywl4Ec&G@USa3+J^SGn}FK3f&jCjbG0D2KD*d`)vT<83q= z(lH-=J@vYxVgiAG_jYl6#ll?4<5brxPelT2M{ftI1GQAMVb(&9f3@cwpHosNb?*tH z9G?0vs}p`~-&igiacvfh;d#f?>w(f44J#Ti8zw zG!UIgegd-0|L<)$;Y?gVR@W!uNfi}xWMpYZ>;bK@86!_ZBym_4R8rFk(IT>*?Sv$q z)#zdRa)d9Uip03ve@>Nw{x%mqMaA}tm*=iPQT=kuT*3IBEB)$N9h2UII&hp>m4HPre0ETDl z=unyrpOg>Te>VK>;?oAhrktItb8GTv?MC%d`i zYl1>xQu*5w3hWR0(bv7=+<7;`Rd?rS(Fc=HQ<@`YaBxcTr?-qFb?_yiHP;=EY@@JY zY|9W%Y(p5byJiyw*tXqH5os1Bqk(&UdI0MCScB=?f4CH8Sb}>@ML=8*Jc{yr-g2NN zLPh8h_j@(zp2P=Ldmd=5Zx#tL1!d0=C&fTiMXfJK1)75gwgP20Zefy^d^fJS$GtOx zuWGe zlxu8N?wEbUT{35CU`r?n)IvOGSV5@So!0^J+UQ|5@1o+M{N*{r?08&Af|4_B0@}hl zor&bdhU!@+c|5O~Zix2nqZW@w$?{ugBW{*Ue?=ohekn7V&l~1rC1`6CkaR35^de-| zn3OpmR_dPkJgTk$xk$$3XLVz!i2-c@yRr-N78hbxH=(=vv??-rW&*tJtVye7FV5J-MLOZeuFCxic4i&l8bNi5_sv=t&XK3=a z3I7Xm9c4lkjTf?R?ur@@DsiblhTB7Cu3j6dH(Kp{qgD8B&d5DDCc{qeDWbKEhX-YB zi7J={Z)-Bk+SYv%`o-V=lYL9!e;6Y;h0>p~_aNjCErmA~*u)99R=Ar}0%grfH)yWZ zrUi$^Diw^PG}O5)2Wun7rM*d{tVfHQBKf$2h5e=yc*`WeWWQ-G)pEYmJFe>dQQ16@ zPi>aMdVb#PaIqP{+2d5lePaug)U(@dQS;jVbRISM7{ZX^Q7gn&;8d__e;l4(`O?fx zrgv4)ojUGp0_ZNiQR5tI{8G%K6H5Cdo$BLMB71+>zRi!ZW>4xysIJpM|GViXK$#7? z2C07NCwGP$3d=;4Nc8Ue%C7^ISY=a`VP+6)g&`K71vGm2xu)=mJtcMtcaqdtOZX#U za3T7o)AFf%d%<`WSa%4Vf9~mJ!LfjQ zWFeiak0^oZ<)ykei)i{9kc5BrxX|IpR@bgQFe! zj{EvaV-XcKkE^ZpMaav9el}yxt0?Q*TU=0dfWg7#p@HZ0K+d$xM6yzKP&r{qs8t=8 zHoi9k31yUcW|P+_hzm-*z#! z)OXjt@Z)eF&4N|NX&EU!E+AD58_v3=M(DgK2PWD_RFbEm>boh=9(fwcW_WemR$)b^ zRDlt)q0OlGx?>-4yD}MgeSYm1=ONS1smxD(IqG66`L>{8O8hj-?pxiW3joYeWSOic zGLd5@QJDq8kfs;a>%RQeer5Yv2Qfm%2fFK!pt{I!-HJ z2sSwB^;t;o7;8VojfVX<3Veepu({U9&NO4!>4W6&KR-BV#+))u_C1Za#?TG6O^QAMf`StQY25P?Zm_~V?)BG{U1@1QhuSBj zM-kKD2<#)eZXwY`zWq-bo6)b_mp$6B<%O5e?ccSULNt%jWSyXbUHhsf&&8%SkomOf~&6Kl%&_#89E-!Ct83yvPMS?lhR1p zMcrq%G@d0Uxn*L88O}!<&^9X5@aQVZs=9E{wzO;^z3SxAhYbpY@#oW}Iz3f;4nAnC zFN$#-|8YuEv7}(SUj&0vHGyAiKR3_WnNoEIe_LfN`CbT!)}3%YxA?u`wn)66%)@n> z>{t&)I@Jl9%#QfY$gOBVOT2%&Zu>D6zotZak`bYqfPLH|59`30SvU5>@*gezK4~Um zr009*nLoRlkB%Ih)e8t^N~BxM07ci0B}Boi)(mxy3xA^VJJ-MJ)Vk61jBrK~j(ExS zf6jnZa{Z*`I<381n7@>N(8r;Aff|}_T3UHv@VoeJUngaU8I5kbwK~mv*n-vTmTou| z^3GCdYkjeZ!%DpKN?np$df2cKA~ARqb0Ld)zRI-N)&Va{b4b;RG-OAlUweo)29;)| z^WjjgN9z-dKRAvyro!Fw2Eij>s@gy@e@0%s(!+$L<2((`y29A zY-(BhJkymAi_WaYPHMWcLSD=lcYFHFTBzgvfnr+UBj5Y14li zUiVE)p5)Sj2wRe4`8;Hv7G3rkvhQsV{cdqZU)zT!v!<%DZ7b6AaL4f{yTxbl_L z-_XXQHimQphI*_qb7zcDeWDMnU3j*-H4lB+0DYX zZZ4pvlN!2YGMydyLkc0NkgonNJSxm4jR?S#fQZ&8S8Ys|sQ`}=q^RyMf}v6!Fu)Ne z#5Ty+{o4$ZQ=GW4UubEBe>9yFugBJJ{v5Ly=$`p1$hNcEcOC5m^YK>X41{lAm6E?; zO$IdlheTFI5t!N;_ z7Y}Gihjj{%H0;;$7x3wmQ-93Wy4@nkMX-f|wXf4G{w&F95QV}~}@gIHt9n5Zq5fMTVryI&aic3r;pVP4TGAziK3 z??}{orE0k)_COK48!nvG$PHO%eL%SAsPiVRmdGyv{YprMHM?psXn?=GUW}s`gavf+ z4!D()h@HG2HAxE?6-r1yjhwBIeVE7y!*BQ0(EB-j^?IuH>Rhw9 zsa)a14N5zfBdBfX>Anj5K;S(&9%7PQ4lX=Y7l3Bov?k+qycNt!+ zLt51^nJPEvx?Y`Q?*{OxoWx&P<%iqi=oFLV&}(|H8f~F zdoyk!e?*qO*>%&Ej=RZ6{t(z$jvHe?Y1M==Q@yHYN!qp$k8>e=8=XDBd!7#E2kr)3j?o9 zK3UGWMkFW@^Jrd{ho^-I2Gz`Ln1yOY{L~GCdysKeC{*9~N(mHR7%%Hiw&HN%QE7b` zJE&*s*!NsDu7k?oWs`EO=7?gD{Q$RsI@lDx{EKCKTuw#%yp((c33w-0;>8{0vJj2q ze?Zdmg#}BTA(A&M!I<+0PK7qh7WxxI*ZeXC_<>hFKuJMCf9y3d8#SAPdKT$JrnB2| zT~WG!k8k*DJwCY-YgG)J;3StVx$P#buv=_y?^w*F;i~?6Q(4(IEUd!$S>hbcG=Qi< zo4S|8+||+ixhksE5-rS$|1-)wTsC8we;0oikQ4{~hwde%!h}#&(()a~2J*t^-Fr^ya?(04(YAD-#?p6=f1n;` zi~k`-&4;bxr-sCiZONfs2eO48qBSr_MTZ_d55Pql0vAUU4-HywRc!lnjFcl3YAq;P z2pmpH?I_Pn%Vy*VKkt;A%etA61g*gS?q_WpVBpQV_uD1LxX{F7fIInSg}8)^U&!{u zU({?XAIXm^(>9q8`{Xotl;Z(We@(tYB^nKeNovHdIMm!^+agv9pDPV#0VpjXlDO|% zq*}9^d%5UkNzsf;b5MdMSHnGuy7!K}#6EG+K7cs$$17yul?;EcQPljzA^CBoRh^^N zp@1QZ+=0W;?gKa`Z@I;k3-T5+_>*cBGE`n@1k~xGdl~FRL!!S<&8nX&e>b*1hTi@6 zr=Mt6xp??JxO_V%wfJrM&my)8^xrJ$B#6IU4q`+4AKj;4o@eMMCY_m6{9`~jTy*}x zoaja6lM$&c8gFHePE?6~=Ga+G$V#RS2@AF>pF&lQRY4{Gwmb5Sp4;nn=Q!u zd;*k0G9Mz2FK`_of;Mp&T)mqep!Fy2)Vvogt_y~~554i}#X;hW=FNEM;Gol~qTNqq zbmbLoBCe|++#!82V6nW=Yw&VF`6MmnP}VGD9#d@jyIwWM({9@7f8B`st3uNoAJ^Xh z04Hsf)?^?_eB+&0osC1$*M_1$+S?<^bVv4bjCm0jQeRzHRbM+@4=knaoiWzGn6m%y zuUM$bL7ng}Z6xl2&nI1J@a((}m_;C%jE;@-#>SryzJuu>0loEpI?WEUUO{1DoYk0c z+TtQ=k$jX3g6kbte_!aCaAZ$EuuRzf8O;*)ks)WX{p3ri8i64 zxRE7hQvJ}Y_g%KZ-_~#aZA+Jqxt1CeK~Ii>s`iWT*A9)Jnf88lYmZ0PBN-qdAg?_n==={-=x?s9YtW;(?);PrkqSrV166lEcU@hq}% zO7c7zjmAQE(dEq_U}X`Ac39?@eiH-%yw*pwNe`ipfAI=)haw^bv`k4~Lu}{QButDhwGBZA_CX}WOD5!Os`nok@7mF(pR`0E_ zxFiQE0YeujL}Zs2SzJ~Fdoz)L54!j`^Aw2AJS9x2mpJ_K13aE3E~tUI?6pY1hRu#R2&je~bT799)H2HrdyhXR(`UuNfZ>9&~af z50}io`83{y9>P(!GjfsPibMk(r<#oI?yi|X4sxXzEGwrBxkGG0ROAS)3j696Rt>3W z#tN$mTu#I|svK=V)??Xq`|fa|R5ale(~_v#llb{MT2h}y)bW;rpo&)5p>|0o9=&mg zf6%KXHH|)32^9`zDV>~^_2*yphD~NRDR(Eaww4rf2&?5!X{nK(#4_7{uxQV)M{vJ8 zGa#MSpztiATJB;zZbP<*u;1_*A)Nl*j4p6-wzYv`+|rvfpZTIOr70CX>k^fcD!%uQ ztRj9r*j(SEk$`6!G92G4E&^W?xh?zES0pKb~>|_ zK8``hT~xdh8?E<=nQUkzMOa;oz|+_DYjKn$b0w63WhFiW?mhwpDf7XUDA*iUOnesA zE?;20=6E%4pKzmEFXiZj7uC=EW~{n z{VZY~Q<12#+@hJy&90~5f&HnAh@q;l@ZsLkYeTa8o~>>6D|375kE{N1f17(sl7+nJ zEYqOiJ~7zUB@H~5c7bnset!-Oy&6+_Ri3v}mfF__fEATC#7JgOM|@rvfhIWf_~&w@hnQ0!My{~mVvwVAjvmsW=oqCmD<*wT`;~VD_F#73vPY~>wfDlA27@Tz zYAD^DP?g`GTze8I4PsRAFGZIqQroA+H7X4E5EZlEK%MEgGaTD=e{N}bS5tF_ctzz) zsDvY;Ks;{s2!)3Lm>9ODPzRS2Nz98EjbG>3(FTYsgVVk0LgqWREMsK-7A+kw4B|Db zU!5+QG);LJY1AZN{9?Mz&HWSF>A{3ILFC=ER!4ur*#)RWRbFn$$BUB7A>TOnP)D%L zR=dfLw@Rmca-Nbze=n_7N(~m|vG67~)iABdZCLF;_1~?`7K=zvIojr2Z}twIYNAS59obZsU~db2U}6iyDM_{q6yF(#ZOVx~&WuA8vdCNqP@ z_^44Q52wIL^f&l4&^cnGgY(629#sC}SlB|E;L`4whB3U6e`6%{eit(Jw@rJ;X&@M9 zT*vO59I>H+8g(rtImu8gB&@C3{7I0|kjswbTlHMOp7rcP4b7qD2x*iy%^?LM?O|PP z)_+p7wq?QWniZ4U3!I0s(L>*NgP(}m4_2%5dPxF|N~{BESq+3maI`c=f@3}7r@d+r zHoB4Rzn^20e<&mpZsh#ftl$rWcvJrj0LFY zK9w#nA{%CUb2WYrLzK$Xi)EAKkJ#C)pn+jCGbWXC(X0J<00RsW1T3Gt1m9>(d$JUCglYCC zU%z=bMvmZ*zc=628g6r^#?j3kW>E#S%l}NarxnOfc8~hy3?N~`H8rc=E4?{gAn_zS zVl@IUe>h~)^{Irooe+t3+%lE2R40-YLl`7N3W*X?#h|Ek5*WuQS)>rY;b(htn;bAJo2svC z7sYa4%$2;mw|`~^2p?SyrXFjx9S2yp+3IwhnhrM*5Fomi9=uaN3}~$&71HFde|R;- zN{Txd?YL+E)${q-8a*|efe%XPcWPyG6P)uLaDX%=ham;eOIzzjM{T!%h+4)SQ`gz` zmo{PN(DcOb1Br)6Qys?;qL3XkpPF?N%2F@!{e^E87Wz2kDmzm0rl?N^xeJ1(Yxid; z?H91!?uEhiT;0`;aVV2zU^T9xf6AXAuzxhto=crEQN|9G=D6r0qm2|+nHVWMw_ep~ zw)y`HVF8~0CTB>p`rBoEuJ%C2o9zffCsd|&2H!P&((ZEUo_hrd5Ke!QDwcxoC9D$q z+04`+9nPu#EZcKV8Z7EKq}9FWV|7^10O7cQfcaB_Qmokt_XclMY5-Uwe=HTv%v>xq zgx0<9X9`zzi~qL$u~-f=0M8iV=y!Q5&zhQ%3x20w7thYlWTbrdm+Lug!7uY}KYo#7 z#uYlVRQ#;qTuw)1&1xTS;w5!+4j~9#fl2{zVqLB5u5m07i9KsRo3>@3C5JjNZYaS< z51Lt6IVhIU&tBl2$0UQMe-vXWK<$#<&6`1vw_xbXs=D|neYOcA%2tp#cgFEd+AU(Q zcznZ72A~skphRh>O)>aG3q2RB`8m5TYg_3&%-YKQi5mOJaE#g~C~^IQ48g7g!Fh=q zE{pUag2UyV36FW*;>*fkjA`kY%>!ULD28Kxp8|c9AXR?T^~%aq4}spM6E6U&vbINa zP=UM`lVPnC0W_DuAOs-;H#sqv@h<`t1UWM}GnerY1u1`aWmFu@vMmn5B{(Dlgy62h z-Q9x^Fu(vaxVsMyf#3=58rM5RPEZede`py(X>=D_D~ls zPX`bO3kNH^06X3 zv;awa2Ty+|u$8q7fZm+p9}u8p2ebe~z)k=idpmnKu(>rr$j!}7%+1-A)yY+a^>33V z2n2Ak1_3O=b|8SHs@i9H64u4Z;%bAS@q90YX+F#s&>od9ZM?@UzyfUU0x$zvfuZPZ|ME>9YH1JP z{Womk>hPb^UqQ})^#SPrddL8<09pQJyV}{Q03jd%y`(+F!PN!i1W>lO069Scnn0-Y zUq^qOz?T1^0wG{K&;Kv^e;D#Ez`tgQL#_VW$Np~!>?{NJ09mMkUHbLjK(k`fJMHXSJ}0+IjxZm49dX=R!7hEpc%@EvEl&!9QhbsJXob7-|L3 zbopy2(8=Pzz&~X*Ao$-a^dB+*St$U=|K@+nKo=*l2f%=x^b|4Xj9tCJH5>hh24e`onm{?9gnKpr4-^yLM6bHNas zl!mYpKk2-wQe>v72~%yR1rGSd@s2YCJaC`2g~{#-*`*d)wmT-}WT2Vw*72tNWj%j2 zFb;&dKROmo1v6S8yDOk6weqW6e^Af4{{b^TMbaUKn5!V2MO?U~ttF znpo$S1Ul@7fBwTm-}Gt8b^o*WM~r_{)tOV7zDb(+UOZ@oNVS@MB(k};QjBw3vUcy zPvwxqCT6nLZu{TkzS(cLrmyc_v=B zVl{piN~ROsm0SK0FO;)Oar!Ia8YS3WXyk+?>s8FL3FP;K@W%}f1PNzpLqb*trkeJ% zoV~2$ZLFrePj4?_e;lpe(!+mHpDW4wVC=rVu!QC34kj00WXNvRAWVHsMkLdGfQyEN z$70i{|20m64yl7AOtc)1Ix^#On!pe~cIdvws|JN&6}5-Nr&cbEs6OvCpp}dP-+FLY z?D_eqVN|I<8REQAGnzX{TYB*EosXRp_j_eMEBC@9?`eRJeyulQ_s>}VHO;# z=W^N`-wT=v*^I3k#ZZ4u1;^e4e~$ma(VA7X!=2wMp}gP6?!*6puBbWvHjI>UfH?~T zknud&vwOa1awEE^D1>|y*yB-hjP64p0-BNV$Z9oEoPmS(sK%pb2}*0jSKfs zePh`BNZi@88hO4q86_>pB+amlr2EjZE_9JXfLZcnj@91dBR3 zv5z3b2lgLir7+ts5kZk!MMU)T1ylZ6-j1a${>lOI>FhN%zF~6U7jq!+Tue^E?Iu7R zKj}G#HEblKalb%RnguoAKKS{KV(Ujg6k(qr>Kc|1s%|tmvFn9*N#>fmMxSNgrzDEG zUsc?iNdtd~ApPsTiUr1N+xjw(nMyO{^z9ciN#i@B=vOHQTVIDqImcR)%Dog%ALrE) z!xf2E=ox$&&?I`X2Y>z+@b6;bHZiBa@?=s&aFD2EOx7PKX5|o!qs7&3IzjfR!wnC9J{1v}8gHD{P?iyFJv57zv(y%Bq#?0X3g$y)b~Pdjd$TFH#J zfPa4_c7hq~_l4-MaX{TMcjMc|uLC!q)TnkJ3#lgQs@AJYs6-5`ua-nxt4>!_6Y>~Y zYX`~GltRz2Bx5NEWw0Q%=4v-$`W6BYCIt%Q3t^LsKu;~oFM~citR&?h=5Ph>SF&wc zPHAU;kx0qdd2P3(hm>%)qyO}616UmgDh+?_rEzi`EDkUwjP=z|)_8+V4W?XANYx56&teY_{0+71 ze4JiZ&?lyNlS3x$?bp{pC`i3NT2iIwEYipo3;)Sd?PHr-i6Z9>+7%n^3c0G#JowXNs z&m~WI($E$bWK?d$bzRzi=`Un@SSd*F&Y3UJvMgYZ7|x~2abhnzQ}NNq4Sy;*+TWr2 z9ErRdOmhKPAeFGO=H-8Bjm)adTZ@Nt_G>^*IT$GWP!T+-HgOWypHk;guqGo4kdY_z zFlAY?(&3a{!%#R)AX$XTeQ=CWju8kT`4gdtA|VxqZbkXv^UU#t{_;ky@R__omg<*}XQL5(qj&^TCCySo8|Q(oUa|KR*cB z_Cia0j}qiE^4SyKo_`Q7aLu!_xz`KjOE3wI#Ck%35QD0#IX}O&b+}A=XQCg^H#l-N z@XMtn8!p|dy!3xPGs&5QLY1^AB1s_`4hMsG*KZwgr^Dn@OGLNvUE`GX;vc(69AT@M z<9+0usU*fByy^3Pt``QghDFvkto0W&o_EOy-z3jitDhgf#F!^8X&}hEaK1+!j)JM` z9*MRHe1bR-i946~!kK$^eoO*>WAHcEw0KIc){tCiWF z=jqSKzj_Q#wI=m{clbr0cQIUCw3V+^)f=VgV7%-KDjH0T*k;`1>iMIK=B}P$VB|31 zx6p{67n2#eY|hC!7x%@u>f3(cZrg*qjr^FMU2R;`E}J$)CXBYJHLJ9!(2*c9EK2JD z14qO!3=vBxl>azyNctV^$3q+HRPAjH$rh#f^)i|)lL%9PV5@CBe>J?DS27<~nS6mL zfAao4LFhF4Fs;b&1W#RCF&KeEv{YbiWQ0%zRK0ZjpbaBh?^VIHV`4*R}&A8hnp`e#;P8H#9V49wK0enSQ6_npIKH z7w|J_c}6P+(OP?5Ik8dyhOUbTvPy(I?io359rAD+;dHG)l_pV`XgUkvSH`TivfN4{ zWQv!Z1yRxZ%1OC2n6)=k2hVd3_s4oU4`eMHed|ek8n{eEGpv^*G`)iVoFv_}6yMSa z)sV}78`C29yq+x`Y*P~Z+EtxHa)lnB0-Cv{U)u_|=|Kv+U6O8?op5Z2a0?}Zwia%Zum&2)l7gf(tox&nsc!$^Ega4dlqEg%Uc-r5D zW-=jE_<^bO%)QcK5kLgQHdM+|CRRPx(LQSEOd4@P+E#|&+dd{%yDK3+!e34MIQ^j^;yOAVtn&8cV};(=X|@qZ%N8 zHRh!0@XpcR(@_IHtCY8f^yB2j{^j;J|K8{#y7yTR3*lHmMmx2@Dd6|sh2(^dyov;(K?S2(wX z(mKktI|rdQu9#o(V{>PTXKiC4>${?u!y9@tXJ@g(fuSOB5#y*@?f24x@?GJr$#cg) ze9@7V#4{3ZVyhSgn5n%lWcPM9##x-IM#3AB;zc%y)mxo>UpU++~DtT*R}Pj!3_6Gqv0)JkIaglNsZDFtHkNQNtx{KjQTC^VR! zGZ3?3IZ9=-CtRtQrf>5VJ~1!nd`22zH>6(=TRNgnTy?YF?iTrSn(ps0!o0_=3mw}O z`}4#F@t6_OdQI*zo#bKg|9Y~2)DeyQ2gM?$*uDGbugwpn>Urp+6q2mm>Yv!wHyHbb zJp<`jGZU8rhJ`BLHH#Y)JUgoiCG4D)w-Cj|X6DW8ulDtU4%JeE`sNNYymS0V$_dERlcyXPRtxR56Vy9UPIki; zD)Pd+aZz*y_G-7y!#DMB0V_OOr0_H7uoanD;|ov>eQ@`7)bpva5!)+B z<#09+bDZUTZ=}ZD;q%{ROPt5##U53NGE=!roksmXpXq&nxB|~PSzUA@?|qXVnxM*& ziRuu7U-05e*DuNg&igucn@U4v2r;zk7ROuE+%@+5tN!mNcuA36zj_7VtCWR?BjUMC z>bHMvoUg^3%K!T1{+EXjyy~L?MwOX$t}`A>w~+T#nzA02wOgGNe5Iyp4q`?wBMTeP zEx7@Xs-nz)1iOu}t_CTeM=;ISgdqPtDr*zO;n&&a+BuR15{!i&e^Gpf7{+G9%~q9< zT;Rn)!Y-O45*ayDL*Y}GWC6Q%A{Kun{vs1!E@k!};%N_wSVv_{=m>qKfLspfNC@+Q zfBP~PxK-#bss1^8(Dbh25`9i~o)WjM5D;h~+2nG6FGZ3~G*yYvqra`PVC^~Lzw}>G zR^c{MuD@RQ5fm=C9PUi3^=TiBoap}ZI+YR;RYBzve`a5j^ z7`?K8e9$(Yttpc9$-Pjrm zt0}AEy+gLlFY=~ijF??9t5yW^9^?1%E`y5vRddE!961PoT`9T;F&4pazQSWxL&o!c z6VDDkR+Yw>e`$C7)jK8hrD`g5+~ps{K=l2DV<64WlRE#jjOQjar(>xxzZ`3>)FWLBOhsN`%N*w zRV|$GMIeBX1wllAEToxs=Cq7hdc;OMv3*)Tik%%s)U-04BaNHPu%acz3eB{JxRE%e8M@7171dkK99+3t> zfR`3M*Ej}_kMvB~iyt!7OrR(IF=8(;E34P5>6KNw=n-uiWX;Kh+mm|YP1REwrav+K zi_WT5&+1BsQsdR43=Tjf@u|;$-N0>3(4Ig&{QS7Ma&T{nh%;cld}Ok4uCPwB0gD`v zH*?9R93&HqYJ6ysquKo99Fg5T56@{xkq=IJM;41ksG2M%jIvWvszS3Bkwgk?y*qi= zT%)!==ab7_z`GODv+u)zc5B@bW|OP}Z=S^0dA5y4G#qCqn63;3NjmU<^a^r`X5&xF zYoP`B4kVrmeD_d8bP~U)EonqhL!z=}#PruZf3~QO3Ejd11}{WDKfPpUpR`Y%v-nSh zIpujTT`h+yTkRh;$A~b0Z2bJ49g$k^AZn1#u-kokpT9Yvs8`qKmh6#ajcBx#K3$l) zCE%VuS}WE6-M(mS%(oJMZ*9Ei4x8sx3bUI|kC^r7Y4NXLpSi!`^uEZ7HP?pi#1h$7 zQ<;Bk2?$_RX=2buc+23(MOr4&-+i+UJX*(M^Le8X{zv0b ze=HE;cn(7-!M>AmEr6RHb<0lPOx&MpQw85gJB-=T8!gRxUBOy^w^6~;nv3xakLXl{ zC^|#offz_Pk3h1sbxw#Kr|!PZ_6WB?s*2SArlmYK)tx=*7pXROChgB(p?TE_VYDzl zF{M_zo!IdD7SR(v13c6y2@EdtHz3WKAAgVsb zQ-bJK*)q#%z`7)VB)1)azOR|^m}Brkb%2Q{IAbLh`Eiza23wwIUbBP1Lktf=_ubxb zSEJEwr^yvjS8Dr+b&t~_u_0v>#;a+VS`|&G^X3jYb!)SOV*)KHFR0zBT{naC80;zQ zmP6RK#4Mt(gWO2k5iitef)gnW)m@+)p$q$=U7f7QF4OOSQo-xY9M4NcB%V6y;}@(d zqRUh=?I;!_*#3Edf?2tJhd|u99fLnKt#(0O`Ds!i^{$(RYO8V_6gMh?*ckUNVpYjQ zkys_;t?jKg`TEfhx3%q|+P-wNRZ5zN$|b7sj9InR8?FJoXAHN;<$fl(Y)K`SWp=U< zUJ?xEp~_Z&J?D7_LWI&et+;|QQg=-E)x$&}Co(ejbJZV0?m?D@P4&>z>6#3_$rTBL zk#McO1UEP#5{EtCoCZ+I0cfMCUzKU8$t!#({LQNKAim9J43 z0aE&3V0~@ZqarYj{yyFmE>(dP!`d2ZvtF zWPyoyHJR|kgRNHhB8+>?T4K43bJs-v2q_)Y62B-xS#@BO2HtwY5wAmx(!QN5fepYa zBiVp>xbk*jvZ1`blv(hMf5_w|s9+!(0SQf~9P)m%SiON8FC={GSR-bEY%TN@BT#yr z3%?(K)!T>rc(4+Y#`Ki9@ABzhIPU(;z7uDYLA1qxKhdGI9eXdKVHGO5Y@P0f*3g9_iYMG=xT$0jh0)vhGC&p&nx@O(lV+c z^YEJn)ILiB|3zlmN+;xt3T|N^s1Wd$Z$<*t-lfkSo3+4DX;ULnbn7>G{i)I zQ+Vl~xr5Z@D}KIp#5XeOay9Lwk}Be^i8-_|jY~o_Gv+}S9HF?EuZWX19jdo-@fpv) zb3kzAXH0IiZ+jsT8z3D<35-i{tZ5Pth7QM8NP9Flx6O-ez`aPEcaBZI2H5f2^l^B^I_#YLr6Z-l*ryYvu$i2Pkd>FDhntQVEcWNQN%w_KAXj7u)pe%;?M zmM>Gx(sC}*I9TiiB=gW6iN_LKZE8%%#a&PjnWfLDfyNkx<$S3}^`|z_>n4kCV++yL z@1~HE&k6Mi_tbbE1o}EBfMK_0SB8zyHt`QrOg}kLa`}nbs#8)tqKY*KlKve;!bg_-J0h>8iB-LgO4(+I>vxXo1&Qeb-ozvZ$UvVs) z)dJ5GpjI$db|-Hs+-tA+rcwKv+;?NsF0Tay+eo8#oPC4UQtlimYf4kWmnx^e`)z?UWmN+#3b1lmP^R2-RiN7?vC^Ioiz=`7?!u)=&P^A#I zF)tPgUu4-cM)u@QfUd@9f?V<`yDc}L=6?Qhu9A&kwcx=@&4FG{Z`0p$ zNaqWx`!}N|b%m_Jcl~rAwV}r%cjRQm>__@gVCoUFfC^a=qKSyDNOsqMR52}KzA)VZ z1<_l!KZ9OxE=^ZKwpBo~f`?#g!lxQ>rR2EgGE5w3#l%Isn|$&(^9XCDw9sVn1LCP! zZ$n2;Ub)bYUN)b?V{hiHk{okpTvRTr^&hx;!Jdp*B7BE#_)+AmrhJ^nZWco2@;uud z+$jo38_PiV&}Cynk(*|JYA>_;h!Gu{hd({4zjGtdl)lXWw4e*eA@M0ePU5gA)Ar%H znQ^elMYF_0;`rE;N1NhQ&3SU<%E=`vC3sCF8H1UTOWhhVQiQwEo|K}C0Y~~ZOAP);vMWJFrMDy zxVV7pq(v`VI)S153`nb8$p;gAS6ACw%klzSOzO1OsfZUYM~`XG&@>MH;kPJ}C22H{ z&c9^pf0IG(L7zD#MuP%hf0r#S=c(DFUPIT(lq>h6a*C!JLK&Cley1J4)%`~dRb6I)b z!W&k`wLT(JPrS$s$4ngdly~ZFeg24uc-a{j@8SP{^bFn!mD&7$5#l!;5KW_1T99en zXE(8eC}2$tI&(F3T#k&)eAUnwpc}>S-CBcE4-dVpUE8)$kc`PV1Sbl<>6*1Qazs2{ zlhU9W;*(b416U5fJB=s9(_Vk1va^<={>7jB{!PNFZN+{;2%+3ShNZLw-#cx&f$f`L z5EQ9@_mxHMD&{rggNgEoYtM@x>vVkuD_<-2$o|B$>`#BxQ#$0I&E8X)(jS7h_r}XV z?dG{8I~h36TxxuRV##4l&T|N;!;M%#8-v3%A#Ay~ik8L5t z&11ZRynz>bD#5MEc!$r*C&?1Vy~Q=gKBkR-{-L7!et0vJm?QFVfP|W2RoX>wB%$&d zJVqh3cFRkp#;5Y(5X@4}bi!(@NCYov%<*Yy7Nr}PYdkax8Axu(l3F25JOj9sv{ra8 z%PEw)@0eXc9>~P!(=BV2GexeIt7c3dpt;hqUslvL5OK&5)LzT$F!R|x!~wsNdT>8~ zss=kS!*U0^2+gaHX%30Ek(x=UR-1eNC0b?DmCzY8o>!lF$tJ4X+=ISzuMvT6c|FhQ ztv6#Oqkqa*gk0A@x0}fA_@Rr^h*#}Vn&wQqAx7U%SCMnHwwrZx7dXailzLOTAQ&wp zR@_bE%4Z0=I>)Z3jK7R;12#_BkH)=iJmB2;I?29#o$4o!R2m_s<)bzne>mBWL^AY+ zv$hO-L`?OYG4(zXSaxCoadSzG%EQ^f;3{iq2E;8aejz?)-DZ+r?D^U6UWTWX9ok@* z>GKq>f48IRl+5k65syGgcRP!^y{}UHKhj6qj#@10e)CF)}lk@h<`t1UWY{ zG?(!Z1u1`cWl)^mvNayuC0H03+#P}woZ#+0z!2QsZE%O+?hssp6Wk?eaCdjTIq$jW z-1@4%dj52;UR`_j+Fkp{Lq#rWXX~uyVGm+sVq<3I1E@->sA&r^&Q5%P*&tIVr+-by2yp&yWNrN4$mGA#f2)q} z|BjfE+1LPPU{hy+3CIF$i_G#b-(+mf?Eu{WhRs~;|5N%a$my>>0PSB7=>TRR^S^8t zYik8#8xVk2%+AK%#Tn!Xkhe1fIobkLjctFO{yO3aHvbRR*amFv@&6_NFGI%J_^%nF zwibWwWBoS-c9I0UgUpn`&VT(jH@5!k(?7T-=--zk4>AM0*!;U6^w*TX*J@^GYwhvB zNB*7Vp95L6z9`8mN;CX-3;rof*qYjzfo&}Ss?L86HFh-nFYr%U$r$|a75a~u|Ezx$ zfbIWsd1GfsuscAPmHA&g!uqf8Kau|bvA%q%j*f>730(g1ZeEuJ~ zrY??-AY12uT>m@EfAW8}2?TNnnIbRE+nMqQTctLImibB)OqIhkOidW6Gt9F=FN}Ad z>tccXEX@pePKmD6h;rRfNhbqL1UG+9)@805DU4%5sC%PhQRLzJ^F$9tz;X-U>eVOZ zyvN#bgEKe{LK{;BxO2#*^Y`VYKqdMy&W!A%YFUR8K`be@D5KJ!J@A-oaf`Dzwo-KZ zG}!4nZ>XRxhAPY{%aHst6XA!=C77_>pbgY>Dndic{IUT1oiLr^R#4Em22X$Bt5=5W zAL`#n>}CdH1hw~W4 z2WS@%=EePGO-0saM0nzrT`utAvqnI@Wcgu+#cgG|Pyhv+$XCt|b3Zh%1<~+NclHUK z*(}eM?jzm&v~vmOXoOIzkEMTTP`Y*U!oD<(={QJX3?xgZN(ZeF*x8a`{O{0&Mx{E^8qy$TB?t=1PHLLr^8DmMnjHUZ`hv_|0Q; z?!1c%#f@5L9vpQR8gN=w&yz7GDK@jR+z#+RN9xW-qE{H@_m_HhPLKhc(F_d^bA8NX0`s8TN1FvaygUIY;Pt>g4x3X+3` zI2Kb2l=f3noHeJ*H0F~Lt4}!Px))w2mKZl>xmZ~$`&xuN)$D&>$8-_*P{-|O$r$i0 z>EXyqI6l;;16jRKKH{@|*1n>fzZ(IifZXmr^?g5n;;zt)5o7lBl6ixVdiqw<<|w0w zlr8$ORdbJcd$eYO*WNIhg7fq^*Hy2Qas)+DIi!W$k$*81?Hg^bbRXP{Z1M(7sdfIX zw-%D<>H3Y4J0O4i@OA}8^ejnseGRn-+Exga{P)f^V&s05@ImnTYTf8=R}vw5DV_2!8E8PS#S0yKYK+GDzndity7t2>G?3~0Dm z^)YUzV;f3`#uwd;9qvUEeN2J8?f$_)39?q5Pjb!@&D}we=kyL589{$w`EH#`2r?Z# zY-rHqz5}uL>TpHfp{Rb}21xP{Eh-U6GWk#&LjAkNwOTj&V55|MXr(Kkq6+i?OA&=N z3p$0z#nXQoZ75HvP%R?bfPy$ae?~Vvp�*>npjbGB;UAscRAR$c3-6*i9)-K5+t2 zXa4$*ys`9pg5W`6SfuVZGdcey%rsnMxup67VzKS1;bsyJ71tYrE5EUYdGwqoPZ!?bSF*D@-@=cR~Pr>d}c|v;XOY)t+zkEK5l=MXyFLyxTv;Xa>rLqDA01tTooH= zkPq~#tVoT}l

    ztf``YgOx6!nqB;!|G_cy+SpRs?yLP!*`GfPB)wP2WX@vW_&cS z@UE8dZR{HC=Cz?=zD86r*iDuqFO6NVl$l?X4clsON?F-Evjdj!)uycP@59CKVR^hRJ(e z6!Q0-6d|h-95NjX4_$dW%AhZ^taFs8&9{H;Wf&w1y*;Ur;9gX|$Q7+x#`BP<)v&bpWqu!N8F z>XPt{E<$I@U?Fj}0%#&7_kxh0Gbyp7+R*&H=Lo2_f~IyFhFN{@6SYf6tB8LkuPE(l zPMC+5u@V^b4CCcAO<-3eM9&no)CR7U!dKH0KBcvlh>ZMp0uQaV*q1iESW^SdQ8onO zVEhx1kTj1F`p@t>wvxs^UIj^?mOHx^-kSTk!`Y<}!`C%z&Ip1mnJ&-)b**TQQziWZ zczw8fik7np>!g-nLSaNO+%bQG7i#x59=fs@@AO7$!F_+6eegXjzdsO`yv`l5e?N}L zs&2>`oJZz~XLacBy@j7402C>@p`Y=jPBil5888v%pIU}tHa$KFsQ5Z?E&HU-QV8~z zAoJW0eI|nqt+o4j2^^*kRL!JAP*r|Ixq+W445yEBINEGUl9F7e=MH~UZF5lD&V*^` z>8Aq?*?YN{Q9Ss*r*(^uvR}v3kzG&>&>}dY>=(b_^z9RTc_N>*Sus$b2k4+4#K>bRfl6F0!N=3=DRt(jFbFht82` zC3sw{E? zHHETtKt^{qmw194@O}#*7lbw0q=|h#J++tdZq|6tV*2$quTX#Q=6A4a6^51cmJSKC zUq3FoK1UkiIUxB!Eg+CXtjfqjixGnCDm&lhXU2j#kH}rN{7yQ&O!`><cu<16eIF2Tm;-fZH9W(Q0<7oin%=L-NSmhgh*?M@U7pufX{z5mTfg9em zKm*Q1_d^G1=dxM*4sJAi$UbAPLkd-;eu6;-bt+`FAX7FjD@pCS=WzANQ?eR&4{Id0 zV)CF=AI|n*LgO0#XHoFi6Hn^nu>|J~FQ_+K> zanIT3-7wF_<#6uB=)T7OmX+W9S&2C@B~qg~%c^FZH+~n1l}?Bml4B>>NI&UfMc@uT zbC!V)1=nt!FZlVVqaqg;$={UsJhhvykv&T7jLLuVS;XsX@`D4eRYl2Coh{G~pw*@l znAP7bl&O5BW^6qh*x)V7vvQiRbvX-%jo|s_$4&## znN2fhnh`YYvdZg;EzDzs@;gE3Q~pw|TwUKj%$G?iFGWm!&~PU?_DXuOYdRQb9GE9+ z-?e`ZP&Z3=vfA>oB}fLWWz=YyU&d;B`Nb3$)Dk)hDkV@V$Z&i^wMY7uD3}+7&;_@c z^lpNKW=s-wh=6OO+p=|lj;zZ065iH0=S7eidyF)9Pp5AUTM*hb=Z$n_XVulXB*Lbq zzanw}=a!H}MS~(C(>eK&pe{TKO@^bXT&{l?oDzx1m<^1&jKW!5_nZU!LQCnU$=G>& zf0B}y-i<-SLICrhRPqdNC>^ZV%w0C|5-@eOe5`W6tyTDX{(U$60B6=%goK>}lRwPv zwV_p752aBsMq;kcWIrB0Zjy*9EdXPuD1Lh=YoOCl>`k^B_bn!=pkJL;0KBu^fvta# zS7K-^ryddWl=a$sZF;0KEWCwgq>S>j>Wh8W0phOkJWKzkJTCjliYGE;TiS%X_T!8+ zalK*kftuu4B7SHUff}pBe*%V$W%&X|aFFM${@-dSCVNZuyOQxqVS$;%&C`qzKFJ^akgj zFQLAA_7H!K(|TbuEihSCpx%zRx6T!0eyPg`#y@^zPxVslXM1^T`$jom=SP)0s0kO_ z!+skcZ?vyxxpA<~Nttn`uU)@JYDtrPj;Pxt&pMF-@%qCod%3~>%Nlp$CH8-YuPd%! ziAIVg5pA$k{9!=zl!gJkg39tZyZCwPcsdKrgP+=(GB+4MU$*dUtUs0@zPc6HDOiB! z((cuypcxj}+KHG5j*6Fwrg9hciDQ0r)dXUVWxbVHI#7kml}i*y8u$!oslZ@8M$c?A zI#rK0a%xfEX!vIWgHGF;x;%gAzZw^)Wg(Dhb8^5QvFX#uZ5JTrdst_@*(CmUnkM$* zv^YYRl8}-G$&D~y!*+;S%yy6#%ra?7*j!*8<}2)|#2@i?bkFes&lfTAz?rsGZb?eA zso<=ahojYM1|EG{^+?dlbj*Z^fp*!WQf`6zH-h?w#H72l++n=IlP-U_()k7a@pQaA zMNuwx#KR-5Nsm$;HVLWaKKZC;__sN3A0FEer=?P}w_B1Ka`xB*G;Zrfc}g}AZhl=W zMq!PqriY=xRJIO4OkM4% z?Z(TU?CtScZ~d(Jbq10F2eED<9yss`nSLs0+0@1-4n|jR(NtWHuEHIKeHD#Ithaxl z=EmWlUe~oVVrdidt}<2ei&-c9dh8TJEEf;cVfpHzQQmJzG^KxKU&?ctV&4kh7LiE| zx5$SrA+#|4AW@hfX5@QC!K`tbq^KC7)i8S zTnjvbi@OaAv}S z8KIuUpGY0EmtcYlaq+QqW$`RFv`j|r*c@E9@vQW7;_uF>A9;VC)L_gE6Fs=BiH-)^ zD-?paw?6#3^Uh$h%)zgNs9dttLDwQCDy=_8KiCuZS7?9pinqq^gRgBk`|#sz@3MYn znw8<>UQ=;gz8Ww%e3kTV>3(NPkDCSRpsa26r-#y{;@6g^dGkJuh{JC_B++YO@m8cB z+z%A3kM!;E4hA%^SQA*_5qu1s@iDE_)E3!vd#5W;e3krwD{z(-72=!Mz`8B{AY}XX zDBlKUR*HY66g7E5jcQc`rOer^A?I7bb~y!_OnwqmH?34b7qJ;-ndco=oA)yo4&8K7 zELrR0tN9NJqSpY+-sn>I_nSQFrZ(=&FFRZ{{En%ZGnrk(w5*EZAEw;g{uS(9EnK5^)xst51QMkC_yBirBq z@e)vnSBtx75{r0TrqZx{rO-0|?AtQR4S22L3R}l9&~TP-#DjO*Hd*Pal&V@!dmv89 zhan3qeHQPFyDc}OxwQP~ot;=K8;B8&Jh@vytz$0$Mxhox_t=xKCBBwqK#=&}w~uKg z+HHS`8BT=WXWIOuhqsT0f)bOBP$cUk4KTH(f8z@T(9mdQJYUkU`*VuSN11~)Iz2&L z3l{tC==^w>3<1Ti8}VU2zbT=4%$}I0@V->#rfF@skUZz}Fr(%77@vTrxit);N^QPRN zaxob`&?5y1EQ5yKUfg@EoWg@hG&iFl4po<9C>O@Av zmGbQ0JS<<%a%OX}`A&aTgmAlTSSt9SKY!|_Tqi;J-b#JhbB?TgX)fjZF_iE=R2`5- z#V&zjS)rmgIOCUUE)bxq%p_2qd9T|UmzJ^%NsTRi6w{p7Z zQonF*F?h93!7@fd1w+#vjBX$rBf)0MwkmpR8_Q1bNf?z#6TIXpx{=9pCCin`fBUG;sKY+XL# zw8T~jx@)Mpgi*cSM4Dzx>R-Rx{IWzv;>TNuaU-r^NLPPG_@d^imPP~RffOAvn1Z7i zDOx?-Y06$sa7#PtKH(zQqZhdI1gN+%|2o9(6JH-}DekGO69K)tzuTme*cj~Cl0H$UtCT>~Z1FU$7#KXUGTe66-<{H4yAC0zKV2qD_p_ycM z84i}{3MYSgx9;1L1`;2*-&$c*{;2&9E*dqUWEIn4$%uG-qLmyXAPYmJ7@uN%F#~X{ z8-zhsE+Uyli&#k&m_QgQPM7pj>M>WS;^Y!OrCqDQMH0%h%68*kNfOyPJ9@Hdn&_5_ zOTkEGs=moKO5I=z8RL9GV@l#$ljFVEUM)PjG}M^$YOdqgRBvftR`m3 zRj_|NyKMvNyeX2tzdZQb6DM23a6YPbv`C#t?a&0%P2H>!lKozh#gSt9%uRb0uSxMk zfKC=ivbfA8B=XN=)r^Wdod~*$OO@BfM)Y@G4qE|Vy_Y5ZofApm{N!2wF_s-ReRaLe zqjlQqcaZTwWEijl5;_NEFeti>d=EPw)J}h|6NmH=-vr>d^OqSRMKqPG84X@HZrKYI zDr;EYNQNVdyU?EdD{Q{S-}w zR#-*q&CcEUt6mbHZrUh}F?c?D;n4qKWp9p-i@)vZBqz@&m2pcMVUW{lnEIwP}Z;b~rxh<^tAD&;RS3+M6OJY_< zSpw~4zO;ylNy-FfUktxtWU*UNlb3(BXBVtG9l{@3$Uw#S)F9WTOBP6d)5&yGl*172 zBNK(V!ptu*q8^@{<>g*rk=x+h1_m`{Yzk~hr)nO(E#dH1_#zVK{y(>;q3PE&}e_&tlxMc zlCK%DZ9sB`VdDl?NgLP^!;U^T+Ur*kOkq8ama1?h%+??kr=hf&r{9^uO}a_G^H?E7 z91Ec?(ek+~C1NsNkyFMLAahBb-hsVh2V~mi_i6yLF*mvep0cl%Df@j#mMbV95HkBH(`>qK9)n?9&~x-8UHM=`!Lf#!9LynA->#=Q=;ZV zJli&$<~Uzke#ZPZxed>@?1v$BYN)N+`$0hLy^!kTphJ9(;)d3{aqP>lcb^QqZf>DU z`|mt3hJxkYuTkpXA-oE;4T&iA(haDfQQx-FNKbwS4ld=bbW5b7al?O2WyBe^Vwn_e zhpwwl=4+4Fm?L`enozOXAIeKg8{;SI(FRQR{{D!rZd4gLZS}lEK7rFC?SkFj9ch!I z<136Lw!Y%9)33U*jZ+o=X@We3{Bkq|m8G`aR?2)=h$TufBs0=BztMr>j$?DyOlK9R z)i$>&zgjCd#|^~W`K$jjL;OZ~K*i^WAgxi!BE_KG-dv8GZwm=0m6wG_-ZE5gT1?fU57 zU_uTmw~gnO@y(l!wDyQbmHh00&h1^D;OtoNU9wOG?}n``3Z;JvL0qjvMR)%uMFknD zc)gVXIwr__l}jJ97}%o}=0nwd?uq|9^5v8fRyubv+0**I5!148|99Db``Q!O0fn1* zJw-o?M>Lucy+q!hWDJy(j8b)Ps^?!qoJp*-BR$Nf)qy`dUswn>Rr{sV911`vrB*Gqk^-AGZuf6!#GLCnKyWt%9}NRYc*2 zloSKgtN%0xam!t|V1E`E(-IIJ>iLt~3_o14e4&&PsFe--I#x_XJ5_xnMxxNPZCj3} zYO~-x&lA)E5!z)+2Aypkb9`#&d7tOt#zu^;dYz;@(hp!U%~rl{t=)6x>-E|V$B-6m zGw42_pcH>YL+>VhD~w3NnUCArFiWU~&Ow{>*WQSrqh%Y$6W*b=)|IeKBbIxng(TGh zte)aLaTiL4M$#XW$$bKY7VuGyelf%4x5(xMN|awjAk4FGq1Jy{ZpfUKY@;DZ-k}Mn zI^uf48N;)ifU5mkp%D8?yo3p=oNYD^wH*~}V^x15{7{`J>05e6Gsqw8Bd3n_(Qz;QU=>GUBs$xZ+&WLeX(;!YeCp z@1}oB^8bcIof$^1um_QB_hLHBV24XrAL5G(w-)HxDQp}h_9_U?jF2N?vc@?8zsZ7r z2=${2?s1D_x9i9Oc>JC7^p?ycYfj@)9?`&FrbBT0#>Y8Z;)2sXVP%TT>f0@&L2XNl z+n#&4`nDyJ-o2sFPTihquML)P8Gc;2oEU%bx+r{NO5lI;UYI{r zKZD)R9ceDPj*g(T0Q^rhD~a_DCFNkNzc1U1Gk?qs=6mq@CmEI#?=@DIxZgv&&3Ky! zyx4)jLV{In*@D-^V!AF`mtdDr9|zZ)4vKhkLP zOjF&^VRscp&>{1)aQLGwk1?N2`S-Pg!De{8|DisCKx48@cHd-;260F|yYoUlG>B|0`JuHAnIfEr6 zj^d9bL6i;OE*g!Wac+NtqK!QKI(KvxU$#?jEBqxLf)A+%QW8ictNb$tYw=!Rd&a?M zOQ~DCNy&@JN%+T&>Mm%0`T{^kxF+ak;k84h?U3_yHH>NIbxL8@hSog}UcE|e;-Wo~ zUFYfQOlJqjZ@qL{5XsZ{9<`4z;yFd1GQ*a>RjuHc{WQ=9QUHG&B91>tPl`!S#v(Ch zaZ@bZ2SP#!Q0#UQ%9cDAa@Zgu51#moa12`9|^>4JY zvnLg`OrJ=XPxBsovSC-9{FTN7uJ!*1S%IfmlVPnC0XUZsY62CvPecU!G?UD=6qn%2 z0t65>3NK7$ZfA68G9WWJGdMMu@h<`t12Z@{m+-j*DYvqD1kwQq)g_gcWaa6%i+cp) zK7W)&0dOGEW81cE+qP}nwr$(CagS}=wymA1_o{a14^l}g=_H-@1C8rqvXPz=87pU3 zZ#H&m+iKGm-eQW{9Q`N1HD!yhuG^fvx_?z`U?qr-2O!9roWH0{B$dAN1flsLaa-A! zuJ2`@G8O&qQdKjS?3P!nDD1@{B}W7+3xCdWa+0+Ypy3o$4Ka)(>R^}MW9(!$9@Jme zYjA~^sZ)86z=)3FiQC?c+uM0a+C=u80*<8pMwI*+NE?G|EhNZ$`V|prfKNEFq;m7w zO<(xpu1hcB;d}>F9Oy`R+-SB3MX_~C6)I?4-UVG#q1DTuEXN(sxS@IkrFHp2*MBdQ zKu8UoJI978NxERmojq%gA@3J+eK0^sM0&X4RR8d?`COu#2RK`dWaE{R=V%7|1seyN zl|mT~3t2s|)K$j4qM|^|!j?o9ON(;RR_t=Le_gk1q^s|He``^@f2?jzc{Nd0j|?pl z<&a?9uHfrY_(^B{{|76fgbdVKpnv!jbM;wK8ABOgvOFMy=)o0x0Pr;#K9l+_#PR`Z zh^YM+IWX$*8zLY*S-IxBtPl|jxvv=P-bg98ETjQxw3P&K;0;kP{m9`99w9lm&#|eV z8dL2!ImY&t{mxQx(Ds)Tx&*cgYL3)0^xp$leh7&SL0l}aLYHie&&mgs0e@3ipiQhl zrmVK15CY^m`NDMb31>oTr!&ge9uu#p4Xmofh3Bdl_Quz+08K!$zuKB0r-RH3q{7fS8?p%C zb={;q*Lbxus?GD6bHX|_%x$bv*BO2yKVv>;cT7_qP7UNj`>g8&j1@y|dHuCM%pjUv z*HP7VQVJkV7^))Oe}Tr>YP56M5fj-uv&$$+2K?j~bGHJgvyF_Kk#_T(Hco%5D(x>@ zjJ6K;H=AJ$yr@6j;>`c$HjVV2(t|Ey**sVnGnfIxV=!Z0m0XKPRP9ZsS10qh-9MT&E+M{hd4$~<(LE#>|1DS@ zZ$E94^dC(q?yl^!t^K8yYAk>M=3QtEf&DbG!D=Spkkl)tlS4kOfb^(r_)&8_Lb(#3 zHclbpd>ordDrpIr4i%SDh-0AMCvsh8aI%#R5+z6$Sv>D(W>oW(-ycFLw0sJG=d@s8 zvn1-K{B!q6w)Q%LlvfkOc3d1^ciAvZE{ddqDa^nvNyH&kTNI{T0DXU;pyY3s3z|VM ztO0{U?~uGAK}$X@qJN{fHl9x^n-~5|om~ps!%E+1V1Y4QMdZ>Vogk{k|E@$ndcv)y zEUx`fC7+nLSI6JGAXiD+EmKcUhUjO$b;WE#YiJaNEByS7dVtZm2rWc1~<}16a z(Td&K>x_?$bUKmeO*H=5Z?}^&m8IM!XYHJ5?aB`ol~JkJE{cEa9=6VHxnIGhYK^N7 zpV8;5{uhJwzI!&tOE?o98T&SO7F8!^MeD+nkjkgA-*%OQnRGIsp3|6x{us#AiU|4k z=BOxxfd9l$b(2=Vx#a4j&%iS)#%>nR|L=&A*sJyvB>@sQbJ9lf1~L=iW9n&}Ro*Kwi^;@1O}=eM^9T(_QtSpdnaLWT%2uTtbZ9?=l%LfN?$?w3tmT~ zUPAWt_OEyml2nhW9)z@`V<7e{!{fjnlJ4#>x0j5V?`=tJmk)4$u;wb4~2Yy*wtJm=kM=gtZ0W8PO47A86-g4!l>uHqHj$sfSk8U{dzEcrIeMC&E^+YI_( zR+wbeORpvVUx^4^2s>Flniorufv|>Oyx#Ih=j?y4R?_I-mbHyF@UFu7DVJK8JgW}J ze&@zmaW-TOi21)8Q^)Em#A%FVVF0=O5JG5pvtFSghV+$2;+ZI`^Em)@+_PbKp}<2Xn-7D~h9F@SwqlGjWqIhtC{ zlYb45n-gtk0`1PpJxfw8e76|~N(va`vvQCG%wtVbRwdHOkVuasi9uvN2+`aS})|D5Ey7 za=fC7efa^F!T@Hng~ihSu|G#Sv0EVvb4YSw%DFRLRuecN^{Y?ZmM{zZfm0NW8chS zEMBq)yik#X%s+%|aJp<&3js6Fg58RoZXE)VdpZBKO1jiWQAxDN`@u;^&7XFgB+v3Z zM_e@$cK6%SsGht>$T5>f8~`s9ezkupy>k$5`03Yn7@ZUsw6Zmzr1v^(DxiaWO>>Gh z${r-JM{OvkA^oM#FPS&8opH+fL;jne?fdk7N@E?-Lf^;jhu9Ibhzf8JN+Jg7#QhcL z9hE9~&~eyrdjzBq7EBN)U6oh?dJOVU&kGr*i{oLGd^anA_GuZ3U77O5W=4PEUmLTE ze?-_vkaHN*>FZB7QeB43n(bg$BFI3dvW7`=JP8CD+z15xRfq#B!RT+@TV^cOGjQ1( z0Pv5@L0xuMjei32EMK33uT98e_4H=|(uC<1F?fj77c){E`4CA^FnX6)B~fx0)fGOo z_8}xYf#MO3{}j4D1pV7~KnZ{AEKO#RatEK5_d@xTe-jxD9sEyCW3oWi3zD-nGO8bB z>yIbJ3AJ1)5)NVeeBwkEg`6<=5C614;j2>7jrt1#&VnJqb9T8l{FT4wr+2_#8kw5K zO%=C~(5%o!k1eI}zy!IFzM%0O78{jp>mUfhk|_H$0H>5%TUzJL3bB7^ygU2#V)D1s z5K$!$;`tfuti>3ok5y{)g=N3idT&{I^WaQ5uQx{z`o#jeVfj&`Ek|=axG%j z?Dz1x{H4Ir%-UIYj>q`NmMzDWs(^6N-_*T_o6|N#9MA>a#upRE0T^#>rgHBvJ_FyLD|CxoLRGV>A3S=PGRuR8a)OUV2r%tlS zO6{RVWgmmDYMzY*MnURUqp*UXuRaEjqZrtHkIuc`XGTc!Z1&v*X`jOJbv4-d={>!X@vY16I3P z58<9BhpfVW$~JTi#+Vq38sQei{PJ(Kpd75|Rz>OJF$39J;@t5Gq-Afa3ecVwLUDVH zB78?6RFVed zGws-$FqKMs*!~FS6O$g*PJ%6!dWy%mx^LUs!v^1iG`ms!2nIVas?&PamOen4@Duy$ z1L251u^WFB(#0`ceedc1HUA|*TaC7+f4-o7HB%~fbq;*VhbYNAR*S@^6}T7W4#huJ zJ$4{8*-9kC6}ZxV^3KqmL_2*C;C3vU?cMGIgxELDZcF<8-=(jDfZItt-Ux9vz+P7v zzJQpHWN$SS58};3l0m}MCNyqZ+G0Z+(HEINj$?nI$i3RokdO+H`=U+1e$x$l9pB1C z7l)yb+GKf9b5rN8>^-)d=KktB5HOXkhR%)PcBM2Zi^vnX#_>8Tnsww+`=5*rlr@cFM zGnbOS=XMOqXa3t`@D0aTzLvL2X0s-j`KtB={JvpX7#CWV{R?)iIZewm1w-9&=n)3&BT+Wnc2D>2}6J4 z_9W9cWL3HDdn(YFWAgHnrpv&_HBV*MuLgq}-pK`54&I1)bdDxxb|0(UW{Azac-Dr@ zok!4~zaJ5VYtjM-f{?`{*J_Wu%R}^(eSNd476b(;UPb;#q2tUv(s^vuo;dntJA>`a z07VCQX;hhMemtixRGQuw@{^eYDwlsOh}S_Xs2b;$=lqOlB*O24@=6zp2V-JDlELtW z9nRepMp-S3KLU?;`uhBA^%r|l{L;EzP5grAPaPiz&!!@qBLD2U-AZ&QmIJ5&4LC-W zZ*exFZ|QYhB)2$nVm)P5CF4Q^ibeK>X(OIJYHw*azIe_4+(3HhkfFM`A%uTvs=dV7 z_K}r9ZvV%rJfA)<;AE||O0iC{J9EeX&;LXt#siJCY-d07zP=f&=r1+uz%Rz}rzHEE zD!_hPtGh3z%N{Lr<89ivXwMwSrODDg+Cjw4m2L7$UM-PbLD}LuRlXmZ*O<0Lx{fBq0kj^xr2QIrhx{DHep3rZR zMXiQcCOnrNk|raFY>dyUza{gI-c8p>2GRt z{X)iV)bF@5%ugg5RFrVx!ir-IfaSlZZzTr0Ye5&a{2OgTmb`zgGW6!o+so^?=cU^mb+f5 z$_Iy@3Fg1d-Ch|8&uf_OeJ{iBMypQqomFkX1fSmB1^RKPxx!(QG}tF8no&zzoj8M4 z623_b2M85|)v|wuR!yehq*s7*552{*NJtG^<65q%gugAikTvc1Us`{O3aQ@|6~0X_ zwN=?9K@Dko!X{&#%zDtl)aCqgk?$bSprEjVZiX7ZIWJZLVmEesRPI((VkFKXY-rSs za!X7YksU%WfI^{ZtX?y&dpwYBw0-y+8q#KNB50fC5W;`c5e$|h{K`^$TD}t0<3^Z% z*_t7jsl-bG`p8(yafs&ml$5VYu)29DW|cknP#r&BB}rI)lI|~UX#}m$X4N{=zCsvH z!*02tn>2p_HV~{~V`|-rtBjEA^pSSm!UEJK&KSj7j2cE0o$63pQW>Cx>tgANUKhRO zvF+1KO6Gqlmwe@-R0vc5JX2~dZbdIw?l&6!>`yZtfRUN)8cXgZq(4-6Elj+F@3cj8 zqqs?`P@9%fb}9yDDA4e=)p)}8w@`h?qONbh-)6i~)-RPHXDmnN8wrfKw=`571s+u) z4I<*SddTVh~FEO|tZRR+QIm9(TG&4<=eO zz8|jy&qLc*737<%jssfZoVK8u$$xf4t_M?-ZXZ-Jj@tAOc?VE#^u;kI=hQWMk7Ykb zzNGkq$|9>8T_0BXfAO|u_h~1Exf>>O%|eDu!*@ZlB=fN=U6uk|K|tK)pfTU~H6Hdt zd_{ki_4)(TzqBF8f=p6GFj>p>g4s>8vo9-1uo8a?v>waZ)bH76uXl03@#$3A)Qk2T zuiqKB5{rZ$G>4EIsRRlWEI5)r?xS{NyZnOo@T~9E)!_mlLwoyYo03CmD zrAEG)S>{OLM=*6N_0J7_U9XcbI>QH#pi>Q}U}DPpa6{nNq!m^>8R#%aEGj#B|qR z)j_V8zjuH7U_k_)g(2Xddc7VNrhG&<==W9Ie+t1Vy?;F?J480H#_fJR%IO|BTh|x_ z0%zC@{3J!6BZhdj<}OCUlw?8_AbpiGD|1DI#R1Z{yJD;L_dU*czyqH?$WeboG{-$x zzYHptWow@0>WC)ELdYgtK4(!~r2De*kfX|cI2EDmIHt~YitXJt5=W(s^S4HEa_VxL zEB<(4nmK*FJn_deG^SF`EPa62d?G*`GfNG}x)OfG>8*}wQ#YzFxe>GJNZA;hN%j5P z9OL#eK+J7wnk5%#o3^UL>nwj;xJsn2-#_BszaFh2o4oy?Amc%-;Ri82%$I+MS)eEw z)Y+*ncr~Cm%nHY&W2+G`W{mSTHs|d}kZnjxiB)^Jv4SSIWVcc;NE4n;2?hl+5kG#1 z*oUTV_%o&Dy>#=s4s(%q>yOVBI*ThB#Rwqb5Bl=Q z1HRo?i47ySsDv(i^>d%j9@2k!RwZdrWT7`^JW#TwvknqvO|1UHbxn@RV7zYhZNO1T z&-$#WE|V5Hx+=Xenis?jdYOHN?iwBiFCYA0Y^D6BTseb z$M682t!lqUQ_z2`QLJYVSYMz(wI&RxEwO%FkuZ>|D1J8ne{1s4bSd?Oq>{<)EYz{F z*4f<>#lLJAVMcdk89+AzoJ+!W%@khu>qz10Kt{@(=v$aKj55h#q2fOcO_=cfojFJo z=M%hV>_Ct0Tj`#zd%*m3RdTA`hKWB;Ga$_Mec&Jpf^R zm6LrUIuz_8_q)xmMZ2g9@D%uaca|grBKjO=h_HVlTTEYq?_Q=L=qx*Xitqj2CT#5= z!p660rgja}ts3^fQP@!IW*1bRiZ+y}ss*hj{dh=tqXIBp-8Zuj_WuF3Vf-@mPwQbX z7}_5WfmrS(6k_2z?9bOYf-NxKy}M}_l{fRyJn2TZR@PGetq(gHkevDztsp^dft9iJ z_cniS=*B`c4M7QByE1c(>`Vr_-SDl?JLWqc8032}*O5uqhH~?$riYWC!rly-vGkZV z7$bcRj1;G7*v5}=ieH6dt+26NHTeODYEPs!iKoeZKQ|f1DsO8J4^7bK>Q}#Y$AM7l&@i! z=T%&r{n>`^gx~TG8Gwo8a7UfI>eyH;@}UTY$$RX|LLIKu9a##pQ^VOquy(*G!#sZ| zU^Xnmo$^)5q4Wy;3pT_LQzJ&~0}#Ir7XPbG0N0IRhYfre=Q{@d_}CBP26VQzVVA-4 zhl~*-#{$F3(+?6{>%8Y=)GwA!HU(WT#>f^Nn;z$c%!9mMw z5Chtl9Q~VbT`MPw782&o%^}QqsfS$+M5R5Y%`%15eormFw-JLxSBllhxEFtP-vaH0 z$}rIq8KxdyL(To51z<|$T$3s=3`Eci{k$z?5T5nCHa8a7$mh<2#sopp=#{>6V40%C ze~_SoyMxN=6lyb14nIx6m)aqYpw)b3C;fDU6NIH|ES)){?x-rj5NEvK^xDS-z$`D@ zG~04A_T3k#%VrbcUbCx&z>k0K&NNZcFEt3+7z%)h^v{;2&X4IzoS2^Hu$k!lV~(8w zz$u46+jfJ6*YjR4C9@4u`B`%e*0DGMbkIIKq6RfH_w|6RN1^-T)1?YEscGnnM->;w z?H33<5KOn36_x~ot(|4bgfo@%rA8`d)=s3P#>)vr0N1?3kMBY6+wy-gFQ4@4CaiJB zDY$qe5*e&2o4Dy+IMG9UlX?1(!ar-Q#bzl4SOTsZdzWa1I-NF7Kh3e}mfRh0Y=SX0o{;S^9AYsVJ4C9f4S7hrSltrz%_naeJbH8$g;#|o0Vig%HiAK!cv!rYs zOLCiJDj3Okh2?V)_rxK#dkZ}Q{m#)F6A-B0yo{70+m?Sfp!BZDfOX;#d983&R<2`?=sT|)N%{DX@@R|H}m}(5^H|eRf zpM8BF!0Z8{68m~eAUxQl!-rJnV5YX}3T41e*r0YG-dv^ld3^$bhjM?1v&6msWtBT- zYIFFl@w|3)ncP>&s@dx(le0=}Ck48kTV~*W2oD=$W4k_!-HUwN=WhLa{AVaA);3Zr z>P&y+?L1EKfanJ%jO+i=-6|$abk~zFpb#%%!H<|5GpF9tt}L3lu*vKg*p^t5kiZXx znQ}+ri!Z}_QZUtuM)Yd^N(dCAV+UMAqTJ|uOjUwxoB&4yR&ZU3T@F2JS>IpVFj(=$uFg}6#merk5t=UuI zTCarkC4=fb9XvG6ko(B=4w}F4boo}gl}M7n5?@&e)ipyo1r;--VQ;I=PbQaV^;_*W z!se-`+SmyAxl}g@{JE?7ODwkdk+tQ|&;hSC)6ZQTsmt29d7vmaVpGE_3?0Fzn{t05 z0oxwurW#@s4v_Q6-E_;AoOuLA3&lOYM^1#AMd-}KnQnJJa2=IB$pg3`<;g~aCDJb< z{J6}`{-6@qD{xWx7$fxsZus(ZlL-Frji%$=v&Qg#ZLJj=Wkbq=Z^1OhTO^-s15pj7 z^;p@H7#jlBqw;qBhz%;Et`hj;&D?)0cR8ieh`5 znBxia5$nXTc`kO$EH=YXyd)q1u$~QkEer>6yIGtWFF6aCPK15@ji@@i4x^fAWl`Z{ zfFtDoPYF%VQlbv^TXz$cjy6kwF5e7o=hn1h0l8SrshBtb)l!0~w%<#QGD?3&FSYHA zhiJ|%r&nkRH>&0HgdC4zLz$)u`7W$oVZMyeM20JzpuO&(&`IiH)alS34 zk-_}RBBTn>A#qIz1kJgu;UjU8jPev38e$Dr?7IA~ z1KfO~@l zyCyWWZiDhX;mkX$%$s=RQ){H1>2!b90F~lmbHDTF*H*y}3}wqV?VEhwq`}TCm+wiY z%JtM=(ly_oyap;+2Yb}Enz@>67iMPsUuOKL_|L>Qy&F{>As+1PyeVk>`KSJ6HVx6lb8yOMwM0ZM*W<0Joqn|nZLi_2~Fr>)#0{L!mTtGpraw{Rb;U>&3F z)q3;qbB>*xFg9y2pzI*bv;%2#+Wtdh+Ksq3UHz)-Er?PH0+gQm+bl+h9b~e@f#+h_ zjT{;7-heE--*4b8-ph{Ul5-Nr4VvSDez;?pjub5gmgI^<)B1n>;g_9NyDOrcqfzKc z>U(T4Ix2qzJM*`Zi^`$J`QgDbVe~*uMmq3yxqTPRQlj2CfvH9NFYVwtc%&PVSE~7r7_$dGzW%E&^nm1YThK0P5WRg zLuce>XLnf9Yjl6YN3;c#ZcMEUt)NRVc5Kfa^FbuA;7 zfDHK2vrQQ%#zz0(e&E=(NrS;S8f)fX5v4;Gkl7lgRG8G%cb;_lK(ZRWy&>NhQhsM+ z1yl+I!ZaqGZ9oK=F5I`8LI8gGFhe7krh34Ey;v6su>*ewyX@dj#E}@I@=fvOYM?fW zT!veI(<9g1@jwLXJ2r-o=iG;H9?vrmbp!WUel4V^@v2`5wA*w2OKQ+?j^!m2wK~RI ze5Er4Cd%zq%XOs(<(|1-asEO7VNN4hzs?-1@$rX zY#?Bz@8HJ3!zBFQpHvYQmx?`cbeF+^?;0>QMS1d5tbxra!g zHyhx=amXy``aqkjI_g8=^#uplw1Ywvyte*fsl0zsn#e7$5}L^isA+Db4-=LsAJsd? zZ{&EwVI~=4+A3`;ak||>ryZdc;m`9JEQrwxr#iUS)vclJMD+P%YHh|9!_M%wB zt}QePKP1DBix&M^$0my=e;Qe~qPr1A{nF~ezDj^!4g^7v$udcwo3lX~U{%D{v1+x; z9&&#<_2amLDy5!X+ z9B}Zux>=|E1!CjpG@@brr;qc)%w|})`f+(AN1>MBIaLe_kB5L0z|Mq-hTtZUxW@~( z7c%h#9E4Bga&G`@l5WFf2dmt3!Qkbf(TjhKD8&s2TV8Q~1O%a+4~h}Ni=kLCEd!3E zoqX>{+g*FU7ok{DDDOuh9?Brq{hQT{UcUeiK2^&wiy#g~WzqwU_^R0`1EvgDyv5NA zen^%QHczy=azE~Ae`oP~O299yG>1-+v7u2*6*pZ{#HRI09o~MCpuYTq2Q_nlJ)?hf zu2<$9s6GR#da*2GI+6sYqjZ~Yy>{&N4e*in^C`5|`7kFuj9Z}OB^@6&g@h8Imh75 zLRzI!Em**%ZCLpNzU!ZLBc2B20}X$f?y#!Uo^UXgD^bSPnnB={4`=h@;ipNNm@l7> zu#lk5A|=pc;phGCm#_^Uk5vV_n4MrZ{y!L0z#Fa{)@yZV45(V_ATw{Ejs^<-E7Wm7 zl<5}s*gnCF(m`V+>9t8*PbjsAWKK~b+DGKym~YcYq8kpmaRX%@gJ4KTmN|c1`hj!K znra6!A&IE?s)L`3-BL4N^nnZ2V4sWsi)kpBRw55exyjX%DM?8 zcX{)!gMPFIF4tY@2O1T0lH7kb8PnkWENh6jBNuM3b(TTCA3}V?K7MCOE%T`=v?*~j zlG zphHQ?+xl}beGui*7*H(P!MmVPZ+R(AR|5^8(Hea#cyDN}DG<)ho$Ld*IQm0KeO7wU zms_;lK~2bJ?vV~3qOO0J#HazaAAV~6aEi|!2LYDCqH?E^zkKC1wqfLMMZQ#xbmf|C zoWepNX>5)QK1ZOC)VCVw<0i7g&g+k8eeu7eO=i57+$_1!MU}MLBt1(|RFB*VY ziw%Lttm7XZu3CSQr{(v&Y+lS>0UyjTmBZ)j?>DUJ%BXyHtFLa!DPQyacWc23Y=AdQ z%O8U;>RFsBn)lNQ0;_a-KG8P$b#S-`2Tb^<`}(~aX2{mS{MqzmAo3vnxWWsxVeSjK z&FVOFO;BgB9D7nMn!(EFzlf2z{l3AfQ8 zh`MWkBZ1(wLWoiZqIzu5?}weK;Cb)zW#%kVJ6J^BrQtf%0aZfU+2y(^V(O(b;Sl9rmsdy@MGj$h zGGxAaorm^q+AnWWTB?o@in$yS+l7l``;+}!$i7riX=g}WzeUhPwa>_P8IvIP=kOHW z+%5&T%F07y1qunWw1w?J!TcOpOoCfBP-xfqO?-cIH8jr?HjyJr7AwwR-^GC;7)y5_=&y9 zMGfJw_lkl_-{GBr|D?%P)EqiOimh?cU8N@E0k?U~TZ&#wHKE<%6uXiUm*efER*rJJfI>Ek>1(QI-6`CtRp z!!l%-Q8G1#CB5eMMYio*0YpjZL^fz6f-GYGIc3Ks7Mh|i-# z6q4?wfx!>Z|?Vr=BWomu8)y=NM6Dn&0^DPRt zO~hNXKvWH#@oLKM8?g?wohx-43_=T3ee@_0kwolo6Do%d;5rBqmOG>Kfwpr<%|Sl8 z5^ElK&)=i2vbvAWJ`_j#;H}E#!=Zm$z)J$ON^!h^vy1Z8D}J;PivwPazEO6&7&G+` z5W&M_tR#D@;;a3ZuzEMefO?yx?Q+8^tTMh!%vby}~Z)yrNYFX5|>fCN@D_ zE(0*OEq4KTN4;m@NoCUw6v219YZE$$;M3N|VPLr(hHwEcK6tpy1aurwh|w#^=9^2~ z+d|bjXef$+ATbU1uM$^lb7BMV!DbZ-Nu?p4b+}Uh43JJMw01K=Al!dT%HkQqEek4} z6Z`vsAx{JNRTMAeE?&>*y%h23`%5|$~#c{`aesJ0u-^1e)F9eAD8*tfT zM<`#O!U6#>cXtX)v7dj7!cMl$sO#fpdohzcl_IQA9dU)ljy~vaSGZ#+8ql(xymo~H zd*28}`fb5|jLNM3`J-%{=&YTG0QW^B1qXX^bj^WP;(1r?wbqJLC1JV6)?zRp;|Xst zx6#l2$5S)Q;NL+fep&fdvdEEs%ZDcu07%Slc9%;NO8}p@C8B?f$Umk?|0zahKNehw zPHRe%5>9KP!n&hay+g$VL4p_OceKCjkD1&&%#2T2Oew_Fz{9)Cgxgrr27p1q3Vq4N z9QrRi`|$@?sQI^@fRoYIXSNfA!Pn13l(fhKZXjJY>6hga3zDo`M1>LU$gDeOO+K9- zls_t)32UZ^of&@<@dKmYQE>YI#spZ7oszDdl;$ooa!%ZLN08%lt7 z8L=*Sm?al?+^sPL5kUdo_Qg8oW=#zU;kUOy5wsMm;qP)&(kMjrhBzX=o0@rJ@VpCBiEMP8=70N6z zYL(70Kcjz2&$dcp%?w~wCmt27NNCSerV`tLg_nNZs?8xO0$9+6Wed&j`MOG0>anHd zUxnc#hkW3ztR!ll_MIT`L=6`T69weQz_utIq@|fc>t}UUn?X549&6+5xF_j2{S}w% z(v|9CU!+wlCkId!I7wa=HV*}DV&wet zg)fwpC`BM6mp19~ZKa=@ai2NX!?I0QQ;&=X<=)yf8jq7RgL2&8v^IXeHyxm*TVz~H zg^CL0->|08eA4mV->;mwlhuZfOhxAEkFoiw`zD=` zaV>u;H_gawiIcy}tQAQ&-y0ZudoP!-yUxoIW32$`d-^4WT`DK#GnAHAzmTV1X5_MU zgnr>suJ7Wi7OdCboczZkj$A~q*_!S$&9y9|v#tKE2^enVqrh;3;-p}WFBMe+jKHc_ z_2@1iGkVL(PO^_M&?A$eg#^seu#dJV zGzs$j|1hc7;k!IDWS)^B?tRR>%oD?#3L9bjEv%zLFUWs{$KGdV znN%FABsIRMqS!Nvm6$&RiN`(cEkL6ts54iBrCgRPRIV3hI?>59Fxy^X+%htgFtuR@ zPX17LxuXNG%_w@q5$lvJGdZ~Hr3tqj9oy&R9jKca<~@WlJD?z3y-bUzNOSqLAFQh5 zW=wyWSk0>w%?qi>qbAj;m!N-b?VD7Kc-pcnIPPSXFeG zXL_1+NlB;q5Zwa=3(E`b^NK5$sc1C~}5|0;}dBP8yArW+SdwPXz2DHa`7 z==ty&eb-T_+pz{ZWGBdiyG4lkG4dQ@g7~El2w#4UR=($tJ@ECw$m}o`6?3dU0tJqT zx3!eA^F(+44SyM)WL1C86B!3}IqMhI2uD=-UJ4DgTH>8tIJ7btJsjq$6UdUb+3oUD zhzyMq;XNQ;it(bZumo6>uMm4WZX-@Qh7;-j^8yF3Pn;D!wvtP1iNAp2GD4blaBBo+ z(i@Of7*Lknv(@3yJd3Iy!Ow7;>BQ(yRa9EtQgRJ_E_`#~{``N#(}^B{VUobTVms0@ z&egymj8vp~uS5lM*)k>#TxD#JHfN{m`+&=LU{`dzoP0oFctmk@=tE{*(_1sJu>G1H zc*)``7l1U@+f}9U>FPK-#PQiFY0ZTuc#Sr=KAPfw>ekV!tx&SMg^)d%$z51oWzN~v zkl*LK+aV^%iLQShE^5mm9^|?O@3nm1+~+iNs^C^KGo47F!~B!sS}ki4{s!TTd^PP0@&Kw+bA=0XEwJJ+v4tssa`@gwJCvd6@mLbAuW8DP zmRf?B6n52%?hChqq?{Qmu8;s$J@HS2CPsJ?tpAaY0f`+xtSwcNC!OtV-r~G%1E26r zjy`kJbPIo+r1lL!F@7$|OL)poH35wCMSHgIxThV@O|~S$_X~UWjkSDr+*2M%Xbr^{ zOU4jJ=zY8+W&GcA(5AQ=9au zbtP=MiPD=I%OGi%P6C&E63%p0katCl!B%gvm6(>@y)5S#4}8^^PJy5MAkgL@;61%O zl95KB@4%HWnqaEgcXCW1$Nq5=Z)GSFl0C$+Za%dxXGf9IDjk@W7#?&L<+roivFK*} zkh6aj88VU=G%?n5hfW9D<`-v2uPU$-8E$NthcDOsRjI zges2SJTMtT$;RNX3eGvku*W?3ODto7RzZy`LH^ra@lFmzg81Z^z}~;H8*dBxAw?zd z^|G`Ex5&_vZg=nsO|k=puph-L*hCbG=vJul-XR2HP6pP0fU~C`;Aak;uJCr+_sYvU zNaP>7Giw9pT3rZmIm`OgR!(6kV!VHI5|0hNPhREu;by#jq_FA<>qSX8iD^i6SbD|s z3U9w+VAnl_pQkGhuD=91l;2Pi_P|2ilU^N2l{>=5G;^$8#E_O;6KonZTl~*|#J#j?GV%$s32y?WVmBN%P0SqJy72F-SNkxD9vDBSUAM;vEg#pM9ZOxleq;v3R z-}eKz99cOYoPEB+fZMi0Z4#&|bN#Tno@i>I-|>`KE-N(@0g;5 z+gMlme5nwoJ2;qF4Zhz7(nz9|l#VuJY!D6S3sn#@C=+9`Pf^RKA;*8eO7NLu1xZvL z#7FqBvgi^co5|mNvHzNRmQ!afHivTZX|5e=L%qly+OoGJZVCH-+$P)e$tJ0gMMf+bqqI}_uy)MqZ3y_RCJAw_$1V^A4f>AkpQP9}A72fey{&2VMpbCmdax_{L z`XQJx!-R&ndz?Qd*3o|_r>_!~BkQy#24VYRj6cuLF#q@Ey#PwU?obN&gSlUr!5r$AP8RvZz6z5dg8Ha zlwsL#*t{c&$|%5H{Jjre_$I>pukRt>j7h|rLd zmKDl9(GyvqRFHpdrsQ-pwWUEOOYX`KI9)O^$YO{g-7-uP=e0|$ATsn)T^cdMHxK!Z7lntgI9EK{*;%x%&M$PN3F1{i%5lQohR4nTmd zMu~i{-0XkPC)*u=*V_EPAcWkHHFYf^OYL7H3v)}GZ>W}+SCgKZSootdeWwxlJw@g0 zcj^P@mp6!CAX`>xG?9RGz_k#pmt4S$0ttl(fqkZ^agcIig=iPnR@%bMtMRw(urO~e z&L+zvGTs9ZNaB!^Sw3mimbT^}jiiL{H8+UQo=krl`ej(N^v1_}HQ`z}L8!w!K;(P3z}nrQ+44~?O|qtjS} zl=Mgz^a=197Fz{+k{};8H(AY;AHdHtv0-@}Eg4yFLlc$`?3y7!eetZCP5-!YGh^v>e-h|mLm~_&={!Pi-G{%`rBS@~jFHY$ z)Uwm|Sac)9zZl)B04rMj4i~IH2?0eh0OxnL!!qL9fndZM#!6z9tlr<$2Ec7cdIYJi z4##&W?1RHWll%=%(*X6|$#!~HfE#L0-~|BJY!O6@i5rm{M#jMp<9F*Ex+V+b*;x*m zzudX_N;RP#fJWm``ks&4#b+81hnp}!LW0N12B@pd+6ue~X;oy7kH9`c@4~);f=2>^ z)Rt(gb*1`4bczKHz_2hL*ms|y{>TDpdu;sttj&ds9)nmPZS1^RVFvqLzu~D`U+~jV}mcr)%*iJETkJ3fYoQm~G z1EkCSytL-Gw4s)({E#q#f%fy+%QaBROxi~t;wL)4kz1`!f%B?EB^_V>E^+3sLEyIX z?kCx67{(-Xu%gH2IiWyT773yA2D}xsHEewd)L%^@whU8!eTnz|NltTr7Q&s-LYpPK zP#{1YeMYn*=wJ~i@d88rUAx-k%JDKaGU22D3@$Q`<|dfCGR3fphx`&D5lwOAPpq7d z5ihwzlP#KJ!Q=`+%d-RxeeA>=2;~1>VqMIr7~r>7nc8n|*Csgn-qE0lYa2Pmyc>QI z6{n|P&~c`+pYPIOUwx!KUesTSu!7h0vXSI4j^K@8c2Z$0q_0y`(Xd)n?Lh@%PH9-T z1$mBn;}y86==!ZxC;9uX;0~!BBq$-mo|U5pwCl{TLb4U2ZP`(P&FI@>0{KsM4DUfE zvf+8kQc&9eY9Nm71X`&5KL>um>5{rnt&pBWA~z9=Cy_!!x(^C_RV$La`49mbaCU~Y zbIVDN5GgC}W4Od^NMakAk_q>|nZ(R7MKhpAU`fc4AjDD!VZBS_w=Izk{?KfKv|H^E)~ZPW6}F zS!)4X+OgIJS%ve1V47pXR&^P7X!lj|c_Ro%l=Sz`q(*y?0TI&bn>>TDu^#;<*}jzB zshtjL={o8i`S5Tlo$wd^5!ghyXE>1nw#f2b{c5m?goV`)DUwW5BN6SrLu@B0=kU2MEjrB< z_-_ox*g;>{>l**1U~4%WKeeMn;o)kYUJ0-a(e{f4*QZZwWn{Javjr}^M*d&et^{qI zYwz!H7fA7VCa7>>1M2Xt)SfU=ildjhPVn!JM2jEN z`=)9WYvpr4h44#k@~Ej?0@9?T#K~jZjSOHScPN(kaiZQY4MiDJ!)b{~$8vU~KizU# z@tC|arJM$zKY=)`qC2U{(x<^2_k{PN8Ns5N7ePgLf`YL>5d$3X{R)x`Xly2>A3r5O zkNRhv&W6|Mi4k<)6k9jD&}3QDoUKl0$D30p6qO+D|M~>s5b-cSeTi9ISw=u0HqOY) zNNR*)43MJB-^j<VE@!P>*Vr8^FTxWCi#IA7o79#{X|wpyL7igqOs_mHTL}`F<}>0cMEMAez$kWoO;Ls7}rOiYvYuz)wsF!rme1dlkJF4*zbv=RLNjoaf>K zeQ}f>G9qv~VG`kkBU)Oh$mUi`flwWmxSfBsSm%Ui>Li(Okb^GJ=7SE z?%+cbG(5=IhCz$?-9M87j;q`ZXfTkKe4j8A-~U)|leu*P`C)FK>t4*$sOj10)d?Wm zEC%Us`baAlRe}@$RxKcNaV0;O#%IZ@zN5wC)!tb(R$5u&&i;KF)LCbGQ^8X6;~=g- zYKq-QnovsF>?d}?r%=LVF&n>`ddR0h`)+9WfF+D6Y99{yRF(NGre)VOFwI;DB}*yb zrPze2SvKl%jSp_;_x|*~kJO?%qdiCEm@{bo&wzfC!>7A=>EE9H>F#_{Cn+|@Fma=a zxLLi9Zq&F>Eb-*sCTF6dXA+%PvNq%GKe8X``R5{b9g^*2GH|>C--V@3HIfM%uDH}p z<)(QuePla36S44a#Mmj~fW4ptmFAfGZ((tt1(Q9t_HMn@e;Qdo4$}Q(b;gjz)U*n7 zrpkUwNP9T(6*n2JbF3;M+cLS(g>%V!kLp7!H!s1(K6Uv_EEcE6P1u zoq=27aZ7h^(*@qQ*S6*UKufyGWkI95^FQ+DVZvF%)q6F))M3-}L)&>-N$S3X zu}c5(XU(NCk+Cat1F~&Xx$$pF>M_}Uy9s60X*pc%=F%iKNfm)JO3>6APMXNmgYyUx zzU;7lS>x%Z5No9CK@mqq>C-JIUf#P4%nnW@*9E#cND7E}W<^4ttaXr^{=FtAufm*UV&bGK4 zN1>xOKa__9#j=a0&%ubvrM`qvE3QI=uN{h<0k z0|_HGHLg>cX~$%fD=vvp3R7j79@MONAyk%}yYGO;wBmnk$k3J#W`;hBRtl7bA6n_) zI{LVf@H$PI!oaylK1v^*z4ya)fnu#uAnWXoiysPGSt?g!r@wvwhxIeIK~1_yz`c<@ zpYNK&l?$gcxER~_?4*lP76c@;9o>q`(AbA{E}3U<0|7?AO&M&%xN9EBR8({mc)@(z ztl$c_WUsKQ_-8@QW?aeDQo+^bxqo_(h*a8IrllSZ#z0)^&%THXc9s6qd<{#bazgt@ z{C>-`Hp51R)?6vBJO53B>^?u?#b=B0du*I_LXe(s@i>;4oTCM@BZba;UimmVOi?%U0-A!0WgUy#d=((K^+u3 z1uvB_Y+$mpK;&a(q0Syeu_Y$=RhNeNl0oEL0cG8$d!=Adz<$>HtgSF^%JZjw7L0eU zI@P}p#C}mEN?PVlD;apJrM;9^M_SvTHQ@YJ$+xbZO)H;0g_Pm7(FT?LCh6D3+F)A! z(xb~C)3$vfcU;xSELi{25F?v^?>q6Lpqo7O5CWa}ixV;ccKyNd*p!h&e95u*PW-j2 zoepq;p3cnqjy+*pIJZd0&5RJ0>CAsAqmN zKAE+DI8vlxA0T5Y<3+umCDOe;h9@%C{Vv|A96~dtnJB5mOF$2wEVhE3d}cG5J<%7~+My;#&&fZ|hyyunjVu?=AODf)o2X+;nSzW9Bx zU>h{(?=}+4F-U9I`sPiA9`uoyg}`o?=6W9NJg+H@??UjkOm5#is`gk5OH*u_cY>S> z2rgD3t+f7(41B4dI7bJ#Srj`RD7G@CIkOWx|Nc#-J2UTtjGVX@7jvgX$vsqeee--R z>gcuXvL){vu#x>&JSHa$@yF|Jp^CVtG|6<*<3EjbUDRaOm^L52dNh@^J4)bJYf=eq zgLP)42%N2+O?@mnVQ^hpf@vwbKN^6M;m19~W1h-$((CSrE-6)A_mnc)xIx$(&U_Va zQBD3F)n*3gLE0XvW{FUXw?OcQboRPBLEsExj!!kxRTnaZ7#b_Y0cTJt9U<+LY1((b zj$_2mURk#bI&GGcr~Sa^7z^NwkxR)@4VDBJ2Of*80>QV}jku!;xvVr;)@KfCr4`uJ z2h{O(Hb%3_`a;Gj*%|z%Ne{FM)dB=%-N%**#TXkuK2?ca;cp|6mJG*gmOMfnuWP^6T{dImKQE7#;Ta*qG0Ex{j%2pmI zNKSz1&(VstDG{TJowpeiGdE8Zl}ff0ypI ztemZ!>i{d&vlGUcx&=Ajrt8*5E zXM6O>VVob({^E|QbepcfHs=YFn~^UZ#(r&d!Tolt?`bZ1+;q*J6w+Bxqh{3Z?!`!W zG8P)>vfdH|Zk|HKGcYNnGd{&pU4qM>uPaQ0aBPPTARgO2=v2E$y)1WH@1t$Towc;| z{{_xH@HifAvyA(ay4lCk@oYoaQ+ryJEpgnE|G|;*1EcWd1utN-REcWV68-t?5q95E zOO36Z0-yWf0yBpR4;O7fstfi&+!Vg0pdwSeKXMQcg!3`C)9}}`*&GD#hQn566cfqn zu=640NIH3ZVyBg}I+4HKu}MrwqK`WFTk)~C<;81uUY`-5DBUA{DQ)!&mZU9GY0o)e zIVxBm>#SXCTWk?(m$ULfR_|6^yvcla2SVrSvDUUY!TVncDH^8K%^P?2y;CWEXYa1h z3gp~YnZv_e^}rLwv&Egz_aNezUop;R7+mN_wh}bXWb2Jm;EuxmK@w-uX&_GwiM|l; z%VH@L(8_y8Yn$1!gHxTyfcw&rpwp-1pim8q8+epd_N5Mt0m07JwvGxAfPiFUXK%yD z06;^2MI3Du*Z{zP5huu)5HQqsg$HneNd4V`1ro#qG`CR^eWhPVxk17-fQdF^QUJ_< zWS+LKbnd^1HyI5BB*FzyY4c(LD1IRvEdPrzw!tt1oFP+Hd$B;mTmaR!4YvOwuzeBQ zzDjccW3&G+TcJ&u51BF zZ2%3xCq(MTFjgC$Hh}&=oGrCq2BS?^55Nocm9c|bO};LW-gkg51UMUr)c_KsZNvnC z3<=H!n)L--GO@F=v9qwUu=8@TF|e@Gu&~h3!80p5nM;_sTaeO9@UgM5{XZ1YxgQ`N zl9h`C6yOgaz~^O$XO^;Yb#o`>;pF(gip`{)>}(vVCeXCNa{*nqb)LD)4=n$j1r3G2 zBU-jq{)5x|gVBP#T-h+IWkdlK@(GkyDew2|FtouXM>5lAfz0aZBF4qwcN<75O)Z6} z;Vq3U&_ecTVq^&Wl7$67!m zR6r^z6dVp#R|0&JzA(0eN=AHzTra-ni5wcq6}>SDC>@~hM)x0Q{L=M7If$BLt5?JjJ>y2Z9RoX-pG46p~m zW$rIJ97eBd&8A1e_3+I;t_VCm8lra652gY_6ns^(=h?bHWt1x{TA!5dNVb6n;LMT} zRcx(69n!19)n9l{)&|ajEU1Hb1RlR#hnA@YG>6SH9xY(~5+CRQgMk--@U7rY3v{p0 z-ecu+Y9$t2qkoJ|M9;t;$}aN%+{xcoT*s%Z=-$lO7TaC_b2Pu?^vfYeKg}=okGZca zJ5PNdzs>lyu~2=PnX|61|C>XgHyg<$!<9LdeL76)b+`9j1ucq7L+~Hu(LHq%`~IbO zpvZU)iH_47Dxi`|P-c!%2+U^x+TAr!Z7McVWadLuHBW2nK(fep6;sm3&BKSihmS#s z>4@pEx_;pHWNPPv#^9t_@&f_kHy4>B|A}s4D;c3p1Q z`(t^tFH4Hf+T%{(2JVq#6Hp=WBgUj)YAN8%!xPBMPvt)m(>m zM(iVnmjzEA!;QYCJGCopBq5R_3t@;d`Vq0frNNtaaJ>rCmXm4Xh9HanFe?h?uomHq z>7XSaM__vMA@fG5R(ilJne!)1b6O|782(CvP6NU0Co>c?9%mrc_+Y^ijsDVse zR6c+n2`04*@f&1C|i9K-b1vvts*1ykIWF(h5lPPD!LTFfQ;kp!*j^ zphEwUD)^9bQz{I~9a1f~u5;s{PX)+j)f3sGj2op;Wb98#`6zqJ>!RjyKj+Wf$6{p& zR*a6xBkEA@={uH+A3L9p4f8X~hpiLVarQIHW_s;#rMOqzOiV1CyOF`M!5o&k|BKIi_SsTR638|ZTp>Jl`aJ{YklJyO?#63b$`DzY0|Rq z#oMWMoDw`G0mnKKcSHmK9Qcqry_!{lgf0lum*mrKS)>2l4nS87E|O}6G=-8ze4$EP zUO+E~GHIA%_RZ^#vM7{Y{>voD9FO*J5SaVQq26D85ZL}(DEfqw{Xr_mt)oPUhglrXQ7)kx;uC=Mg2s?pMuc4YHai|U%c-%2n?XLG2m;KK*pZvtieRY zl37&ZM5esGBd1H*m@mgM&$&pzNHWr^b$(j5I@kD(d)qIi>=bjkdjcgRyW_h*!YP*< zgfh;@0spY8$>WN3 z61}llQ~8zq>?Wb=U;W z6!Foe5~dh4BvpREee+jEC7wvD*_#xkNl(xaqk?Bg`1L*eHWmjj_)$#tv!LQ;b##NV zbdayEUf3aCvQihR_R%gq)1jpsQ#U#WXF6_G9c-smgC4L7jsvvep;{Hlv>MwQ31YH6 zhAnNNeAF;?%Zxh2(4qQA#;n59xWH#LBI*pQb0SZ5RfDzt1c@LK1D$*#cvE6bi`-C; zFW_d}lR#Kls-0G9j5^8>6HzFI(j z1_vOvrk)&{)+l&K&g@PjLn-P>FD$QzdmgR1599 z(!$>U_elthcNIgoNJ6y=ryV=nKw*wxxpCBsWET`;2cm=IczR z!%2APX_e zG`1DaU==i5HOBbww%aN*UM;AwcfKdyE1s0YzP!pCAF%-cEeXIP`g^08m*EXF^j;vg zbgPv-Cfbiaid(twqWtK}0ewn;ay>fJ(hmP|xOj{0RCje2>E)SlflIUz#_K?vt;$GP z2|RLjjK&j`^q0KeprE|!fZjECrga#;P69S)EqkDBiR*HSa^?GO$?#L-w^PMe1f5a} zRm@zKmVA(0n)bglTF|5+J*vlQ1uI=PK+mG)IZKN_nw6aATl)|>_7vXG*pZP2cQbah z%4SJqCQCs6!V#zYCp)_I<3};!5GwVVb6oB&F`Mf4L|+!cS{PdN7R-(O|MD+DWQe~{nHdl~&v{AnO3e?GF)K`Py^U|;}m zdqnc?08RZ?@0-Wv(X}6)u`x$`7FGnSrx(puOd<-IzJLbWmJ&g%7wgHqRtGzO{jeLX zxc>g;_JJ&C_lp4YHaK^GaHLY-{QR>qhrkxz_jr0jflTdXr{JF2n}96v2p9x^VufqX zbLRb3cjpgjP7+Pf?Z%GgY2&qj22fDhr4sR1pd*C!@RYG${QTRnxNj9}wzBsA*~5!3 z3yIP&&cN!F^;H1e5ACf36deN?abtBUUrobba-YdhTfH0WtM4>XpGP+NPd_29Z-25# znKh>M#!}-5=VY-1WC$m*u2i!007my!#w?xB0<<$#&jkYcV2S&ZoFPI&-+_wN{oPp^ z#r^lILtv5|B*;=Y0}~TBWm(8HIQvr#-I+)etJW;927v@z`$b&I6WJ(VmQZIY2EU24 zqD_<4-ZV|&dQ9GMxF^EwT5oVprpej}oF1Kn7<^E3S79QwzFHj#=`F3qeg z^G&eItMvg^nkGLVTmGuY)FeUMWzC$`{`bGrfnx3%Bh=U)N0NZ4l1Jg<*GM(S70e#{ zi?ptNqmJ*yX_5P?J_dOiIQv+%FQ4PWGK=5GeV%LI@@{JerIIhqKL>z+ZUqlIr0Z3@ zmW681XK1+&c^_`xQl8$rw_P{)9E-j0->$3YQ^of##GUZths4K=o-|o5&r^7#j2;nm zr0$?=c3oL=l|Ib#1qc)-Y&8rALOd|7x`;KK@gD0U&92t3x9vG-M;5X6xe|7dW(D|& z3=n5vipzd*!Tb2l2nhfMS7=!8SAw81qMkN*-|$Nxuj`XiPG>yj@sLJ91J}+UJsA>A zq0}P;lFb{TIQ5SYKtaA$-V@e16#*I~Xb6r?UnLs@QzKl5tbwdc0|7**?ZkP@%jZ1Am@{p&S|24KOdKD0?0i`&mEh5x!EoF0cINDMk$uBb3O4( z1@oVmVIg56pE=NV$QsloW5DpfLAEF=_ptTfSrecjZ=DMVN*c(bIVhi@khxeO_DZOK zD%M4nQ%e(sH|CBodwmyxNni6dT+`+pV?NaPcy0W$eY4K z=8gAV4J|(r#9eSKuy1=b9xIK{6Xm-`P>D~spWuJ*62K<@N?mOk_{ReGZOk_OhgyT( zsH_9#2@n}YSOEAOyti;E_7n=^Ne1Z(&-!;cdDO`S(RC)rDF> z59=J|6G{H%5zCye2i~Pja{qyJeIBD zyK5r<8*?JEQJ74>CdV>Hzr>c(SApjSi$d%C3AS>ZA0YcEBuM+rttq|5xHZ~P!rp*h z;1xFD=>r*O#4LH~X%|28a&U4jqIemtAU=Cv=BH|dupmz$;P5Fmbe@0QxCUIE=*+Mg z8Te62xXJ{4b=dWY`ECIJ>k#)#_=W8?G<0=!`waz|yay!g(A@bWPRhGRft#}0J}#6n zk99fGef0AmA6k8i+DaD>fr}NFM5Z&C0osG(2#!i`zH-^3A(~44sAl5GVJd{5w`I^FwR#&L5K*qqC9nLM4XgBv4&=BQ&Q#CK_r`WgBliP z8X+cU47SNIF-3pf=Q#nm%9Pvi!h`o~X>v*?f(j_eI@(*-8(O&tajhuod z3yae-0W4I>y#PyuKueXVLD(PFtl_51FI|6)_eA3nzGyZ!vF%UG5BcWbzqLPb(6E8lGZ~Bz7`9Q0H$co1>D&BXNbI1r55ymff)>5`BDoB)jK@ z$C`#`O?-%@r4w(aD-qlNfw?EM-J1DJS2$gORH$U3L%Lt8zJJ%3>a4mz z^KQO<;qgo)j`Qpu$N(Un5Ms9#B5vJZgYz~bEwo|fLH%>vO|^d!=+NJ);yh0G)b3Tk z_`Dswj}5%BlevTX*yAvi>7DJeLs(}Z&Rvp8NjA9OCOMPM7dFs8_GL}~`VZbbvg}t` zDswQ%G3agLWAANe%%3G!n6}-MA<&2SiEj_*0X?V{5)&n6HXMQpXjl)f33mSP1mR<6MV`wJ8UQp>16 zh!BH%g@t%8;AkOYQmhAk(ys6uW(AC3-{MjpyAnVEWe+ev5uJ zHE_Xhc<4YSzfQZO@|0&Se(f6dh^;MxfEwRLJh@iKka&R8T;p^5GuBH;V0tZ+;MS8! zh)rgTWi^|Q!3$(jFr)6`y~Mh;(`4oitdU8zS%hMiYkg!0oDQAXT}%yH7!lN!P5Yzx z@uOtsQCyKpNCzd&&->=!eNpKWl`sftiT==U(wts>2?on7j`aHa#zMG?b*(%D-%_!vB^J}c6Np7kR6c~NjW(vG2V6KQwqyHsIkNy@&Yht zc|Z2Qukk-!eo}=cp#;7vdKSPJR6#C+EfQ6LR~!RH7)2alPQXt1R8Um5f}w*VkU1bY zJUjZNNEuA;aU1Eh6Umy@YKg@&N{s{~;^dos5m!N;_qgz)or`9)@W6zkf+To|NHV=6r1@WNg8`qEy9}&BI$bn!CBXT9`P% zTckSF!hmyw4uJqNAR9NUAw09XjjsjiR|wCnO{&jI%1-(psOIG4PRho`L&`#`2G1<( zXzBEo@&0cnL8>pnAtAvo#xBaqD$dC*DaFFd&CSBb$t}(yDfN|evPcS%{{K>tg}x^G zA45G-ZdO)MzYKs5NHu4ukZ6KCa((*p`B^HUCQI%M{PP;CqV`lyjuj)PL2hQRlWk(( zioC`{%AOf-IVG5lJb5~4$+dPpRrl(X_u302N7sdoZfB7o zm69;U7HDjM`bSC}wj-i3%>kP(78gUgW(Mo6X6Z&6(Kqc(Za7Lm880;N2(9g=)6~%*wvF!m&I*O zUTlD#!&`;T_MQx~*C|gS{JEnr8sa~ys=I0zZ!l`+0HcY9Sy7U%(}ubvj)z%YLZe>{ zC07VPuE|#ZC727I-iHEMr0-x~S^?win+{c^50BkiLA0OcRKe5Nh#}Skox|uKd#bre zix$hR%AYzy)_t>%sF0h&w{yk{HmvR0WGa;`^_=YV{Ff78ob9Myncq50+z`8kl1m@& zwzPuqx=rd{DN(OqOn`hvM!*XtNMDPwbRI5*8x)uhOxR!IL6p|9)W;1eb|!?@?6k9Y z#7$sbhRxVOOYimXoF?6zR;mE3gxD>OO7p{xGypIrO(qGs{vvu6R zRFk&~NM}_$u31aaNU!|!GF$Vx3Ix>EEZ}>dsS;b%rm4}ZFI*UU$F@28>sB4Z$>B3z zg^twoY_C}v5y(Vrm>HqotD{-Bv*}q)&*6XHqM44L*Ba}kiJ$lGp!rj3x-CXZYD5sn z(T8c{*5LW1gF3H~B<~t;CSG)AigM;$Ij;-HP4F>R5amE1ky;=zTR{0hkiEuxI0i>O zZ#k};;lBH_;WC9!n$QpjmB%WWBDxMHDwD!8;jJT()MOf+s~{Q0>iyNyZ%_EkSOnq! ked-*|olI@v-P}!F-Mw8cEaBN%xmj4*;i;%3m8IbS4;2ct3jhEB diff --git a/doc/pub/week3/pdf/week3.pdf b/doc/pub/week3/pdf/week3.pdf index cd75ccf9d6addb307cd3ad94449e1bb68484c6e0..fde66f21c507c32f1f2f6d1b01cd07702fa58fd5 100644 GIT binary patch delta 328195 zcmZs>Q*bU^&@LF;wr$&XvSZt}lQ*_)J3F>_Y}>Z&WWFb&mm?}27G?AFH4*IB* zeTzb4L(?bHDe&wV!2vLy;gx5ffBX_t7_&P^Wr?nt*rKvWey_F2?G|iLI`6(m-fWx) zK~IE8Jf++n*F)TFeF~inANnXA$_B5#XZ{z!-0BF|g&Ecq<&&9z$Mjgv8IZfoDTZVP zxEo;3TLC>dTt7YJ)E`rZk4!jnqRvE6QG}irImgFDa>NVa*QoC97m)=xxalu@ z>8x??TO0?Cg=_gSH^sc{qR+piYw2@zDWKgRi)B$?S2CH(xI61(szbe2cTP`q5TnO8 z9yq6_pLRW6*j6ww{BcE8{MxA*Z0ccOXZ#a~CJVg-nf5G^c>Bgs zeZe`>)ItY^?Q}q4u1n3Ieq0{=*Hk5XE2{3X)@@(4LQxeOOf@T~&XzkJ{=Ow+aB`}J zXq(+)jv_(Dz1Xk|?2*8pOFULsCMz+w9hs$YB}EwjLV6U`P@L(5fH{088>4 z8njUOcX&(;$p^ZP90J&O1Hg=-8tGULQ!2wo955e zt_=XEetU?&wHw={J9;hyEV6vIXD`&m<|msXZB%fg@*65`I9BM`viHzc1BAB(9i(2%Y@kY3M^IMzuFB*eff^hLPz7Mc zz~GY^4j|%K*SB73$s>h`1;vt{C(U&NCzuk zei4Jlg>(?D#>ORd%b@HG#DKWMm?E_I*1FBF5e*-h8kJ zN*xarWs{pMHdbl?oF+@lb@eAcH%Jf38QRxYCfJFD#1XS8hVGLxs|XQ(((0y;=|q5?yc2hh2er~CeT{amZ`yJ zX>s{V&{{T{L<;mbCBlec;=f;GX1}~x$MvZcnVT2ccO_?TGn1*DKK9Uc4i$( zCrst|+L~2B<1+Yii;l_YSQt#Zn3UCwC(a)M0dZ}rhuxX}`CUV5V3aQ3060;=(!>$*;79Qd&P%N7NQ-p=OO+6f zQd7o_%kP>NHIwA>OfgK1&!ZW5bY+7FEEf2}QKD<-lFQt*1NC}Aq=wi?+Rzs4ZR zA>=DS7!umx7(%ibqz})Yi+VG6wt69%!lK zIquo=&~qs}SQqhGhSpB?Bb;LT03uqSPgnfY8K&@Ti6C53l9gC&6o!^N!>q;5d{*zj z+=!4 zqXsPNY{ngqAp7ms&FOH}i#OeF>tjKI_<%x6*9&6^18pMWMHUmQql}WZbRE{sR^CvA zA1S4{^9v`W|4F`*Rddr*PMS+%I=^p`((pZ`3xk zP-9v@+jo6Xzu(_EHet|JUT_H7!!*arWC6bJ>KWs^vJG~=kFz;NYIQHzR@tP}c%s3X z?xUoqDA#0Qv$Z4ZAg5k$2wWU1lT7ZJ*_Z^|q?c3dwD7aLaKgL8UQEOE$H355t zZ_g=-VQz0O zE|9eIxIVxRB3O_-;TXL^y1!C!#`2vK%@yia9SfNX+)H*Yp3jSn>(HzpjaJwfe;Qk`wEZQyfoTX-qZxN_f#n@9y+C zy)617KI-nLpARb~bHsDyE;~wga+gd?G9!aK;|KdG-@A33DBF90b6l?oC7{kC#&bF| z1Vf9hQ56?A%$IKSGt;ZVVB>zid)A`4a)e+=z-#W7N6)Ri&Q4tJo9p_>o0+eP84{fKj+Dj zBE3^-P-VJ0)0xDG`L_5(3_xpvB~^Q*_T=(Z&h=?Sm@rZrE{_$LbAP`h8Y$^x@NcXf zc^G{=R6G6U)|z;Xd~vpHHJVXHv7I^?2f9{W@AV}tGyJ_!V`>sqVkXr7-l1P06C3HK zeT;c!W{g+T;(BVc?D#mmWGb4rY1-9;%3{hpGvBj&$je;Z0IqM&I$*h91f;X3uoLy; zWVw{kM1}O&Q?6?&VNXeh{*;^KF^z70%Q1aRLmpYnW>OTnm#zMx)lB=U7qA{@FI_87Gi^FuI=vTG4ub5$w$~+Fjg<`3n6OXeFO0J#g0pT) zuFN#MUdDqoD(`vW7<1_uBY*QCud|E^m5i;3>|bkPU=9JS4@`=XNMov-NWKNZG;}JW27_b@6AYP z9g8-pH+b~w<_d)5)(ZJ<#8dJ-0aAGOOp%Ob65Hvp5R-k7VQStBq}Cr$znm+#GAR+` z9h%|i$&aFNE#*rT06&y4(a@(!aEwKyY8iM5#2~Q9@i+=&H#i`!gH4@UU$nO83I|gbRyQ8HJtDMw;qJ?4pM{F zueVk%QQqI~h@qv}JK?jkW|1@I9SWHs4I<@PfO{dkvF+U%Rrrq`AucJFG-VLroK{Wt zy%k71X>b%HMm6}1AjvdVHPGq2@=%0Lj7ziMxG5Vrx3HB$v;!SY5MwlVF%7p`QAJPs^Wl$JUO6-`_tjZafGUREU&uDYQ{}hxyjpiyPA2#Dj;YbJeV~t^TLE~%DFNh9SE=GJ0+ac>#vZuIt z9Qkx6?Gb9*y|!|!_XW`ofHIK&13@V8CTC>u4$TP$Cij3Pg6g+(R30{f9DDT-3efU+ z*bySDnT|uSZ*&h0O9%}u!;mcHhFi(-$j{20F9rR?LwKASBa(Z11|?Rh1f>qr4p&EHhLUnvIE+ z#0{}(@YENCh{3(XrGP`4A-nH^1X!siVRvu71)+IJgApQ&?6!JIhtrCOOt)<#1?`G& zj-WWKn9XT5GIp~lQB&RayLZGIhysUdj+Zf^cxhW}@mYP;RM663N+VB-2T{7s=e*QV zT43(L%{ps7G;G}tehLJZhC}G#*apJ!3E_C`2Me-qgt@zI2`co4jcbl-0p>m^x~q-L zEyrh_!GO6e+}h~NJt>Y5yT6d%t?l7fN2_Q;c!4RTuDPj?rruU zPYxIj=}FcK7V(Ue9koqy2Fhf*hR-gQu?A64&QA^y#^itOsaSCRC5`X)6RuQq6kihI zpiojTg*J{4gW8OOE0;(Z0sUO3h<&xlyW)75<()F#22lDVsKDh#%mIw~;c^tC2x3nK ziyDkE!4z*JmLU4NIlH*TL`vuS#tt8qKiNL44cp@@-OmCan;q8RxkP0#GYR5hx?=w8 z;sN#SHs(F4pVURT82kuAtYGv8m@l)_er^xoc*J2&VqySpF7&=)fQw*21h=bs!XOp@ zpO{4d!e`eTxAhQ@CYp&n1o-s5T5X<6-2QFg7<|eEDbKOwR|emj^_)+1nk9mA& zWf&xD0`#Aamx3B<0gyc>0~o;OWV^a9M7%$r1L~ZZAY6pxRlkHrlX3$XYZk>7;^fKO zx@T=WtNNsa(ZgBxwGD8eEc4B9!QI%IluyIjy_%x`PK5vUh8X5g^X!j88I1LY5sFpI zG2SmuyQM0~;s1=$%~lObk)Ys?i~bQ;Wc^IM5kje7VOM0W0nFGS+OEMMlIEgo=z|M| z7!82S7e-`gv4aa5M2PVE2q21rbLJh`yv&dU8o;gK-RA)cx#QnpYxO;4@$NadcG*K2 zxCF1^_vi#bjG2$j*iAHUM(ri!>j{y{7%$h-8*znSIZM2eyUtHPNcMjfugtY45A1C@ zclFgm4@Al*00_5oA8=hf_LB@cemuEZ6xZ9(GWnT=QD1AW((XI%^fD8Y*qquf*qp~> zpIic_%lBBL^2zEmz>s2c+JGn1s*lO+}7zas2|6sqhIrNBIW zNR9RzcSzJ=A9PYgg+25aEO>h@_cWF{Hv;A5h~M&)040>dVNL;`U9`{juWZ&EMNH9k zDnv_9>cI{YxA;(C;n2X$0@}U)>vK*y{6eao>`8Rdi zIi|8<__QYrR$CfET-%i;+_5#%IG(FqkZnNI)IWL%)mIW@#eF?c&vTP2$5Go9q482me@A)Vy0f$MJB?XlC}P;i1acXJp)Avi?*eH~#$ zo;xtAcjk5X@<2QWU&H#F^DiM8gm_p9oue*}*g|I|beD**`4jMar$%?HSt(-)2~~Cr zg85Du5|THYY=n%8!TdjQ9}64P{|)<&ar9gcBp$Z=M2`9XR zqY`>}t(E9DB1>oqX`=kRy`JY`LqkJ=aI< zdH4?pqNVW~krKhk)RC2drU=jj5>yzEqNsoc6@m8+W28K<@}E=g9_tKz%Z zGF3PKfYJrmY>in>G9>=P%pL=njsD{4n4!=Lr4t|qx!E;;<;QqGpQ5YN5!7lN5M;a~ zIlq#(S}7ieTj6A1USy@#0RdZpFJL#)7nG2a@RzjjoVdVj5FF z1MFTdGCdIXc@&f|M;f;dVJkr@hJ_yod6`d1kdH4Lo2vq4l^2;1;9CbpFui=xSF|A{?HyEgWH|zgBGGyO0^v(U?UZ(M z$lya)&k|3CAcsRLh>XDB4RS4JTG|?Waj+J4X`^v0D5{L%xfLkVJf<+hfO_cB5e;c@ z0LMItSSSR%G1o-lvCtIEP-coJ$k{)VRF9~PvQxil7XbpPcr+GXOXqcC9>c&j6-}IZ_OSkLBG-!MFUABd& z=Kplp!V*PFA^4*XmC<o1one=i6gOKl zbrKW!IW<6+SvD7u2y52)ike`mNa{5ChywqBMwSXAZ;;l$=i~n2YwWWq zo)emK0lNHGR9StlBX!1KQe+WXwz@?@-TFg9ESh@qg$1$GCtJ?@`Q{N0IL2&GKKC<< zrYp0AmhB5Q{U$gfWY5^ov8DZn@FoX50_KQQCKQ0cQRw}r2H})wdb1e*fW3UT)=S4D zF78a1c_^eBB9hfG!@EhbkhHr29gM=HEppX5a_k^6c{t!FDoyT)%j z(F0KKy#0V0AAw{oV^#F@sT+S9HfJD(BhnXF%-s`Ff6LV6jTXwQ)aY_08+8N`T>t(| zL47^jnYQe+KCw2NN)LAQft9i7Yl{s%v7)txu6uT&Ncde^Ug99>Ds4o_1WA(%YV@aM z{H~IHDfkwyj$7V>AHruk&FXK~AM&{WPC-D)DrVAWu#@>|`131MzSbOb+`09KwtH5= zc;g2~HHe|oV9?AnJdcued=+y5 zzzMQ)$=0Lnm7NpD1CV7Om21*y)mjZbB%FiWMY01P^3cR&^> z0~LV+gNB1lbG^3D>qtc*JiADZ0|pQXE)0rI%gv$;K*3^?{R*IzuWvGeuEOXClC-I3 z3V~C{RDLVaD|wEio=hnBP0jtjB|M8B&GBIPndB1BACP>~`(jA`^tP}ilvuwm0$RTW z#|iYuqEJ)*-LV{Tj#wIWGt#X5b$x$d9DNP0o}A5x)F5PFs8J5BmADS?RRvgBP{*~= zE<_OZpjZn&_0P;a?A@DbGf=2`ZPi$IRq=Fj{oWprR!1Z5=F}{*(x0)Soi@?=dvbcd z0*vkeg1x_985)=ySSgae8jVVSY&OvY}3TXeZ4O--iGX&SQ|M5ATRk-{yq*JS(= znzZzDe9Xb6n50sKO^q}SLjbL3h`*XYmB}LcFe2EO6+fxIihT%8#;9u1UI6@;!Ww0| zpDvrmNIYCsEPRR3@l~{xc7=PP3lo6G^LoX{bjoUxhvqW;;`~nPNL3QuP62~K(&m#j z_2qHs9f=a5uGyf3eI0fB-;`+8-^`}vsI~mzDF4|etx;mdtcCHY6TmS|T8dbdd+_DH zTFmj51pHup_=4jb=4$=(MsgX{PxKk)xCj zA!DuSxUaj<6`tj73175%3g)6|OYWvL&*$o1#Y%gr`WI{UF{XoD+qPN{(fosaq!<6& z`9Z^YO{{q_ElF?7IG|~DRM3t~O>c1;6P+WZ&Q8I7MO;A90@ql5AtUS99FzAxezg-1 zq&*Iw?QDF;bG3Qw-XPkt8Ur^1G97^zX;bYiJpz{*a+%N>o+6EL{Dr0$@cJ@zN`9*POwQ%BemZ zjn$hR!APNyS9LW)RPd&*8d&#~dR)c{NgWHF?A~r}5m}=FLfP>nIYSiU7R9!3@G?&K z3{>J4FsKj>s!0l&)~&CDQp3EuO~RZ!G~5gf%zBxHbqX_G5f2cnet|WI9~u$Sbb0Gm{4f?0}@$5mxeHSx*+HJDk?X&c~ z@3;A%SU6$EpizZtk(?I$e#ppdgLBz@hn%z@3}r!T+yNVU?yFQ`&V^VLo1n!XEAl$b zuA7*IA+alxKfXS9n@@Yg$n|`~tDvhbspoRQaiv{ARJDiaWye&DQtu@{Z1VuT#Xs`! zrlS>k7EWRG!E!(Np z-p0$={pTD>SD;JM>ZCc3ib3>aFLm_1&b4dz8@4kQT_Y8r+h9M$YikaMTyTahd>I{2Y3^)&NS{ zg?D)kSHm5zb+1qMOZRz2TXXD3uthR~)l<&y79Xe+=SR{+}K5lvY~o-@?n zGvFF9t~mR3b2ExQf8mbj&Mth_BZ#LIWkLcJ(7{!Ck8_%V=J2niCBu#SMo64+jR-z6 zIF7mLQi|?)RPVVaq0M-AEaF>Ty&8mXAjpo|ou^)DjPi-QL3TI(~%SZ;Od$ z6qWNvLw5JW6fbWj=es>^kWfr<+S|QnfA8F$Yb_cc6Bua?KeBpVBrSZQ3l+XNQoxFlyq?t76X`|vZ0j(jc7W^r3ptU+qP!qDORCe<9@ewlD9t{-8@A2 zREs)M@fX4r<7HuL{G@KlKI1B?>>7JQm;7?IIe+K7q~8Ssvt|90Tj_0`4-jZ{KcskEq$No z**m81v?N@0EOUtB-f?5lWNZkiDTKXoDk;azfSGopWu5fzm1sw&yaFAPbLMJ-ri=dq zz!ksg!f(84IJl}@yoYadUBWsZvph+!=*h4T=T`cN{|kjua+EVw}o6l4*&HA=bA>;*U5BU=AS+5c2X??*cU@u9nHTNH^hvnbFWUo zCD;U;8EZM8d>fqszxjH{d9|v$fpC)He2SzzrBDwNs1pW-c!=}7NkxMf?0liD^D*&U zT9C98+)5+7^ezNVOwq#~ zH6TCC0E*dy1r1VY5}6OxgXNM1^tls2XLctre8AJ0$Hj115>PsoCrdAjqi$H`VLOtPbPXa=NK7dxGIgSXkvZlO?64IFO zGOv}Zyx%iyhNmE>*n_sMxzn7Jby%Xgtw&0v}oZA??nv*%r< z&;6l=Fn}Yaea@xI4#3iSE4^; zmH2O&o4$5&mqv5v*x(Z3{dooeQg~8l2Om=A6s16&b(=sqh;5yIIr^sYE3o(T=}2<= zl_+My-CT%+&Otb5JY>$r{=GKp@HhQeGIx7v-OX2`r{+?P-nAL-Cc;m=Npov&4TQgo z<8bg$X5^*+zI1QN@`ERc#bx;bPQ$tD#e+C5c!9G3V4#+>YTKGjzC)29m ze~s{{YrUQ&%^J5}p9g2>Z)Z<%B(rzId!4P!dDwGJ0d}~xhrqDhBX1M!cziqr+-a<1 zP=F4U8m*)#2^@py5%x&wD3^_2r!R|sP|};Ui0qMwKB&f+9mqxIb3(L1cf*c}It68? ztV1@;Y2KVLF2rOk$s&_L6+TMtLKGpMcOsc2aSpV;eCkmQKN? zQms~h33bV8!lO)eAGrOODJ+@hz=X{z#sR%fYlA7GEd-SkfNC5Ig9g&4!1y!9uR|qi znNm(*F$g;IWp9ot7&{>PY9h2Yl)-Hors4Y*dyb89B#$`3K9%+{tS^6a18maCa?d7q zwPu!MX&W7oMQ7JIH`DKtHLvhu@^J>yuLj%^Qww5aaB$S5Tht+S1ELpq$Od$(zkn?T ze^azJW;0Br!C0)cDZbJvDX3kAkHGq*IuKxtl-j;0mS7^YYbXAU*Yi8uQz z%HN1VKDr?1q)@mKNH<_38$=`^T%J!4Ak4}4kP-*WT2uwnMt9&EHqJ&Q$BKUKQ{cAT zC5u}Fzu5uqNY<#%##>VvM|Py1M8KLazMfv#;HE#GdQOQ8UgS{Ei44(a%86VYv)aWjw-!~<2$a`9HxPJ@YAqDK=c3Wqx40boLo0?U%d{Bw zBd_U%(6AuvZOHGIA*bG)eDd>@?wiO$mg#9Yd`#qOn|)AzBqFl!b6V|DD8Rxve&X@^ z`|ZW=6YL`rBo*q)jT+1RhO87G{@5f9dRnfnOK~h76d$4W&+$B0&8YAXhvJQhnjs}K zwT#Nm%`k47nY}+LuXE=Qf;POr!=F9ipo+~>g!i4KgqlC9isUJT-9*(tMV8@nd|Z_< zkNME!HSABoB-yxY<(i`Xet?GN25##u+FD*@FN!-Td2N)g-c~w|ri{M?Y>3;lTt(S^@$Q)1T_M%Fif8=tuP zXB67*5^F(0P^~nNAb9Ilwz%{Bc*Ah{L-r+f;4NNK+m?_urZrZ?8vzcWh+5v#tL2F5 zT^adW7={-qZ6N`iRxJI=OfZj(4(kLijBw3ql?XLuz`l1S%QE#Fa6C1vo3^9Hl;*s* z3wgC-r}b?Pt5w zcQSG8J7XMcbJ+Xu>s>1;@@Q5GCT)bt3jt<{=hV*e7UyCBU^K%vq|x+&!+=f**$UqzPxo znepmvI#eN!x_rT0LY3~LknVKzA7X%96ZcZ3_>@FF*DJV6OJXbv=ixD(|yRSA0ylM(u zudSH|(#o*<>;=SW;UCRoO%*@B29AGk`2`3GzhNJ@S|@)WzGY%`%ol#oqFjpG2iRFI=+U;ItKyi9(7TaW#775t9&G!P_JCuZ zKkHf}r_0^!qh5OIj1TKYbSEkf0>qmYY1dwVvT~KM)74BmeF9L@o5|cTWh*&BWYGS) zQffZ;e`W`t_O)mowKy@Js$COcm@RYgGjNa^7>qp{cVe1insuQn?U`t0CvbExy+7-} z`DS!`yywKZ7(4&bsGDy0)2wPoO$N05(>P&t|Kl*EBk~`hjgib$sNV^CKqP6eG{ipF ztTT@ox0Xql!;miX7Td96;J4=0x{rXyC~bhjVVzpxZ^7It$u{%LiTYlHWpyniJb3C26E#X?ik_tHzCvWfZj!yg%K^1a`m5dt(gx9U{X zR6WqtSx7=%o>XNtV|KNls7D{j6Yx>Ichf&Kj^VPdhlXeL(sT~_|2Jos=7tkwVX{=I zjR*hu`@T-76haEeu{Zv@|u4i{`^a-)QKP&A?en|AGot~~o zbS9)a4RF%%S00%s>!u3M7XS==w(hoa*d5L|*2-WzWjMy2=J^IJ@<|pps%C31wyYS%la;m^%`+7>EM8KGz_A@;BKrTAx zq=CkBbtBHHom%pbznE~!s^AU+pDC<+`4}{Qxv%#_F{wnFbu9YZP;a;8W%AA0ihGY0 zUrx1$5B*d+4S8Y2pKGWW2@p4(*`XhT;V)kc&I=89#OAwg7~$GGlxTgShtR#Yg4FAEkRv9G{7P3YeZU+lcK|xa5^nv^~}LF%;=G*0mxV)>o_-_+P>-zTP)4~PZlFhHILpAA-!pc*r zO-K>fxdB>rmVh*i>9w17%Un1aH&a7>AZn_vs$QVcS6F&{@9EtV=%dDSY0i@$h5!WGT5|GrI)-ITs+KT0&-K$FOH%EPfR>`6(E*)1& z#=QU*|4N5(qInhK2xo-x_#Mwb!tR7dP0WPJ0(H_{<`BOGw9Ea3qTBS`*6cmw|;GB3;#rPMkzD_LUddcKObfKkOaY2>B=-hSNzodf>Nb zN~0Ua0qNFa*4JTV&y>!-<rfLDZ)xp3`xgGLH;}cf>xAkShO(9 zlBfz{$C9I3Gv-aD_J^&L8m1-q$rA|DiGRY%iL2M8fD*S%o&Ph}E9z{3o^>+4zI9W{ zAVB{!=F7yojl)5NV{#sm=nMv9Sld_1v-c1T#jAkz-05GZ9bXdYYSV^RUwBNmLfW$g z-^YjB*wYvfx|J+#-!)rCh-QwPb~Klej98`qFOC{ydy;yyezQ0Jnk=a%xgMS^JktRW zILV87EheyKNX(vvl%Dgkm{q~Vmp8k_3xMKl2(Z!5CPR$$a6e%<_@9yP-7Y~*ioptT z{gJ3Ka|5#8nb+_c-w;&DxKAKK3utVVnCKVXFyD~ezEr_GnL~C=&H*i4*P0D|0X@9d zGt{66Eg#L%!_)3k;$%clUB9cAc=hpDdtez^WP|)-JJZE-3g>f{O1`I0g99bT4j>=r zQ8iocu-#NsWJTxj1;t*+5vSTT+~_9g0J4!$icd_2Uf_tI>lO{TbMDQl1GxE1-cPes z2-_h+VJkT-!qF>qH=NdjDcWGtq;b9?z@II|^?Qa{~=KP$_< zR>Q}bf1hf5WMRyJ>uzqA&Jvc+YPOA!zI7kAkDQg_ldt6Z@f1Jg{s*eUEMi?SLUA&St*Yb`fe=@$Dn;HnDm&24T10;>0O`cpwAEsA1E{i^82WgVRcWY9z=Xd(Qa zsKI!Gv?s1)IKA#C_2eZ<;#i*E~L4LR~ezEpEVF z5B<~%AN`R(-U}n1m-@ZN3xk|CkH>9^QSi8&K|ylVR2T#Y?dEwly&I`@Z|2o!6XA#C z+8>(*)8RA0Jz{yyk5E{O`%%3eKK#X)hz~wNnJJN}6_o3W7~PacfKN>ml0w4;7Z37E zHZcrq2RjZ7uj5>5oztSz9H%vx>wc> zb}PbV_8z(AA=&nVT6#CGOkglIaebuuXFue1iO6uhfo~kAf6f^sa{YA0deYuBqm(x+ z(e*EoCs%vx|GZ1NnEnqhg7E*i_F1@C{*O$cvu;m1ite|n@niyPl4fJTl81?SK!%V& zR1ZXX#|0$%EVbmAxSn!+zk0f~V2Y_mmQ6vK3FL)b-DT6^cH>_yR^1h)4rnhrf4$7E zX6!?5bRM#*t`-KpL{tu`+|gtm@3v5L^P-s!u=1bME@T$1Z)26axBG z83Wy?cC1?lON3q0XOr53->Li1f4MvSV$D3oYC?1Z>=tqq29;{Mv zqE8G~N$oGle>Of|iUIPMqxaVMyxql7{+zgV*=&2Q!Y%@OF_^1o`8@QCqod0#a_*mO z=e^zWeO8I?9TBtFu1=gb68?zjT&tI6Im)IHL^iiB2zvSo;~%Zn+1Eua z==YtH9Gd|xfpg?7?z4KhcG)=-H@wHz08aq+Q%j1)q*%9ncv~gqBsy5=vXCoI1JmxEuOm zUn6aOA5?FEF&kr zHaw6#C`txtT6HKr{obrLThqG8l;f7Usf;WU#2_QswvxD89n!0(6dXc@*9nDL0?8o_ zw)v{jyDJ7gWF4Q5zq-d=gwz2fy1&*#bxf@*4lz)X@506fcXRf28bH#*ljh<;aT2e1 z`Gj-~?p_dTNGG{Us;)SPGi&aIqVxNdGIhV`TPI!`CzaOv>fe#YwnHN7j&bhs6A>2t ztQC*x|8b|cdhPkcB}%Ej8`^W<-gY_vU zk4sn<4RIon)s)Lm1%O1%ig9YPRQKrDiQMohS&O=npcuO|#`xYa<%^!R%1C9Wu81la zDq=rKfx0dlN|npiK(2c!6s6SH=Mn-s~6SWfW70#t1gov8nl1cmE~;c8@V z*v=^WbPY$I7H7ZE+NYx#A5S0R+G$(!F=t;Zouu&7$w1I4pv#v}#oA*-R$2pwQwmZV zM`Q|6kscC&xY`Zj0mgPaC?Pk^Am8Ab6}$0HLh_pZ>=sM~&ZO!w{AY;H-MIx^p}Hqj zcS~!@aq3gk1%US1;q|J;t3NTGOB)*3@%~h1|+~74%8P5v7Gf|rU6_~Oz zCd)O>=^DJ}f9xRo8v??LmSX^i=2t+R`8V5uK(u6kFmIg4%mb<&X`D9XuBn_t-~(#- z)nKBVCpe`k?q*CCuj7g(O+9`)y|friZ)z+38hp;Vq+=` zdSODG7_f#BW?92Co`EqJU|JaqF2?q$4A#TIET$wtl^DtUDo$COKypuC_p3!@IRt%% z{p|hSL4<(8OguScqz!Y81ebAPR*qlQyj3AFFBJH^wj<$1MNgBF+*lVHdM2g>tVTxRyLfSdw<0-kBp^9&*Bs{(nV6aloyIhwwu!U+a`U5>MZx$mrB8k2IpgNfu)(N(fLCXOvpM~~vSuq@>(NMQoXa~a#N z0IZx+n`Oz2Yqs;3r0}Uss93X*yET5!Z&f98rF6j@kuTK~bAcInLP5GF>~K9hokdn| zK;Jjp0%IB9 zst1h+<5M4slw!PlCX|6i<=gM?8w2n1$h%5Vg`A|=fFqb0z8o1 zGsX}^GH?gp=bfLKqGiPRI=j0|5B{=)TNXlBvUJs=g&CO1zd#1E>!BiS!3R<@3I*ZbyV$Dm%E10|;$4xU93j*4rO# zel#1Zo5K%d8VFG)t_@OrxwpUu(A#_M3VeYjcXq%03Jfnh%$!Ge48j+ae~g5=a-O>s zXZmis$vsER^aShA^1#!z9qr-go(HjfYuu`)(|C7^XdLwqzj z_opX}@`L1H!{p$A;Nb>j^Mz&Ogk=lBb51fwW^eb`AkiDL zv`TC3qD8;P{X=)`m^Pm&1i*A;En=%7f>(htccte4(D5v_oc+`5p*i8C153#7%fd&V zT@~jnNt`2%!G@k~Njc+JTzw5)-=k>h0(+0cvI$p(d{cl9W$vmAQ>GYY(y3B2g(ap$ z;0@xWL>tL0Tq&fB@ z5SY{6E*%&8mSxLzI;xq}Ykidlr1V`ALpp_}awpScYM0Z$Dowd&G?~?GFmvli8*#;K z=W|$(~!p$P&}P35?9)~>2ewir4T85Y&fn8@wh$67^=1%!oDd` zj4=-pW@@V3#p}ek;M%vh5SrI{(qN971AcPAy!V*;BAJ7^quN2Hmq`j_#NU(o7~=ZB z*gD7VOv5%=$F^yz zhjuDuRgm62IEw7ED2#sYKws%xCE_mT2tf6Pv+$-koFf7!ZR&rhmYX-|`bZggKjLX$ zT(}D^E>Fx21I7LxTJVi&l3sOQ-|@9xnd&63FNKpdEY$RqK1!)^MrACM1#A!;`|>}T zTc1qH@9^%C0Xj^Vnn}Ud&M1!PcAR zv)zm$9r9>DUTyXSPo`jagbNsEGKaov3*Mkk;P}}WFvQVIM z96$&UJAr-A)`_PA6ksgu?9BgpM%>cgNH}Ol_Q|c?EmUo;8^o8gti-c3Q@MaV*_S4# zt|hbxFEmo;R7v{%a^ocAhZoSVw0<|JaAX!j;_$~g_gY}fG^e_e?_)up;2YrM^>AK2 z$|@6{oM6`ChJBP}Va7tvZlr78QhE8Y)^TOjz3bdun`zua=TLogscDUv39xL*`LX|) zs%+6UP0<`m(jlW1`sM$`HHF4G2*tN$+_mA=BEj%`s+*eQT6xOV$^3WeRaW|1 z>;w3B%3nZT&x47^(nr=q1B08b+=1QlQHe!G?$+i!qJi3o`eG@p?hEWw?#9?rM2+vr zhvA{z1}-$(#S!;U2&!X2+C~}w%?IC1sTndirFj!WFq5+gmN0g_vGef?=5v0=X#CV_ z6Em0zn9h*Xs5dcKX4i%X5IO<-MnQRHtZkeA=r(E^$*{8E$Li&UG2kk1`0dixz+^l1 zTXMlTBT`Z-LksH#YRosIhvqYi^jV)HQ}O%w%>MQ@cR}k4a@V6?CznI~DwI#=VJ9EXq%Q6vl;zn+Z6o?C}Ffeez z7M1ulldC|Fg37RUTQ@AYV4bG@W$2tc!cMl8P;7srC zTnarOfdUMF3?OeMo6mDgUsg2y^_yG6rxV+=EkVqJ1IfOBpb(#18TU77)=2p_(zJ64 z_#8JOo^96o4w>>prkG_n*L9l{WcfEDHQ%AT?WO}9Y~7n44H7f3vY+*hd%`u4hnE3( zh&rCqnzM8DT4`7cOHhV@Wlds}sBo%L@5Lexec!x_6+p`P)vtscyZZr+8)ipCoq0~* zPY^^lNt6eLkXjMd^5ZKauPBszq0td^yd9c3?`gCK!Wk{f45c^#-Cw!|3~$pF07KTY zTJ_?xv}yM>6PhD*(7tZ{x#W6d`?GnCaeUK1lwX!Ak<>hFkY zo2?iN3ZRHU7ZZS$j4Jw>T^^Y7X$Lw}WDv?>_Z4@-)Ss8fCLtYL%RB6)GAciz-5^K~ z`-%nU^u5bNb=ygvsODK0CO!qlnwA)_#laa{czD{f?29!%5Gw(d|d4<0+N2sJ!Chk&L#D|SE8hDScY~4rxs4E z{_+AL25MV$)_QTmMZJy~Ku5Z6Z@Q0d+tbT;H2`yd8vR#1jCg;KnXy!L^8#Swphsu! zE*&;u`+dp#x7*$jzO~nC7I?}%fuv2GH@H>wkY`~DYYr)VQaA`yB{qgZxf0vp)65fX z0%8fiPYURC2PBlNhp0)id_u&2sn$z5m{ZMK#bT^WfQdU3T2sj%>fBO%9`EuIJKT(i z2GI$yO7X@W9LKhB3T`=8Wm; z?reRsKaP^DQ^Cj2!nH^deA3+E^V*Hj0~DWJ_G2rN!N+&$s?noaWSSJpR;fuvAi8{| zknrb}$0o!iW5X20uzUBCWobb}o@;}o^31tAU4W}uaE8^!a7Jcxyt_*N)RfY@v~`Wl z^VG+IO+1DDQVH|d#S_N&#N2yOM)2Y@}Y znCI~M(OO{*GfAW!A#X*)LnS-8tobF_@4-_AwJrOF2dh?&@&y#Tqof#+5d&#~yCKa+ z8Gr(NAcL%1DY+Q?H-ID>W72k?-|-hJS?L?Qqa)}%Eubf zi6NzeqQOo-FO!e^@Q;T89Kwq<0m+dJTW11WZ5$_UP#EHzZaPFhvy}~zofI9T&aP)M z9?V^36KCS`rkLVre$bM{5^Dx&dP>G7)G+~CqqL2%KK_^e8<+hhPny1bMTWs|CAFSE zInKU;qnu>0!V9G0JkExL=n>BRKDH%j&_5`o;@y6)jz#C1@$GtJ|1K&O02x%}AI==h zeuu#TNnniI&l*&&d%3KVD|bI|SyWZ%8vWGr2n0=&nw!1jRpE_YZ-7)*V?4xuB6mnd z$^J*JjKHQjojKu;oG>9le~z@kJ_Ix=N=YaMJgUhWseF5DNR_1&LBX9KOS1{HPq(cgB(?A6_mbfy0HhQtLUDXq-{quJqJ~m=dciR|`M4&lnu~CNQ3R7D3j6#r z60I99U&PB>ehx>>skmU<8U`D7HT>JPiDDVGpH5*|D4F~Rz7PE&z`C#IH)={;N zNTT~e^Ehzq+zf9OWFC~YM7i=CO7_MrvpZhxM)Bgq);X?VGil>?ZjgDc!U(Szq-qgn z$JdtGJJ*NDuy){p68l=~Q9xU+Gqyy^dO1crt1xA97hkSkCz^-3=3iF{G^8LXrjtQ? z*~RayRaPtLS~A!MK;?LEQaK-^oeVcUT7~6X6Yw^=@8ZGt?@(7jeev(#_-?2P_$M09 zIq;~TY4= zgX1TouG7=O81&_A$h;#y`4IeU8D%<7OAR};2*>&)6X8xzvj6_N(T?J_`HrfK<9uIF zA!HJ_lHIQWZ(JvcQ7o6_=I5uH##2xyMHT#tu|XkT#H5&Fen)|B1VaAG?3U;D;NKn@+H(cJ+6lS4T%as&S zL`_^e#((j>jeHF_51*N;Ttz%}4*pF^v~l6v*{M)d4j};2bCRaMraYgD z*M5zE$N2J=aR0Kj>v;JFUH|~mbg(YJ`;0zxY6VIbSTa>YC37Un##T-{Ne3bC0a!a4 z+IKiAtV^Bm%irmhYFQ<~yEv!1Vi(eNm>30YzEW+MjBuf{QOTWKZ~QWYQp9A@1z4SC zz^1JO1F4Pa;Mw*w_H>7)_3os9B~Mj9nXl;5rQ9+yRytlSZqY~TwOMqhccf{vuf$Gl z$0T`9$DfXU+ZbFkBYJa0 zaZ;eo{$6 zwUvL?WbBk=K_YheJO2HTJeBM7_0>sK9ah{4FMmET=@F_KjbEpX8Vx!{1wdA3gZ;q? zhmv&!<4z_Eg+EsllxRx2zOk%h!WVKvzE0{*Kr^E#nv4UG!)6&6+OC z@Q%qsJfmwvKyb&LIL)#ctR~L#2<(i8o(M0ZDTLeJ_h-@oZa1?xXCNUj>VXI`Y}Y%0 zkGy|$E=b>qk{-mWAI?4N0mQTJ?FJa3lSjQv=}J7C4DMR>?C9XI`iB(fWqCBH(iOp< z3v0^_$h?r0ORs1*^e<)0IUc?W+4?pcqG@>96x4jO4nGT)*?n{6}gk2aqa2CE_?B3tMDK zmGCWI84~zlMr(h!mbpqL1{o*om%OWsa@%dazshS2>KoEm8e z)rUF*yB&~9l%94kh5QE_+;HpRIV4aPf#U~OnzY{MvY%z?Ot_dkt@vhdL>V4d9q`3Y z8y;vp1qxjrz57D!nU=Kd&^e;^OtNI%#=g56DRaHGQfNcZ0o#MU&;*7;1ac@ft9!mf z$e}Rko5j(Kzy0gf(O|d_E@}Uj)Y-84tRs!EDDHrUTmF%+dYPWbndG9u2i$SsSU;HP zEnKRy~w`pt+N|JcoqW5uLmh;F_?|5SZJ z#{8&M4Ke$h1EAQ=vyANQh-aYk|K|GD|Lu8uT6naE{xG`H2Igs|-XjSP> z+zx1$0nORzd|>;DM+M~OKyj|uG%}6Ms>*V&tg=z2fG+*!75^mMZ8eJ72QVcD{dX!IY|LKllYa#hTnRYJ(O4)znZu#vM z{2U$V7Id^2|6baNLH4pu7}&0TRUjLWYc7rc`tf1~4M25>(Y_&mDHI(Ib1)w|Y~N(Z zR4fMV19ZE*93I|5te738VpOU*btoXY{RV!F%?EJ`z0YdOPSWY|?5<=T*Xy_=b-&Fo zJ1@$p9Y4-&+i@kf>5Zss#t8! zlELfyYSdyhJ_>uXT6XNB666dvazd~4JDt;O0Ys_chx2UEhwXW4#IgMi-=u*oT6*@j zOm@;i9RDdz(??LQ90-vzR|nPUq-d;2B;x-8O;h8*sHX`HTMF`1I8+1W{6_Aqz$1`C zX_C*DR0v<^qBo0~B<&jhjMnlIFo;6>n_adr@a#sUZbnkiBLQUfC{{U5)xkW4k9RT< z2tYUI;aoPfC5rHH81kHReyt2ayy_M6*-|Q4S1D*O6nit(x1QjfL+G_X+zZiPuqt3M zP>=0h6i$*rll@L$z&$&Ed`fQz(;;JZ@n@djmyH=)3|}!lztossEG84S{LMFXM|1q@ z#9JtJ5%r9#rQz25%ez*0{(;pycTsg)3~)v*x#9p^-S$x&*Y&E#Z27#6ZUXnqY;e27 zm`nbFVz%Nd9+7kN#%bf&@fQbvrS%Sy@wW{#VCmBaigEJ#`l`~So~GjXpdbEa<9%|& zMDU_*JI}*?kOszJ&=(l_D@-Jg2%C&eMmi%sr?r;@=v9kF27!bqQ zN`3BDG`m)*SUKPG^61-m!R$Z808>p>0w+nNO_uFGW@wKK3fw^OyWA|O;(#rMB4WPq zp^BtmSW^{T*nkOZlfcm4rs`_!7GDG&@C4oAbX5SyjAbQR4{NGbZX8m+PkE?|nCRG? z?wBil705DGw>-Qkcwh2os+fxh9iZc^?xoCi+Gp=a{xmj+w4sQy^bC!iP)0%3+aJxU z7>R&14BwKQ+n`rPoWF&0nQQ0^bgjE#0zW2?6%c$Zs7g3w-;{qo`Rn{g3=u9cfjhIxUYS`g3NpnG_FzG&Dw&}jNWHY9@C~2UW3beT=hbT z^;M|#mlxuicbaeWRNNHA>4`%_Q=*G!3dHAwX1S+ZoQs0uQehQqKtM&4YI5k3PfD!? zGUN2hz#!>$u(Y=-R+Ls2$W@6ye#o#ukBs3J8Ip1##RE0W9(QF7WCuAi&hJ z_wmnwBb}{(@(da9V$jz;7WQ}KYx{~_$V&`a#DI(j1dOrf}6eq*|GvU)h$c+4Iww`GaO5RtCLLgx4p-e2g05= z{fd58yCCSyI%Oc>)z)2@=fqB?dFImH6`j?a(j^Q|WZUL1O`8onjY^jns_*9q>Q5E= z^S9U~^A7!N7~YPXmF?!8>$^X?04@5v$ZVT)n~9`l(Gn6#WiN^@Y3>MR3-`&+WCR1H zNlX1nZWaB%Tx_|3eHPBu6;_Q3$ego`)sr;aSmO?J8etSPN6zx?*3nX5~2|^d9Fc`jY2rf58YcHS}N5)=U)^O-o z7&*{M?`Wy8buqrbrsIgr4-C|Al1gO+;BQj1ih?9L=&(K{u^>Cl96;3yJDJ~mlu{OG z+h5p{YTZW=g)|~gq)4-TddSl^DuKF0g*|DiXB}(+!uQGu%rvw;kR=qesP(su5Gccm zcpvj_JHoY(H2Z7ZW^jM$>_nYk5F;_1T(3w{9ys%Hj54d%JzCVVCIOYn9#FPCR%b~k zvh_CXIPSwK==Lb_)~PdVb_o*rTKh;f-PkOn*v$&E=0Ipj_#haVPM840`Vnscr6FDt z8)g{5T6Y=gk%+)?WzGv1+VMI;3Jyz%{m4~G{N-SmPG2;u?&xKB4 zS04jO(b>1`d=|{=>=nzAy5FB5^bwq>e09&`lW z>gzPe0zCe~IEDE)s#!iulFSI4b4`HjoJcaj@c`r83znRNMakuf!AU;F7VGvPfU_wY zv~ib#C?EYkEV|U_s+~Bg27k3R$NIp8C$zdMWkF8Y?9Q4&74j@6Th!FECL57s`mlKx zT&Vh+X4tk~)0L6wdEnlQs{V3zw}+e-$YQw)Y%UlWG=lb~9xRVe3Ra1GAMJgOng0lY zA(rAVv`(JAr8Dl7NOOxil;Rh&eoQ~cC8$~m4do}0DA5RuOwIpE5j!{0049uh4iX0c zA!p_img0$tok!>l`JoEFyh2}m4lE^;{(%=DJj-MX!69UX(-wk+^oxm_TRw#Gw8uJD zOg=~m9wB!cwJcEJMK8y83|EHDoMqP2#J7+chk?WLzW#O&yaQsGKdagJ5-#{#W3 z$nvJ)hkG_*qBiiH&5=>!DZH6x?DldOJvJXq-_L&Av6(wtmimB5u>u>+N}!{>c`DUb z8?uKXLmrEwL5e?JB&F^zeEgBt!w5=6j`eq06nw7Hu;X?N){(V}K}|~J^G5+dA2e`% zT3cd^u0~7mZ|=r*u`S-&xX1quYbp6+b-i+%`W~^Ub7IvZ<8A zbV$zD*bnSTn&Ui^@sct?G`o;8*f)>1jUXGitasO_GKXt@avA}Am(AhaM1RUTRE3b& zh2d?pJa)WPpnUr!R6z2v2DOVYD^RF*GHbWCz#DuyJo)S)c?W47gc58l*nECa4M0Q` zr7+|6^f!;@xNQ&=r)rIT5heRMSDULPcmNOhtoiktK|SRqaQ_QnLdE|yxvEj5GB%`}u;*lRREaBp!o7N!m$0G0OFOwR zE!2jH3HI*3P_Sm#ZB@!0{eIZp%Crf`Dmuwz7CYpCsQeW`>rOqaZQu1}($neb7@nE{ zji{)h>N;fFbcddZ}CHfJj3R$V2a42y*N=dn29)1nb5E*y8<4d{;#~R+X zD;tF|FMq3_g?Wl){bO1TLhI~Si=*Bsl2KR++|!`QClbfOcretW%s(V0+W<9S#e?cn z=F5nWQ7^?YiJ&NYzYKL#l|fw(jgvc{Ik!x8{j>>KeGKPAsNep+&OcO3b|y+GT6hw2 zwum-tNjSd_!K^p{x5@7VaX@gEee!@oenv{G;DdZY^sF4(RfJ8iC5PWD=dZ zK|sV?HO|sb&0}wbk1zi|#sb;HZQh~PCk1xANq50od2BzJ57_otMG%J3uP=N)ve+&k zk2Tc(XixY}GXvGHTW3VtS_8MwHl80NAkr7U*Uga?B*8gdlUg!MYw!is`^#XcP>%pI zncvB=0vB{uF{k7k@$rxtZZGW`^*AxzPKkaOrJpHnK36j>wclOhz2j@i{-JFIa&PMN zAWFOxD(|4mFpLYjw)m*jTiI63X`chpG;Fcl5^<`xoz-|G^^l)nW-twrrl_WQ3-XBa zEHBc+@UxyEhBi!X6WVQEo|3J;qD-`2}mqPLGU53G04vtz!!PzKZKGfR!rG2Ci~ zKDl(O?11OZ=Jk6C4SV8P2oR<>9LFjV33q$+mI~h-#M?eD$|I|jL3RqYpneAs4>kIx zwc`a!3+usoN{8|7ltNy@s<1%H3pYH(3o4*MSjoqCKiCJw1RJAiPMzJ}iHK_AO8Aah z;b*9Q%!NqF0S2h3iT*HfzV^Bya#TLE%Hd0XCqa@pXpR3dj4btwKEdQ@NhUR<)e7Ow zQw08plo%u~Lsatr%>|3y-RKU$(ukR_z+Y7wKdYeq#HGkq)70HZmU`4B8A$hKvTj$N zo)iIZT6OLTE#*it!kA#%K=A00nIxzlY%dfC|08U!+f^ujBOVX2WW12N{?@$4t9+(; z1`?3YJ|Tv{s$){DAg|zbnpcFxWBdh6tmZiTa(hLML0Z(cy8{yLYw^Nxyjndm1p0M? zH~sAODPsr`-FdNQB>jc@E*I;T5B`|V&@8VN4>olT0B+#XCj6fZ29t&Df5W{0UzV4X zIT2Zq79bnDA%W68Q>$c)wtM#YfjkguipTpPyY)w!9?f#NoQ#* zX*DaQY;4`00cEYWqNd{ee6A?616=R(D`5DCu!f=AhyE;pc|U1CvT_5QG)a`OiT=NX zydAUSNDPbnmW{8~?u{Or`Y`I&8{O8n6-UK~fP&NUseyLeYyIBJx}l5WgQ4fG4)UnV z^$9?=5t%^Gz+3}Wrdryw%G##d%>@OU27oUmbz-OX8@PxPPD;4-ufKoyHU~b!$MfGf zSjnto&vC9O&H#G0)WLSH8!sYKIQsGD_Uny?tvy=W4Dyzt1M@L?hpx_`oeFsTjSVJW zz{U=uyk5_fsIC39&)U%OD%q1bqRprPY)XX)rt_!yfP3vlXp0+C3)is-m*9%z zGTuXPw*b9qXQXfUIRnMUi8k4h9dT$6z(O98pyHxn>Ykm70H5DbFy`!%Lr9Pk5okP0 zT6}I?0+&F%9GdW!xWw`nhtVHX0&_cpRp4V{$OkByyg_dE`2aAFUlw>#pXUV8;$;II z!Ly{90XaehnRD&d$dr#yCGEOui22o8YTLaZnDsB+mjgxZ8=Ptb=Rz>f{7Sg=fcfD3 z4T=QYh7mNl7$xLjwHkGHf+fdjr@_}SplF&xM%r*NpV^@$nAkSTe4sQTj#S`05yd9* zV$2LKQo3oiK~3m^FlPr<)w)Ge82gwg-6)8z;s|ptZk~LBY0l( zNKp6nNuEEqd=vVa2>9&=V@M{1fw?y;46z1!_#qt z@0`DkI7H#Gsq2a#4>T9_CX7A4*wK%j7aSbg%HQz|2blP3&>u#Fuc^N9oCk!K=9f1j ze?m-Y>j2uRyAZQc?n7fgkIN_H0Abkl1bwGRECQ>S?m1{f9X!6Dy!lPHL6Go9iA<_k z7T)tK*xT&TtZ=I^O-{lHK-~k1WOuHXvTGsjk}(1-8UNjnk^k03W+(|67?OOCCf*>GT!POqxk0)s)Ur2jf{Uu zWm+>VXRoJv+~uoWPV*W6%O?xdeg>|!w3>dKO*CzKQI#VFwb&%=)&6G7=H#y5WYInZ z37J^3f_Toadlg*)fa+{ksCtR@fTC?r_DwiV-I*l+TANX`PGk`*O1@(HoD4r(-Lc_Up)fe;9M9}+(&7zlIj;3|R)&cQaTq zevRe@L^I1#KM?iFjtr^z1`kq7Yre*ehjJLMHe~-I?=-p0tam+uv!#d-90aZsP35dt z1Nv?>94(M%H^GzVkA>pnZXtV%AgW6j+5A|RfC}pl5b52LMd)Cfqw<{=2Sr1{yUSWN zPDL&!Piha8dZ3^yp=~9z8%%>Gk$0vUp~J!eUNeZ1$VTn<9$iKyGn;|Fn+`{vLAVpB zC7DJxDWC_>hf*ALuNgOQ796;Rb1pxKNENemGk=rxLC8@Y?oQOz3c-`^NW=B<3%W~U zHOJuq1dIUq&Q3_VcqV~A_dG=`AZpX+f-0c144W}5&-WpiuuoocM{<|XoEi0#f*BhP$9+2SENa)^ zZKv{mHOB677-_=|60JuCg=YHc5{pA6$Iw2c-0geWEWkw$O|Jp0D517C z3Pw)G_fJvWIxt+tDiu^{6d^1MI@^zGI)Hl(A~e}m{qApWDMEs0>F@G9*a;n#vrB~s zN-B4pUO&_6YQ%oTLp8Y6t)ly;6Dt8-h}!bOpvl_Oe|8x1khQwA01ia=^wO6hXKx6g z{<7)%s*|^uwK696@>ET-&`~`hkHo|He7-;bP+vG@Wb4Oix#Hgy!|_*sd0o;t{&_SF0zfi(bv%+v}*>w+Qeob|@}*ZhD@stVd9(&vPjxB&^D z&%Zq*cOD!Uu|cFqymODjN@4DH+mKYMHodSfjVB!%upo>*?b}Ul*p(QjH*`VZT^NKU z)`uYsX6j~pU{^7dsY| zhUjzaTo3QJJ zChAOcgHF*0oO8GQIb20N#8P#R$~~>Q);M~C@n*zsIxp+nLXh69qJEq>BJFCdiVijF zn+dlZTRH@5!VgmHnBf9Hu12o7&7i|i^xfEFN08bx9us#nVwK^G@N>X{C<6hr7?)F? z%%A0oDCZgJ-CVEtgyfvV+}drU5+&Uu4y&-{=ZR$SRc7?CMm3?IeHud#^fXEw!x47F z9P>Bm2*Wi*CR;9WOC?}K3%celwXg2alrDv$U9D=+X=?wnyUJ4}2)$2tm%EW6fy#ta z++KBJXHd7lt!uiU&%6M=sytL96xw&f&slgeHzbU`GkwNyr@Nb5aia`2A|i7J}_)Vj%DP{bp1 z1A&g(mlh|BoIRN`9LvECzxUh6YO#12`mJA$AmazryRX;O|r^<7mXj(&kNE9G>7SW!x3!A3LbqUN+@6+!Oy4 zQ(aws?u^iBeO)}y)ICK3Pa`d@v&>?stzk6~+G52jC&|#9M1gi0lO-gPX199?ZVzxM z4=d7E9BjrkmT+Hx)W4zLl~^phY`16rn-tqf&dmO402I(n%Qi}F^m>3pXyIAOswIi* znDWYcmQ{9K)~uper{D9@?JN&%&1I2ztBd>^Pd|G5)~w+j4`RlsW#w$uA%BKD-p@bP za-7+nYfO$sQhBrYw@A`dlWf7&{2q%RlPXYUwi!hunT#XOagwGpC$FZ04GXI z(Zub8K%o3NqvCyFE1+8+hT}@Z!-5V^R1?{Uhs#2~tPpkUVbiG2PTXqoxC(J~EG6VW zE!C;SWw-H#3QIxp=PE7CVuH?6Bn^Sg;HZld1IQtuz?26Xk_m+t@~8@lz^G%ZsF&#%rcHN(p*c`y#w45NJ>ILzd6vrs8pze1Igf2NwR=Br@MdHv+=S-+k0{ZHiFKhUZJ8k-!^tCC8-;<2I zVJssIk?R<)=0=&blr2DGmc z{HWHinoqjuED`f7sI!hK%N$o@>;rhfL0S*TGXvmk$(PT{_wNkO$3?1G3~DW4dY5z; zVH1kVB|v2DmgdwI@A~VQFc+jr4_O0%Ag{41;HSAR8~)Dqv^o4<^=vjVfraIPkQ_Y>;`x&1)BGOFN1i3%2%xTz1NfUbFn z-GWA|oohf2Hc#VxI$-{-P}B@Ap<|60BCoG0p6KI=vQ#(D4^gzL-}&fWT_sL_v)e2) ztg)%(AyI!F2{JT_{bja0pE=uKKKfvRNtsCMk*M!vG>O}T%AERh8A5S+0bsZs5YK)g zu&vQ0<}|Y-X;F}7gbz*+fH)Mui&-0A{#+Yy87M8-TK`3)@=CywOhkn~^Xx7_>I}R@ zw;IhkQt?60Z2|-0ul~*P`yLC_izpA%4uK2=ND|=-7}bO`@8IF|wdUFj9Eo|wF9fiZ zxiUD5UFKvBjpkuuw^p!C1emnBmN4;9ER`@K)G7oLjrs`3NN;`pn9N$wd-oNligVM-<6if73l@4O3m*S%7ELwS+Td3QB>;`Bc(Zs z^cV*>gb&st90?q%2+&5q1Y;63Wp9J>Wp0B}4AEwQh@3#Cr4Xyg1EA$$6w!5wz}e}( zqAVY|i~hX)%jEQiMi_~>%8Pfz)hj~Fd&B2L`^Z=jibgF=i+YzaoBSJv!@ycW3LK=B zxo#<&?nW5MMB>$-xCU_*Np25PrO7ugDLE1|zv9{Oglz&L2A}I=c*(C4LMCvza684} z^>!Re!$v$x53k-E2H>2eNI$6=PZnSIOWJv~DRE{<|1pP%xR|k#?PlSMhb=^XvmH>; z+`Y`|U7`j1CaF7X^q22a%ZgiRQrsS<{oWDLX@xEa%fmbp$!y%W`I!fTVFikIbD0BH zGXDU9@JpwV&8e2RUq8+yRz1VamkAa{*Zc#MrH4|ff56>{0`S=9-XUl3K(=_IW_mfo zKhq%&nz0JYaYlSgPtQ#+s`#4Rv29#-3vIxGO)yQ|Kw)9z^k|!wkByCdtyR15F7&e6 z`1=|iYb{SX$lrRS5!mir=5bxg^Qyd{`XUPUZEqwRT9ildcJdiYb@@-KKlS%# zXePOjjET^^!Dp5Ly0EFh35t&h!;q(IoMPm#1QO|Hu6?>hxdJk17U#)bl*AvJj#Q*= zHrye5-II>0ziW6K6a=3gvB-6`t1m@)E;K&umy_=1zw|7Dq96o#xkSL{ zLSMw*;0xGd=W=ReEYY!Yt~dA{mWaqPd|V!@2fZ<}a~@}?d8`p{o&lJw>#NnPi2X4U z(v=*5%P0;gT!kZlJ4$f7`-AYj*#wX{XDANJ%*FPf6+A5)J6ukb?;3+X#n6jTQf_bD z`?wOR1*iFezwG;XH8zH537z#zPE8?AHQ9ijP^-1IWDWYi&*a=h9ByZ!10Eh+teaf< z;z%iAu=na>MtUgHt!QA_eH<_i0fiVLVr=SIq{dMFT=C8sSd0mr{b2D4=tXxkA{iqj z^8F$ufFW;;{d@0zs9y+Nh|n=iAyiqYXi|!J%iuS8Aj5@sAAp?}}_b>NEwMzD-(FgS#` zhk2UaL!l>)`ZWooF``_M`_qgP%#l$fPDgGt0r^xU(7*TK$_}kvX;ho-ErP~8a!;8h zIK!EyaCfmuIZRqfki4NW#YM2{1dyRyXUVZr>ja9SQU}E?tfXVBR@V2)g$XEPzoo zNM1sJ9s>QK*yDNU_zPVEXNVB-PMYG_1IE+v2yrPCbD&(v79-zX=odNn<$HlW$rt+y zxG@xS_h(R_-oM1j7xx~UGRjV#8p>0qaF&1Xigi^iKOI@>S3fxX`Q2TqfU!_}VRc8L z803AKz?~!13qvbBhr8N%)DV)z$yM$#vihxXb#owXcY?wF%V4E4(Q*l9Y2>{49iYxX z0xQQotv!i*H_Vk#2VFWO3mK|YSqy9?4~HTKaeeBzEL8HoV*FGMMMGihx*b^q_R6p?HpOP zfsWtZ(tA*<+BRnMn%JDttaRexsjY;A|3 zx92ZU`N{c_v&VhzQUNe>Pc5z-j!l&%A!5baxnsMh-Qm#KM$8al*w=xgAmI1CEW%ZJ zq7>@H#KXgZp40}3sG;VV+iIvS)EF7{I!o0GO94!h zpgwvi#4w(vS$QJoA+y=>~k{GP05485`)Vo zJPBWdEQ7s3Y%{pLa)A4?xx%S5`g1om(u<3hRky;Y_TMqT#cArZrkAHIdF1)k9f1_xqGV$sk87M#bVT=wo>SUkBA=?soC!DH!+b^DPd$p{ke8 zoSE0ggGG2|3gJaUp&fAeD|7qLf1P^7o@+q`JCBq@UEo==j<8hSwZ0^u84|DjF$f9P z-OM0NOzV>Chy=)Gk1vxNglg(FJWD<2qZ3M3IWw{jvBhYX^RX85zh^c{0$77wfUn$W z0t4vy;%-CgAmr=a%xJI($=+gp0T&6@HyygQlpV5eq|y@a1QYX8DMyIg#cUh>-^?>1 zeY{~DP_F*=vW!WWcreW9G91FPb~1ekm{c!wW6Q)#g@EKK0$yGNwBdRCQ_wF>f_VbI zA|H3Dk6U}F%fBHQ^>9%j^rD9%Ozn~TC5?4PJHQ*8?;ih?SQ_l~r$gU$Yyz zz^J!cH=tC+7L%@ay<$5g^=V4zY45)DW}Ak6T@2X>J8XBYr&JEIBAzNivw|n%XzJj3 z{Xx*Q1uY4Sx`BLUkelC(=83uFro6yEgtpm$nidjUM zE2Fv*p#Mp#X-y_O69G%|rwL23Od6%7)~OF9+T4pRMRSBThD1!^CnC!b^dD_UD)_O? zmSoR_%eXm7%n?>lsXywRqadl+8>r~G%-K>dPq$buAF8pd77i zk|^NiZFCzMxNvn4h+Sd@aho4Xbb_qe?abT+nxv#`bkvt{8zPF=$HBx|(UUMRXFL;i-ItQS`p0D=i22)7mIt5?=N-nTN`WH?rV&Yrf+HN9tiKCMN z;6s-p5VWca^e5bi0m|=nh0L3Jn6%NaVlL5FUvti5-lhI(&V2*e<3>0B^r|1k8X$O0 z6W6|lzHwZ#Z8IMBQ3=CF3G{W*N&qepFdU`bkNrYLl_4SxL^etpe=ILk3P_>y^&9`dCiz!E9v-A(qtsIU6)Ig=`mW2!H3Ye+ z@!Lk+Ti`Q>UhP`NoBNo^MBC-3^ za(>AY(8NbA5Ezwr$(b>Ao2D6nx2zU78pP_pjet!2>`o#?jDvkHk$%5AHAd`}bI*DBa}+)#8?%F*U!AE9@9C zXP-Zjc3HB4s@qE^*{Vpco~z=1FV9}R4qWhMzHgp+bFWoV-cK;<*oq9qgF?}kw7%)g z3rYN@eL<0mmB@bqj6ie0iKs2zZ&wq4O32~{Fz)P{aGGJ{e$^L$=}N!w^$8PDpN-n0 zN>zN&2Rck?I-z5w9B4b9UY_K+IH`C8xMkBFAI1!-o(cU8xbX=i)QOi;b%K}b zaff(p2GlD~zEpx8S17_97bp0CyZnsmBH0K+G9Xq?hk%ET;1&{cv9A7I3={V28b|J{ zYG?cyA-N}-7Jqla~I-OY5nONGgK4I_q` zbDf?hgooC{4$^nqjpG6k*XW4`CUt|*>Xgk!5k|Z_)0h{6Yg#{%<GGShXdk;}Ub_&Icj0S&)s#Db2&`KIp``?D0LCZ- zGqBDzEMvegyzs47?|4Z7fR=>I=xzIlG6&jguOojBp!&&3BEUVNj2-my|AFR~yide*_-&uH1w#OxGI(4#y=&p0dHjy&_v5lD0Os|SMh-|8>b>!85F>mf_)Y4P8Bpu_yayTAv zth<~_6kn7WC(ap0RqKQ{5p&cF_Zy+)i8Q|~mdZd*f$YsXrAErT2z(NiVQOP(GiuA^8Cr?;4Mp#*}}>#`IY1j0is^QG{!Eh$3Sy zVIX+czl09k;LwDeJsW@VuMjV~!JA}6sr|0$sPWluobkWri2nQeBBrYnn1HfT#KtN9 zd5y=^k55(nY@nZRu#3R5tm&xA@Nm#`bIi4?YWNyCvzRpbP%q(+af|N8HZZS;O;QaP z!;4|Ckr({vpDuiL+y93z6Sx?hY6+M}y8#muBO<_{{{p73N^6%P=>!v(A;tj{1t2ju zF*KKvj{zuuP^6$GK zNSUNSQPxmYlbj4f3t)G#`z>|>I> z7(+_xKnjH@6T$f^_%r-~i_Tr53 zz#t>3>@p7YijhE4jMDhB#a6o zg1F(q`2|p6&$Jp5EQ1EoPr!y0^^Br9BjLzs1`|sn`)8DhgC3&>ReQ?59pIcGSf?cy z7zZFmE3*8q7s7;-5_E}D_#?Q_9$2)%!d`s z5tpW^;2&oZk;=Pe8nhvOGq$+jnh_)*9^G02L@mH`?@nRxkcyy3Py1*|bhISeS|V5s z*$hR>h?dQ?wIsS)^3B*{eS5|pEh$8dtOc+zm#3H6U6V0QPkF z%8^Ra+&tJ|p#d9^s0`r`k4;&61~P(cF-KJ@6{JU;YWM*o0<2f-VN85xA`zojT&%RC z{ODnwV6aR!uC2VR-9)!20Ca1Le|(F7fR9Ku?7JKh!Ulb}LG`lm&c&qk%;odi2Gyf^ zw-#;bXIzgQK>-8cbtE-h_(T+lXfcY2vLoU)=0sF52q~<@3dMFosPDBAQINyaSN+AZPeupV)y3oM)3Jv@Tp@Hue8u(L@itL6e+6PtY3Fn_< zLe&WB?>(A$=h8dpniT#{FyF6Mn-o^ zY`_cT)73c0NrlZoDP*JbIJFIb8P2nnO-%n@q}4CQ^$d8xazNbzH`)?5-O176c?=UL=b&`moBDcXK-ua^U=C(IYRFh!f@b{@qe%%T;!j zt+TSq7rnlYZ&y|X#(3!%Z$Fe&uN^|$9DAKCOU`{~FE9boNwcTQAAKi(JzGB1qn-4` zJ`NyS+-wyywQs5(=N4aWX@DNHh|=2ORuQFlhxPRNu^2T!-iSD|H=U+V(03+bCvepL zg7K66b*z+Rlu}ktNaKyz0KH5RM3`=eG{&(DX|}OWZkO@A>MaA3ZREEQ4&tTzxJV#| zQv*Xum|i4lP5rQd@K?5fV*7^xAy8Db5c?o9ZfNgZcUG;M$20i);)ZQjy|^f7R!M5d6?ZGUZ_i!etL|!mV3E7O51S%0 zf4mX1J=+@~G@`c9WP_j>6)5lh_aEX2KzTpeareN|$2XlUPQTHA9h|XCja?QH2bKk< ziHOtbK^`MZzyEHEbfZ*I_DoNy(MXaLz5t<`BPpN$0)$G5sCta$)V=AZpEr)8PGr$65~{qPCG{+M5w8o^yj(*%+@8A5 zEd7ED4%k{n?0N}*U$9jO+m{-U)|&bbW~z*H0EFd9t{9Hwy<>#iQ4-LTTq8}DfPT&4 zmY%8{et;eh4YzuFhds{C;Nj7h@3TSD7i~LtVwxcX6wpAdE?vDzK4HdFUslC1(qaRc zxxc2*HUzJH_<@lis#`DIes0KI%-!+}Wcw_UVak>#1WN4LyyF z`(quezSYM)Io0O&>+>C74nqg-QgMh)|v!uabAOuU8lI zl;YWDTjlGMe`208LT6>Zx>zpOXP?1Ws%CHIn#?vIKhA-!*rwktfzmvGG}LUCuTSl= z|K#hl;f%+vY%@`su1Bwa+K{+CHrEkKXI%ZE<~(uS+nH{km|URk2-_ zam!+YG^19w%?CqHXL&~`INz$ch*(Gnq%sZ+k56Iw^&(;rjW7`n#b=h=)uKALq!=rY zmMA0@e{R{i4Rs=rmQ>XnA`JUcB(ShVnI&SvW5W>_BuPE0*RkDjhB%hp-Fym#DAoEoWQYl!ctoHY zo~ICuvzM`8g%kx`1(J^ZAM=z8Yq6s*kB@#mYQq^wGjM&bF)X3U$?E9c`z$$yAKya! zQc&-zCS4_1AVH1yE|c$%{%5mguqz=M!ZhIu@+TO<+t`I017jH76>YU>@}tlK7{?A!kvrJ_fyNI?{VMsYm5bN2(^+1P)IJLm*=c zp=s%Vj6}DMrIY}3#}(IBgnbxM@B&p4iE+nF%0~&Bomo3^qcOg5+}tW1 z(fxGPIXo{N)#o2rE8*^?4B&GZm<% zc@USc#*h*K0eH&=d|-!BewZuPA`1^Rjp3vWWZYx5Z?pg-LA+`Jp24C%ZweMdGEfjv z!NTi76bD&YcXqmK%!Y7JBQE0tshB_vQZ|U%QN1q&_*hs6vIu~zWRG{_oBfbge`ut_ zRh0vpWdoeo>AE;uF3uJ|FN+4t!iASFFB_W8dg*ZO)p@ZVI1@%WQmQLu6hrw^GR9D5 zu3dj!1FUP*iuS-R16Sd2;R}a#kI(G_I%__Exh$&&O>e66V(Y-F(LOi-IGq}lTvmAn zB~JtA3j6Ti9I*1%q47DMK}}-{f0h?7+=-3VTAVv<&0|xBn3qkJY2MaVW=+{vndWtF zUmnjDcM-ANZ0%28;b}+~?$Z{YH3fuCzcHvLh*KU4+@A?lyG$ZDiEtUj1<~BoY~du> zY3K^&(*cPvgBzIuYfi!Vf2995tAP-?6%cy*P?8)7O7g=%Np^U6{KTQ8Ur_~c5a5ph zqhTnPIP;37PT`fp4M|KF0fI(bvj017!sC`g-3vaI638^#(XAt@Fr-Oqjn^?XTt5lJ zY3xe1wixXViJtS4P|mAc`k=3$-OF@@xTjp$7oZvVA)GAZ9C19@e-|Je8OHs60ScEW z0UnG&Tq_kCH0)LFx+yQ>tnKe=#M8%5DmM9}yf*H){{?)kI{@Fk~aa9uJwbjMm;i2+i#cmzw;m z8wW7>%vL9Ed{Eab?rB?GZ5LHr;R7mm&tHE3jR8#mwq%7XWZZ-x+Oy^m!ElLSs39{t z(uKuT!G)Jlf#IUycWT07W}z@3L6q@$6IM>>!9oJs-EFb(e>DRGG2zD2f4SJ3ieLB? z{KEVC^*&Q@60U^BFZ3|@#laUf3}4tdd|^}J3%iLk+!4O85%@y5uJ6|g5j6^5h_L$m z5p`SiG6}oTG3As(85GOY(#0TlX<6-Mi(cp=Yv>aCRp6x-x?sb&9fuGWF$iQxaH144 zk_oBj9I^BFf54u+ZU#)47SV%Gi*`{O_<@a5udlw2o-SPHLHGTzhkJ8`O791u%7Y@* z)1A%3plr?OO7>Kcr2oa89)QBMtLL%uLg} zIH`(LN3b}nTg2w43-dACm=(6iv@PuqgFP>zOear3@nSa#Uq1u+E?d!Ai9&n}*47oWuJ!rV9;fx@dPN=&nPUKqf2#Q}Bu{a6q3WBkZ+6l3K{Jxz4_ZDx zZhx*jyD=>Y2KS|glNy{PbCWpn(C~(X70jgzpuqf9{@(P40ta=l@r}I6rTw?-9NhHi zqk|hLEkMLW4sIq+ZXO!EJ=o+%DFhexglHNc+-S&5^;pe|rXK7j^?|_K*zks$F8eeE zJV(J>%W5xMJhABw`GjtVPi}fc9tNY|YI-9d7^C0c^rrn^${m=P0wl=Hr9ovK-qw3~ zumlp&pRtwJ^Oqq+1r(QxH3bs`GB-GvkdFZ=lfVW9f1}71e(ztwzR}v4rEXA_)kM** zcB0wMDv7qGM48M3W7BOi*z^LPp2@Gzcc=mbE@RI{870a~n}$oC*m=FH-U$^=8;RR9*0cTQ9N&kgXSv;Gt-W_&)eDRXBcfQE=?QzgKqh{!WXz(} z%(!}n)3gZVWq~BaZ82N=G?L&UZ><1Lv3o4ve=l%OR!tKfBvM6O_f|b+oW)>PV9DL4 z)46giGNwmVBGReqiQajRO(GT#1mE7SSOOj$-FPDt#U}0P{^>i4cWh6OA`3(&71|yZ z%QRTANE&IWVvk%hl8FgML=cU6w4X-I42*9M(6bOCY%BVe;U3<>!d+Gt|H|5;+DGmr ze`uIRMk(H@FpBwH>nx2D<_!2^ho}%Ntm-z~uW^FpB5X1ku-HHR2LB2jKEE|Qtlqr2 z1zldR{#=5RuHO)~v`$US{+R6_^0&p_-p+qLWGiCn)ah9( zRs#rp5jrJwK33encPiPs+u3XKWr}eNQ##N*lx4ixA=#r5$7)YtCGbl^ti%tzA2P2wiR%fh}KZ#Q3BAtKS{BU>k z>&<{ng8Y#MDj|EP!FqS|@>Lvc@bE`Ou0ZHMb)>sMMN(5BmBBAJf3c7|5oy>;fAJ_0 zy!Xl;v^nORk^0V%%raAW;D9*MP*NsmrP%})S|$tdOe zB0{B0j7`Ash&vPBCem$=I-e>Ee@6``J@avkRKwWFg}0tvCP%%zT`6(~uP-pz%`8c# zq67|kVz?8@Ml`*aXZzS#88r0D<8eupNRI6~ART+0KJ~Z}RdE`{LIDBd^qMF}x-?oY zgt18BcVNLA#sLTWoMKc9*(bwO;9c>QMGC53fnN5Mb>1Axc0kI)7hs8re{`&|j=}j| zi2WWWP5gld6{4KDBGBaLO78m8lY4Saa!-A^eTLo0fhtV`6{keM1l=4eU`yD|0SmYz z4IBxqjP&04A`Wo^>X8>b^T0Qt27FVHOEt#tSuTKY<9LF3(`V_wd7@}(i0H&*^_e1DPWG}vu9D9CnMoz z7S|e?MP6ZX)D^Vvg2fF=aOitt@x2$yjz0gDKf$V)3N!fP5U{7>q0WKMm&Fr|&_!G! z9uX!>Am(=R`13mtb4UydI6_gPm#QqD8i-(2(&w5}bzqNU(mq=pfAIfkL-G;n{!Bxn zu4zcr^@YL5m%KJFj)-1)&Z0VT5dODU_BId$qVO-*+eoF5Jmqq4GiF?3oj`Xj(CqPk z!m-WwOYL(CJHV=wHD^jj6ET&}AYkg!BVG(uHPdb5W%hXtadk3X^K{G8uJO`wm^IB| z=dQcKhNn*K_e#Mmf18Q5U1phU-hDt-x)O=GyDb<$r^$01NST~yvS^#Uytk(o_g4(6BvLX1e?mH)qD0o=@0KTROo=E) z2|iiMmq%;})ySZ7o~(%gIZ|E31Ve*THeGtflrm<>d2+g}Xb3iCxT6WkVNHLx_D-4A z4>V1s>&{%bQnPUduyOx z;XTHl%R3tq*X<#*Im`{wx?R^5 zZ0OB>a3-$$D8Z@4L-D%oCv&a+?OezmXq|zkdF!mqf1Ake3MnO83Y+My`Ci;xx*@aR z+KJ^hIJzm#@$!1-czzm&fTCBHKr{PP7i~Tp`u*_BPelB^y-g|J`7Lqpn*$Q0pfg)B z6XECo?e0Rm%QSijjUFOVk&x=s`dxGwF={-a5`y`UZg=&xuvaX(&@E~>rW(z&?4dt< zRL4*if5p@H0L)+FPIUJ_*K&N!JCIq|oDeXl*EkOFIPPRT>o^+M%;z}1!VlFBy{kC- z&DZ^4o+-UNm={#kt7~{BM4$Qk)O+1dBaXRujv>&$cWu0!wDA+esIGh))qVV&PmYU2 zpMQ_qJh`~l)Wn}QZYRJMZ3RJ~m0mV-ueVk=ccr z%uTNC#E~^4Tz|PvTp%qY?R@ZC#ut6c?_UMhefd!B9<#pSKyA1?tx4#${_x__^UjCH zZR%XXFathxah&E_DM8SsftoEX&H^7$gku2*L@IVMWwNw$jn9=b<@G63Pew;<5mVF% ze^cg@R;UiouTY(c?MtjnDZ`^VU(Vn%Qm9P)NyA)78fd{11k4p&U(6c)R%5Qu7BDEwa+>S=rw@e=M`L?da+MNBc!ZQ`l~ZZao$4)?U4(!}8L8O0h0l`t;Z^hwbR=364cHc4j2CB=s4=feUp8?nsEsItHI^udgCc+$L^g9!r{Aq6?&)(*w^ zOn5AT@az7Ft-Bb-7ky7ke@gX&1!_I6oHeY%wNtnonxe+c+z_kn)kKJ&HTHa4Y_4-( zufjNeBFOq8?762TNufXUAz#I`-mi3&(WmdgConbHqzgeA-u1J!9^c&5v2ydgT{Rl9 z)t!jLcfkSE8pucA*#Yyk%d{++5TPXaH_*O3Kni7UWOH7f4aH);hJDs7-S@s#m%B1Tp+_mA%#Me ziQ;Bn{9Jyf1W$gs`EfV#hif4ViHu^}O=8Hvbo+mw`5AKy4!9|az&IjY!F&hNIfQ?? zx%%~rz&l)!f(V1Of*J6u0N-qN_46;dn8U{(3yhf2#j^ul6$$_ajF!buSO4&Gq#Q{M z>;oo-bl_;?S>lPb1aYN-aXyIpF)&Va42F>)JI=Qrgz*T%Ag1I1P_5@9ZKXP%f{rDy zJEeaF5vjhNj<+Xt%rp|hoYJvI2J16AR-jJFD1yJ!YBokXHOoZJ;y}wgC4R;j2Otpv zDIjU~FbwC`iz9uoTnR%OQMtqNyBrETVgtl=X2oH9;2jDSXkaI*5Y)+oFdekc7*bLf z5`$Ti;${VNKCK=nQ%1_R+f?gWJ(+UK%D#VEJuaK|-3NGN8VDO&whs>zfUCRd-TR?3uj^l*s;T9uAS3!hOOTv;1~yH*?gQg2k_;oG$MdA!aLmu! z6Jv@vVipt1=qSQOnL-%sF2Qs?(W30y6<`7(?kCigU*=sqnZjWHWnHbBS#Q75@_Bzk zby<73hjnWqpZ(M3zS<0<0I=wqnPtgOoq?2~VT)jsF{lF-32=a5J&wV>fhBTjM3^4d zzOgJaR^ByR$D}38czJ6dzT^m6O@Qf4y{U{XIk8iPgcbv#kDwQ&OPRwd5H~8?76h1( zFra==eOzV4m=Xz2Kr0w1WLR)3&-Z_IS7&HYjWpJK8h|>d8A-)hGk#$}CtG+!U_tt3 zGocE!<36{G1PnGoyWHCEbyzg_(%HHjcw8gotn8|J^VG*EIeY|qf%s$9ZJOCKKs$2< z4@_YxNxBw40eRShW2R~_q`5~0HV=5KU}Kh<^$7a0gB{Wi?DWfK9zHxf!GeFq)SH~^ zQ3hdRqXT#;&5k=UiLem+^$zFf4j_U(BGnP}VLM|`|LHGoWl4W%RyPaY6CgmJ5 z2^O*sbdeRw1jbTItw^LuFgBUUeTo^LVFnbY6JyL+Aw!aoWF4=wo|DELo!=Z0M=>67 ztePFNbbx24p5MPP72uGXO3c1rF2I>_S?I}JAjddltyHRmTtKsvxj=t}iE?IXrYSxRkTkYI5goUTgIOH__2d5pIs)$HZ z4(wsb>Pg7fb_ocq#C>HSw!1ebu%*lBLs#8}k1ksYFa4Wpx%2~Ab$H$OeRI1E$h*2) zHvg^sg82E1+%||AW`ci0!6Z_SbGss)1eE~1P9`1MDTD1W2}a9lI%ji^5TtyRAJ8F3 z62{#$1y&+P{C)5$d2S%Gd(H16yn*#@Hcb^&>lMDV=Hc?mnaw$j&&Uq;0y7G+VJ}pD zl4#hl-vAnK*i+6$`9}}%6xkYBzPHmPwE_F{gZe*qGY7M7`b>ZIBRI%Diu(6?{}*|i zcgzb8Sq4Hn_WC4Wiy2LR6YM5Pnq2YhRU4--fno6CP7dZJQji-=v8!q0pgsyfMDPMK z1d~?0;%LRY%>-6~h_;blX?@v9PqSg(C^FV^lF$$c&;&{sg*fNOWw!~BmEDCGpJ_p+ zO$VY$!bK#6L2-Y{j7xpzj7z>?9e8Z;xwU{AQJ+h>$O|$qd7+GpCK=c3a{tt4NbqhE zknK0Glsj0C4>w*Ks*!?SFioubD}3L}vL~AJeWMl;gJgK0J-xK5W*Ep1 z4eswzRa31XrxUNPs;M-HP%*BmxzMkvs;z1hOrLD!YoNsJ=C1gJp{rGmv2~3vSk|^+ zd8+-_UHN})e4VSxZS=;^)#a*sh~Djq|tvbwcR$55Ta zv+tt9z?EJbTYR-^SJzqKJx{j84k%nfZ}@&{Z&?MPnT5Qs`b{(QAD|?g)jbq)lH;Hr zQEr?1*(30XJP$z%%*JAHf#|TtGpoe=s`UgI9VmZx)okPIeHz*gbZ8ILz?~i@_q)lS zyAkxFT`pUT^*OYqX;Ad8NdOq@dKIR%{`b~VsPk3|zjP>fA0NB+v1_VLoja7{8cGnI zcF4c2C+6o0J^hA4Z&Y$hPDaNn_}H<^j@loxM<@n7s2ClggahD%^G%5uQ}3xt@wKY7 z5lw%;e?-eCJGR8Pfr_0DXQ9c@F4qhYmum))mv#gGoZ|`bQ1W)34nnModHRfr%<#^U z#^MdzHtlX9P3W1UeP5uQu>k#57I3a>e=N3IFQ`BOq8KDq+&j*HO*FM3kYn)ht7hXz z&THF2|8(2Wy5=!^#uvwJdq)LCNO0#0?7@GDQ;8w(hay_pYZV?IpUDj*cjawD!)8E~ z*z?}?i1ou}rjv2ue|^FL!L7EM$D!e5{aQ- zk$38vI;TE#NRFMYn|vcj%A2ib+O7%s-8A+tszADE#69<)H^_sx? zwFaRsV-N~4MUM3yPKW8}hGcppk0PpxyIrZmZA7Ay39$D61DrPU2?}LyWOH(teh-hre z#3F#+m|zi>@L3UR0vpOwf9?um4Zq~Bxx!u9aaUS&z-ln9yMiz#yb(?8#EG^t8wXZr z4i-gcl~_p;C60%Bi}j+-P$m3kXlMb=b-m#o76BVhoax~GWbl2!a21-d445EFt4skW z3IjM>559b**&P4zQ$`8k=^iW7b;j@f0s>z&tb&x|o* zIY);K976zfG!_aUm`WVg622OattRqKI`)vZx8{> zn1jGT<6<0BBbB$D93f+u?+-;;-}b$~?Xzi7jMy-rH~3Pc2nJamX60d8uC|-;e6`=N z?(rE-x0|Esc9+*!e?sbm(JEh3@~V~y<#n+%SSPh6(%?DQ=-J2heN|lBT{+#%aAUy{ z*QV?HVzpTyTnR9E|12MF@9suum+!`Z7HH|7@0_(5PB(M^vp=SrMgFkb_^%xXj(z!b z9Z*0NDDQwf+rIW3f5fk+)eWQ7B7Q=TzIb$L8W<5F1N=#oJAXGGW-!Xl>x zL8HJXPuvr%R*0}LxNs`kk@LWR2LrAUlNcaP44kjLm0~9sm|&oiy#IBV+W{3y{ zacsjg;9i2ee?(Hkv^*aV^vpU>sn*_Tjt3DVECfi#hG9ujeN%8wox}=h5i6)771_9* zdQpvrY<-n8BH;`MEWy`Z>7WpX!#qAkKgfhfDgu3BAR!^n>X2WPC@eGq;VMR9>S_>q z9JLBTve+30y4T9kfj9#U7i&*s>?x>5K zNurd@5LFx5z)mHM%M{18g%-qc(I;V?C}cefrb;@nOejg@$sOzJGcDcIl%_*! zp!y04a@0EKpw&JrwBk86JJqCP&Uq4KnWHZDoG7brM%jdSykhKYyo1QQGoW@Y4Y=eg z9eUUXD332tIhE!2bo|k5CXA(GtT-hZ7b_JQJ({&W}w-SzI;+RRrkPz;L zeTq}sfmI*v@MohPaUlktcAnA-{vbgaON?>1h!fkac4jUhBId$wVRk5{WiyoU-GUgd zb8HNzbz`tcg}kdRuyMFArn7vVdo7%5T@h%Ff2qa@TF7XO&|$17l1;RGMh!1Wp6O9T zLM5GY9lu1Z<|5a1HFoP#_s(JjgGQ4l{KmDEjoQ(AoWM|%#B0gOv6`wSk8Y(#R2@@d ztv>I*lNSODTv*o3Cz61v84m^%DQO@HGpf41GB}}g03_DCAOEy|bkzXhLFccP|R}L5=pflch5jgPtw(aJ5&>6bK;9J|tUB+j2?I z+)5LQsCPx0QHdjB_s*^AwSqja&oE{sF(j6`(dK*roNN^sD=S-yqC9a}LyS~$hJ+fX z2em};1Qc}|=Ad$*QFGOYNC^&3+9vU-e}$&b6`C~ZmL9Gj%k}G^lZ85sMsNvuQs7w4 zo_tHrv-g`Tr)q$Nt}Xw0Q#H^M>tDXeR4sZ#@=%GB-GAZxlGC6njJvQMMvwNuoU+#7 zI5DkXtjxCSe4i-Ev1Fc~vD24Q^lKM+jdl?)qFsLUHOcMTr5*~%UhRT(|(0{+$?91G}2B^jUE-$K!n^J5N+Y1b6bUWT95`xj^ zmPZ-sF6HRPom4mQ;o{Ge@u!G|f4Dq1lyK2I)2SG_m)@JTG%8qrLho^ynO3M#T$owg zU_LJMrWI-fD~8Ld`{N-9^b`xKS&`%MKNR31*f;^I3Z^KLqP`f+L{@k={s(Y#X>bZ<6K-U4baG{3 zZ3<;>WN%_>3Nkb?m!X^j6B9BqGdBt^Ol59obZ9alGBq$ZH#8xso)2LdIf zs3Xt_WNB|FW&{F$0&s&Y0E#A{cSlEm02>Pn4+14X5@-i>d{>$RjNJk9K#-A|y91CF zKx6b5P_lOdF&Y~=y{mzC=9YFq+IJUGdk1$%OLGg*pBU_njDI5i@fKkM$QYSe+q*hh zTLO&iOaU@X@=O2)d)IfNC4k1>4qyzlFtRZN*qZ^=fLZ``RdE$nfTW6|x{@jiEz^5o zRc8kWd&if*b_5rHe?HZKcJKVn82}1u@A^M^-VOh_%ZsZCt7$8Vvoil#1ArCa0(5k; z{FC;7xKX_`1N=?x-PO#|-uABq02&Jr$l((+v#YBslex1Kh{@j3oXNrFFMetkmQDay zdq-=)`_mC<1N^Hn&UU8nh1KKtMYqJCk=qkP*n)31Ik_?EMWirT!N| zAVAdF(eY0X`G2b%|C8q5)J5#ySN7S))7!}Pe|OBt&e_T1AGP`KWt-UBIaxY^oc0sdis@APNSEbac1$qOq;ONgtgG0MF+o*kpS{d;xnm_TlzzpVen6Bd*E1o+6p z1z_dj0I<9_skoh~sJ*T2J8LI|Kjjm%e6JJ8-qD@;f4bV*&fe9|^M9pgmUgCQf2wZk z?7*yUXZgh$C@uDXw(lZ@zh&k?5P$^$`~m>FnOHD?|4H>%r~DDK{t>^Iz}wTo-T`1{ zWa9+%wlo92KM*{fj9h>KkfSru+w-4_|3(O`+yGNc6VQ8;zaJEYzoJXqnb`w){w02A z@^97uZ9mOlhm`jHgqqsh*|-Btfo2HI3ihD)W}x~1=ZyVNE(vEF8wDd>u7DBKB^cj2s`i0E}!roB&p?_dR$o4ZHV$`I`Le zX83Cwy&s!@<3D2=00g=LO%RrT+MDnOS*0|Gl=+AkOqD}Z@-UrL;s|KT#6vBArB8Jd z;ECmKlK}+_{agJqs0!`nq(15SB>USHYf%Pa+q|x~B~?vcn<@+aGV+o4AwUrq9?j8U zQV+QCZj!+$;sC);h4#2k8dXisE;0r@^tn*M6*r2png{J#G{@S4 z1B3GU^jvqMJ3$55XCgfpO^VLDQj6$yYOItp0gm3KLb+ zOGsd=N@Itl?&e=}i=D9uStU)(k>L1U1eu8pG!Q-|G|m=Wnjv>jr)RU$P+;K$BRZ3> z;p|mtemqAM_#GzFK$BoiHOAAEhMMpAW4AF$0Pg;jx&fp@YzhGU zXOIFW9nO_(q$9`t?*~ozoI-t3T%>ZlI|$*e5DSHn_DZQZ#u*|S zmu&iCB=m_Dz5Bgzhj?1POX)1Z8yn%;Ejs;qU+*q(IJ_`>#my;yKQ|i@zyYBX zI;Al&;Ea@hMhAs(;exI4XS(}T@LWUVU4?(zg4#fzQ{IQCm$C=UZS=LtiDcv|!s!5* zg(B$b+w-oD{y|HIjQw2s;?T~oIQFknsB67d_Zw_cqg!=o)SKFxN5bFFzuig;@8!aX z^14lXt2#hIeI6%&duX%u2TblDwG_X^E|De9e#{Zc&rvigohu2*6Nc30ocg&!U#+F1 zHXa5}!pf784T)kw_^)aK=HOMb03w)&bksg-?z@8BH0{s=U@{mhr}U|kg6wk zL&1hpmm!B?L3A_H35)Ln#<$-NAeB}j6rqPl1)h%V0YtE;@?5UF> z9=b(TNC?)|xTI4}9T%F0q+sQU5#)J&Lb9a_X^fAKZ?;@s?yzLotw7FrXt4}$N20Ol zoXpYcNqUHXc2=*Ag_-+#HnBOG_XB$u#=RM!aQ`&D95tP`n*QozDou%!J3g( zxmk~{x!P~9LzIL5=ELvy!<~g3MN|r=kRAJhT!_gkR6(m|(4D|bPM@^W z$2~z^fQ+9_=qDdngk~N_E{85PguM)Z`DA1$Xqxa;=9c}KBw&Py zQgR=Hu7%nwoxy2o?Xa3i)Vr<@ z-_+R`yi)Wwy`F8XZsJmvg~g+P|1-v-qnnob3Z?xLT1_g=;3Pf`p9AhicqcmyXY0*j z>xKlv17@X(+*n9Tz7I@qjcf}#@48x^l6Ism zZ{k6vCvBu3yk$3j{7f8QmT`HoMEPDTy#K7}Bc8^coqM;hh$CO}SXt12h5|j8?}dUR zM*0MF+*UJYd20@!A=7$WPoNE99D!6boDtZSn~Fmcppi2f8w~#{KN`&{mSY!&!tG*1jSjr~zD&D4hUzI`d1XF7HoA(R4(ngxzZLn6 z7>`8$Zp6^}%^<@v!i{Ia#}uKBs$u|Z?v|vDs^)&aDC)s&bpZQ+5Gogq<8fLv`(V|K z3YBVdsl>;XCehzMix;RT344eDDb(R<)nl?aZzAiQ#>KpvaT8a)uL(2psz{(u!v|W< zkjM>+cR8wI*F3k6wBnE`i>K3{2FWLHYk1Z5ojsb?pHziMq&v9>aZaexYLuEb+r3uL z_Zo-ZoV{_1GA_!0#>kvVT*Uj)rPQj?eSWcoNbbKit+aOMzD?(tcLTy%{%5kHeEt4>x?0!}V~5pgbaZ=QVD zg2vq%4JPlY{XMfztSb|ysxpK~cyh}(dSm?)!6_ujCJD^kE6;@vGQ?#>v@tzm#h-@j z(;)F)LO+^onM|1>vo7N1pdcshu@uMBT9r>!HE~9N(+#P4ewi6jN3p+iv4*l3<)Q78 z!y=K?08K!$zYBIaG)PFWCYKrWkQ@!cnmAT(ree#EQt4vtWM;A*U+S)`Ocr!tMW;M@=#$yt8#M)|Qm393c}!vOSn|H!^O#sA56c6%WXg$gCB6R7b)L4dqJl{f z?bE&$hYYk$H()d>d`^m*D;q#35{x`XS5o{CRHWBs(zJD!U6g)TpJ-TnW-3QF6mw3D{nf7hRR1-^fr-Dn{Iw~B0Tz+QI@ zzUZ9@T%v8ZV6ukI>Vb^^DMxMYU()AE^~xzySvi^(riq$k8C;-*qnpIG>S6!Pen^yv zuAtqJTbe%uQ^EPItA^3D2XAXd*&nwG0EQKqEM5m2`*DF>NV=ub$zz^6aKOn+?BRf9 z4p-bSe`DumJ!NjR$~X2PLuLZ6b8PM`@vO12#@AlKI>${%r9`!;4k-D?y3#rtj4EOM z^(dR`?UCW5^HBI?vC@%?`@OLV;y2DS@V2?BqA9xdx#g2WuI6JOqMDUwNQTi`et6T3 zXv({;@%?Zrpg`kIoTJKvdJN?I-&U#z>d^x_f3Ad>vs7%Hny1d78PDm8pCQwn1oLJ6 zot|2IInPzemAXPxf~BeFk2Fx5tv#ohMasX%s2h>Z6EkHo?pmWQW*otovpZA$J8bst zYx)W1Pw*`xo_uh#JEnq>a3l?vyPm#)4MbpJ48X-RXFkpvvPa ze=I(VwcgE5+1M3z08?|j2yMWOr9w?!YTbEyr?Y*iminCs9x+eytfs%%^l^N@wSK*} zq^rw+om{M?>>DQ&PJY10Yi-?R<*B1ERZRFLp4xSfUyPMGCXZ%#0le`_{; z&kgC*F{3J?o>FjHz!lyAkaQn68Hc(U9047%!3NO_33dZ61&Ri-?UdJal@Ou7hOWH< zQ~cUsf&xI9hRqt)I$=zyTLUhh3}z#jkcC-k0Rc}~dh!s)eN)ZQ(;q%G5m8O`oU&uu zw6l^7f$K(+X*cJtKoMHsDm=?be-C8c0Y0gbp&0HNY8M_D>nhJpf~^_hBg^FH8-a%u zPq|3)=Vs|Qvn%+&(5u?0_Wn{HV`U0`TKTRoo*N2tzD1!;Eey0aF*Qw8m*|i@WNDcgan5h1_vfDOyI|GG6o?yoKHRw& zP8qE2)olNH(x5jo`0ao~e_ak_olr8Xtw7m>QL$DS5sy9x^jcl!;FrPU~^wOz`j4=PfOLK zMQtICJ`(W5u5uF#4gDMxGN%DA)PS@aKw2I2U6$0xq<|8iGp8z^e^ZVsqX|THh}9@% z^K5zi+`DTjeMO|?I=^%q<{?P@WhWg6#Q}C5vna{{4@fg`>W zlb7-UwQ!F=!*F(Wf6_%E5#S>u9y6AuCX#B`m?;zFP((< z!o1^?WlDLEInmShetSQQOvUWistVMmf2JX#?-k3N460P}vDA@Z`_*d!?MGo2gV1ht zg^!H+n2$;(VZvI>$j?1EAy(7AyvWWx8fzux0DWt^SVZ*qe`U9BR9US&Cj_lp1F~K5 zIFAf{aGYRKF%Pr9?d031;fj8MW<^dtZ_(nY+!^ccTyPq2QfmcehRWdoFj3kw{Obd>vUQlklJ4uN+VAx1ru?|BY3&|LV!%5Wz zk#l@I-~v^q6#^Ac$WfpO{-q2Mjx#7$GE61tM{i3Xf8q39Um%-#S9?gaj1kQMg{9+X z>hCs9BWx`HWZ8!b#BZWe2I;l7_Qhe}qr87K+yqa%XA)G{g;4DuUfuRpCdqn!;Wb&R zVKF?;)2MZEF{)nj4Xf7HvaoP}?(XzA_HGWVg|Y;EVCn9Vo#x;5-Di+Z(VadISlGpc zkvRJ-e;?cbS#%v)N6}A&Q*cR=At7~2Zt)W!OEo<_L#jZQ9H?}S$1a4aDnS#+950C8 z>(3H}qzbz+9>D82g#eIFkj_Ne08145RT%P(ryMRW0T1@>v&M)4$~aB2N%qf|ajgD8 zTJH9@d&qFK!AyGWy~cLRX+gaYx=)}KW$IL%e@@?-gScga@lEiK>1>Zy;~Sd5mF)7U z9+hY`azM*XZ_`WI9kdFX;Up}hyLtwzO*5tVz}?bn5wrewr|=H;=!v*QRI_IV1T(gu zXm@jQ0JPcB0w(3pj4KJ`!{!;!v}nr{QL&i0%yq+c+&10ZsveNKpPCYol*|Rhp6PyN zf7bjXyJQ@uYnk6hEn?G#I$nVP^0Ap^D34i9ojufVm7E{uwt}hGSMrj+u>^ViO2!Qi zkD`1vU`9_OoJ;duDoad}Z5WYg-1RErwz17XZkRu@W}QdIH~EnYC68ZvOBuY8CxBue z5&c8l^tGr>2y#g*zVbx7o)>NxP9D*Vf49{2>zCq?Op)hnkvfqZcoNDo@}n$C7H%fC zA8@#hR6IBFQ!rIO7)oUIYD$nkW|X=|@-+nRP-Mea@Sl{Ao5bBieBu7-)w_?rr>UMU zISIig@jjt4VO;mIbs&rMbwgUt0417_JVRTfE1_J$mrD57&-6BcOgqf70h+wjf7X)_ zwJOW8rat(uGW1MvMglGPn?un#k3YMKxi++dZ#C0oTS!mJ*pe|%iYdnk4f<>978H!zlj zwCN>lSUXFukZMu6if6X#*AC7Wzco2ECGJd2HvFeOppJ$ps)m*ABu%lo4oW>j1e-~( zw`B%DrVBd#PV8Ps!P1l!k}Eo0Tl%<*Q!A(4E_9NK5&x`d{H44Xzlkhmf8S)it@2k2 z?cMc9L<7Vrya`H8z>CLjUd%5EGftAG+G{-RD#NgXt?`dg&lly*1M%Mv3sY1@KYr7j z2`L^GJXyj@vfGM~c0;jRWEZ5#TJ?}lgj!uHYJ04d7ko6n?#sl;27oRuN)Ph(%gDTAb4 zKF+0)%OLV?hcT#mJ+O%^VVe7e!Mk8dNH&hc=e?VrzlFc`F2{|IuUl1RpdC6=zPK;ntq~Hzazg-ZZXuz>yvko9a z$ZVEqPl9QC7dHj%JqW2-LoJw_6yJRcp4V1}hPu<7j+$kT#rp{%^gSa08M>9w?S4xG z9#W;kh@k)-C&@8-=?djMjXRg7itO8GHolXX6w1Zf^6FmQe@2`C#}9O>WV^mJBBq*H z5~=~1^&brNJ_)Z&x;maAF!Mn_l&z?A;@K=^FN#NOCyxWE{6)tfIO)O;{j~r-HDbpZ z#|HOmyKdoQ1iWHPyLaI&p&lDusJiEicF03b8{a;K_OEMms1E1xc)UlQ0(?iKfO z8GQpjQsQz%fAWg)Mx?VUu902`Bnm)>Piqj?hkTr#ktw^(}DeUx7~m0I@jSnfT-@GuDTyFj!m}JyY5FRZ~kTfaH<)HHAoxhk&eY0{8UaKz*aF zs3uQ;O9xy%vPHmJkexg^L>Lt-GwdDq$`{EXZ5nn&f94|>U5njpz5G|bTOxjq-nwQ# zV-G;Ej`i6HX=Au8)E+@RuZ^(t4rX2R zde+}~e=+J+#L(9rIIQz%xMBu~P|>Znawyv}H7>bUC7pA5r|;U5=W&x7%hwzx+-Aj- zm|V?nl}li#YLOMzAS6vqzl@&OM60&s+=%54K14ZI5ESrBYyiUNhe`(Z(EhNgp_fldyS7;J1Q3(56%-t1* z4)h(~17_+*>a-)P?FvzH|E?qudrC@%)8lJJbS-wUml2)?Mkaa)CJN)* zYi#m0udKP^fIG_v^Akm?tBGf z@>VA7vQD!8NLgTB%LDaqJ}^>6n>1+`LapwbKEf(SNy@}DNn+>76WHuR9~ZUgf9xrN zO{UD>!LYI068h@YcO3@RC=(C7vK{ch*yD?xx%HZVKxL zq?Zz2+;<7RFLQfp7ML8qD4v_Ge@S5N4rpEdlg)NPW-`_dFTisUn9HVNR z)J&syF>GIt}BH( zCnIG$lF;&@+*GWDy28>Anj$9d8+@kyi5$%RS&6>J`s6JDLJ^8Lf`rU^e)R8J96iG}i)rea`Mu*$7iK1We; zh4%X3IYSFi)wQUz50vFb;*OmlGsn)YibiD^ZtrCpZZaR*b&RG}LD5F1kQ8%mPJ$5k z77b$ULs+}&rYfN;wolM1VYZH`HH$X*jT7n%Bp*3(rZDmcz9JkKf4kts{A9<{**x?q z@1Rb0-!KbGGc2D>?C{F_H4@z*{K_ zBCL|}lq+r+ZXV^=lPY}q>Ulxec;)*4Z0G&m&U^5F6YgD zL7o_GHG3yE&?J)&e?&RKRCn*#A`wmZI@vfCpCJz7Nls~d>&uPmc-ki?yOtT$CUbVf zX46|tIQR=r>JE)Xd$Lo3%J25hs6qxcU#VjJN)lidV+ExSd2CNJ>ojql4UiyYI5!Et zZuJBK%CWsEEhpm>&9REBcP*X4Un=azFMeQ>sD9l1LIq9Ce}pV+`iZMh%y@A+WF6OB z)C$Ch8`FM|^p#4I?0d^-TnRF}p72c~?zN2Jsnc=`9W#FK29-g>j|>tXm1*#w6Nb~d zWnO8g4Uemq>alAezehT(=iibrRQG*yHdje_my=s>3FcrYP(vk?Dr_c2oj2{ilU|7@2rV_fuBGB7x;8@a^t6m(+D|YzJze4+w-hfN5^OS-DvORPle#w5xrd|$C1E# zvSG-O)hy+f6|qzOqA9(W_>PTMDl)(E7(iaj(I!lif6_18_tS38ACsxY==xs$7hS6H2*hLfi9;ca1 z7aCy~vnjn%l?2ji#7jke1RS4{;e65JaHInjSY%$<6N*n*n*%F7)gb9J>5v51DOpRL zUFD@|fAm5B4S%Zdbx_svhUS%c^N0OF?0SV~5m<@~*>MgF_UXLsFUjb)q;Gr7Ffi)t zGass*BX!id52}cY)|^t;glKnGQ^eIaQuH9~%9y`pbphSDj0vZQCF7-A?}*%`#9Xrl zoC}&lPmY5pMe@Lh?J9`w1Wt$}9xaBpS(X>Pe^bjubnSU|!*GU5rFgzsPIka#qSb)0 zQ)397rsAI*O!E(_&L^nfTbyCXtU3DHNsy?De`P%7^{Z_sLVs<_5H;FD}eT`623JK|4q9OK$;CY#KMpB9lyX5hl0%}XkvL0+y7_sF;p zQ!MtYVz{!m9IPs_K{Z@DY42QmG^2HSB-jtn@^ZCk&Pi0Lnx8s8Vp~uSVqh)08l6Rp zX&0L75YvQ>#Sl8NiX0~_z8a1?;utXpf2Y(#`|bL9xe9T8za=_0cQ}lmgGE!{MnL&F zNW)briz@Dtp=6$UWTYqHX5Ka8u~E!Mi?q_x_%vfh&U7^iJ?(=LVUK3tv$5h%z{d`q z$RFgsuTGZCGaf1V=s{Rj!&y)!C^amLTq1ALJ8%2Zo0|rWoavulBL>8g`f=8LabbKS0&}waElOBROJSDiMlyYG|C4YPpS#epFM~f3wlhWvd)N zxaw1Kb|YXKv({VIw-AZ7d=Yu>jj}IL0yM<2dc+dIe;HQn;JJAsSFw4P{^-$l=jdN` z&&TdpbY}5o%=fxA>=`V+94@@<2XLdIup%>`Yy1znyd^?~au(G3{gHYg&BLlOYJqe>yjBtFQpJD-L^E z5c1^*>=|*EXEF%`*=!Ym;Ji?_b#!EirxT{Ya1yn&& zO+GBE-^l9ij!w1f!dA~?X+Bmz6!_h32SLb6p@|K^fbse-(k65`f433gv>u}H7uhNK~c2N_Yu-M_DQwtPr zO(2ZN^v#+2lEMBu$5kbYuE8$xUKchHQ-;Ct@QwT3Diq^Be{_zV60VVE-4xvaGPYJQ zCC5BepQk)3O-GaMw295=IvoZptZpC+m*O_R1vN&ye;QYXKKQ6|$i^Cf*UDEfG0r4A zFN6ySYm5F23?7r?=l;~JiimRqs*J=~K#wb3nEUmF$stH%r=)~cWbX7S88KuWYBqtZ zYeSo>O^30Oe?w&`w%!0@wvQS`Bl}~)L`0H6qdFU1Xs?M7==g;4*7vTxNnyt(MU{Vx z_&0CPHh_O{NSD;=cQ#UwUn0$blear=c^AS`sjrkiauZCtOWN#y>@LL$x4SvLKtCSZ zkT|55DAs`h$2w;b6=V>uL4N?|fdaZE7_Z9A_%|3%e__JdFbGXWFUNS!_0#yxTooVhPHH`&>Srz?t< zF7h;MKu}xmyEtC?0_ibo145Q0g$1PUkRFA5w#|AE+?3JK#lz+=|d{6Y0n zlS_TB9J&{5f<>Tnh_~rl@wwf;oYHlrOVc!lCsqfVTDhp6DojWgDx0{vbwJr#1bSOI zL%(43?D^b&^G?&vyidDSAa{xJF7;Iz7(*qse>m}E84;0Jp^rK(>-{A2OF~m-bcbC4 zN@C{6WE(F1YS@*M<~_#PXNi8_R5&dd%d4oc^4Ow+2s+PGuS5KXKtv0GIUbgCN@~5b z#@aouZ9?X40%M+o5YO_n7GDB-jl$VO(;>MU8$F!5Q_0bEnnIIeZC+7{SN$Z9qEGEo ze;vB>*S)t51uCeXD7V%u3?IE_hLHGE<0;$pDbeBth^_3N^VzP$#wP?d7__dYobPA% zS~gdK=y9GDwn=qVxD`srIx0wu^+9qY{vo^ald7h{KKaN^*u(Z|OIMjl3LK;!yz`6P z!nOjz<6(lZ_Xk;=Ke-Q1olY*ndaird#CGz7E!Zky z#K}e0g&n843PgAL41N=Fq1hNPw~LfujXRQ7`_w)w^2SH&ciYClXoXf(rc6}H4}S44 z2bDEe&&_U3u_xTUajBfU7p()21O1?2s64+s)iF;^^=Z_nE=SqyMOV}69Uo;Uf9E%0 zFNfqOjw^jpbjIAi!;Zo@;!f3MRNp*u@!} z6s=)VIXD-IZ5Wl|TG6H)4zjoAAK}jtrIoNvX}&gM-Xnx?gL!&-e1l}PRODOdh_}czNHxL*NUzpQ;q16~PY<0Y zfBGIIqa8%(*Oe=z+0ol z^jEmtM?KE0yXVg9>S~Tgpx5c_UX|q%hW~k0;SK4dl&M!(f2KyRqj`RlN^0PUlVx2- z!$+0H)X~)#>EN?I_2o6Cgt0xEyVNc_6fJbT*W^yy$n7>Ofl}VF@yhvj3&LaYg;(HL z!8c82%%TEgb7J)HaFq*IAKu|RX!oNZ0fVw0JrfxySsu_5zZ4^H*>5#o*)HD1+1Sh( zvf3wWa z{{W3yhgiMPB~A7B|u%%Kl(p;+S&F7VhYX?5%7PL^K%Jz>k8WmWjlo)|ejJDyN5 z#-&KUQqr{ukzsCR)NdgfOWt1$rWC&vlcL8j2HTccFU90 zNfZqAf1}zMZY;%r1OLul&#L5mgFWCT4tuwZNfG?pDmdn?Y@y{L#q`&gsGIVIZE92O z2s>Gm`@?o%kEm$O!wubiV#hM6a=%|WL~BaXsU&>!>VAiCDL(0a-tk3qQ(ilKHs|BV zK6pJ_K3(H3GGP-A(JaY2v~i7)T^`mr-W5A=e`y(FJL3Qex&ACPd){x^b6>mC-63?o z23G70?afR>J?e(QkU{z58uX|H4Rr15IlDvAzo}2Ohd(VvHQ|k#T!eUd+lejh;CUEX zR#ra8XXiBZ&+G-4q&~V{q(@m~rFY<-T(yRoec7sm!!I+I*b4scS~izMTz{%dQ-yS1 zf6{LeB9fEku#BW$R^UF=Sb9+qul zijy_bt`d!c!(`c1Q1Xk)J#)tE$Qy@o;kP?icnn{`bNHI5N()03?=E^{XCxf{u~F|= zqn@ySrmX`yV33aXm=^(-8`b!;$5-iGe=`_ZiEqW!zs&MqC{PS`M{FkeHN6WRgL9oq z@wnMEy$@wp944CfTu9X*(Wel6ZxvaUbgD;ip>bxTD7?rmPQFrQ#=Yfx=_o7n-)NOK zrVTY?M}GUL;v}UhH<>6}wG4-CU$=+uTTe(^3EG%bLiM(jb`!`M(V9(`ZFF+Me>hF3 zjVkw@!p~OxWMWDTIn%VL+(w-oFB~o3dJ{u(bF&rW#nVliSjMMdeQD&sRMdtYkI| zA@iYVVymqSg6R#ml#Yo(MM5N_f*(?Zy9=_>nqQc7!gSsoNTx$O5?S5df5MBOdjn&T zvEit%@%?E$wkpX64DlM|Xa;(dxGOF|$@|P6m1s!pw*29Pa{q6MI=&b-Z-T`-Ll^wTL%OUd$RrlD79O*0{%Ta z87v*(inE66X;&GppRq?#oa_ZA?rL;$O6K4rmW&L!pP<_i=f*gaZ5|clNZXU4Of0mC z?Sk1jtLt#NVV9 z?d9qUrpkb*LmXEyml8`8RdJ~EOn+rUf~DQPfHEpwYv<$@U^o@C*Hvc0OLoBW%&;5- zQMmEyLZZl4r6(A!>4oe3qPBWDX^C^^E7G9*E+49}f8|dvh%I393a=A7hR&OaLV&xS z(U!`jlRuIrA{!z6NrT%Uk_8rP^Chs6Z3bg)W9>2A0W+Wh-EFXy)k5IGSIwyAhn<$8 z_Ec@R?|ECPzA4($P>3q7b&WXmQlleWvaE7SrY3<`QHLMW?Tzvr?O>$m`JK(~6I%27 z)RS^Nf8MbMLEC{!!o3rFVT}CUdVs3P(>)zg%w2)WBOGSnW9RP0XqYCvpb&`&jsda~ z@+>Q0c4CeCw}M{Zfb(-nnEFIV8r#%V5;CmcL371Qb221>&=LM`MDtE5V1>ZgmTxcr zfQ7|jExMWR)8)Am6FxcKeM4A1Y}e7!H`p$Ce?_>fXyJIE}|2U=dRqKazSWE_m ze>N7;qfwGux?11qjMIp_983OoLHC;)^*4@5aGDLt(uQtFMZA!>okT_Or%+nDjQGO( zkFdu`L646}=6;P=d>9Lx&H8Mmzl-Dg`GOH52UBCdk)pHByp5x|sTwgfc=C!LIKwmR zzsU;z<`q|ezV&ZXJTJhY4h|(80l_A5eM1g;6AJ@)G6hwC(l#wqI-^P#^ zmX>yu;GEe}U1~ zTW;lg*2rB!{hR}rc6aJ;Qx0Cvo(4sP-{WmD8`y|eU5+1`Py7lSCnXS>Hn32JTH^R>n?metR|U7hS5W?Hkj1 z@c6xTwM5FDsYRd1sR{T@CL|5Ef9L@dGyt~V?xb0|bt8vLskV@~J{8aVXe{2$10C1s zn0(5hyZl(1P(3SMqv_w6-6OV|h`(vfI&q>eoHyGtczocivS9}0VE$s z#`aQL(NkIYHJ(3RzthI*uz0TuXzQzJDz@8JL)|0ftV)SLNTgVxnFaU1^f|MQ^e{~F z%-5~Cb`)mSzZ{43xdkE(X|5ETpz>a3Ue#U_f&6^~H5v?G;-4I#8hr%%Gh_^H4Q^aH-QDBcYZp9zQwzwQ0{kFAi$!TkxF-y_(_i`SkGKdYqv|=d1 zR-g;O&LcAmADeGjf2ggtF=rDW3_F`jEX3bu3sKK;s@v!!qG}Q|xZ#$4iJ_GYHRy2O zvUxieM{4bif9tjhoHsi4Gx)a4WAcU0t_qbjx{BIA0hm;Xp1OB^nyLunuuI*U%+8o7 zbnjecIN*e^P5xGbvxS2QJ807)E~Ly7b=b4MU{ef6pRd-HCiPmK4R4>KviI?mmLYBojp9T{~=?pKeA5H|CVA&NkU+Zya<5%#gqY zNlu`=wb3C?y~o(iZPRjKTLKk!Bn>$vtqJhAx(-TGkm}^Q9#mJNjLaIDhaT)E!gry_ zU40cYB#x0Zf4jIz4uZXCQ%_rko22<*?>gb&A{_?}c{PhJ>aN_cJFV^Epr3(=U|UZlAiiRQ(vFka z=$eAtFUdi|a5@w|@(Ipt(N_fAT@OEzlbib!n^CIr>!Vn;N-k zSV^g_DdE;v6d#u^?}#m=DP9Jk`Y8j}dLK!Q2?&)(>kndbXMQ}0j$IcU9C_$P(cyDX zZ4N%~Y3ts})4&xvF;=9Fk2sdQOm( zw%w-#$HXx@l|mD9X26KQNhW8efv`f0&93J3IvjBNG`;qi~TDo0Xy-Y6`jz znGUl~a_w|vcUGlLqpZs)zzmd zE_DYzMY#RbZLsk5cgqpdn4lZK_mYN4L0~qD0e;+;!j^4!Zy)>fLRuokgLPGB_$CO= ze|+g}YyYA0LHS_H~Xra4;Pf4AKZA*%uWBjU99$biL;6{5*KRZ4Mgz&Raw zo(5Gtjmh%Ya=N;9U50DCMlo|9)|hBk>Mwc9ESvre}q9OffX#@|!CM;3^j zmedYm>P@|To6TXx1bt&~E;9Q@e0 zM1l|S@bt4eoh;E}#Zq)VlC%P_Lt`w=h6wF+R1vZ`~ z&TGg79w90X2>sn17f@JcCBt_AUmNGJU5SDKz}U8(j&0kvZJQn2wr%sqNyoNr+n&|i z&2QAHs#YU!yip2bb(wJJe_?}+)8YF#NevAvL1Nr`Q1-*%ge8|jr%ytzuPpoKuh#8a zgZXo`->mIy-f*#fU0^B@E9-9vg#x&W=7BA5+f>pp~AzN zOD7%e^f!`$O?6;p>?7v?D>y+A_LGyphx)JA$+ES*KycdA%yQ3-QVKggdEejiP z(f<~{gYxb?Rv#i>{>8p``FWvsGqXrWx_!m2xKb%3Xb`a8M0Y;#DZi<}33yCaXKV?} zKV!sex+~PB-*d$uOG#0VwVfv2kp-GyD?PPf0TlGsKL&f!f6?mkqeVVtKH5>Gg%uzo zVDBIFgx*M>lop1yQD$hJjucTuLvovJSyQg_a0HTcP6>|UO|2LNgX7ueDMD@3-QQ}Zt!w6J}c5eBEl#7;QyHb95oQ;c2{;jFRfcO~J<9+0-sx`mMZDVo2v?jPUI@kN+SD8v$M zG*-uNgdAFU!dK0+AA1kGEcS3-0reY+~g8y1!BTQk@ zTZcmAMdR#}&S71NaVuIfii$0FpievZgBNJrSQ(vQf3+O}N+} zFVN)ZmA{!03NvgW1)(SUO=awu5`ySFdo=nSvIy#!xAtB6PuH2)E^T~L>5p{oGx?~7 zKZVB-zkfo#<;HL;U2{*0N8}M=w(HdX@;IUHJCCu*ul2&XS-v5Om4x1T1HHAGp&1G1 zOa^4Le-14z9P<+j1=)aB6`uGMI|cp5^MTQ*uMlIez?^Xa?)4>Zg((UG8f`}u(vv{y z<=O&0urH+WLd4>PPlxyFyng)#@o*;LxNc@lzq{T=-M*cF3g6lbs^Mh*yV7pfA_kX7 zf%X7rjqxfLqG(oyR;8P4ZGMai-JX%D%lx*Be~AIL9rB68Rc@EG2&Y*$hez%uVnFaG>i&D%Fe4E_8fH2%~VHr@x? zT<;B;k0EkFOloa2g!IE`4X6hU5xuKYJ{Ygh+6TR@Yi@*Rj`AJRkEm@^%DECw;c(~g zd?P{f3*u}TC4ojm;lJAAS2d%UWTFK2fBq!_oHC80gknh>5~WTJuJ%YRXryRlK{ zag;$K`4!lpDY)$1z7hIMkA^~%IFC?Z#Z#>Pwho<9*P0~gZYpmd6*vp$SmMh$f1Q9N z%eG0#U`wP71KBg{7088mW9Mu!5v~+66NQ!##egORB1zS%$h;YG_cg?*Di!c~<2eEH z7-5}cEh7{Id6Biaze!tL&CiCzT=+I5jp064N^kbP_4~ulx{=~mzoKKkp94ks#?s2Q zr^^7V@U{~TCFA1$rxaKs0_7Xrf5=A$!MwYI?axVCLa{HgH=A5+3f7bgMXVxPfgcmb zpq4My{Ho!`goSYZ(_?IKx&n=>^CPhWUT`{TN8|p7>(SrfWXPZ0pRp%4ckh1a^s>H} zLq9yaq|3(fWv8x3_sihfXIJNkzy0&blC=6{kauFSlw6FIe;sm8^eLF~ z0~JKbs9JQ>dp6A4^b_ovO~EidTj`z9q|)@WlRUM&@J$cx;A(l zin#bAwU{TIWrH`t7=w_*Q%_u7#n&LKIx6htp9x4#X+d=9X2;RKGbHcQ^LO9yomI}4D3~!FIh<gXY-5bbXqKOw?v}&@O z9u4>UNsquvo5@*Ij44h{k)%%9nt{5FSg;$5^)J-O>8cx-vJoRM3lm^AYK}m42ijI$ z@7?Uo@;K*`BQ+RDO)I)TDB6p@V*uV4e8=#@dOrx0dOU_Zl>v@?e~ADeZb7mtu@XF; zc$@RVW;g`(2x!Qj+9x$Ee^pO1sv-hvW#}AxH;*XxoYOi*xq=l@Fi%v4n(m{HG{WI} zWJl4}*+d?eb7y3h$F*RLbdRA^K_m7SR?d~kCkP-*y7u1bC*z%Wc4Hh?YZ&>B9~Y;z zE!)y=LlSnhAm_h}f4%8;QYL`*r52|S2Z*Ij+R^w1vNgas4;q%I6007FfRN>NImIme z7k96-0pcD(=gX>$QE{05$-w+0%5>zHCD!*>nFtvDV3I)Q-CsWhrf2noJ?xK86~m4o zKl^@Y(a;55yTQ!>lQ4*+wGu?3a}>^_Wj*A|?O8hia_@tDe>HpXyM(oqYu-lT7HH>K_$nOrP9>CN;i`B*#R=O#+-log2I_<`V8PZ46bQ^ynsvj~g_gsse zp0V1PFoJ|*W_qzJ6a97IB<6ptiaK1HN+xcgWq))d?CML6S$*fJf1D3K(g|VxrQ(Y> zgy&G1PqHdhf5dH_jv*TMiL0BEQK3ti0u^+VZd1#+61vy1?zJ}j-gntgIUy*tx09)~ zvkRH|c3?MApzP);jW+hJ2CPiBS@fyylW~CL+oJEG8EY3|A=zmfY^u+iX~GN_+%g?m z5n1UazhVnJ@koHL*!KRpAC@A!D4xA1jWB_8o%qZke}T-^vXEFV(~XId9V4Amt6?@3 zW=U}-|J&fSSWzgy8cgAieuw+ zPzZ-}ce>hf zS0;Zke{b3Sz8EJBp|s?4SK@rP6MVD{EWaoSP!vc-f8CC~S*&eDwpRe)U(on8rYZtg zBXt0++dZ2D&^%)(SI?p&$Y-X^lNOjjjT-WVsaW-dSwspc0I>mCQf59pn`Gs5`{Iv(#62~FxjA;4-o_b*1 z0l>p7R=3o**hGmq3K_L-@N3D35Hso-6(0-howyp%JE>OQo57?K@&5vhCCghK#kB`D6N-G2Zs?!4XKuX1 zi^EQ9Ip;_xnnp=L6o@@sr^|3`bz;?V&iG*KJT`b2wLl*HQa3VVJ+!5B7QzLOgd92V zs_GHrxfOZn49j>P@E9K!)iHNF%a1IBe=Y;aEBhEEh0x@6APzMJbTgfikD&L21l@z7}(v^Q8%=1G? zj)A4onsTVj7n6Ulqpyv@gp&$I&6pNNiAm z1hq`p*V0yAnF5}`d2YuY^e`2aDM8|o02+%E<4iE|krIP5T_2(?n2~8X-6bFDymCyF zDOYX+A^xk~+h8#?r3Dzr5R8x)UZZS(K;60tccN=#=_DR&JB(R3Y1C82f8MLO1y$9P zTU+?!A7rvEO&`5mhr7h<^h&!@x{SaP%b5t>DCC_?Jf6D`@BQ@v|HMOF*MY(X6POdV3a$&mb9IS#g_Axyfu@%kWu5UVsb z1fiZ_-na+;b@V=hW{ueme=4Ns0FISf>C5!rlm~+Qa3q~#8nn!l-m=JUlvG~Fyhcf5 z1C$ZxvAZiLp-1D5D}bggz>g5FMHC>{D>joGPP=5MB3~5&$}u$L+b3$R=Pq&b(@J?t zg~2_uO6xSooE6d@h-co@0+|e`y5=l#^69>JffX;(dMiO(~Yf6keA^!igW$kuVW zjqxc()M2N{cp9FD?>t9~t!tj=MGJq2e|?EjXPU=5J|7Nze&aa{bi>zI>efI>X!}xL zQL)EgDmgU-ue^C-%S?^UM2HcESWe+w0qO$t0wk_bOV%xTD z+qP{RmHesLwr$(CZQHJ(qMN;MySJT(vz}L553{YOF-PxTj$tQiWcjd_8D}1_E*i2A zEI8j^9&+!PvPP?C%0N82wdjXcoSgHcf&eril~0Vqf(OnvI5kx3*wJG< zYo-<`kKEsuCeeYGP#~6>Q7Ngvj+WTvAK0^;!QlXIbs&IxG8z1o{aR4m=}I;q>oulK z7*CqW2jZSK!5wBnd4*NpETEbQAmJg-f}O2fXOO9+2(xz{tVK#8%xMiPfph~^kAx@7;6U@0^tVP z#LdSb-VFd{nksPycRo0NPoW)F;{iNNq>% zU)K4HfJ%DEcbb=(DNML7bU4}8ib&_9`Tb6(fV#Tm(Y!!EIRfS!ra{!X8R(?8+~QQ1 zvUekjZvCr+oWQ@C0FW$vtUw)z%HV9iC&mJ^AS$dDJ5rn*3V6Awa^YW`SaU|DFPr&zw9# zS_@u3h!p-?%R=5w!Q~!z(~1|PP+N#JdtXn4ciGgQ_dIs*eze#WqN<%Dpg@`rOc{6v zo*m#~+X#p_GR9VE-BZm-!}#FMad(~!+(~G{ol>pX!VZO_`|>i^{Ni{2i&q*Y7iz{_ znm!pzRaAQvM(bXGIRI>~%%OXWbF$)BDmv$VI^oiDu=Q8)VWXb&jjCOhWznZZRb4HS zK$jALP~O{bZZmfZb=FYj%GGSb6|bxB7YuNzniAzQrV)!Y{2uy?h{t~6Nt5X|qdi3c zi-gH&W~Ys8)E=CBzL;g%tj~flmKm z#Y1k1+jXq6m6!fJyTt8wXlzwPH~24?qwz-iZ|>}JlhVdZqPuS$;m)R~>0FkgvIc-P zU3t|b$r)=r^63*VtL$=TBLh1}5=lnVEg2;cR75;uRocEGK7#q7^#^u+X~rxD;8b(xk`-UxB73vmRO6HqVJo(Zeq!oZ%!ErUciWvhQh6| zMG})=yAjkz_zLPIwyx%HX0b6Kg<60zN2B>oO_c6syyYE3iUo(6wFO1w#T@LR5@hV!R7!GhS2j* zSlWweHEtKBMmN8nH_o##={NPr zo0O6u-4LvpO*4VfK)Tn{wvYi`RWJ&xkbl}UE98uZ~ z9-)}eY{2t9iA9(bM=UtzU!={wko08cQIb0Tmvb?U=Q6nS>?{i^DqVo4A=@fB2>jao z%MVpZ4Vx^y#__?%8@i^u1iDSp5NEh86;Pj%672<@GMBN!`B%I;;>CYu4J4e~yLi~ek3#@>sg;QcwU$0xF`FeW zd1f|V&v0^YFS||!+f4F#SQsu;fJ0bJ!P;BE2Rac{#DUngQJ*10mpDyKnRrRVNu0`R zFE1xD*+3F7Y${0DMMQM)-14d;Xk38w5GGZ5=Cv_PQXBR8cOIR5NH7_#n+<0TtVwK*+Z{U#;a}jtKc${F$MMh}urdb@V zOGC!*>ZGh(I`cFN)ScudibE&K9i4_^PYsgn1GXF^D*@p74 zPKaU&IkTs4lPQ!y%g^Sd!AQ2OLoRoxf0akuEu!0h$Podc0oGU+##*|x^Jf`S5Sr*W zct+TPW5EDhA6gd71py`2TZ?n-*MCg8oJjtaHq^Zpw6WXq*;K0gt;X?(@RNup0l&{P ze;lm4`_-H7n#8NolskZ6T%WsgcMUz7@5<{KI6%`0nXAr=z8Uwgczk535R@;9IOa1nw#`-Q6uh7Q z_q$aAi>nezvtzc&$oV`s%l%Pd|EzLRQ%TAFmOsd+ zsZ}ZJs0;{`2XjJ>U6?)imCSMzPe0DZ6S|gW@z$!Tn&h7Bv8^cb5Tq)j*EX`3-945lT39Lt*mNk98>l>Ed;R}Z ze$C724a;Z!lad%S^2S+=BljT5Mz2~$_IpTIx8Lmz@M%+1a3yU|v(`wc{*ZbOkJJT3 zysc9g`>6HY;yr(UrxAlxbsMh|{(H`xlfS zHF0jJ_>PBeSr{$jfM}3N%qm_;)E%E9$r&-SGN9GEh+8F8y@epl3xB6%lQ2(kAC$f0 z1)1oGhijtZi!=#|k;2oASZ3A~CHRRu_vDhSD}lURTvncdF(;pYg2!Xz(r^Vx!b#gZ z7fVR`+&EuNbuHD`jk*&mSVZ@RtX17f0QMZOWqq6=;uTUBx6%rh{j$uzZWDUQwm~?* z$JAh{%?cZ0q^x=_wiw*Dz+K5TUM=)7Tol50PS5HFu55W^ zE|PxFuAl;ws}=@(BFC1g0%&tQ{e-kDuo$wZb$Iro#Ib1aWve?9`kBJV-=Q|~vC4!U z_TO6s?fy}umNAd?!E^zx7PQ8$rHG0CUxWMBFg`FCIgX^rIZkc;YbXF6$v}6FV~$ik zMpd59Q`Gr^aKxVl+Z!mlFPSk5=fBA)`4-4kE!GD9&>WLQjr#sj9C6lKbr>!K;+r|* zY~?HIYOxWn`vIPI5!Kn8h%Dwa@jj;81C7Nr4Ff5YDz0>AS?k<>mP-U`MKj>W%=VR* zVX6Jo(wrlQt!r$CaXbmAgZfG@A z;WXs!j=qE}dtm_Qi%xE9db%AT=9blMu2pH#IWKCGJ>hXZ0wdS_!{4a2@H_c-BZ|vD z>2Vlp6L|ta3uRRcYLlC^^^<`kp~}k+3qj>|mHxCOlk`Z~aMYZwy>A_1Dg4Y_f+f3F zC&3!Cj>)9>z8O$|{I0m3;N+S|G|)ec5jm*Q4IGNWjmtMT0op%gU zqzvyCZ~#TPq|oBC6%BwLk%oV9X{+a92{N-S$HpKUuh)Zp#Pj>zJRS{V0G(3G;*uR zp9wBGf9jnnjZbwtGR24hyJt9%{>{NBhFT&4Es0^%kk8NTuG^hBX?BvvNp_H9{7%R0 z(CH0tl=0@{1;y!=WIGsntvp#WtWdxFwSsJ-aS{+?NZChhYaTWsZ7=~EFy6%kC)hq+ z;SuIzW@BKlaY4-hG(!l&Qa-c8UWS7fV=SD8^U2Xg8^PmBJkv;6LcI$9Xnzs{!cMZD zg?s^g+(*<+$jun8OR!l2UGT66)#%b(mKOS*DjGv%1$E5woS-MrZEQmJ57~g^*M2hv zPaS~D%y`96(RiiipHYkvB%#oz;v;%ig5Z#OnLIsB!97H5BIJ6`3=Dk%58`f)Bb6C+ z!j3Vp6XIR^U9%9WpNOR1BCno;&F_m{V1dgqdQAsUP6$LlPa0Gk-dfv5L)+-OsK9@`Cq^o0 zUw+*gsXJrf1}-*yU-#o>o_Vs2mhN&*%z?icJnbMWT2<)8$w;H!ifWKcZ5`?Y+7t_( zf6L|#@{k=?ryq+IL#qG&b^$Rw^lvr1R(Mw#F2O^+RrRwba1z}>Ek*vND0^^2EE#}M z?k`$G1`|>1;v_zK$ua}_3m9F&4xsru#$*Z2aASm8=?dVyoE@o&00%5gP zpOkgudHsZH7znJK{Yo380N-yUjuFvp_ceIirYyAFBB*7s?Dx?RD|jsWubtLB#Pbp# zs=AoMa)sBO15Co^B$-gq0E80(okKvHP+m~(PW%X&5b)_y+o!{?s1rPqC56ePT5L%y zpQtYpwyoxmLG)(>O?21cOUnI*7V81cgVn!}MPOfyThBhw2#ORY{_r0nYKC}K6inuXBc7N>FAV2tKwJj9o~Gfj1Jh7S`FNcgb7or znj+6T0C=H{zu3Su13;bPxNl^~Z%q=bHxi#yrVvTCK3io9I&$Al~=CT-L z4o<-Hu=&tj_KYvUsj3P#5i|fK`g-oDazUl{J<)q%|5}e-`Ki(pPlZp|aPL$V{7i*w zB@MCCpr##i5T+GzB(Y+YQ%#Ov^KzYCUv$xJQpaK(7~0SRJ{ko;v0!+>U% zI`fDZ(hrPq%{Bp8_I8ZN3eQ&yp#)S`bkpWsNN1p6+)=-Y~P2Q5D)}QbhR3@(BRcEyVN{FYzL0eUhWP zn2^j=s1Kb(YL!Ax@*}g2mbt@l4?luFc=k<0XSyDoHM6ug2%{lPdj~=IoU=RDUxp1i zzT=(XEv*NNJE2ssUaQlliI6J};tmqLauRYQun@%HZ7!=`y$Dg%v?*EEOF`!p)Nc0D z_3NXl1*g9hZ{`9XW7%{*stJFo_D0{XOkbO;S=((Q+vfEL|2vIGKU7$J5j-q9@<}L* zg`cm5YOhpSFPanJ$}Yc@zBXQf!Ca^2x-|R*wQf0>`aStLGLmqO)DiSbgBn@$-WOmz zDM|sQi5#`UmorP!qS-xG3)K6`&hPi38I~X8*N{&_58DfXpLf~BF(uY&LI84ch*_@O z5Rc$w`5=PH)jYnbF-YK>&Q5lp5QzCi5FK5ZHzy+@z?}RV$v$MmJXoX*U@JDw_IU-p zB>9L57Vt+fx}O@+(|M4)`--E;6zjFpPD0qCB*QEim?Rz!O0;i>v(Gg$;#PiVV({Uf zWVF%rP-g*{vgq%yG3r_I8|AMDpiyH}=LQ z3@yQT=-@h=2dl%zKWMD=twNC{7n?;8%$GRO^50bC)z%b{p}JdU1S1uD&CKVCpFqHy z$(aAHsM({PC|x3EZ;~BD1=D7a?DxLiA5ILwCe5u99`DeLSkNUc04s*g@*aLPM2tpe zWRc!!wo>5k2xB%b$=1!9ClqQ}hf#p^H2QES12ag`Gn)8ve*@O>L}dmZfnuc?+$(WF zfw%Fz)Ev$Zci)qRq@%xs53}SV*$p@>GwUrW{ZJGXfr0x<@?gcKfhiCn3Kq$+bJ?NdR0<^=Yy9V+7-Oqv{`B?uI_ zd1HOV=1TSVHnG+8B_^MiRMYVD`-s?vduoIUOwDTPEDC_9SintBZBh@i^R zTCcn?N0=L;lt0x$OU~!vFH(Rw&$!{YL6{yb3`WhUsH@Ptf~GaUd!ykm1nPbLkN?HT zV`cfT0EEoU%*_5j1t2Dl#6Ej;Fm^V^{|5lInMkw^Lj!e?Pm$`px+|{+%yxiwVhB6-hJLLNkL)`(I_9r(>mg z0{u8lgg^d|Il4DeTr`z`@SpH-xR@;6B_zuuTc`#U7H9AWAkJ*MAOC0OHarFhfKEItPFDdc*n)(+BA2&y2V={@w@zqLMI5A(8Saj&e^4*1q^dN9mEv#=m+p2Z1pH4^M^KtU!`Z_7B+T{8q?)=@U4AIIteD-jF_+iUOS=qux#d0aSbx z*j&KYzm|an&GxTsX9vg5PEJM)Zw`*8fSg$^>RR6-b2EaAQTpJHEa3p2->zUAK;PI= zk=f_(KL_LgO?_t}1LT}SF33Z%mrDvY*PGRHTlibSyOrlVbnTrm>wBr`O@s5lAQ1b1 zK%nFQ4+3TVaTj+dzx_GC8G3o3!Cu?jT|t!z01_C8s2(of_fy<=>*T$F-Itsm*i#R) z9u5Nm383|Rn~8)6gJKpib<&$^2h!lu;OgxDPeY8bZ)ySjHMDy%m#?wueUhA^ija<| zrb3+Ig`Stk+iULK^$IgSp$J zh<5k%2-f+@@Pj~2XYcTw*o?g(Z{yWl_qyN*61%ewi z4M-3IXl{Eb;9jA!H|b$?>SOeSAB2FxCyuXgYHS4R%)|=(_qYF}GqdwAkSshse}4UM z*AI>WlM}Es?F`P|$dAvwzE3s1jTu<5y|2`_?D1Z`@77OM0G{&23yL*#L*qSA8p!k> zCIC%v=GHjx-+w_M1}KdG3j!?z5S{>q{{ew`zj$r{!vFDrls^R${_6q#`SE~e$kD$u zE_$yPX2fp`Fj`nzfqQPp49NcqoQ|F7)!nAX9Ov@D2+mH8e+l$>&}C?D0%vCd;o<_? z{cl-b33_e=zX#F#%F4?~0aTUZ?*h(mG?H60V5Zhq7Vw5fr$Cro+}K`yOx-sA!P$6w z!yoi!DtYe)#K4TqYk#tKRe+x9XZV3w;z+h~qmK+B7@@zJK4F|dFvY$DIn#lnkO3s> zK!s2Lv4JQb|6>D9d`9n7j(tbB0Y^oA3+djnC4Y(EvZ;NG-+BQuzJ<1K$Icvvei^cU z;dHOEz9AR`Uef(-cTPVXU~o1GBCD@=-=<`5qvgJV(}AP<0D|a1h3mV&cCFI2I=&Xa z?U}wIe%CtOd$hh_X?w2e09}6}-P5VLmtMpt-|~$f zh2l2b~;_k-@TE71wf>IX+_TERhzPB&B>l-%(WO`rRe;}dK>wiBl zY+gHzJ>*<}A-v8k95TG_R;d4T$^LfJVfv(d{PsEh8mO3wA+*UWDL#M4`Hn^OBC(K= z@xUv2sSJ7B{`&fR`(p-G0>ACH9tkvvi3;B6KiS?21Bxy755O54dn2EGRkQfNlWiVq zDNbu`Za#UxaK77bfd%t;=D_UFDaL|0#;A*_+NLzR3@dOGvNHFJKx71E$l;Btd@Dc+ zBxpS%!6-G)b`Mg8lpqrl59S}`9$INuh!F;wy!343sH+aZDUD5Q`Nt2zFXtL2cc-{qHos=5IcL^B zVX=DrIABGyIS8wt;W42M_O`@1u~hwyDPt%08ZO@wPClHc>+R{N{S5ERM-IS~+xWh2 zPehtIwzbxT5F7&|H5z1`quh=j_fQ1gK!RVy;^JXa&!*jf}aTPWHU#-&RNMC6Q~&yfVUFu%I)1RkbM6snEY`y?R7W~z$I3QmZkYz8xBP5&mC&WF=~S2|FTtm-EbN5oiTZ~Dh3(7g2`} zD0oDKj}f^nl8H&Isbw|l%d3TiKFuiy3Y zg_)SW*Zmc*mpzUc4=t?2&;2ruj+fPr7cwMMv!J#ZNGVH4;a6rcfdMD{?0v5JItL-` zHwG~D05;8AQB#xQ?qjeWi4@Eks~O|tF{m5=G&6@#+LctxEZIA0Vy!Mj6$MOxZMop0 z8OGepbP@ickD+1LCPl08A8Fr3rAhxl4!Fc0xukBRxC)ycsCp1bADnc1rsm@QW!%P1 z;qUs3B*-GfHeif)(*1LD_V?v+wf9tWgTlenWTPVCHwhFSH#!%gcLQt`s%H;B6ZF-e z0FuMZ`M6`C4_Y^wwwM(byjFk-zsDbPZTho@GyAoFeMXtAjt<=G!g2OAR+v(ZQoPB{ zS^71Y(y8h)>h{FuVowyTYK-r^M1^@D)C3D4qgI8l^nWR>-2+Mk3Uo+lHC+2;=x_i^1t7xNuya5!$H=M#$3584pV?=m*^~)UL_?08CM+H zgT8leYQ3(h@!`rmEuSQ!<7olk!L1eYEGq(#_zh$WH`^9&INn?@*$P&)foH4GD7_u_5G;1I4%xZ2(R-5x3t5is}IW0TY zf!M@R|4>S26N7i@yd;y*1ZsBYSc^KQ5ctj_3KalhN#+qPv+fQ=N{;9u2Yu!Csi|Rb z3luR{izoCCqYz8NjZk4d;j{M8o2vV!87b4Hvc0*AlKXx!xP1-#yEhj$dMd-5C0}4e zqb$OKJms#Q6oqmz>xWA&lUup#oz9n;fZQp^vjFK`oGS^Rx`dWT_rVh(&5&;*qkf4D z5O#o6j+e!}HxF{>NY)l{CjsCcN=L@ACTX3IExodjuXu}X(yNePz>cjR|FHgg9I11_ z&&eu6w@UJZ9`!sanukvj?@*!=V)ZY$c5|0l?c5$174!-6?iF@UP0~T4rT~h53)s54>)5W|-(*#z9++9(R z9Yuy%03>`RbuOEt(5&vR2tl;yrZ6EFKok;lu6L3S_&hYcNZzMNsDsmKDWnD@3>UC2 zFSmpESN?m1A>um_z3PR5hq_JJF~Qa5r5l1=^oI$`> zT!ce4QYuy|3GLrPWzEpu6Y;xSMnUb+87Nq9@AHkJu^i+gTb^qG4vWLQsr+_2{hIUn zv$06qigz@|MFz1YlrbIXRXJi4>pmbs4rJ1$%L7GMRh3SndWmHwo{#}*BE*uCgvb?g z98bY;g>lSW6meOg&5LrS*3HcfMkHmHTK~Y01m+`tQvLa@Kz;=Qr9WdJ$tk|ecjS|Aj)B{by(S=ts>wr5KgBHneT z1Hw9XVmgRNoY9{;kzEVKTm!`wIOw?G1-;6TFrp`K=0x!dQ?#4)$e?2tI6-_$$>)P= zSyY3#7-o2&Oj@Ti*3dFe9({liZMG-O&#gdIlf$34&*xk!zg9pvI)RBUwFPD5$-w&@ z`41|0CFuPN;xx?exlQ#d;}M7f?E8H67CI41mKt~zg{gMpO}-j?nfK$D&yDSgh5lD< zUJQ?NwluM54IPeqmWIkwWdR1&T23w6Q;5P;5J`H33Ip4fesod5#~5J5660*{Df`e( zBP=l3@6bx&i0kVs;Ew4K_K37#uoY?uaFwhAvrUB}%kPGx?)u%B=>drd?zgN0QGzo)jYe)^i|p{Ti= zua%y|4Br7U^>6o0$t+;7y2)NfcdRkBJ_C=2s1zaSdNBz({~urVZ|y*iie2jLEg1>8 zL;Kh+0W=vCs-l9gCoDOhgvS@)j+G&cw=r=|G$p%|F8}v~K>+@r7NVT|!Ev0uRIUd# zC>@uZ14Hsq&92@`f6_HxxZ+xkK0Nx4jxmfZ(Q_lstD#QGTLHk>HJJP}MOcgxwFwHU zeGdHPJxvZTbi9eTy~p&%GThvW*e-KzKl{Q41?}%{Ba{5g+^1-2*j>?)WJD+K^16m{ zBR!$vAjg}6pa7=M9Xit%gMZ*mvsK{tfy-q~A(aI*O9v3Y1Y8FqnLplCZCDd$VJj#N z{ArpE)k1y1l zS8JI|1E(WdPVm&qINU65S&o`fv<-_}SY60wO*dNDs2`C3t5Bt0Y}L zN|+tPhhe!OMUp_aj%#Wz6}=?KpO)w{ET(M2qPkJ7&3FJS%E0r2Q<_Cir@Y8iE#kX& zN@_E6gUrWWC7kTO_pb@tYySAHxD6UuGP?+uh{rk~h>N+M#xf+~r(c-c>l)}$0z+6q zd!p5^iOO?fQyhVK`lbJDr634ocdLMEyS!Z)Qp4>cp}$F?FM0}1YbJTZxMH&k`%%4O z@BXM8Y|;P{e_OT2s|as_d$ZT$fmX2mL37MJlMkuQaWJ!sov7_KsHCaSj_XqhjWa6U zvAGah#DZ`X0y&3S9#xGFWax|NlL17OlZdJ7XwjZ#*5M(`+f>~lx;kEp8lD-%>kpX= z+jQIq`2{lhW}*H4xoQx^jlMep@{>UX(@zZ%;Hm(WS}z*O5QgNeXX&$fap2ML_%=0y zV~jPGY-Ez3L6Xqv*e&6X)?Vw~m_)=(FCRw9`*Fb#SLSbLw?+oQu4 zD@g#L&ihOuOE~gwt8~%V5^4!bM5a@h3VO>%D7odpKKu^|16JPpImW`qzmGCL!nh(i z@-2E*#x!!@i%jih%`EP?TGKru3GK;XYw_027NO1JQ$kI+8k{(u>wW29VSC|eH_R0M z)$S$AQCrV0Be}qBeX?!LJt>fhd>1#NM1cYOIPK9&)>JoL^rKV$9o17p7hKEw_`gfG zW-itiBm#e%T*tJ=QmHq^Cu&DtPo_2Wq7+3CQA3r;4bM}?i>AVd{Uh&^-oicFNIy{TC@de8Y4^U1L0sJsQ9{n+q`c%C!Qe@I42( z&K8?jqES-`?0CQMmVKCNh*H}iLYE&_IA}#?+|y;26#X7B9c60}0DG`6G^DGhIu& zjFgE}cDN1uk_>bj(DiqXOn|Oj_2?9WFQRoZVZBK5@ZPn$?f3GrYpM#~%aPJDr6~LC%4Y$Z{+yNOV5QrP9i=*4%2g#;9oeRddQ0^um zv&-clvnpMl$7? zJIhKDzf_7P%EG2TJy9DQ<3=q*n&fVTL%Kf0$rX;&zM@C zb2KL^KdDYT2voudFLK1Yc*c!$@)rHwN3s^g7`%FVCcF82R6F%K5kKM;@FgXwcMw9a z>IBp>a(M98NHmt1HpY~DEXa!NEXYyX_QDKZ+@@%xZsn#W(M|*jvr1Ld@X8}Y@u&u$ z^j*_wsLLii8{h53Clv{Zt!a37A;7ti7-`k1&&}S)M;dHIGnHBDyuNlWIE($I;NELEMaB!=;3Iw0 z&ZGKvLwD4@uM4PU3a~8f=(*{-e|LO<#nq2k)FHS*(Ec79h3Yg^=T59v3tT$}N~ftm zb8Ehf+hguGG;0AoOA#>~R3=ReBqof|$C;n7K(lEe4xK~DpPGxQ~5qKdK_ z>(%NWP#B;x7TKa~^}*vhm8^fnC1io^tswhESO3!uY^@3)FiS#_*CrW{op*3^|Jm;& zrmG@Oz9Jn`E}=&H9c3XE7**EIXLIH(%co)Mm6=-CK^FipavMDgVK4EZ79xF`l^mtd zANg){oAloZ(^ zJtQEdK(1qZ^S8w%EbL|897AoPwocCxSq1gu-H8lhM%u2cHv2)yd0>#+;nzHMU^FwQ z&KH`_8_cKZ5`>HZ^JnWZPlI?w?PpViOMDp+v3IqV(-LV!$1O{^0;)sMR$qv9-o7za zwjyNev}gPZ9Vw>Qz6I(zl1U)&^khW^0}Nm}>M6f8R`Gd)%hzW;^3DB8Q78pX6NPKN z&VC0KRK2(i31y`HT#N}hk&j?tlg(@E9XEjKPvJ~Ugyx7wAn*p$Nxg>_Sh;$MMu$$i zW>8QqOb#t?7t=Trrf{HBvjTh#4$6H}7}3((r3Gtn!HCz`niS3r9iLzBJvkmoLkx?1(f4EBv_Kd8koxd<5VIe z1L9!)nf{X&U6^_T*xTnKnADJouEJq-;q4MqM#k+%s!R9n)v^%+m}a%hBqeECq{5gE zS`+h!_GenfBJ^989AeE1JoeiRoHRgX!z_HnkNvxA^$HY1q+v*j3jQd$aL}+S&{1;J zdrp8y+>i^#0(B!qfU{o)ftnJUvFDQ*Mrn}2+;h{}wOgWIG4WN2!cJYH9_+ISKuw*T{i2_1hSD za4#^JH&M?zUx~|9WKTVV0U5xG+VwN&pLe+GUn}^^-07-;swc%M4BD+rUOx@nN$DFz^cq6Th|)bwbCyA^76uTdaLgKtbF>X7KHy08fR(at!)Qo zt23j+jwSngY_Y$Wb$yAjE)fCroIo?kc4GJwr{#L%G_ zS<*h=jHKYsx8Z&{Tc0^p6~rDo^t>M&Y{iPi^t3Chy8T` zrnDp7#KbYBc0xBtBYHWFxZ|hAz-^1jzmEHhK~JCaH-Sf-b`} zYu3vF^_0(xsp1h(#gDz`G**Nso=hr{7_7nC_}t(hm^-j1nrQb^7;}sC+59JdV%>YO z$@^;m8HgEmQ8jkWp`ODxwV>+nhQWukSJRDn2!o+?KPgKV9l3+6r-uQ}#Q~iY8~A6S zdVpaWdA@g0q_(~uE>l$~+@IS7QcI~CPL0xIAEWQ}*XiES+jMoV zT$U>#M-Hr9Q5mt$Ga(5UYP|r_4Z>zYwC-=|e$c-_-cg#Cdgan1Hg3n_*~dN((wb9R zJc}{eugxTY($Xtwb;46isA@~^kczhPO_Vy|b=ftJAIgGUF(u&rH92W!g$;?6pg=GD zx=}ID_slOF$GRwtlu=L(ZZR%ObvX4r`lfcJ`@vupl?vTpAJZoz8!YJpf{asmuDsqk zd>8~~86VSDf$0*9Hs910rF}aRjj8<-N= zD%^aR&W`2MD{azb3kFnJ$Nrb0p|jVY$&F6q_H{28WvGX=j|!-ktUE<%`32Kv?5|;) zCLv1zw*v;%YE;oK-3U1m#akWyF6u2qx-V9;!o{bGbHWz)Ap!iLjff<@jrOOws+IfxTw~KsbNl|&nME|y?!P1^Wu;8uSf6(& z>lr3oJTG;QqDnXhnNzFdBQ5Q9WB(X>`ypO{TC~weN1k$JU{ZQcz_2!XK6E~AcyG3) zPrsIPpy=#zUbZ*&pSpqKcGMhMUO$8853_B)Nhn8{TZ`2*9>c9>T2|OMwO<1B=$D%x00CTfMZnn;5 zI_XeJ=P_TiJ&&1&s`F?adqwFN^t$&~$$Vq@I;Uw4vD~JnZF%D5jc3fW1qAolpNUV# zvFw=7NQ;%s9f$b>{J9Z<-iszYaKG4d!1zRca^AklKK}mmGvo5ET&KLPDh795 z>N6>u_)ae|F{M16%vHepl<9-4noiuY_B{bReD4Q!J%iK4+;%H*C~KGWaY-fAl!7KK zsm8=#?F{@3QKyJcB0+^sHJOL_e|-}JAn}xy*vXL^POz1o_P{k-28!4buZ$c36BAAp z@XBGslHWS*x)=)II!7 zbs@CV+ZAccDttbjhmG{0z6j7-=oKKCRvBjsBG5{gz&jF6lGtYEp|~oe_hXl?lL@3%7c#eFz7S2_w!sqXqF*J!xf}-S#H0&e zgHzGNSZzIcSuZ0^n`DAx%@8>_jEWz~3SbssD5w8n%xD{YB<9$5+VIGfg7p4-W$-S9`LwbaqSd<~?WsFz zDX}fp5A@zL4_Y`lTPCq5@f3G<<-HSe1Z!Iw_Cs~flCSNs|5qGm!4u8<+V$s zjrTbYf69tjd-Hk7w-TeH33Edu^{yTbYKs7x+*9 z*_;&0vYpdsZW#u|mua>YDX*`G30SHsa}3VSlF7iDbo)tJ21ic-%br-Ho6X{)xr;wy z((uO4ro6LCkg1*T8wsBS3Wt(vB9I_>@wK+DRYk&E`{)8YB)NElky0ECJGMWm0j3K^tRs*1q&pXv$p8R)6JRe zLFd~xjd0?NcH1X)xb^K%(sLLCpS2SG+NLOwQTpibKHmEyXnhanCUIFB70uY~msmBF z$bD9WYz!~yyA~gFC@l_VkbK+QNC%$gcP_ykdu9QsLQr*Smn1th4|Q+uH4zWI03%a? z0`d{2dc@2JOHCif40aA6rXrPZlK=RGyI1*lpE$euXotzo-*#H78DBpbm$LfkcnBoV zZ@YxJow48~Yrv5**#J|qt+uLpP^_e9#Pc4M;(1BkPp^Wcl-t1}jZWY2x$p*CO_Vq+ zaX<{f2YG%lk`NZ+5<^4TUALQ-}1oQkX8XvX2KbPjrKc8#Q+GXt_)Bq8vI9QyoA{$ zxk9<{KyCsQ@rGNU{S^N4&l63GPLN3E3F{TBcWE)gDdHXW{=p93ljQ~*p?o!9Q>T7X1PPG|lvj17;=*zcfA|O|du>jyG=oruT zt5iG}2GX7!8~zgGddEprvuL+ibeN(L_wfP}+{A+2m~L)av}}rovvDZ#udIg14OkX+ zi-#-?jJ|DudH{`;vPU&We92M8%KKMd&N^i^&^zFxK4YR}LGW9vg-HPzjt5KLB(&^p z#Wn?r?a;f3WuumWa?gW|n-maFRwHW7h;VVIgGTE7t=^TV#$+!vexR4WHJ1B4xm$ON zo7Faqd{fBiD>2&p{eJ*lK%>8#Ue8P)iyVC>6JScu1mz<#5n5C<jgGt0l!C$Wy=}^{xU+FLN3&RymjGjmy(z=e@Vk? zRPVtANIUh`Sn+9*KejDlioYU)xW@s@YSZc#n}{wckuPx}-={{w6@5l=Leq`L&}*&> zZHlrf8${%BlNk~VCOh6MnS%0V@}jS)cqEzq^=wBcDbl137e&x7IZk48HkWgAW7Kp9 zl;hg^M$B;&^W!sjQe5YbyWeBEf4_KMfO>Zu?s_u&I8vW-gvb~1V6fU!&+SjZ=JWm9 zF>np^U5;b%(N7$jklfuFx=b}nhPq844iU=@z+MfG1nu#r16MgTCmULW5NVqNK=DcS zib*UI7MjQDmdICTKVHI|7Y6L(!mobiK&VSll;YD4R^=+H=s5`_V!i1Mf8SwKwx=Ev zv!mVj?wqAaxZO7Vi9D>G!|M^q6@Te~+Cs>W2WjQG8KgiP-)}qDcDYcSd+Zql>z=D+u<c-TCc z&!^uY`0+%1&9Xj@0OG_k@jy5yFm8?cKq!wO*yg)Ncl~dV65N33rbG9hsa4z$&ziAm zI8(kQKv)Xvl&e_(f0B*$2@y)}o`DFN)!=TmEeyJx-`v8#%7n0Vo&!QWrb3>vLHm3+ zyM$2~laD{)xr?_pD-0CQ9zT5%7W^Je_!CdLKpR2n?c9-pi*A)%E-)5S9^w6#Qc zLz|nzANEs3zC$s8sYM67V2Vv@l+6O!ESJ(DslSN>OYE{SF_K(G)qFfHi~M&PWPa_% zsA7YNa4!EgR6d*ljo`=Aq|ggvqiTUDbkW)Kq8_k&SxVgI)en)`5v;LYP~v$Zg$x1o zeHq=TVwEL3D#ATUsg)ha}za5h!H3O9_a67MvtoRtW zn?ZUE$ED;~;XexyKkt7KOk1Bboha*$!IU=4e|j}D5?VS6AB|z&2t|HrKgB+VctH`!M5pEf6eD&%LwR1dJcFJ_JCj>#e$(oYyDU-4KE@SwnYYX z4d5!aS|ED99SNjIyV|$bsz$+s`zZ?8ApQ~?XGzvo4$}rHM?AdnG*emY-{h$*tu9(V zf084eQ(2uMNlY4cA&P$s2U`6xW#6JITm<}w zW4+(mk_g>Do-yGLVWM4=*3mQ$Ja@-zIF4lqB`gG#btsd#T>35hT(`DA@cN|6^5E>b z01f2I2Na1C__siB=84Qma{fyT-0Pu(f9hDe7?DM~p7?3}q7t4s_Tj=c%GY@4-;emU z`0+|!l|6>gMoK><&3!NB6q3iL?uHgnau~qmTo=hRBLvz|_6IB8rILgSF6K%YcHKIq zXFGe&1Wysos2vD)ZaJZv_oDM?o`k!{1i|vS+y^DyC!efQ1fl9Djmag9Dl@8le>sWG zbybL^{7JBz5P^nET1fM&q0=#)QF>*3zDEmM(DSWg0IdptX;q&4JEKSWxS9T_qZ>x} zL7YXut!y4tfM=aijPqrGZ%dR}F`i^?QH(hF47k*TW<52aQkq?{q(rKOXryfeXZ85G z|4l{7o6RX_a6eVzOEY1G{wpUJf9?Xtvza6XF)GhOI~n5sdM6R~)50(sQM@9R+woG5 zwwQ8+UnvjAuNLPI%R!YAcvFjd>cRml)oHQx^k$Fr`O&kb5sK@Ng>My2c6tq|5G2vg zHMF#MbVlaid9T#_#Ay$rLPxH4#ZQ7wP`c1H!d|Ns_7@pEHi{b41Pf2{f87Y`Nrmxf zi~E1w-=n0$Sn0Cie8y3HpyDXCQM-4qeq1+9A2&pIc+>8NC|Q$QD-H75N7R17$icsUwJJSVZ#4Z1ZbheAy1#8`=uOF z*k2h#LGaow>IWy3pXB*)g-9)keXByqiu$0}kFZL0p~#RTdi_{4e{iy%(u6-2k`7}Z z$K6uL%i%Hn-Tbq;fE`e6!Fd5w`V$%S$+3pWtF<*7(f%hH7i;uT^z^U@AffwXOj z--sRJ+F8y%#eFZmE~zkX0do9|e>MC7R+XMj|E8;&jAU@S>7F3ce7^MQ!gZ7DEvdL; zo&x}dYD0Ua1CbU)f8I8r)EBVtMWL**Ztb2uF@Y2OB=&S79F3)F&9tD$W_&C`V3-*t zxr3$3adG;?rJ7uup?NL8akvBaoRTV zOr7(EO#b0#rNv2KQvBJ?BY5Jdvhf(F^7L|VtwQUMl2xTFe^NdpeR35a+o6P`sV~+Y zn5BU)H$5_+o{DO2T(WF3#l!pxEd2vfv+hNk;3o>Od5pfVy%?lZY0~@%l}o+hBuEf| zpL#9{W6t;Y{cfLq)GSj{$yeVUcJm5L1rY4YSx+truaPCqR@i8Rg=ikDzpx=&DoTK4 zed{in4G|0!@nGe{;vLD!t6<4@TD2m| z7!M2cF^GgStp!wZ|2IE`_M}!PjOSU<2ugymR7|X?e^RA=7>!HCQHWG(-q)8&?p*yB zD5cmi*deR z!7`7+rcPV#$r10eDom6|=)0p!k#fYR39*rpf8=t)!+_n2G+Ep+ZhSHI{F?|?QR0!u zJ}kKeA$r>^B|kZtJOrT5mVz|7yY;t;RxdZ_HsZ2r@ifPi-J4GqN!byq(3VE<5A5<* z#OgqxR(w1U<~;tkKd)PoNkcWY=0co_#`V8mI?rYA+)0v#v14*gT#B9nJjuvESHJJ_(_o zz*%+!>(n@IN<~M62VK>QU?WDK0_{mssFhPMlP76rAE_}uC-g1nfps|saxY7qf9AbD zif=_{2HL(tsNV5d7au0baicP0DGfjQu;zTsjZ>gq4$q!l#^ebvo=LBF8VJ)0;LDGf z|B;`5$RQt|qjf^AUSUUy*B=5>&`csBFfF{lla3=mvYHBpi0cit6s?18kzor`Qx@0L(nqsf3|R?eDNnuF|Z`UeAvZ-P_q;Khmt&VdOXz*s%lU? z4@nd@*PxSShg=L;X8NLl_M&KWdSvvZU*7<4e9ovZsislEk)$%(_s*lO@^rME9k^YX z<1#r9wpR={td}Tr2-!Svy$RTiE6?iH4HduyW#C+GE0z2lPPlLg)sNplf4<71e$7~0 zH@i0496#8ZymaF-yuxh!ya(${YNyBOxC`53*(+@<6ssH|vvz$el3p&VLQ2znkH&H0 ze2KI?iG4T*Mcq_7g1E#;90xbV!n;kGfxxw=5^p~!Wu-7=H{>fUfCDeT*xLral*T6A z8|GO;UHZv5jy6!H&npq3T{{Y`^(DC*nSe{N*&g3zm$@JRLOpH$ z@eG97>45)~|9k{}MJ#>PT)ESmqu!8;uEfC?((AKVlPyNg@{P(5?Ccl17Gu$T6WE@f zVk|=WUQFbo2mI%Vf12!l=R#FavQd#@s6i>6#I($P48kuyd$Pvf>e4m!j5a;5t_C#E z^Qxt*QzPI}I^>_OX;{*Yg{AsI;Da!jKS~=5{j{lKzpTr~ca!QZ;QzeCExaJ0Wm+BZ zCkob#5!)5mgQ6j@qET{dh15ZAKW248=o>e9VuRt6qpb5~fBeqPQVvd+^O&K%X~{LL zcv!bEk8xmE-k=0Nf4n63BqXNXrfQiAA3lfQJ=6D~$@N36VS3t^27$~R$lOQ3P1d?& z?B)Fdyrtc~{$56aF}>A(6*+5!blZ5TQwLRF>&tornFtbb$=m`LT@ha!rKVRkr6vU2 zG_}j~5TT1fe~i!E?N*wh#8>%lc+X?}&mWshu(#B3=`q^#Cl;zyehTM8^lpt+e%Bqg z&~{@ThIE~A?saU*S9|G-e79t{xrfaI|?di_lM zk)op@kx%Z!a)p2|yO~pgBLXgE7kIj9#_9SnM#Hp|F2!$3xX+Fq5@TB-+z-D*Ss~67 zax9t?VTR6hv)qF;z+3|Ll5rQXkH^JC_n`Uth?+82lW{rbD?i(c0vh7tXA9~{78a2_ zfES*&e+JoiCMu^tES|Y)FZgdk_Si_cst!8e?%U&TjcX2Cf-W8}gYP~$SMzKIHEGRG zg0CUSN_sKp#R%DZAUP&N?l~VV0=-MuuOY8VMe+(0{u%4Ag(WD3sy5h)ZlV@FmTi^p( z9*Ib9+RtpJD-kpLwMHrRZ=VAwjNv_H5Gwkn5h>y}gUh7e1TTs2Tep+$u5U>RYDfE( zH=lQ}@-&PR4#kt54ED}3#!ia+_BV=OdZs^HqPO~IaEM&Y^9&9$WL|1#lb7;Ya-r4z ze=t-VC(wBeQ#^PoEZoXo5<2|$Ih8P0PHd~Zkwl!?akr8lvO|xh&TX#J3M0q-s}sdH z#idjhzI)(??18@H)g1?6;9kgTv8Jz6Yo70*-sVrE`LAC!QcWs0ufVWXOiQKwF}~yJ z_jUT*o>(}Pkmhn857tr&71F}nQFEo{f9~1x7_1ckjJ%jTovuFOM0+6&AgIbkhf~zE z{y3(s-M;Y6k!6MsJ)wA!Jy)$^S2NJ za@lC_1$!-2UVBt`y+df3hMf0m*t z3~g!)N(Vgs&H}HY)(Cbnz(>x48Ef;zWwACoqbk;aa!`Y*I8=Nzb%QGfxzCZrYa!pl zA8l(o-Z_|Ne?#jI;hw9iM3sQ@oAw(~Com8g1CMSM-gBkmN1du0 z4vNLV>PyKB6O7`r&amOTjRB-x?7J0Pv5czT1@$d&M01!nt53#SWO-O=|B#ZQAjq%n zw6N&*Pm8>hFH-Y|3~$#_ll{dr#~U zLAkk9ePvfUgAb1nT`+VBvbaBTv@Zh+9*25m_MwEyHv+aw$^*qNLR8Zta!x*J?@XP_ zNlHihO@NRKi#PB`d~)EC>EnUe-7|lqpaDsSw_?OZ18wkAois8JKCJa5TJ`b zeINw6Xe8`dVwfKL_zRq~fA%+jw$EOi_!7vfVyHzy`a8WwrhRxqVu<5ol!-cXE(yO% zV7egTTg5zed9OR-L#+z=C1C1uZTt0X?#)D?HpzuC%PQ0>%8LZB620H%;lpnV8kGH(Kvvwvq~v$-J00Ux{>#io zs{5jKGc}0D>7Pl5Jl-q^t(3%Yo2G)D#96$f6g&dj9CQyPFviNl%Va3yxdSg{f8sf z#gWLXewv9~K@#8R8vQ_sLRQ>?2#p*UbR*a32ej57VQ4yiUmD8d`Zd@Z+-BQ3S#~i> zde7wrv)gHPzrmY`TsF`Ttkrg(503-hbZmyACx07Se<0YY%rWx*BpTZlo!>|4GT&8E) z+e0c>{z8C<0BF7g9=(jn1&tVdGT9wRVvH1+AN+6<6ebZMRf+mcB4hgaF|knTW6LcO z{}yjKi=XHz5t_Q6Z~Ypx0QEI1jQP_|e@&8}hUcDELP=x)_jhtG;!M1YBc$~TYh-%* z8-9Jbo$coaIIIK;30E(FNogp)TghDJ&P3Fy%9r9r_)$yiAe>eY& z>ahj7G}T8Aje6$-Kc*eFU~GRIw6jFgRSo9HuVjePbHcp^m#@%~#675< zyev6j7TXJ#P-Dx&5t2gwO^P{NWuwJORJ3SFEHA!iq}E>v24+U8_D3*Gp*BvZ04^%@ zTnfVOLM+{4zEpq`rFw)GUG+ znX}>$(|Vu4T5DnF@SLao@q#VC5p&VMcooGKL)-;8cp*imG%xu9@Rm33JGqbG++Smw;UW2&vo&q-T{{hv0SbLW2&t-G(-J^=W{wryf|+L~%+>&^5h|AUVy zA(GCyfO-B>xM>tGmf;9b^EkJl#GRsoZQBjS!-X#D;d{e|LRl1swBHRzL6V z?UNr?&B+XBaBx;pCaqS>PG#A;W0vixYEc!w>6t*iJ5(SFy~WzZ1%yX-qXqr2PrCT% z3`zbccMRdvM`TT{b{X$m^qV1s(O=ICfwPwjtKoM9`cJP|TKvh{BeoJkwe2>*2}MGf zIA!52DU@L>Xz(|ze+s}@%^YJQnCOd=jb(2uA|RK<9cX>U=={0){Tu%z02wLXH9_-B^GfKu37x)4N{7F#Fe?x&n93uSXMECBp6?ULd zwYGdyLKP{|D;f2qy!h?6xfcPwqy(Z9R9^vx5uh=N#kxhRe;$*a`7(Jf{xjbM9Y*v#-f`XW~gf5@?&d@$wdE zF2v|}WBvnI7^!&4^>6{T8y~c8c5M<-_mP*OI^7pRO(Me`&kaW4gvdubzV)LyGzc}j zR~0orzZ~#Ke`yMY?>a0E7s6>{J+5cR6aJu)xPS>xd5e)aq?3`>`BEFV+F2r;pi&uXu!ey3?8Hm1viw2+;Rl#gydlVn zj*8fbGk}3$s82tiD(wosj}iCs5x8!GejQOc?TQjCf4F6Rg_eZw_#mgNpi$`Xm$TzN z9vBPD3VcsecYFB?bq6y7yXXiBpy@Q$KN&sxK;hTfBz74Qkz3uBHHju<@jQbA+iaFhjv#flyL6GD+4os z45P)Kf8;q)zpXYZ>_ps=p}_(puT!CG9nE}Q@lxe+$>%l38POGL$3;T9La?Ow3uO1G zp19M7R9mYX#iPXLzLq!qi__^%VpqN!d;1VD{69>?oEH+{S1}#*ba|X~N&1ghMVD!o z4F$u(O4ZC6c8XyK`MuVpv z^&}DD5uE&4KLBJ+XPciF|LsKdL6TBk8LV4)>)ZKfbJF;2uMfSc(&zcBW-nY`fLQbU zf3oJ(U5BrE$5iqo(|J^a_wQ166jLBp_4?9rdk5@Zh{toUgcR1-)&AQgz`Jk3VnQXv zvNMBZ%3SRsDv~~)5W0W2ROAiRPpOcWd#|pj4Jyra`3tbEJnRG|5BsUT}0o(X1|3g<#u>7IY0zrUD0cb1BG$5|8s~6%GUxhx89oZotOfoG3`aHdTsd>o=A#gZRyN&BE!vMHrcKfVdSc_rXLWbv77+=2_^EfBKgj z@vMCEXXOj8VQ5}l8gK}@4f682&tNKakA#pKOO`8R_&Z0$5q8~Mru)!X>;0(XJ zgXRkv3^HWPV-N)sUh*sa-6i74&iw&V|CZ*>^}pD~Mf3Pnb;TRvC6{Fv6v3qZFD^so zq{7GJ@l%Y1b`cGENvss;o_DmtL=7CE5(!B-l_!(HKVg-k1eJXkTGwOYf3bb)gs@{Y zV1gTng?q*#GSm@BI&At|Dp6(+`ertj`#b~JR-G`N-8I=79n@tw1lhVW zUdcAef?hD=?a7h;a5S}1e+P9Hui149AC6$3VR%x6qZ3f%sjn1i*oe=^EO`}l_;OYWRj zq=;?bIxh2_yM6;J zd>$2D80&5jOp-(jft$eW*RToZ69GdCIqVfzb+L$cljh!21lgY*(=(YH7~t*N7bSt< z%(0nP-SP+NZ_0(Re}&51`QF_LkEDW_1bS)Nqx-I(|C4EGlG8P5S=(XaV-O;oSelQ? zmjY})p-&(bJdo{XrrthZ9rVe1RToU+V28Y+ZKc9cb}pDHZRuYFPRxb(jmh8aG%hEn zV`iT6ZD3h>GI_8|KnWJ0l`*NgZWWabuYFuPhW#R_`QSa^e+s0ZwE)ZhpxKY`D;+ur zyGl!KcZsr$m%?5^_)OD3t$+?iFZT7VEnQMWH$kBB>MO=ic*~Gdgcwa9OD1r3q})fD zjR{|nuIJnhm$+zATA-=Mj=~VJ zz5$;@+AQ5UTPXxU1=}-WsJkl;xs2FnO0}auxr18`9<;Xd#FEYHo5hY#`|^XxVODrH zHEg~07{!ZN@`va=2(1;0{%bgY9Zbe>tHk_RFcSqqzKb`AllLP&OYc3zvC;9<8zSiLN|V~PvO^MjsGpe}{$ zG_EPJx5xuJth~PfDK;pj7+|0$4ed%Yh(s8X{G(lB2q$;YI-EOVxBh6`#dEFh0WZ8b z&S@Oif7B=9#=dRA*NWLAa70OKFz%#|1t4;?Gvx#w^DJrL)bLPd4^d$V(A1s0uS{YE zfQlkc=u@puRFGdK&O7fx>=t2t%bUm|w>gEdfTyf_KZ-mQw1=F# z38TMTEom$F^fv?5Sg+R4WB(|ri)4d*N|plle{S7|i9$8k+x!tzB^dbFXJlORYlH(%U*v&k&B@4p=7Jmpp^Y21*QSv1US$Sc$ ze`9Di)im2JxqBe0eMI+mfoc{Ea*|F#6JfLkou=A=(>?KLveoN=qX2)quM5{4y@U&c zrYa3BI(x8Xn^@!I@FDg%>fjes<`+y{Rb8!K?zs^P{%SbB3P7f+z_02iD=&C^bB zlip=914K=&r*jd;!Sv&xUj_0W5&%02D^rE%&+EhJvt4q=KIW@h^%d;BAHfqF=h?zjGSAe>8F6 z7tdrE#L6CR&+@vOW(oD#URJnQ){QYcdMa!x)I5Hee}FwH9-}4)6A9i6wA`+B<1 zzrjpr?BXOmDhn?!+G+xFfA&KkV;(jkRz0V`BZD94X@T&pY)7OZe_QW2$)_X9eja_f z*Pdn|cr>#15deI6SQ)CzGmy93u1gC#c6mRLE(c0#Z=^3U7Z0LvXRONmM+9kkiouk# z8lmQs-dWc%9Y*}*>4)cVq^D6UQg-8R!v`#F$0Y8Audozlf3my;DHbab0mqbpD3-l% z0Awiy*hEZcwe>O9@zb=V8x*NRH^S;E-~B?~jy1o{ofEV??#dFq7@0g3P)7iEV)^Iv ztfw2KTMq=mpk!i9iPE;L{8eREGw?4KE)#mvqYs?knO+8{E)G3S1{Ut_KGD0^?YfE( zr(>K0wxxEkiI}=aKEl8b|W0Ii>+5*KDcuNe?6#OiAyrU_hWh zWG`LfHsA>VFVq&?j`_Q8tS78`K^vDK`h1c zbH;mbJG1!@m@8TV?JVS^Gyk-9xV2ATB%0LpG>7&bHxl~J#bX_9q-AOQ)l5$B)xpo( zFt?95$9*wkUjs&fe?nCb*>jL~>o7-sMO=OIC5fI-K5)xqH^GW;<}*RinX>_r)dGfQ z*E$w)2+FAo(g0N1FpxN3d@(yuWNyGnAl*s*u66w0|33)gr#}J&%ht*ZDIw7()acTu z$Yc?pO7^5MsSAkclWTDs@QkaLe;!F>akOp&o(DfiDtnz}e{w|33A)$*iPoq~s;H8` zF+@B-;SE|N7(?OlZ)|7K8<#mRm9ql4&-XLn>6^1$s!vR2z}zEE``nuo<}L&e!%8|R zr-!JSs;zXCRL#VUQgHe`B8gtb<*ei+mJNsHD5TBJ;n828T6+xA`~(p}!-O?k%rgW% zpF>ZsIXGFVe~-Yk>N*Ur1pr+ax5YB8 z9MHSY*G{#~q>3TM*3LEO)kY5RTN+U|&nz9@v~O`HMF+Z-j#BUz1h(0Pe}h)6Lv_Fx z4pv|-<`BSS`BenPTMIL~k{vz(Q*?DsX@T+c!0EE?f6Aa9rNQ6qW`U+bLX2cW2+hvz z&;!OE_cVZ{%b*$5#D;8uFRF;%iB9MJn{tD%5R-!7|GJPE!3$oicW-oQh?64nQZL!0 z>>H=1{EQe!zcI5Yf4h@)jeAMAZLp_!{mAG^sAHXiQVPX0F8Op_V@W1BRIJ9VXFf7J<<>n3)q#bz zy5`o@LwFqg=FGxnQ6}K&Ilcbuj4Dd=c(B@h?*HVulVNa`=o1#7XowzAVxnJ(4%Roc z$(OVKJ%&5c{w-F$Q9fJg2kpP0|JD)h4{(kI(ebVyq4dt9(;LK}KW#Rp`FZ^KPTWjQmH*4sRRAe5tAeiG3)(4D?RkE6 zY4;UoSvBoD#bkiSmK{t?Ptrl_a(ywRa&=5M;T?~ewMx}@fAPb z10JEu=VRm=^MG+BuFd=_8X~}Q)b(8Me-~99Uo^Y-2ZZkYX5Nu#7flvaf*Nq7hfXaS zU_!7kA51tZfOGC=MG)^aHg$BzFSwI1T}-jrHqhNO8&sexB|AO~qno~C`VIG)Mo>## z*C{JZa|~3@6`+Zl@+Vw-Bqv&~CxAW&P6AG{&QR$*h%6S*d8W@YWV4pgcUOS>eW}a3Fl*IRtM0Ikvg8JtZp?0YdJQeC6f_5K1yS z?d9+$`m1Llg+2;F7tyq~{%kM1tKQM(MLAMwYN7C$>D?#f@;$%my{rCk5MBCMFkAZ@ zgU|eSC7vaQ3Nd%6(lhg{?KpHHe@mH50@pz!SA zf51C4I)4f1At8TABgLnw-d*MBvSJ#U&wtowQ+ctD$eCjK5lB40KkD& zJ|RP4vbBEN8N1BznB*x5CmJ_Q|I|}~e)?fHols~hk{h5}AcJOXe{z{S@*Sx;HTeaV zy}eB*Pt+~5_9}$$n9q;=YE*EV%ou8rcu*@k<%tSMbshXEhC~fnpfCJMs_Gz zmrh@=6RdJw;YC=0U6ua{$IlFWOtAm$cx}Yc;4d2Qs)~CnmX{ti-Wu)O-7mgGH)Q6f zA$P`V%Bmnx3JF)9e`Q(uPtu#f;NKJ}{i#X*A2v)cbU=CZ;it%(Q9FIuH>SP+(`ZM$ z@d=vgTE=g{qot*#z+p1u`7fG%z^)(_MBI8m5AP|&ADwH64QfZKtjasOPg^lbcMd9B z2~e!|gi54KEbn&{VftkuHx7lx6>jtC$le#W(n5+x*X-MAAd z6i~TF55OZ`{7`-{X?fhv3G@fIFFmOKQm(k;8xMCxpSFU1u^L6&s7}A8sDx z4;v1fpu5xdL0V%4E=`~;&L=*KsveF&7tSukS;(4p32{=`>Vm>@uN>aL)>-JEEzEJO zIrN5{r^Qm(jobOBQtF6R3_DWz9*7xTgK%TUo^_Mme>NEthAN@9#K;rea@XC{Neb-K zy9dV!EjP}b2)+A$qK`OpPT`>(&aV^Id@*EpJFwX{f<~wxc^--JEB3{2ZN;AYu&t0 z>njw4lZ&xcNi!cgnxYqDse6Dx^+6AQ<=G3Q-2w#MKDIIL4$`|;***lZnp{E!GJ@gz zrAzXIm*M8-gVI!64o6M4$7zMz!cG?xho8b1fA|ANfn#4XhA!4iwT3bdh0jNA2#z|c z%kk#HD5D*}lkkB?>kmeNKQS}rbnI+Xy}lR)=GuW1J&gAq?a1*ri$m`I^L58p@F76i zN^dvusW!CDctfL_EA5qAJ*D7t8iY)nNhQJY-oB|>d+Po|Q(BA&Wk#>lchv3u0*B^v ze`dP>xdqKbA(us)LGstVa_H&7Y=ys?%Mqh+>UX^O(OL4nUn%*9G)K3xj11VAejbTc zK~x$*(qG!x@r&=S^9u`3ni!-#2p@sn=!=MxYa&t2cpZe7DCIlMyxfLU`AG6FDowza zmmnat4+0I0OLHKL>M!!F%L(qBxM_U6f4-fe&o)iD<^pYB=5|nk&jDAw=AM?X8Jqf58!g z7&Y3gJ|@VbibNz}JX%5RyFz{&+t4mnF-j@sA)0PyAPHX3&7asOaftNKx8jHe#5Gp; z$E-_uD@jF>aN>b-R(;gqPP$FL5RwV>Wd_=@Ph3-nt!Lmx!UFhpKybkxuY)_{?8S63 zZ-flk>shB|E!BTMhX-fK04!-9e`qh?5&-~MQPRM4!6ZOBAYYgN@#9xk#Cpq(yg2ol zyN~-Zas;y`lzHpBYRM~c0KBW92Vq^9D=~eGsSiK?iw|dIH&zmH8l;HF*jYI|Th1*6 zklWVT`RQN7f8@{HnFJyZwa+S|0MlApLlfjJP#u6m0nr20GT3H9#&W!Fe@OUyict1; z4#w}r|I<^cmctdAv#!R;cb<(CDFBiKw2a8R@fb;gX|SKA;E2_%x&wa;KeG^j5)C!5UmIMpYxANSl( z>t{D2_g6;*dgJzsehaKHe=kkeB7cwDDi^a6unoxV9Zk`ficI;78;n9k{5UL~^~Po^ zCUp5CyLL-DIoAy%B3oLL5@2kLs}bP;cQ(_bVnOu>e^P?AEj*-QhuAZi zNr;bUp7tQW_!)}K^Ut5!CXhP2=$1-w>+OhVa1sP2K9>^Y6_(0rmyVR2_83hk%(iD3 zQ$?07?K^<58*BQP09_hLUu>U7BnG12$l}LoMrjfqR)Qe>!$rzHJ3F}lNkAZML*HC% zT1v^{9N-C4u~K)@f5LqsogEz-g;4MX)hX{ZsKVM*O%9PZJ(y7&l+Hyxfs9eLzh-iu zCM(v@N%xOqj&r;A-07?gdDO&f3EHvjJ@!x6D8I<(f>6i zphfL}d}E$`6L_kEkGZR?Li<50M62>29KFWk*g+_dm>BhkP`|g7R192!sLxZa+Nvz4 zhcxXKErG#Y+$_=lilbm=b2V`=#zh=Ht&5Hp=KV95Uji<$qC(a8H<(TtDtYPj_QIM% zVOMTz2UC|nfBMAl6wC6+r9-YD){YEOKaD5|TEEpZ)mZ-g1J>DC5=4)Y?og{@rDzyU z_bkm%XKkadoof1g%P($Bv@;LZ&o}$1UZo(WAGJz3hj(8vSqCb*7{L9%^hY9JN&8Rj zbR%VYqcrnF{yVJxxBl)KfI&G>?n5^WchjKbzhsS8e;oFU6?RIkKJLZ>x~OX^-{&`5 z51r~pa3AznUtg$>`vfi@Jhc#nxNQe|kNc#tgvNMM)>3NcYQ_Xp_3rhMPk3IksC}&~ z3G(L1qliv0 z{dY2AgQ}av7$(U=c4WCPzhx-rv3TXlYTd$><3OQ))Q__mI(~}{hTtIb=~F*3rF|O~ zf*(6gO$v`8UTO^mlAL8B=hLxDTjGYNe;i&AF;!R1mE0CcIPIk8-rX`e3ujIuPBZWx z#|%~BhRm-a$jJOiJp5XvhJJAyepVOn^<#DXa9)x+4+CzWd3C1JJU{0Y zrjSwe&FkG|(M)G4=vcxq>@H4*e>b5gUM9XyDU%)J8JI)qdbD2F24~8ZqhEG~Dj+~& zhsnT09cH3AI}PA|727pY;G*)qdxE`V1FrO@O+f!d0mDc^y{7TCT%Ze?0#M(9Q1k|N zNKjz_=%l8m#s~7Xg5e=Ok!8aT=aclNj#^gfp@Zctv@KzqYv~p=`{9U0e;KOy6cWOa zX}+dV5xKRU3698)_^Ey=hju(b)Za1czCJVNN61le_u~T%q33Ud8_>j9R<^ssFB~1o zbNQYoI#Ln`HAGE7s>Xxp$=jpNx^S0{jj0&Z9l>p)w#WN%_>3Nkb`m!X^j z6cIKzISMaKWo~D5Xfhx%IW{MCx5iMb97|gwmux&b}F`Qn;oZP zRBYRwP6r)!Y+D`MwmPQ zw{u}&VPxh7$SbJW+Zx$%F^JmRm;zWCnVH$)C@937fJQEs_IBb%EaTV^4qr(8Wm2(*ei=pf>tPP_}n=VK6pw{xk#a z%q{JJG@l`2_70v-mgW{Ne{--gF#OH*H(HbtAZuh|ZSU@EZ3!^4GX=;pDlh^R?cG0> zmH=vdJAg6J!pO!9U~dLc18M=(RV7qZ0a7YT>dLA#jGuprRb3q%?4AA#i`1KNG!H>U?Es(sr3*7R&^|-Woa}A?DFC3haB*?qWnyx7cV{$rb#`I2cQR*mu=xj{nuVn^ zz}?=-8t{L4bpqM||7nb?o#|&gT`YkAO7M3_0P>b5Ks#sP-yli*e;I8*TlpFEsdxE* zz&;z{@;9f=zuW=NK;XZXu`qJ}CstlrSsq|(WNGIDv@^0Z`E+zKa&dJA82+RCd;?9X z{sj;S5OZ~M`ddTczfDg6ugrf#7q$OfnXZkuuaSTIf9{x(ovX9g|LV=ZFWbc4&e_u0 z#ra=+d6Kf7bc=;Gn>kN4kvBI5GA z0B&YZ01FR0fccZ85_YCy_O`a4sGZ^dwolyhvrjJePM%EvPHJmAdv`nU|4^D)+L@aD z?YV!cs{@m|ou#8IP)7W}Tt8KC|D!Vpx&W8~Kt}-3!^DE=Z=rv9@>k9BSN+)lUvCF{ z2Y{K8jWf{K(hT@{f%A4YasvWfoLqsv-v8V1?-Cpf7r@lg#O0IXpJM{|Pj(qQGkXBf zzto>d{@e6ln@|1Eh|+w{r>VW2jVHhqXa;}Bq-gK*Nd@Zve`g80%mJ(%oB$&yCnHZd=1&5!a&Q2=Sw2~83iSAgApj;uJA0SU z5P*ZLi!Z>;-U;sSF0wFl0GKTQ>i$dQ0x((skI2FfU~>9jA~%4^?SDj8W&o4NKjOdR zR{lGz|FDtye-`pzr`SKTs*97oHBf)k()9BL|6eW&MlMd49y-jQRATwmf4=_vo8G?_ zp!lCD_+QbYqV^u%3>@t200uT@b^r?(7yI7@aQgmRtjWI)lz(Xa+429D|4uUi2=oA& zz%4DB4`N0Ja3&C+004@y&53@Gg&r8$z#%GEAn zpGj+pZ6N}vj~&#jmknfba#KEXcOL$#gY*(Ra_?Z`Cc~pbWGrq9~vdF*c`aigf%zt zL%51vnyP=>pRL5tiaBl7zwEy0$K>m<>tI_l{FsaT_gwts?Rfa!k+>00%D0L~Vg z7Y&-2tF$D1o1u?`mzT=z=nniAOV5O+a1x+E^b4{}jLK;Q ziI(sE3a?Vl{SVa7rIP%8ALzg0O8;X2B_s@g)Q%%@UQc*$lz0u85m4D zGyIy>P+6858r)-3lRkgB4=Vnx6rdBEr^^_L_}m5>7KUyGL0MWTyyJI$9O+-MHJX@` zr2RKmhvHLiP2^H5S)mZLdmPl;6^J{Nnd>>UEpv4}HpSrC!I-e19?0owzy3TSCipye zb6kmHW!8&6x;PjQ0aNY#6Abu`O{GjJ+BV#83gDdY+xu2((#L<~zt}{Q35wx*q?JX{G8WIqn(Pqk-V~zpsbY>dCg&9fu3m1+HJ^HFED@!+fxW&pEYv(`6}>3p@AF zwP7|dsEHqE-4ci7Qwo{uNF1{tAF|yWLsfNHLtEw$m4nNSoKUm*ZQK=E?GDG0?p#AH z_bB%V5qn%mY?$}tMT=rJC8=-1FJ_*xOL!=Feg)PX%`7(R5j+GQ$b$>PO#abl4Y~fN zAZ|aIrqevVz}#Io^x66A*OSI=cZskHs^58!NDAcAIM#npWRp^b2Aa>ZKctul{7h}b z+@9&(GvIwRoCu5zy382CuM)-*TPD$q7ktvU58K%#3HHP|>a{2aC z1BcZ`zw7fkzJ4G5S{Kz|X+K6jo!ANlZKooLJ+olN6>wQ+)WDs)rN>HvbGzLEx)Pk7!{Ea0+R1UmXmu zaSVU_8g)7OhlR4In-kk^3{_%`Z-8*w=Ep(6wGod13TU>Tyl1C_kh`GfR~K&ElMWfU zquCy^pNM?g+UWU2p|*uC^tm42W^syib<3(oEr0yvYXNl5R+%$sbhC%6`0X}Y5N>M$ z*S=_vjM4~g3xG4OnpT?z=25X#1k2GVaqfR~pp$CkSn+Lg7ri@7e9iSdsRl|#evPnE zdjM7E@&)TcLWUl8a<6f&$ciDP{0%SSNm4j%n;j`QCN##GOb(N%`Rc+h1v#K@iGme> zIYY^rjVwlqqxu~P1p_17lRx!_dGWjhck4!y@SW^;g6Wz7EOxhQs$Oa8tfC`(hqiwl z@Q;=GIKyP54hPd5nqt6Rb*;Wn<5XC&E5?()z|y3<=`Q}pCcoo;XtT9~3^A(I36vgl zaqt^PypSB~7%Ia78wfYT25DP)xiz)qIRKL9PAFIin#$w6XQv6;=tAQc2vM(;BTr~b zs`afX+uon#B1FvFNG2nn%?dAJXqbO+^EMvkhgjpLZa-G!=4|oP?XJ9=lthC(#NUcs ze1OMTPHru##$*Jh&GMRoKjMUhw>7psGzL&*2jyppAeljSh!RBSDa=Zwb!|R-c!r$o zJJuI>f$7 zcD=ZugYUw#yIdESZyOoIm1wFjBoH-yF?+Fd;@QmVg~H(!{I0@2j~5aIinJ=S(FQKn8q9|nTkP_r zW6?EII`n*!Yix*O;89@fV2#UT{ZiOgdXF8X>Nf1q-07>uV-Xr~sf$z4;Gk7Gv$`CFCwm}fI{xQyk>EQSL>y0SXgPXa6@>()NiTcz7>N8bQ{hN&{;MW`? z+4q}%Ro)tphaqGJ2nxplx3rdJG!Q#u4CU7%!-EjP87y*37ZZpZ7yGqzS(bSoS(S*E zW0P#knr4>Dhnx8|bvcDf1a1M?`q<;pB5&W57~;f!a0zGi;3c&B2hgQKT&vP|4dA~#@uK;PK zU(N4fZ;%Xw-f@51AB(zi9HBSZD0%`oIL-xC%lK_W80nUe{yt7$PV+!ARJL&3%i7%1 zFTjq;==BQ{QXM`7kgr$$_SCF|oK)Yxuo8FOrKQBUpt3v3@5fcU;^iHl{;NMcX?=Kd z+z+h=U{#h-$K1ESGio>ds>@$?<6@!9u_dhQcNZ+kz`B1#Hv=a~f_5tfdSYtUy&iQh zxx83%#wT7KGstq%v^xx5&J39aVdA5rWf2k7^;#T<4}Tk5Py7><$4r@~+x!GMRF%k` zz-5gKR3uXe=8Ux`4#y*Xq5!2#5SztOU13XOS2QAj#JnTny0=e5D1a%Fq>&gQCAh=` zZq&I;>#%pn6a>7 zn5KlD{1B8qBxUC%MEGMaJGU@icZ=lPD96{zMZsAl#_1V;89Gk?D@7-?)CtI#tp@bc zrYykkm~Xle>Aw~j0)FgPdPhm#@DV}terGWYp0s~gZyt28EB47DZ{zWQgKVh0ys2VJ1XL1N6f35li-qEv79sU1R&JdYuYAj~uU>h<3mY%Ct2)FY427D`bDm zo??Jl^a}y-NQWsL2QljOS%Ft8<)o`QYfoTZR?Nz-$a%_4VmoePp`IIZ$um57d!3l? zoLqlGv~wmTLne|ej_Y)_mR)O7`&oY9^ZRdhoL%~)4^YC%uP%3gPX9y^fFDMe&x$s; z|54dH<^mD1f&MOa*CwUS zQa^S_YXz?dX@lr550Jij@(#;(GSIc@g^U>mTQEedO&=*gTY%&}&D@@>_#*C)Xa@f< z`Eb%#bp#{S_ZAIb+10vJ3Irmqo~N*kW>ue?{U(DvY9S%sLTpS*$vzz)7oPCyOTvF# zY=^S|U#wAdRkubl+s@Bt*vtR3r=r|X`}^B*%AqiDz7~7?g=Hkukh$66yp0vtFg=g# z8I4!)A$aqy{0rx>gvemRwian4xgml}4L?u+nd;Y{= z4jB%7S%b4swGBr|r%Q?7q(5>i&BnxYx`mor=e9ziz&fH)AFffG?1KCVzwn%eqtQ13 zJ*5Sw4H67yE4sQJUi3uNYuKIY@c=pE5s}HOVk@Krst(kifyvvm)e?e#sPKRKLKSfO z#%0m~stRmFq@?!UDKkb`g`QikvD#S+B=?Odo$iY)0j*LZh4FEx6Rd$xB?SmAcY0en zQPoy7O}Iu{h(`lWyA=#79{El)A|kwHKN#nnRlET(6(jUTa(Y!o2;6DKo)P@NgLla@ zK|k;o;#5iI*4%cD4$=tvvNeAcGrS~-mfm?Y@i_(Wo<*(5X{C&~7%b|Cq6!N{&*ihX zh$8!;psY7`op7z)oR0h80$^e{b> zVD&$C+31i~Rtv@-rEq^%d+rgm_)b%3!__J}zoHthCC7arFZ&teQ)Re;ef)iVPOE0b)9+#7@6f7gmxzRbYsJ<)K$r6dsTpQ9n(Rj$+D{6Re$ zaT|*oBYoR9&I*4|(FQw(V*;HxHzzEF@;6{Uq8Dy8NcbKk^ z=sCk9DvYLg3Nab#%NX`w*{FtKSSQ&&VQ>eJ-I_^TfG@}8`Un}>v=H=enb!R zBW=zlM36V-%rbPf+;asGqbQP{X*)E#O4uv{_7Zl_LV|y(Ih+5G`qN;sZ7Gg(OM2taT=x+n_y%IgNF>@C3C zrlP|UkCaTv*de}^mHmR9pTSkx2(pgq&S%O|LcjB6oJ^WhNyWWQ{|XCgf96~3o zA0`5nF(@<@R-GO<14+&vR|k#7u`rE6)F?0(>1V;o{q$@R7W>nIe(zYtMt3AQ5IfnI zh5Ny5AhdVQQN}^3eil;!U(O;XgYn3nYyu1f#x#GEx22NZY2k3GeT*QNrCv2+40aN% z$H#ZxIk{BCdQfco*hF7O8;$1fgxiU0<&cbdqiMKX_cvKef}qfXQhifz1W+f3u}2bb z!I@OI{0=tGLnq3`UPuv%(bUA={Wg1I*#c99J`SY66p|K0%Y_r^jKHaYykslw41Jnw zW9NU8n2O;MCwnuc33*=ZT42LdXKHAKW8@5xPJB(!nj<V?g}7cH%Yq%I^heEjdq<$VR;HuDk!S+Tk@#YLySy$VmP zG1;texHe$Z*sNK7QDW#=G{AWJ;cR4w7{M;b3cfc*^bDrotDut`jY4dIYHm3$0{ zl1R?;2cJmOL@r-}fx-l)&38Mr*dW&}-x#p{{o)?kYLT0P?K;^KHP79nKsIH?FevPY z*${N~&ikx(+sH#c%{YHHN}5eI zNeB4D*oGq{q8(kljjw9*CP>&Sb23(65Aq*0cIp(2CT$ZhEQI}8XS>fC@e{FcAjfwO z`p!c5TN%5jc^EI4Yp*o79QKK<{pB1HE(N*P=r8M$QIZLzQPLUpNJHfYDw6rh<0rAD zjrjH>ju7>iPSNti`NRyq+&zE$bK*IRrmQS25vhEviTFDV$hiE9A+p@v!cS!}zEkQb zGMqJ3!n7I(5gMo@m#M9`8C-76nj=q`pK0zs3uNM-IK}VsJmlKI+&i7`na1qV7biK1 z^_t2aBr33a3=xwVvsQ`QEur6#4F<5i1I#=4p1xW0Vh+BnalIXojGT6XA*{PpHX2 z^LIqSA}~_reS%g6$*F$_EE7aIqEsao*e_s0bK%X3cU8EK+aqWpn94q+xr0zRf&iHr zwc6o~mhUF<$D2n;{tsQa@i

    0Z&)du zzh)s7hyO!Vj9JQPI-S@XK(wslBy1@juTtw?KqIa3n*@I(0aI5K!JygCfqtpMC@@=F zn=-hV!XE?!IXn}cYjMmeCd6d-F$sF*BXQ?3M$f&)TTSjZmM_Q~K9d-m$Kr4Y@!($VQy4{4^6N-Va|9XBKJ^&~KDe+7+bKjtS(?h3yg z<9~U3ES!HW5Z$>Z#njQFN!i;z;~}&}XCeV*f{2hZEbQ55gx+e!(C867<)bLm;b|En z^LpLln3cWp%uB@lslqrrzCMZbATKfeZT|_C-3f-zThRehawbuSBNn_SX8VTxRI6HQ z-a#F)MD8URG!GR8J{B)9Gq|3sHkV=pIYSkn0qhWgp{6t1`z=4|ANRVDZCf;=-7Y4%zG5gCA5B2mYvWbrS86>bbxQ%Kkcv z!O^FojAs>Qqwld%qr=j55*hmE!KYE>dt-igp1=i#LnVFIay7V)HU%e&)3|f?C?5My+>(5ta=N5pYhUo-t?%W+C|Qg5-Z_lqE1v zm}NL_p%J{$<7N1%8;O>>zcv)WLmlK^D&-5^ zx|7Brz?#rmrXHB_V}Iwa7bkyD7uFIKPd_vkDuLh@e=l1Q!|^Q(10{80FiJV*qgLkV^zPRP367ZfnO`w-1-7ZG$ z)V&*XA=*7+Of~J#-Xt&S=UC0r{4$;e-7Xd!WEuRZ{VcafPu^pn5EI6y_W+912vKX! zL2Zv>a2nM~MIRiQi35LkV6&;@^hTD~!wCa7=B#tEhd>zeAxMD9G`)s*Cf$17V4w%d zH`syH+$xcUm~YAo?^~k6$e$^A7-i1|r?z?gw9Ww%hv$Lw!V>bm2yLwEJR=!%tTIml zz3Oq5R_xI#hRFr`X>5`nqFRHfWy~xcNlZS9xRt2-=$7VarK*2okK`S8IU3pKoj>-h z4v%)d4a;K9+W`znmb#)R$SSu8Xfu_`r9MDPk1#Yb<}O7vHsaUTBT6lxt-xpvB296} z3evvs0MsPN>MZ2CxYZiRi4{@h9n+~X? zb;W49H)+4oP6~faB;{)}6cD^YU$%QypRGb^kb;gZv}^i#94+=fDSw5Ese!OV?U)%B zmq+$}dY!?0=uZM7biiRl*-FDNaD3roymNT-Hl;3bbT-2%$;NOPk+|Zj+%>TQCv|#@ zv57iQ=F}tS)|80WcX?^6#mq891d>G#B-*f;TUi3*bWVTdlA#&(uq%r=Qa5&lH9Z&w zfwqY3e#^nNeE{2pFriVr)64NkCi)RnOflj;#lE#1PuzcW*X9bU)JAimRo59i`zPQKw1A_wOB# zd5H&HOu~Q9Y*BZ~f&+BLWHbocyfIiL90SmVp=trOU+%V-`nRff!%Zl<(dTEIK(7{i zU?8U2zjElzp`$64=#76UI@P;u{Rn)clgwb|ot|jWmN)(ASWR3Ue>Ds9zv(x@(J(&W zMn4U8B*F78?1^q|Q-Le*Y=4kFgXeI~N&jdk%>{okX;Bnz`Kb$M`{m58Z5m(MVq`Rk z$W#8ZruipE&DgF$Yz^0WOk%*UQypT#cw=%vngOZWBBg(?>FRduVTBiMrRE|s2ex37 z&W;jS(zPFn&IXrDU!>!zR_F z)V2wsxue0aK}sqFme(FuQw`C$bqmAdcqLdvm!!fbiX{05sXoy$#y!~wED~9ciMULq zqsb#b0y!k%(cqr{G$=u;ry#eK!6H$wWL|&3&HmaxFR&Z{G@n}QLOL?fUSBJvrA7}^ z)1$lKx#|sIdP+DZF)azSR8UEG!;|90@j;)=aa0(MBMi`vTq@MB&#aNOZCmCDqNp~Ud^YcY3YHJvI@Y>Jga|a z#l?PTR;KM?C!M3uk5kg8HZay=c==hK(0d8&uKO4Qk-y8ILA9;fmk-h$yxihe&kp7q z4kQDo2BXf|-;^HXxx{hcmd)RuNkVNeDab43n$;2HPcb=N{_#v z2R8crx*+4NfOlt-=GzxR&=eHMw%Ze80K65Qraqc%OT_R=G!B03$YvZZzq5Z(^PEAT ztIzAtg_e3#Apr%<&Da?FV2h2()a)yw!kwM-DwbJmbMx9I37KM~Sq*NBymdQDRoF-4 zsDa+ZY`|D#wZR4IdkvC2T-dHV|DZu&uk$usuhy?!68&2h4sNNF{P zq9jJ$X6{>#-ehj5tNL_`xIe3GDKvkyURBPe<798*cGhD&mIE`9Y827DW890rMwT_acl%9LFO!Qh zE8VCDKLg=CSqZnsTnBTaE6(K1UA^JxN$>Z@HlZqb50^-lQC2ziVEagd{2ahIfU+ zfkCb;<)pfsvC@q_Gi6Hc^Q~GZ=a!1B=btr79wYrK77meBa>*{EiOEm2EdHn>!gSZ@NuC=SeWC z^7Wp(BAn8x1Y$wyRjKQk(--^jD=|~mbssaL`B^EiUp+Db(1Ipw>9Lo~YNBg`xXtR9 zm@STnBXYms@Mi0OOl5++L%FA&XpAm-!ZQ=4@6&nkS-A7_aynNDmI$XoGpk^Dxzi?xo*jicYn_GbYbNO9%11z|oq-+y7R=%8` zwvGMl5c^MaaelUDZ|Wf*!=R;2K?;XosNi>Zw@x#OLU;+zYxflL#-Kve;A~%Lg`Wna zRhoZ7vR(T6#8EJhp!!5;%UG>704e(g!Mo*Wn9B57WZ$HVEjRXJa_O1JDLF--_3kqL zdGD&;Dt3Q+4uQvExzT`h7m}BbDBF%cl_Qecx*dxJ z5~I33CG-jyGRVqVq=9YEfqjF5&c~uJmiO6BI*NG_^b%P;gyLLcPm8umGWRuW2p-f0 zA!{U*uvg~sh}^iX%tM5Z{6;{&UE52Tno3ZM9=uy!P7b|I?_%kTc7Zn-!M>3G<@7CNiv+U2W*bubC_;bk!5Xq6?Dzq(NWojLUELvh135t&LdB2w*|{jf zx@o#A>85oL5~~n-tzp)+&yM+y_P4?-6WxAiuprZlPgJ>=y~Q1N@@?YK$b%WdCejH% zY|5N-uglL=sxqL=6FRDp8ZRxc3Vw!N%JTuuAQLtRe#6IxBM!Y-u~yX}|2cm(>a?7- zo8U(ufJ!&5WfC`gRB%Jcp`*_ky31jPh?6>v8`tMZNT&DB+^!MpTja^#C86a8I zP7rX~Mbw}q1)&$%K-8(8zRQ29L@*>_7EA57gLC$Ojq%`g`)Z2lbHJ$bvnLbfTPq0i z*IB1=B^smy)21ETKV`Dn#u=Ll!Sq&lRU7m_LU_Vqxce z;3mq0v`gvi#<|wYN&3P4c)cDC{c)96L?O<5jlwMq^Ega|oLVQaJu0AvGUwHj@uFq&?Orz?5N-&f#eH{k0pL74E=WDw8xt%o7&B4SeK8S0kM z$H`MBV5`EonZD;;vL8 z4^#?tfRpMSbfRp|l(OSILUX~rcClRJE6iD>48YV;_Y;J=xO{&X{lZ-W5#q>@#l6I7 zJxDf%hVzWN{Sf1wNI8OKnD)N!TW|ADmstucCfQ|mNqjZuAv?<+yYhlvYNY@m`j{fM zRfD9u@(9$+fgM7$8D3jHXT{W7^p1X(Ch;WHFY~9+W@MCT>b44+m}d+aqGH8$e+bn> znMfL;a=CVA5fFc6$t%W)zjABB-Qv4QG`MiL9w*$fX-tO?Sp}G3jg@YZ9bET<`2p*fI3g9T9#!fQ-YkZx6hvSq(FSVXB=j7;!C{ll7p3Pl>s zL!c~_xtHZzicK0$oep!Eod;sZ^Xb%X*LX}IS@WCK~)gy@$T1OAz_YR^tcnPMsf%Mp@I!1)UZCiCYn2pj8a3`U$_8bE3sC_mc zxb*3EJ*PChRV@gaY6MeYC4sNgo%H7pt=HtRy7mg=Sa&^KaQG({nFD* zT_gEPh|Tx~D!{Jy^k@QS&NtKPO(xGz(KrZnpfcbit*}bEqrQtJ**P1=&I;+ zAC7WZ>$uuzB+M;QzJzv4k0Xo$;6U&^F}F{H7oe=fH_rWzS7^)lk?~Q=dBB?R!Ra!!$piU2_HYiKO{L zwzVMAulji&Od$03MOk>95!6C-z&G z;p)FvKzN=kR43FZbsFRC9^YG6i^nH0VGLzyYJD)%qoC`p8^-wNgr=C4kqyVgX&HZo zIKZsLL)+CVuPer;j%!HnrWIXQn0*ui=sO){=&fglveSLl6L260pcl6BbZM9{7O zX=1>Mkp4=%C}VywrCBT4N=}s{#}-0u>P*C24jMYW7fDA@ZzA}kXvF4Op{^^0wLRfh z8m};q2k^X9^iVj44So*A4k|TbEHV?T$gM5f8B`@GFq~wp&}9<lyoe`1=n_tAUH z6i1k>#PmGRZQ_3p43J&A^`D>0+WT@P`b!^$51eawfE6`mSHs7qUn0c~KMj(J-0TQ7 ztLg(2xGten3hGgGImO+1-6(&Bgk&#Ca@!Ll?Tm@FW$1Pz&E&XhmU+!tURTYo;^rBR z7Y2EX$W2$u;4@Z4MC;c&kIU^*g(!HS-mb0n#>u+xz=@seSuDCdo;BtdTaGmkka-(I z64DkgTf0nDLv|`ERf(vE-F!{71@F}Fsr)VF0bpE^=lpqHI;?vBwxWNXMgSrz$}&zC zAk!Jo2-$PK$e4q}he9Xzy-c8s**b1;qD&ZuX8&I1xaG0snPnOIrUOhn%G@m&Q4=a< z!Kw?@57X1aeAEFKK&+{CiYW#Do0mPR;B^ifb-KL^4UDfdsuR6O{>=m;~m$a`0+#1 z-qc06S>u0a8wTX>3|x(jHtlbrKS9{3e=n4J)MN>|d{3E6XEuMH^UeMzF&9D{G{9dugxbTW zk(j1|8pZ|(k1dISYgSgCD#^E84{e7`lr8W|j!}Z7RlW$B?z4G^9duHgvgNN{0}S$! zB4vhKDt)abU`)$hvRCo4p}#TlBUTE3$2`r!H6LIVmST?fj|uA>O<0H%dIRPzr@~Ac z1Fe5tO*xN#m`ca$8u4Y?WD7EtL9&yyZ#tGbvCe*Ut;#H7Gov-!dO?4{m_E&ld4X3} z?_9B1F*}nXH>;#i3wIUjL^}r|r}Sr<5A_uvE>WG%)^D;Rm{VakyiTagN)eKY=*BW$ zJs|Y{Fpx+tX!YC{ST+DKL5(UEhd+^SuD*X=IDZ!dRLqqVppIed4k1FLJA4~N2B|Bh z72-g!(C zxw!Uu3PlmFzPHV#u3EC_bqJ)_V;9}vT-+Ml>qfc) z%r$khEIchz7k`H`siuNN@avY&>rFxIOsz1upXN7eHJwKrvRB#HUoQtf1NeWetH>qQ zApQI7HhRtsPfj)@(Do-DZHpl1*T&ven^<|%#Dhj`(9-C+bp(8o4ln(4#xK%l7)AA9 zUlxrv&C=B+KSuagPtf%n_%;<=YOFUUz1RIsSG9Ly3wPtHM+&+dbADy<_L?l zR=J?DkIw?M%PSnjjITCC4mf`t-uH3*Q6Vv@{Z6>zCgbWb3}bY2`cdIY*Z(DS;832C z;9{!XkrFzn6EFJkRp>pKedh{2?fY%{f`uULnk~se*o8i$aDGU*i6@HRA1;=X)*#ge2 zax%PKl53gWMH**@Q+^G!WoF$Ev?&sPON{yWoijnT{N0@ z4%xo*@8(u8pp82JSlN zFB!Xew4=rq#`&PKnm=t5vMEG5JV1za*CR%FK911`Ppy9fE)3OJPr`0Jkteg_nEO&B z+Z>yr{>Kp)ElMpk_xBGZ!ggxV@D^7dGc7L$7ctK01y5btHpc1X9)bwkyV#kXblNh# zHfse^rLK1Hx?N0A6uc|GpaS&~XNf@&dBE`MCH>k21+vo&T7^JpU1L0##6qauIt*IC zH+sE#dwqX!4QsOf{4(g7U_s13@^jOyU8bw`!w~ z^=7^sy_Ubq^0~n&$$t>C2TZR`JN9JV4kUDw?{u-NCd`x<+tesXsFqWBfq)G z$?Ci`ql>SFHBny!AvbM4OTADqAFx&HF1>%mY<{fH$=3X>wzyc>g7a`jeYBqbl{jFE zqOl10tKyE$KRUjZFIu2Q(&1GQ z-}*_TcbkfSoo#o_LYCJD=nH9T!qE&_kDr|q0em;a33X!m&TEGHqqlYVtJ?(=Os;*yM+5n9_*^=6&0FPWNri`o8Kh!p*;Nuaag>)P*c809~d zUM-10YBv#iv56&TFt(2EySsnT=?wZRAE!BGdX%N+^Lz$%85`OX62pEY!z&5RRt=A2 z%X->x4Og`vRb)SQ}-I=1-E}#X2&4Y-jPO@ zUG}!XjGsVk4X|W z(0yJJopqe>G5k93@%odwY+sfVpNQJu}Fvyiq^eqr>_xeTh)g^Go+4@Kp zs>Q#!ZUS$w{*UJ!0V{f0++5%@ET6V$*ag@sw3-BZglDk7+vX-5SVZzuOx+YFCjS^C zj;a)2N0SL7+`#ral5D+GaG=i@wHw>EZA?6|jfu^PZN9N>+fF97C$^nTY#ZP2f6m2M zr|R@YS6}pHS9R^R_I{SI+(0gm?Dva&%OK(`xXUt@4BS?-b3 z1#19r>y~yJ4Q&)HLD$aRd==f|jcPw2>?7aJz(eh3)~JAQQ6t^uPqLeB6M?7Up`b_; z13hHOwd71j`dKXuZB3|SL6}Wre$Z!%eNEMuQ0VlLf)sZFTB@i|sSXQPLDJk@{%~d+ z?L=?oWbL5+E6z9#0EuTA=`*9P@#&x@W?|o>eo#1dGZU~wTBo#a&)ySoDxA%Mg4x8w z;llpN*~`fB)dX5zlUHqU)K2993Wa7- z56PCpZBilh=F6EJAp*8R%O?oX#*@_4mgH=JP#5xthy71~3JjbGC^m|Rs?XFmQ(C`p zHi-QY!cF5Wjcf8LEI~@+wHWsjGAfR2F~?)Cr8_I#eE4WM;TsL^u3_>py*nhW`P*kX zWG$in97vLf_M;^^cz|nvZvRLQQHm{zwz6td7(8{(b6t)I(DgpJe#}w(6L1-vrQ^9P z$w0Cvo_^B{6iEnZywzP`MbhFgll&)|!JXz!6U-3c#?D2id%&XTBUfi4RGC8CwO{og zBbJk14MJ%AS>Ht&Kkf7ia{6{9Bq=GM`ET-WBNMhvZ~`Pk{c~uVXWpgVm>6#5wBO%r z9qCBtiQTCkhbj6rB}as+nV_b0A^UryC>r%Id9-s7;4l;Gi@MXB=Q;$|67HynDV{i{0>P;|UKkc}-=+~q0k^aKe zC5+7u0mtUNy!rORaLpsr<)PpG*_haxL-)3^rNCykwqkJ^QGRe_l4*yj#8R(!kV*@a za^lt$HI;O?LTjsINRs`ajYN&zN7hb)Br-s(Bq4SsdfDk(<0c4EhcHE{*(_2M{aLUN zw)p)7(ftk9HS)qg1DZ@gZLtc?exM#m{2JguExt-nzwuz@Qk|TiW4ISTEQQU;L>Na( zYk(KU)i+q2dwqkuK5hT7)GZVr%s2iqd*qQA`bVboOtVM!ej8!SO z971Z=y~hsR!A{xXOz!p@6GiyR?CH>wx~}0vDo(vWNz)_64~oi1zfu#!#>jTH&i~Dn zb=`tUoN}FA%@W8c^K{w_O)=uC(FCM>7XK}V)KhN*eKl77LQ*+!Ko~KZ$_`qdGmLUz zzv21Cb0|QC=+-HlPw(_i`0u{~F_#4SQ+7`pi_8e5h|& zm^18@A++zLKqZqA^bYUdcsg9P{NGizmBoqy7CzMdgEQGDCvT6YljR2S!oL8INW)6> zm0CfSLFSH8W?0p^Esd|Me$4I!X$)**%qJtrJNLsD7lVhA38YixVkS&l(U;mn)|;=x zS48cK6XSnKkhos?4oF&GM9c&7DX~|cSZz;4{sW3tPkPdh(|Va-$u{{_5U%Uaav*CN zXv1RNtS==?Ln<5Mg(sbXicA1F%5ZL|j7ykTGZj-y0c`Z#qHHZ8qM+mlw_xb#>T#t^ z>3cWkZFbk;E1Op7Q2F>0d_rh1hWS?Dv3Yt@9^AE`=@V%WEGR-Fg9t4a02ze zgmSj~@R)y;-j}ywE_j9QXqmJ-z6aJ?~L2le9IorC!tWnhLF0UkMWs*zJ`Rr>M2vp~=1PZV zNW6zGC;Lt_IT-7<3$I}p62y&pNk6}+g!xUJHE>V{n=VE}>$Fvch6jPj?=$A%@Qx<4 zny-zXIWRCHWlLrFBLb_}g2N+(z1VVOAeKG3+)XYQM?Vy{f))^Io?&i}Q^6ayUPIEu zsP|)ZxCt&P6A6?MP)Y`eGI-It*118wg@4{X-AK7OM&tcY6RjH64Bv#z=?Qp%H%pS4 zKiK(6zof3l2i6Me``0}BrF*8ArF79G+@0-SJQA?_k%m6f~TMAFbUfutxXpZ_R zX)>uco)2QvVH#+l`UhlLY?7*oAqAy17Z{qxxrsp^x~b=(V9bo`P5Cu>(9uzmDhp{~ z+W)3XU?TeS;~E1d+n5oBiv+WLsxb0$+YaoXS8wXFLr$hT{>g=nd(f{jS=E#=#@d09 z@cuv!Ox`N$_keS({w(xGKe!QuAX9=#JP?o{L>7~88$&=e^o~cyP~8xfyCNQZ1*6kc z>>-V~4@L_|opep=1FMO2{@5QH@50spe%c9YV?kKXhGiZ&@c>AAlU9N`iBEbPOD_Ff zczkMlv0^hs;zLU?aI3^c%n3Hh{;xlNleF`@)yI%nIa!ek?3d9e7rbj>)0ire+XX|Wzh0GB?U3Y*dv91C zjE(?|>M%H(Y3QFES_#YKpIElXgGC!)J)xgej4zA}P?Sg?l#xGvI+gn>3sK7j=8@;5 zXJ_{NPJmKurv-nza&IDsqcR}HBpkAXv%|{f*{UHQ!N38M97?j9yB_K1iL+gD?Z9SX z`VgMIdHOIXDsCHrQNn&lx^L%$7aM#ryB;7H>U1=L5RmEV1N!+i%DjEz_bXWwtF_>u z#Z3k|EZCoYplKqS%zfFcJtL_cxu-^=8%^PG^Q?dFe$G^M8|2cm|IJ*s=(l3jECNiS zXE|#H9znYZ;og?_@EmM2y+hJU$OB(a&sX`x7qRj9)<7RQ_Pm{U%~&9TtmlUH+JF6j z__7YtriYgL3d&h=8Pk@A0?`(5!J3qzM<=z#f=l8qre<&eQEXDReufOJUhd&LySYSX z36vq5XKw{INfl@7&r_eEe^B$})9x;B+ON)QA%l&5!$cA(1}tSZ))YU&YPC&sLg4MF zIH2qdZ%8rA=CzLm&D$GL`5dYISDmz4_+jrxNwzu3@6$eU z@e8B9go1#dyxp92VchbSq4!`3Uu#he&p{qAp`0I?YlM%S3J1!8yw9+tEX&#=6z~BH>pm%GO$@koC;_E__f zzm+@(W{%0riIAP#9kEl>>9^vH`%}Dboyh`Hh+c?(kkn? zQSBa!EPwbQvzxrg9q%Tf=^%f*&1I@V1DdCypb(vkNnWO{V**KgoEg&0qyt`BMOB=D zgYGdff57rR3rYM{Ylctv=Xh;(j_E6571f4M>G79Ir#gg>ATW{DU|9ltp@;^k zg~CJOd82(#KgK&ceQ7dzk@cJ%MZBv6{^0p1mcwJ^-Py_PZ0>I-U;wAY%9FzUC>}Ku zCC9BD;!s#PZ>amv@!qLa<5-4SUq`;pHeb|YiGRX56vtgHFDG4Ia8y_nVSRvqEQsN0 zLW6!A>pgX1K&6Tu!S%rIz1W`}dTRq3PbA+idXN^!-pZk>{`op- z@`w_s2I0h$bHI+g*^p9vVkyJKm+Gc@sg9xW>^pzO-8ly(AlKeR>uVK#6El$(nf6Z@ z!IkDvj+7$lW$mFL1Rw1rArM=ZRJvkrIOmp(0seqrxhnPgPgV^OP*`_~c@4EU6nZhK zD#dWOlQlqqa}|crR4GWd0nxa>Hh`Lrfla9ss^_G^<1I}zxdr_ewJW>*^2Ws?HxuKa z3q<)E4hdo545}1dpf*>#4!Z#`C>82B6+RW%mNu+`vW^kf%6ufy^qR2qmid51FxC}J zM><%`bIKq2&r4zruhSuO{uC_v#Q}7E!)7` z>q|MTocHZ+ZHIQvC_wIi83I|@ynLI}#gm_hw-iW_OPbXBt-ZfqvlxI6jHS-q~D&-OT&pINjK z#{jc(WRWL#24HG?<9Dv|38#F*hf#FiJvZOnB!3U|3k0CDAqZ5l)|0f-9~7vWgj0;^ zrd>2;nTpp=3L{Aip4u9_Y%JMjtsOrc3#LErt7pC?aTA-pM|ua(I=kY(SIc7%P2J_L z@g2t_GR{ar@>e=8TgyGo4B&G`wO~>n(}7Yf%sI;sWLmmE)iY;bux2JBmuud4L>Jqe ziu{5-Ucp1W9qf(4Y311^i|})OHy#+E*^r}uNA(aOc|nzkx`d&KTS*$a%44mOmMX5` zd2hW+;0TLdi;9ODard>$$g#4}_dGfn{uZ=>9r*6!lTwiKx$!vWw)!Pujw5xJX^&Z3VU->=1h+g8& z8{s$jfemfI`gXZ^F|=o#V&ehCf#o4S7wO{QzZFz5bJEE@P zrd5-PB?McH>aWq0|A~fEmS_qW>6Oi!p?>`I1-?Ito*l2-j~{(vj^CT7Q4cu&V66C? z=%IFKA}A9eB&vc%N5>S1xf7zH29W00jSVW+dDkQcv zs09%Ihv8TLlwgu#9_?f|AmZW)3MjLphA19zNYJ{Upe7KgaJPR+`}|p4u164LNg_K% zU@>q497T;#%xS5#HM0eY4v!QzA4wURdd@9Zw9z4OM2vDZ1p}$!{Ec`0Nk?%Y(hWap zL@-FAhe2v#+-dM&0mB3k2qSn+tuswcFfXi9_1~%H!We&31-J>YzPYd&Wy4c)aq?@7 zz~(?vmW};$Qz%WJu><>*UOFQ{sZij0@WTq*tnI47=loYQPW>s}WBK~?^LV^TuMTli51_$Tm5syxV2|*a$+K~`=0dd4bgyJ9{^&X1;PQ&E0 z;oUy}K?+{G{$<>?Kw<k*bO=z(wiBjU46 z&G9jUxd34$pjVI{YWM{O?CJ36*<`RjS)CjOR*;_zgaR&R)l6}<1{dxRHTyCP>+DiP za5%oQ7c#kBbcrc6I9X!2_j>2okEWPp5FT+{5V_Z@rwSyf+K|V)!g{LN%Th&r@iBDN zsOPkoYyPW<{x>7AZ)8XcIB?0UWw5KDr22vUE?*QVU>(R(7IWz}wSyrefhFkzg@8R` zYLGRo1Kfsp^;jucg#)-5kc33$AjDAMBJy=lz+jaOAcThANdm#1!FzY+0uDjB;UtQi z1k8L+p1SZ2<28kD%hCr9h)=FdQBuK_OV1e0T=p~()`|Ve<6Y3GG|5WDga5-nUdL&6 z2v{@$u#51d9|q3vWuS}jAy3~s@?T2L!WWI$oc;UV`6q%b7{b`%B7IXzV(ITQs^7`@ zCTHquaN024VxnG-tkL}n8b7%zDq>sGn}Kp}^HK~SG3gwE_= z_1Q0;DgF?zUdt#u2{z88HC-t7p$l&og*d%qC#HO%zlBIod`5jzH0&rG3Dz6rV`u`P z@vB>=b{;f%v1GfmO5cDm4;(H*a$~RCKg%yHMK9tz9hRHxK4vjxKfy+3>B#qk`f$C%z2O0rl+Wbv6`x18#9XvDSERR^ZOG9t z=4>T2zRUq(Do+R)-FcZ9=}shpacRKH_C&v5)lS)<%`03tUsfztxR2BMqGPN zv<)R@M?eE}H;8<^NI6Z}Qit($cxcfwO$$t9B#}9(^bg#-TQTi5O8ptO2y8Jmg zqW6R3?i;it?3-f&-bp>ZNrJLN7M4|l z)}?r_(c#K>3d=(0r|#`uZ7meN!CevFe}xy{h9zw6<2Ewf5iI=RVx43-3!Mo)^pcYC zvxBEZJm6Bj#1++aO4ds&Yl?YmBfMJPl0N~O)d#vgC)U=oty~@;Z@t!w#*GVObVi(< zEI(~>bTCaucD1tNJL*~%V=7486HU- zBlTdApS>g#7@4qmNfljCG14X7_>)M?JA9p~YakT_NICsc7%9GANcvo}_~S5xVvT)& zfV1XD(YxuyQ#}&E`%Aj;{`5IFSMxN=+v6$FUs?$B^0ojlLEOS;KG!)U+EJWIiG;6R z77uL{Q0s%)A7Ezd!bs3GfYrWr0~p+YX_L@@Os?O-z0p}r$evJ~`Ux9v^P4oB=Osgp zTBe$$?jQ5qYo2nxmPw$Up&7qxW$I)P^%49_$m<4`_c5*&)8i~+sR4A(U*{!t*2{S9 z^SC?Wk9&Zxvo7=gwwIMOV&-IS*i)VN8A>ipV#cz$AEtHiS{mG#*P4g6={QKp>~QlI z73u;>Bd)bH=AMvOe|^u52HOhhkNZ-^6=iJR&+u)HrP_~*{_uTvOZ&~~U=nvjT@SRt zLXmsKR1Y4_t8#V6t*S*6d0i%CxY0HlX1KpM>6`%dj`!>#DDi(O`5}>W+DmFJ`?H|0 z5Les9LVm+rHJKJ;b(fJj$J_iCYMeXO!pa>z9ltXR zh4G!KWFA#uXt{h8%0w_>RA(^oO3HI|kQJE1<`^KIBdxwNK-%mhILUFi}J&D&f1dK0?gqFRdSzWrMJH zR$SDqcSsPuPJeVE{#@Y_%qh;HD&AcjEyNLNg1+slIz%MsU% zc2R4~1=q20NdK8Qe=7Je};1@iT582l2RMRmu`+eNKR0*-yd}@>j0#D~U66Zp~j6LB1 zwN@OFDwTX98Q+WHP3${A<(5@&$u%$!Yq zlS!a2zyS{<`FBarET<(GBL}6gwC|pR+M&yI?B&1c6K0gLz-WQF6?g5ZZhp7LE*#ks z$VY?33FB;1Rbsu&BClF3x17CL^I;y}xLAJQyR(xhxd_Ohw=bku@@w+9$$xj`^Lj+O z_+_NZS+5GzcrQD$^5!x)zrwJosP!eFrb<2Gr%|^t-wLdoZs~hhIg(fFylMxC zCL(d<)I#?9wu=Jbbb;?a9qhDUIsE1|d#752-^j51_y;V;;*qtZ=m=B|^9%nuiY2P@ z{y+CeA&+>X@{Aun+cVvcT%i4qiv4mbEO~N5jU9Ak1`$pg(GRc@jT4xU3ho{yhuqN8%b_6p-WlAc=S{%oA27gWwW zCbsP3lI_m5#ZL&^bMATW*cjKv^qhi%?AgVvw`5d)fe*kVTO@Ov6jtjQscyw7SD_p9 zX?|7Ozv1M0t?vq3k`XzUF_gLHv3fHOpL2xHS>V&vILLA?5^H4t_rq1Fb>_`P`yH_; zne{S7SQmXOu?G;Y+qjbvGC+`(QDg=h&I+LnJEe<#W1NTC0Zl$tJcx{<{sTlS$#(53_}h zd{o3tEND^kI6QCg!9%fh=pdwPl)|aBR&Q+{YC-6<9O(O5= zh=e;cVU#3(~v@uVtQhtX+sd;`xr+l+n@@JIob$Ipq4~~{$r$k*;EsPZ= z>5R$y3D;EwUozL9ymPH~JhxNCwOVidbF%VUcit-`Y*i8W*pdb5=+C-LrN7U^{d5m+ zYu$PK`uExcTZqv%fI7YDc zZkBHqt0d!Cu8C#fN=-OH%3x#mZr%0Sj=Q0doFAlL9vqsn<^Yma(p&a`_>B8;>v3*$ zZLsjRFSjdA>*aY^*b`5Pk7&H8iRm^y(;pFJ%~tDiRvgc>d3(^Z<;1~lQK<8LmNQ@x zJujc%dd?WJHrn{0xvqWF_j7C5=BM55*f{?>RxI zGcm`Nf<&dbE9cG#aXblHfO!)+d32(G%t(fX!v#(_3o^wIa%~`)tjY6)N4_WC>-X76Vy68s>}gV_6$)2=}hUTAti@50^&ye83^*Mf>wqm#HjWnG|?y!kt#?nN_*6rAaS08d!aq9~^ zv%kUUm`SKU%zL_e+J;0`-rN8^i|%>01oA~WDG3V4OL*CH$8yp#_pQ}eem_^TGLH;l z6D^s?;={O%;f9kAF)%{<^$6LYgiFE7wunT zA{bMZOq5bHBWzv4u8KT(FIwt|@#79#N+Rg`q7TkMy{7`{ppH#J;SFKQ zrb+Q}>Vxx>92R4ausiT8{P@KbO>7XuO-R|lG#B103AYxqEu&sgGUBbQ?f)s?j``8r zzLW0VfeBBGmTZRnQKtppTg&^1Z7My){||#r__HxaT3vu#mDeGprb!_E$$`JHN0U

    ir4uy#a-jlHSP1VkT4ji zXM^qX+(>2{S*M1KI%@x2)jR&Riy=x_NZEuszZdpzy|3)*GTu*2EL<17?RJqm;27#2 zD@D;Ad0N_O^Eo6pj|PBzrFNA{1;-+jSf$WpY-1#k?1+5+a&HwcU?KG@%$n5U5^44~ zyXx=AH?bD*qZs$Gp#(#Gx4su+hRG3`Ba~tjj2GzTlf8B5ZA(PZ4+#h*oc{u;VK_a} z%Kh|NzL<$W{t)LFJ%?MLdhr=Q-tXT@XGhqd3^914$SNV7;VV>mC6QsVQ)$poDyvU} zqf3*Y0_#dY82of20pTc**MzWSE^Y7HH_9rFX{VDgemt2dK5aA96B5&rKQ35?a`ozW zHg{ehw|);HQm&jXFXtJ_J$@O#>my|S>eSPbzBf5q;6e`EGpvL9F3Y5apzccuGE>l^ zG7Qj_Dhz3kQ$2D&iv{j{Wo~@naoneos_m=dPm;feHAfpb`2w+=4bRcn|f44ils`qa;3t z$Txw;J*@Wa0b$5{o4D_P99o?J+i%+ZNi*r_&~gG1_S?Y%(jQBElLG&yWYY)aHkLs}>8^EEC*HxsDY@Nd8=j)Ut*s3cp zYqt>=PaV|Ro#`;9^?KzK5&i!GWk8z0)j{I&z0GxCGL3zms>#6ys4NR_KR(8><;_8* zl2c}TF{k!7tO|G5H3?>e1o)tqWw0UJDdU zd>hd1L7gllqd+TvPO*7euJ5oGT)pMLjNiK%_pzWs<&zjz=ew*I31ciyid3E{zlO?;?Dq!^3n!E7166kiH*NzA1`_fX@)C^_NE>5yh%y@$ zSCtwDyz|y$Z~KOOD}*bn@Zy2#17o{t#(b@+AIjg#3ogLAPXWCI<9X|v@Aa*HEvTi5 z)hZGEIy<_5E>LK6E7~D8V1d~m=(uL48Q|#Ktk;}kzjI%{AZag;LTohV#a5^5IPtzs zCr$QNOA{Ms?zH^Dz7X4TPXo4tqk*Yb*u&&RpcatNFrWZ?S6ARFzhUEBvff2M>CtPe z9RIY|QhA9U@vFHw11480RX?KkrB&PSt&wlUvUW9pEO`RGcgx(f#Cr~pYcGMS_(#!6 zhH&Mk7V`<)X~kQjb`|W0!rhz9$0GL~aF~@skJqr?*q4f-#JAYQESTTK87=}!Erg!k zG_W|~{_34K-*+VGAhsP_WWRFaOcr0(Qrexe6eb!lB zT*$~jXxWT==-8{cxV7{OpU3-!STXe+vTwV}xKBRKKiU!&(&+~XsghsmUu;XKH0`;8 z-t`OQldf@^IQ>69S&Mg<(X|8=lTe5f6fqz%I5#p1FHB`_XLM*XAT%;EFqaYB0u%%_ zGdVDmp>8ODwN-aK)PMY!P>!rhM)*Wz-klwi?2(mC8RzbUT7=kWD(AgHm z1Edrg2rr-xVnIA9jsk4G03DEsF!FK%MFD=qfuWBh5JhYe1X38p+M}_c0I5V7=i-G& z+dB~Vdx(pO?04F)R)PXr2&5CvgW!Y)5LgtT1=WE9x;PJ#6Akd=uz)S-fWX)RI6J@y zGy{x(4OI;c0d)gCV|_ybD5SMv6w}`l_O^{bv9~0e28jK<|(J0~;R+8So1lsniaSb3PaV z@H-HRF0wF~hldB$-i<(n;_&uR7t8@ZBL_5p0r0@#odD7|9>jnL#JFKmBsz%>;Lis8 zhXZJ%ksy`;?iZ=yeg>UMRFaBFe&RpCNJJ3#dt!d30|XHK*BA!`;heR|1;)q=t?-!lU>93_#r(0JTU}+ z){Wr(8#n)cY$Og#Kof|BpB+KK4vhi#(G&L142?bT=_u-Is;L?piD;9whZWJmk=VgP ziJruR?EQXEXr>G3{Y+^Fk>v*)eY2C`KyF~)ZJ_Lk22oUjZpr6n0fqz>NQE32$MiNPqC#?bofc}Pyf$OidcIL2#APEK;hz2 zVm~9s`BQ~l>jboL_fd| zhllK+vGjQWrn~Ptu+GB)nEo$I0)QF)V@Z%KBxwr}|9C{Gk(7%YO~v z{k5*YRVyjsJbgq&0TD4t(qV{7ivrS;aKC>QB7a_k2g^oMz~A=%9Rz@&Cy0a$58#k; zA&x1vVTJyxxjjXcyfV;#g%akAW?JzS!|6Ru>?|r-liZ*}-u3#x+kAOAZ4FsV|6A9w z_sw`iPGa`P8j?!8zoD*NnnL*N__NcgD!$A#ff@(h))@*cdc-a8Nh>qQJYVAN?T7IX zIRWFB^U5+!kGG=5x_&UOCUajadN`U*>2a@5wC)5R!{j-{z}C!vKGf5Ei1=gcMC?sO ztKzU=uT4%E^Ghu%mzKxJXYM|nyEuvS@6ulioFC`3aVLUvuOsu0E3!1v!aC-Th4E)n zCASW;XeGb~V_U9&PIoIYd)Ks8l2X-$csiR8LFsG;AswUz!{A5aBCw~}-6ubsndx>` zQ}ydEA!jm)ReQF7i9bWQd5FiM@+$>1kqTf!XCdCC6%_;@NlFbl>}exBAUC4T^3LXs zCs*0~2Yua{y%Ob|I6sC7Ar)jSNl6jQ;n3ZyQ9&@*4-l* zb5};?`PPWmT__)G!Qv|wM`QqKFxw$R6PV7$GE$+OD%W%VTVD01a$u`K!7I8n?0jFP z(2<7o@-{xt7y{#8P?uMK?c`jSAJS7ST~opeivU+ ze|`C~1Ja*=0>63F?jk3whNtWEMgEb`6^G^0Lr0mhdy!wM1K)4%CENPlA3nJdPr);_ zxJ!3Ax1lhKL;qe`E&FAVKPlDxS)H!#&`~bVa%*Zd^#=*=LK;tLZd(7g^uh&y-Crnx53ri_g;T`OA9qn#~7Cl6a{|-Q@FQLhis{f-#SUwjjXnVosH<9MyE`43?Ox5 zZAQ+$=qu7Hl^EG?J9P4aJWI1j3YR#vxS7 zuRQcVHDAi9vfzf!bI@>#dY%ZHG4P}Fg!pEEZ1LEkSe1CC`-1KLsX4j~PIpun&Ng~D zNi+BwcUi058^z2%U3qm%MNE}o!%io~>a(qUi+cvMfePtdzFM5TMa^csN@0?y@B;OU zor;d{NYJBoJlCxVr`U6rNj&eS2vp*Ylyc_eH2$L_DX2AUOJdM!z2m@@7ea^LMWiKv zaTQG>%{5c#Olxo4d2?hvXn54bTF(Do4ARQf0gxkDES*hCE3GzIoEH6*HBPr%1!oD3 zHyt~{3(*SC4Ct$kJ|%VAsy_UrZAWwmWm4Ddf{x5EnboX{%FL@np)b>Mrqtal*Kd#? zPTWmx=~809dPbGgyO$zwn=ad?=j(ufYok0qa+*UuC9va-aIV%1x98NX9-%KRl5?wa zcyPVB@v204@}ie-2-{eXM9gx5va+XTLg#i}c0BEI4ZSBPt&6?QZ8gB~sEi575C4Fn z)Pg=n)X|SR#^V_tQdBl25*FzmHao2Puc^-S=W|*~)W;YV99fc2;MaNKhkJ^D>QAw# zx+>!BvW0j>Qw(>cT2mqlhxVN~x4`GjC=t=xMf4A}vjnzy43z=eJFSza?s%2;Kt#S5 zR-Ge!)!S1yi?-)^cGy{QM49<=NykD7wsTs*o_Se2J_PC07oBh>|3cg-UWo&%o`2omol%ZyV?cEPl zg*O96x{fl4x1zqcYUns6x~5!yd3LGhgwtWQTV9icerh`DR+l1jTHLdLuBuzPx)gYK z#vE6H8Zz`|JirG$K{T4slc&GeN}wK#)Uit4E&34X8=5gt=5CGxI{XAUm^yjAqTr`w zraAhq3>{%#sks?)_;^W@ErT_=Sr-tpnL2375MLQ}Mnt1p=G?|N>BIeIw^@u1SFH# z(0AF060#7E%AotVXjNe&qd7bm@1?nor( zrX4h)*Y|vXEt9O)1ZBUmjzg!H(^g$k-W&EQu3EHT(DuZCE>HWMrMKkvF{*j+I{Wj% zP)#?PChz4=A!FV?Z+n79($ZEfWfQ+Ha!LG#U{b1{hk%ggQKr_T7n9D9S4MtgyqqLj zpzIn}ch5pui@uVKxdub1hD=^+^Ia%wYYwvJ>Z;66*J@k~HbOiTRsFP;5}+zt3yWHOWyPr7JX(}uP@`S{in9n=HuZ@ z92$sCk8dFy`MHqZ8Ix#CK;0!q#w^5PWSc5^D^`7 zmV5qxOg}_Aj7;{2lPJSl&2rJqhx>O;`W)Z64hiRd$dffxn2^5o!+z9)TuiCyEjJ@pZy)lc-^jm6k)FV$X)}^|F-*GBaQr*16?e>k z6|tz>?N8kpm48ev1*wE+)@P69aK-Ri)~BYi8T$+hzAWq?eZXbSOu1yE;{ABBoTc=Y z@!^d_E*7vApE$S4Lq2X9Kkg;zA}Q^{C_9n`JEEJN7PB0;c2veByK37Wt@y+X7`9zn za@koIpQhG-t{Ge`f{3425a1l1{PA6X|0?>OhhocoAZx2&gzt9kF`8E4s%lCu@&`+& z^mCq4$z6Zi{~VZcew> zW7Q|dZhV`+FROZ~!C2xL)L$068gD&|4jg_<-B2-a7G5cC66PJm?(*FER{C@KoClxq zi{q@jp%pY#kZ+O+Up{RLrQ8cOwD`QFO5f}SiT&ChOi8aa-hr&i4^-VQ_6VA(vR<}b zYc}*Qr(G+8U3piYiz}%3Vx0MZgyET7w+m|a1K)+@4>|0|$&z;k!8X?f<2szY#*(CuoCFsvcS+E83x6tNY5sSePuWFr++ zF6@}y?=Erf6a6TD?Dj|6;=$xW{u%ln+alWZ;otzl+=Lh0nJ%C2&TBV3TK&!``#dWO z-&smk{zVftGrkUKpmAt&q}59xboO1_jg-QuM0={dEJG(Yq`SpzM^h_x(i_U2AHS%* z6ny1wpiYH`a9!47@xz3FMWz}PY;O7bmqxWXn?5IGea8D_R;m6{3-~JzJlwIp7lsZ? zyzCMknl=B1>P%gkezeH)9dfZ|SjthO)P-2LE<$c>^k}A~*yE?sMzb`hPa|6ysNI!p zYT2M~f=`?ogsr#w=t*@!A~%H7^(&5rlnBRum}bXl@$?Qn?3rMH5jsg<)E3Z;q)-qX zVQI_>izA$(yq2e-iLlL7Yxb~*l*qd`Mafv0C)x%XN5GfC})R@<#>8!VryYMv-( zzJ@uD4o5cPk_NyirG|KW4swJ=qfJ~cw;*3pF2lw9)A5~g;@7@^-1zvh*ZE}IguuN1 zbl~muJ%JV3px$MFTv>!knMJlab4;VK^g6lKk%>FsWb@!g`ZjD?X?G`Hi$?YLS-uFU zd|!2EhwFx+g+_vo@41de=^RmcPUfEY6)EsEos3Lhf5Qpe9>b?G1KZ`JZwf2JF4T%PEeu(dI zVOpC{H*FsGXjE>xP03vrLapm9w@$j+ zwX9UZAF2F*m@8N0YXTihNW-~l&p`;2VWL(Mb6b*>};15iexpLWbwAvK?S3Q zG;75mo=4*y8S>ho3?DynMbGNeE)LyEYNs<+3RkAqOUR1JzW@5&qGw|lJF}qQ{MUkD zOnwg8fY$;OmY*s!v*lJ*KHK2O;{!5$j{Rv26Ae9oxA@v`Z)gPRDadw*hn1h><9`Ub zX4QtKjBn~@ND0~Mw`V$P;5-kHJ9**0L{Rb%^i}pf%f0EyRRniy|AL+VYbBO}Z|D8) z_ee%%Y3>-c_{#J-K9j{AYe#l2Grx**4l80kBlfaEWPm|pRcA_Y>3*g4rQU`~gCZzd zP*+iZ+5j>(ZL^Q-U63t>BzzG2eLHu;9@M!p;^ zz*(gSOpOAl;oJ-QC>`4MPmw-QC?t zNeP0qlyoMB})su~QekiZ)5&dwm$|KlQ|p{XUq43HF4)|3JOwV44j zS{joQkr6#da6o4S0{mVTfTFDh(8&$>+esSqFQp@-l@KS09Q+?*kVb%i$8`9YIlv7F z{I4`NW^VuZDypg~0vye3oxngRGbam(A=nJ;?glXZM+W%?TGIWCAP^wo?&|tGhtj`Q zuK!8%Z|dS8NM(i&zW!!^p8vaIW=`&IK7aM*zst4&Il0-of!+QU5eTrdbpZZm@AiAm zY@Pm*DTyh|NlR&HvM53Z&xu6|1nG_wE7%MCkM-|(Vv>r20Dg8}0EYlKfE_ZVQcji< zAV)_CYd4hN?US^H^a%`d^=A8j2ix8Wtt#5yZ4rV?#^slPPQ)YKsm|( zGlz&!{>ZF>U;sM+=mG$GS=g}sPWaEf{1$Wk7DF20@9PY523VOnxB>lbt$>gZ6kj(p z4S>JIex{af+h2!(?WU}qH=49;vge=QHBCX$B$^kOFkn_j( z_wfZ_;o#=|A01>YE$p3uZf*eXf4Ko6jrbqNknaEH3t*FfmeG{a(r5aA$L1e9DJKh% zrLB`SfRl$8VCL#-=8eJ*nFUTB9)K?gWUwuPUjGaWfQ{7&1ctZ(oZZ3x04tCy%I^i` z%3zvCSdV3H-|#BC_}o;(;Wv z069SBIeNH191lZml{%x^B*-Nn6nw= zzWJ|z73JpmKk0w3Cu9e+IRjm7L4Q_*8`2182gptKCq6{t^4ADJd|cc?VBr6Z1_z{N ze>Ic?(w{#;czz?G$6pQPftb75di}`@DcjA#%+2Pn5RgoN67WDu0Nc0%|C$s?sbEjg zUk;EM?tei@*FFA%kj8obH8T)zufHH9y!T&!5YkkiKja{he1NY1O7-6dn(FUM{h!;4 z{m%*ae@{FAU=6S<$R4O;YYBPM`^!Yh46?Vp4A>!84F^OH`T6&MM*o$7=Fctpm$$e$ z$jg_78#2}`oC1)8ksDGvWDxlL|I63nUk@JtTyv14_}}>Vtq%YKy?_=dD~litp)k9D z%#RUO0aB&Y)$lX|tlw)1-s;LH!>!~@cajiE7Hv}jMaqKPf^uogK#H=0Mgi%;P8GT| zVfYTu8=unNPyMu16WuWjPzoTykP;g!)MnKR$yHhos_v#@IFc_c(R;@|o73M*;v&&LNthW>p~@kA`7G@t+ti{(4`up z5P0VFD-ou{MonQrCzrW(y9bxZO-s-fgdV?Y!Jb*Z7vQ?`(-YNP3(1uFzSehtm}yTf znC&Rzqn;aK-67KIC5-ARl+GvxNXjifk#D+J;-AQ6{^fqV`P6i%@2EG1^1O|7+p=Pc z6q82olzY;{3Nuz3@pQ%}k0K?QfgUshE&f4eljMfY8p{|KTZxFwP9OXkZ{bzMw-crmnn*H@X6Dn}9NznXzC59?i&3Oa zJW8HaYvjrB?Oo&4_(*&k!{?@B8cgLD#cz$V+AA@Sb16Sp<(>=k9@B9Bc<#g9#FG-H zl%QS#5iC_`v0s#}8&aqVU1)bV^_Kdo#EM9k-JjpnM~KRjZD?1xJoKv(d++@a!GB9@ zvMeg2VAaMxs*fyXSX|$K-AMhy1$-Z(xVD8t*pMJ7L(jaAhl*@9e-big0IM{#ZsgGI zM4C;2+W525U21o6?t1`xkNWLRP9&J%I=92P3{eAJ_4qlX$FBF%v$9mjgNS!G`;xNa z>rpKV?EC2-$sA2i5}ceADhqjPE%+L!$HX7N-d7|APHB5GD5zI|aIjA;WZiN8@WLb} zHwl%a&{vaA*4?{6!y5x8vYG)> zN+`^J3Ibf6!L^v@q-1Kd=8J9mOP`$G(WVzKRWa6TX!@n^>`dv4u^d?{-j*Zw&D2?l za>_9|zfMz{xqCu?+rIf}T}HlChIt&(v4Co6P#GYcn^lSo!{zqkE=MR~DT&*6nvWz~ zcF)D4%M$x?H9hlob2l00`}QJrQTf>o6uh3IF(#tYFJoA(YObN)%Y|P&b*VP2;RYmM z9geijUBfzalCv+Oo|s#@vjn~hIPQtf1VcM6o@)!zh7&J;>};YgnmHAf5hSq)wtUa@ zf5KEV(UhsL%>9D-bMdfit6*`6KVtc0E<>AHMDjc3NLe)mE=wPXCp!nhBz4w&i zJaK{gj>wF(^AHFTJ?`ef)K~hN)}`05-vz&a5Z$bGi}x;HC1SH;?D;76a+);glI9HW z>M7B4`aOF46xj$#(r02vAWokz`Nq@xw{NYvncz4_G9LHcg!o9VOu2aswhs=Tb1AuZ zesq7fFKQLgw>MpdktGjbsLd%p=ZTn$i3fMK zyeYE_He2BBn}#N4UR79HB32{VLN%CjXXee@6#4)*^O=Q#vWUOg(JM4>ptlQsj_^O^ zTIC0&zGtH*F|2GcxQy>2a7Aq#V9v>Z?AFy}mO9swZ7eS4`tJWSPGbyzVzv*(ljh*W z4r2+LfOd#8HkFub3iJ$mlp=NUlLy2ic$0*N#514LU zhKhdUt9D;AJCS3kF^^=aFIn==B5?h+L>KmI`fW-Jx%s4MpOF`)=~~ElYKd^=luM~2<_OdBd zX$0>KackB$;Z>$7P-QQfXl+V=D~mTS7dbvTPpqYaDqAlMY;0&-&Xf#HvFD$oNs{Ax zxdow-;AMlTv>$ME@S-u@42q%>YF3(Q;XC3}RLd;tFYv&Bcuc@~jT8Dj z>&zICQU?SM2~E62%DcO$%uzorTZt(zoPTA0k#?+34$X&6SQ_iLP3-_{jqxc;vpXX!8-aR`ZSw}y3pIGBb%Fg^gyo z06AjWjagWidwZC2sO0B*4aIW$z2$_baI0t$?Iuzage#2g^Y8|L`)9#Tnj%d$^gtVu z^Lqh=OKd#fV(Fzg^N(!ZrA1PqR|8UUt5bo+LoYGcoapW_94+b(Nf%TNef)%IXCATT zAG;Q3)G!|Ge^9>~A$fhBlx9>rnsSz8cHdvQ)#mA7`CkX2#xCCZ_#8wlRmxwSf}d3 zf+Wffl#Va9Y-4#N(&I?#o6$ znNEmRVi^V-*CJ|?agD?+sSRpyL#kA*(1o`$#Dyz+n1f%Xm^KI31Sm)w#+=3J$&7yz za%j!{l1H2Ddogo=opLu-7FSL|*!-Or#+{_{YxFi*!V{tX&}ss#$kjK@^*|MC<5P^L zR$%;fWMly5J(AFa)n6&HRp z`^+#pi@dI?R;xS%^m+SEedY|SFiYTz?}VVA3V=p^);0^~fw1=Eg^cZ{kZ z3VEF++T#o|!k|khf-@Z{MQexdMNEx%hUKxUTGhnMZk_1%dUT-g=9hN~QEr}k-XIgO z#;6QU$b43<{KD6rjo*V*&iizY&_>Q~S9FtDFcK;spO?$$n5&U{`mo!RedQ<5U6HR% zhuJZI!G(zDQj43HG#MC=C>SR*@AXU=Rqv5_^ehPG-V>qk6$?O}?a>=>6=`StTwGtp z*(j@zAIbY@Ea+5rDzC(6z#_gj(~9n64BPyeb)s?Q_Jg{Tb^UZwH9y6EVQ1iazwhi9 zleEgdhWaljuZ7r)%@nq-xus4U7}|@u2y!xi?+p52yGRF6d-W|H1}t9q*4qIRF;Wdd z!=ddK?GL=N+Jfk2IIl+{`|?S0qlWZ)R>p{odijQQ&Lzzu(8iQMe@Ci|GWgjlR(GhZasOMMoNDIN_W+MHTULcYuki*5mtujgxZx zNzQ{YsPB8V?Qzo&JI@RIjx&D}b{je#hO_MKI6nLHYm*u!6upmOQ)DkSIneyl*B z|N1B?Q(_IuqQsBaj-s>OsrPljOboYcH0Gmnk)D<_Y`JD<_Pvho%)xC3)Tpc=OSB|- z6j$Vg8nrX05HPN7!Hl=U4oRpeEiu@}jV2H%-Vyg^{5WB4;D&0#jJ);Gb3L!3^`YNY z=%9;qVcwar9h%-i`dCJPwqGxP31|zXN*0umDN}!~_ezRMtHppjV&0{Ad4vl-d12|- zj$efIbf~*T=iqE%RNawUpA-vKb%sA@|CLYL7&(jhO>(1B=*72m9V>gKZfL|fZ_(HD zM$NKGW(PsKguX40YJO}_UaQBCmp2X{GuSh~T8WN-R$RIKk_E3C{iG+p zKx@##Ytzh^Dri6J)4o8r>hxOE#YsNn{UVwbcCJ3NCjQkydp6S;Pqd<7=)QHx$U?4Xvo-N1TYrob^U3cGNWLE3pdy(({eaaofi*4oDjJDxbn;o3i zCmb>o?*{Nvv{Ye#1ZHNtd3)!f!xfHm)U)9F=R->T{pNO>84;sb1`ps&HM%T<&cNBz zl#U9Z%|Y|f+-9oh(uAvxHA|Q9MhbzPaUgA0?lorwR^3uO%5a6cQ?Y28@)oe%AyEPk z$)!_0LhR>-Ic~T>Rq8V(>jnox1e<2*jBHnwxQ@)pvcffgZ<@Sac?%tK@a8`li;(*w(x>?H#npOE+zXogYtn?aQEIW)+^Vml`_6jRQbj`Yl>m9Rw>{0Ya)xzPz;Lmo!{jMX#XLw^&I3;LTAW_5tOK=l{{l1#G zDqS&7thj{2ZC9MAqEM{dYIn9N$c)>(*1R|d08RA*`=k+NiLF_lIKJn*&HF+eGutILUj}hqXcHI<2$Cl9a z*h(4Q^jmk6@WvO{3;Y&=XTTu&m7jqN(}jC#7vkv#v4*cq_a3mHW(k!kQf$A)gcTor zKy|W2L|p)f#f5jaUM;C?w%3%Ra2(AFJ=)UE3{#Q|vO^sZpATnR*plG{nSFNtu)Ic$ z@03q}Z4SVxB8)_7_SJJY91^dO`Z{OZ36xu&rpeeydxPMkzO^lvK&Ptb>cRI;ps;q6 zF<%6`Ag@5<><3akWi;=+WY_oy7Ck1YV*+Ys=AoW3jWT(TL+dQ3>%bS77d;|M`Lrni z&v&pG8PJQxOVyy0EU@#~nLWYS&0%9li>q0G1eg7E2pk1t$cNZz!H zr9OUD#Tyx`-HB-dQ=#_RZ&l^la{We+f}m%Ryl5>q&}5ad?d-C$hirydYziQVp1c%) z$?P4^jDeTJH}V7HQz(w1?&reqgdvl>Y}x^)(pR6yL4C52 ze{0=vV>ZGhdhej_(VZp@(;aDu5igY6rudzvqFoGDlCx#U6gHe|42e!pouk?{fw!AR z`n!o}5tAlVsENvt^g9uur2V4$P(kK@fsQJ6kI_!|d|_wCa1K)NNvVDxr%Q(pC9RvW z>)YmIn7kO^UgZzH8q4e$sWuwPOnVA_oHxXADh!$n_KDP=@)s^X@)NRj;`(pZXg!xy zt2D(eIMxvXn;j@O_h!fVG)IF;X{|p+GW=)?sx&%9VsrR-{E1VDav><*!fxGvD@&q^ zf^x`{m6p)Lb*q?Ecfl{cyVB9Yl#OnF#?5(_NH{(1&I6_*H~iM_ySc`yfWFqo3bya) zBi~3JsF1|DBFT{JUAa}9soM1rV={cXPAgdMZN0ox8r1?5T zB_#$fc4%%fGL3pph50aTk*J^of!G3R2>qU{a7`%bN1f#Hi=2Ca8bCVK0Gwa=`5vU- zxI|rb|Hexk_Cq2eSLmoiT*?Hj9#odSor}(=SJ~V-$!x_(Ta{|q4WV0qKINB~s$Tg* zvWL{m?l2BN5iQ`M^n5akTz`z=iJT-Qjo+tTrZL#wRcgJA71cd^tPdw=^fgAlaW%~D zXbN=NO24Rldk+jnNo^g01H33Ckc_!|6E5u@bGLk{JW$9cK&?;g2y{O1IoEHclhph>Rs7+}TFzxd&Ynq~2e^R`(hz>=>KZu?Ay3+oQS{ zgVP4O*sf3s>EbmsY>FIZ<;CAT;1H!4s^LD*T^^pR3Mud`m!96l(9 zstFkpBMtpLhs@EgEAb;er3lC|ud$Wr91g^PRavvg21`Y00v#Z_ z>KM-#*=B=P{RhHZ%4zEtRMUzC+V9REa-)JzIksI^uBs5?IcwKsKyZ66$73S_hQ4`X zDqx)xD+Ma^ELXWf(|3uHbKdCs($kFNJ;%_p^l#s@no}&Q7LiHt!+&gC9vF}jE9Y4O z?j~Z&&)^|Cc|T=;;g6{TB<U}sIJ}j zm&ytf5L5GX>O7EQT}H4w5l;ilu8X%RnVlu?M!^i4pPR;iK6GQ#sNA_61Qm*9Emcfx z*TA!wJMbl5?fl(V^6LAU{A^^QU`d78{DpUHi_pz|l$1}L=ee?BnfYe8AuIMZ7q)qV^@O_)r&_vNA2E`e z*Oi_4XV{L1l?YYw*sr~ZH(r0y|Ha->dqFxmsc+h@xX!e5f{(-P<0Yc>wpNml6+)2i(8Vkrj>!itKmk@<;u7)nV@IM^&_ z3N7n@jO7DI=NIct7TklZ_B7PT5A^XTp|7d5?L&2Atf7h40F^esO$kGt&2pwQ8@3sT zy+14(rqli;2{``dV6fb7_K5{KPxPhUjJd63bQ0AnYN89?+9F_jDBCt5wKF3|#B118 zr9lwoDs3wVL;KoT5!bYV=@tHz?1Zcb;!FsCE47m9HY{`P59hZjLWrC5xaY(wJ4Q&H zfUI+w+ACR63gxa9p>4n$eV4xP0@6xGUBc4 zZ-s(KITk_V-#pqw558Lmb06hd%IDo>)%hcAK%sVjiFS9VN;qF5*PYz{G>Q=Gm%svl z#BR_-^1<{u3isJhKaayHcXDGo&YdWky!?eUhngJ(x7jvhs4wiYbrg#7xoo`NL@pq{ zW(W3?6zd}@PmllD)WuzRyG^{^ZTv<36a}WYF1P*9fwnf!>u@w9Tvd^1R>o;Kx6eK0 zRd6n?^Dg~eZ6LJ*y`nGJ>4E8)CW~8t6w`!Tth!FMCnu3;mE2J|nHu1hp*^%ZUzkyJYH1=8=0In^@HV_6qh&%xlwZ`Q@A zHaqL+!ciSPrC;gW?|+D5QkH64ubaao&PKy_ygKrM*%ygrKRGKLC5iQwdT1$sZ{I*T zX^FClny(oAQZ3yhRj+V}=+-Q2bd-hnULG+^;I-v5>W`P`a=n~)k;1)MjO7$8X-<>9 zlSkO*t5zeQN1C3^_n%}FnS;M}kWbHu%(q`U;A@Xk1Nw_R*1+9r$!9-+fjS?3eb_Iu zvy#;|W|_4B7(O+c49a0|%>G;<((qlteD% zDxJIzO$%T)Np~bQrcbq6#oTO=j3X2n@Zb=|%PbQL801-Q2bHAU&ACn(P0vIVWI$L7K|cF-~S& z+bFBjNm{}^2*bRuWZ{UqaaR;0e;;1M15+Bk{F-gevVTru59H&La1?S}=kcbDYSEKR zrX^rI#O7Xv61x5>wm8{`!GWn%xFp1D{JlxZL;+7$;zFCQg6?dU{X2N_V|uDurI;7* z3$Q(2?HXuUSnAW<{#;yt4ET+{!PVQDtx^t*H}hPJhpP=TeUH#lvYykW*t$N~nc#d; z{r7f>hPENkJ}H4%sGO@MDh=2-c zscZ0ub$#FR>b3BE2RY{sdmI9Ar2+Pkkk;fCW5H+F=vD-Bu^kgqlr|Ys(_NfV#vL1w z|GnHTNktRoee>gg0BguWKh}Jz43;E?GzV*Kwh<4f(&>YRM2~+lW!o3Q2R`;XM68L9 z`OH@^Cg@AClN!LSN!bZ={FE&b(JDH-dmZL>!tYmYQC2QnjYz~*=F(f?1D;j0LLmN{ z#ANDtYA$(eGn_B0;$PzMjQoGWmYre(jbd zT;4eo?F7L%P=&9Wy$*XIC1!w6i##w?JGs>(*6T$&WjI{dEFEw*NV5ZTPxFuAZFd@yU58~KXSjar0L zIk`bxd5`_Rfwb9oVzSMLx+Hd;XwZmtbAL^$f&1dwY~NH}Uq<_5LB<=ByS7OvduP)0 z*DaqKrMg=0$i4U-Fe}>K*5==emw$1Eo}b`hyIV8Z-M@^O^>-uRL6>#m_W^sXZod!{ zAR#7y(%@37-f5!WO2i;qg6U+8u+Jy>XdavcR@9xQH3wYU7|WR)kkJ)^*@oDBlnf(o zQ?&~`Q_*GYOZ`jUUuz{Y(&cwX6sF~eHG4XQBZXhWVgzSRj?8?oo-yxcWO+RObtHcPB7k6lT%3|8SXed^lXcjG(6b>y>u z>9&IN?e_>Hkrh+=_A;Tr#H|M+u{cjf9S=3flk2k%=c~8r=h^*_FVL#JCQ)(CbJMtx zU54w?Epvk=p9(=nbJtP=-zqP5ZF#UMUWPf^jAMljqopeGwjG((*SyoeUf827668%# zZUDr46>Fc52A`5K179NjPS$hqwGcsn98_Lowual8q{km?z2%E*9oE}<`bf&&Y=1}z zw(#b^rH=nfNGmA)7MZEt3$77Gtw`c42rn>Qq)ce*82^h-kP0 zJH;_~H{8O!j{T9Ie5t6s`NfaL1^jhvh%&f5-#nfuP=t zmdOts_0YBo5q>n=Bu4-RQ{`=+OSbZbHDFqYD+uDBOyQ)v~Mgm z!3cbY?>Qp#4`TahB5L)KA0A}uTbZZS^SEL6fXN1>O_jJE-}H?DK6|H1iV9c663IFc zzp+dXC#k1MJ216e3vFeCUK~Jw%IUh>NXy;_#N+s&B|mP2SbI#4PJL+1qGl(dI-Ak? zDj?T^gbra{`sVg4&F)U`#7<(%K{^T_rvNxW$G;tN9|s|PEmySx3DS=84?0=4DWpro z!~JOaSu|(gtMd?$Q8+A7#zKNdn%r=nB1Ro%$}B&R<=TPx=&N|C{zpKhh3X{ve>#{j z?s3Cy*W=nz+iQXX1;$=%Tg=r2L2Bs-#yEU$$yQv5Nl|V{S~b@me^xzPz3a(pL;$T$ zNT@cAy=_}Qo$m8&ep7hgk1FNx_1 zy}ks|n3Roa9phXff~6(CuP`zee@uWFp->`{Ll~FmMyM!u2{i$Fym1UOJ#*^pO9y1W zPxdNG6wq)7SyN^|AD8eDTU%%IzeYpTCIcGIU5u9&_u~VIS7C(W;eQc>*GsBOtNi_7 zDGFkWlW{k3_qk2C3PEH~mB+b2ka%$T$13$34(*Yh@Y7XB3V{) zt%&+2WO_p}{PO@s@Q2`h9NrxYyw1cDMI4=hmZ>Og(vZG^$^?HK8N8?3MG)0P_gWNf zE%*#s-A#6foI}$DvwbsIe?W4$J8p_Toin1G@Pmq(8Z$>g3RY#I665%d$YpZVKD8{% z=uO0D)YDc0T@}-nR<7V2Q{ShN?C8#oGXoWs(xrxTePV-8=ru%(a1#Oor?G;QvZzAA z*x^_jG#eU*MaNC9!oONVw?7Oz^DLk%*Q0zMN&Pt4YE~N~mpUg;f9~OGrqO3J8D$uQ zefHf{@JpWK4ua8m*!DurobYF^n_s8esT9AiBB5UQlTu9M?#mBq9-NPi4Jr&wNCSO# zULKm@h8FT*AHVq24l9Qv8ZdJsx8X(*9jzbScMp0M#V>HJW5kEwtv;G8i~l5~)uh|j zVo%+2TFS;^J?0l%f8ARm81x}uTX)DLy6p<$DR4MzGQ<7Gx%99|cJQ^W54$`m)UR9X zFgV6iL_{R2gDN0NlZ3EU@%0bGhTQu-3Hmy#c1K#9)3@qM2!NJm&;QFuP&Z{UFnPT7re=tVb2Ylv0)#v6DjA$|G zj233U+k+8ml*0fY%LwjIOyrKDL9HAyknIkJo2VQ73M7_^6v}(!$O!i9MQduNfJJcF zAUvfu3OQL^F52JJg-0f4Wi3-qEy>SSu?>75JLu$0={um>h9Kbp)@qAS|hJ!`Nuz_Tas6)%|Fq znY-Snt3<+`NN0`C{&ToBNi@FKDvu^I)eAohf3Y7mbw!>uLT^3T`Yb=3hVN20!}GNw zk&=r_yy3yV8{*p!y2%4AI&Do(@OQ(yV)`)fwZGiLe@0^s2%bIpe_m49c<0UjlPZL% z(TLEC?T}9Ru1y2g*y8}jMpDdq*-f$joS;nKYP@br&&q!CXHVguS&VG+Ky}GbK zq=;S(ke(yP=!<2Hbp6qBae#M8BehUR#Jk4ruj@^nI62r$9($be}ww&`|irgW18qP>KyByUPC{i4B=4n zKx+?MA9XyqGKKY#3FW9%u9O_UVkt3x{AFM##km5n_eG*V82ocN$KDJv=_$m91div+ zaU3yQT)hsdzYBNeJsvBp=q>V;;HLe64uJ) zoIV!kSzng%MDoxN39Sh;O*Zgb;}` z@bzqB4ldLX?e6Z6#1$}v>p)D(7IH9+hBfoHo&|IP2?mkuB^d-3L&d3_4wz$aKEBm* zQ?P!k@$auZfuAiz327Fi8z>3Ijcwm5*qKe`|5v zUm?gz(jFGrS56$twcwJ!Vt3b*!(4&3slIivxXEj1sY=c+t<$hfhNX4?VkLZb#%FOP zh2FJKAS_|15Gg<+JC|6TkRu{&n%+J{Z$ z^r03V75(QU7?DOSW_kQrn^p0EaXg{$EuJOI&MFAdk{$>GN7LWon?co6x}lpBL>UW+ z2DltnlCPKa8@z_%uOh;0Zj|tUZ|}P-k0l$V_=e@Ic)PZ3r#z1f3BR+6e+W)+y~gyt z$NqTv{+@(qd>PZ-d^)^r&LN{$NirKCTJ#mzDKaC%82=>A#}C2q_maI8ojDe)X1*HN;@ z-BZ6q$xY#>;`auDHjs?b#~8bNWZ5;91}^}aFb6E-aB+v{S6T9)e}G$>pJ6z#M64Yc zrHTW7pKJ}6`X2^*!7v;gXm_)F3wU>yeVYyp8*It$OL*>cQSihcsuP{xF4ED^}?9c~`3MZEgj3Fz>o(NEkD*5A}m*7Uf{_3()|y&)5FB zP9Ho|Fp%aYs+!e(f5$%}^ZN1HfqtvRV(I&IIj!YeGR)v*hc-PUkjj3eo>fenXE`(XEucW*2 zGnnmLnl3bJKV}Hz-Nptb-Av3G|A9-WQwQx&LC&{lH+QP%C8-P}1-(iY%LWbUT>$5SM%|g?d0t)muDQK1N)%E=| zcn4Q>ROtQeuR$(cHyRr^O?>L_LuE>=P?O%FL{T1<>n@F+%@IskJV}1TnvsM#IekIJ zQy|TqWpVS?f3XSfW32am1bpOcs>`HdQpX|zaa{{IJ>anVyZga`VkWv&m36S!N*uL| zbt&Qj<`i9F1aELF)abL7z@xJiOr;Ui))4{l#oJz-tNZXTC~U$vb9^&hCP>YLxtldN z$IXxNqwI{&O+j-F0n@uww6iO=qV_t5962ZzV=0dt4e<%9p5#5F0*YYGXmziXa??PSE@bQN!L_WC*SeT5gC!fE6!5=YBp9k3$DQYEpn>vSK>+6ca3VAb1&|a^mX{t zOShqJ5kIkK-fxN0>1k|JeXa>yu5TJ*m|%j(*$OCgb+LH&y6S*JRjGVlrv7khZ8<3V zr8RUtc8sgi|iPfh0d#g{vH(P+! zK>F(%F={rlWT(Y^lE9CLU+N_KQ>iO`C#{?HuW)-tG>;I}-tKa#H`wAugz_1~)P;$o zJ`Rc;26NZ0#dRtCIwpM{4L|S#sMy!q*%VHO}VO2ehLt)t6ck(i|;6GtnK7H+1(~Uku(>rq--!u4JFrP zL{u|LE|fu2o5+bX94aTWX>ge|Qj`oyf%@V)~XojwOAY>KG)YKlsp>?Stt>kE+B?;)RmRnX>T)NL%g47ku~uCPB`!N0FCPw#MR?kBj67nY;TB)zO>7AI zG$lF99EJPRDD;^2ZY4Z92LE3946ZV^KmRZtT;4TWQp?U4?G+-WmWSq2p9Rb;T@!%M_62WC&*sqnbBww#7^z#oeGk#8TjtT zT9$LQdBv~f2J>_Mb!@@ zJ{H?c+G8!@aN48Fe=LgodEg<(?}Z>ZhXfAoh!hG~RG4+YpI zX21~wt1B>fJ^N>-EMw<6LSr*haq~sTJzcF&F?TWVM&wKxgk5MUkXuFK%VbpT zI{Sy@&L|_^DvCSq>SD`0pdR*~ZZBr+qd)Im7#SC(tPjlR;_Sku&cICXe+clcC2sOW zwSh$~JKy4yKT;CXf26O{3gI5KHI)>zC0(yI1u&G98CAS@wOIb@)xj;bqIskAF-wwB z-ln^sOtRO0Tz84@W>(;2=WMI&F1R(>V0auLDl{Q9oPsQ`M!&5_ixzjLvYWN~oe!z* zMG(VD=P~Lh`E{`C<}{X*Igj_qORzxzoE3AA&%3Dy3QZYBe-=7|F`~N*X9a_#3_I&v z`BMyzcVZGd2{~XR7rn=|MpR2Zy0=fT>X_7_Ra>i@`7)r{NA1V83Qu2-o@Q!s@Rp;NXZQvlK?C8u7Jia|k=2-r1o!d>r|W#mM8E)y zi!8R^Jfbj~e-K=8f#-fjqnj(1NfBEk=lXVwfBc+YN4fc*D{TH{DZT~l-ds-) z$^|5jKYpdUu8*Vza+V=ktk*&Z^% zppEwmf7$!v5|ePK&~Ar5y8{Ui%lcpCH%K81yG&l<)MafP9(b>(lB?*9F)!L>LyBXq zU|yTRfbta&UG~NUJ|LmAhV3E)G4j4WS*&Di8yjL^KErfuN_}AXfwm~8?@vMWs7xf^ zfE%avD`CqF)0>e2Wu9@1g5&jo#8gSr^v{>?f1(>7u;+fPFlqN!t4y-f;a*O^b$g_G z>|6Mze-pNf%=bk!6zot{spbEuBS>veVgaom#8cHnR(i{ct!y1_@w(Kqn}AXskD=rS;p}e2k#aq+pU)?-_}pbp|=w0&sXi6bOspdGXi`4RXRHo ze?KW~8oe+HnLfLJMJMrzQ2&6^-`#NmhiCO}*r^5B!KQ~rn?P?a#$lHr|6qU?4a1CdF0Q0=}e;zA?V=ZJ7FDH5c--MHp0GOCZVSi2@2hV_t zc zP`3d98Hct@Lsec(G`l?kwZEh!bp5-PIuNNDUK!v;q1;Gx@~^bVanPB z0U&OcSgXCaVVAftW(yd`$82R zZLW%1FVw4!CyX)BDJSfY@}2Wh8KxH}VM64EROR<0KOv!%syMX!^pQ&TSB~i0x^e~_HB>j~ zLH)sND&5f$-Z)Pd&*X1k2{FSdcmm^cSHJ&)RoJW}BnuLse>@nTAifm%L>+O%5i=*m zTZB@(ZFg!J*pQ`|Zj<7jyl#Kk%56EvX@%s1pcB^cbvDRae+NEa*Gz6lMYNb` zlu5OZQmy&`NyGWRo@A2Qc{gs;ZZUNVHga0?U_#3Q$G5nYG(^`2!z-q}KDJ{M`-3F) zqHJKBkbk=G-J}q5PF~c|tJqVn#4wRc?m{axIu=bmwlW1C;RW3Ntu|V`dy-;x57->! zNz;i2!u*8kpCq9duyL*7X+h=pTgL~u`6|!^nyEj(PNzYbx530 zOH4?dZT&E^@Sw22ggnv{z%0bR^Y`)-WB31Nh*}F1NQzb{>T}4^9=D*72rY1FoVm89 zWrl(*1Y;r1f202{b&^5&L`gPuoRY0Bv6hR&S1jYl$g~5)7#s9^yPS#xs*->nxLrxQ zWXKCCiuriA0^L3NCzAgBFWjlEbTcTSL^5V5SWA+DQ7<%`*C~bYHn|$I-&}g)JxY>u z?7?h{ifM*W*bIdnWJDxO%Y=UZfiCpDuL;M4<_}FWf66ac~Q!&CssMa>`Wg zAuqPxI*mA#6x>lli60TNj%>F3YT3yZYwApDAVbQ(%q)@KKZQ=Vv|vhMb%?B4H|tZ$ zb#q3MfA)t~N=$1+NoC_gR4&z$#&7j;7O2&)L~KIYxa2w7S5HW%zeJ2-Y8!er)XVL) zFJ+ji%a>FJ{h;zh)kh8V+s$rloBr8~*pNw715d6;>BjEXG+l_xo$9~JMXD`^=h4uO zKKmIM@6MSbjfb%mg^wO`R;7VXWT+3#B!7F4e=e~m!c~uz$WQG>*Non8$1GUIINOn& zla%I4bJ?PosxE; ze*v=1PyK4&47F5MaBt+js%X22lDy?JS^EGHuRqn0;mK^WnhKmz5IbHtg-iW(`QY^y zkB-@q`&)b7D$loz(vtCuq)c8hAIVBVn$w~TgJ!oBi>qjCA<`vDE(I{|ZBQN?Zoj)V zE)?ny(XbW7ulJO>Qpuv6m|0F~*(IA{e;6N8cLc5)1*3=Dd8fyqbh)NfxA#cZOfGb( zQ*5JcgBikc3a>S4KaLTcf2=#{AJeFbXci8v9sfK}zm+hvNZM5U-T*f6A-nY$zaT0I z&qKBR><$G-ZS?zsOoVSpt)wr$V6W81cE+qP}nwr$(CZJT?t$+y{y^B+1@f9Z79 z)47og$fvHq$k;eEBKkkSIlIhXs#EWvC+MI;<-~F_P|G~%7r(=jiq1SfTUfTknFR{-5)7*4{gh`a*XvG>(!`6d=m&5 zR&lrs&j(giIC@8$h?JJ~^F<6ZBD}R}`#2ATd8eG8rp)Y41-1tPDu>u{)xS~CCp>AW zdx?a&oRj|ie#ig>>zWTTQ^q#haD0rM3EE)rTDm?#1s=~tk6y~|%cY5#2j@>k;*06X zho4mZeo<87Cy;udv&mS9^JMJi9^sF-9K<+6qy?!}LSYwcUUaLzArYtYK$gAAbd+I9mYqY8k@C~H+?)&;ifFh1fwS1Vlzi@)DvX?%H` z`EMexPDIf$!uAYoe>^2mS%X45x`VWzHYnjLn*54eO-E$6OXY`z0ph%TU+HxLZcR8J;+!f_}v@*9hrX zbsuys#%wf2e*{lx#^P=rFdf6sgpk=zpCZ5f0tvs(zr#R1J#QS15-x}}Z`vOTC>O`g zcx^4BxO?Ns2!z^KJcuPi>+a?5xpA8p9yeZL9*?(msyg~FtyC#1e{s%)BPKxd;3YD? z6(AN$iy^GKvUZE$PyL!nn%MZ*wx#5{{=rF=k94FJe(4k*9TEaMcW1w%Nc;%=ziSlAeiL}%v8skRNg4nT9>OAA@3bR+Z&7pxFz2Tqp? zcu6S(01p{Vp!%5IFf3aH#OHIKMy|N?Y{rHRJ*%Lid_G9tc;F|ImB_RQZ!a6|1yw{e z13djve~I{66!B zHV;UnQDBA|JT@6X9evgjhgKUYk00iT(Q^GB*qq4hbIIP&^rerm`R);WrDtT9qZzva zXB+~!;v0g&>fU;jwCa!Z2%MF-(^lF2W>a7u*T{F5*A34gi`$DMe5r$y)}>eGOH?6! ze^yJf=yl4jk4M`gH zD|&n8!HlrAOc@Jv6ykpXj)}$ zcLE>O3dB%lOCG1bno1ho>PFdh5ss8PAk3YME=Z)b6pV1moc_{7RCM(;|f;GkR#7*kw;Zz4PvW)gCI^b#!f zaAeu^dqn%xP^>39K<^`4InL73e;;`$YJWDa zQG=@wD18^&UaeiB`s~CQPIwKVNlqy9(Q{~v;eKq~8sLpJO&2F~;17`Zo2bF}fOj!q ziji}S`*2-oN3&kgSl5-@9v5y!c0r9`&b|RwJKDQ9)@w)+Gysh-PQtYv4|M9zps2!4 zN-ikelHTnu9+e^TS#leOkD@NVRu z(pjm-5sqz~>Yr6)vIp)3POJ-BXD_Gun9o8nr{h3r*vJY*x+zlb#L!sTShK=(Vzjne z-nR4+1%d-!K*Me>zRCVA`_}V_eJB;n8Dz*KF9kIj3JU4iWFi{2S~}%{Uwyf+Nr27H z6Y^LkaYkA4Bxdxde^X)#2qYB|0F_Ey%ib4L~O zTLO`M%M7Zq$ehVGd0$m)+FV=F8j{+KBc?ThfBw~+A60x%f19JM6m3RL2jtWJN3eWX zBfeCUl^4yk9VK|zI?+&5@ZH%!<{PJGyu)Y2bba(@!r;#BD`FL(XvwZ(o)o&3PL)3t zxMe==keduy`ma0D!OD|y_n>^RA#KJFoeV1r1H{$nK9@dRUvMNZ@6nXlqK|zfT$$HS zduqfTk~J_Be|48jRJqZl4rkm(94(zOgxgd~X&9#f4ReKR7X_g%?2wU6NP>hCX5Peu zXAoNZcxUDm`5?q2DPL9RJ7kNuQk+H`xPKG}$deOGhdHQ2{Muu3oV}S@q)*tFb&$5% zc|3N-jz{RtSq4yo(GUJhZ*(pbLpk3^hpSO{_}byOe+2{y8H;Qb>XQ7YT12CPsVZ)C zPVnp~72%m48z-CHdX< zelMsWeADjP>W)A0F%vX%%rhZf4g-`VLgf3J1uD6xjbTYuLMw2;y$@{Fk6X_OQ8!Yo zp9hckw#e`gMAy-Ro#ahFT&BCB1$~0G4jJRuuNGJ}CVvHgByu{gqo^w;XQ?!<$uZbx ze~T+%D=rrnZL-TX8O9%uP9hG<%pi0BUBz{V2V7WYCtyAaTiJZt7J9m>+j^|a$|Bc4 z6s-#Ep_C;mvq~<3SmO9Pw?RFJ9GCw*0)^Id``4Te-A*> zOo&R^f-@$2hIVlIkAK^1AMnN&#N|{;vcHVRoKHw3ki@`3o5$`imd@m^j|!NXxEtd) zv5_NP8@eY;$Fz%%Vf54&KtIx}e|!07V$2e0uK0^~3@%I9LIC%2-l+p5>2cnOo7yk_ ziKRc$io)`-wWLm4t^R6k1`O%wZmTj;_9uWoaV?NwI*eDp8qrl46vW0kU7>5kM8SHl zMW!+#49BBd!=CY{FS*ZXSw=}Z!c=`J4M9ui24MRai!n4JT#t$2r%xf#e~te&lx!up zyhVYzI!PLa2dnG#YyxkfR8u{soq!;a4^;P`|L~sDk zzvN(NjZ_b6$0kgCp+t@_e^VwgVvdT0k$1uGriy+ET|+lCH1I^uf2j=#wbm1M9gb|s z0C@zmV+NY90k#O$O!bdu=z=#5%DM~)R@lFC4FF0);!dc*l16~sC&r`=mboWyZV?)Q zRtw|12;tLLDT$g0y0mB|Few5!;BAN;L`iiqHmiHr0e;7vHWP7d~dm>11 zJ&2^dpJ}*4&*>;A8fK4f`oiKKELVx9WMwl`9@|oeJgpeOR!aSm*Br7_mRCt6AsUjc zZm4A8J9e_ORKzF;zz6ahr+)tR$=N$hcR3^I7rM4PP)K&qa}^FL#*32@`7HYzRbg7@ zb#ts*U=H2Jlh~LGe>Y}0oQ`lqNZv(|(q>V_%6*vxM&Lt$xP%)Nf<+t=XQ`*zB@0R8 zw*@h;BRdaie2b%Jk5Qy0=YltYC<8bM(_DeFztvOLN-1o;$l9h}xDecu*%ID{JHsLD znyAU}L>gf7;e<^Em8v*YwP&i&15&0z4@muP+~u+xaRlioe?AI_zU+-ikWnC}Fuh=R zRk{)zYl9`pbNpeu?qP&{D{&x zU$9_f+#-d|e@urz@Ihcl$y*8MFtUz%P^VErD7PF_xfy;O>+YoTt;1kah}4DoMen8M z4%Mm`d`9;KV?0MgjRo|31L4Co&e($Dx&sH#*PWy@<%t#Dxtf8PjrwA2KQInX|nhB@C@Ix8?7 zKN@|lE?8oD4|--e7C$c=;4TRk1ji`EZ9IeE8fbvM5S?=_rLdoDl+c_bf6=;N4xH$@ z0xE}#%~gQ{E$Lm0Z}(QGdTnL!_W}LRt0GMYkMEW(V9o3}iOL?L(T%N_P>8LRwOUEo z{9rRve|+SHfm^5y8cPMb)wQ5*h88Bx$VWIj9q1-*=Pk{;PK@GoofFK)zjE(}QD`@! zQ{?XyJ&^F`CH}4GZpk;M?o)PQ>#q`Cn%S|?9wEscLYg}YOv;S;{oh6#B=Dk`bY*+X z`%lpLJuU&Ig}!4C-ObX~D3>4CAjhH+hbt^Re~~DOt7)I<*U(q%LLK+l6S?xt+!VT9 zWB`PnbP;n89`(D`Fprvd$WUpccIOn1GzZ>A<+csk|99)qkt_O8KO+x*KD3@0AT=;$ z^ECna2aTrLq&D-GXp3Xe5tCpM#>kSh@{-Y6O#G_7DH!eq zP+`C{g0c|hLxs76b}^Knx)kK} z1AE`K^MmkQZ!&B^3HAL&N!@l<6?d}6f0^@9O5A==AS~YMNZcIfJ^EM>$TB}KFjhld z>T$GLUM!1{c3F^jlhGg7UfgHOk5D4u^c8yC7f%NlxYlCa=L zE6{!sh7bj&)`8%H0Wh*;@60VO>=KZ!4HzDpiqhtzi{BIkhR83|-s>#E+$Y%;e`P{o z)csmzzd7vZs_At?VZ*Rqp_g*rI^2GtZj>5f7PG-{?kY4G#DDfqrj%{g=S!_L9HAPUY$kTdjlTA6JQ)4qKU69NgBkjz@MRxh@?&}~`qts~Pi!rC#k8e;WYj2+rHS6}&I!P2#TBS&$n z4P+-<-J9ra5e4wV#R)M2e=W5Nr6&1h)8<9EgMrr6S;rQ~{%k!GR}vtvXE8v(IOM!7 zUb1Np20%uNQHDQ|nRdv2kz161SuqZn&M)%81`f{OcsP`mvDz_N84LrL$9*hAJa_OL zoD7kyu>9zlBR@-;7q2C|(H1v;M7Dij@S~7NrVUh)j4Y*Ac$gC;f4MS`coU=&I5}0A z_&5A4Mgsf2wlYg&3P(SdSrcL;FY=$l2Ra`#tHe7#a!M9e%_H=v+0oIs# z^M3i4C47EhhP3GFC9UJO!t)4I6lr3D0xwDE&yxB#PMd9%bXWshi&^_li0+K>`Iivv z;*fJDba?u-egyiNe`NrImwxLL`m6O7UVkZ~rt#Jd%4(W^Vn3N1!tTb$?tTt0_KpqH_8&D40$z@-$9!%MF(q{F*AU_ zei93ivGdnp0il8A!0|nT!tN`j1pKlE5VMBPht85ACqbZ8f4QRM922wb0>j7B_Sq{# zm_@16&w%@gxD{Y1-$J!TrQ39`VJ?1-HOD!)Gy=|<$>jb^QVXo0H)xI%g&KPSDUMMo z-h>~ons|on0GGH&SdHFhHciu9%SIDk8%%!GCTm$9NBwPpsixMVgMFvkQ`7shx-rP;hArQY_B@-KKIAg;DY*Doe~+&1$U zHwP`l<2H3$2jHxHS=3dmXrCv`a5iGI9|=;=w5Ekw{v`6*cZbfU!%eyb=WYkPEi*j1 zO2nl{2LboO?jJzM(gRn~P}9PMjLV*hHn>EX-|sNne_D*9Kje|!@&feO!#ubvnC~tB zjYTUE&E$^pQdA&4K}K}&Qa{?++&g6SbCrnN72Wmtx$Vcl8Q;OzW_jv~tl|L?=#}@9 zT{gFYOo1VTGanF_f|mZ9fS<%bFIzI zcZgnnV2}cyMzEkE(Tp;2G24q8(xYWreUOPd*#XQEGD3lSa zRSFUFyuL0KC&zmF`F`=D?{p4uX#x}2e-@%MP9^#>3cd$=eBM|d<~n>et;xg>v)GUm+c1(V@Q zWW(g6$|w1TG#<~Ioe)^=`dtrcw!$?BJj!5r#vW-KS>cOQ;ncy>OS^txoy$R}e|waA zv5u%7zzbC2;dw6UdjtsPy5r($8u*G~GrP6UR}5qvI?B#a8AqJ8tS;`oyeD`r%(G@DE^q`TV?Iqp+$&f5ytVg@Xyt(pD%6H!ukecd z3-77S418zv>E4rF9-L+ZT-ke|Q6JOa0}IaU*jxdMNc>-j?Pz;N~`FVeLH z1pDNGt5aDEP^aXoQ045kNK>+856&!!PBTk=V{maH$kx4i)&{k|F*F3>e>A2sEgGI) zl(EN1*j_}M_!n29;U!@FlFdeP!BI^9BinltC-joCU;$cIsCg) z^!4-D$VUh80)4IW%B4Kwe*!ju# zc35Tjp0Tt+&ByL4{aQ~WG1ou~nX!KhGVqDc+C&DLGbFkDEC)?rgmCu+LNMMYuVqG6 z0OYJ1$=<_NB~De75@hk~oZrudU7Vc4a=-}nJ-9QqyE(aYV#3sL&{xHn(PSdguMmPd zNARjjiceGIfAJu&U;h5;Y=k?tvBvB!nYx@aIqb~)i{(zO{OxhQr~J*(b$5=1q2$9w zOmI5)j3!zEqP^RNmtB}bm6P(QO0r()lUb1`%th70XmTO_GlZ(_E#eJLyuq%Lv}<)} zQ|<#)B!ruj^pI)e9SiB%L{1Kj&kbN z-6Ju0<*rURRGOzPVz)i+=6!xNrQdH~4za|)4uZ3{F9RD=^-C6zYiE)c{H;>2r!%{l z8VK4i691@vD#5JXdOzfYh;FGX$m5memrap2IPrLA7{l`u*(9p^P8qVgh=RBochbwBqK^2A$%?4 zJ{{bQADxL9??ENVps;A}W6GM~itNY>MD_~QMn_F(XRkLgO`sotpqkcNtY5e*oc^f! zypJK1t#DhbMVwFZtW=kXJSNbV_mjX#Ohhq+e`JERL3JCilxIwyP6vX)tZ+AZx@#aH><8U4sV)I2kfj{C*8PLB~b@I9z8UA-toA7B5 zu9-+#vTxGAYMH^=`6SgS)Q!2z0lA6Ds6USXk@{TOEU25~%^i>gAoE&(C~QJVBjgY* ze~6sWEepMMeO&gfzCCyktw;9HPw8Ev_+LpF5c84w?m%h#%APZ}20l0W5}!|fx*ila zZ4O&P1S|Xv(@wU+)UVEKBGa}2TdaBy)3b~#f#jdSGxVZhsu2&No;A!nV2DEZSECm1 z%SSZ;O_7JMowk!(#iP;#VNLDvLDR3Ne{*`3c_LhcE^DT!UHFa5MlTU71u{*JQzb5& z*pd4UjFFK2Q0HIa!$&^%j6WW!x&0ERQ8_++2Dp%5$481F;hhN&&o^_h`(!3C)Q%ap za~7|oDJ=)b2-w91+7ZbBS0SnS|Xaobm?7X3lFKvi2*pO4+!!r%$MB7m#iDSZ=LRW*)G#OBRGahk=W zuWE`D0}Oj}Gy&57rLY9a*O-3E5p|Mp-My>6E@F<(?Q)oQC2UB=)CTNYFOcD+wJQ7v z%Uim0*!7$AC(ckIo`_8+7+YkQfB7{_WibNWH0UkgD8al3s7@|0?m>Rm5QC&e*ems> zgB!Xl0R`Xt-e%m{RdR=DIhkto;~?I_0G!_fQcG4j;F>b|6T_7%mK~{g)TqNO8?`Y{ za*-9?n3Ph*1x3GHU1bLJqX65)n9JdjC^~}rHNARkp{p=K7*z7q1ioI;e@kfclD{r~ zQ>d!b{87<%l@T;_M~Mxvd$G!=5pE@tsj`~O$sxl}8Sm>h8*{x6t!?$;M!-GIITBj{ z6Xwu(DUy@pDRsz+5*4Rs_B#9mk5f2R9-T3Ko+fI@{e*Db^R7yALdwoJT~o)CyhxeVG|?}ofNxb4&VEk#1%Kva2AerG z4U8-T1nQ94q)QlM+xrW=M53vK^%HwfhHP;@L?X-?NhMz^}Jd^ zeJ1azCs4x$xbqCUa6{SeW42O> zD0^#uL>ycLou+dfi6ytit0=}LZANGh~+17+N{?!Oq(>J0DLRrjsl*$FK? z-Ugf19Rtb$debF!Tf%IWYgvytd4hjq``OL6xMeyXvTvsd6j@Myl60q>yvHliC4*Sh zDKRpaz9*$25j4&nRQ+}iH!_mF5fNm3XJDcV`ewsxf5FMgN9*z-G;V)>raX}t8q#Gx zDJxLks2Qg;a+CFdD<7M|pGt5jH1T~L-`11vTQHDP%#f&{p>1xvf1*JcfDK!u*Z@2D znnA=cF-S+iks+!a&C~==9u`@f>45EmxBV*v%(luzOa`BybtM0G#tu~VY!bf&h`x*O z4IdnDf2mK8ORQq_x&Ce8;H^LkMGO5c5ok=I9R8DFBM&MxM1hetLwQ-VYUIhMtbBM` zess$*4tWepfDu*gMyDnzRJlq+bv*H)wC88KPD zCb4o+hT+&WZt^To7SS(dAw9rtbb@z{y@`7kRk~!_Co=5QE&pC#;NzIS`W4~kS6<&-len(R4h(-WCK*GNoJV`2-8MO|` zEpb#ZqJK<3_Eoi5=D`-fCJy&`3*l8Fa~K8MyNBqJe=0*aR%&j04RNz?T%zVt@m+j< z44#?`S8Xh$b?hG@gU0q_@*g}-&xo66+u&$(TuswbrzfWT9M0NDS=0%-VgkCe8S@6O zNcer!qk%erv5T+xP9L^TghP>Tc`tmUDSx*RP*A)bP@R>(p}59aQ>Sfz&L1Re-;~5Q-1C&T0>mIr8v!nUG=25 zs*RxOFi8F6HznBiz0@qa@hc!k=$`4a8GjD~5ZEkgDlhc5_w{NpUh|Nc>GaTZh@u;Y zLxV}28|55zU-mrLiLADMoENSg34bTeT{CzY35F1cwc*K-mg{ikzZud|31c(DHiceW zyE7f*A*(G^05Nt45NbpLk1*k1Dy<&yC}I)%XkOEMIvb#^QDrB35nQT0BZcZUD1TZ8 zZ5ec|Ouk=G-nFc3<_Jh8ib(uiQ1XmPv8Ka?7jUdNe~O`4C-fts2WN;ZM}=)56f)|( za>z@jr8eJf$VYeZw==l}mRJ|^K`wE(?+*XUmVLGJui`G_;GeFHKnz~7NQnu$Ms?Wd z)NwXyBz6V+o_c??YkP~F9!ci%GkIZK(I;9)ER-3~XnK#tv2mh@sQX=A@z4WWRBN-Q+U+YnuZnk;^3#aB9yf>jYGTY4* znJ#6ZFNB@s95}E$C7UX(792#|E!nL;gE`dn})|JziRgH$OZWnZWwb zm~b7wx`AM$qNG*MKjxYevp%E;Pw5!AL2_fV3(|oPsk5xO9@`2}ihl!>hfe&%oz)W4 z5%KP}18EnN6G$&^0e^}3LAkNjR`Qw%QhH8YN9AOYwbUzrK|0 z5@@v`+M%Ls`mI(s$nt}&eXQLGOoUO(9~1bg8yqqQ{(3N){^1vRF_q>i=UN;;aZf`4eyxCfJl%3ogTrX=}M zEPQoicd`=TQ=kZ4)tvJD0Cs%Dq2?1de1+G|d`e)j z&_tZppD&G`HgaMlnm6~wE*Bcy55gIlNXA}y-ZyrXgMaOyToooxI$re>QzwaMxyWw* zv(6V_)1+ew@GmL^Z){?if$^!Uh(+k|^ExWD=T}Ky+P6k;cEdb03mqSOGWo-hIXnn+ zQcr-MkFDv-?Uh22vC=XNNYHp&suUm=v|Fy?n`8cRi{yRnca?f!0bBG@UhBb5j>4Xn zwS2f#27esc>&RL+^J=P{26ChKBxn^l^SjnIPk9IOa8x7csPXuea#m~{TZU+dl+bU% ze;lS&xJz}HT_mva$E5xjW@30@OxaNQJGWj>Iygflkn(|r(cZq#o;k-a7@P$oB}VzI zJ2^fEc^GIo;0-cD^|*&L3X$`SN>t!Bjwv-#aDNny!RJJ+?QHT+Gj>~q1w;CBCkz0c zuq5&98TyJl^0mjOhVJ!ODYqs1q{AiNaa*UKNRIlt*|lN4{S|E{?#*O-ZR4vrsxslK}1sKp$Ul?}@Rt^ZL^1yWk<3;!D1G_9bGz2v*H7qJPSdcm1*ty7EZ+b1-Nde$|$yyuQ|2-9e?@t ze5>n8ZTPQApcna-e5$QWr$I3JQsg3z5cW3y^&zDQ6sPWf;3v<`e?VE`>M^nBG8z=4 zLgvThN=ze~Lk4v}A)Y$Od~Yr@{{gS`=;*eN6D2})t{*V6OO4Zg&>_ zAqWIOEEGV4n(na#^Q5`}-pHM?W`F#&j~-2l!{JMdJlx4T+iXHpAySr*R2cQB zbW)wuFe{!|VlV7v^F%Stc7H@Tr3#bg0e_-#1dZ;B&9z8`1qC^D+eA4Z5SdTCdtT_h z`Q%5r*SGZ3@7=l9wVKVCaWVem!VEHS30@C`dEVJ&*mXCKPtJFzfL(ED5&2%aAhnA)k6JvZ~kCbXWmW)!-WNGBW3yML1W6f%dH38yiU z749CT7&7(tm|sLbu7)BY(Zxq$3uDN8v{S-IfeXpUoARPlz;O5YI{W5-RQF0w$8d$W z$~!E0D{g(8wOHsC)4fXEHLMHDuo~J#u<`ej#1>8Jy`HZ_pdZJ3%2WrmVrj`k%>i~R zllpA}i9FTkNf)u~kbe=~TH*85X*03Pz^gk|Pn~nZw)#psSMbn0I%Jowr+remBgz;e zTQh;}d_|SVB+19w?ALjM{`iNi?}A?W`culyp(Twcwb|Y&%%J)1HXXAW6wffe6O^V|Kkc~5P(20;>uIOt1dcTbkkpzQ` z^bDw%t{SL#=U0^>(QcHi)f4fux0@84LsQ3nG<_`lPhon892z7A#O}@LP2+BcJcO&{ z3rn2cprkz5Zhy#^?MpMA3s^j5E))4#c`Bn@B_|2?-i;K4i^pt+1&?qrEK%!)rx7ZVacfYX)3)+S71w!C7#>oPW#=GTL-)x) zC8l1YPbKfd7x3^K{z@u+u(zVe%~|91&(l;Cx7u6#*?$7`<0>#1p;dmp|CfJ&=5HP? z7B;sDKGB#UUb9BIJvC4xL?efz_^eO9!otJq>HJ20_({qS=H;dtOA!o%#h?TD=ENVt ziT7;<#*rf*23xf`*~LS;j{Xoaj0U*%gQKx4PA|t7J(x%Xsm7w z1z7%`j!V*dcoEecyrDRU#)1kj-E9q396IOxA(Cbh3v*YX7SFziO--=22o4^Jr?AF>E<}er7oIve0k=}b$F7zy1dI3m zPJerlKMrz~;z&xFn{sQL^n9~r+DJH5uys~L{FNsjk?D==goEeVg5aSN%${2ZS5{`I zs2Xt+eOk3$=&2a?ZG*d!%i4ue$k(P6Odj+@h>iCHOZ`Fc`*aIm!nYdkM}KWM z|G$6tjAn><(tH-&EeB6eTp)%$Jxa8b=i<`HZzH>|>Q!i9o9H1xUW^|Rq(m!KSg}8S z@Ax&Lh8`uM79Onjn(tCN#)$cx5dzvCvZ1!2u3^O0`Eo&iGN*Bvt!4LIvvpaqSmJ}^ zPvMmM>|6~Xr&X>`$BZ<4deO4ecz;B^ipQDNFR9@3Oe+=8Eh&xgV=)ETT(W>i2N$dD z+dXZlZ{#Jt@LR`_fZ{>o zo|0z#OZ~#_ zFd#m61XjVioCT3k=0SWx)40nV9y3G9Nz}Kvu79%x#wv?FAW8lE zCI!}o9Q(9kvyn!B~4g)BvFp81Gn*LvS3_D@KC8Pg5w3?mM_l?!Nl& z{|rt<)1g|@IKMiatxPn680bfatQsY3a6MI#m)K&r#CjFZyMIV0PYS(v7vapfE{K|0 zn%6e)8kV~433U=g@;OY323J32ra3aG@)VD(Yb*@uu)t?^U)+9NDUnKCd-4lVQ^ZqQ zHDcCq7)kSYp;F-HjAi+#x0w7t{IZ$2agP65MZLj&mm0b%-NGhi8T^guowecq9(oPu ze6tAOp9UD?6@Nc#0ne!pC=9h1L!ZmxUwl7rl@A&Bt^yP~{n{rXb3NTfLa_RiO4*n! zmjP7sGNNKt*EAi|B})o)_fJ7Rn-bC_bh974=ivLP3j||P-4ws8epwP)5<#^#}9h{Y1GpQ(0YY1i_;KsEx4=!2Y zQD628_kUW!wl~>HIN@{f0_1v}AcRvaM?dZ6(U?Ac@bN6cS}Fgml^KbVaz;IneU!do3Pw<*eW3X?^$7E=yAakZoy z%_&~4nSZ8|fGM^9a|CVFO%cXfiej=?;k|%>9Dfm99i-fD6p$bAUTsHvFoWcq49xlT zK)6^j59rZ;F)niEUbcQG&FNuhnEpvHRg|TUUCMGb!QQnd@>UAl_^Cj6FFAyH?bWWu zi^bAvq%sW2#=wPdYV^V!Q~9?-QpqcM8N!()l7%x4%@8AoUMCcvKyp$}{y}=3+d;}J z7k}FsR~jDM0yZ-}eA@&aNT95xg(V+EMHu*ZhttiDN%;$0urJod1C9QkqNH6k~Dc4-1}Es zt^(BSWHPb!Yt(qi=YD3gs1skr7E!s>E+-#RPKGm9Ozc?7dwYmuYxspqXnMA-q%pXI zwRK5!halZ=j@uQ7IA%V`W4!7u?O?y4Fx4GP7$J6pkfraU0BG1A6sYD57_MMY2Y(_F z&UuVtb;^Q9H>rPVNMpO`4M>?+y|RXdW`hbmG~14P@|_!+i&IsQtkY zyXBbDvifrM)1F%Mb?bSQh<`uTP`P-NOV{$49s-H}S(Ab=#UE+{6;e^{5O1_{mWR<| zJR?gB84m!j(uZ~Z++sZg--k$WYQmDpl`_?2O(G6;(|kwfQ>Y#;oCsJO^Hpv2k@rfn*W_|r5RL7f1}7<&|aUj5{X*JqY& zk8hTF%jikv^jrbTp8SfZ7%ekgb5wgdr6dAE%(lDKvKcnuw0~h=cUV_i5N*{~sM@nV zIXectP^0zO-rS`R4P-Vb>BV(e?JIiRDmO#%*?^}cbicBfUc@|3ryPB&Bx+hc#82bZ z1m02#oQt+~)4}izNWT(9yi0GJhi&aiBa2D)=g)pCU%c1a$wcZgeR#yrGw9!BB?JDM z9Y9Yt{fFj60e`Qzwcvq3HvC#;VAkXc|El`FU(Y5(tEXE7z%o#h>mv|IAPap1jJ~zg zl2kkbKjvWNlGVHVuoI@O_#PE;qK97&avx*&-7eRDYJb@3(8i_68;0lap(^>vizUx= zx?T?xD0{|T5Yad9v$B>aD8}>I0j)Gz>T@DoGQLd0Jb(YRk+K7_!p57Vvo9H7j}%8M zA-tsWqc$N(eTj8oP8Eh1i`F!Lw6!VVVNs);_7+AcMNrSET^{Q~kH@|%)=h#LBUQuVdIDmOktZd6Q_N+^B z$0HN;r)PM(41A3AEetEZ<`Clv=iWqIx1uPV>3>H-x-xtMZpZr>(%iRbBmE>sQ#m+$ zzwEQ-tq@|yq9y1*&CnRDMu{x4bpD?J(n7 z3mjQnL+&#SnF=?P+BBoN30_&0TI*Zed6um;4!O8oI5 z;4(!kLC3h?_5g2)?H_=q(iY#jm~yf@XMfz#)R}1*zaBMK;@)?sR1OmS_fKwswYW~1 z6}~Q6W4K;v;L(I~YMYxD1sGmwWx79`%pHs2{AzGP8c*WwQ#g=0zux9SEbI=W8E5!$ z3+wb;!X?)WQ+t5rSi3jBT&F@s5u3X2o44_x`1Qcs$QU)3j}I2xtZ-?aQnDw2l7HO% z%R03{Zd37BO#+sjqw8Z5#t8$Q)ejq1Zc%FS_oY_pkE9zWe9b>vT<Y{=$bn|bDccGS&+?>2FdcZdf6jeb*$64rNDOibgXTM`u{8K#JK@5q8Ll5j>A(r#3QY}U7V1G;>9Hnf_ zyU~}MvH@uy*R^Gloc{70U^u0a`o>aoHxQvlB<1kl*KKjlUhJCMR#}VDeYmoQlM&w= zB7{se&-y-Q;MuUB3jpDov?1ve{1iTrL^E|J;IWT7jlYB=hKA5i7bL@MGovF|m`Nhs zhXnLJ?Ds~baY)UI)QZ54BDGn`xd)>DAFPAO1FB%_rM zeXks`t|8V=)C<-1E6ABo!ebH8x(q1VA2WMsPk0tr3`Ry^_4mAcZ17+_-ZQy}K#pv~ z6?2JC`F6jK94KT^5y|p;A*-h52)tnhsSi7fg-d?<4+k}|Wn|8YnSV`xSZx7oCT;5a z5Z+j$H9<=_0=7lLC8??Rx1PoPC`?2Sgd^qO&0n9~ioH>&prov1(-c>c8E(jqs1Xq9 z3`6u3XwjJksdi@$w=nNs!&?V{G#(W2m%x-)2ui;1Q{&Z)FM@(oalZ=HFJR~EY~gKB zU2$|wEFJa*mhr;vG9sV+@{U$#j`)0c_2c9(YYedM_-6^ed+N(ONWP!&wh;*zm(jHZ z69P6clhL#jw>K06QaS@MHZqgZv=b9CI50R0FHB`_XLM*XATlsDH#nCO+yWE@GBGzf zHJ4!%1So&HbyS;Ovp$TwQ`~~PySuy7q5%Q~cXxM(;_fcRixe#`MT%Q-w*tjJ`n>0y z_ni0l_qVc=J9Ev#=K7xc9>K=Ok3%lUuG{CDdT4)1?= zW?<{%2lV*Q9Ru3Cxp@CCZvO9Wn>pCKfL&Z&{AIyeF>fVM6mKd=Sp{etA<0(1ufT%FxOem?)( z@qaBOc3yxv*v$1^=>>m91evRWUCpfiMeM(Dc~{`O_QmZjZ9(sw@(-l_cbshBb^Ctyfd3v{0A_YJj{oqz zOVZ579^~Qz;N<$p1$w99KN^32=l*ZI09J7oZ6y_5#{Wk%|Aa}~n>m<+?JWTu+&loF zvop{OiS1no9NgRhANF@mn}a<6Q3`;S#ood7Jq6(C=IRHqaBxQYyPN#H09N2%=pT!R z9l#25as%4_55msI4PXWTFOwg@YWHuGoejWh|34j-~*pJrQ-h3mgj z_WwfvrH%iFx!++|D`(KZ)4AW%T|FHBU5(=%@chU8zf`IHJu3d00=9p1_g`n|Kenc; zvx5yt7i|9i`SHI(l!30!U{8IvcL}q<K1ZCxDrQ zp98?o&GY`k&cWsPe{z4#{&k%FGd}N|{NMK9vjhMFd4kN4mKPn&1VgPqw}w~xOBc^n z!BX?HoYvrq=qV(@EN9JpCBl~~*r5Q4mISp2X48~7D9H&J`lkiim+4W5;@G}!bfnf! z-Rc;?^(dWZZ~NeEi{<$fgRq)Ydpgjis|_%g!}lcI3kaRoTX zZ@t+2d7XzMI}ZL+YDeu{xrFXg*GHm{rs}wCh62%T7e}p=rvX>>HS`}srJcSFENEg; z8Kn`sGFNUckidTgS@>>U_SPPv?4_wmkF~V1`?(zdaoy!V9Teg(LM(vU>vrR@fv`@R zwN9IuLd4rzh7zlm3K^?|c6Inv zCCGXO<#=dtYOHTdVqjJ&d|rBnc$%qhrSw_|7=gj*iHd)RTue*jRL9RoFm}&Nul<2a zt9h``Fx<^aBM1COuRk&s{D_msP1&h)VRIt|#ojnAwOp&ZTaUUvMVRV*Bz_D%CAaC+ zTfMx~Oy8>SpS8L8GNwzn2C|=(x|R`@Vh|D6-)qkf9y&y z52Kakyz8XgN)v5iB7@M&Gz8Mk<8uDdPo3fYbzOh*a z8$!=t%}wc{qQ4?M(Wa+=k+lhRZ2iG}tFxwz&AD3fQjwk;VB)c?i@R47A$$=-eB(eN zD-?~*A&7PU7#r(SEL??zhyAggH(n&GDeyM$HI_W4GuRFxX#XiKcf459SpV2i8mxc3 zq(GSOcuwB{u6%C!=}WLhwM95VUZrQMJFW;B&~;|aoj3GVtWNjKD9`5st6y7LXyg*X z-Ju~ZG6bA!d5pNxqHZM&Z(V$vS$nNYB3ro4wHppJCAOW5I?yTxl%da3rS`hHq|)|W zXOP3;I`xB`Wqb2X)l75M2%QQ$suzEZmcyS*xF)ZQYQ_#d23l-eit>~4HkrInhNxUr zP>Z?=)BFdKPmPvfZ^(es#yX@-H7p!7z6d{~l8YDb1@vWp1JOaw{DKMU6n+u5f0Fln ze*-hFE=l;!4l6I5Kzf3NTREawofVWI09|LE^s$xjl_t-O_rRBXsjXsp>@$C*>cZMh zWGNDj5VL3!8BB4O>Ev2X_MsJb*bg^|c37v^h|VqX7!{fcKC5TRhUgsyRh$jyBibwQO1Hp%X`nB#P4}Tndu+4(i z^^9x8F5Z=G@$y_9ka{By^7iDZk?TbhEo|=U%#JPKyTTsw(P#bx>g|7=hy|JoRIs?3 zz$-0P&WK4qeBFV60kAJyR(diCW0>q1U#w)YFCJPNe-zw+n~Y$ot&$F~>GNziD)tga za5sAMe)Ss&^h}!JubZk7RYOA5%>%+br(dU(yAIKj#L+%35(R&Eo|t<$1cScMw*BX&BlnG-D>`qhWK#SaBCG24jPP;vLgd%E zaXTy9gk7hYto*8b+UuWmK#z0U&Ka>`OCXLL>KSrG#Sc0r=V2}`Pgf6p2S$nDG848X z`oXp9qpdTBXsTkS+8MO=G`Qr9e(C=6e(G~hJZ)I0OljDak&l15n#DXm#r<)u_yYS0 zAalI9J~pY2N{5DonHx+6?EZ@J9`&pQ-C=t=3LmZ+$jX>>eAAXrIg-L(tBNtK<}K$2 z!)L47)AN%NYR+$7x7F(jX@asubmL+sm)WY;{VGrg+OOYoW|GDOZu z3($Y*5JIkQu-|{V|CVywXYFN!S9B!ew=h<`#m;RuATB{p#VcGT8l7G$r`Zb={b4WR zqkfr7LtRyMT@babL@l(omrToq$rcb7tVW5J$ir4G8p*m2(_MV+fr{WpTJXQ z^^aT`8Axf=ix4)Y2(`ogfDyl7rQC0`Vf+@_ImfTo6dNe-Pn|ErHL_`?I6?hUeamnQ zWxd2*p#B<6PV?o@&o?K6Pwpw_F!+ixLIGuFEloJsh37b0jZTu9ar6ZFs(IXpU%>E} zK=+UJ=1+fY*BKYn&`Ac3!{XvF$pp_((f6ICek-Fxqr@AKG0_xctt!otJq!WG%;g)Gj5e=x^?VK)?z8`bunOPJ9{kRc)B;%Vwt(GDWEo5bV-VC1MDzs$a4eJx^k>VMT9n-Fz`MGt;_ZiA8`f5&@gKmU~+R*+T#C(^c zUsjk%)r{YHoPa;`$Ga2kN=MhO_JfO5wi!bd>>w{Hp$zg}y?!enp(zMALH_5!xHJH$$Rt37sgai5q|I+_PVCFO=<&f5wflq#8?H?AO4Z8*OV7 zx^VKSzzvYKu7$EVkYt?De^eJwA+w*ouS>5d3+vm^(#-hbMgElt{TiIAkfRH-jgEI# z;Uq$p*K9l<8O-l(^Zv1Xov(%}B4)xSgT(k#`FgUS^_TTfJ2$VQkwxQw_;Gicj6{DJ zoPKn9{1h8OrPnHIAW}Z7i((2MdH}EMr=y&mI>%* zDyT(vm=Dwi6aCAvf8tpx)xC$_2=h2=HN1>L?DNMu@<9rCny2H*5{k` zat?a0*BYTMEx>3?({xXY@dsU-#Ik?EmBq#H=kWDbtjWfZGflQd5qmyi3wA~DqnTr; zN>cib4J{hGGv(<%RGh8d9;R`AqZH(l@x(YXkU_c*^8O83>1+jXZ-@xTcxi)JZ@D*R zxJE!cXB34P62oZC3d?0zR;aYt(Afi7#1X!Xyp&D+py^#S62HX#qCY3%F?WB@h@f5{ zTG`<5iwNLom_MmMC!Z}M18#=Q@O4bjcd$>xoyalJ!bp~Q>PT^U@FX*rkMNY|;U2ho zFO@@P%PNY0i(Kf^OiZD^IM3vZkw=zc)QA1LnK}n{rz7f-FE<|Qcr0hS_&h(JE1%(u z-$U~n1<}X0^KVud)m>10vr~VnDg46I&9|AUznn1cj8HDQ9wi-jbwe|M%>y^w{%qox zypl7J4hWX$oeaO2Fi~5n5N{J@BEM#%-M%jCK?i#Xy;`+h%k%@ z$L}=+Eni_am9Z*F+wza$(Zos!vDC4)8{k}EETB@05l`cV7h??)sA_+%O^dCAVTYp& z+LL#>pFF+PI9LbqUS683$40gt>ACyo%306+Kv`U`)eP@dqhAPqrfo^)En`7Vwb5wpVDCml?O zC%%EmN1$Y91T61FjL0XUDS44qZp4*xch#kqlY+tEK4rX`X?S@ULrTIePXl3#%JvjTXRgBNB$PKr%R`xbjqm}-epuDEc*Xh?<$3hL`jYoHo4Gis;k`(xQu+c)_BHT1h;%f4$f$yaoC zJ&yug9e01OW(6#5G;Fp)=29k~GWs|^up1RXGVdeW4gBsQOH1Dcx8v8U1pPkpQp9Tt z7nEVM$?TuM%sUkB*<59E$HuGsp-D)If74!AuDYW4P5hK&89^y4C@D1MBMCN^{zkI8 zR2n^FT?!`7$Osboq%hhI5z$+82P!vov#g>E!P0+B4l!3gmpasBWSYkmxeOM`OnkJc zkT?T(Zq_i(x~YCwLceB&w!%KnH|%{{GT+{pc`6ous2SKae9@B&yci@3=ShFPaNbqN zI_TU`g)SLbN)q{VD{);<5iWrQ?`Vls(5|wrd%)(Cr!F51!pzTQ70ue57B$t6;Eu|w z#a@5J*HzE-Sl91n_u+z?C7uuJD*aM>X|bh*s4e({UXKn@)q9p*tZCZB@l~q%asC2^ zU~GpiJSwK?69vmLF<2)U?NX#8i?Z%>N}%|?7V#ua>Sbm&7|=~Eq8i_sP!`Fy-<|38 zqW+!RUP?LrCoRqwb=~8wnX%L5%*D1S0_`m&70x7}YNsC|QzXa`^`?s%jC2E;T{J z@n0F^@-pFWTlNADrmZuZ)VktiXKQe8+rhw;KOVg{Dhnee#j=gAnau4A5T^)qIW*om=&lHf)FhZ@`A#kXLzbxW{seK8wP4sM9Eb-Ytj7Djh*S!d? zZ4Ecws@{O%GVyM@0LTfXr%UHJi zn(Zn0!n*uPW9Zty(Y}~C%TMd>neBhiVVKvn8Y=8#gjj%BjQ5bWvj1r(# z`V)%0!8JDA;tjKWeAEG(Hp?q$vcb?I5ARLS=yGb^fA5{r^+XuF9OKOAq{e^LeZn97 zpvxRa&`s5v^n_W2)UYgKP^fnX>zn2W&LNzIT?h%u(Eq{%I@0o zoJ45n>4tw1^4o-H*ZHRKjoE*l2YzU+ubNqh8w!=Cg=%H;6*X>}m7vS}WcAU~W$wYQ z9=*GA?%=W7g4N)Yd>$+%RrnPGtN;ST4d~_2p#)h=p>;tAd2n9cxIhlZ7daY#No;yQ zgSh=mv?;-Nwyj=v6don1;X%-SweRcNS-ArQKABhqJn7Fb#op1%JvM(wmI!4nY*Ixr z9f)}kDItB<_OFW)cd*udD;!7V&q1Hl5j{{x<(g#Q=9k+UUu>=557u1gt|Wpg&&#Ip zKE?N>Fu6XA--v#OyK`qvdEq(;!lBV2y9ntTRz*rUie6UuT(`1mify&-6?hhG!9d~N zToTmMWVc$Nv~F z)VaM5fvjGw5M-b}@mO?eTGAOwOe=FX_%$eI)~{Y9qFcfTWx@k52+Im>fhskN z8o<**?nc%eXai0~7ytN2&sdWV*3*d5g_X^#J#i>!LxP*rV1s|UyMUIM6HAr{Ie_V0 zuQum`h{M=)^(nP&g_=>Z`hp1<@R4(i${FK8&5cIRSFsl?*j*Ot|MZYAQ_D%%XY_zT z!?^C(rhXdx!5;6pepKQCg%TSxb~OXqWv>PDT9Gp&gmUvUDr#^b>@Nd3ipQroxf#_A zd3tAXwvJ`r+#G-0t*7D9?!)~>n7ql@x|2I1qVrIrUI|126XCk>fHm`pnqj5X3w9{N zmq*1X2`=SE*vpv8RLY#sxK3p9tn9uvzjo(NwCqHyruNm}rm*w$O2jn+?EidBNdCPl zuo_49mft%!0kv`ZFOO&wCn!w8{#SA1IyziB3#^RgCbZt8EdKWz{5W(g_u zy0|8{%i1lx#EFbjDD9)N82l~3fBtN<&x{`HMx=j<3`{$q(G&u4*D@XlJ@&fe7>S z){;`i)o_F|pWe7iZ1J$M9~s!}2>lkGi*j}-v12m!hZ2ammvhiRNC5eXR5p;OvZ)R6 zn?El1z$L$OV(c+`7=1jU8Yq~=tc^>)2X?(IOWe?lcuhhk)y1(RDwLEf+t&$=W*cvt zxj0mg6QS zs?RZX3%^&YkZ|oKg>0-r9KvbFbx-ocT&x;=)LR9%sL$_D*bu;eK(>|#LJS%uAzae$ zM_}Ev?5a;v%F(E5cziXwB7!W9T*F67|80tETK6bnA4SY|>UOI}<-wHqgev2-p9`#fiSyu1kL< zxs9aTg8fWk9U!`!2tj0m+)Ud>lk8WOVVAPN-q{lgI{eXQj{dQw&yQ)$7J0w%s9?DY z+t2dTrgW8|Zu91>S3L9d=sAoS9O15L5eDkRoNH-YfuioUED77>XOb3h7x@JKl^{0uw(IzO=iWl$Iaub9NKf>|a{*`xv^><^6ykVJop2?eE?s zu*LnTE%Eb)C7oHET*St*PzwCRw%SV~nw1KeUJn>oz)Tylww||PDACNwYny)}JI!U^ zw`o8@?9iy7?>DiR9g)K_CZ6U-<7ca_(~xgo7~3KA0HMAyefe1JUr89q$R(k_t&vq# zfK2|u_Bl6Q*gY%FHyU$_A#N}zXjGJbnkHWh-V%vsl`O!}a&V3|@$1ahp#vo~!Y(-- zH`gQas{*9KJjxM557Ty~#)yBseRce07UD!eS06;|bvX(IdLNP6h;TY-hZs$v2$P1u zMW!D&GnhvU*@#!3?Mu~&H8vB+TF)ef6W77LY~7Qc-*1t_Mjc$W)+;hcx~uS0O_qAi z36tP4KeBIyR6j;dWiprST+~a-6Z%__$OBjRe(r{j38|`lXdWFggmQn8E3iEd*Q|dO z*1}bvg!0p;>{0!00(&5I%QIpad~zD7jMMjeM;f%x16@s;95iIdZ<8YD?MFs8#ZNT- z4fHtYAf&DPt5$-C@kTpQXP5Av12veE!v0Ld)P9(N!;e0lMbkhW<311id)UTr?mBp) zpRsNe7UO+l=CSDnzs`S7YEDR|-%M3t2ua%wvq(h6ViS$$E&ZU3R6p|{^*VNaPr1hU zlGeQ8>lmge_=X@rvCOl`QA=j;31`qmFiJD8Zg%qfko0mO&^B2f0+-%(~VbNJBnveQh*9yF%vfeAONGZ&tg7A)UmUu@7I7w70oWk?`l>N>IBW_WrS2FX7~f z8>`&`R#wPAxQm56MHNm5kgW1Ch}CxaL6m%Yo80%>*)@NrW73_R!I_WpG!5NKz~)JN zj`<0fl*Goajn-)=n^7z?t>wfzvKYMqej(tZ|7(VUa$@Eud>3$E&33+^Ni0GTgD5|| zA|H?TMrSLgoo27vVi252SqcAD%CD;x`ppBkK{$D?CrxDT+9d4@=o!~)E$Hj&WS9EA zpzQ4*7-E0g`R*cV(>rXlj?~$SsBvdp?d4EM_LI|eokyy_aw^=BM9wzFH@-GLC#VY2 zh2cy|I&nK9@;fH3LOf|cKb2N3v!*6P3L`GB${nYDi)*%&QJn}4q5s+wO7%(6D7}*c z=~z*wy_@58>DIe^^{}nI8Fr!5|0`=vSNf#-3~PU3W=?y2naqfJHz2b30-~0e4{Jp? zfK@_5AmlSED^K-zN8wM0U>$Qob}B8bG(gyJ=7q99sP_95uACcHVEv@Yb(;E3)~o2B zSyP@+0Czx$zdFN}@V+TF9#*^rcEWgsU(#D=#dui?I@n`BCkVQCEdsySVwBo)4mQ|L zU-?4q;(JAZJ1^@2vAZ^=R>hO+GLz)Jlj-62Pe{E9UnB&HZWDirq1nt6)zBtvi(f`2 zfA!uj_Ww?6A{^@2@ae<%A6K-6s_;|d<#Z=yRbkPlom`McEUaOKce>+7Hf|a)155IM zgbqKjAM$YQp`^jIF+3uY*FL~!dsyl4u4e?P4}U;^oRtd3f&7-1EuKc#6tX2!z{+2L zcDeHER!IBNnl(rr`Wvb>KgM1Nkc1Xm52(`>?7|gZw2!(T+-WS-gy=$84gm)rr|T)g z(Cu2Drq+N*SyE}zTabn+BZ>77brc`tS>~bVwgQoEYs_GOa+KgoL7`eZ+nH7{exv`a$b{RsK8zre zutVCkRG=yJ&-QDF>=4Rf5B{}0MT2EgA4v@tS!*n+0IUP_a)t*IDn;X%#}d`al5F;O zPo%k+^fgR@P9MBntj=~R+7fHfQ$k)7v>s|G!U&_C1;6ay ztfjOK$~cWGPz#5I{@mX&QT|x;Kw12@#|oLDKP{Y^QajP?MB-_Rm^nk8a8OjhXYjKy4^hmh{kEU z7w(OI&PY;X2 z=uXEhF0^=3VFk=_iqW0RWlJtH5+uAW6B!NS>~ln2UGlF;G;Or~n3q1%s~oP;vPdoH z*;u?f0~#7V>cAEA0aWfr=p}ad@7pHUaHJM+embvQnO%KV!!eXYFo;oq!CG`36}~%3 zG8w-~-sO+H7524x5u_Wx`fVBsmb(n=6VN zmeClJ0*0ftjm@=*rzXCCo*#D=mjRjEbskN1mBL9cr|jIs_?M#sM3a6%#c}a_vuA`5 zLJGTdYs-vYq)EFrYJmR&?m+%T9bithrUg3h_-)s4XjB$v6+hft6lVBIQpJLRj zLQmWs8vB~%mZT06R(kMdhbu{cm^b%I{xf6`4E+h*GRpabuwtB3QZ4>f9t?tA_yyOx zm3_BtDPC7l_AhsTk07%Jq}OnniF;TMmS;Jrle3rOycT{=;&v7^T1UnQPPl@BirlQZ zQoJo5+&WjjGUYP$yhFOW*QB+sP!Rh{apkpW-jOIA1xYjr#d3Cy1iQS&kfK z>sCiwwahAUucc)_;#0%1g!bw`woq}Q>Y^WtZGXUl`bHjqtL-6FJUr{0Ri9y|*9v^Y z1>FWl$c_egRP@090&>=dr8!C0Yb_=bsqd&R7ge48bM|JEEIOH* zjMTa0S(jU_yC@`~Z-njk^!7(eLMS@{(I^--@Url|;CcLc;)g?9a6R#?H4k?xiKCD#UBJxpWnTrOMkak~Iu<7nzS-Lwax zP{R0sC8Jf~ez>eTzcp7TCd=%UxuvZTkHc?rQ~3wXlI-Ka4rn zRR-L)!Q7h@^;?j9FTy&~wWmG-5c5@G^#FH&_UD^K@;rj=4}^QR;8HCLo9CHDY}$5S z^h)A*TJSDvl*PEyXpEuZmd6EY#*JZ54L9g3QGczRXNu1&$B_yU@aJQ92xsfEeu^zf z+(!}1O@IC)!+Q>)eG(iw(Z$=ob4@y#P?lnxV%c_%rY3NpW*}NU&X@P|m+-TYtsd`x zMpy%FAhiaod5h$A>Vb)si0wpF&2=FFM~Am^vS@-fh#zCTl|Z76(UwzhE~Vz8b$fpy zd`?y8zHmxLfagxE&A&r=wu^c$b2^YFttcu=L^eQ+FQq1OREJLVzRfi5Yybl4a{#=m zK95wFXv)%~rQ--!W)0G_= zNGO~}{w&Iz;>}gf1||DdFHnFvRJ)(O0Dho^u1GPPmDr7{T((j1Y$K;1tLiHJQK zNYCJcHBZL>b7OPqD80zIGEg13DkpV448AYS>4j<^;(r2M2J6nFN1>1G8imn+mk7hy zAoY%6YJE77(MTdDA0fSB468kl>En*~Z_sC8i15uU>djGbTSe`BvgEOhqJPP&gic5ml?jqz;2CxeK9AKzuH=Wl>CAUb#|Xe zxdXW!M}BnyJ`JxgH=MVxW!UL|)-bqF1TRIFkNGgHVZiYTLtchdm2W$jrd-;RCh^eX zXmg<>k#6RIr0pkeQBsnmfX6+gV04ce?x#*1Ep?eQ)^YL%u1^Gn1G+LP5P0;S;zdZ& z1WyQ5Ly2pqtBHnqe=zI)kbuJ$KNcQFcWGSi2@o}lmC%Z|iu7}QRSm>{!TvWBd*Ywj zc3B4L+hdNQ2orL^mvu9qZJU5}13k__nZ#%5!ug>#b3K7f*Fc^2^rC>r03}ZBysC^a zS?UNnr8=3HO@qa_yP_&IMMEl2AB}$4f+CyoSj6Zt+jzp%-)nGgobkxK>cltIHvX$k zyl1Z7v-Z9s9GJIzDw*GZR)cG(^wqfzi1G0JIX@A4Kp>w7*bNz=%fg=QICYPo^!^P0 zdXp&_lb7LQGeGY<0-mmla*iY2|f~ zQ5`a#;0ogD#1#GxxnS%Dj!YtXN9p=o+=K>#a*tON+KZne1}L}vMdSd;n+wucHde5b zHi@(4K%BWaq4<;3jFk^n0bCNTn99mLZ20V6EF*D?nMhRmnC&0sFMXjL-Fb(*K3-Y6 z?GULc$r*_!&6nSQtYow8!@7ndZf^#J)6q>s5$v7V$)c`pC=DX%e|V zkSVFDY_JkVrc6P^5Z>BKyT{5MRusdk$vHHeig9hPSq6;hZ!!&T+&at`hMd4#pqjjj zjcT743;V&f;Vsu9Eh9qn@AC5+nw0n(+;)c?wj!G{23%EtYZ$*48G|!NIIl!hliGYJ zw)Hyk7d)X7F zlkvLDg(B8d#~2&KzW(sV3i2$t&o}Th=6RxKh30-zYvx5sovC^zJ~zM&%T4%Z@!4qc zDfe7DjE~H9oiyg?_pj=bACjI)Vs354q{|YVm0+Z@^z-oWTJlefCKmqGUr_cQraS5x z$4F{_wPOj;EEQ@OQ=O)4;1RPfx9+Ksh%5w(&0qusNnqS{^K^=i%&K6<^IYZN64d4S zD8Y|+>5jMHVQywne%Xzq=tveeI*!hHjiu;fhosg@75%j>%;T7c*Bv}`vbTNzo91IA zxg$qf5GVVJ2e7eV#_>?>(~1buCELEQPt0V0prBIT+?d(~`lbBDQGVTP#Oc|hSacBqzFFNDIKa;f6322!@Y#~ zBw2W(Um!`G6djR4hXbEB%~&3%$a@pZAER$=&9dY7hfEa6mikc~ck3j{t7w%aBy6OA z*%;h5w4}fG5Nj6HT`unPSv0_wQi(spbKS{dN8?s}; zLu*m8;?zgOw8=af;@Q9hLYQKp@Q^WLjfqL~!Vz_FY8WO2(U_4)Ohag=g*5`fC4W(6WBCVU4NE z+kWGbDoIPTX*`wht0x?{UyyX+^Z0f)f$PC+WDk0y{uk?7i1NtKb3BErKWySLJ z7}r^v);HveJaLA{&W}ea+Nt;a+v~(uJMIGl8NThdUmgW+HUQNJfPhx>yb`&{KgzX~8gDIAqSx z!zwFbiqc|Fe@ZAKjZB^E%PrwP9kdN0`rU0n4v|&lwDpC^me{U@#uE5# zJ_8eVGe}{vYj==GaducWhwMZ3HumD@7`!Kpub7GyvaO01L% z1`y$RB^FnzW2Cmttui^=m|X~D2!@U{m`;;z>e?SfyXp|iju_=3N>$sgH#-U#O!)n62T?^r521c+G?U6E0<3URqd0;wKJy{ z!ppaDv0ZADiUuOwvC2gExzpG&`s3`H60iN#i>F#OTnhG9z2DT|krc;=_el&@A3O^Y zpNrxZcWh_S`N&H9OnWt-Ykb?)w{6NE=!w(~#A`J_CfetJ_5K`7LOvrM+T?S0p32Bq+Y8*@g_MmH_*k>4RsCs+Bj zgbuT;qgdB}LJbk+z^%Qx|3T-@e5U7PU`@&UO%JvO$J<=CZgs!f7vGSS$P3t8sw533MpH z=#kAE(|4oqJhaI$bfEsuY%Mle`Kiq2D9ZAGjv>sjfk{3AqtA|cAEVFwQ5$ARADOc= znM4Fa)767M90jk&#_p$sZ56w4b=#BxtYU}PNUQ*aR@T#&)sq1-_u8DRnozxE<7Deg``; zKDN1$6V%27nog)Gw7h%~PpbG;x=wW3xp8&1mO00<21)$Mzop@M+NxlhPf*LnFz#17 z#Sj2~xUUcuLP0wXT5RCHbv#T$2VdfwP`gv{d~1}cP{`j4LeNtJtxWdx$3fYD+1XYj zC6+}I4;S)J^{ywgU+^+k`&h;ui zOsUwhO3yPQ%tQvlBHC$Loz(JwUM39G#L*GzMY?t7$S!Kk=}LMbL}qp8G$KdK^JH`# zUC8QiG9dPeL}_&@EhCC^XfVP^F=T+`xpz(yR5+WV4!IJlb-0*VIxO)?4(8V~9i%Z6 zRz+x-zZ4t|D@-0((!S-VpZNC)wH*{=3^X&O1#|s}$xo+m2>N+Pu|yYtYBKb?n^8{~ zBRwSAX6v#gfpXP|8%_wBooi2cL)X!|5vRZJ4y>_xfUPS@lJn9%C=KJ)d%Y~STs3PO zOK-O!{?6y#dD6mvgn(6#F1SYDyW*%nCFXcS;8`g-2YhXh@e^Wrlqb0DIJN*=ShJuI z=$c7Mu2dXJAg@FMv|6KoadSkp-ZEvt`)N_ScjZVOk0TrlSRdyejmzdX7-@st$qJ=7 zdfV|LyQ|v!26?&jqTnih#i&aXm-^z7>?qI*;;o<$QLT+4{QxbbPxvrcodC@aA&N6});G zEm^w$Rd@T^IY{`vt<%e{{=~1&EQ?~kW$^x-IdgKE&F+|7Q+fNj zgu>j=4NDn7~1W6%7?z!A`9XNt5{*pYlebd*b$uZ*-m5>maA|Sx>R{TuLrf9 zk3os6MeB}U57#^iKY!BZEXPW%T5*>qd|{s9&Y^`=FI7*Xv_hfzB3^>qJ5vz(5y8mn zgoYvVlv;*CA+LT1Da}rz?t_ci&e`Au*>U!S@zRjmC4bI;RJ+%GIQ8CHT?bJ;me)ZF zn#;>Ch>?TxBaNHXwzwlY9Q|A%DZ)o6>Dcrm3`Y;c4=7$g&>Hw7zch$>k!brB6Uw|8 z(?L3Fv(0(1vgj3cd3FTRdjEU^?py`L`hibTuS;cm>}D6Hdvik@jy>FQlu%8~ium-h zpqpZ#i>ao69cX=aYZ4l|5)eg)&vuW%r&%2J@Ky(gQqT~WU5bKmtm)sXnY^D~z$ZKw z2L4#rd4pYU-)+aR05x!*1$9}O-RWRHYU&l66iRfK79*F#@8_dj?sjx31K3|^xDCMK3R z%TKj)<{EO+`zb<2Hw;dd;EvOjUgWw!2rojms23+5{MG6V(o+Yn%d{6rtxM^LVyCGT zeDP#|B$W**PGr{xZ|jH;(907Stj|XbXmaRT-Q#Y~r3f1%e<X|`%7p1nZPB` zugxs=a$>O{bhu!*_%^UxxdOVo8&8V`6R;P5Z|K-?k?mwbmSo4ZP0pxy2Jzv9+${5ptz&7khQiraXb4N_mDc7S{yZZB7f4~9@Vpc70l4$!sYXo(Vl-#@Z+Xcb`tUm5-NL?l8|!8Z6oI?1cbS=Wp+N^+nLmV zt$4DAAwkV21%6|`(i?GJ?Sw9sALeZ{*txvt<)_z)H!^o&B?(aw*6TaJc-LwxKQA7w zDA#-QhAYJ2a~PP6Cx`O*$je5fMN8gjlL>uL>Fce~_#9Doe{h|{l*@j{*0NQi*?Bmb zJ?dU4kCD=hDs}ydKB%!RbF)+_fOpw{kD|Ung{)mI`173!XH7dIoz_Zui)tSJ2P){E zu-To5d=Fgs-P-d)ZTY}$LEhH^;hQGWk>0c7eHkH=YA$>Os{+C5nB9fE<^swHOP&ce zuv+s&r9^v4d!IYynoyi`RTu98#HSat-@=&8FY5ufTT}b-%?QjmiR!8vaT@1i=snEOSR^&ul@Z!8bYIV3i=`+T#7xHlksc=BNJ?ptK zif;9$NnyHBFi7;V2osCH$Y`_p7B<^J4TE53BEgdAgDiHEeCK*;DDmerhbEdnTZX1b zH=8wdO>{XluP^07@*6+``j`HH7*EMfkC4fFp2$5na~In(4^7-<#vqwlSX6Q}x^y%} z23fVo|Na*k`W+&#N)}@2hODP;R2=W9h==46Dec;vPQXnsyt(48^max*WUoWoaF1;z zTG3h>uTaB7U*wH3Q)~JVt``Or7L-lhf%OATLH`k74r5IFZkX3x(833QdPyob>%Jdj zSz*}iF>Osp)T^AJ@2EO(%7_wOj9u9LlO_2oC|<4$MgDt!3S3Mpe7|wc=wQNdKw?GF6kYG;rrjk2zC17p9}X z_=+wg4WyRm2L~k<0ba=~tIa*wtHUb2)61n2ogo=af=W~qO9rlgJQms1?e+?&VEcL+ zKY3ib4Ss6~x@LMiyUitr6*|a@UDW2S9ekmb8B3AP)#9%*I2d0fea$%N1-S-U*Z0Rg$IEu!B)k@X6E3(qdfA!=&v^&{Wd|AY$*L9h58-3i}j3uT3j7grT!&0s0JqVvX7Ie zws%)&eX;q|HVhw>;0g!~#-l%mP!LYPd}@Zcg}9D>#Bf8?+$VJHL4j8Kb<;9r2Tg?X z{Qm{i6D#Z_KuJ(>22qWQhrXEvY{*y6m8!>YOqBp6LWx;0iB&zjCq}ABrd*V-%xliVCFtYE9k$b9=)i zR>^?twCan2tR9IV4os}B)sibRO~XnLJz3a|reBMQU&M{FPe1*Y^DGoXN~8u$WObTB1;RTu{F$x39~^r>*PnKj~bqe z@}d`iws52$F0dLf@~(_?*fU`0N$iAF`PLUMUWdQt69TtcR&ifUVMGy%(}C)rlUJ@B z1YQIGE$pYum_(_q8~0g%E>t-_UWW`t0Algucn@3u;@-If{h`mg5^oD2Q85{)MCPdb zS&!vC2Cm!aAHvRir+2lIh>bYy=8yY6{)2#jrhVOQnb{%dD_VYK{qNouC@hZ8E{VWe zu^c@xXc`lTtrt}v`nwVJ@KcZY_0#jhh(fTFkPij&EhI_hW2MH;*!4zgY^U$`I0hHZ zI4!>!a~_x*-jA>)gllBbpd1Sk}06W(|oH;P zVB?glX|01*F`61}!?J$NAQ=5CV4kffDAygk6EgI)2p83&SHO!qaC$z}Foi#yX_l%wWeYh9u$qrAxJU^Z~TeGN`(03S|V#wtiPC zjj+&GUj^cE&k`;-a7ha}TO=}nO+=yr?%1^HYg`$d+0CqOq!510O`!FFDQ@9+sefEh z|C0NFOn&Gx{^w?J50U+f`k0=$x(u_$z0jgf+z4i>U@LYlElXh6qvLtM01R@&i5^WN zvylpO43@f>IlGW3LSJ$3R27E-j4b;67-N2n> zd*ziT3%3ko9&oyk%0R%_Vq`@692Og|zZj4WPz+4tS(-~2XJKRKs!zNlx}~8L>@avk znBVqYrYw--pG`E^%KMcK_5B?E^GLX%@Pm1hDr0h(Z^Q;MiEs+h8wRN~T^e+PyzKs& zuCyP~M==|G2f=qYhl2%wNP?K&^ZfgK#IOE;I1?*=7<*5LT-+@P5Fl&5S~igUMC6?# zzlE!^10KMRMDUtBB;@4Gpvo2a+?5C-07PUo1;me2qGVP6Vff9M5A&`W8sGW#+Yk3g zlk>$UH&(?7jJ2^#jaW;kMveZ=^}ZVtpbrp!I}-Yo*vpxjwtDE4>4cAq0H@8SEyha!L#PW?og}8Fbv7i-m*x?z0v59P7sJ`@%;_uJj5!Eh#k0r3#Y^OcAywm4uhAcCn z{!63AN5AAG6T}dd_XMpB4 z9eSQA3-Td<8rt6xHNgGJ39sQ>d`xw~zz;=9(om?_(6}$Z&-wN6KUB)Z zH+;>{f}30*IJLG5be;24ulMwO-C@ZcqTA}h1>Dx}KY~P;fn)}jw@*RG)#EHuU#ryT zAe-j~Ey|I0j4YhC?k7R=k0!wJ84{Z{w63)5u#HHkIF~*&1H+;7#~pl&9u0YLd7s;ug$l)G;#nH^ z;R+m@ttdDNsmh3lK8Ll3ZWXAxU&#-D{{o<$$T*~l)6)w6PD6NsTcdyZaGIi#MDwHu zG;BJ5=Pzb$Xc|wbvPXE67hf<4?)6ip2$R%?okW+<*$Gn|Xzu!7*t~) zIExb}wy$dJ`e%?W0Z`~huQygRA=W3%);H+{sl}1$x;M!~g8#dRk-##uQ z5OFdSdNEIyc}r&;5L9mf3HgOFS>Wi>IX+&0E+WWZ1m*xETH`JRYX2?_Zp$viO>WfA zhHjIHF)VNxv+SDGs9JMNnet|UumK>qaxBE<>*?8qrFeU`5D!7fk2xp_fbW9zIz@4i zsd>ZY^UaD}>PLnri3K(#983@p4piu>%1X`#UXWn8?S^r>a!Conq3P)Q%yuzByBDc{ zYtP6MbQCQ`EFldocXX+)LfFFC;FVnfnUym=yn_Ye*SAgysYD0?H30P|O&# z(kOEK;aoJ{SYhCdTjn79g9O6$3x{#dZU|F2%Qr$?KG(`%WP&p{j@GQ zWP&-6WyQPtSz`AzA9oS6vdb4zfKR#FZkhxVgidUl4yp#e>10<_|vgzagyyAzG z#05mDiH4rIN&!ev)OD5fLsb$z)4|m}=u*8?v)OG44z1uGpI!rZIpIO4L3A>DLlJ&{ z+L+w{LniF0GL;kTrX|cAU&F6|vXQ2@T3I~~mVDI1%y`D4Ca`gR$EkHF_B)Ccg?U;! z`;CCbL3iiaQ#Ly!XIbnPAfAG$Z*1?jNwHgyUO_bbiVn(!5C|lpNC5^e3`Y`J#MESV zfnS)&u?GDn`B_bhpr;#A!pc64U>ZRo`m`CCgUN?8ly?KdtpQVYkb~QQ=h~Zz*ms#K zjmRPOqd_#>(`meAN!ZXOmfn;+26|HA;!nHEQ3NrM;S<9C;J%vtP1_L)dj7|w3kcz& zAN$4LBq{6(iKFtiu0oKY1^q!rpeV`7+`r{ABhZ#L9U)6S$pphGM#l`h#wsZ4n&+(S z|NA;3YUJWk@%lnZ7FGp+t~Ue2@Rp!KRQRVjMR2&Fr5BQz0}QGmwI`+ozZ5gMcof7N zJX>^`rAY$96(hn(Vn%m0F+^XYI!Za|jzN1aaAUp_Lz&Zym$*v9Dwv#4z}19l;`XK9 zjA`wEB5uF?55@`OX0a=ZGv|vxDQN$4Zn!pu-L%;NY1@3CeW*l#6=UL$#UckkvDfw? z0CBSMAWO8(f z!D1v>I1dkoDAE>% z$TbM;3LKiPC^!kJHQobO#{%^@>j>sUqBZvO!Xcs`qIeYYlv~jwcE@9Z$bwgFkfo!1 zTGf7<>nevA_EQi&%Kw3$H*n9OIK$hAzBy?}`{-#acj>108I7o%ZRrhHnR}Hud1eQ8 zYSNE?eZ$BKH~$BBf5+&DvKqe&K!Of7+ESCQ= zgS_pE6NA4+ge|%;}Y|gg|bhI zKl;TEvImrxDThB|Bdp)>b3vX6|LMtp5QG9vU6OD-XC3VV1w$(?iy1tGkFLD;O}EQM z`)|*euliR?9|_xSRVP=NjYAcm*c533-0sI9Vjf}2#9++l)ot{kbLdIoUdo)M8=fE- ze`9TgoKohz8$qlq^ewkfoKOwvi21sEr3v^;I^{D_7?RPLq~ln-nVCvLPic~Ww85*p zyUZ%>L~mPBFc_7p)X$1>EhRx7F&V(#e4H`Ec0j^Fvm0;+A^UvR3r7KWOe=crJSs(|e3?opnDI>QZ{3oG9U(-&OgJED-SDnL2azQV zUYlQMU7755$fcC?B0M6+1d;5RP!=EUX(kaFP+s$vIPr$cGBPwb(ze~Sri9W@wO!HV z!>Nxu9MOR}mJI%qc9UA3%^hA*6B1DeU3Ve(9yvYJg)an}$PQ~UU=bF7%gRvw>T(Ub ztozfMRk{{eLpvL>kf+G8+7DrQh_LPIH-Y$G$7L91?QwAdBNjLmRd|f`6d(LEz<5^b zrKJiQ=>zFRnE)4$uaUV=UUnuXs6R-o4r#pc&fZOuAmhWSMl_XzL9uNgwl(~B9oKK~ zyM#D9QJecQG*jBFDPd24GIlc)rW~9**)wV~e95&`sOZR2E9W&^_Ecd6RKalS8mU5v zEkPWetz*TkhAEiB*OiWmS3%HdsgSXG<#}`QBmYwy;A%?7*N~MuoLKDn?(Tqpo6VDN^nJ)_uYnT- zF(5w`X+s-lXFAdBNZ^er#Bw46ss)+`%ZVfVON8#D3K5s*QBoKf|B~mof zjG>#O0*!sT`JCH-b{gZn9a(hpO-51YVR)IPlwwjLAUo#M<7a^QY@Qyi>{^FG^@xrc z<_Fr&ouIIyeS0QrRkBQ(pu$^j@<)IEndigyQ|E5hn(u&TsJXGt?h;Vc5f(`|E@Y}Z zNpK{MvT=SGhXpT5zEEnRWg0ain0FU^iUV#o30O1qMplr2Z5nT92Ks+DTZbW%=uuS# zkPqcj(g+Gj^XLMeUSB$z$C(3Ka8->;K(9~HyHn|F8?0w!NJC`%&ZVYQ`VbU$Z=usz z$X|q+>O^8leh8(`pECM@6PYh%x+t>4>1);184K!pBBDM@SmTA5J6t~K+gdVrxMEe1 z&?~dhmQ~?P{-g7oas8LtSP{b0Qw@VF$9*=vGOIxp3LFn1qFGC81{OuNXh^Blh*Wm@ zh@N$5lebnv*~gjW=fn-Xp*C)5$)mV{Z^b`)VI#kn(X|8<0yZ?0(Xf4gN+oZGrJin|8)hT!h*?(R--Yutl-2oAv= zLU4C?cXxLP?sm!A=j^riKHuM46g1<}F`qf+e5<>v$%qwI=!8t{zL<*J0iEfX=oz^I zvU19HwnjisI%QLH7aJo-05d%!BP$#knTVsQk+Y>8P}IoTlpDa|YynU(cK%5He~4gY zW95zqu6O)p0ekhgRDFj@jA?SOzUrWQsv zW&k@gfU2n`KutwVSp^`Wte~c-e?mq7QCP*r-rmmff4GRKsH#cO0z`%6RmA|N>a+j} zH5JuAe^pI^ANgZ(or|o}nBmZCq z_?y~Cs+psm?OzQ5lorm;_S_5%ZfqwMK3*M7 zZA||fj0@1@W1P+wrvEDNXHx*Omd2()C(}Pk;&%UX+J21kBk9BL{BL3(gK+*+)8=2{ z04Gz^|7c@j^UjNr_W(hPgfBQ3e6Bm01HK3(~ zi>Z|8|3rV7;QqFmn>qs+0j3TBQ+HzvhCl88Qp+DR(;xH47`(mg?d$<&MmA2S-j-&j zA1`oTPDZY#0B1)RQ*W<-I{p*EF>wG)ERCH%g#K|@;Qp#E1vIk*aQ(~t!Q_8k|04m) zzYZ$Z$0;?j1KM~1e@slx;27lXoIeCX`Tx&3`>$T&E;csuMz*Gu|2@+Gjx(~gwDI_l z$p4DaF#W@oQr^zd*2w0+e3nk)mhPq|ik8mC7XKRTzwA=ZMjzT20-D>Her(ELCbd7u z$>u}1A9s)CpQ{T%$Mk2c|Kam48>;NN2Mp zvp2xZ&JpgYJWo8>1Yxj5ek7T=lf4EscTG^XATH5_%c}yRC|3RPW zgPhYp;77*aqhb4~?rh;``gcXP4?fOrcK=BDpycv5Wd6wT_`Cnd+B{7i{}uk9YE}Gm zTmN+tG5#&z|9Oo4g;ks#?W|2TEKNQh;r|GcGjevcbk|}0xJ8&g>>oe>`=8!_G$8x? z0{lm|f3UEfyB8hnhw|x|xtIY=tRM1XVq#|V{*PSae?3wDy1_oq+5h4{*Ezt{)ZNq= zZfV}mm?y|8sXnC0M=Wo$7?O;O{JWtaL33;&Ib=ke@tj3OPyXVAWd%3uehCr>PR{(SF4b9 zI;}ajnGm2haxB8t+VL34JpPV)^@BvWxOp`P(yd^YsR7;5=9Bv(3T_+T;$$1B^ZO%u z^mn6fp(W}W!`u+e5osvawjB3D-81yDowRu zu2{~S2WThK3PXLNd1OPF@nx-FHcY7q^c&g&VWoQ5Hee_-Vi+(!(JGQ7{ic!F6e)c? z)gD7o8<`u{YISBx#rvk00nlkE8;1w+f3QPC+=&a>@K3zR1ABE!x00JpMD@KznVl)1 z3R!MN(pevq*wtbnC6XiheX=OfNvrz)tdR%0kEBCZSzQuoAf=nF_45?%eK)X5fUPQV zF)s|N8DbP{5XwooT?CL%XQ`>W!YnDV5P5vm!|`CTxk^MyAY0EdUuCPcr|M+Vf6A*g z*YT^=bCkm{VG_#w2a{oi7pwN0K=iLn6Cy{ua~nauZMB8{CT@!%K0-gQWw1)d5Zn%T zBKc1>PFJ}W11PKN=}u|grJ9T?BjksY3?2$;#ss)-Q<3rSe0=wvtH7Ue)bUvd#UhQ2 z;q2&$V75iDK#!Dk_R4kNr)DQje-gHFsY02W=FDuGdSy%PgsdpY(786wJ;DvyWZ%8= zR4aqgE!KrQvSu@Gqw?PP?}gu`z6fmop5e=#{5}vJ@(cPPwl)3bL^tvV<}QWldamvPpZ~KI#N3nDf7o}t>vJ@r9P(rY z_ZSc9;B%WDIug%B=6b@d*GAs)Fe$}v{MoN1N1sFM$j=Z`m8A+q0lXL>5iU@Sp+cDNA+{l|mz!H6Ub<&J36|MYWF=Zek7~V3tUsVnKB@b!wJwih6;>3 zIz_=vjL4hq)xj_ZD|4hlyD)HA>_woTa211lKjM8A>&#y=sy{J}8r@t0KF;*X;0yBj7} zEt7>)1;b-#0uZB1+b|Csne2Z1$pehDct$j%w0>^~n)~tYubT~LkxaQ6zI0(hHBe+2>l_{-iWP-eJv6wdgkKd%z4FRoTMRLI*x0_%1HBENZVc0(ZUJ(gV6 zjs#<6!-PR{AGx>P=%$IwWaLmm2303J;5T479I=$d4YT)80wd*>K#&bjEGG`_nSmg3 zA~qDG;=dn|bF#IY5ZyyW+DgrCAme0ikfh4_oK^Z6e_vRcp3rJo=CjOc#^iAB7C^LS zU>oS*Bu`0kDa$Q;BNW#j4XM1jHfZc4&J7h^eq%V}Z8}qXJBRD^dJkvQCo^PD4Sd%Am=n&M}; zXXbZNf4y5iZEhZ}#Jbs_amw)(c}{q1uiklb{l0Y)GkJ1Mr!bhInTgmZPyBRf3?-v! z6s0*1&2qJuuoeY>h;|&ncu^tMnM?A%BZx|C06##$zXQd?klCsAwM=#Kv*N?to40iR zWCeWR_)~XtDCQe;5VlQ!vz1V)K)z1scJpDGoRD6V=6`@Z$(3GNV!A&%+c8}_cs11z z6+1HKtF-z)?Ryxn{D?0_J)Bg9*vh+G znlV}@mwzuF<_;z&-*0RI@?=Ewejk=>ZbJvi`Iit6R!r#06g8QM@;6N0^@Q=^s2dG) z<24_9jmU1QZP&}sU@mS|IB|Bas5$EiiV@Wik6%a?`HIBHm&z1f)ixe!9fp35ZPUVe zqm;WoVQPKYUXVOz>?)I#t8Lkt(tFSz{&}WtU4Lyv4Ry54>%%rF|J;pIr5`|Ph3i`i znYYM<(gI1>8J68@DeYAz+LBx-3I=`Tu2@H#ejVe1cYUXe!c?Ui6aM0wmzXC*dXM_9 zLFgjLhl;QN7FeR9G!+64liJ#ALu(;rXc^YiaEb2P=3es}mw}4o!ytUi&To4~lbadh z%YULReNqPdFd0gMim_Z^j0=8N5Ls(9j0QH+(XbSF?1UNzcg%Z1Y*#|)Mu zbnzscRSd1l6pVI@ih3R19vEEFYWUjlON-{~lQ*naZAa8;m)FI$6o$KEr)P6bka$l@ zNs)1B5>aJGUU|#6lZBLv`OHxtE*`+Np?|*grYdA}w3Dr#TkQ^d^6;Q!Xu>1jOWbwx zK?OHb4lwyXX(3-jsU~zFz?-}_v;{(e)Pv6HcjemfGV2oy6B6$%%lzSTZ5kgq&%!rv zxrA^Q_bUzt`pW=-bB5+D1<6*OE$vA@`ER-9M@lA9BtKFgs)zm}ochv%Nz1e9?SHb% zhe6meZtf$WCwJ8W2u-QwvuLW@fU_V~y&6njeKbAnT1!@}RvYg;1nN}`uHh(jd3;vyo zanPeSc|v-i)U|J)x(zzOfQ#QSf-^U8_BoF+qVv;F`}=RFKNR{?N$Q9|3=;|C^}%e& zg1$PX0go4Oams#Bd6y%{xF8_Y@laZ;A}s1LWDS?OK{GT7WqpEnQ*Gu{{RzkJIFjSmNnQy>mZW&(9e;RN0_-*t38FK{ zA03?<)MP<7m4hYKX$i_B_oeO#7;t{Ie9bjRNq%4O%r**++b%r2n*%xe?6pm~^VWrs zV{-Fln1l{fJ~YOcvQ>lfOKWNdBbJ%0+yPWztwQ>c)~Ek=y1nMPzQD3t^((0fM~SKep`+%V}bQLFGa zM(eXd53jO7{B#-_W{9PgCtvT%CR$*;uq|FJtiX@^6dN93Gt(Mh{2XIkozh_w1o|Rm zao2c}8OoCOT}R>7=-PG_+3nu6A?_T}oQD|^KSQzVA}Xh;(|-^yl*9MKH+A8ZOgW-h zJwnCxd2_q(nedKH^)9lL@(TS`JL|?OU)sadh17z&9$}cB7U!E7LXxt~!ELBG*DH(` z^fo-h5T35>S`ePxb8vhoP-xo*y_!W>x5vJ}AYu&&$4a-AFd221_;;lLz#4JS_R>AM zo#bidWhlm(J%8v6VDfXq8h@8s_3WLk?E|8pKSJk!V&)x8zlZeSWW7ioz`lk)gr^GA zS!{9`G)JmecQhWRI$u( z4Ljg}C){YRYDt<{f>rsw7`qwew((u46U0c-gs#K+L4Pg?>*oM#JbXyx(hIv#41mMI6@Yv5*lixa{4PYs56?B^jce%j5QLbv`(kbEuB)F+ayS9yNdcNsLnr6&%?{Ul*p|fZ zLMe|W6iF%oTjB=$#ZGxt7)J`!9y2x?u6iA1w|~T6iGxc=^nCn@DkEx!#aQyRr;;+z zWGgq`fYlgB??{`Bdr>ycr+&dnFUtVkx&o3v$vMROl%Kap9+Eee{g=e{yO;s%Ly`%J zfOntHPs>IR0m!XEn|GltnyU}*qRpd;nTnbK26P=2KE55n=( zdT3MR2L{v)nmqfpc}HFh*%+juVKP|E%boAS#_o`w-tY~X$_T&jmmZ1Bdf4+TO08ny ztT7^c>62VDG)ib_0!{mnz2Q}CJzV0itbckDi|FZ+@q#BgV%_V$Vip=t47Hz9ScJih8o=WzV(o>lCsW~!psvr*sv zpooaTfb z9n7yUmdO&6mM_$%<^*OZV%X2IvVTyGi58v$h{qAW3Vvv;x-0o$C*$oiS8V}V*o8d# zcWwFK&M~)292UljRelB|*rU6tY`QkEhsNqb+8c1X5@|O)2p|OitP+vo4e5YvHf?kBAsrvLp%IJJc@s}T~Hm%cg^M7mibc*BJF&GX%^R#kxwm~SZE^lG=)((zq7&&fAs8+!Z zsX!-x_XFfF;BDR)kFwlIXPZfiZA;4{kwmEaOoXcm9?84{f3u!I^gABv0(KQO>|kqz zIGPZXgp4kbGpQnYY6Dub+0|Lj1lyUXq)2?y{ByOwCye6;o7STMXffbHW@2;$U`dklTvFBFrT~}bl>sxci%F7ZMFWaem zD+)0)-%#;*q&;Z7Zbp2tbByp+xRuC@&zHWgMrr>V@{T?JR71sTyI%s;&5RmM;kW zTpbLi{z>-kX%Ji9V0vX-^-4XREreL-C8^viTB#QQ6y2_pV~ZM~4~6A*s6eaoEuq)l z4Kpg-ZLA1qIAoC`;X>Xg+5Aw4k_DdO*j2}3FHfKR=v+5{>b@esAH7t#@y zSv*FIspXkEjG7;arJN#YKmN>7`FqAm+c&?pfF9<$1A*sAb4~+_`Xu(S?#5wVnl)4pM>_(w8o7OK7O+fmC6BW*W$b5)w+^~hikYo` z=hJ*?mP&Hfijww8dYmf_D$d}GewT8xG$IzAmw!OYa-rXWqXXi(U`T=>m0^N+UVVq^ za=`nMVRhc+?;|tS#JUvx1$*D6SNVz^XqbG?ozMh8msU+Cm53{B1b^;b&pdwgon-fLkm1>H%w+rBGybgmy)Iy` z2&wl#q`9U4P^Z zTDr>Yo!=?3dpk`UUEI*BS^Xl7(@6tY$WP<5Cim$IrL@ZAj!IHnIv8~oDG%VLo7L8#G8631!;YT3U8gW^7&VBq0jSUUpW%WW-> zgoetD$O^u&7TH+M2&fOTw?tt~8jIfZ=KtXTHr}-$tU7N{l7cY3g#G{c>?Q)+sr5Hp z*%%JK6R)LC)aK&*#tQd#;GbGURv`q^Ve`vo)a)<{-nRsCtGRm6Lyl6xw__UV=- zY+1J&!Tp3J+(u?bM0?)p6aTCYU9)c8CxK5jd?Ak=jU=>MloG_-U=`}u(2$ea<16K_ z=+BwpZMNeL7~dkU)xrBC6@RiStW)OB+DTJ7Ku+uXI4xu$$7v$x$vd9fF5ID^MBWnHnX%^iIGil zSFaEuStRY>N8cG6V2yyoY^sviQX(LMQd!CJhYDMHS@aZfhl2YN$<8M&YGFS*M= zLkke|^2%*9@4?8`(V2o!RghqM>J?o?k8)5<3(-e+1;yO=_0v7Dtfbwei*>P^hv>{C z2(A(DozJxQ5@A1ow|}J(^D#_B!vF1T*FR3Ck>Z+p25|^7YjNWR1C4nWSDdu_?2iq? zyl>qICchF`c<7Pf(OKs$chq6=l?-HO`6rFQMORRwKEw<2&j~pOde9U%yu=lA0vYN> z@sm!JWFu&U6cl*qDBY-`WOM!qT;IHb&&vZ|CIwX#5(qC>dVkPx+rKuKF~NUiMWTqO zA~vr2wbce#Dw^<3Z4Nvv+k~!?Ga7MhsjNDU9X>YdqQ7GkH(l#co`-ZZF|KcWM%9oy zelhh2uKYSjr=t>lxof_|vG*mLa~0LqaJW;Q(0WcFg%^o1Z;i$z!gE`lZdeW6|I(GQ zZlw%edQ6D$6@NU6E8K6OfAvf>5+m$2oFw0K>IuG$;>)!zHyt`hFGy69L;M&_ALMHLN+WR10O^uX=dIlsH0@i-cQXT*~I4-rBzDD2NU< zy-RX7VpB0u<6Wb-TkOmm;Mo(JdVu3GkH8M{-@ZS0`}9*Ve)Jt zza#)hjeyxj|KJUd*;anv>V0Qy57{+-E`Pqm`WH%rUm2e}9^+)vcW7>WRD=;wsFiDP zzAqY8uz$bD&w6c8BxTL1IH8o1Wl&=~(L?p%3BcnSVY~CQhIQ)c^_BK)3gIz@br=C$ zFKy44YO&Q$pLQuF^WhAWTM{RIYtnvgeeWDh5QH!xPIM143yw(^>&|W#57ngJ{9&s% z|C*4M@*;iQ;^v8M614*l=3|#`8fT~tFccpvS$~?7&qrHVphZHJEEv_zQsCJJ3H3-S ze;*YRGeof8DB;lpzf*Fh)RVV1q$5*?MgKwrV)Fm`{DI#K11cRJuGLzXng-_Zwp^AF z++IjIO?Z3t9z&0c-SEsOHpE3`inc&&XP)$KE8=Tg;fMz*xJGA%;USi=XDoS9?_|u2 z=6~n`mA_5haJR(T5WCjv_({NUnxw^3DRJJldeVXq+>`ugxLweZ69bTORE_Xn;r;g4 zvij*lp$j&*gJQ3$VKfu3Y&OG9CN5@O+BYh(l zWdLz!Jhwj4krG2_`KA#54~pq%Z2f%D7Jt-+vwI_m1xxoP;^NCal1el&3SrBnIakmw zJT$ll6`ZiwJ}6P66z)Pw4T{P~T$&|D$g;hRyCK}L5Tbj8OOWl^=`%U=0P4#HH6(o> zb9x((_qr>VKYn zWFibdu#Kei);{a8x6BD1a2#(7g9D{=NI>snJK=7=sh7+Mu}fscB|yHJzmdLPjun+} zfD^j*uCvX;JdFgS6t_sG-Pp1oCFkuMn@!L;Q1_iD{VV{bc@TUBT8n&lwoTJDZkM~& z5JCIwH@F%o+Ljt{)*|fhO-Q175`QI)Drx$RuzBnByCrb{alHnK;SO7xoeA!NR#Jos zpE})Y9J?p^`}cIXW3&PC8~=L(L)3!SEb2Z)sYaPCb~>tCn%%GwiRWxKqJ1tV-U4R# zXs+MA*5Egg8?wYEbVJMi@jTy*awzEAUw5cheIfNWtbir9wWTp!Ccd8W^M9zEn_1>^ zB293MXJ-*X2<=M4nd{)A`8{3R2f6|>jkRMj{MzR#>=5$UE6JzrtfyTQ!_iy(Bb{)T z3-OF`YtiyLi-T1)XZ#fQm)>$a9pr=C@{rp_qqh)Dk3V(GwwATXt`>=^o za@p!Yj>XRsGs2knyZ2n|cPXiB6opUuI{YqBzh)?LGRHr6-5H$lim55soJ5e|O1@So zu~oBB3Y?DSaEtsrWp#fO_pZ2D1KxXk(!NgZLDfFwwjAxI>OSDe4!cW(-M--P*Ia=u z-8_SbE=D8c%AK(}kbgz_bjSEX2YL;p73cZGY)$jiMXv?xBB}(l-gK;e4VcI zMt-7i&S&IRkcyksCcdL=h{2{>3vnu8YwA1Tg3-Oz-Bb-ld62m;rSaT1cMs?J zMK+dUHvipDI>_rKhP7s=R4k?DrLRJx>w3#nX!;bxNEnOc!hh8-i~b;%bFS%imIo#Z zES`e9OY$I^gSfiHE~oqxH6uhV-cT^;D{=cTcC;9j25_p8?otXBrgurma8NpT|H18K z{7}=AG5D!|`oue}`DjGTMxC6n;pDuQ(-3?9-p3bo`UI$Nqe)I&y!)hM&yNkh$w3#& zQ!B!Bq{^Vr^MB$3Oj8*bG1ua^!THhQAXaPJyBw=!MM?AL5sI6~P@kHDi}4x@?_t}T z%^??&J79*d*k=yuS;M!3u0}pbhoR-4XEuH}LV9X9|Y%h#XBLr!vzxxPPd%-G$Q}BVN@gg7ZBelW|+> zpz7o_?48}Ognv+IPwGF5)o4$j(yTPPu251JT+n7lwd)e;_Pk0fKCrYSjRv#YWTz_B z`u5fSKx7vQJMaa!H&>A}$2X_iya2hWN7|?{-pFe5aF+Crz7bDL?4hPx?JEU12S?7A zsvd-vx_`{gWISZ6%m~E{O;Hlb(&@sa&nAQH2=XG^INzd}%2@y;O-UCdXG;jvEbfo5 z0x0){Kft6Rd-l;b<4Ho?HEl6sZU%KHKuS7y+(EAjF?@@IybHD&K+x=nDcCXQ=!>cQ zvfe3VE7gv^~obUJ=ygCUQCff zGG(;Z1dV-M&wz^njalSy1G>sdJ{r8ar&2!?c1=`(sP}LB; zQQvLkmhPmgcx`UIBl!^j7Ykv3!C%cZ;eS4))8XDhsRT6X^PB@Vei{_|zE^`&dJ=oV zvL&#^#w(w>sm5=Vb^A^WyZdq9@O|fkAV%-DoaXEz`FMx=G>UcJY9HR(Z&FLYbe2`Q z^zIcI&0XITR9kqX4V$3(sm{e#4TQ^6BRa|*G5aRLBZ(`A3Aj6A-?`2s&#A-v_&P3||)AQi+$jj?fg91u~v?<#Y^OnA+6FzJ{~$K?UY^9Hl9fu&5#E(diP=GImj4WPgO7IAU!r$yC8VGvbS)nQMkT%31hxt=xR|oJEUj?vTPY zD!U1`e5x~&m38y0@x)vHo~a*}bKzC0R!=!IkL6=cZ}wcYU@+lYIX-Ss z(i{AKN4M$tEYcjF-2nx6PI=#%lu?Nm(z3@ykA1P#L)SgX(Ll*?{!N2d!x8a!I26@s z9G-|CD;x6Xq;(*n`+rGzr@2jDz&LL$?Yt! zD~sW+<=P4=ZY#}MHx{-co{qlZlM1kZ6R_b5L6#CR*>$WKgBC#%I(ER4N`Ed3(yJ)-z;!oZhxx@$zD=J> z8O0*TDKk#ktfca`0syv#^$aVB3PXyHo=@u$Wu}JSJ_&OGGJlHSF0uO_X}pz7r3B6t z7HvF*_NYM%f%Y&E)24S=BDSVg)KrFoeI<6yEj&S@!2ET*#^|?&(~0v7eqd$nF&0Rh z4pdsh`hRblTHP!W?_2@awdL3}YaD->2VAKi5^^b9v~cvToy)feB0`Nkn`FPyuV16x zCQAx)=?ZAQeo{qpTDp(|L^8FIuAz6%Fl_i6^I{r>TS=&A0XLG`)W>Q@n9e}H&tY9# zg3E#su`v{6zQiFD4mK958E~O#WPa7hL`2~eI)6CYS(ws!CK-g9)0>Rc0&(1@9t^B~ zMZcvf1A{WZj!u0k6r;9;znCMAXOKkm;Us#O8xHnDU>dgi-gs#cE4l*|Gm~6URfo`O z7-`7k8D*#qk86(g)`@+2NiW-ErbPBYayPxH7vf5cm%B)eUo4=(sCBq zN48*yNKp{$1unSC9c(Uu=~J6@F$KYT=l$GkjIP$jK`Y_r&fMGRGksIo$`{p%1*jl< z*o98ePYEzWgcSaM%gYQXraB!iCWo4YroXa+@#QyjZS7jr=sS@71Ylzt zgFgrekqYp^VC~6aSOr_`p-CHcQwokEbj6~>ii71CFz(Cz$6v8QNN&i{C<2oen&%CX z>$}h4(QtrgqK&n91KR_Uw%d15j(<4rGCC|{6IAs%k`FX#dL>4rO70X=L@gKWj7Gx( zYvM<*;_!*yGC0aO5x#b4uvN>*_KpjJngP7@j)aI!P8RKH&xVktaDd%>6cevB+%V2E zXeL(;NO(m>`=Z|U9p(aK#Sb3xJR|K=zpPQR&dx+ zuM-gDEkiY5Qm4MAc$-a15ztXh6y6MmS#Hnqb+n>pR1R^Sh>`IKl9aG$O`kM~wCCY= z?W^}2ySV|ItB-ImnhSNJvP6Y$6zIuA782$TPe6|_GvkAlutv5o>XKoKNz(3koO`30s+|zZkk^lN<<7P@FCBiCfUxxV)|F6$o3kIkt~IBR ze6a2P8(jZhnMOLlU72CuSY`CWzUDpvXlasDGgQ4uDVmr1Zh*0mgnt~O3G>ryq$(h| zEgc~+6t&PsM^EEg{aC_$#+G)^G;FF7o3-wkl} zZ#VMvyGt$_d{`*3(m7DYi>`CaPt)!WXn=I-P6NGK^tq&2U7$l==Wnl~w1g`A8~xdl zv(OXWejIsP38FC9E`Q!Pi}lbHy$GG;m*Ne-ufgf_<*r&LfI)96f={E;6Z}+`X)%-o zEoZP2gstJ}HE3}`rMbTk{1Gj$g#EzCjx=H&{8Znwc@4ia54vK-rGl<%s zOc-IcOl7(C=1n<2Wjupt&Or~u(4(jLbx*b4Q>pazVGB{M4ZXorg0H^lXV=xQXjo%; zT1xT|yCtyi0Dsprn68&cLMT{!_(iihNXo4f@1l=>MetvrmtAi>soBHhR zFoKBgD5}32;fl$YtKFF30*6~mn@T?lv#fWMv#k+$Br%JeX)O?tf^L%$Q@}y9sOG*k zFAz1s`eme;t>*mqVMo)qx>?({Ho~DkD=Aj!w44F`+in9)QjL;rp{Adf(N z=R|bxQqErpzcSnk;6Nc+i)_@`5_Q#=KF_46HGgAjbTk47e?4W;uRroPsix0qOvoLn zr1Tli>rIW(j|lV_*zN06$s%^wi;W>yLmQ|6(uYrP;i~UHd?pq@t)t85D~ZTlbhdQj zs%j_i%foDS^u1Rs2U7KC~Q%?vnEA1Xr z8T(=gL9J$~U4^q{=Lh!a;qoc^3)<=R?R%`0&onu+7RB9HjOlgIq`vtw%O`89w2MA~ zlNb_SMHMaqOk^AGjymWKR($BpDMoc!27i^@%>QeL;Ab{&qu*t<4M%U+lt%f+l_IB6 zR+C@h6z4^5 zQD+I_8HBv^6qkLMjUckz7&C<03x9xY%FtA@%Vpj-8YneGlXerP7kRT%*bpULer?cg zQyY&cup=eQp&L&&Qpa8F6PqHNk~`%>V}t14H8(yM8Jxr>cpYA6%&(iu78JLa@;Nu zpB$uqA-c9_85W}7)D}xozG`3H3lkNY%l23LoY-=-pZ$BJivzUv*oDdZPO@j#bc=Sz z2yaa?BTl!VrLLBGfA1x)zbpVQYBnhf$bwj)$7%`2FN-3}Oa^}Ksa*@|ehDQRNGag} ztBXd#Ia!_9PG*!8fg@M0oPRX=aG(DigRf$5Bmb%YhQH2{B#6dXgh{BAoB^oJHTD|Z zE7ZA=lPpAo>K9Q71to## z*nP~BkVx?Nxr9l-Fjx(0IOb0V`3n)sI%HpB$HZ6=hld8zcA7cBFn@BiR2qdK1Af$Y zb==yGIsL$%Da_{%Yt0t_bj+Y_^X;oK4=(E%xRsb3i)vD^UF_fvT!f6WF_O_Y?YUJ-(r1WWBTL!WmB5a+Od_G> zPbThJdZH??Vvp~R6K4x9dtzpsrm#2;59ULRO3{{mPb7Cyh&6TORlL!UH@ViO2+dWk%Y^<^_K_{iC zlCv_S5w2A-L1q8EVtSh#)2`S<_=Nj)Elfc@()?MUg~o-R5GsT4NQ&A*Oc$TY?poLt zYsuYfs-oATKYtHkGbJ~tuQT4-pPy&Dh>=$#JqMf+gV+jM>n}fu5sEnYeIz zm%XKY9e*S%@?@GYBtXr7CsA8}w$zC4LWg%?ujDHP6@QHU#CV&Vk6k^OTcC3F)_N&v zPZ~3qis)+fma= zLgFLEH~7>x1ed#^gNb!nsvT#v`Gv(i2JGD6F}ALllG(6KNrGh7PdTTOa13u-!ZF5V z=SDTqaDOZLm1l?GHdVj!V^+~Rycr~q-Qi}j)g4>2woX)r2YA&CF0)m~Ze;s8DK6pn zz=AFPZ7Ja+cXB1F(Q-o{W^j8;vBL5XqSy^I8sLa;PvX>t;2eD$spNz zvqV_!7B-eN&@uww9w#UPomzdnse{q{IZ37DZ03zo?Yg7c{tGqrPj|NeO6X>g@5*lb~b3(LX{=wc1rP%lEDK^Y-rs0L9#~) z=4UuI$ehjiw)r6P5TnAa_+nkX&*I$@3@eH>EwSVPg@%XS;M}H{@c_|>jy{>P?517{ z^6nSU0ylV*y7tS2=tP6|`*_Li^Dg))?l74lcAIcmFOLJD6)mw%GWPN{aHo--T&* z**!icns!42mr5%kLMMP06+dEm)h(iR8y z@s}dssVE>^!JpHX#SL63^VWg?4q;WOVZ@^^CDZ(YArsqcz-=$Vcq&- ztxbXIuAS9?=6hIsS_4mqo~@;%NNVqjHBqAVo9aIdpov!P+YO#3U|Z`ph!r3^Nc*~f z1VeD#-ek+cIQ9(;qo~H+@Z4F6_caTLF42IU^^NW9y$zU@KlP3H#nM~4gpbbU9hYpX z56^4gjy+Z_jw(&_tF1_d?0-;E&QF@HM(|#}CxZ&##5ii3GZA<6!&t%;{H~>f2$j*J z$SikHB@fR)t2$DgMZp&!4EAKwCD_RP_`Y@%%rSweVS==rZSA zm1%ucrOqJIH>kbc=ErNkfOt|4yee7arfpA7Lk}W6?e$nHewlOT18HY)$Oz(>YuT$A zoQhfG6g<%MXqUg>Nj+(=slzQyvTzU^isuO9i(|8o<_fDe3l^LP7kko}k$G3x6D!?I zg8cq@Q5LzedH=BH$A6NjJznUt!(1}zw864Sh;B*LH$V}yEsbJZ-Pci9cRFVg_UL&J z-C~7|NPfpexV#QPDKO&MNE;Q?&i&Ws+b?$F$_^?dh##5Qtg& zL|PkIZ~UyD$TAg6O4B>(j?zP_YfNK{Vsb z)*LQ4A_rS_nSV+*ZhZ1OWMlAt%fPr~CjK&~9WlT@`$nxUVA0imfnQJ~@R(~q9! z6R*1eT-KhPsywA#C=WQLPZ|nsgdbAPa`Py)7<~ zW9R6X7=!M+f?|M~ym@o%8YV+Cs%hUTs;4kwR@)m@vw!p~BwXVB)GcEwSrCmM*`ty+ z?(CU^^_LMa#QL-GsQPB%wk)3PxfpiXpx%_Z?rWiVj<2$S?^h;A9*SD`MJYtU!=zuF zw=OZu9mmz%q5aqYEi1F?>Bu zmeUOPYwYfP9Q7FN6)@)q{+57M!#Gck*Dy`^8{uY9R@pk^(NEG#+VShi@JG^l360K- z^{*{mMyFebBrb0O;*f{a^s^zUBJDv}aicVD0|c_VzVOgoL?m?lj~!AieF#ZXiYMz7 z?tj5Sv385H3FmwiYYxv__Ji%>SZzYJ6sb~Muq zA^joWYo9E7xC+Zq?_H;#QqYyEmwy(%hv61L`~$mTSPIO@HGxe*w*0`i12G3j{0s)cL+d0R}Vi(Fj8Z za%A5!=o#fB62fmER%`#hhL<}^f7uVv8J1x8gN9Qx zKk@4u9SB91k?n(r#^oqOtdp{EQd~@ix395(DBB5)@v&lF40CfUgc&%W@a5&J8jHsX zEIW?Cp*$?rp?|N(*rQ)`p3G@wsDDk0Lv_K*2=|%OzD7(6Sj9RcjUwJkKtM9XvI^Ug zrJAA~b7w>>B5A*F7pbj`q=_vMIvSa(ih4N?@AwrC5alF@O;_a4ZRIzkpe?kTFN2%&pudqMD!2R&+yNwd$8wgHh*Jqx(Q#QYCGUK zr~YuxTB3RDuw_S#T8nH`z#XgnS1{ywHl8oYpD!rEXy&3Gv9m|j!@pfggqDGfBt&Ny6iLTBtGcy6Oxj{i2Yiq~tqrtu6zMtH zu9ylqO{uM-8W1uH(3YJNjnjd5BfY97eq+$(ywU&SCb7O#A%92YfpKWr0vevOt(by& zqm#?wI;Oo&B^k7c(n_k-9aVX6!?VoZNVkqdCem}xX>!mLz|saryk1-QH#KYMJ?1uv z$=wIL;jNU;DviW}fyqBEI?b702eZOXb-_ZZaP~XF0ZIuS$yE=7iD;YcmTKIZ!v@eB zZY0~X&-?Eo4S!W~PL#zqnOkQ*BZb*zrzm6Gc}S^v%fnmjL_wX`>X)n!bKHre{G+i4O7ps*;Pg+`(H$T&K&cwneP6+xCK56_q? z^TJQWp{ssbb9cbRL8 zuCN~uaTTG~Ko}Jb4eEoe4vD-bfM_=Z3WMeX>=E`plRg>kE$6D6_4KY_=I1y*8eue| z+OOBt{(tFzmo^)mEncO7-C^0VN zPjGp=1qfP)kpfDinSbpFEDWH1UYarTi!)qzD?hg99(#ZsfurKnvL7SGZ+7EWgCYff z7RNA>5D%KgAphPe(61{d`9!qeqW_rD7~)hw+keDTd4l=R4NsI?zLR z7j58$J=10BxKrsdT)m~mTZq`Jb9Cf|>AOtcRy6|V&f3R{TW~_{EohHY+~b4SAR^hu zf`7`)0@tys%56!rFNh*TdAd0+36O@SsK1LXnU4>%B=l&PjpOQ{qN{Fq?PPXW4>Izb zU~DC>egeaa2rA#sj>@m#Wv7WPUHwaCFb;%3_MfPS4QV>F3C|s8`p0HMD;!8QyZI1| z3BPekdalx|qA@VhMxaPm8bShrh zSxa4y{eo9e`IsRSc^m~A=4@_d{4PE(S1&W4Nb)bevl}wve1-?RD?&E))(uK4%rb?% zqH!R{QbNlvIWVV7F79JlgcxAUqD(!hwhU*GYgNQ+I}|wH>vD|6vtNJ~Ao?!2;(uHz zvtyTn+PtUIfZwZ&3p&hGJ0bl>7D2@MuLjn}NePHC8eDMOV7G+)1CMR0#5xL1_WZ9l zT}xF^yV&YI78$(d0QZU^xrjPHrU zW>^{rE1Pj24;7M{D!rg|S@9Kg8}$0<4u-+n7Oh#8iw7cP!`vz|Su&*RyNTTG|4ssr zHG`|vCYk%I3M}j8AJ3yVr_*sn7IkKKvj=Zmn_Qqj6rG8_m2`)|pP+GgGk>)YjH?=1 z??OZ-ylAq6n}7>6zheCnh8}b8Jgo<=rI{&&NUrAp*^)K#`dAZ_|;L0 zgRYOv)U7^Uosc75vpcTUc}h7Zhl0!E^Vx8e?JObeP#ix6Qy>y%QTX4;toJZ?ky!i0 zLL_Z!e+Ghla`G;68;X(fnnv(>D|0Rabw>TAYoW9&00&6~gD>zs)ql?9MeE1-B_3t@ zA}&26G6Ygw4)x%<VcQa)Kf5*JlKdU7~8o(5upd3@=W5 zcJlDmmpvJ&-?YzPLw_ze&Th&jR{flSPPyDOsXaTWeW&mYnj)Ml8n)#i2~@X`E8i}w z$}K(YplNvzNcMhq5K5*&w8QnYWuIKyo!^XDt?BX`w0_XJ9xI;*!GGCN8yt~|-AH#-0AWC$ zziC=b0CkSz(c!{`m9Pd(DjUcvj$z@y-R?+k+M|t=A5=_D@~3@@k(wA|?Bw0y8lzxN zAR@2H2`EZUL$|C2*2Bgdl1382VBOUhEtuS0->40j`i1CNv;3!Mv2>4PU`U1L;}<-J zT&)B4_oy7|&GC+0LWzHde*X6(eGYB?H3ZMTehQgi;qpGwt{H^aj`BI4hAJmqAx%hP z!fPAf)#7+sI-OExJ1S+oQG*G7yU7uVg~TIDjM}Dlv9_GPKXr$9hoT$V{sJ zGOBT70Wcc&i1@HDy+Etfxka2xtqNSzleU#K*5dg9Px|IfGVFgow6>zCFEmGvd?%eq z=yjnWU5OuEUgBJSE@Uom?qAcL%lQ94X;r5v-OPQU>59b&-mB{KORigSf7nXev;8j~ z@)wL$t&cl8P-%ZvMXpFkqkO5rC=uZ1w>$3y1Y4Vh!X_p|M4eLjZdF@I6{>88ze4e) zvv&ZSh7L`WRM~$OtfK41k?aa{VhKE*1Ri#`ycEFWKrq0AM)H3Eqq@)`OQg3A+#MlIl|5GC z0p5nA3b^>dIg`x6z-0Rn_^QahnS^u8(z{QDzOlleHrnA&`9z)f}KOl z+Q%{Kt5++5Yy!?FeQi-92*l{N&6c{N>=^NVMb$=s4SOmv&r6XuxAS4YN@mbaObDN`F| z9!!|9y$8Xr#_?_*78=H7&sCB#bV6gD=UkKI)*uhFk9Bvo6vs9kx-6|@+jeq{F|#!< z3-U?Nv8culRwGRPVKe{`&Kwv)W7lv=F~Ag1C~tqklm*)s#4R6RX6Nv8u3OtkrC&}3 z1JjXZr7$r$mShNkAs z-kN9@5@(+q0<*RKR%kl}EP-a`+pV{*ntLEyh{akY=))<^4(0tBxUk{`&xqEzeVDea z+&zC+Pq_8P1I1fho;2gyzMt=%n8(;9x*!qtjG=$=c((=W617zVhWrDiX4vYuP zND_ZCCcV=_z7}TYJOUR0U+1~bYIG3eBmtw}#|i$o2)pO4QUurhc=d!SMF^!jm~mj} zSodsC$qsMZ8ku@T3@7%p)Kga9zOeBqWU_xNnbyF6CIY~Rk@A{&F}S$Z)~f~#@-wm0 zFl$W~cEp`7=KTwwb(& zS`fOAp>E)i9BxV-yvx4}7lQw=i@^}vs?zj=PVHToE|yMtaWa0l(P1Je2uFAF&mVui z=-7cSF?QPHysXS`g{I_Cjy?z-?um_^0(U|%4u)y;4k-DykwDE{}Z7?M3sPWd8n zo9dOQj+4c0bYkWfggbTPK0l}D+t<9V!n%76m=gK+k zQTL^dgl94?wpuTX#svli%ZKxT*OPxR3%pAAV~wHe;2i!H`yfJ*umC+}DE}U57B3rp zVq#Si6$Cj5543+omz#6YKBz$P7fZ4*RP6!25JP;G?xLCaRUX?N$aWPbW3)*M++oV#hBL9QEh9Aub;V^$KYC6FI zwHU(1E`s8O%OD#zC;;m*J_SiM)cmaRi>g3T*d^5x#`Ur=hKfWp8p0cpn@_KKGdk$! zMj&O-B74oi^eVH5pPxYu8YC`;P`?l0&?$hf&je{pc^k&^GV?1dREG+~dxqM9%iD#x zj_^UOPjWlB!x9*sclQeT16+SIANL;<3^DDF>xvldMFuCsoGk$%TKD5oypS zX4+H4kJZ~OuxBL_MZDX}uwB#@VMl<#-Nt2A+8QEo3WqR8^{K{qDRsetH(1}?H>qbQ zk`U1yWz|#-$RO>l0zr+h?(Ma{5-|a@>WB#=ivSxyTS;vTvGJ24CRu;mb6+YcFmw(J4A;kdb)Vr9?vv|C`UbBxG`=d)rVW z3N#;$6nco(99fX&2>=^~J10G{MBsI=yC&8iRdDJ+Pf`Mk&M4WP63k$xJuk&h)12== zl9JsE%)(~oiB?FaXM%s*m1Ks=X+o`KE0Kuu|Dj1#lb3=g%&k=~+mY4O@tAga+CdC1 zJOM*;s3MH-Lc$ZvBYPNndsOrrR6{i;wY>2^g113ZqNXV?1(4SGb|N)tIOsNdirM9I z0SO)BJ!(fS%`k+pCghv2yoII(vkeX!>EN5`jifb65`HnH*~x#FXI( zvmu3B+F*_&y*5$^)QzY{p&`X%Vi$KwHTD{ICSZxe4g`h)cw6<0jqcrD5=qb+LJI%p zf4)lgnU8f#dA`kRmmM1G%>)EXX-SHX~i$id|EgHgMTK;8l zeMy{bEzuwnJvx6DnmrGS$h_HU$^9$2Ey8=psVa!M+Vi(dJ$XgS-qW{7Qf5%Hf!ZY5!LYmbsT<4c0S z0amYafc@@1M%`FX1e0r1!^j-j=Wlpv!O$UbO)yQX;?zfTNMcccWdp5VNqVRTt^lwo zx&H8+V3#R&gb>Ir=(wH43*{r*B0am$jiOh=q?2tNSOCn`D>pA`t4xMz|6tLWsvgy- zbnAz^L|cDB$KW@F%K01O8yeLFD_S+JAhFVoTXqw1#TQ8bDtH1Q2&6ML7GSX0uE=4Q zEh$`=b8xiSI3~w|fJg>`2!_ZeU#2wmLV!kC(+XSOA1T4_kR%bv@h;46sJ)YkNkfV~ zH4xH^I-F^MUhxWdm#JJ*!8nx36_X~1_r)&oE&6{f6++AdoyJjrr1C^H__o7_)1#zX z!JjhLJsK>~a5#bljvMV;XeO4RE}|NoZ^yyUc7L4 z>N$VBgO-Oy2Dj3`ee>(0azyAQyepc7+OQ0qK=;O#JpTtC7B}@ntW%VRR6f`(*TC|f zH6qA~7xYkMidgHGh|S!tt?laQ{e)n(yCIP;D1rJ>H6~mVpJJi`DXuK>7;b z3%f)8*Y|b10!`20Y&YK|N5ez9wa;yDdxEZisf+Vwd-XO0zUs67eCMeWE;+8(p_INu z%+LMQj5>}8UI-(J+1?cv3$m7qP?Ii_qv)IKzLt z`FiKZ#6nnu7G8zaLe}=qb{d+>sUAs@B(4GsOB;m#MJlM<~QvB8S)XW(yYAuYI zUJQqKC^8$$%PFXgh(o3g$M+Q`T^rn*+229};&4tag{3jB!d@)xsOSP!d5ClyMTUR$5)ApKhc|8Rm|67#BlLUuvuJ`(ZFr%q3 z=s0rNzpNVxkz)M(Sl+>4-lCgJFp7#%5AsF6$Fl%RSKyS}R=CuiE-(R|Ze)L6qPINH z3&6iFC!iNgITIzFzHs(HzPKT+N#jF<<~&DFwa%D&{VV)&e?#PFC33m1Xi(`|ot~xH z73#`y2s%lKcY6z^Y0x%ECPg-XetI2Dyz6hkC12dm3m}iFHPYClmUe=K#Eio({S zK_kf`HuESpu*M+~MwtYp8gq+*%DCz8`|N+tqjXGYRE7lV z0*@}%@1N@m+n=ah^#)Q6Z=4*r(k=&IRq5%~5)8=5`GMg@t@@D+p9Ob{Y<`jC){-jC z3G(h#m*~K!NJ4G6OHsYc$SJ@$?)30`6!04Y!KCQEf!pe1_JAmI+G15RZO-it5V|&@ zxn)`{ZIrPAupM19Nw$CZXf{u#-oE=N1BK8VbUW8hWnyZNYF%+%79(9)iwXL^-iV-% zO@`VwhxE?!c+ex_=qe`*$5N1peB!WUw(~@>RibfQaX!Ob4{&#-;_dpZ176oNyL{pK z65#8OpXluS(3Vo3`mj|x6rV@r2q zqvsU&!lWangHUlsPcT>efG_pb&CL-(?}s`~eay{KaH>-~F-V}{V zC4g>J-C@OFZG2kaX&p=!ID@+>l!9uM&o~JG$hbxc6Yg{QoiPVk})3fJ1TluDlQpdTkUG!+gCbI=_Le zj)RzPwQ7H4AI?p)hT&^6Dz5~J-UBMN8YnrYs!<7uUq-+9^v8T`WX7N~unkX291p@m zRS^=^T6)IlpGhP->g7zvkQMA#*tdvW8aXVw*NTfA{qe9*R$n)|wIQrCq zSZ@vkb~?wrKVYW(IpP3A$A6;l5^8+HY@x$Hdi8(9?5H;al%^l;M1)BdGVG_Cygud( z05K+IsNW<2DRIXA@{gr=vycNge|adJWptwMghTw13yg37m z?Kf;-_kfaGkr=WH;;ABqpj^1d0oO99_a`&A^R!P$=Y<*J6sWz)JwOYreC0J@eX}Y6 z7kPh|J?gQ~@L%A*)Oe#wfgRbp#hAj|p*Y_7#IUQgu{Mz~uee&Hc$GHU65JIyUfN~h zh;pes+K+|tU_r|o^9Tf^%rwAkZ@P-@SRxg4t@1F(?3MM-{}(?bi3nhvV3m5E{UrjQcPoxb#MeShs6wzP`@?7%L0GvS=tmRgLIDMl_o!eoLzP0m~=`UMof zhKAo<&bo$&V7%l=*nvlT6{&^RZF$$X-sN#O8D=|taKBbJ_SNKK-dVsArH(=7zv6!; z3rbM4u`?ZUd{i29xPM5+P!di=8CkAO=uxY*pPTI#{L}maC8q~mhRte?OxjVZ6?LVX zuZHQ<8$viR2@`C|8jg?~`sjD$>sj;lWq}ySK~~YnJ;qEoe2Po=;Nzg_J&6Wzwz#`S zx(h0n=n&q|Y;CykF;VNE4vED4wR(TUU+j3puZHyN!$onIWkDDAfvR_Nhm-U@0(Zze zvlm{)`^AD!ToPwPBa#vN-^;{~@vM>x!tc{SPq&rqO$b-2U1lK3P$Azz|EMJGUFjlt z^BXQ#KiFoL*@yr{KQhH|FLO`VB{eldM)Nx^FMmz^>d0}_XWe6?QK5*^k6M3^MY-d} zufrNa?N{R|+3r%^#=f9_lfxZlWCM5uIxhOi#BS7vr_^L-t_;tR=++%ck z(}bGwj)DtQiuMMf<-H;hS!hc)Th)IQ4$66_^%h?TW<^ppU2DosvPyk8e@ZZ{xF#)92);;u(<=H-_#Rs?}{dp%&12-Z5r-3pJN2=m4@bCqu$O~Cps|I zkrK$8oU@#r+%H*tjY|gOuvYF^im2*xA}~={b)7wMDupo|eJn7I*N`v3>1X!d%5r!7 zr#^%iH`%8-g6tgnlhxJ;c#{5q;n274%79vq%nt{0;)F-*LJbnl_d)z8f+c?-nArnmMp0eLk|1za?4m%56J4HtCW4A7dPBFs%v$bElXhW z&kr)y7S0(5n?+1Bg<5x_55C^`dO*8dCu zD{oc74U!K>SfZPJP_Gn zJw{A+21q0G6jvk`>qovuHa;OR!0HY3V8ur+eOSSVMuEA1OKLFvsNQFM${^uECaH{o z-+-j5(y}%K@_+ zW8>Z}Ss;0~Z2R;zmcN(9Ita1R%I9=tYVdWn9jw!F@JE#Z4%QCpXx^;`6Q-ET58i(} zgLVDcuYc?cv=C@m0t}N;i5Ggeb?1Q8BcM=hFXAudWuCxeD<)}KdkPW~vCEJ%^Rs&m zTSm@*h&@3sHOGUjG(oxTCDeq{?^S^df`P15u*_I;JJVR!lOF0yh7KAR2bx*lxyPi- zo-eJIl;gh-pE1{vm1v!e6aY^!s5K{R3ffCMcGbF1PVjOsl{g$ zhVHVo&3h)Urk}7kpzZSagBBR+#|StzmnBbs->{>VNs#QU874v=3g)kJ0cy5%A<`g| zFaU(sWu=ES%Hac?6TX4h5@p-vH(R2~L%s1v$L`QK61kZ;Z6WW++!y^%pn|U7jynTg z)c;R&Mjxx!_deZ1Mdgl)lm`SSE?9B1f`#z@u&MviJL>n%m=jg)>V-sN%u-CDG&E0t zBu8Nb24Adcja;%pizunO_8yw%;T8^+UkOKNgTKsTF1`#ujzws2G2s^mwqEWi3!Dbb ztl5-}aRltEeU?^%Agr0S@CwU_ORS{R7TBzTeR(lfrV&R(H+t}DvBpg^b`}J)j2BR} zvP$=>Z@4J{I0>|o`Tdir>n@|%82cW7vKRd?`VfJlZW(YbyuC$;knh6%MbEPxD{2e7 z*V3sGaBp`!{xz?~k97{j`Tl3Lx|Imv2XzieUlst8z{I|8kr!Gs7BxIC2KA+#V=%$h z)3=00{qxGIoMokGQW?s=qA4ok%);0p{m?-m-ziXa(C#wnmmrTtgVPMQIoaEP)u18* z3Uqek!!8k5?u2L2%-un(m+brzwk8tpPxCd1g@B{A3teIn07H%1U9w}t(9TnY3%#|D z`JMepK)gU!2c1{?7rjQ9GSfs(`6VhX#OxR0HfscszOKN7vom98IqxgvgOq%Ibt{gh z(%+8n0eocsQaoC-H zhTr<)Al{gy9Hu*fxRc97i2!%J*^Xj~f7`VV$4nsPm){JC8d)}ZlC8L87n&jZ%!ye# z*mASlnF_R$R=!#~_5*|rR#$I4lu~JE@uOE;E6DrrqolCFEMB0N)jedy-P*kV&&+$S zTMmGduL3y&U@angNYp@oN)XUy231i|Wp7Bh2sE$S2d{MQy_{i|IzeDD2N{iQu@6SO z;MvOMsM^|}t{1YJS<=IeY{9d=+LTk|(+M&0FF!o~nY5!)`U{-05M6uYZTA|S2YZ@-PxDtp%!&qP?%EtuSwQ_vapLNUBbCj`QA=g z-*%K*Hj>s9tmelAlnVT<+W^Oq*Eg1$^EYje+Zm<;T*NEX_RG zJb;g#%ME$|nP#nj1xlT1LhXfvf7k1*BnW!bv|UR}9l;=0uE7VdlS3W+M((Q7erC)jfTa|=5;U=8K@<}Vu5i&u76A+_!kzuHkkBBLyio^oatV#|OhgI$uRUKb6 zyZ2{+9~PCFhYJj1Mo|NLLv~J%(;y&l9X;3%7?bZ@jlKIJhwd_u>jsjlbB5g{ z+TJ`0m;R?ISX^)ixEx*a(3b;!$`nhoAH94`l=41B&MB&O#QzTnNFjpIDx5-%>?5MF zdDjGDfLy+YtUJ}dImdW!Rms&L`AjT%t(_Tx-=X7t#H-q0?CO> zQOyN^1~TZgDnG+0iNpI{jT3PJKC1Kxalp+yf^TNqywteAp&PUWR1gaxu7{@HFc3^X z2oPdBV=-=jfsT)-RQEu09(LG>JHjpaO6g7%$ws&j0v^F0cB&sfy4iM=ISBTrZFhAR zEd)4Smt2h4c0^Q&C!=~~z=O#H%5DSyQPeBM@SKvaGrAd@aH>|s7>aEKOen}@ zSO^|6xr%QOyV7tNf3)KhJg{gDyBk-3&uLZIKn)Jz5C4%3bhA7U7Xr3NGY{B_kM?O* z5&P>xWWB1PQ!BDz!HG8Sa|n4*irm>R*=sg@HM8$Uev$0HhtnB9#kmJ0nkh;t_jWpb zNA}}kjOhHc`9c4P{=L6a#;MZo&c9w*?ekSEXhGl-oB{Mb{WFaQeMTHpuNVSf%F~5(+oR@M7wxNlV9vPucqJnkVdUt_~37w zYN;9x@}fPMHOj{}NcoxSHM7vNCPM&hW1xEn=9gm>dbPJZ#%AY|UPekcJH(fk?0IWK z7#)Red=X{*4C8>+cQtfqar``g5h^BUt1dV`FVGmFSi1(%uEKT|s6z>)9gQWDTzl0Dnvxon-4nloHS_gYM%8uctBm!9E&AGnYyK?`lXIpb9O{w| zX-t!f6Q7sSwFDEBQjZh2GZO@NY6CGgIFr$|6B02uIWh__Ol59obZ9alIWsdhml50o z6$CIfFg2H969gxJwRL4!lxy2HNSA;hQo_(Zba!`mJHXJ)05fz+OM{exbV*4|cS(bE zOG!v0E%2fHiT&*N_jk-OarU~`wXSpMs5G?MB(0zpU^yrR&c+Gk5CW*EYC)Yq5Kay@ zML5XO&Jw@{2i&4i*CN!)*cTmhi`aQda;M2Ztag9Y7uo0lPj1 ztpFBY097y?q~qlb<^(W;{umli7@W-l1bYmFAvSgpFwhb8b1294%01L1!$k7@AwFc;b4FI~@vRc{z zc`bEa4Q(cW;A3NLH)m(4>%Xu_YwPIBvjSu!)pTS5U_DlVysoy+?@t{t zG5&kbW8&{}RaqTL9YYOSPWIo=0N@0;gI!^EzsLRq8~r0Pz<;4VmRh?)o&F2}FxtZ5 z&O+?$9v&V*8#fpn2z9jqIy?Tsr(zUs@E>B_AXblb!fnBSHTZof z02Mn+Fa!qvT_gwnE9mq{xNDOI!Be zwh!goh?{71|VCTHgfw$iYJTiX7` z>|g%BW=TS99KirKP97i!Hy_tu5#8U{%JEUZk2}cj_X_(R=le(OQJR(x5HJh|;Nkca z0zcC658#hy@EbOOU0p%lP|t|v|7hobPns;m5^7}!u>o-L@&Q1ut{^W=jz>Xo@$v$E zI3Klb1@`=-7yvsE0);=80G!?6egJEzE9UQ0732r7gMPdIvIGI_mjAIhIXD6A;J=w% z0CwxYnUBd%|1~)|0PK*znUA&5znRSi-MC12r z_@jD`|8n%No%zSshPy%?!1{JpkN+2cOHl>EUF|%LIUXg;`RIRq{ri{c{|un}?``{A zwUiXp(}#_RR{+4qCHTlKx4`2D;N;@<`=46Nzt-2E>+*P*|F(bc4geVJ3AV(XpMhEm zhuEin4lDMT%^NR4p%Vn|ml27787L(n&!>&IkP*vduTz7?^8*`Rr_<*{RTP9w{gVSB zg$8sX&mHeq8k5S$ep+ctY=Hb#{mGunN)Bb|0d<4YRp(xpv{5tdDrMyw7V&&dZ%SyQ z0O$_wNei~LU&nBbKH#6GP@9xAE#;ti6iji}6S_J+^PIyYZ6%uWMT5E| z=b0y8<%SUrDWN)dwi9e3Mi+?xielVM=h#7DCd8`dSWQAA>i!thbbqRN1FADt*6V#Y zMGtv)S$T{~D6ad{Ixu@1x<)MI0U)Zdv}fVqSz~$D{6mD=Z?rl1ojrnDTLfDIkKpkd zqGf^pptXK2?-o7&j)WwClYlU(t^U5UBK>V&?zVi;HE-T6?jp(%@m z4Ad@-cX;S=I`~Dt1RTj5_jF0UsLgLkH2tJRJ0_oLo|r%J1-l)8R8~=z`g2H5gUpRX zMv6l8O$a4OR0_ln3q+LrfHynMUpY1THl?^!oPe!3uhy{gN@G2c)IK=LXF3EMmC&sE zmR19;QidkWi|RgMC`N}PrQFT#;Pu8df6V~QWU zn92R6KiT#J_gz3k10fj2uZt;Svg{{m^j17o1llkbnfV3Q^KQ1plHKt z#mNxwz%*ZIIcCZ?q2VMD$Zbb$H-?+x2Vm}I(pGFM;vRM1a*?Eb8%#)#Uv6$ei%19x zn@An-xG6^|y!zC7!!6E5-L2CSU4Vy`L?A*fQ6u2f`g1eqmh*lCG-81Y zjUEZ2dyAcQd507B$f&aM=PL3HJAuv$FNV6stn`>N3*U7X`7cFR(p6!j7u4vsACDBW z7|tbs79?lBm2uw{xm?QM)n)U~ciDX+Ep~ehtb3bPt+Y}X&dKm1+WQ;r_6LyVRgp@# zz%S8>(i79!=hjgzNR8}2C4a&DJ;ZJC$u|p0Vs(Tj_3@6zR7@OOek_DcecF3Tkb&=u zDwQY02hX2KGe!!yeP6%#Jgxq@H68Yfg3~O2oldPbN6q2sr}(CNLTRa>7e6ahob)b+ z?ghk{${uVb3q?cO&ST#URu2NB`opjXL#2aCObVa~s?v@O!*YjLxH;KIjX0iR(ybM5 zfahKXyrYaniZKL8NPC?>sWjzLnbV#`SgRERVXVrN`BXb6LN0Cs->rZ6(kq50dJ1@d zb`(3IixJOXMPJF+FgeK}?5p8LT1&ib{{hsw4OfVY~yTVL$IRv_N6@Zkt3I4CDY9PD0~F8MRF}qSlFlW;O1IaPT>MM}4@}3Uh;fJl-I!&ku*4`87{Z_Z>vOPuNr&$p*%u(A`Fy(L!0Q<0 zi{4#wO;?j4D%dY&i&^Vx{Y9XEqWqT`ylXF_M+*lsFLoZ5#e6D!)Xzn^M6 z@0XXk7Fvz_7NruklIleK<-+dh{iMA9J+6mmZA7FHXj*{8(T0UFS=gSd4Y#r+enK(2M9U zdsVt{_8&s>R{hz9%#fQEuZN)$Yt)^$)tjU*gbLz64*=;@)VPe_lo7D$6cnS^o#wF% zq~J<;dAxFN2Pz&EYeo5g#f8)EEmZBX?Vhx5#qwyJ24e~#r?2+ywmvXLDIi=J@H%aT z1Gb9lO)gO&`LLAjFnG`%_o$&!Hvy~9@pq@<11D2g#blD^XRLPW4gkIP0c^b8{%216 z$rbdw%{b@#<6k=?ri6Lt?jY<1QXxkt^)T*fXX@x2I|4V zLtn`0@D@=qqK&v>+6TWY8XD@#beh*4mIZ7g`@Js@u$gpTA=t1@z3viJxP2Jy-sM*_ zWvtmUsC$LX$<)i>%A&^ogwFn5Abw~G>IQXH(l)6ZRT1fbJZFf4z+oDu6EDm9_MT!% zliR1m-sQEqc3TAzQ7Z8q(}cs@gNNSC1>_w0TTNXS4cB>eTBp#jfARZ{W2c)g(tI`uk1%)L!LY5pvBZE@)5 zlPp`N!aCDI)jA|=H$)*jAo5X|?Am!5vUd>jPpdJ1rb4Xzl~3Z=JRxI{MzUGZ406(% zeE-Bfn)AufVA{T7pQ`8&f=Q%`T{IfvYn$s`uhL0GQ;@J_00~H$YZ71lU@>ZntKy?y z&eofcUlh|KUJO=?BeXnIpXW$fEZ{~(9^cYGM6za?B)vun&o|nZTC*tg6G|#W=T$BV z*J2cZnw?dGM51grACAQbu5@{Hbt^>Eet!7;3kBPXO+nDCULfKl5ykESz1+P%(wKn< zK;QV~<(LBIYGy`MTi*VS*pwq%lSw-|11Z1C!<2TQ{|$&QL&KK&Em^iMKN&lPl9@Ul zNvF*Rqq6+#!zwd^thm@B@lCRUVijMd??WShNranbZ~I?W+GuWVNf{4jea5c+vMOZt zR4Fv6q}C@2Xs-UUvY8DljnCX3o+0MiArMF#*mC<>>=XCr?ImH$^%Rh{cS!I4?jkyj zhX_vY(Tyos+z|L(R!PB9_ak-{uTb5G{QlfKnfTel%QRtPY=2Z*n!~PiE=Q7VTh-=& zF`4@cknp~56G)Mr&B@%5NZS={e%BdsFaF*rpR{(b?^ek(vmuUi`jp$hRNa}1U_>;D z;hx@EGf|BX>g&T=`nAuHs)d((j{VdQb(&UhZi0#I%KQgu zJcD6h9ouSef^Ixm;TJSH`~Yvc8%|b#tV=?yLw(`Jt+$_C5#08s?Y7&l$bwW03cps9 z`_`sL^>MZFnk@`i0;_L@5zuJGB~m#bR!znW*T+|jtZ0~yBrlzLDRXq~gTE(=i>Hry zerb2pYu7BPD_4%^NI9{Z!Okt8lxLT2T@Lz0-&x@BGn%Gt9^H!m1Rz1iM!nI0ipi(0 zG;nX#5$u4`2bWdteCM^<$uvxm8MfBieIj1rf-nGH<~!IzVOl%Ugs&>?qWbrI_n@<3 z11s2PjM3?>N3tD#<|m{c8F#frFqw8vYZ8uJ81G@GPY`WlQu%5o+{|7e`VKI{Y&`h| zP&e~V6vGI|@gg>#BV>3jPLFhdMAO;Hq9%APXZLtMAld6-DMbEROWZ|Gq*9&)&IGER z8Z&V&*JNbg!C*gg;;vy1y8~(iwO~R`C4H$S@VJ(MAVHWr-&kP8o?4hH1~ zN_34b>t$7oAqlXBQj2Ni>2{A^S{WVEv27`eBg04EUC_7X(n2D|5(?#i92)=omWWK! zIF;)Mn?sV?U!O_y87v-B=8ngQnoeMJNb6G8) zdP-Js?$(H%3S?B+GD}twk@lAYGrf(?xD_<%W5kfvuQVvKk%x*z`RdMb2Iq*T5eu<3 zZz%;l$QkHJ^?%$<3}S<^i5Yz%(r?QS)5zoM?-Elb2~?%1P>?r&>6H65v6WX>wSS13 z>r5I1svTF3v+UyfHE()zTO-YTLyiu?L7p+AMv{S$k=4{C)|fGqsNrFxJq(Wl@|V{+ zgI`-9fsCk=SPE1ppAu4HG3p$ivn-bhTZGNXjvqCgRt0stQT^~Z%${Q+Wnrm(9_khJ+hz}Mgxy46hM*eW*6gQ33aODuPY9Wrt+kIQ0w_o=nbw3gkl7 za(7Odz7o~Ri}*$5x{%o8N4-vse(;&^=_G#%g?x5@w2?#=dYScyl{gx^4-#}A7e764 z@C1bqbl*hr6j|#md(XUuTT=dbN}xG1;I-7-7dADpYpt<)Jtya4&B!q&iX4@z13dnN)8sq1I=TU9SnjWJ<|0SV}-F1`)0KnmB9ggVc&e; z7&t|LTLh3GIQFt-%D(I()VLFECU!A8dlo>W>c3rq&=QlYY}ypg^2#Y@-zaf(I_8L; zTx3mFprgVR?eJIGth8-wu|n6;6RHL~Oe9IRmKO2DPomvcs5n)c(PF&G=+S%aRs5E! z%sX}}+HF6U@nhl!)NjI>JW-#5moB#jCldI7^nazZPg3B^|3Ee6_!xXgm?*A{Ka9_| z&5dOGJ&hUb^?q~6piC$Ki6Y&RzV$IS)!3ycPEuKYf+kIs^gOVFu%XOLgjLjX_fSLN zBe`~i#=L^c!4iL?O8q>QT&hygoBGJBn)ZIc)p}J#gH4d#H>x7jU>RK{MFZ#^B?5T%= z8aI_kOLc2~Pyp8MX61BoVmU%QqeGfMRp`)Ux5bGd=X1uTs5=J5XU_o({mUV&G~PPX zXJ?m#h2+o5-nV=1%!Hie?yurRqgOD0Pf{E(P#}L9z7-oh*hgP02-7Nrl)Z|5h3vs% zD5QSJteok`e?x|>_T2e1ZFYyK%9PtIo^8r(=7Nck<*0{0#nZ5-b+%8Rb(nQspGU&3 z$3@i$5v_pD5e+Tp8!=-L zXfP?0lCEism2~=FvvunQSg#C!I|im)BepxeBYMd8vRlU9b4;;|{8EQ*9lk9whhb)U ziCuC8o*3D1mq$z=_$gcieL}7k^etyBu{?8Yo1*zE%Q6>g%FxZ?vyzkvhrl4r`kkt1 zpJ?e|iA~oS5>3M58a1z^N;>aP2`4sf=!2K8+En}nhc%Pe zopWaF*BAPQ0@a5C8W<+&0?rb&XsqTt>AOp#^c%8LM(TGzKk$>~Y4Wozrj}a$8Y#SD z;{GJnl%C2Ot3!l@BjG-O)sar*j)eLekISyQS*)LWwE6?d5z4C=#AzL!VcHd&pX}@5 z7+e=$1COtJ%-`F6j70$hbC_VquWyIkC3Ufb(nA=ZdsBW2sKXl;*$ZJ;ZEDdT$^k`qKpW3%Cn z+LQZ)<$I1LqZ{JCg`&-a2Rls6O$clt82(s3r~-lLJk$De^epluy07R&i2|dIicPK^ zPEqW6pkT;NqoI+*+gc0(k+I(L4Y&AKuU$$?e!jO28Ezc_-=!J$H1(2Gb03nYCq{eT zZkL^e-`Qx?iW4q>SP7#e%=$jwS!dWh*^|m?S&;A%aSqq6o(v(yGTuadmmh@_h+i#; z1!LKoc1)mSx(iM?rXW09v1ywF8^8+Qrat$r4`+!_#@XP`mub^+=fPHIP`jGM0Shc( z`;a_=l0+@n6W5C~V2q4dQ%;M zliLzEv)LX@v+_bGP<3FOy>aF4LG@wBgcUiyp6-B``EdR1SK`=@7}BZPpU#xO7&FAx z=sB8rK>Jt4i8u#KG;kBLNO{mQTwccKzQE^-bK43=J`6IQj0%s#fia@?3^L%vv~jJy zpTq4MFXO0x)o_K)J#*4xLw~k{1pQ{J2aF-o-bT!IDhg` zjl*E$;_C70qX&*WE5EKj#hmHqtF0YF+&B575LBsSo$9?y+d2XCE~HDOxnFUER;Bu{ z(OJ+lpp7&MT2 zb8P*8DD7@?QU4tj0@SCH?FiO%S<~anRbu<|U2mMR;BTZdd1qQFxyvi)Pgs|7*U?uZ zw2k&{Wh$qAfVnKxk%7ZbH*A)LE37&I!Llt(&c4|CZ89@Ke)Bxv__k zf2N9Wb(4iqkACE9czl*xJPRJe=@>A71SQgep`BOCo$}io6uuqtj%y>=VJo=+UBa?& z(o^*=6sZmaeb}+23%PKypcG#0d;w~NXUe|R3E|vMXa3fRyTgiM^Uoq25)c*M-1~ro}9`u=d8?Dn%g_n2i1{(adCH5 zpBk&yEbETz+3Lr-!=Md@d$jLU<#~CE?uR|_QCkiU^m#Yeh)Pfr%b=kRbDVEoC{x98 zb{%B7&v)zJa#rLOB2G!#BuLd3z-MEi~>%DqLERZx*Rm-=^07K^$D$)vy4MJKOOD)yLml( z-oS1--QsMey|Lqtk&|opx|eb!olEp?bZANV3q>$@uW|jIhI3SfikpamOMu8S3VlqS zQ*T5q*ph zQ54Y4BKqVS9qG1QB)1ydWdp3=X{HB{O@p-EKsy>Ep56H_HFRaK(#wj?kOfSjbg<2j zndV4nuA8zaFkVyXoxd0qFV$7ILrRYD7DjfG!_adn&r=dnh%>p_sAzIl_+)B<+tSfB zDc!8!m1qsP&W39wqJxCSH&U6mv-s`oc(otC$XD{SPuI{w>w zs;ZOUH!OIvXkn1)c0gmo?w&06lOFl|!Zj}bLDg883l_w{=@oi{?#JP>JuThj3pO^^ zk#%gA-4eu(09SCf_=1&rTOvg$J873IgU&pHDQC@r{}umy+<{7I0HmWR%cZ~&=I{{K zIL%GO7N~}memfo)+*(s~G&mK`wzAN*ua#tpnL>7BAS1`z9H2lF{M_b!D{{E5A{#eT1)0hY8-uAMq zns(6BtVd|19vFBVmwP#FT-a#0GjZ8SG3d2Im*d^CWQIR>^@k_*n*9?GkusqaBh?o) z0`(itjNULRaP9$$Kvx=$6XWa8abVanHk39#mRAp>e!uWC77!dHPTl1QQM_?|twqwE zet1~Tpq^7L^(>}#vEX^iFT9HMHIes0Sn%(TO@27i4D`CwW^T=ubenKC57?jK+rLGS zlWq*4Q>YEOcMJOj-W%ub(@VNE&bEG$jQH>5uAuH9l7^iU%cv0ST6MD~Ek{+WMQ2Z; zR4m82VzDF5p1Mq2L9_~7R>Qc~hnunD$5vPxlfD3(0 z_Kn)w031E*HX^ktp3Q0(>YsPYtD?Ec2l1K_vUHX=h)5t=i$8=#pv=|~Kacsgl)kBU zYMXj&`ed07Hf3ZEUv}=$ z4-)X_?aAr&HvBezCcq1hE4-T+8h-d;Uu=pc7-g)XT7BGBB$VY=!17Nwo25@cpzED6 z0x?BgbMwh~fjnpF#|ku`u5iCgw=s*EC^GI8Ws!vzT}NXz?C+gS6GqEYc1PD8u+09WO& zY3C2cBF3}J>5y;IR?InzmVw|)3>8uH&5@?+fpXfnktw_!jIe&&X zBfhlm&xGGF+zhebmJM}f7eu+Y@WCyx<)kto?p6Iio>=K zt{qaN6IpCF13QgfReN<_q!T_H;P#i!77ob zivIb4kJ}(~`E)W8aqwY&?nve*A=1V-8y}L_J#DYXTH9mXYLY4E*UsYvfEb~f4pR%u z7S-8njTmfUbbXCzlwv2Jgh)o6rhv(K%|!+~B-mjZ!cMnIrkm))0IC(~=cX0Pj3yHZ zAwOBQ0DGK~poCdq_gIG4<`yq-RGuxsvbuY2@Wf*aIT0`&PCBz-bVgT19>b8h7+~=2 z5%a=feDYvLLX0g%iigA*P^VLcc+{bh7HEDOUByCX>XS*da9VCcfz=_6pedu8DA?O; z2AgveDs}cg;h(j-Gnwhr4u3p;^v~>fu8JKY50n=ADh$JannvqZ)Sxf2M@ubB;VQv6 z2FqiS;OYx^fYeQZqhKd2csS)UHkt}cOsUG?lF`@T?fhza$Zx&}dQ{#{E^N=@zD-GCe9$ztXK%+KFCb1fhZ4#j5QyVfkNTSPw?-7UuKDc+o?dPV+7Eee2 z|jo8TDP+EFPx%@VZ8;PyO8bAFe%|)U?#~s?898TSqhrH=Y=mnpbHMKa=uB&E~ z89zrj!rB%I-aXTbJ4#K(s_u*O7B)P`O}B;%`I^1BQg?RnTmIUY6;Yf+V(+=X3na1e|o(S+Ls2Y+#Z!oOt9aX1K?~s~AqBC?Hs2 zm|{0;UMgp12czhT4acZSv_5njl~?`6Qo6qplT6NX&ztRAm1FWQ{qVPoA9n6z?qv`p zcTrQ0mZQThIH4eAKU1Q4X*^!jBh?zZ@SB9V6#rvMJ;XEg1>P;8Tl9Y|nP6PZ|M6k+ zFmwEWA0{ggEBF8SFfkz5nRz&p^6jXB#-Ec)QEGn8&9@uBYX?4aJ*TqoJUg40 zJnbdrM*HDSe*}Y*@THH58P2X!`bSmJjgWhaheGyYK&jy$z(O`q6BG6nxc+GbLKYV) zPf$k4`&IGdVKYE9z$sy`11)5!=}`*6!z1fz@eGiaNO(!9zycEd=>{Mi6WC$kEdphr zk<)v{AOjJ^5R`&ORW0C+j1cEZPxcMal8!{NLv}rPHMR3Wsp3)K8gTPXK#I^nss7O6 zIRvf1NI|h1(xSj52uq`YK!b7vBhc56^$+)8=K>p@0v%1iP>1#C@eqrF1EY(OyQVFu zWsSBS8&HcS&YsOR_~Ex<5!GPenzIKnY{b(MMLf5)f?*1+d95ESYNr$2ACi=qH)sO> z4W7$28235{&j?Q}tUnbDB$J#n$tQOsGCz^lUe3XRVQwEr#~-N!NPr8bq3+E7T}5iH;5w)IRewO^3}Bg zJ+ee18liZQr7((=q44ZJF-$A0BuftrjKQ3yqRT>DV4gyshN!<3C38ZPq=cl$Xge7P z3{-TQVelx|>{95=f(RLUBP6aisqAktFfnQ=oINPEgvXipuZ%W*qm?>p3@&Dbx%aq< z&vK;D1e%1ev|c74(j$CWXCARQEFf9m#3Yn30~}RgL>A1FXL7uS3|;K7FA+~R00ct~ zxvI+gR|Eacp&S9ErLBoTf+u_|71y(Ps0#y0G8_wzf9_)<%y*|dc;6yo{#%ft&HmM~ zLEW?NSIZx3snY%tCRWV93hhDsU3hV5Dr49qV!H%ULd4sEJQ&B+Hkh7YWz6U-pceFI z>?jcPA)YCmb5P9R_$^L?IV57k(bGG1<^e}S0TA@?;CHBF3w$sflf~=ez4p|6L4Vjo zTla9JkOtu~WVC^AxY9#4wT%9-WMusx8+G5XdK7zw;hqWmZi%TqP6~T}`6J9BBcb52 z!$sXhq3aq0AfnI-Zl8GPM-blEZZmVjmcaD$(m{vIqtV=sB8&nhXXXQ4@9G%bp;*34H0VFxgE9&IUl3;Yg}Ber#M%yuv_lljXnXU` zNHF4XaMWPvH^aWi=lCt_xa6T_tcT<(H8zQEhO|{+XD_+Uin;x$ZJjdf9eXVPB_qfc z+G%0BhY^X=k0k@TY*5hZCNX)s{{a_s!+9VFtI#0YI(pqpdz{a+eP%PvNe3D!nS<6I z*L{p`-B-Sb>&WW#r+ClXRB+?X1AY_@?^9R!qzTPis;;kcZKm%d$zvo$4(SvwN{Vef z{;?&X(feLc?Z}U7(?qcTO8o0Oe1VV(bafKHz*}g9FU>Thi+7W+yNu_@m-xxc*k#uD zvxy3M53i;%Jr4&E_qX5skt7fySx!a#JmU&UOaF|hoj$&hg3@795D2%Q1Ic3-eF)fpy<45Va>i&_bVI&h! z?;Ff-2lX^v5>8hdtKC>C5QBdakA%Cb-5|ci6v3UL{H_`lxJmr>l!`rj5|HFTR>{RX zsPWdZ=a3F(b&ysxRH`!c-d2PuGL;2MP@kKeLnC^05X`Sz66RMuv^hynPh283dalUo zIBJ)1l6AM*>*G$8SI2A&|0H;VK5+_Y^FN)ym|fTZW;6X5z22g1f@QviGL81;Pz}I= zJz~D3{*tJ3uuE~s%dkXRvKQdLm0Fb^{j}t!ML}{=;PoEew5v%&;*xvFlfX!BJ}H$J zsn$4iPGDa(MPO~#j2VUXR_?e`tf5>cisGdnp7@r89NdRlqTUv)bN^MDem&i1 z|8hTJ^0#Bb;5n~mQ2um^BNb_6s|}`b)80$bJGMK3%{hz`g*cw?-Fxn>gkaFknZzXq z_cZVFdBktg;R#&8RswjN?NR- zY@5H4^FM-)@WUm+Fm_v_a#p$PdfTg3$EvFiOguA!_&{UKSil=y_ovs_&Ctcp7tB#* zUp7SFh2_P^_|}RJ%y;&xm$Lei4}4wJoo9ycq{{t8*Lfr+V(``zD`li)ZV9Vtgqn1> zNa1eYCFBy({Po9AFGvH(P$-XWeUCeDbd}2+zIs@0UG_+AWS`*A=P(?=DNs7D7i%{$$Zt)IAaQ(MkZKjqh$75xD^j)yz z1&))=4AC%f_nbv&4dxZ^vT$7`#=lmv{NDHC_ zS)eJq(M`6Bu7~{Lh1pnH-;B{}{|{f5pCY#+g-lCDt8kn~ID=$%-*q`&=Hx!9Hg%(7 zJltsed%6Ga^x0)f4JVv*A;yUC$!Aek^RZxfH<0BA&o{PLGAn=H&qBKOty-oGWzW7^ zU43}|34Iyda*}NYNOCS7zg?+KETUY{OBb2Rq|m;Ttf|2YwB%b0+K(4g2c6erLt_#u z+>~s0?8#W@4L8MNQ|$E$reYUbH`$8I5P7ng7HizSP95%0VTxP2_NXQZR6iiDI2TwI z?RCnJl@0XE6(NMINX0;zQ>|S(jjgS}dYX0wO&KK+W0WQW0Of|uQI~IwT-)s>tUOoH zhoD&(G&(Yd!c?->lOQK@N&?H;-g-6G$4s*UZP(>pa7wpw`N_|7=Z6n1WY}byr-tki zp^+BN$Qs3OPm{j(I^n%np?G43oHs7=_5pV?z|oP#SkN$D7AWEY?v{}CH@Bvaq! zUgb2fEO?ogiY)hN%uv}k|8^Y?bp*ol{`LPbCAM)yo$;oFVXRRkTpT=0n~ zP*VQKyi-D;hrgP#m0#|eAmf5YsjUh=x}NRUI%Ei2AdIrP;G%ve9fgkbo zo>L%oW{GhG_1ybcY@ACXD$d^qdlOCAZ4>J zG8IJTcM!VP9-jb~S4@TdT~@MwcW*NV{pd-$TJ}3tzZHou*)E{h!G9Fx)i;78bBos)SlfswZ>+pIX_&G^^f#LHxGaEFx{v zhx2n~x=KJ+T2)$Y;7~PGYV+sn?-n{nLs42c=Vs5FgP`cxe*ELd!}5l=u$mZ|^~M$b zMNzp!N{6`c(oMb(e}hdktb85nG~Tw?y3n*tr>2%48abr5IIqDi!Me`oOaaFop~6d=~6N9Xsgs(R~|&X zgl&f4-oSV5*;9!*4&*v6!T15wgm^Kjhi5_7c4ra?SL7qO0gXVtKG6IK>ZXWe zX?>ez%=%vLVr@o#M+*~d?cFA)Mx?aCwa8!ddHD@a8%)1bY;~3L71bIj>~?M{?KIS? zR~IqOuH5)=Xnt6=^hWD4bA6a`TQNSJUdpynLN{wapxfmCJip)0eV79}?YkK|peuv) z1RCDoW_fB+10dY_VAqnbDle%5)n zz3kr=?bGv4EwB@&d?479Ii$7jZA>1{V+37j^~4y9;?aFUPrRTJ{#Qz1{qIO82iO0S z5|}x-{v#!@v2gr9DZx?$T^*YdQ*3sORN1t%beY)97*-o{g@PRChp@0k208e@ymXcf zDG(71cm`=u_|ji3buhbuk%1%S8jz55kRl8gn2LWIso|_b?9r^M1TUtqMw3jZyi=cY z?{e|sosrVcDF>cwxk7hMctZ{$G;BD7C7t&Md}PTRsGxfQB_~vJNS8>Cm||1I9g+|d zf?h=hn6Mm>oB&C1M*3bu7NS(JzCopNu;(6XdI|@U?O{;PXweRCSXpRtsfV6k6YdP; zQ5YPFLKKW9^6&i2Ke90*B8O6VY(`8>DNXCDdh*qZvh@{WK!Ju*Ydrc_*jdxEy5F{-q zAFx*b11e+**iWT#f1$XZ6jvBYQ|`5>qapYmkJ+*@HW1!r5E;|(`g6(kRFsJxZ!0m2 zA`J8jI1pv_Sefk7h2>=p>13Ty6=q8eaZ=@*J#jLC6(#D2F~|)=hIs@mCumlj&tJ0a9wWb%O%WgYq+Z=K+!r=jc1;Wmg2kvG_aa0}b+EqT zHhnw*8_>`(6kNuvF_<7JF$lVq@nkkp#gv$f!>hB4!Gi?N;73JPe6qG6We3RWTeU;y zI};vIZD^=pYs~)2C3>YZ;OJ4Xe_0t!-}q4r6u2p43O~boj1}pz(L_QL#%N#; z(5#3fE7SVBa)Ch<%BrU(Y8+^GkQ(UP?&r~%UNy}ooNii8Tbn@sBxO=Iuww@N_mVRVZjoMPkjSm!>J(B3 z=HOUVF`$DTim(=m`e7a8KZW?7lo;$=rS_2{4ClJJ9*ym#qQiGT2fxU=IcgKRMv0Pu zNRnAe9MU@pjN161?ZD$QN`)0)$M9uXE_P`MaMq2~?+u0;3M2tzw&Y|Ww3j)Sj5YQIyE2>%pp_Xq6?dXmReWd||{0-ZsCnmre#!)BY^QN}_&d5!4OI0roejRGx#PGH8$ zY3Iw*H2&n%`q$a_-b z*fj06E@J8JR4_LMC(n=X&f^TXwbLIPb z4me)jpwRsEsf@T+^axpAz5t?OCI{nEld{5+N zS%)g zmXNn^U{gru9jM*tT2&Yj9RE@USBzP%J*QC&WeH{<+dzzs#yv0L8;6VBM2aUOfym%h3%&Db-N9pUs%Aagb+oE>YSBIY4 z&7?cQNoh|bY6WmkZb;5>2M? zui72$Rl7-EkM$LK!Mo6=q9@_x&#`GE0B0@Yfp%+gXptIcd5E%Xl{d9#FD7!Mw#~HGIE!n3MUM zzfk+DFQ@VnvS0KXthJv%PRj}o5Nhvh8->^&tfU9^C%9lRmprDfMdvzob@%{)lUEp^NFhCOYsCeZgdP7do7dc8>18V6Ln^6q!91$ub-(-90~p zV>9+*SwssDIEQz&IVz;0X9C3KFCJ3-aC`lJZ{nh>>o4G+TrBVhFtMM$BxJx%9MZf*vK{`lt zqWPxaYR2F`h&x#5NkE02b8%$SL?cXtMJ>YgcSqwCj6knOe$6n$LjLxtSIbe*3zM6suxl zV84T8C7Wj(5V~|}{s>{U)n}44_cRH}^0{KGOt|5G*Idv!Dm0?+^#2RIbzR}(_e=IW zLE8VmQ79>g{w5w0%*gxVQ|6vxgn<9bzBA7CjWA9$$;zxc`^HI(tJ1@^uZOMizGAKb zXlO`m{!zXT*`Nk}OP*SlvaV>KXSr5CAuuee?6zH!UX-=KUt5lj z@Swl$z-g)eIvOOb7ybDCbY?O`9XjBa9V5A(Lh`IAtx{Yb$kSm{YtNUJJiAn94j+@)wW*U zcSz(*45#R8WFM70g(&Y@x=m&uBBZqshUm7lz*f{XSi64CP!0wnyuU^ib|+(V+H+bK zo+eQiW#J@V)kG*{FRgqsTRW`QhK-k9MITP3)+2Vgp~MJI%fx7y>GPVEjLH(dIJ++9 z?+-hp-%mcx<+|Tsb;0plT6FZ>j#uwq=^_+T7&17wP5pUA%wC69>EqK78m*r9wXeC%Vk-ZuNg z&pE#RRiYvEaV{+K3v{MIaPYrn3H!gY1f#j&3ZlpaoP~??f8Nlzng17dhLwwlgXcd* z3M&r>dzt|{1P##as)2F(2n8pV#y%(N&K3TTJHy6~u)#1#O0)5A&E?F^ZBX!~VB;t}Jp(bq5?zHirkop)U=rdT)>c%=3lRXzMbr7F~+fSKkf@+YGJ=9ByA*m}zBdkVL@J#MmcOMn`SnpWv2q zyg~wx>vP-#k?qT6wpNdpche8P+}d;k4~$k%5E~mC5UlI?$hEA9!1ME-${bXnSz!Wh zoeDcXiR$hvwlPLvWMlK~i-NPco{Q~k!<|hX+RW9PPE!5XpXD#yAn|a(1WOnj1RmrV z2E;2}i}g$XaS5mL9joCJD=2IG>;l9IBprW^7u>gMB49gBUmX&kb)r`r@}}l^?(vWq zee(lEI_M;72Bt9Mw&SmtFY~mtN_9v9pbopKxfU`| zeV-}e^(w~%{+s4?o$(`OA5e@rpwqp-O-2=dvQ70P&Fx%NG=tjl%*W5?mg<_8S6yXOks}l;x?xFug-ZcYdmU;h2 z95Ndf3McHL|A2M`NjLo@b`We8g2`6+LHZ~~D}R?)ZsRa?k|NMG5M1gYGrz{uK8Rkn)=r5a)00nx!qKz) zFihZcJArV=_tfQ;kNmMQu*-rKp?E@_ZrqW_CxeeVkOq)XnmsNj7mlWnG|=>pm%K^? zr$aTn9^j-GEeZfcm?MNZoc!PHPfiSA|9quEYM4DR!BCohFu`0lPIeQwj0u^v^c*aI zZYlx)q@m@HfJ%cPp)&5?y7OMX8+|Va-(N!KJyXBFl!L5Yp9`U&otdGwl)f7I2`ay+ zKCT80p^uzEct2dNKaIy8(k9^U&0)EFHk@i*Khz;B4ScArR34>zy6r? zA4{2afqc(YV9?xmfC3gB9rq0pUbex|zu=!9p^(67S~G0-nQnp}7M(8yJnm2ZI7oAq z`1$TNa6N=(K*Zr~{Y#kBK{4*%R&Dy66)V1L!(feB~2nd*fe{uLYJh95B!CBEzJetr= zN0~B?v|e$NQ#P^|Yu(IvnaTyk)j)mosDB{v5-(@eR?XH`aRN5Ws=BHHkcU|^rOn6c z;b|N6nqzhS(R*oab!UTh_(P4X+H4yZ{?wUkKA6;EUSeH6qPi|I+$T7u`ANKk(Cuho ztcUmBCI4iG>Y&_`(AArYOFtD6eLBSc7++$m$`Y>{QE2YDQ`!f1#l>2-dwp(#85_IJ zMn%xicvUSVr=rNgL=ENC0?vNz*9NAnB1XYhS$bPm!&B>=nPD|F>?#eK!P`YykDxy^ zPK4M)|9nmSuoC}{?`F$#(T`5S03jQ|VdxcJ{IB=eoZINnzHAn@LTK3JiV4M!PRDw8 zU&vJR;QxJPW5te>w+gqNj19pXBe>7UJN##R^M%I~c=Zy(Z$CdvM}w* zE11LGf(c~vbeQM?s72#8E%LRgx(9IEq)d@lFUtcRD&@ycbg3vY8Ja^Fvv zz*AlEX|1$shNa=EjrhX)H!xW-%{)YLL^9H($xTG78`Cfa_?DA+@l+P~DiOBkEz522 z65WVu&tLxeF6NGzf&tn3vz-TnX*|rY;+v3- zhoS6d(ZSrDf@u;5Q;r4zs${kDPmXpH9UpucOnF( z`)gC8$;O}I>~Qi4K&Ces65NGbmmppU>)o}4Bn8gUD9eB>1O zejlqW-*56v_6IafPslgJc9va%a^ovbF7NSBJt*zk>`pjJIKIt%-zR@Vf|5yod4tfr zo;%r|aMuEKt&g6$&lEj(cZ)n<0g%?leTFYcj3m#1b1d0a;2lA{kdH|AjakSb;dd^b zn~WAU;RPQ7C*P3D(1CGJ@+XzsIgCF4jv^^cw#p4zx<%J?Q%Bf%x<_!@`{CH!QAJo~ zVbm&JO?5ryD*mn(8~n9G+F>f4WYC2@4Bt6_)2x{xeTNE#Cv+!ekhFKDRAi?L_#Jiq zkYTVqA6i!%@SDk|HbSb{Vf`CLlDYvbL|i`0+zLE>D&QYxAK}V8MY}|{Y#~hRraq+1 zpp>yU`Ka=;6ZWcygWt3^+_Sp)FJUaa2a&Io@64kSo#J5R5A#Xn_79KOPSTsq8AX&Sj&BC!UYU%Bziyzr>o#tp80DI*3VD^sD;V=li%LEKf939+l zJk{H6;{Hzm)gJ893f1S(!W(g$#lSbK-*(5%Z})9Eam2eSxeK3_8efR!Y{ZX$?k1-R z+Sy2te0dPXkHw=TT+Q=WWmW^y&9n3*c#9F2`8ErdCilrFs80>DFZqh(@=`;8yMmK{ zXLVHD1issl@Y1uCK9<5kv*=VDFxBakMiG;I7~b*xbE{Bzgp|pPXbK^Qg$BO7b|dBZ zzE+2Nju(5|izd)JVmHl{@?*X9`5xc9f-z_-0Lt2c06{bHdY9GjHZr!P+?~JM*{buX z^u*hEPr^$ZLP+X3t4B-2ow)si?3&Rn+0gRqZg^n`-x^T$EWgJpt%QMWlJ_wd2^R#? zINC|+1rShI6&~HoLDrB#b?26WmgR5g>6KX29_Z}btW#wz*9@t-)@JmYKkI#a z1T0VxGt>#>EcO?5#yl)e6}_f{?MP9oHo%@={ssqPZ3TG9?GvIKO+aFt>@CEK&q~XUt$4Ke=fdle__`vc|JJ!;>^MvlM|S1;mc%e+Lqg_d?6#)W5Rg5uoG?80p3 zwe_w@@raH44Xw;fB^0BCS%?DpR=@MfWiv8r;HX7->fbHh_`wnh$Bwvu_Nzz8GhhN! z#i7UwCS44P9bI#dgSJ3#;QN^hrecm(XN)z880(1~zdSi~)#oXYTT$nP$}s8$phb0B z{WbUPd%N~+&L~S%s#@jyXce!R9XFtIruYf3MRa6^Go)oMgN7J%@Cz1{(`ud{YZt*2 zvXxv;Q+EDab918nAe%k8Jsa^6FQQ6~vGwE^l|FbZ z3OPX4XCI0v-5-ERKHED68m(Le4Bn$+h&3Gg(ll=AQj!uf2pHH-Ti}_*L4ylHy&F`K z;c8mY7PuMm+L4zfi`KrV;vsaK-}}Fw#itcf9$B*dbS@+#`D%rB6WQmJ{<%j3U-h>6 zZBh}DfJPwA;B*WXtvh) z(Mx&liw5&O1YhN_>!W}EBoRflyk77#2Ft-H@Ked{v1xJ?G*y)usnL)OiuT6U6jGfw zO~gCs3Xu2Hk=214q3U3?_AdO(m(A_C5v`|Dv`SV0_x1BN%Pllx9CCe4S3lbk!6qQc z+Pzd*TI{UaIqwESA8joS2;zq-pAKTW+~D?(h_Y{8Mx_wdzVGw^T%=agfaE|L1@>f= zwp28kFn+~LcTNi3<#Z5(+c||8Sf#!p$5}{hHR|oCJ7wG)(f#gVHY`6f+|w0PDm|*c z6jP(8b5ftGGbWIjVV~Zw(oGW88Dbw{Mm$9E2fsc7ldr^ zx?k?(Y0A9+%6E~2jR|SBvL08MDuNBjVel~p2bY26g>i>QOg2X8ANZKRNnzG%JF%;;aF;>iSSU?)bq&tFr@o!uWBjZ1HR-Ksc zCF3|$ElC@Ijj4tp?0`!-sE>u%FT{N-;ePd{adz&XQIjM=xjR;lNF#XYdMyIAPLo53 z^_(7!>@k`bi|y8bHZ)Q(p}+sJ=_UJZz51R@D_mn&@icDbVwIYCyKY|B# zaz5Rz+a-#|k66yh65_TZPK=)HQl}&E!8|M(-^9R?Q9);4=%+X&e~A z?=3*#+WW$U*16G{gZySS$2mqLmV#xyM-?i>yc! z1cwkR0QH8tJ$-ttp_>#^^O!MgRiA{pVWA)mY;Gvk^vCk`Rc|2dKMtbiv-6_#rXPBS z8D_{sKN%N`6u5_6oYIu)T(5sKzV1&BE&*FF>E8}sL^LIWlTZ987`G@H$$zP;5>Fyb zB=(LUKbaT*uxOl`bM7RCAZQArh!a<29=Zz2D+{9j0Oc#7E}vb(oY5&4_~T=$zG74X zn3Pe+<7o(#&Vn&3dOK>}2ar>pj_vki(cTrPjh@fv9m`6112IChilHP*{$?qQbLq(T zA*421TjT2yN&0Vlfy?YoN#;1vj8r7kK4Tv2`No{Sp*YYCnf`6OOX)!i+FLU6(`abG z2ffL}ouh`=#buTh7CiqqoO)vxIyAqEx~*r$hcD(&M^{e+S)Ter z`AIf7wGYhgHTSimDtIpDuQ`A~Nh=Mic(Y31SOa*DN3d7$5Zr<+A#vs1IlB*pq83$# zHFB|pS=J9Z@TWhyp8b3-ewq_cT2b6=8Twexoz@sv>x?(1u8V78-cK+hYGI5wOT&9m zgtp#3g1kbu>1sb$-=?`qm~iBPrP%ROoeOw&iC zob$b@{VKDbX5}sja%!z2)(U;OlkdMXR0`@M+S-(u2rp#|QVI{o> z3)Xqnvo(_z(0rU>sg{oL4s9}es;Ql*znXgb33MAl>~~YX$w&e>e=4v&#^L(s>s2EU zCh*Mev?mvEx3O*y6Y(0_ISmvm#IjVUi7qDX1W_;b~RMsam z5Jzi7QYKKX18uUxl*)&y*M*D`%cxuXT*$0=z2d+c?+(YlQ7kYW+)SS#lO_i?DuS&H z)mKE%Hfj*u1&0Fcqe3DRV*Fz@BjuqYU$6Yq;VlB*e^z1T=JacVck&&q886XbHzWzhN=W9JtzRKLBt*F<>;wiDNef3YDd7>oV~%Bktde-YmNkoAn4Eq zr{8wFQM#4d1gjwX)jLicd%{3AY1z}g+Q-rIw)J(D3FAVwQwpyTrmaeBHJ7)XJ!x=M zA^BnaVwEB~ol}i}OG29*%%STP66s*VTn<@xmb#RA{pGVZqi^DG4VAyDDD&Xd`*nkJ z#oq?HzqY_(kFSST@H$h-#;jj@S&*rBozf>ZWI<#SuARrZqc(pWK8ysq)Q(2)xgHYE|hk{`J?zv; zI>wl7N3~g_jadD+li~u>eVr$IDTQnF#1AA{=x$)}5Y2l^9`LO2_L)S7EHT}Jx|~YE zlhl-Oa3XWO^Bx}Ggf=y9zD>>T7_bizyYhWLtGB|OcPyX7)N_ldNyNV-ZXnB{p#aljR?|%Tdo9>;FX9iV25TukYhdy0!`2vc(QhbZrQOIRsEpfBW1+7hkaDUF zl5)oYs-^h8*~{n7QlOWE1|qLFN4B&@5{@&5o{K%l=IJ5YUCqw^W$ z*LA%rK^lwyro~TE-EKUjtey1KP*1nDyR|#>&XH^DApCTAB4QJk&ffj{Lw&d%^d3Ph zzpb!;+iRZlVC7@M?uCR4ypd!8NUc^=&4NA$)RA zKl~jHHa-;Oad|#ZPk;ob#wC8895S++<-13J3dVNRg9s492`MYN42tr_RlBp9CH;)8 zI1PMjUJ%V;2Q_WJCW-rj9yc$Kt;~9VUiy9No1LjWle>+bjOSl!P+K(Je1x*6-NYh#Eo{5GJNTO zHXU}T9u7s!TUyvYFTx+?oQ21^)bHYJ4VQCfb4c>V3BHmCW;Ud#4VOU>Y8ZB^k=xgD z@XJKjqk9T2)_j2(s=I}TCO6^DPi@b0Lr8|IS~9{+D8jd{S){+LV5^sxy_F9H?suWZ z&54n8vdcvUBod<7wXC#;;4T1qU6_S`FnjcEHVs}<-!u&{WLhJKk3TnBwq1rKj`_)( zh&!v>fdrTBt^7HpH8oJT`y%6cJw;Ao;LShqG`+&8+phUn`LENjn=P;k*PLeWy-qJN z>`Vo7G9_Ik9y7*8IBZ_H!_ZivH%b`2?Hd2O_cl!6NP+NcBwJhWmbdH36>^z>C(knJ zEbpEBskBD*vm4bMlQ)oBm#x1Q=c3(_a&(e)u!WyFEXJK4gNoOn8E91^s-EbasW zT;(L4p#p!(LGlRL7L9zrPWkzs{GxF&QhCTJmdJY)OT zx0e@|f#zJEuf$v9SY}o4A!(|ASZdUvUuQ=XOL+}r59qORV?in-8SOeYFzn|yC6P)Zo;ZtYkYet z&1I8nXfZmli*9cG9}MN6zqmA=`E#Hc#@@-#o*= z=`wb!#i>?{xFu6dR!vhGR=xMu)mhwR7{SPwE8YB#?K2cEc%_KS)OHd)yu>>h$2zy3 zK<}x%L9%CH7M=qIiQ->>Q`}^GIFdv8rBk9j`vzY9+X?38sEpr3G-uqd`=;0pQ#W?f zBEA!Rzx7$_p{ZkJ<>|sU(zDRg#@^eH z+XFBR(?ef#vxs19xNPO&7N%07bHdkxRvNr>LQ>4j$cN(t=^6`8V{cAX1sq~J2#1J} z9n;!O1U>79Oeb!7OZJX#gVwluW@6392MV>$7}qvniRw|l%jp3)d8coim?7WB5A|2* z!VBOrO!!8W%eXjy>OH&FxNV`y?b1k~Owq`z-k*rz!qM@tpv$!;V1Fq`U$pnd{ed`5 zi#@HXY1I_esqVXn*W+$d|G_qzz}n@juZ1To-1kF!Bx-k&w`gYW}f#QxfYACq19?ZL^KoZ$(eVMyR0*xJ51d zV9T~7AwK(ez$<-P>TDh4p6!{a`dY6=OqkGuwL^fyQPX46Zz9SI+h6n@y5DeNV8_DF z4exSG-NFv7I8R%>^}D%m4P?O5Lp`LgAM#_%urDWn85>5gC0Q+f`nT*Y%13H*`5e~> zAMf3C{?g0#BKlmx%P6s9`mL{m#t0E3w$b{{eS zX3isje}2O1vJC4|LlTx>TB{GfqwH+(qY=`FREVVysE=0)8$2^r_?lrXA;ppQfPjP) zJdYdhPFgEckBZ&Dg+Y+G{rc7o577&LQ&u$KJL%qa``8Z(cJ>SUM*AjeO2IS(VLLeQ z@wINXQ67sbBtH&R-oP=mRyZT5(;!tv8GFBf=bCFO#^lA8MSA3g9QRK=un7rS1TzsP zkR|l=+$~cW&Fy-K!}))FFY#YT}##85NXc8WOiu-w#3lPP!XQ>fvL=x27&~N&Dvzd|rI2sd) z(-XvfW@sL{t5+~D`ZS*q4Rti7$7$J-l>Oa?k8D$?$4@iTGWVaKAK>! zmxz=x){HQvnKA!-A+bqftZXU`l0gcdU6MU{`;78PK^ZDRDXRC>RR$MQqd7jrxis@9k4!7OGD&JZ9q+^Ama503u0(2@U(Bo;+TnBBrHKwh0yXb? zb6;Gi1%>R0La5;`KAk2n`&u`Dj7@$3L_J$)#>2L!cLPJV#+%T$`$HT{P~@k{{bG%= z)QaAptPBkSo)E}`g@vslH(O)()=r6`D&w9S<=;l*X#*`L2n4xtLb(&@`Pz*2G(|$F zeP+*%ggqy02g;9GmGVSQ+c~FHRtNFIlYPVq zT6y`^55?v@uK zbJ4#dohKXu4F=C=UXb&2*#&5Dgp_q32NKUuT=#i*E~?f+O6k*<{^@lw^NX@@1ylx( z)f_UmokM-r0``9plP497z4pB@1)h^p) zjUsjtx9$Z^SJik*s9!oVKfS#Njs|B%oy>@~;fsFnb^cDUHNeeJ{sEy#Sy8wR2;~-O zluQB|$9Q_7k)Pyr&BsIvJoKSU>&4F9&XYaX={;V9WZamk$4MRa_8&%_Ncj~YZA*<_ zP_RFdqji|cz2nY*uR*9cbA}cu*E=A2q7GG=)*yF^yRLVTVG@edMa*Jd`lGNQ{$bPK zD#qS#Y(y67AX9SP!QfR-aR`}ABV2lqV(G;L1sDq@s;M(VUE((Sh9HIYO|SN(oV#2i z%;Rv}OP(a5hl)l$PvmCTx^k4DXREiz&)_^I_A?pNtoF)(VzdY<=^4QRm5~K6BPj&n zh2FbmB^`9q+U|4})Ij3(r4h3oEA-70JQBjJ%C z#9fQqQg>0l^hWRu4uT?Q?OIu4J7-8FLZIrH?5i(MM29)V<9|rOzyQh4ndj|N8O0G@ zb#^#^>s>hMfZeX3KpIl~w1QuIvv1SjB|l#W%a&cp69qa4$A+1dp&mX!4;d|SyvNl@D(t$@_X#CIK0#vvlJmYPfpGi?sT(I^>q_YS`LG%Hm)u^Cs(z?b6ARuGXb}*g?^U|`xX9Z( zGtD?Sj^rIVc)la%63`%0OZzf89_t?V+<0kSUulC`sk+!?e*)?67?gd$^szgY*FjETVWI_o9@nz?K{nT4Ee)3)ThQP&}C~T@97UYhD>n+9(?Luyx z{~xFF$$VQZTClQ+`CD}mcqdZeG^wMg;1pkV_Pg|Z5QzJI7q&gWYaC6Td(3k@LhMAK zou7g+#?IB-n$gOhCK)njhf^4yFbVR`$TLSQUvjU(WZFurk-QlbT+VvX#0pY>h>x=% zORZW@kK*yizA(G{7(Cr=5I|qU^PP)oh))fLS&{ti{^VhXQ|d%o!XbWlV=RF%F~yMWhr4+WGP6KBJsQg~RL? zSXyW#`W82`fq|vEJrN$wsCWBH*2A5}Rt1Aq!45M(>V5vLjM>kkyLCH>d%Yq@-g+wP zp~eF2%2J+$peE6`n+gkh+3Y%JOgyTNJZ;wLhOe}{(^0}W$LmV@uGTrG-2|N21(X`y zW0<2tVwPQtn=bC+#U!hLlra0wn{m39e3B2c?*I;^d?Gk+PI^oP*f`%WTFT&+8-439 zK3JwcnQho)L$;vCZhW3lm!rBY`kp~~(aLf3DeWB12S~bZ;h~pVQ0)1k{IIhRNc{GqrIR2cN?4_NI@4ur+$W z@=5SEyV=3yGGr3vIcsUH6Y9rp(q3v%zOR?q!&trs_kKw3iYjZJ&vr|sUNm8RScq?- zZ@xc%jigr{waUPM6Q?NSl5DihiNs}W09{hG8lB!R+Y$oQCYUX{%u-DH%Z_4SoYqQK z?_Eb8w?6&}v3#w8+jAVKZX&jiqkJNv>?N!rkZqhP+DfAk1t*EmGHzs0PV>^qN5DZ0 z#vjWwXimzvnJ^?VBG+^fvM)cvsaW03Yan`w+s16IQ%mQ6DPIC8ugx%4G$ngDRLrs1 zvKl<(%hfdtp^mj^B|GjYa5KWFM^rREjgp>90tq5?_D>&|z5MvDi8YIoIZRd7S^ zi|iJ@`01N}A&0(Z>!IeeZQ6H;`V;2e0S-C};uO}BzSm;dnS8neO4(jF zY9~J3qY~z^_o3PA!0y4wSiHY`PG{$I+(<1ig7iCow2=MV#CMlEn`&3iyctWFE1ypQ zsNeY*Jj{pPEuu6D$Fg4A2OAA*3kM9msr-MO1;K;%CciLPaaX79tmptim_LJs|azS3Cx>NJc2ec@G+vUuN(G6qDkz# zUU!ehf=YU@8Zil<5xP3>~Xf{6kJjzkDF{yzpxitJ* zmJTmKeN%W0yB`eFa@JMXashk}G`$@zqjN;Bdd;7aR@>y8g>v91jo(#=_~w>B@jl*v zof8EP!mag6`V}3m`q=} zT+f$xzElRm3B^d?Nk%`6^j!3FeXf(CxzgBaUM4Y?*d$aRX*Wd*{E<7I>q_g2wQtf* zxEv3c(oy;zh6XiSu$e2!U^=g%Ia~a~r+}_ z0b>6sJ=yG*6dJzt(fSS~IG&JyPm{Rwoy9e_I_sP`46-(DfFrS2vGNUV1WTa1e`Kw( zDHc8Bm_<|k+iPtR`U^hd0qxjR99{=Xzww7AbFwx5qr>{~BB;enKZ|1+SR`Ci?>;GL z3sK9u!yoEfoS_rrSw?oGem4T~N&+!Sq2UT5SHZ$+=qE`133O-AFL3RD9^WRCi2ZPh zIm(CFsU&sEOjy=m>cEHn`UwJ^tOKI*yuOl%Dx8_uv(8KUwU}H>v6?z@+XXlk0y5}T!D~PleI#-4& zouuWA)mFJK3%|}V9-~Mqrio3$9^RZlO6~!nDLi~DD7d1PN640cV?R_gLo_-H@pR74 zqb=~J*C}(~1?jWxXi`)@3WW4zuh;yveTBA5-sNE-C|#2E+EsZw~^i|#9F=DLNr zm?mv(cAJXmC&)Ft^HMg)dId!J;Q&1S*Gf&Rz8N`pbuTJt3I3S`)UBl;Kc$!rA73CxdoSxM4|0{7pCvA!a*) zY~MWr>n#^j&*zT~FOXIYl?~VqQijRvgX*!ag-KR{Nhu>5nMW=gCR<~TZxa(3(D`C)4%znY# zM4hak4W2}Qupyjnxz(p6a!jtdV7yQTth1@c5ayB@(>)5?mHW^dqd>gliuQD*(>2!O z1u($fp?c^>I=#nnpX>WM)Yi0~TT3BLFA_v=`+?3>ZMZ}}A%l6+kdhC;O zUG)*vt|ZS7gjqV|vD<1%&(`YDAn*5WRT#<&Ce|sTZL2(a&rA@i*Rt~t9{mpazVJn3 zKMYQPP!iJyLFNC%GlhqbARhYCSZkb?x+{4d5pVmWikg zFJ=JMA|<6q!I?V!JB)XqS{*}k*2amP=kxo2YiIVXc41v5tSnIp8WmhWg($>i%`0KI zU}i%b9~3dJL_~#>Q;EDO7=%CyZ#IloX37T2e|5l~8@EhsTu9on#3*vh@{O-7q0Y$% ztO6&bUwwWKehv#aG3u_05cB~wD?QhLSl(i2^Dkj8NAgL(jgL@Yu;o8=M`=lWCCKaC zu}<=(Uo2ry&e(my15Hyl5q!{vXlZ(tiu86I^B=lK|H8C*+(eIatTIJD&z5KyZLprW zb&ts)8M2v2V`(s3d#8k>gnOUWM0=+<&5cwOY`=&;Twn&f&?MXMl4 z`5dt+NMr(Q^F08E$dlUyZl4*J*a$gQ@vE?9MMkj@tLCS)OD1ltC0AH!MJ{>_$s`P@ zaM;}m(-8AR@kqM-uR&d0g{vpB_@dKvzYdvp$1-O`pL(rQ2!Hf;EZwG##@J@96XteP z!@ZfMYed?wEodZK9+d6kgqi1mU@wXnHgY`Zg@gUP6}ifIfhSPdAgVT0XUI$`jS~Qq zwesd$S&#*!Q>J-CHB5-Qs-PR4Nfs|tN#6BR4IR+4$>ZHCMo~s%8|X%SB?ic-^);~P z4fJhJJxzVFugL91DjUHmhL6L$fy|8U3F|{f9v^$D^FA~DjQ#yRuF_q9jm_SydRB4v za;S*LdfErWP>fTi6}^$PkkNt2Z!_K7QSJ#TpJPC%PK`vgc@8Q+An2!LTM+x>)s3jX5B4FWK zPRUzLCp_j8JotHIWcqV|vXNkyJV9b`fKK=`!B0Bc-at5FPl+WW0d#Db+a@brW=<8X zrsjYTAKG;gEoe@xN zc+}|*Vu@v12ZDxw45EV`8)&r1o!Zk^gILaS%^WH`4=&y;uOh4NV<(G^TWZvcKfWty z`IeW-PcZ4Pu&Q-TPC~4k{#7Af4 zW)R6J^G$1GY8pW`KPDQoRt$mNOByOXj8P?5u1loQPB8iQx-e~N3$+2# z;}TZtBaNhggMqni?MGer1~V-yn0c+d$+EX398_9?k@kx6W)v9613PSFAg(buA|R|7 z@GdxF&q^(+AtGJ(n{eMrOVrr);z&jWQpvz7NtfW2H4gI+xDTZtvFW}>cHb;9@(zOhnC^jITXj`4o@E^NiwMX9QAWg?OA#FJ8?^57GDBxxU3XntYeT$rP?x@~Z+ zp(hhH8lm(QnmY3$N!RsD0$qf&y#8iEs`HXQl%Xswr9@>3j{6%hN0`vy%lPELmx%${ zcGHl5b`g_L@_g7i&AC1dIEaI4a9C}D&q&?!8F8aU=6LX?U&MGv>+_OZ>Ys3L;T7V3jy(eUt@50lXoZx=2@lPl*2HhRiZ~l%+3h zD3S67SX95+GQWKJk(cI;Y!yt_f<>~pXiCiJ@xJ3}6aGD%Z)#$}$FU9+&Th6G>#%Nd zoKIOG0TT(2Gd>^h1J0o2*dnMQxp$I(J1e&UJV(b1Ct}3BLV(L6x|!wc?2{Vtx*foOO^;b> zCaa0xE38m0VM(@0UhtdmM!qt0Wx8hi%qFaY7TbZ*BliWn2cH-@X_Cp}?W5-fbXDND zYYj;GBlNy`s8_Uo z-fz_tTQ!U<*nX)$))hEQ!YBBDzL!;TYPVK1U3iJhu~F!p2ST(`cK=z1P!RY_$Pyok zgNnP|0i6R?dY(5C`TCdLX?_UN;fX-3aW(b5sXgrE{YGb4I~P*rQMXA6;6VGSX1IJ2Tipx zBv^#im5#2peQ#G0next+?(EOU*8y53WZXC=mg6K8>?q59jr#A7M9HZD5WRkv_+_?a z&lv^psvX;6gfpMSF>1*C?9g4td<8V?b~h2^8q)daYy~LP9IKFewZ|Te_(1w zpXWcu`CKX~B>fZ&WqeP%%lq844Tu~5LSHg9CZw4B#B`jGT{MN6&hGv4};?!Gxei^ouz;%lJ@#wrZ$MMdz$ag3 zTvd_ppS}kh>yZDPYCw|@Owp?7<)iYMiy4Vz*{72jH(ls?jBg@{NO@}MkkVkf?qMg_ zuQE$kOy~_NW|4D$q^c6B3}Z07?!Z^z?sC}@GW5JooDRG=c+6j?aGSDeH+VX~V9`$O!H*iLJGb_H&$FNt4Nj&Y{Dc+=4*|V>Byw*jP zs%Yc%j5M+F9yG$@Zqr=yTLv1OSM9a>9Alwx`s!751q^Y2XP^2!0yE*!wU%6$FA|s# zkM}yF&#M$G_Z+i7PO@Do1M`1T!eTk`U=S8e5A+GSj6tVM`*yvzJJxoQjK*^!Ze4cr z=TNr4rXGL76-wWzKJs>|%&;9eF*J#z9r^kF5)*C{6=f~BXy7`}oDhMCjZx4?JDpP@ zLpg_FTEB6BYVhgMczPDDIW>D4!_ZPD-2f>6uA!_zohiWQ8|lUD)tbu=HxX9HkAa*}qpM`7#$1?lpRkn+BsxTo+3)CVh!XEzPLI-46LGis7e#y1?{_g&vcc=J8I)ntG%cT!#_y@B>%fEbzSoz}$$Cr6HfDs?E`*@t@IzI{ zt*CL-atl;?1AzQ`Bs+?5frr7@0)Pq;fOz_UVTYIa2nXrBSjGIh5p6|Cvs#f44#S!Yv?Hxm6oq8M~R}BK8Mu%WSt+D%*jFY z$T2rzbFuNr!DCUu{I?_>U52T{SS)ApHFblg!O)mhPS!p@A zi;kn>&+*Z(V=8EB#!_oB1;&dXrlgECt`0?G&(9RQyOyIkv+fmS{+|GMF^JBOh=jM7 zmId1!f2;%G8S>@pZ|WOGdKxQ9mhC9b4_NwjL7Pv*zyXT8S2}pY@f$s@oaD^e8!2VD6*)(vNP9%PB?1rXf97!!!jIQ5PDekFETR?kORX%zT1b5p zT8x|=RmvMzi(quhr_2d@Um?a83ebiUH<#lWA8Gg5ZP3oEaCX#Klf^%v4N9Lr7YVz2 zkb07r)`0Z0*cqth%P#cFjfo=>h_HXd6eZ5AX5uv;SuyG>HUfhPU6YyVYUo4cqaCBk(3Ts?R zm_iinra0))f{5MAa6S;0nnp3L8K0X5f6P!@O^PqH?sSx~6YTv3IYSLjBF1zHzT>3p{&O3bXMbt;-mB z(lz?Ey$D*fo{$HqSMEtaW($sA#rXU)HZ0V%Ds)4P4o&cfBgC(&Pvm^;e&RT5f8A7l z@exdMp#`MQR+eDy1>f`NqR{)uF*3MGn#seC1}=bb)hx}``=4aA%iRY>Wf<0c3W%@* zY0F7asZggaN1RC3;5@vjrBf~fqvv{HBxZ?u)p`kn*2HZL#nD>2Pp@%~9ZmCG%9 zK`tp3pcprJW?sC<1?A9Y$H=&ss|POiy1r)MF3X4vo`60;kY!mu6=;q(vkcuD;YY$D z^G%G`|C!~2wu1;+_L#p={an=PH;Pr!HdHJ-1`6AP;fA-fOZQAjN9 zX*FdNpK$%WA+P{IMAEoKLz_5H;(b{r;aW96#7gO;vD0bqJ*e83Hz-M(R?r`-+lk6J zdFu6nnT>3tY@}?2(8b8DY82k7fa9i?`@Xi6=o7<Nl5c@V0OYl3^VO|Ds6 z6X}wv{~1WoN%D(=^upJ!0ig_m!f%i9rt62U-Q#h|O_b`K|81+YhS|C&NCDce$>aU# zmT%d;Vlrmz5oH{8e>QXcn_nLr4`hiyfZZ+v1HKniO|EAit^_&eie5Eh*Q2nrMB3bl zWUq(=nKX(H>7ro@r>t<#jp7Qi6I>#Hw!7QHf`4JJ??6VimT`mTFhq5vwftb=oy#%S zBy)YCXOSGzcr;wkbmx-BpNO)7NPQ7VHR5_qYcr!u^ed0=fAISl-UaNGht(xPHlSyn zpXmd5NM0X-i>Iyn*G6aym~ze5l~B5FcsP=i4j_m5C{UJgr`q^MbYxzGf+qqO77Oi-oTO6 z89|6y*}Qoav@4n@^%F5E}8CS{xu7|0C zy5S*^0Zf&~qYrD$t+9?2MBMYMSH$LHpK!_crLt#Gf4pDX@HF5bt?davxD!1T_x+6_ z+#bqAis}H+;`EzQK84Br3)Iom;nAWr<=z2A=fS%cmNke|av{(W%iTno9c-PTZD_1A zdmqY0Hl3M^2uXrhJ)NKmHHCN8;T=<23_76huj(^IRE{gw_1LuSy$8s5{=fJw3>nP9 zX#Veae~Y2Acs*ZHY*wK+LE{bKrQ8jfL=3Z>uj!@eM77DFGxDAZcwK-S$^c%6XhmKd zS}js^mMQqB?|0L&GrO7gNH?@0`(KFMdcQA1@%#EO@v+dX`Ar5Z0qFD1E50b2* z*qF@;7hs0t7f6{)&#V$E+M={CPn)5vH3@la(m`gx@MJ41nEC1N z6A;WoTV{et6Eb)Sjc?+az>WG$YXVMX8ICp!6%%@L13=Lg{ou@?MBEEsK?rRi8qPJn zf5jeGdSIv*5yu*hMQoKV=rN!3PAGF1HgiWVIc~~gRKUG;Vi5Bea2V^?YCAVldBCK- zwOc!rqmrAg44KvkSIdDtq#(9IX<-t5}x9R=?7Og3Yf6lgK-eXYnN~T#ngliwSRHPYd>R*c&Ty)NA zeFzteE<60)%yK%C#n`trrLpAWRk36f8dDt-XI6*8a}do2T@l2a=-dHwrSvn>IykYe zr%hu={Kz2pM#xd596!wV5UCVE-S~m)XL8lgm-0(e1daAF^T3TzNexboY8v z;z;I9;7Dh1{$jWgc86FY%N6g^f}YBr5bsd~1U?3RVD#gXaS!BH@g=7XZJd~hEG=c& z8Dm*YYM^FGwz$8h93MqbOn-$2f9ObflqrAv#6JQcr-sVZyh%;nYeepR-GtQ=A?D2$$UXK={E}T zalkzssQO+)7@buLpO~?uf*3G#6`@#0g}}qooG*edwqwEqTrO`g@G~OHf4DHy>Kr=J ze(@=7ubZhnn~VYN?&I%S=E@{L(TH-9(MglAL>e{e9RDVVTgSGq#C+D;+HOX<(LCR7 z-OdNog7Y6D3eip;u5iu{l+%HVce!^QZ?t(O46D%!Zv=mY<4T~21cY}phy*H)cy10s zM+=EOMqV9=ChL6};82b^e+Y9fu_mZtv6S2u%106dR=*`SX@0)9^B@_|F+Fi!Cxi7* zE}nt&vaPKCghU0xV=saxpCXtTn*my0`nSgu0VyoTP!8DK~k2-gVZ?ChI1xKZ#e{m+YX%DZTo(+n-qSP7Z3E{30oVev`X)m{R!`ZY=l75-5bY2wGXy z{Djf*g5Q91bQF!P@Pz}v|4~aDmD5c+ItIIXElfaw%-+>h{C9g~;{NT0++`bO={io^ zPsM1kd~cwD<+b$k-@*UE>|3K@Ufl5zZZOdXdrkn$Odo%Y?m)y_m7~};Rh88P ztmUe1c(h2Af4<^E#@z?S8yss;o>p%nOyX~4E%1#1UFr%Tw%$cuftIgLB4*a*)!`(o zoI04|40)w&U6>O4ot8P3>AXq})?o?9V2xI&_S51`f;A;CL=~~p5!KD!bq4gAwSu`o z;hF+iGYet-UO$!=rVv{F8NP@g$7hX>x8gauC@P6>e-2-?0pvVupJ+X@PXKg%D=YJF zSjbju_XpwadUIn%Hd%>tw$Jlz%=$QUb{nDeE z`p-~XL#YW$Q?$;wmE=Di)|fS#%cXT^PPnw{8Hq5BFq2$7XRNH`)iT#D+cqBbKp{#H zX4-?Xe-4`)(k8_-;kp05^hfvZ^kGbmnu}w-6<i}8xdevL8^$~Se_S%(Bc;;h;Qm1Y$8wR&X59@QRerc6 z%2OpaicuqvCzK5Q@7IM#Z_G`hlh!%{Eo@!jH!&a5fGqMJ{+yvB1h8k&b7i~0+lT{& zsA~F0!G-FBL^1lqmY7XU_ppI#sz3Hq01p^irjn@Ok3Q5(*U|2{5DkgC>njL=SwD~= ze?6G0+-~v&H~+|Kfiouome%wvdYFbRzRctzKGLVgIV~D&CNn68Hm__vrMY2Lg#N<{ zONm+4Q=?N{Pft`WlHyLOEau2LFwLKydU5O<8{$sNG3~%VidaX6Yt^cWK39OyKLE`0@3Mtb-!ym>g62|v4tQ5UvXvJXuOLhWe+0W+ z$TN!_B7fiOPJPNr!Pl5Fmr6ni@oN(X7C=RpTP@dMyddQN)?os41z5Ass}nEb=c9m9 zF>=9&h=01oK|)swa-HM&`FYnR+HMBn-5Vhnkud$bdBgdN1iWM#-?yLKhcs}!hIcqC z2*0W1|L*&0UEY3SKHm4&v|6HAe-3dQe1m2-PfmYt%Jf-)zenV~0sx84EAq7jsB1!z zVaGF5^}@}sF{AtA!^f)QpvrPvD>XvH2QI!@N^V1_t3!)XqTY9mZz8JvjCfm&> z((E}Es#fCK{9aiAHjQ%509PjH&2YNKh~B|NX8RWtVzX5r_chS{!l{&_e^fA(cF)^dMC)bt z2#gdydbPIYPTv=@1ei;-Zry%jat0Ll!iI*V$G#rfO2kbSWA~8gKc5dl&YTz71AWw0 zyadTw|J>hBK8R9BnijI)=HXVrIlz+4N zWkdeshykKCau}GVj7F1wzS7o=)bBv&*EgT@ym*YVx7y{usqgzK6x40T-^XKL$T4KD zpF|v+QvA{%)p7CaB=;^aFn`lO6DdBfsFR~bPv9oH#vM!Xe<}6#{+*aRPCFS^Jil!_ z-%?czt+No-el9Q;jyKQ`vPnPru;a=mM*<~2rp7r(T#QOJJT4*^*@Fg*J#{B_agtqj z9Sj|Zb%Qqpgq@2)Si(_Wm@11K(#yR=BW&+X^(0vl!c4SJk?YCVhuPnOe|DL!suv%P zN0Y=LO?~b(e-}QtGXSyF&QG(JIxBT~eT^8sD$!8|pSk|;g>#&vP1&pWJ|!dd+YlxC zk5cgPdHFZtcueMvNiVmH(iriPE;z5fwUJllN@GAlb5?vk%KKL-XOv4WM`65kz3_Yj6-D+55=4Dry*RX1FWX9!DOuKf5fj2t*lKKbj%CG8h}eURiGk{ zfL3mO)K|^LekBOVa-MeadWwB(jHta=V_-_0_P_-|AP**oCZ;LW5@et`)VLSa2MKby zZ2a9^P*BwJ**J_h0hlEsf7ea92iGwzxrlxTb_%^?eXXf(IqP{St98oT?aJRk*0 zbV?-4e@aSm$tt}&wUyU-We|H-o;eO-sPxDM4uVo`5BE@k+zXl#HxoVqyT1w3U02~I6t4QC9a^_ zM!VN6 z(e)$$h>tJkzZlkZ{Oe~SBc9Qh(X|8<0yj95(Xou_-PCMQu+r584_GXhH3**eoRGcfT0mP#OLMl5UAX z-qk=`GYeZF^}CCxoxO*ng_*hY?-;D~^uHth_7-6P$QT-1*||AcSpW=eO#m_s@(ch4 zJGXbC1%S%V7GMN4H?%ed*qH*5mi-F zm!t!T2`i|H1ArQI07-RKwcmf$fVS`a&FBCMYVZ2rdEO0wyUUBK39Efn5@%-oT?2p_ z;0knfviP0$f4EV+GXwmg_U@NQPy--;{M5`XoB(cij#hy8S4W^V@Sn!G*qXez)7c#O zuK>T#1R!T&477Cu{&teE`1&9v$1(+?F9F` zePR~xeR8&Q^kDqov9_|cbF=k-`hST{Eo@CpfA`(Q#hy{!*22LBC@uDH<989u<$>BRFPGfQf~%^ZS^;uL|5h(WPxo?Eu{W62CL~Kh?hnfa;$$rGDRkQ4>2`YY%`4 z&=ihQ!Or=89H{>P*|Pu1CE;Ritzc*ar23zZ{;!##jfJ(xe;EKmK)t{IkA)`iH&rSH zJ4YKs>;KVNI7wKz15K1HoQ=)@Y2v@c|H>q6Yi11u&@;0!FtKv5{7a+$d!wx1NB8~u zvG{#^z3VwR|3~*emBv=KKqn^ve+TzJD&TuB{)hJa0sJNnU{q9;7g5ln{olFy$4cDR z*v`bl)(pVH&H*rVbTssUV|pJ37It=k7xVj6n*iPanHB&egRPzOy9>bH#n}g7YUc>| z`$Rd|0gS@GMgKya07lXOAWkL#qr@M?0$`N-gIEEK(ti*KfKl!bdXFOie+O{^7#045 zxZYzb{XxtCM&&=~J*Mg(#0Fqg`-9$js{cXn`858Z_k5cFLEP`i@DF;=ZuAFn0~n3} zgV^3P7{71sA8Tf&cX}p&!FPVZzuM!`t-1;y0e@@-z4`hBP`X@5$dth4^8>8QQY4%q_=6C*ff5CVD_J0_@ zhp;z%ziq97rp|w)%>S1DYkU7Ae&=crbhNPht2@l^^*j6p-|Kh$3%+x5`U}1X_!Ex( zJ-4&l-_+iVclisx7w`HPd@tVZ4`g}wcK-{$Q}*}^zE|n_5B%?ae^UDWNcrc!WcssU z|9;l~gH@d!?W};B7AEiSGyXD>H*|KiaMxjazwDUbB_RKEPygjDB4X$6 zMbE~~44`Ly?*SJp+wZaB@cA!S<9|K%{<&x0FM|KWzaKdOAkZCX47ajqXUrRHnc5Uu z?kiq6T>(kX&2UzQe4zMlJA`iy2 ze%)+M`Z9HEqAav)=qvAwk0dTUmaD;_9+)Y=>|fDEN_{MoTkx@zZ8ozlzKsZ=K6WC? z-O>Fknq~40^*V)Ax1w!5AJVOOp1B#r(HhNt83nHse|fqSf7JQy7e;K9;WyzGnmL1l zP^>W-DEr=S6m8nn0yV8Oy-ZjE3?6SM^sp+M1j4onpy6p$H0E+Jc9eBdbEhk9M_f10 zNMzwxv91kpsyLmTh46)Mk|~$Ck1{eXh1iM>*`59A(j^t1;}kvOwhkFGJ1^qrp|Km6 zp8m%r6z!rDe=il;hwhot=HH?dX^9Zy9ph~uD{af##j-%m9{W&U#BXCd4BaSud~TEa zz1Qk~;FqEk)@bGw6@Biwbp#VDzI?n0_kDz=np39Trg1ffgp3I*ywMReCE3fpEkG2Y+iLKf-4DM;adLr!i}QB_AUI2 zt(0kqe-i#}?TF{LD=WE|jz4{9;O9Y4Or#-{A7P|`9|*b~-zyIN9)nR#K(QuTkySz? z6FkXU*%o{%()91k!P+IYcA*U=8*=Nj$e>@z7>7R2+c{@K9LX&g)wx#y zSaDT?TufcE$3%yd6`KuEX*8HmvTzZ`oMA+ zVj82pPC;FEjA+~V0kBqk0GXRhC7y@2o2|nI2?q&e(8*810}1)=9cOKxhx`5F4ot5^ ze6P`)e3;=IVEPXnwNA@8JV-Kj*lkNS#T84)f&Al^l)GX;AwS=-xW}W zClQmqq-P{{iPL3Y3)9+zdokb&%k#f$*yaHBV837lhb2m6@+5SdUwyUR%)#11qF4LK zSfrr9CZ!BVu0**^AeXSb^X)=L2HM~efAq_Xq87A1gN!qQmvt7KQlN3Lf`7tb!g9h| zK}~p?90pxzqholl8+yRps>@;8kb&YU1%+T%Eot{pBUt@_Zi(P?dANz=@r#=v&EZp8 zH0sE0W3BD>1=UXhcobhOsWQ>b^?We-VGV3yk`i~DhYGtg>WNz(39%iKU7Q^rgW|$M_cAxQ=RGe&aYy!0FY}2vf~btCg2(BDxzsL`zfp~E@3|T zbK-Mx`jDzj!G(-)m4T{)-=H*>e?i4ydD)@{Mx~OJA8(jo*x=pZW~eRCe~j}<U>Me50Etllvo>?c>S>2s1DzuF>^0)UQ{c>y%8+!HT7$d%uLvv3xG@Z1 zY!rz+zm00ZL( zNZn#zw{ae-cUcG-BhhBj8(f7rXek%9!AWcIk4*+iVJ?`{EK;X7$5o zwzTm8RfRpyqj7tyqQ04jUPuk#Cx?p>HUCi3jMe^Rf%E$S^_hwqOFRH7DH2Uz1{Tur z$o}^lpCswSgtQ^ONZI7+xQVwI5WFy-Wqtb=c@3Q1Zz$f-z7sZ>f38Kd>@&43Im)#3 zOeh2(q_-64ltF2VZHorTP2Voy(Qz&I*K9IM%rm>FIj~Bwts)mYfF7vfmMDyGYvJG_ zWtNZa8~b*AiE?Y>qODvx6t=bOeywW233zmy?$!$v62{`VLZ0(EF9!IC&#$jyHuYkI&lG`QjSx zpOUhtlP-qTx}OQ)8WF@lZ$}4VuILIXc>QDtpAw@>yZV+4e~JDvghP{)QOr-`)vHH6 zol9jw*QRgH-#8SC;Irmuh;=#d8?FQnsBarqAeIr;64;O>KSb|cika=hNUa#Rd=e72 zJs?6-oD^Xpwp9F82@)@Vb-o%Kkw&m{`-kiAUqH%h?{l%msydm+OQ+Nj#Afa+8eDM? z1$`+Vj7>qAfA&6h`q`EF8AmrP5o4caIlQ1kKAvpd$1CGmprb}O42Nw5Pm5UW+Z!{e zq-*`rn2hK(OO)0+4+Euin)mWF=T=;~BA;!+?ncC<{I*~1G865q$xdUMdy7NL64S3& zM&3lMXJI$J+w1Tld}R+CvVmO<{H=$04lXUq<}?Jxf9`~UG&A& zNM?OU9^b%}n(lMlh`ij~OfL1jY5T?e7ejH!wgn&2n>sh5M`HLAud%wokj^ZGpfJ=@ zYaKn!e;bWcPdfEnS~C@tqq6v~g}CMxau99BdOAVIHmCwaY3W8p*b!>6OkA0@n=9pS z8p1E`2G7TrLnN^edtZnF2T_x5a161IHdEAIXHTAq4Gp9)2_O|O1QB1^k);1yM(2_+3E2U@E7b!F;DcqMzUQC1fDe={QQ!-8o@Ftqe*gBF4Jl6Xe)23aQA zGf2gEsCb2&iwMW$htc+0{Gy3~@|zZvjw(m;H}&Durn6E?it+`Uq@$ElE|WHV0|;0<+>LoR~p ze|&BHS?LO~hlZ|>)hv?uV~fSLuG97nL(8M%@Ed&g=X%DBxS!~CWOhjvy;QYa;!OE-4kXj!^IJvQ4$2THaUh^>?) zLtKL!7LtPEBQd>;95QLe{2PyiEOy&Ff2HHhWiWuRTT=07&p#*l?Z#b71hK9;rkS2- zkzQ7c9YM;dolh?3tidhYbFO|Zf~yn}cA1w3*fDE{UnafDnJ7{{HyZKhvlD{N?i?wE z0fnIIjjsxuq$nnmFGU|n zyAsdE`5433_I(2cUb#{xK>fbGI;)>-$IU%LRZ{yjWW>0sQH=%`=|~Z)SFH)=%^1;0 z(w4mkw{f$ivS@R0ljTZH9%!z$$d5-iZO;`5ugUNwSk78aWmkrKyG(^#2}bx>fuGiz z=@(q{f;)op`qLSt@cQr&>ae;sRACZ5tS08zH|LVu!WC0ITLZyye*^3#njWk0dbdTY8%lwjhY>QoJMrb zqEmaDpfi+)VfI1UqS^$Du1+$Mrm|u}Z8E*Zh=}h~4WX5r4FZj6M6Xltf1csggxKh$ zG|HUCd$4TYT@0N`1_&u@0pp9i2LMGJlt91Hx&zxUxg-Y?i(m(UU~$SpYz)4i~EM)5ld zedW+@J_CL>Z=b_ogIA$9e~a}lpvPY@e8^U{xp{2jYZ0h)T1Ry3rX>vonCSVb?M{Bm zi+eUGnL4{KH#OSYL}Vz6mMwEPX@F5$9J<EZ0M=w$#_&om z#&O4$=0I=Uv5gXl=x3K|`uqq|az+OXk(BcL))XuX!wD-u4F*TtVD9^9t}eQR4pzQ{ z>NUC9dqTG{wYw|MyA+%jMNzRRFiQ(Ft1-K5T*74I?JcOnOLMl^qYW2iI)6HB-bWFK z9CI!cXhP2f%43AUPe>Y$@LT41&kBmicK>+2WMtGAF=Elp>A|lji`Lye;X@M8ABJ_$o2q#9qUle zNiI=cydf*U%Era?V!vx%@@u1$8?=ls^Zg)i|0-P!0l|qq$Q@sC$4M2K7L{5MjKOw# zQde~Scwzd+;ZwR5)E@YKIx28|w3c6c5(=APgUq9|1+Q^?5pVKJy0)}gkYO9$GV8;I z2?+!R=pf5Hf9&d(_zSLp?av2kd?zG3cBB^%bStx+Ut`_g?R(=@>u$N`*9ADd;36>N z@~PoHyJH$AgNQLIGMFzmr9ombTf7TyS}z!%T(cFzyG3W>lvcIwaucYoLY}80I-uR_ zoXejSwH&*W#ZJ}6YS0(FnN3`IYgae|CCZ3Bh$61&e?PWi*RrAP=U98ojLpLCUq#=k zF`>#dYTWOn;fFQzYrw_WZg=epMRN@wl+PVqMQ0Jg;jsEIjA%eazhU68k-;bPrpQR}tlK;-TQlhRn?Tt*OFni=1+4i$OI(6|V8 zn%GR;P2DIxk~0&^W=cqTw`el@Qqp`Jd8_CAmD_Cli)BJ|FNzbT7&Q|PVyxq#&9u@F zZ*}zA!xY41U)&(SS;~5qv%3uq_j{)^QT;%ff8-{DJP}{(=MH9GIj_{=Q589Zi4LCJ z(5-1&eJJYy{zJ5Gn^^41lI$gO5<&bDOSjJ+87p z*`a2A)RsE&lOplQ6)dlIW5R$H>=crp7py~dZ^K$K*W(~*VU(Fg?FK-K%~R-G_t&s< zS|w|TCW%QZMvKf~pCR>!1#u6ye``vCB=uX*E0IEdr^elhU)l+nphsKare)j6ZfC)# zgg$g{I&uO$TQt*{>c4@4cgpkg`d7K`cDg(kio7D`C*D*9f*gVoQa(wfG$sJYbla?l z8Ed{;xDLiG7BW!ns-`o0r+M<6nvs%_)CGa_xIz+uev$~H?^QCQajVkUe@KLvcv2S% zwXOlT2uR4D1H`d2U9?(k1fr^c^RQBj%$nARg?)J=Y+lX=sU*f&9|6iLwVuNI-4LKp zgCfcBCiz*U1=^r9PwOw)%chwPv;Ghm1JO=d*NaBk{fxHj)URI{S3r zvMTa4n+OU?>iKiwAKV*Ra4ry93UF8mjkhHtyo&<|Yfwc3+UP=ce?s_(xA4O#Vlz0c z9zY}$ODI)?sshwP5nQslW3c0LQW}iZcve~!fCF0 zzHoiXUuQIYdD9TPBTY{D7N5vBX*rW+6s!22gf^?oymtv6Y3W9!0-r z!P1e;7NzJcd_orkCJ-qPSt?a_JC|3%aT&6KS0~L-oeirt{B_f9%iH zs7K0x+637<62mCo)j5=c8oNj}9T$A9tNUaqlK8#T2~)V!f-@%RiGBq!bY&EkE~>K@ z#-vmcTYN>CYqNBKvnuEwPr5Ay{l&tmZ)>wBlaa*xM$Z!=e_LgL46!OUDC^d?1rD-6 z2$~e!l)&g{3>TWN)C}?n8?=fqEvM=H8I2e;Aa?#FAaEto$V;pu0&L$A%*+X6u^G@jP)R&WxO0rn< zX%z&qWa-cu$+r6Cp_-Z?2HiuImZ6NM&q@u#dDJz5J>nj=`XdB=@{tTXG&HkuoZFR)(9bdfj8K@*!xd!ANlb+hQQp-U}&g)`5-o-88r&rUo%x`75 zsH)cu`$97KrBIz7lHI|E!aZLjysVY|mCYQ-b|P-)N`I|B8JEafLR)kL?Vum|vgZ*c zg?TM-e-a}jq90SA!^$@ogM4IF7M_MH3rF8?OxzG?J?8~VA@s!2YtK}3%h~Nb$O&`= zaLg0dw!nb(nML0!0uFK1bQ$e@eT!7=IwZaj zJ-%y><}hQL~rmW_ai4Mc%{ zLdlq`M89zbXWebYeQkMZ20h_sW+{zW8*qxDqv-CS9f_m_DV=hw?}N|8;i;-tMQ%hS ze`4MDMmePLQZG{TBTv~zfS$^i^&{lBswvv)_xm;Tq4#}$N|~K_4PCYojX18dgPe5Y zy~fTMcsQ|m5kVve=5%GITNS$eWL6$2*5xyBA-_=4ouclW=CwihGY%CXJLxobI)#jJ zF;b8oSC}Gvf66vL>^@7j>mKVwf>SVwe;DkVhUiCp!Qq~{<`GVa8QsAe#_7;_N^!tW!swY;19$F6GeS`|hBqe`Psw znz0%l(vWk?2K99IfLB6C$W+SY3Bh>660C!fKx=~dn!q*sl0RwW2=U{o8v#QV%Iwhv z-_-`qCYBuR42e_!)!lf(ylSIF)}P?Zkf+?;itXN$r0+ZG#f6PxtDg=k$L z5VY>R4eE@lG{xO+O=265wVkDn)-amH8y*|}e^C`OUFnL+Y zQF9kqa1)#JpI2R?M{7x5`WhKPS&?eUvLG%2ha+O2(Ufc^x@tqPzKRMfE>HUJAPM9Z zYC`h*pw?tee&g72PuP!!e*)($W7{51IcuEG@54rBBVkotp*5ixcZ33UY4+(;9O}^7 zj`k#iTH~wk9zx;nY0O6PL4z&&MeQzNSb7DPTYPNqKcX(tJ#zHgD z7+;Q~0E0M9?AGPBaruEiRtCwbkBt6vYZ&zsoSqTTz6#x0PTo4FfBD2wI(!+!kYI|; znGai)D~QV!gMN4+rx-ToYiSKYS%7iIe|PerSxLUT?3tL<-=}r(QucVce*yC={M5ee zJj!95DO<5MK<0i^C7W!Y@ds%dCiy5vAzG>WFGaMvYXiWcj#}zn#>J->Tvhb=Wt|FE zI>rpkxU#cAZhg>=f5^l}rEwdg89)`W6UeLfD1_uwZC_#jCzVeVc6wFf4u?0`p78igfqlqR)y&|z`*e51*O0cZ33UlNbcH7ts~2Gs)i4gDwxrLk$ZqZgR z4ov&5HW`;0au|t!S@`(Y=LG5@sv|lr7yL|7`-ATgPkG1O7sL!zHGNR?mhA%(LLHkZiGUQQ3Pelreyyv6$s`Sv(z zUrlhQC_eRkf3pG7s- zyec|uT}MBJkIqTXC4qW~!sxhjTXgecRvse=lj!`6TLSkPw-hjp0AGx>`1FvM;~7 zaH0tnTV})VqnpmV1}VkoSR;;#)C_H(znlO85HEK3>VDMcNAidmaa<;X4{qy?vQHfq zkLlr_>*C)PT;NtxRv6%JTIuNlOkifrbM$JGW{gT~j*F2UsR%l#8C)`5L^#t!otr1m ze|d%l0oD{oNkUQRXz2K9II$vyUa>A#<^Yz06)4@wT^tjX%MaN(abh}6{PKBAk^7`> zf{vILH9C#~BN>GD#Pt#6UXguC*L*EXG_mz2jNhEtB~hHQ)a+%1*vk})Jbmq7S+U60 z_>@_c#1n-yZe|Y4ykRH39AiBr+YHeIe?-$@P(=_IoRovLp@#%HV#?186SF1WBDF!k zxYm8LZziZSVJvrrvW5r~V4rR;S)WLb08YUy*Q<66T0B5ic<#2fUocg3MWkEa=;6fO z9B-5xTdIyD^3JCXY(yn9Evx~7)UDyCrP8)LVkdL*^nXJNeISw23l`^a+<|3=~ z8agQP_;R*CIAHk#?eQ-Leo#D4e_D7jox3^ZBm@guMDc$i+Ve=ifX;{<0M1S}@3y3T zUH=nf4dA`x@eaYUjzDn`0C#ZsaB0mw%tz$LhYxv9~V%H^Nd#&aAOL%eFh0lUV zOru*^lA2xE?@XNBs%;+OP|2C9O=0mP{6jT+OJM+0xbaFPFnFQj&`DT4=0bL)sECvC zBDK5U5pP@pyWGg?Y2YOxe=$O7bD{McN$o_SF>+#ck*t?r)3I8+a$NGfJN^Cbob}u3 z=GeLoo+{y}1JA-XR?$@w=g0%)CW=AT{%A+yEwvJ{r08|O1B)a9cTyv{VWc8_QrWXc zDt&w9Y!K*DcmB^7oDWIXe2%so-24FtsXspi7RpKefTkX}LX59^f8r8a_e9HVJ?-YG z*(YVsnxuFT?;+Z%JUvm=qTF1v^tSBY;|(vJf&{~lwmgq%XmDJOS=g?@A5(9Go!{k| z?TlG^xwwg~Lk+--)qVqe%E+v(z?~=y=jmbrR#XwDus$jK?R zdG|r`8sfNq+(=l>RR4xZ-0tQtOc?d%-L^|LTNiRlePI^Fc}X&@Ub@Q{Tx;W|M$6lj z!O68qhf4T_SLY&;#tbr{-;NN>FU84$>0r~ESb0s6tWwE%fBa%iJ&tffKJ$_af>|Qb zx<p|Hqi$xu3Q2+>vr-sh@)(^2}Iq5qVr`5@oT7EA_4;lpy z@M*pR>{c$|sU!)JHA9xIy5gswqU)shwit8btnO4j%HSb=jKN6;piktm=}+03(L3u> zG4?6YAz&fX5&M=eW@#NDL_upqWzch*xL+odW0E(Ae-tSp`o(8Hv)sYm8VpGIa)dny z_#nNU0CKqva@s=R^o3h|$AIr2;6TI2)Z(na0w?PekgkO533Ges{hs6I?Jhdup1yYD zeE}EQ?e+r&c^v)a|IrjR%1Ob^%K%is4LgCafnvdE+<4@$z^$h338Kb|HemS9(`V9I zG6;*vf6LI$-^$4HhSkD)Hi`(v&XOfPcQkXE#m_9|2HXZiycVtIQ+t$7l>K$6U{(j+ z?sq}DoZcyS1?XySdue?T1d(W~u5^%GdSK7<!Hqjnw3G@HbkecLk!_Kn+m7OC z1|mG0J)1dsGOW$LJ;B9$1IlKgX0n3;urU#JoFmBB33mym_^stIQ4B|qnrZ+h%KSj zN}_2*dSB)Dd+L(Xkh^dhFAd~Mzt^B(J;E0X92Iuzo|U$5&`!I{2+vxuZXi4oN*@hrfM1A`(0hg&w7NqXJxSWs&tMcv;0L`8+Xs<)$a*+@+kopI7h&y8@unpt#s>@I zT2pnQ7B-E7A^c0hZ=BW9s(UrMsYnzHsDYnR$9Qt5aTli_iI3tby2|=m5L(3ce}#G_ zDJun)c+2Gi%alIQ8)Hid5YVtIRU8uLVsu&K9(lyc4%aB$z0kMBt;m1Uf7+@*)?zm2 zieBRd(MuTsbcZ^Q=aD>>9rE$lG zT%hi>hkxH$jOpE0R^~o~;TuF{f4`g+^6Q6)$boq-|AaV6YM%{qZ!Uwe2z?5`d~!Y~ z)ISC{)>zMPC~hUUOLvfW$ZwmOWsh$7tLsGOA>WX>j8ZhSz!%pHZ6Ac(1XB11c8KGr zvCT@CpQa5Dr5G!1_kI0}?5p}kg;o8aXPq)eC#g2515;&PA`fI!a+uOze<1ghGpGkCHUA&3!@iTS^oMscF(kn^ve4oq5n_|p6#o(O8;0tDRCS&RG5 zbF`rHmOXoSWq}m40`eg4u~gt2mOEen z71T>UV_r5W66(QxmfLeme>Two?m5y4PnT`SYn4#qk6{+X4bGK8s_zveIYGPK{Ir3W z7$zNNK%w-=K@XbroczxXVAb)X!J9LVNzK-)Kgd($GJFLt^NTee&t&_KKO7D9x-m*n zJwKSY%O()geAUZ;nykxytgoLMw~NbkEgfB599v~=5ARmJ8` zRs)@o_M$$|K{5D6o6Umw+h>BPmRAIiQt%i_LD5D2Pf)%1dxCbrxTzh2aY;U3u4KItjN7mF?z5>0?6 zP(q~zB)i-CTTOHQe`}yZUxt`wz^W)trN8Wxy#~4>iV)?FRG~E2+pZM&neffd*%j|{_>PrAygy+a7 z%nenRgHE0@`olCfAIYDPM!Xf20<&vdWAWliZ(I_e*d-!_e4a}6!IM`QmWp0a%|uevp+&rgod|F&!w{M%1&u|e zQ-`djuXNJH2n$D)P>gJt2F_^k+I))f>fI^gx;2FSGD=q}t5;Ksz?E6%5y@8{v`3b$ z>U{;71cm}gfA#3KqA?;22vg}2fJ|wuUll37+(*2MLWNHkTJts_I|_j$Y_wIyQx8a# zEq;oZm&lp$GYT`li(|}aksM~DKebI1^tyh*PBDMF%(46inV}o36l(whFRVwkS))h| zHdKEnf4iA5(JWB__I;KQ1TPi*{yhI1Z&c?3Eoq}Xe>S4YK1e&U9WvDg@8Z>0-C=Z1 zvBTi6>zA2MplCd2P6m*^y0xzxP>lSr9y~XNh7vx=vKvfm(^$Y^OUq{(Cn@Kqb*?}x z_D}U?t!!XMWqrV~O^Eai&8%ItWa)vVIbNnsf4Gn98ODPFs+LdgALQVo#vJ^{@>F1A zFEP<=#424J3MRi3C0ZJuFjti*7TI)zk5{_LxV|I+$y~3;i=}>|6Eoy+Gm5Z@Y7Y`z zv&JW?9mkQBZiog4pQZ$)1}?!j*QhOFn+%w!G8_q3vvCE|!%zu_`PjPDljwaeC$x}Q zf8cE6x>mUgn#I)LWg6a#XGXKL@)_pfn(?0($V(|u2^d>)x`N#EAFTWkz+pg)|1gdj zRu_|udM)2Ff1SZ9{9D%BbMj9^blw3-e0zgLEv`N19ek!H z*sh=Gus{$pfQLZ$k640Ldg&!I23#FjM_20J{P?P-kkV!V$k5l-HzSS-H`dTyqcgvu zOg^e(_$C_gdtdP`wc^_xZ=KgJ;sCF>f@dl(7dC4ylh(T&ZSHe}g16P(T49j(f3ehX z8v^1*EcL)h`nQtw5z4r8;G$YpY>9}eBRd9p-R8nh%o-nByojy zBzsS{2LUUvb9TU{JS{;;oPE)mStv9yV5z_iQm8ot#iHb?Y*c4xPvrDLei(eJ#yk86 zdolMq!V%U{p@P2U+U6&ij{23ki8AU-R}Ym>fq|U6h%JVZwX&|70i`E-fBs5>$*7%? z-4i^!0SNqsY(s6e`=po>hIm>Qr;XM7*h}A~AF*u@Lc`y#$crewSg$uh7!!*afhWRdWfExyJk(A8+tph1D~RX0^GQit|2X{6J?Z2?o7LtESO zuM2m^z~1jEO%nT_T2Im*fYmWj~y=Fl3eC#ofuTYV#8T{3yX+P0|f=_#g1K7^omPT zbT{|uZVXKnK&tsBvKtCPoM4UFr5^zjXU4c_mf{93&iSWJ_qTMq_UpMW(P!VN?{c~K zqXi-t6RqwW-394Qe-2xAM!9->_0Ngjj+;Iym=G-G;AxdBp>rs z<7NHw)P6?2lXcDJS#pHFa0*q-cAY)NDvXaSf6ma`n#=Kshe`LQ7e6N_DixknS&org z|B!c1tIWz~sP2Q5_;tUXEVVNeXapnFVoZ3^8U#AS>M_>rf1N%6n`1HT5ly%8F$|AM zK0LXl^l;L<``hlM_!yUK0rxSjoj0$yEr@6u#me}S@z1vUwG4M-h@|kojIOk3+7Ge; zmdq;0ju#hmRv0-!T&69Y2PLwkj+I3hpZ97^LZ3Hi;q4LOneG%7(eD>6?W-sa(A0;Vq#p^HMv71T5*a?L z4nhs2nXs?MMiBAQisUC%5)KC12#k(3@7v?ood{76e+_$0`;01PoqpaDJg*~$jgK{* z+pkNZx({elk0w{_#Zz3>?SazhX^=jabIx2w-;wicswyiUvO*?*^EFWqE)8gn@mE2X zqu<+mv-ehSXO@D*r?q4Fyd3=enZgvYMF@dY350mfM+ybTiZPLeXh>KhZX#CSqQ}}H zrZK?Of3>)2sjKI#vyAOTlQwPvdTyZ|o=K-1jxCoNNn1Jbbh-CeKF}&8jq!1DCp^p3 z)Th>SW7~!FvjYu-5zWx#Zbte($aV5HGZdQg7q&t-^#^4$H>G`TaX z7nMcx(lf6h@Z`q=P@OTQ<7tScbc{(t@zrq;f2W{mPgvsz_GGtFJ??TY@q2x4C;HjX zs=b0lnA7sCE>Jxm;Z1Xe%HBV2b{&XNr6Ya3L$hs1bAu4iU3Uf2Yfaptw*QFC|AbIC z)%5UFRG8%S7H&FHeO3?INhsORm59@^yhwet+fWcWw{Qn+UZ4}EpX&J#HJstKJ%%!v ze`WD_foFxX9j?^Pb6WoJHYt(bjMC=m@(rG14nKcU8hLdZAijLOPsUe$;P*9MpzsUj*ZyBn~&g1RbEyMi0K*~Z*%;?ki27JHhvXA<(0lOyH4~( znV{?sqq&ZO9cc)#G`bT%%^1%;_EA0-@mhxB%kMNb$^GaKSooN!7Sr(Xf3oA%ib#~N z;1yF=+{wK2BEtvVRurEq+B`zyDY39+bxp6Xx7P|*jyye_ zNIP;LH7#kAs^#(h5fA4WoVf(AiB)4q0dy~&O_|CG#_{5LPjP@$e~~>flRI=Uobsl0 zr?Ip`YURzOrz|;(emzoO(ecv~ign|4V8XyUgX`j+76=Iw{%hex;mcl8cMijiK`8EJ ziN$)=X9x>j?{tO;K=+a1<_}KDt?vTOyEQH#ct^tk4$>iN*oy0F--} zV)fps2PpgQ>IioBf4xnIH8H4dl4-pg49)Yuj9{%gV^=zOTsxoL_;59MSS9<1q7gWu z!Udo|pUoG(D&(Et+=MMeV5TO7X;|d(Ttkn=LRj~FVSj#EyKiXv)@6aUNm+wY%$ipt zVOQJ)*FTh-+XV)lnRFaEQ>{_v*=2V+Gf6B($p1C_BoMlBK(>@O& zSp5ce#X6e@Sp-F3Cz~z`8Y(Sv(;H0HV|!&&!GXCM+&i2FZ+{PzZ~gJWq(apeH4I2z z);;fgK^e?g09PCd0e53RfNW>Bvlo(Ag{)5mbs!PX8>Y_fiQUrh?p@b{cyms|c-o0x zL+54fyC#Cde^}VN&E_!2D=Fgd!9SY(m5Nfsm_zD~wF`JQPuaPJX%U)#N)0^>{7OYN z#eX#eY~~1Rb@bnTm=u@%X(YC8&IR6ZuwUB@u)PkQUxM8OO)tt#lNb zwdOubA>ZbwIhLwQoqyMRTO|kYmvjVS3tO$!%Mws2H?z!ZNL*Tw_%&~*<#f9T>fy+g z(j-d}v=x3Uo14|^+L1H<^E zY~zwgSy;YKC`2KtY`ym3}-Qk{XBzZz(K&-ESO*NIVN7ps@2Or^fJ$6r_SA{^5@*XL9_6v(f- zw#ce>WYfAXWgd>o$Whd2?!6QC3V@(2VK%tf5E)!b`IRlp>AnxlLx50WLVmdxSU&g*I$p2f3Q1zhp-0<09*um-Ply7L**y<}azOiwNFP_P$A}Nh z&@um>*BiNaKo(NjoRi6?rHTL%>`S#Qf5Kevs1mtKyt!#r*!_hfybsGI2d-jxJLId- zLEA+XE6)&h+49f;IlkzfXj2PoK_vo(b_w!)dYDsQa-Kl%OBah$$1Ke+OZQlIZuLNp z5Z~wh=n`BOna3C}2+SH5!0hbOHluv<@-FgL5cdz`DYkLx68G0`%^(e};Ce2WfBiIe zI7tNdPiuWC2HekElMn5pfgsGP2N2)*nVCt7U!WGiB++{{CcM|eJ`3d~gVm>mdMA_j zjxz0X*Gd&eBU)u?iFEUx3SSpv$FL5-Mn4#O|5AsfQ01{c%vz&0Z!M)&v`jw^2ly?d|vS_Y4J>>Z#Oi-7im+m&z5TT8RIyXaqddA zJl{Jba2aTOUY!k%nGLdSW|&!2H47v-)MtPG^0av zI|EfTMip|d>u7N|TR4V-*B2)fN{ijcjN4yzk`q9m68ds=iAED{!?P%OMbFFieW%1| z(`Cr<2{pq|^YLd1<%^&6e_$GL2~4Q0c2p>8@)u;e^O%H zNwpZpXK+48P>7jeT*wjW*sAiIMz5=pp)JPzJgj?Z=?|E5lhcG~LJOTgB-OJgBNx6iMs%imH`(}wXf8$Z^f@b}XIvqFA zm2&ZEeR;-X_BF}+PjT)CAktEqA}$t?y++a>s%=`*<>%KB#TgDP;KI!cMi)DSi=kz; zSil7QGyR1kTbl@|)^$=XJDRY|4m0|bKcn9Dwj&hIGg`ZY`IJLvl(&=E1o zc?HRy4Sl#3{)&r0e~chsRFa(`MROJr*2;?3EU>T1&e7Vhqx94*`qR*yXcS-9q=}~w z3yTav1>xK=Yi_7OZ<~v8B)TWj1oRD?QnD%y>)3PWHXO9MmOuP6F!9?$@AwvT1P-(W z%UwGZw^8B&Z8)g;9b~L@g2ql^GCNPm@$?d0c+`deeOd%^o_e5n zKOHsf&lwA2jH1XNG?*D%VQbCO;d^5e`b?t_&@ifT zU}ZiMe;C)jNPgutTN(l#5+m}u>>PKjp{fg4{(k~R3cB^x21Xks%^`CSVNsSw+0~u= zXbMj=%fDr*Rogry>O5FIpm0=cg6KWVD=NkyoTj=MdGtuM5TMcf1;xlkXSm;C}b4mp$JI`ZlYit)CC-Q z{Idbf_`DYx)-Ml{mX$zPEb))|4Lt2%`~k#;2-3v!`1(FId)S7+ojQv!6zG4?PJ}t< z9~5BYuO0GbXumu2N+*0X86aQeru-ClLHd`(5b6{*vGxA0++jDc0@_=)2z7ep^_PJS ze-m(4dU@(a3by9}W2En|kgPkov@~C=)NIqs>7AHoIfH( zk9O^nVre(NtV+yGN8GN;K{!*##=q<*U&0Y(Hi9?+xr%qBzGR|`m!bIOGT()D*g^SO z&pTW^%C4swPla7&R8;Y|C5E9pML>|2nqlZ}BnRmf5a~_@fdPh)Zii4(0i|;Q>4pIb zK|o^Y5|Bou-uV7+y|vz__igX9_d567Z}%Hk4=$}eMT>&HtC4b3KDQTKV7s(U4Qn1G9(vkf1usdbhzu92z0fbc}S_!Fgt?u(B~-035HEW@A}p3> zK*BEd!R*yEqB^RuAXQKShE;-7TM>K4&`D$}60I%vbm7#*`6gqK* zj&`MD$;J+6`&7qtRRaPCS9Lka{1R9-DeE1fx%(^>y0N)dqk>vYc8{>aixr~0KX>S8 zyB~XC>#5~j?Ak=a$atmlZ#3v(*=E_vd-=8soO->FX^da>$DTgMTH@5rYp9bf-+sk9 zV$?|bRasXpkXzF+=Z?CPnu{AjwR`auo*gMPh0#wJ#GODUQK2M8TJ*%d!5 z>rgPz13#qtliB9&E?>Y>5wiyGaDn^X(AiLIJ6k}rZsAa7 z?9{CYB{rgK%##`0BiDDRv&=R*qNf+ADu>E}27CG{f}d z6{W}}Wn@oZn?&_CEtB@Asp7zfA{vdl6MduBUBatZ51c1jHMFldvCDtqaR_vtwZ%I+ z&?(Hh!C^#1FE`#Caw+TQ9_{JV;SYxewR_BRJgo)xKNERmhpS^t^PKwJ^L$C_$BoG2 zfqb>;9619N{wNzolKQ%$FDq|e6s?Ftaz9$+qp!u7i@dlqpY;>UV6LYz+M@+WD?ysV zI4^P~5@*m& zYEY^te&=(QpCN@wVysh_aWP1R_TFhwYUby8sdby9s|xYkt>~X`tf0B#bf7XVP?HBK zR3&Ipe&xnQL+m6cnwE43pgD<^U>%(v9HIvTEhW>a@M+oD;%2dIB)Ufupf2h7sY;y)c0aM@o zOdy=FYzB#0B?%w}6W!Fh*!A0eLx=6(U-_sYzgC8kA|tPocvJc6!>gpC7=EZE)N0AM8wAWla_Y-Ju9P?MaLR}t>MHC&cyh!?LMf6P zVD;yNp>e_*B>GBNr(N@wYh(fw?js2uj`fFYMB#4eR&0lU90%!8 z%aQw&hdO6zxbZ7o_*~iZlGEv4O2wqPfNB--q8(qw>K0zav!OizmG?4xn3TF*!pkOX z>e4PfdUq-t8ohr2mS~Ht4L?@csZdVrM{kp;6Ni3E+5ksrwyYN(J}j|}hG84ExN1*^ z4AFsVBV(`g4mo2xd3?J@A9<&|)@V7f9a)$?rU(YKHpwZ+_2be0rfg4Yew{y%;b_}C zMljk?w}vG=gKU`IER0vjoy(xYksFCD!=H(TGg+#Y7d_TO=%xx!EMrYZZKwtc)*cCt zzHhiDZ~oxiv#@|SLS*mp5;4;VAWt919Oq2X0b7tu)WBsNT(ATfLCFhLK;F>-opG_j z2nx&$Nn|J^FdY}8LH=npNFEko+CPe!Nrs^a4CP1OvH>0b#YF#O3E~81{G(z>jOFt` zB>o>WCY2VFNdWltUvhF@AT2To1VsEZNFr%OfH&BBtR~y*+PY^?51ZDsRi6gsA|AQouE0+I3lK=8jBlsMFjmRNepb`$QFbIS>#|9GM zVi5ShRU}5e#0X$<1g8rygct%AhJe5zh@>b8QRxC?_&n`)!W(uuHoXQcFFk5sd0@5lP24 zFLBQsNqaI`xnvCsz!6e$h-oyi{YK-wmUvQRXpFoM9fu-+J^^4F}9O`p+J zQ~EJ!n`1O(rhN^M_7?#B8R)bA#ApKB$eQ^8r2xr85D>4okX*bE#804+5QdjM^!6E< zl&=%GSqd(vyK3I&fRjpvf+(Qg(tYBYzjW1zhP-p_*=vcPM?xNFM&-Wym)l7uL1 zD_uqTeRnJtI5Y;pzy!lfAS~da)+Xn#KxlBs_6IgZn@A-0lj(&m^YGFzoB@Us2v^8I z1LM3aRIyEg8A{#ek$62|M;a_Ops*hPpcq-bBH`9b0Ray$2X^!3gNiZHGqu`qh)w=_ z-=YR7r>Qop71IE`17av3Oi0A&)yGX^3UI86o}fbaFc#pO!sweL)B43smFKj{Iy64N z>Q1>aaK?uc(+~<4a8xY%*D@{N4ne+U%Xo8g?jNqj`t$WyVNut7wZYOphzRm;LJ>@0 znI?erfWIPrc6c8Q9@C-d+@@dh5Hf_%H`WsCK8(J`lZcosD3l1jKb51l}_aaKQFYGD(fJ?@Fqk$T2N_#@52 z!u*I-qCJvh>8AL*ZTXt`nKDDWT00(#F`vcWW+kB{VJP*0@C}PfGIJwV0%w-Fn#qG5dde4J_(aDvjL$?Hb4+ z{D9v#A1Q)*xKEAAjGZ6j&M}%1RO-IY?V{t>-ml$zxU3ab{#0J6D(LD}c%fd>IRCZW zpYvJl+dm)y0@TwE21zd0yYwdtW zs<&05^WMBke{R-46F-vnI7A_TJf^=HC-f}raQl02QCml>ktGHC0EAE7 zUUl+JGFYyIg_h&t1i6v-H6d5Hxb+$4M#s+z99AcBG~sge~+>?xax!oeIPdxQy3P*fw;xR{d28S89#sxdC?*|Uq(l>tj z9Y-(Qi>kw`*je`@^QItwvEN>kOk2I)QcH(*j~(jj>xD zl6moak!GE4CO;GX(gnkN+KcANGvND1SlP*^{O5G+Wwt2M_B`4^qtP1&{Jb3WbIYxj z3WJXgPfjQ81N|H4u1h#SeA7BYU-9Il!|>7Huj^`YBZl4UaYJQf?`}R1l+J5&$Gfe8 z_tCcBk95VLGVt)GTs&1pvJDKGrm)52~k9IuB=x(-`02RxfT{a>@cM*i! zo3~R9<+*0hM3iZ6OS5$Lq?VuP!a`)P&aP01sHAfTT0V)oh`80W@=qqUe{E@tp?+ly z*|^TGJ-d}fGpFgN#p&batZnn5s~luK-e**8S1TtmQIMsJT=nuN%3?8Ub>CEsrK;84 z+l>$jnD&78lfh!SH_UdH za>e~+%~6E(4~*x+)%t^3G?AMOk0&KM85BE=EU))P0FOwXtsd}q^2c124dl+d7=*sL zS-s6YmGVrsH>C(*dYdX{bJ;5%CJu+r4yvH(~r-9rn{pX2)0D{)b8x0=B-oL3M^N-0MvdaD7~p zmF~It$5(qdS;&Nw(&y7Dz^I|wi9@CNEVz#DaB8TXv!B`}MMjfq6yM!0bwOS0#O#B( zGi>>oJKyW<#9==Ky9sHtw2b%m-Hx`ux=LkR_)Fh(ajL;Rk6Ax8ArkK=V7E2xX}27? z+v+CvCPCX>c^LZ5F1v;Ar-o*+$Du3q~lypL)s{ z*;Aw!IxAE~afKJrGZ${OWA9Jq8e?x7u(?jqa>aw%4D+!Y^zjJ5^cia zZa$U1y@ETNtWyD3LM|Kx@C@7MN0 z+xP;v%B6d=gt)3EWaZ>wHNZMgWWr?zO#%1~hZ(yiH(e(c#Rd@9(^iq2x5)lHB!+YS ze8<_G!?|MX82&C^&S~btNjlk`w5G(KpvUhS%Ir~1(3_eMrI?P%cg%0U34}X_bmef* zDVp@40Sm&og;L!YKH#sib1dj^u}kn|HJ3 z1ebG(meeO|uExACe&8Qd7cHh6Kn&~Hc$fZCA6wochjO)0AuAw$i&ZlHv*;7 z*Q#{~MBn3v4|cW|p*mC9RjPy)0;_R@t0(-|pNGwej5$oR58(bfD$=Ox_^Yr(=;0Ax z6!x^^>(wy%l*?Z9JA~Kh#i52$3dbsgMi1hcV`GcM@;DR?YT3_`*#I`LM?vXezqIAV zI8k)Ik*4dg)%>JxV*A(EsQ6*8ZRO1IFOD3enxWkbL~YRdv4D99m2iYPU(AmHYwXI_ znJ4+FM_((=%Oig9;L1MnM18^jw2Z`)3M{uRx%dJ!*D0ToV{c7dP;`B7OGHyNs{QeN z|H0N%od$mrRFy!*9Uh2lN;HfQ)}JO-^D$5#KUDiKi!p)8d@b2YR3w*bgQ@eRy(|rD zxII@ks_?b(<<)a0P&7g8K zOwc_iamY*y!1}FW3!q(MpD4=I`0XJpE@GAET>_TiYhMjA!{}cX4U}aKu!?ztUUvf$ zvXqJ)wf(#q=~wJqU8R|0yW!B;2$JAdW2lJAk{dwI%7B>(6ou79C%jhXe;7?tcUpqi z<+L1$t@M_QC`D1s8K3f{foTe>~*H1(tA(;hO^yQ2|b>n2_8U(uMnDqd$hn z27^#)`Gb-~zsd*v#snoJT6U)0@)LWd`C@a;;a*%p;Tl|FHDtFE7QPX4we@Q#lY@Wn?!rL+9t#L%5DRL{3R-NbNU`1w~jUn(aniNjRTfIc)bR) z!i2$+RzyMu&O!F97)T^!!fF9#g|LD#L48k8KTJ@J6~wAfB&6Zt;E7@4|HD*REo79G zlrjIOAds4xu#&K(s-lRBDp*WHQ37#NsHb=rK>+pCY`BxKFHc?nWOq@vsYbdZO6C(NVFnYC6Gg zT;9dRy}HzwcchHe2)Bfsl;#)Z(&AF+^{sTYUkSwVkjXCL>LG)jP!GTohur})BA*aI zp#-2~?8}N2j8#k=JP14RBDhc_-;WUc0h>{JziO+`JPp~8X!imH^ne|5Z61om#mY{z zQ>VNf4wV=J;f;|(4Ko5 zy0jF0^3r;6f#nCMTV^kD)ulfbtyo5Uoi7Fvw7;18)yhHoU7PwajboA3sAEq(1mo1do7N6i_fC^B;HdRjO-daW>09wd+BOl-P;p+ zVQao{P&-GS@_TUVq@C3xR)sCYdAZIW@Ofnxc8rRQf~L1yfc2n3&%Yk0Ud(hhlwWE9 z;--#$a-mRxq$L0Ftj$>|lKu)=*d$GCf}c~}V-I};?U(2962{czgB%ytj`r^~2peYw zgAV{tW6>F{Bfj#_iak*gC2EB7)y^(yN0%8Tkt(b7IvTNQ)gqrb%z0g1-Z`-se^zz7 zhgjd*tvG%_I{u;A z@za8D^-7ENu}s-s>RC?lEK~c|j;MOIWYCy%_2dUZVoc1JiFA7hq#o1KHm8mX{f 0$ except for states that give zero probability. We already -require that we can reach -all states that contribute to $p_i$. Therefore the left and right -eigenvectors with eigenvalue 1 do not correspond to a defective sector -of the matrix and they are unique. The Metropolis algorithm therefore -converges exponentially to the desired distribution. - - -!split -===== Final Considerations III ===== - -The requirements for the transition $T_{i \rightarrow j}$ are -* A series of transitions must let us to get from any allowed state to any other by a finite series of transitions. -* The transitions cannot be grouped into sets of states, A, B, C ,... such that transitions from $A$ go to $B$, $B$ to $C$ etc and finally back to $A$. With condition (a) satisfied, this condition will always be satisfied if either $T_{i \rightarrow i} \neq 0$ or there are some rejected moves. - - - - - - !split ===== Importance Sampling: Overview of what needs to be coded ===== @@ -457,7 +167,6 @@ from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import sys -from numba import jit,njit # Trial wave function for the 2-electron quantum dot in two dims @@ -493,9 +202,6 @@ The Monte Carlo sampling includes now the Metropolis-Hastings algorithm, with th !bc pycod # The Monte Carlo sampling with the Metropolis algo -# jit decorator tells Numba to compile this function. -# The argument types will be inferred by Numba when function is called. -@jit() def MonteCarloSampling(): NumberMCcycles= 100000 @@ -601,5 +307,884 @@ plt.show() +!split +===== Importance sampling, program elements ===== +!bblock +The general derivative formula of the Jastrow factor is (the subscript $C$ stands for Correlation) +!bt +\[ +\frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = +\sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} ++ +\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_k} +\] +!et +However, +with our written in way which can be reused later as +!bt +\[ +\Psi_C=\prod_{i< j}g(r_{ij})= \exp{\left\{\sum_{i 2$. +When $\tau$ is much larger than the standard correlation time of +system then $M_n$ for $n > 2$ can normally be neglected. +This means that fluctuations become negligible at large time scales. + +If we neglect such terms we can rewrite the ESKC equation as +!bt +\[ +\frac{\partial W(\mathbf{x},s|\mathbf{x}_0)}{\partial s}= +-\frac{\partial M_1W(\mathbf{x},s|\mathbf{x}_0)}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W(\mathbf{x},s|\mathbf{x}_0)}{\partial x^2}. +\] +!et +!eblock + + +!split +===== Importance sampling, Fokker-Planck and Langevin equations ===== +!bblock +In a more compact form we have +!bt +\[ +\frac{\partial W}{\partial s}= +-\frac{\partial M_1W}{\partial x}+ +\frac{1}{2}\frac{\partial^2 M_2W}{\partial x^2}, +\] +!et +which is the Fokker-Planck equation! It is trivial to replace +position with velocity (momentum). +!eblock + + +!split +===== Importance sampling, Fokker-Planck and Langevin equations ===== +!bblock Langevin equation +Consider a particle suspended in a liquid. On its path through the liquid it will continuously collide with the liquid molecules. Because on average the particle will collide more often on the front side than on the back side, it will experience a systematic force proportional with its velocity, and directed opposite to its velocity. Besides this systematic force the particle will experience a stochastic force $\mathbf{F}(t)$. +The equations of motion are +* $\frac{d\mathbf{r}}{dt}=\mathbf{v}$ and +* $\frac{d\mathbf{v}}{dt}=-\xi \mathbf{v}+\mathbf{F}$. +!eblock + + +!split +===== Importance sampling, Fokker-Planck and Langevin equations ===== +!bblock Langevin equation +From hydrodynamics we know that the friction constant $\xi$ is given by +!bt +\[ +\xi =6\pi \eta a/m +\] +!et +where $\eta$ is the viscosity of the solvent and a is the radius of the particle . + +Solving the second equation in the previous slide we get +!bt +\[ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ). +\] +!et +!eblock + + +!split +===== Importance sampling, Fokker-Planck and Langevin equations ===== +!bblock Langevin equation +If we want to get some useful information out of this, we have to average over all possible realizations of +$\mathbf{F}(t)$, with the initial velocity as a condition. A useful quantity for example is +!bt +\[ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{-\xi 2t} ++2\int_{0}^{t}d\tau e^{-\xi (2t-\tau)}\mathbf{v}_{0}\cdot \langle \mathbf{F}(\tau )\rangle_{\mathbf{v}_{0}} +\] +!et +!bt +\[ + +\int_{0}^{t}d\tau ^{\prime }\int_{0}^{t}d\tau e^{-\xi (2t-\tau -\tau ^{\prime })} +\langle \mathbf{F}(\tau )\cdot \mathbf{F}(\tau ^{\prime })\rangle_{ \mathbf{v}_{0}}. +\] +!et +!eblock + + + +!split +===== Importance sampling, Fokker-Planck and Langevin equations ===== +!bblock Langevin equation +In order to continue we have to make some assumptions about the conditional averages of the stochastic forces. +In view of the chaotic character of the stochastic forces the following +assumptions seem to be appropriate +!bt +\[ +\langle \mathbf{F}(t)\rangle=0, +\] +!et +and +!bt +\[ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle_{\mathbf{v}_{0}}= C_{\mathbf{v}_{0}}\delta (t-t^{\prime }). +\] +!et + +We omit the subscript $\mathbf{v}_{0}$, when the quantity of interest turns out to be independent of $\mathbf{v}_{0}$. Using the last three equations we get +!bt + \[ +\langle \mathbf{v}(t)\cdot \mathbf{v}(t)\rangle_{\mathbf{v}_{0}}=v_{0}^{2}e^{-2\xi t}+\frac{C_{\mathbf{v}_{0}}}{2\xi }(1-e^{-2\xi t}). +\] +!et +For large t this should be equal to 3kT/m, from which it follows that +!bt +\[ +\langle \mathbf{F}(t)\cdot \mathbf{F}(t^{\prime })\rangle =6\frac{kT}{m}\xi \delta (t-t^{\prime }). +\] +!et +This result is called the fluctuation-dissipation theorem . +!eblock + + +!split +===== Importance sampling, Fokker-Planck and Langevin equations ===== +!bblock Langevin equation +Integrating +!bt + \[ +\mathbf{v}(t)=\mathbf{v}_{0}e^{-\xi t}+\int_{0}^{t}d\tau e^{-\xi (t-\tau )}\mathbf{F }(\tau ), +\] +!et +we get +!bt +\[ +\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0}\frac{1}{\xi }(1-e^{-\xi t})+ +\int_0^td\tau \int_0^{\tau}\tau ^{\prime } e^{-\xi (\tau -\tau ^{\prime })}\mathbf{F}(\tau ^{\prime }), +\] +!et +from which we calculate the mean square displacement +!bt +\[ +\langle ( \mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle _{\mathbf{v}_{0}}=\frac{v_0^2}{\xi}(1-e^{-\xi t})^{2}+\frac{3kT}{m\xi ^{2}}(2\xi t-3+4e^{-\xi t}-e^{-2\xi t}). +\] +!et +!eblock + + +!split +===== Importance sampling, Fokker-Planck and Langevin equations ===== +!bblock Langevin equation +For very large $t$ this becomes +!bt +\[ +\langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =\frac{6kT}{m\xi }t +\] +!et +from which we get the Einstein relation +!bt + \[ +D= \frac{kT}{m\xi } +\] +!et +where we have used $\langle (\mathbf{r}(t)-\mathbf{r}_{0})^{2}\rangle =6Dt$. +!eblock +

    lNckvde%O26ptsqzKSsclc9mQCZQ5$7k?mwXEgPP zuZ?KCKy{G2g7nNLM|Sd$9CqGPRdzC*JQ03eT=e-L-6~UBwQShvnmy2o^yxliJW<^C-nH(IIomAv)8*PiGSzDYl}Xy;gUy3`)l-oqCwK8U>UK?B&xqy zZ?9T@O+Bx$J^j)dxrGy(q_q-PG}GD{;|csPB#pGe04z368Gh02*{%9K>0gAp;?-aPBaHQr0nv_wLcCx?Pr~NKSRFPK!DS!3Yb}^71ClbE^16sP7P- zm&$yu!$JQ8fQI@0c@UaaBmm8n;WQS7shV&k7+rqp!tR;%)K4G}uP#w@-_Fk)>1LXj zwzXWG1BZu|=)@xRZSjfCJ!lgD&T%Q_7nr%$)J*4WIGn%c6D<55)c$(G-Fi1xZ<|btUkfqALw)R+MQsNEoxTExk0c6pW&(LR#iUW6P?xS!=S;y!1U!foJu`L>7c@%SGl3UacvMpO-A{ zrt9RFe`ZzM&-fovahG19toOxe;BLYyNz&7m{P;7?Sdzm;-yq7AaN*xY8QVriS{YLn zqiZ{%+vk&paeB+B6&pqU^xud{dwM^)j??H4pvphZ+imof9${nh$>%Dn@7i> zw5nbae+VYyd=2gpiL;~yb6?*oLje*JM!_rcW`0iJ_{o(2Avu-ac4(!6U*M~FVi}C- zUpNmg`v$$bBcbG*1N>mEK2N(BaMh?>hRQ?1I&|UxE%rz+=eePTn)t`;h)W-~Ki%l8=8Ial1toxcKVl zSvB|vl1yD1Q^`z^1eT45CgNj_#N17CJ?21>kKq|Ov^#Obmz8=|ajrgdgM1Jw;PJUy zAnA@~vnJl0?7jUTTR1d{LFAz3`sJ4*aLmp1E;uWZF82R5E1>O-t>D;x@cch+1^Ryn zw*Tu^u(ENm@chrNfMjLo;b!??f)x$WYNndC)xsH#3Cm6_`X)AauL0vRT57 z5w?%f3O2kIm7=nlb5}AWVBYE-_x$l8A>nkK={41Uq)lH?ptNF~P!FX8X4X#v0}oB# zNg|{rJ`84D2GZcr*t&0MJ_oVx#jVu_%B{(>wx(=pQM~Doh2qU3wGIY`0YEt1h+KeZ z3t_{|uA!Yk`Deo9&x0KJljP&8+9TFKK$U}#Vy$m82_b=W4+{zrULYAYG&zJ-29W4@ zqr`)rkwLoMy8UTw4*H1gA0D{lo42=@R`)LqNg-cd*qS3U1Z{+(X{@XVQ|-@HD&Y4g zLIBeQyJX0=0Wrk)=Tsuj2Z|_*Dj?$*R2P(2j15DemhT)KK|4Q@v1u7?33-0|Hw9O= zAb^xlAjB`s&3}DXAVLVgZm@x?HW$3@c;<)pZmF3zQ8pninsKlCt$^%;bb)rXZ+t7f z8*Ew>Oo9OA!g{uwebe6*AhR37Bus%eHo3XE)h$FZZFt}KB0eOHzvvf(#ItQ{8!pM?z&7lx+>Bu7pnz1Nv{d- z=LEqn62zAz9v}QO;FGenlma@9^+W=LVhY+Ah$q58LUaXk517t!&1PO1Km>r$B6GFw z@Th)i96nwD_?FcJ&=6`SSI7R&4BYo>OoAQkeLdA}f0(bS8^(8b^9_9(pay{8dsFY) zKV9{%OcFiB$%%`o39C!UW{KnSdXr#bvNZ9LsE1=85TEbdQWU2^f_8yzf*_r|KWC5o zSC{lnPb)27mG^E?+ah10LtGq9Jpl-9X0G ze;vu!!MQoNIJ`0Ebaz&FW6x@D5gD63*HL}Te$^?Vk?2s9_=f~#rQ}4V-5cQL>~v1S z@-EL7jeR}uJ?YH68}ObCY4Zg7UtNLNJprmh7UsZL6u%3PpEGp5^r*$zDLwlq@!&&T z1HverjV*E`q{H0}7{lf!LznVe0s6q$Ao$ImKT;3J?0Ft4SbalaA4)lV-!S+-bUkQi z!I%DTeIkq0okDzb_7{H_#&}@DiMUi z`vn{#2ac$I2IaFZeZ{;Kur7U*D1c-g5f336E_?;$wNSBd-!sgmo&&G zjQpt1ZgiZX+cXS3+!tbfCHAad5^Vn|;7RelKxSh{gXRI|(*z9B=ove>W%!F3Mo%ZK zm!!$#@Bg+k!My?wp3mGlK`#sH>~A5Ya?lfG&y(ao?V4@E7mV4}m$qN^Uy?{Jf1tmY zNEB#X(|SD|h2Wh(;YFfes;H1GPyq`EQRz-Tt+sD9O6VVu2X!Y(-r*sC4ZHvgBm1ww zS>B)DLJAgy`hcgX#`rn2U2ns)0gBA$rQnSqSM}TV`$gWrjL#XQue_));%Z1oa6Yid zi<$yK=P$N^D=RK*rw#z7~xSY`N3qb zGbQ=Jkb7t`;_f`~s69k=<&qi_A1K&3)Cbfs<4*l0x~*5*cww&_}JfeuS-*Bsvlr+*?L_qGPFo$a&5=I@|7^ zPKjBY?lEBS9qb7a2|&Q4Wn2zlLS9P<|4l}~Hsc<|ChVPk3{UepYcIt@ap1<2$x0&ZDj6y8ktDjMr_alR6}~kuxKXeg z-W-S_mwrc()Q`SrFtB6@h~9P63yFCYlQg#GtwK*V!mPm#EZ!?9B}woJC4tZGuhkBO zi#x&i>>)BG1_*k-ek|!*(2#0(8Pc_HSrnx}{zu2-!KSM5li4k_e)GC8`CTD6hbK=w z4CBE;{+TpU?LkKdqPA$6+D*`=mrV&0%JqZ{%fFvh>syxK+(T0c9&oKnL}X?d6fWeZ39 z24x>I=-5K-L!6#42c^%IIh4~~?!Jbvk0w8~ivZ5rzaOO9Gh<6fbd1UUyH2Y-4>MYp zzFPPfIF;I58B@9yb#!rvz1AzuWq$P}z?$NFQ{nV`g@yJ(?9}5|jx{0bwX0pB8 z2!Ka$r9w5+wG45^Cas1Icpgb3dNvvKaH%*GTTDNRN z&40G!hUVU8to4qzvz(Z)g^VBT&02GuDW4~?;SfA^pp$WWm#PObs=q@=t%EU;PCP4< zeA1!paIE_r@j&PoI!G?noc=r3uGP5b?}J9b%5(L#v&zr))wNtRcnSpfg6vx8G$4_v zlV5xLmlLY;`hX+EnllXcoRy31X2l%sTnH269omE2;&fzakH~mhLvc*j^2UV0I!cnb1}1; zCC9Qz@Bl7C{h82rjBwPv6A1K?DnLVvOZSzGXjgx*!BRQMdoC*-HS5yOheBNfxEd-* zc6@_NC=O)^#S83E7lWBUF{TZ9?arBN3q9tr=}MlP;;Vgsh1b9v2|GU|^g&=r%teq6 zu7ta5>p@R8^^+KCQAj1Pd>i%y2U#K~L== z*klVBine&FG2`~kP>QM|(Zg5VO!!?!br1TWLb~osYsv=J=-)i^C*8YYZn|toMM}!Q zwMw7BlRIYQ^;qW=4~hSb#XxQ`Vn*1Xn{mj~97!tsU%_3%w!by})#?r%eRIXxQYkv+ zo&RBJo0;yWu+#vKg+|QZw*RCrMTQ0u#t4wnQ(2JC44lsG zag~Q!Lp#s3ys7nhFiPGF86in=qji7r;R^Q&l!*zX}aW?U%!= z+Qn<-TS8>|f$l>V=TbgdQlXuwH11XEqazpT6W{lqv*t@e0;~<`e###?i+8Ao>_<6D z$XwcE<<{#Whxn!A(gq@R&HWeMSr+&s(vx|(K5B~v+v;I_PqVp&3OrRw6Q-tsAo}m_ zfftF_y4#uc*4mkC1hXcMT1!JC+-?pNhxQkex$t%Fz2}XTLEY{(EG;;3o${BxDg$~R`ot1`tD}!_<%|- z`KpE|)#5|BSk%wTNGL?EIB3yW6C(wB2p^AMp%SeR&mxc;A+!!oNc2l&JeKkpT3X#s zq_=FX=70l2li4fP=Hs1-hJZBGqL9<4ap2wbB@> zU@bxnEQuO!S?D54*m;p0gX~hsWK-`)eh@i{lRI^!+8Ap)*pogOO=@%Qih5Wv{kHLS zU+=MUkL=8p1g@XqWXomS>6?osqe6HycVSTA4j>%wH0->H8Hw(f$4UZpUSRadOxX2L z*qXau_oU?hH*hOf^!pw}A?EF^f5y9(BFN)?DLOy7wdaq=y2;~yL9ivIF+-4I8jTOw z4pqaA5GccEcfaE*J#;$ye?e?Zn3~x4tw*m(buqY$bG7ol=&S#=n6aH>zW=!5QG5Tf z9|7cHhUI?I-7QtBQj8QeMKf#te!=D7K)}5@UgE1d@s$qCOI@rjHW)pP=1}3c8_p0#~aj54t_793mem#)tCuf z;^t*6>}(f?^!Qj%PCuD#z|*R{zoq~O&VF97}A$7wH*5l#y(??)`kHvp~ zjY2OP$5uR=@!yv0TGu>E{z>~$Tio-b1hde@iCXR%ek`d=&p=ID`~HGqfIZ|S{s4IS zDYpWfBnz?JH7Z@$Spy+)E~;4Fqf+sFORmR!owCfr+fVH$&ubR&m#G+WVX`OTH%H`Z z8NE&&NY^!dk4a28L95zX=OLlej|D;DvRt!x}L9o-)<(#h+3n+yW7PHO{65oz+j-kX1mvWBC$6 zhRMmY@LSz5R94J8YV%Zn`Hj2FLZBticsBAL6tmUZ>nBqyIEk=hXv;5kt;f*}q=+604<@Grij!|dvvuhZ~}3JtUno#H*%DN~@3OkK9I zxGMYG?V9Tcs8)@ZZq>)(UV2LZ@w6Tr`17uP2z6Y@j_r>65j&fLjb7q2dz0fGUV~kE z58u8aj5>{#9nG>nEDzeb`&fA7S{P5Ip50y7JpE{j_RjAOcyXowN)|-VlVJ9iPvzYv zrfsLThEJL3&Q=)k+_iQJ*%H7gV99rg7&VVup}D|4E&9T|Aluz8n^l;jBfLDCabkgt zFJW8%P3*=J=}*q8&CNtIPIm4H!^WdbO?9lQj^sQtc#P{2C_N_Wy7L*Rq~v)lVc=M#nYY4Sj&BWf6Wm6?czK;|H)xdq!&N=ls1a z4uXOid%b?Bd0*Te<~=(cIZKmi83Pg)$HSI=7j;qQittI=9Rr$C>JFF1W&(P18?)ou zE462{7K2=pCoM5QA>P|^y_5g_rZBr@5oW~Y8)-hhEWa&XJ$bm-^;dCzl^QeK_;sH& zJx`Nv9-~7Xu6HHEU;s$1Qd}aC-k8@jP@cvax`(p~AQnk_FHOXIr{yl90tJ~oaRnn$dAtpKE}p|UsnzcMxF;94t{ z`hynrLVmSvOIeN^&*Yw0;i|<>=3aJX*QVEn#fav@9JjC-$tU0n<9h^kwNseoJ;b8- zCT72zOm4t1Y9l-v_uytYy~vBXiZy2)9d<+(3=^%TwR(fzyTF#FI?)@aR;i+*}!l`RM3*BScGlM&S{Q?piT_(gh+--MUtLO4P;##I+;8 zdtB4^PcW>GH)3xHH^N@*Q%-N_{?us5OKy!$?hVC?9s@WxoBDhL&o8{mb7iHQ`gbZc zUi9FK=gAe|#ynDm=tw;S1rr2?6Im&^r-j^e8qaAp2@ zDd&rsH;|gDCB<{9u|}2Hm;YJLAy}fhvt)HYaZHDlPBE!j-)V>L!S8|)8s*kPEFE;!r3uB|tP`KDG>c~beB}6@9}FlG*dh!5XycQ1lfK<K&!)4yP3 zG?_yAR`S^yiFG-iNmvCfM0J&sB4ijle`;0saPIKUtPOS)ZX7LEZQc5fmhv;g38dmA z2=%KYw4TL{=Z&1|0BL8~x4ScE`tPI`SY4ped}6bYpXrBe^9*Z^4%<`Vp-%f-f+Eez zA2J}rx=mYr=3faIaZ6j1uEx9U7>qz70=!w`8IwE7ov#dV`(MCP`4vxpzqKhBZ&+>5 z)c>LC9NWVT!ZaE?jn$;FZQE?z*tU%~YMjQlZQHih*tWG@T-WY?n_n<<&pdOV<8bmk z8E2=@_d_)d-%>Q@g^c`8iWyNUvS)$wHTWdg|MS?d=mdNgr+_)ndE30}0#utnZ0b?g zH_LO{=c&?Lr6PPyz}5Y8Hd9hDV;11(U|XZ+(Bz@9xMHc;JH@7|5Xff1rNiM=KR;IU zO8mA)#oRrwL9ys-DEBc4tuo}@N+FHuAaW8x1-2w*BH9sWg zEE=@b^xih*_|__!BN%nNcIwMYwDEQ9dv_Fy+-XZ?X#GnUW&8<)Q^d!jy}6Uc2j=Dj zaXxUMvZXu0rg#4+z=Ri3aSPV?@9zg!Ska*H3P;s(1lV!W{rl>?sETwM%Cm;f6``>^ z7cp4$X2oB&B!*w-3Fvq)W{S$QyLes?(<;A9OE%6uE)MBSj+&i*4!e!!ptO5?EF6 zLDxp$v7tC?E{2!rxpF5Zwc-oHZ)WHgC6h9c7}!VTSa?>#r-wc3*8o&TjxT)V@{)^j z*BNTseY-K;qQXV}onFr3jIX8LGYp*agpsNBF>X)@l`iiXxZ1>F+?TZ(lvg`mx4!u+ zXTDs5;!A>>w=oo3(Q>aJ026}lXD8hUKJY&?UAVA>A`Sqi5qvPkRlS$S3Ce~%biJh5 z*p?4rWnq$Yrn`MkT_8-xn$*&3TG_)iUI^~1Cu|8+eT}s|Zx$^%e24x~yU!lPO5=n5 z@BH)wgqN4CCw3B9MuU3&em|iIK3i>-Psrq( zh(_es;3BuL-qqAOnV2T-j;YMS_e-$^Zd8^`cC-O169O+Ma9~u?+;HsBV)$}=_knM| zxA5DamRIfIJ;-r`B}&_>*gE`7lj;eB2c?@B)T3%&(W}Z|%+1rymJBr`KYAdV%a|`1 zqZa686=x+A@yZaKT|e)I^C8obSwM<)o1}uiX2^MhH5|pE(giVJ@Y5X_&v&5(t#%)g z`r@#Jtc92nu7Ls2#A=@)DMa^TOzzMU&LINaUBfQ^C{aA@$5<&Gjp0wv@El@#qX_XM z4K>_+TH#!cbX?Un6+dG)ju!R#)fG7+XHx%lgJC^$e0C5pwR}I4w`4!{qYdNz z7hEscS^FP&V!1$jvZzuj>e7UQYkM8;f;!E6tY&s6`7Drniq4IP(VodP$VH`UJa9;ko0j zn^`_Z00;^UW(DtI{f-g&ccZmF@R#2w<-mD0`mk>_cqh)f%Rfz?uMGkC&((`$I}eU% z)o*T(Bw27a>+smDCgi0t)JK-x2l^;_z`$TI-TO+8!_iDLLk_ZMpu0!!pAyg$(S~_z z1#vwXpZMW1xqt!mzb*$qY}P$kvG6$LGal={jsYFacG;ZO)dn)t@=p%`gKLlwi9I9y zkT9FVF;xWac(EHT65F?r>Y%Q3j_oI+(n2Ygma?BseDlz{he2}j-m4zy2tfhz4TH0{HRt25%FU~$P%`d<< z=dskvVZdfl$Ce0R-d}%me+illFOPJV9{AqqGAz(nCdMJhqgk8_ZaKVN(+ARSzp;za zU35y}G3ka;_|$S?($UPtRlt?l;7E^~83F{YhH3pAY>ucLMHUD}Vs$8Rdoi4McAcyv z+*6$EUWy3s4>uup*`qmWtLMJ!77b%r;e=U>GzpUd#T3{1SE#0`;*8UkW)GNFZK3Ow zr)^^~E9n6yoxuv2mYSW^)9cL~DCpYY_KFAIyPVo(Vo^AI{GHXy^x(In+|HE$D3vVw zr_f~y-HFbcxuGs(*W#r13WhP732;a@T@S8EoqdrdpQsoIj4s>jJ@=80X^_R%Am5ro zB3{xQJ!LacgS~o!YW+DC+j(A^D0LrnNqEog$4z=Yk3ltJ-oSVB*)~eWr08|-!w-`4 z@$*d4gr0dnQs-x??PS;I;kBA(%>gsbGQ$UzE=2Zvu%ONYN!v8iRX1FCS?KZl!6h~Z zv_4E13ZG+Hijv!pB6QcEp--$(;#$QwXL!E;DJyp$lvKk893TwN$2iwCT`@h5eVEBv zGy=u7Zm$_>8FT3rd0oj{m)T$(<6#uMwGGqfOr!wSRUkqc?2lpSDX99*T;P1e{_zNG?y|@pBKj=Xm4wYki&O$;j!fBvuC>(Y9pd8U zKa^oFl2XLIg~b(Tjbl9+Ho(I7(UqgbfsE+c_tn(eIP#q^q|w?x8+&2d+(n+hC6-g` z)km#bJdDaTvBlL*s2hzE48`9yImsyJe{G#-ZZf#a;mpR##$0-vM2%vFagUw;(a)qH z^TIm0*{5_rQgFVx(~9x}^TBNw(AZF#Rp*pC+3eZXT88BM2C#@DI{|&|>(lUy`akW( zZ;pzQU3j~ez4|X?ZBQ;_`sJSu&(L|0NC)}T%I!0V(;8^leJ`kPzqQBvd6AmlvIv%v z?|Pi&#OKzrU`i-`xkc-p`YfL!j#pJBO!C@niNQlvUvXB>$I&znqvDn`lQj*jIdIa) z^QkiS^V)TMo2PJ*W(Fv43W;%oW>Ywcz#dbYByXvoc6k`rYhumSlxv-;FXUYe=ZSZ( z^3*~&Pk-ap@m8?spMaC;7Mj57w9(M!{gW`gsJrruXZ~Pcp4XR%d-?Ul;Akjp{qj2h zsSrNRv%_NF5b5A&ps(=QD5QLXG4vosK;|DtySZt!-Us(drZm7aWPl6mK|GM|MnQzVK=I< zbw?>@o%mSuGSLV(cU}Fg(JAdKkt&+Ial=i+SCZ4mf(vXl5k-z5kiE;Y`3`qTyK%!4 zO{iq3#3_G*XxE~at|@iKxDScRzz?g|tuA}#R_otkVgS>leAf7!(l64yR}%R=(%c|A zhLR12J(*p-ZYA=5iHV8%#t~r;7t_ZV7fJ`K%`C~&ysC{3vmuufvn`3|)8$&S zaiI{5_ARTNakX$IM4~-1BmqpR5UJt3^NTiGg1yP6lc)Pe-S9AH3&z|{&cyv{2IIrd zWIB#ZWQ}`Mt-yu>Q95VGbgY+wC9+1xkXgxhWWZ^?t3lfc*H?=ykD-E~M3WD~%%NwD zB%sXxk!?Mg+pNm028k%)ybJ!bOYK&H5ya|6LL%;%J&V~#B1FRD=MRY110{ITvfy<* z@AIj0kAU2^FYc^TjG!IwB8?PLD{c1OQaQX3-w77&EenB9qf@}Zs{;~FQoCDtIU-ZKTDG26lz>N-%sA`%kDyYRR6^DL*IXUl;vqPlbCwB(JSl3VSsg-BN0rJ@Lc2ssM?>9{ZQ6GeRFNrX>5U|# z5%v&-P&|?TXInE?)8DVcH#O4H*2kc?c<_|Cmi8!nC%hs|iE}#KLs)4HrVj-ARX~Q{ zDLcR$K10xL!e^{4>{rw=1 zn*;alNN-dUx^X-O!oS)`a^hL>vIUnsF~<^-X$KV#F-U>Gl`Gvt_GHZ%`3L4bDkH33 z*rZmBewt3@nN;BEiJ~bPyE0}l)BxlM-dVCi*@2`cFYUN^kqZS*`#RvSo5L8*XW&X| zCEXd*gQE?Q2h-0E%*??COS!{R@y{B%eONXZZR?OtgcoqFCa!~QB#5(HQPUF9R^PLK zLdOxf-iA%q;XOw?Js=;oE-cYMV#_ESPxH#bx}75b>ThBQK7NabhdjT;>cWb&r!zxC`H+krj|&LFkPYDb)g~Kr)mW{DE0}{)}Y8RBS1AnQ#8 zBAmfYF5|13K0JgvsKX+wmY2cx@hN|obxc9K94|PJh`h;(D0Bx;_CFj=A{_6qza>~r zU(m+{P09V^m`e0P19&@BQybU@j-L@dIbeR4dTM89zSF1*w5ZPd0I%47Vj(1NY6!I*#8EClSMN??f;0&*P_L;x$T+ ziX~}!9hYx$rs3QW)?Q|-MxP~mwQfZhgw~+d0E!}O{Q_kIT zQ}l1yAiE#3!#syjq&UTB1#@_dIKdE0bUn2-BJfsQ5*% zjhp(T>V+*>QUH$4Dx{~l7iD9GMW^q^X ztYIzJaZ?rbIEiX|HwZg5I`bEWsfXRS*6t#U*dCVRl|WBubM|#X!FjIOY7m5syEJ=8 z-H5|B<~Ec_N=IQNDP~U2t>kCmlKbnVnEnt7tPZ34syUbc^l5++pR4D{t0KrGr|P4E z;!;}QmL(Z{7@~mQ>MaeX zTGj6Jdth-kL0>C|w zLon#!ssA!uWItKef6WkC`HrgkvpG@7YL*4rc)$k!Z>*G1!pFOArd^QMO|UiRDRZAi zzALbdw(=n21kLO~9Zjnz6p)bgD!1MIqaa$xp6>-JU3Xr4r>dWAA~$q?XlVs^=#U>| zzJ*2jQPS5gYua~<=`8W&jAHceiNC}+tjk@`H?`(s#d~~C@QnRRnCR`2G?;n%QkDrxVhK-e%PHVsbYWNaZ>cyuuLhGb-OYyqI_XLH4{okP& z2c5q+UGREW)r6)(pqrx)`Ru3m-ukiLi4VV%CX9%)i--Q`GqmP_Svsc{o3dKM`HuAA zqieJ^Cp&a={5BYb*!Oc@!0}sGQACy}EE)|~%R|xhD(aS$ZPDd6k6~DFq3@i3wB0&D zkvcslgW`}zFn9Y%%%8n@^r5XiEUbO5E8356R$-iIlcrK{u8hZN{D#0$08f$1r=u|b z;v#6|Rz-$}9vKc*wK#c}IHyATV7u_16H}EOjJ^~ZByXU28W8W!_da);?wG%_798j4 zqrfSm{W*DwfGY6aeJ7EdJ0Ix`Tn-#aylVL|8#t*_J4Q(q`FD4o5Q8JhZ8lg9^^<|T z?H6m;#H1vc`#eNCA$^GS-S&=q#fm)j6?KmR=w{)g z-@@}p^3%kr`zQqE%pi`sJdVPMcMfMKr;V{1nN{8I=~JbPSC)!RWBoO6I()#ld^rA! zBPK_snySbfF<@yO$Us@;Ama#B@Dav@@JG2y8&xJntOS~QY$Q;7S--0+kYA=A8{geG z*4HzS@7i0L?F2O$d*pS#9|qk3aFH8gP#$1pu`{J-WCS`1kMBgVaiK2iS~%st&qhBSSSteF;4i?su=AxJm5RB zX2miJqrryNB|?Nk{?}FH!-}YXz6N*s{**}Yx?ysWg2=x?7m*ZThPcuKYKbKl>s2Br zW}Ys+RawQp($X+=ne`6)CbprOedBZ#a`Z~+iakCFjdCT{E=sQXR@4Z|1ST$gW!xFH zmH4eY?5A%W1yluf-wc1vUy(!Ix$S0_m;tdShh-YW@kGpf+~fO}H|LFnDV;g3P2O+0 z1TyU3x9C7|;b|C0TV~$?A!67-`TN%;cl)6N>Bi@|18_cus^CO!ev-{5P0dk*$-Q)_ zs{GmUzy{VC$PeDZ?=jVK+?-Wr(DYjfslrDi3)KwJP`z$8e*y`&FMde1&@7+W&~`Z& z6nsXH1jBpT36`N5b(Fy&v3$+KYu8>ZG-y(Ut;%wG`PbcuS%+BwY>1oThKYImvI9X( zLKwD-ixM1d0l8?Me&%fOYA{jMEUR<>C@E;Kt#c?~?e;QaQ1-D6ynsd)r!w?jN=a*& z=5WQ-->TMF$#NTvaTZx6-zYkYa*NW6q@^X1R1L-*XApuxt*Me>E-mKcgC1dlKaw<( z>Oz{?ITWbI%dBYtD{Wr%@dju&Qa&^Acp~19PM1RN?jq0?r>FAj+w;u^QdL1TI`;2g zVt*#;CqnBFkB1{#rX)MgYa~kx$^a?`SdF}ICPoKDa3P&0vS`W}KHrV650f82UqVyD ztRGuC?BzZ+7bVReq7q}}oVeuK--z4NOK!SKoC5>dKo?R0Yq}{y*Uy9ax3;dqO?$J6 zL&9l!mVjTAytmpdt^MYY%^uH$F77;{q27 ziyAx+555|}H#B>)9mLitXkUsfWQ9N5*-C;gWUMz7-7GYX=I2w}r^VNtoicw3H-{>R zx#K}SM$}R*_allA`&(6AO;ZNi@*Enl`NKsT*?sjk9CH+`SoQOR=(an+FVyj^!8#`ng9bHn!iyVjpLMh zhxy4iXpIs*jeDLj;yyY(6j|C*&_h8Kard=@QxMNT#aGwTB(nu%tPRK1z~%KzkLJ>x z1v92%Y0_a{d>}^e#^S8T2Sm#ME@+ucN$lqWkeqQdaZx!RYv>#~1Nw~;ezuuM{)o(S zYUVF3{iQZl>~D6bBZgT5*9Q*ejo$n3co|KnCi}KYgg$QY$Vz@3ic0^tc(Ji1CwzmK zL|J*M6}XYld~|}|v}MJ-OrASB^>wGi;ssp3d`IYPK%?3r&d6t+z$w1dA$~j4MWUMr z9tPGDZHTfLcF4B(Zm(PUUMj!X%0cbMqa~%ey@!4^pcryDD4KK+?2SmX%G6!&`OCE$ zWPV;8-{rMuVVVmb)(Z7sXi>bGj~ke(U?KPm8Qz`zv!A;sJF-j$g9PDfB5UJDoq`k%yU@H+qI)QO zUi!f3(q9eXt&+F$>(pv;l($U&(FaKa+pLGJCY7wzo6A}73u)n@S}Oh#>X1EvY$t}s zfZ)blKYIIZkz5H3Zsx()`qF!af)MIX;}iwz&_GrDkz^^EyK}C#gpXSz*FK1iLum>6 zb;AZAZ%uKx*HW@h$j_3+qwUooE2mZRjL?7$f9l(m4Qy%I z(|SwNIX4SNx8BbbyW1&`X3i*d5cxG?ZT}qQYwbE(56w<}+{B6a-DtH*x%Z)v!x3d4 zcPM#L@|F&j{Im}(OB>`x-OXx~t&kaJUkC9;A(UXXAa#Hrt+?^i zLAtLGTI2mf=U45<5GmJr(%nh-m75Yogng^CmnKwjHtOI8e@56*T3Wi(KkM>&6s z>e|YYH5xqnQJ_x29jPVQ%Nz=L4R(jAm+*b?#S56%?DR+k2l$CNTS#zUe!$C#_0ie4 zo3^4`Jhsj`VoY@hcwVr))km3I(q*bVj@#piqg7SEZ(#Zo!MD-~&8^ySR4+|7FEl3W zjGb?&GU;=}Zmk)9bKH-;i{c~>qO6ZXe$jaFf59KU5VRFFW*q7&8(`#4j{0ZS(#7Pv zuPxCOSt0=#GUtEED(PD3*Wp!?)KuZbR~6ey9rA|ogLseFo;PcOyoM55da^_~|47n^ z>o}QQtuVX2ix&EJ^y|+onYjUu(~u8iSRIddl`5nJGd~i8h_5d$#aHBckSIwBkjbOP zXUB8L7VcxaKGh8xAHlDx;z}4^8u6|G|tUDn`-1y7{T_|Wi z6Wuh-l9lt7j)hp^!jo*ZGdlcxBa3sb_5MZiUEm%b^MT-Pu>vY$vH`B-;IO`hVGWM@ z+OZqBy;<;FwtXMrPDGZIlDj$fF2?Say>;o9xq+Y7sjU*pp-5AvvYxIChIBc|@2FEvVC z(8WoijY4noemcf=tZO23cMfc!``mhG>l_D=qQ^Cwv9{*Gre(2mlOaG;G8pO<$!jTX zJoxK*wcLjaS3yQFaqILVW?7posCC884Gq_l>y>PU*ZxpE?cwBo{w^8SOe>A5Hl60% z&|w!@wY84M^v8^`VTEd7(`Dpivd`7GDXC6rHRc4Y_ya4BbKPw#4b;oA28fvt!SF`B z=PwYPQ_GD1-=h1k5*-`Uf0pRbQP?@z{!fRFotg1pg$@IZoh{w~j|ym1@#0mnAOKXu zSDWLG`*tlV6eb2+3T&i|Mp*Zm_mtMSO|zIn9HvsZ_Sj>krLD#6+EzqoA#EOhG9SgaOWug`suP+xK7H{D*o9ldd7bD3prJ-m5mUtQIv9S|5_5%rSfVEsXPw1%?c zM}B@K4w?uN+%H)f`K>zZ6XIs&oO|ag!N#dhB7LGuJ%C9(!V=k7!dfENOBAiD9 z*~zQs)nPG#5THox-IST56Q)31<8&cxhYZJyqpxgZhx###(gTn!=r9J9$dET+fqrh= zO0hr;T_7!9!7obt125XYgt;T@-`qW)VLd>g)q=j0!Vz)PL= zvSviE52uY-O8G$8Lj$ETq#J+ywqXxL@D36$l1_AwYyz!`MF}$GkH;Y(m=0Abhk>e! zG^X6w^cKb`0|Rban7_y9ktK-GFHqGI$T*h$u;s$GYw^ z=#!#As4DZLep5mAT@nv2X=nul0MJk&g-Ac_fUr?PFro$OntvW~K*5j?3>mCSv$VkT z+1H-x%kmENl{n+CMvHcQHcMrl15*=~#6kH8*AH z@NDO3Zx9}J4PNrX;IWHy^xF_2DvS-Q>U6&{BY{1hj$b)^j`3JOsWvZpFhpgZ;<-m2 zsT@R=tnp`OM?MoT{`@;qG5R2>(kTq7C8TmtZms3<-V6V4)>-~FVj@s=kRh-X!X&2B zA@#u0-$GKyaTMz^Ab{z~8HktifhR^9<9TNMU|M(xXx0m1a{ z0~cpT)W9*cFCK3db(jK$_2->2Y*GHPkg|>$h=1cN3D{cepk0(VNirl_rEmUx>#@DN zoIH{4q6;~rQeyGVsL~r&J)6H-#>6aD@uGwh;W#Je+X$t`DbM#c6h=VjwHkuPk0w97 zh%AgeQm~VA)Jg5_9ic*%!bs=T3%KzzGW>$&sCB{68g4;lp@Pwj;S@^3j0p!5Sx-Y( zX#t8JQL6Q~LKb~-i{xyP+hSAIa{eWW$SVe>3+_;b-C0J6#2B?_3L;Wlvb35EG3gMw zwb7&gZj5ZUn%9z7`8q7RJ~UQZ{i|)!%dov;IPDDe(d>gTiA&TRic%pcWO6~K z$_sY-Pi{I(GmqC;^iBUmR2>?%p}jf_TOjxS+`+~xtz6d39rIl}myKqclrWce~z8b-o+}DJVQ3qU5bCOL4<{`UJ@$dUorrr7SZwZvz}%trNJ8 z)RJ9UKWaD;mH`7Um2KCrJRw6nRMU zOQZ#`>*0vWG}JC&^mus@WgA_^d(&o(S2!A_RBf6B)$qkx-khbC#A3{6ptI2{d}h={ zUfc)%Naz)fn_;4NvEo#|=Uu1)G*x}V6=}TZUi78pvZ=Le^L!+UcP!X>mNB&k+yB(b zjN2ySp6S zZCbUj4O0YCa&P8*8hvl)QeWbORK>8mu)kk2vN>cliybd6_;PBiH}xJF>jh?xczy(R z;*I)4_jB8p|KNMIRL#UEYy7DL1o74L#`8=l9i<=kdiQIruK(pO|IWF4a>BE8L@?F= zp1BKHt==Mm-iC8jagcNZHC8*w8{B5ws_MN1w*5JEmgK!9@^+nCHv+HG~< zS;cJ%kh`T%o$v>aWr#GbB&WxHXH{PE!7WDf9njwkBwbIoLxS%DMn((8ycuLpbOo#9 zptc^Y7w-|(*RQA8*AOnz7QIcjI5uz2Pq<7@cij}Xng|vSz6m{?c(?^=p|e~hZXjh# zT&z8l=61|1H78=Rc5-)_ZcVXoCR~pcL+-fP+HKH$$;!8`B&J#xikz3gKA?4CCWnxh zK&^JC`(ZVJNEGY<0a|2$t&PieKicp_fRFj|tC-szSdv_d1wTc(t(rlnPQ=VXkb8)V zXNA@|vP({=iuV z4Eox>NyPkI5VO;dBkP0LY9jmu9I2h|Qw19?0$4|?cGUvd4|U-3vzH=}SA zsifd#t-x#A$sujT?fFku~Bv_83Sjv4AGdA~o7eCc*2l0Hz6~+b*qYT1`<&0kr z$IZeo-KCu%cgErEY&T^A_6*%L%X^nedDC%~OjNDAv`%6Fyz#--Usx@SR*91}C)NibCLIvBLvPS@=ZoAugzJB-{Tz02+DO zmq~4Cx8W>vrka=$X6t?|3K$hHsV~v}?Uue@G3W(8#zN%QmlmRZ8i^R~y!yZQua+&C z-?`C=p11Yo-jew$Yk4A+(V?mt%FK1Gj~2gu|5;lB?3kMxN)l9rT_JURmEFi4!@Hb} z{_wN|Hv8{rkI7AFnKNB%H95JEpRlW=d70Ce?@G5M&ccDNn5B03Mv29nb#>ihL9qKjf!_#Zh1O90k^>sfgi7bwekBtB5X>7id=Ygxi$w9BS z^2=T6M{{+9#Kt={6;0crGtOPuG-`zDcsP&(RF5?@?{6sB6g0}VH{|A*>ui0=H%kae z^7S9#6EGy+v-)OM)=)2Idb1=rH5$PBC=1urzpcE{J18emFuW35JMm?Quhlks;tXhv zR(7s4FZ0&TEIX&3$epBo*(eR_tWiIu|KlC~#H%u|^YY$Dokc?tvRli%{d*C@Lk8f2 znUPbVZ=JXQNYG;_)rx6#g3LFv`(?QHi01*-$<<+J`7GEf53}J}fu+_6 zdD;2D49`e0t73}(C#(MF^1s6>%m47HnHbssH?4B~qgDSGpPG}Mh3&uj)GjXCXqLF_ zgc}=7Lc$Q@&2yQkbA8z0;?|7pO2SIWLIpCy3Zj~ATGGPEq@;yf!ou6QuU$v(Q%}Bt zuYfOO6;Jh>Z`Bdbk(`f+FC@=OLMdVK-)Az-sPtm~+rOy}b`7hz%t+*qxs? zMQIR>HeRC*czy}&`1CO(#2)K^ir#p4 zvS!3P1bq%DGLH{e zU*F9S&Xa%(%wR*gNC>ee{8K!!qkP&p`4NH!fQ0gZ>>|2C=yH4(rd!p|G~#q30|Fc^ zxIOs$yP!8AYa%lQLB9Be@-QG_fgVPUH!{eSKzN8A22yH5 zN@Du=bt7+|dF`1vaRHf`vk=4!toLT5%3n1s2)jF=$S5BN0Xa{%47bPqEk)lzPH{`i z(rNwzFI&>D80BE#{TDfm(0(;3oFGAhe%>&Uv$x2YXyDJVxomdOH=l(BAPOK*5_!rX zwv+_|J@|hJJNS(p96%Iq*6wkoK>VZuB3LO9g(o{wNRZQy-=vVU`=8=@AUU&JFqvkr zSaHHf{$Ij*$C8Y%^!}f9FtB+ts~@1hK?Fzs8OyLi8ot2u?tXmv8G;brBZX!Sogjtc z55FLV9v<92RU9|bFArZQ>%rLge}K-4ZUaIFiq1A1$Y8LLtt&zoUpb^fMM2MAg3j_t zSTVx{q`zlUN4nu*^SMZbN(A1I69kAn4Riq!16G4j}qne)d?eySN)4rnehV zz0YPy(_29f^Wzbb&2c@hUKJ3Y850)lq=T4k)`GE-_hj@HQa{=5=3O+yh|4Z27CRM?()PKn-|F|Rp&o<1cv_K?p)Hv6~|Xu z_v`RoFVuDugAdtnf7Cux6cE|^e$TzZa~Yw{C-0EU?k`fgShJSs7{s|PkaGYTO?qg{ zm6g9O4@^GRI>p?3az1~~4DpsnQJ~g6GEqlM`*+1+uhfg9PR0LDU*H$2egWe|S$}kA zK~y#7-f-7U&}M=;Rre7wFLpvja81}o#2WCzhs`&-)y`;dW!^6<+Z9j=5_=*1)p!Tt zFi-M5zQ6VzBpovhJ}1aDP+SRshZnv^RT8#yU%!qTm$jIeUypRJPxST?U{7G9)*OR- zqR?x}uekVicNbF6!I-4xq5VfxRgP$_QW_ofNH5hkQdR6`qCdXec6CjihZ0|iO9}%1 z82GEIqm<-uo$axU_{#V}A|gV&cejip%{Ed0z?&-jKtGggu$hvqG`0a0E2l9)wqV0G zK__JP_#+1{;#1}2u(H3FG8dw!8jSXLjG-0gJg!567nIgS)!y>ByTrNKymOBR?!LlE z(;#_jM4NEB{+l{RI;w6NabQ=fn}eh5MQ5G00SZmF)VAHot7>m0g$FR-dc-qC*SCxy ze>ou7ZtkV7(Y6!CW3mGx@a>V@gfOq3j;Y3HU!HNMG~d#VEZ!(em&)6kNY)^;p@G+hqLXo#Sdg#nvpMUf zi+)}QdQUEot~7(WgEP&;$!C)S;ddp_+S-%hTl*+C&yreFZ)-)$(}>qMF6bN-}PNF;x*+Bt<0Ul9+>l%L=H@gFl~Pk zvpb&_>a_Yg(V-aC*eA!qwl-zU_#1*8!*L%pu|TQwpL((sye+3XjrjuRbG~xwx-vOL zxhpIR+nsQ|kLLg}44*2RR6#E`nA#e+otUp~Fge40WT1Us%pbVW4 z*`016QxDbEFw6 z_;U9Z#@KL{=S(WHy6Tqq8u*KidiP{!=^pd_Pl=`OBtCuiKm;~>gOBV0GTR$dFMiwBN`owBd#hFW`9^xlZI`+0l zQ=ylbL0GEU`moTC{1O92x zuC6S40j%4CHX+4zZ-Dj(!SRpJl%|6U4LEXkeeX082hVoBUl}hOLIB3J)w62X2RCdZt^Vy<^f*30}Y=F8vnk zaD=UQ@5pmOpu`#kg~dg*Ax0m-z{bgwc=tQG);lT-*XWfx7XfH zrd~(*PX5R?SFqz&kcBZU*p#YV3Fi@qA6nD-+cK>vt0o^LC47-O<2(Jo$(mFGMLwWC z!prG9>Db zwKMB{4%2;{iuTeIy%c~1Wad%wn4vE)b7SSBvtFJ_0 zvwDfFn*ZbVK?=Mf`m`n^r zXFR-+N&c;e;F)JV6BC+A@?lV5Hfey7?5ChfL--ORME4dV!PJOGlP@iOppqB5tC0!9;g-!I1S_ zylINDpD4SKdb3~~qjx52XKsM!kNqX(UzNDUM=TL8UhlnynwaY=j*tcgXMu`#-K}UW zTv7NDlQaPM%^~m2%6EBY-L=`gf=L?x+9MpgL%Wb51AP&$Q5zn9FJ#-1n}&lZRjDto zVR@Kqe%Sv0VyOXQ~OrVPY{wc{>k^>Ds(PKW`m+ z?QX~C#a?qwe&K-PmWy+1IsS~VOm&sVQ#=*Eu2LK{9ow*5}4;Kve6_F?{(W>-?fHG}>1=si5}&ab?W;iGGDH7SMR$Fzx5b+LaS z#GVN;nKFZ;#Qv|#jf%fMl>|6)GE$iC?eW8UgHD7l@;eK!M&*pFDEN71d7zKz>2_OR z=aUl^1oDQxVZ5rI=LPDz>Si{at(}vuzm$uBIHPrPiK5~qxxMK`ZnGD$*T=KyGj)cc ztXf&N>dVXsyr#|w58oUp0%S0nFW$WdoPr;H0pwP0XVdJv#|N z()628JzPKJqpTX_9<%ZMqnn;sf7NyrZ(z$7jwz^cc)n)dZo*LU8Huhy+@#7j1nkFG zOa?GMc|r^G4=jPoEA=u|x}~?nkJypQwuOJ>^o!q6Bnpa3kAazL@i?{5EoReUa_l#= zZF8D&SvJIF@+zw&X-rzZc^Z)%5Kz z&h+n8#ITExIhwPzp8N z`1WRu%CDn-8JMkYTlrU)e0N0Ku7k*@4nVGz{e^>~k7F3@!rHL@kl{H`lL&{Qfy31K zYze@NUNHX5AOj!u;$C<*V2>6(Xd)tQy_cv_e~+vp8Lgc-O2;F&l~q?9@cyWT2kYShh2kKBG*`F`JebDsBe(o!~mLNL$31*j8Xyit(s!yZP) zfu6#XntVr*@6_GG@SLEaso{7NThYIU!KZG>>QJM3zPFbA{^w3{ngpSsYi)~JUgi2a zsxt>xPIlfocN(1RSfAQ##jPY>6%yYCrj^<45c?Bbxbv*c%$a+32OrP%fjHRcF>y_4 zFW6R^t*Kbc2S49Jxq%D#p62*aJ>kNEU9FViE^R5xPOZUzdSBq>{JB(#VT+Ujwysve zNB#$v5?W>P-P`w}zduAv+QZ}RLFP%U7+0e?oWEg2D0>oOd%nh@Tc7-eiy}@fX8t^< zMZ?^USMYjfxKqA?&F96@O8E+>R?|I9{lJ0CnUKXIPb)J+WpfKCPSV+tF7Cp48;YR! zcTHiI)pS7Jel@PlBr@srj#)g7Koj?PkUF6pD(v}w(VQWtP&q+9(I8P$w@7)V@W%7UD88qRn7Y4Of<5!;+>HgSk{$M` zr!ua9B3z5>4!@r0!?`rQ{6Me|#qkzz<$8k#F^2ESzWdEdcxigF+W6~B1?T(KH6xZo z`EzSn!y?OMflPE|AAe_-lgy2qREzZzMYzHzG811%jj47X5ovYI`JR()wM=DoO1_wu ztEf(}hzgU8`@n?!rp<0r>HiSZ--!a`Eg7L37}|im&63Yp5^Yw=&A9?LAeoaq_I*z6 z8P4a&E?A=EeXauQCe?FHV=$sbLsOmVIN1{r)h)%GGD={9 zK%zuZ%7VR%=f@1Ud946_L2EYFBra`{GYkW0vuEL>?VsM}He6Puh>T zpoLjStbgCne}cHD#5f`PV0a=%;(h9kcetMIEJ-ONOr542r4lX1=A;5K`MKCT*n7@M zWLpH{;B!)DFW3I5+`jqu$X5Dt+S6gO3;9;kW1H37(cJ>6`5jtHV|U=xVzy=O9l(&G zK^PSV)He*jjCJLtqYQ<^<$Xu=GtRxPh^vh1VZ#O7< z-T>t)jOd!f11TuY$C2%lf{$sa7oATXRO5nZsG_oOQMX^&n$G{EAbAG z`$$+g$%(I6=2{cGbiwO49)B<8b1es+cef=ea+5GQbUKhn1?wMir3`2^A6obWXHJu` z+QKzFo+7o{9_C!W>n|#{tQR8Lp;Yj#b>O}wWY;UK0Kk4nSho~-RX;xpmw zpHsmE&+Y+|$vfeTrGK9~Y%H$`FC+BnNP>IV$k|209q*RwhcuPcyuS!wIoA83`&@XG z)H|T|{`w6aPBviJ0|dUc-xCPflZ-vw%isowFT!5tm_gF9b5MM9p~+G~##lty^1GYB zBA#Uxzt$zCL({$Zk1@oUYZ8Ymw8ZV@R7brkEEShKfvJkD?|&U{$-MMc_kZnkN7=!w zTJIDSNX{hD^?JE2>Qfutk3DI<02{)T_WYNSz^D^x!0FL6nV1;!fot{U%K82LjO@mF zBl%p7(&LrrDmLHD$mK7asG}SG3rNS1aaL z{;b?F!AVK7TYon4r|h@-#*ddpFUb<@KY|gNP|enLzJbHkr%l?bs@CEy+V3SEUykMQ zao1XU1*bK*5X`;Z^siG>I|LjF@KHYFlY2`=YLY-OhXXHh24fW8h}$MOzsv1fD13-w z{1P=yDC^#9zRsh%tNdnR_$n{;>%BU~j%F7lhrU`+GJkIN*U*5yXll*pG|a(F-3^xZ7=@Nk;M6qWCco>{>1q{Rx$#hDH*}$-NN1%f>&yW zSrR2cYbB*v43EYr7xo*m?_~+qq*}K#ezKnS?uvp25OSR?p=^G9N5+JHD}PU0a8*uIE@lc}@YKQ@Zd%PoW_2#KO^(!4R*r>=`9k%6KO^DD6ym zB20DPkg+n=O%V8v{efONHw}3>(v}@vZMDp(FJ(|^q3|)m z5b0TKh9ZK;KH6*H`FS^3UtTolD)R>nIjy{)y?62j=Z)rR2-!`c7^pY6& zlY-A#6dBBH=)`;Lby_FDUnp}x=2e!B7&MxG50E*Zba+Q|_i7wMxY|8yOg2;3N6y(o z?go4YdqG>=M;;a6rfo*;)K2hz%;(4JYP+Lii8-y)L&0oH1)iBG&8-;!);u|O`+v0w zSY+;1FGkUAU*@^Jl5`yva=8<5JjvMF<@pe{%$rA&ySL7mt*bMX66)*U^TpgxmTDHf zT_woGR-U=JN7w+s=P4#c>W0OHO(#c?$=8T;y@<82zHw)yKETkSM{sto&;Q-kUCnn- zYlWVYPSbs@mzB5iI;lL=DiPa_i#+0?U(g^siaf*CcWoPK( zv&Z}4(HA`s+h`{I##&Kq^K%^Nm=7uMz4D-|Trp$q1S>`qE6)3GLw-0o+-tp{@b}e@ zIqI>-TS>1|*FSicHFih#k-o$ZdTLbv#Nnl4Rrr?I?jlJvqGgPWiS+UK<$nYRi|-RQ zNB1nJ-T5hsP8A(KHysLT<+=~?lHo2&X30FIQG~qiZi!H#8^selQ7!(!c?FI;t5Vru zm995r-V|j%JO;CO+y&P+H0n4oDX^O{fVrsSm(o6QnkgjiR~yeqY+5vl4s~9o+r={H zQazfXM=TBeACY9?NeX3dWD#?8a%Ev{3T19&Z(?c+GBq`qp_~E}6EZk4HVQ9HWo~D5 zXfhx(Gcz|ilfiBj1v4}`H941I#sMdPw7GRulhzulFjG{rRaRHfKif7bwD2e<=WTy1}+{V#5`P-cKX z)S#|bE?~!h5&-CJAP^@3R#p!W4;E`TR|pH(#hS&*;U9jQHny$+53q}WJplUY0(1cW z(-=39CA6Io8{oeJ{GJLx(bfV8as~c&k_P`v=?HBl)Cnqw{F@lG5s=?89sXqwa0LSY zBaMxj>p#AVs;Y_rM>AUx1PC$%SwIaTW)L@5fayOn=r7Qc?q39f00}o2m)|**{#WJl z?==5QT^tOp%+SHd&&=b0zb9q}a&z_mt2h5ywgnjEYU>Jd{Z~XFz{=JE_?x}!@0r2XO&d z<^Lck7ll862+BqA4}x-0`h%ccl>ZE!~cJn_7TCKSYbbEmi2cQ+?kDT-0@_(I!|5dPaLHU|PHy8MqF;ryn zZ^R8vU;%c3?#};8xVU~x93B6VU}uBYY55m~(g6N{i2yAI_#at$e(Rmx%pCqL;e--| zZia)I<6lvr!?OAVIiR$xZ2v^%{0-gzq+#cTlCb&{lKZzi*v;jyfKV6fzaX>@n?F@S z2VmpnWCH~KWdW7h{sp0h*!=~egRuV#LL24q7lhLNs~C1Dxj&J)p{^k4+51ZmZ3*}f z8K^UV_&?OpVx0b{p~0NYpx4uX44I4lf2998V(5WqbppEBg8vMN3)%=L2k6E3Cq7i- z{MS}MeVpCE5a54p3p=!Be>IdH+Mho`xS^z7fsVHSxh>qkZGi57wUrwh#MRdG4;yGR zTpi3@ZT<=j&HpDYH?%N_jSKLvm4Y?^;sO4D%K;k0?Jo$Oh5KI+%FN@hO@exR{sp1o zz5asGR(t;;2aV(nbop1R|9mQ{{(dv~=gMRI^O*dfSEhfk2E+wy57e=>guX8RWujyT zJ%pYHY|#6P9V&7qoQfdhq)Fhp)wd zzusQ{xhtX1^Z&)aUmXBIpeN7*ZD}5CAsA|x@hQC0U#euX3Xz7N<+z66t*(3$!cz8R z2MLj6;U*}jSQeQawx&y(R~-kG5-AWBAwE(s_k15qDR>* zdo!Mk1CHk+HgPA(;$$Z*mBgh&+;0Z#V8XY;2jxLk#_Pj=(Lh z6#bp^+OpOGvO$zi}xfDr*@4U5X(Zfk$?~5@8yA`E8N0Smr#|#{T z6>n5oC%Iv@#x{n3sYLYJjz1B9UZ3Z@=2Ut=w1S8YAReV4j+8eSX^>GbGo#Y&BDHpd z(zFA!M_yBYrN`Ghw9W&2j@{Y{Y9+%W)tyVNf8#+O8Ym6^2H}&CMi+P{vgYx#R3+Se zH)Q{!y^<&|%cvTWqV|mXR|lsJ<4QOpzOfMz?xvu8X5ymy%A2puZW2F#;2d=^Fp~v z@q0sz_EPl2O!CiVxu=5Mhg4i&?q6Z9;)(GSN-(d0NR}$JFQ1jI>yxPoooTn%^%nXn z#R^Fl-JWXc!$oCZuW6TmJKy)K5qs^Nir~McHCYsuQLt)Z8`ejaGAyd=YM_4R1l9&C zu56$Y*2fFT&@=7gp`%*O9tDpWz$*=WGjiwxk!BH~H~g${liHr2IreAkR=>T;j(`wc z=d>G_B5Po(9zLaa+x1*{RFvqr6Y*?kT~L&-9@L=0*G`@$v3~%6NpNtGtIXx9HQ{TZ z9}+i0ye>)dL8&`3Xy}&+@Q+QeyJGzig-J|q;wy$>FULV-@j4>L`+dP2By!Edd2e$+ z_rn++DV7um$1ul?)yVyP|H~N`(HJn6`4J$cgvR8nz|YwcRP*AD^tIZw`FxB1LaUP- z#^n5kD%MIhO~3Siot-It5w;_9`P(w&zNz;Xq8xIJPE@H%Q+JOTn>RnLOUV{WUmS+F z&!JlyRQL<$WR{@9ak@Uc$q`CeO5*nY$U~7W{l&?w%N+B3IXU%qeLD&6cype*u<++A!j|t#$NyGf-hEK_at2({YC1eYWxF@s{bsOhcgxK`@wvHtaNbJvoNY zyoWpJeSqOTh<;;g&@tEQ2W*QL*PHE?7lBMK8SKzI`?+{Z^wOFz#1Cf@8G;mJ#$T zPQ>%oZ#f!r9gE|a-oez++3{Vx;f`8|J>6{4fcTbABw}(Z*7xwkn3Vn$)DH5Ha z*Zqt{OfJ#x&waJN3wVJi$5Py)2q7d6xV4{{>%mQuAM2dy4jl~=t_oe%GW|7Z4&xZY z>U;|D4w-z_P_2TRotcv9$b(`YAEIwjb30bYo;Qp)3fjG}qxEc~v^9IsOxVh9VOOLw zIC+VGcm)I#(qr&M2a+0oIlHfqC(~g@yfFZ7mWfI*W{d^c-dLA=U$(6?rIgMWc%u-o zEZ#flDU�cU^qb4ED|D2|@BiXZI5B*NrB`(g%D%_x1OI%z0CBI4o{*Qo3JKhD^M0 zwmnhrbobnfgdy(>nJU z_B-PjV45{=@Z9C8gs+#6JRQVbOp*p((4631J|=if)?&6zydEM+>?L*t;`I5Dtv%Mh zeQV9dh`=$F{;=yR$V+l*%EfK4xwrR}L&3Fm+SO}cR*&lElIY>8IVH-A`z24HYcuA5 z7ukA{OGDp*C2ggbhs^Be&K@^!H1@sFldYj|wntpUDx;>!&(@SUmIJt)c_8gbF*-aI zt#O0MV0xviP-j6z@%>k7bMoF?5pyx|ppGV?QoA6tIi9{rSYoDSg@pxTHG&Ovg9$e# zp4@f8Mu?gBG#rdY+|8C=fq6Z>UC2{^xZghKG9NglmX(^su%gM}BCeCb1-;=jQ+7s| zt|pVznT~8jQ4!~{-}5MqG2)TgE(~|71BeaI5aPxM-h|=L^%7;A3iyua1RVr<7zHLfGTd*b()JIu7#@bk52h%MI(c_gak9 zaunZ+tBY|=c*J?Nv4-_%1dEn`3OK1eZ3=LR-5v`r^U2Bt4(pQ1>T;(E9QU{Mfd11YudadhyaUbq?*N=Ip`*X=C` zXXtwgs*8C=m$$rhaR7@V3-G^uQ>tmf6S|lfb99<DJGG7``mup zmXosMT-xZ}u%FE~OWOr}vlXa&j8ytI+`hDU#WqltXA;yV&OxdT-`6)H5d;3%BS3@LJ*NLe{HN(j#iDtk0 zD>hm@9BiMm0RF9ib}SB*8AsvTJNdzjEsIP2`+ZZPyFiC0$2Y__Ut_(!is9Pz5%68o z7ufEeSOrrE9>hG1eqKa=B~kMk3#RYRuhT&x*IBt+Q1)dbv?Q`f7b>YX!W}_`!M4wz zn*yOrJ&str4Tft}1$~ct{WGz(_S1V+XJ!;pE}(Q=k!1^ivye!)BdJe%Gc89x0?+ab zYL}RE6VJi@>fxh$lL&5cm9NO(b}`jDN}1>cStJ(WUgBCrj=xzUaZPN2`LZTeqE_I{ zQxWXUnKj7Hr&2_ljcWoFpbcfpR{)ujPlxS)mvnVS0p(yRz`RQObB8uaR2F*z5{# z67q+CLgeFeb9fzdG;)62Z+B;1`pR>a=V{ZuXdmN5#&fR0%}pE+h(i{Lm6`Q?B8;qa zPdIoIfN<@I(D#V>qfdA1eRdIPW9==ftK?{q)yI$Ec`z0LmHv=d;x%9vUzuvg^fre7 z_>g&|ap`(WUBUA0$GB=}`8Uls`n@!q{JhIvXm}WRsLlJ#>Bsq}-dfiK- zf_Gm?L_Nh(vAD8Q<0Uo*dzyG1On6YDsGQc21ql0W<>02CKlU@GG&=UHJb#H^b-d?) zLcFv@{pcZ-bx2)IELOapClX@v%ii+cX`VdN?4P@V^c{^4$xMm?`RsEgDi~ZRevJ1;q@QP%%!+z>InWC zQ0T$vxl+1?Q>4EpeslWyvENmmZ#&a}mayNg;kNv~Ze6%25hpzkg*tU)&}thSxYiA$ zcEY4^MD+uA%J5oWbDZZhBV~>I@tzGxIqoR?-Wc3>TxEOs;ndFK+`j$9kA%&JjvFFopDr$e%>J5Jez2Ur&{#lyRzL(Rp~2t z>ZV=ig?5_@vX>U{37DLs(uQ)K)ts9hd?yhRr(b{FmQG>b#=6FLo{4G4V@@eUv=_dR zwrKMS6IY)Ba-6W0=3MW>FUkXTdFNWZ{Y6q3?X}jcx|qjJhPyS?Uei8*We$J{Kj+$g zX*n9~bH@4P-WULg{FT8yB-x{ol;iWM9CLQ{K~kpJ8k|XiAEzBjXS-GBARtLPcqT!8Ud{ zormZpCfyp(LPo=MS>%=brEdi8C z0unN%>Qs8Kq!_iD47kE)or@NSI1!WP7Ou8@!=)!f+$1`_OczAHKTzwFVy3K0_v7fl z^iCZiV-~+jYETL}|DL8}Wv|o)iyZ4EN;PZrQ8v+RFHo1zr|Cg|&6o9&%$9V8=Q>c? zbNTS$;>O`qI$Or7mFRH!rSp|6WZCE^J@Gk4y%t`JW}Z}j+ex4HIi^*I=ZY>)(h1L3 z(ag{@^{Ex{RR`_q3}dYGOOs;boJSiAigfl%vAFhp;gugow6^)5b3)@-v+X^1Ys}Pj zcP)mdweF7#eRh9;CEqbT+g6NBX&YX)*db`O;=CsDs)sB@Nfm^@$Y?Wf>)3a=#Bqvz z68P4;Pl3Ptv5jU*#ORg5JtRYoE|Z`mVERXLdpXc%@8iJCdWy%wn2U`ybEoiHGJ%|N z0BvT@HAgu1`-M2P!E$v_k!Y&&2C&Q_K>`oOxkEi%?B}_EIc^w#Wy%u;%NjdUIICvK zlx%0DxQ@)xqQW&#s=QrU6CG;Beew1XbD515wi~77vJJWO z^=MqmzO{RQBb~KRV0mfA&t z3%T5!ZYm#wvPs2v5$lppFo<<)QV54Nf>WmtOh{LMMsw~Yo3HS2HkL|*3S=4+gsqSR4D@ytqgjy5vuF~S@Y zP%|+NbdPA1%CqlVXM(N+p5dPLh$!S!BmH`R@8Gf0Vdsk$s=!B?5T}t7dxDXh{f71? z7qf6q`>XF=-LQ|ISg0Y`XwCS)6#d(sW5gW*P4v-|TwXST@fhr7QIjsHFYEh@q*z(c zujwIx__NNt@Aa(4J2NGjB?1cV4OQ!J*a^ATbdzKBD%_TdkYV~n9t0G}?CE%%Ig`rIB5*h@^zb9myqIN}Bz5WRU>81qum4A{Xj0EdF4B3?DUh*WPw2xB z3XS7mu&p5gt)f5~eSGw30zhV>dV!pO0|oQJW?+ylmQPR=WIV_X`7vl!zC>^#16KS! zwp4kmKd-@Os>~#QFS`XWMFG=c7%7EggDXNhVAP78Dl&G(8zab+l%|OJ++9FAbOhq5 z#rqyV_o4*;+oEXCO7QnXi61!}XY&U8CA6j}#+Jgr7|WfoQ)deqqqa&@a`E4PjE5ZH zjCfB6o@HgUYW!M!Yh=_voF@1Yf3HX+*xm+nEZLs}=L-I1UhmTD&xr7tDLneAuhm?z z3|ARnQ)8V zPlQ+0-6!);Jc3{LJQm<*a<&(LIg7SG*R*-0H2k9Gw(0*)xP751AlApTa?~4?Hrpn` zoJ&$!F!8mw3hD5pe=wMJpEpCHv_eaI1XWu1mJBgp)kF`k4v!{Oqf!dV(v76;XC_W| zq7&PPfG@3K@m6M z(@b$Qwjz!$^$=}NY2bY9vsDDWFyp05AVKJKKew2}>XPh^$@)Wpv^+ZV+nZ*D8%vTt z%LbaKH_!Gv{wQ?YP76hv{-Xg^y`49;6;9kcpDsqfABnQTERe$Fa{JPf*3`w=CJ*jB zUwQ580k1@ZU_KJG0^YBG7cruInw^*Ih98)9)Y2&GBz~lZa50}WR6BhysD1ir49Fm) zSYDN70rI2>kd5`c>ndwRZ0IPy=2j%N#`6Yc+3a71R8PR(`doGnBOR&?eZN?4G^6$G zrY@Fx0m@p70tdX68G~=v*r+JGpT<|r{`R6M=*{kmyg8l~5h><>3PaWf=tmw$zpI%D zi)XC%5#|7=gK%ERF*Op}=7K}oX5W+8aI`gVih!D;1$%PZDP^9qE6p9UtK1M!J>O1s zi*=;8o~7Jgzee7M)6{C4W#h?k3fF_k=mLKDBRQ6X?1qyHJGq+F>v`mw0~C>-hB~4o z*fZ)(h8Mi#<@IHMB{}Gu{F`4q0`Gz}jlmi)4NxsepaXFq?ZN1@ZETp%x;){o`(UuAw>l^2;ocz1kp8~A5&}(Ug zrc)U7bBZ{G*U(pRP#mY|&6YQ8zm%^SOLGMtMMMADrzViH(hD6?uEeBJ^gUxhabX{ z!ffqiN;_sSTNsQK_9sPIyT$x!Obm+2a$PvKNssmKf$!VzmZw@6(ouWF6dI&|TMo4>JCoM^Q(WYb4zr7S_Q~j~K{?#f@6h!0wx`?K@mK^t%d9B}H3hP>oi%BqO1M0=pj>RSpxP=)qGd@h-WRt%qfO zGyuDug6^gVX+u=F`a>$jZ?kqqT+q6%#Dh_PAqBqSqh$AF5eL=Db~VCDRN<>5P~xg_ zmTTLPK!MRtw4<6v1p0T?YqF6{d%CTF`2aCE|2m-w1R~$E&cRb0=}%Prg%)3CQNEbX zTIb4D_bkYM@4J{ZRvBha2-|BTE|++U9IS)b9ML}-V|3na3X@*~j?OdXiWnM7vK{q* zExhTADygg`I|%HPU=4a9s6kFzEl0e_;%T}A1x1&iw8hY_)r7_E+oGPlV$k&HZ#a&& zZ1jL3#V_cp16SZu?L;^o;%#*Go36^ZWqxcK!T%g%TFTy`#Yo#%ko0$&+T7NA!;Y@1 zapIvQbazK^htID@B@8eU=IHMWSG4$lY9m0faMmL+*1+;Zm*h(&ytfjLS?Ai^G+=2A z5W6@QHiD@VtQ5YHVtKaq?MZL=417=jIf9Xm484?S?ZXjEcZd3IMy|JE*&J)p$JoSk z(N?Y_T|KVQ>r)|%Vh4rGkRhc{bS#^!7563QO^oA`5hCXv2%l$cRySMOW+%FTS|49{ z*t%S-lgeKkh&w90zOW#fnMQW|(w;4A)BKDA{=$U(tE`SRV5KH9R6B|EhPuHwmxEO2govzT&J)9+;@&gGO0C- zRKwAD&lFX;Yae-5YY`K_ebdl?4Bo)y={K(nYtZN_jm0DO`uc<8!winUV9o$1^>U85 zb6mgeQqOtGH+5NU=d@+j&z%j`BCXapApc5#fY{FDE$^8$-Wj0@R-jK z>Gn)TMj|o}aNL(;%st*OLInVPOXM=K)e=;GS8(YOTDKs>FV)*a`*UIx!-TD#?)S)g z-uK}?iKGLcg;VLCXr0tjlzG6uK1|iq19}wQ(w`a-ZH~|vDQ;WSU`jB_)3RR%5Q3-4 z&jiF;@LE>)F{R&sJV$+h$Qrq-vALbF4;U~UYr4l2lL(5*dQ)^Gt2(O|k+W8`NM5lB zb6y^&r`oL(P$ZkGmy(^9m*eZev>k;#6)2`d66bl0vtOm$RKam3j7y(aZ+?2P%d9Va z3_o>M3Wx9|Pqe|k^s0w0hTm|jc!a-JaQIsk>$%Wgg*-w7Q608_hgr^rXlQ;Z-kE!- z8w6l!a-e9EhNxUWl;F@>d|#S_8%RwnBkfWe@=Q@aC44a2!?L5lRdeKG?C%eCrS!ojJGxNwhxwQCI5RHv##4R6@cNnm1~1Lfm?SZSI9yQ>SB({qovwDkBb zs%X94{A$|`pF-rmn0P6qnKRvmH$OztmW@rd%yv(NYDmi|qnby}_DnN-VX?NDq?7uN z#7~BaM)NP#ODs{YM!Y}@qtvOAd>y*tz{boeT*Ph7S8$taWnV{-{J$I#t`@;t9))nXwcpG^|i&;7uu`5>Pn{(axjrzboXAyB>j=}Vcv>$ zlle_PcWH3wRs6I7583G8OLg2-8RkRVe3ljTzTg&rROFX|!~|weziK$>G_^W?fT#>! z`1|PEbS1AOd$F*?fh)Dg837?&4oCF3#()Ff|Y%7C9^LRrZa>c@ts0a^{G-8Xo zW{vWa&)@IbG(HSmN~`Y9(Mr(2Op~X`@JfCjV>_SWWNT3S(i!W;1>fyjn~~}9ZCQ-f zLWhrk=-TsxsI$h(iKBeDa1d@p+7-n>rO`27d*c@Wh9e8lEh^vUJ3m#+6C&UcZk1*Y z8fc<(7F=6hY_G{Vqxj|s*_1t$tdJ>!!uUgKYFrB9C$QtUDPgh#{OG}iF?`V;A_K?K zD)wE!$NsnJZljA{Qx9>C(Xj0C?>lG0^A~Y{pE|&sx6@c_i`GF(((NJJF7c$d+j1^1 zmp61TRzFqPC)qEEf|-yFBHmv=aevWI>kA-|<*{Ak?M2fs1E z`lL^8zxsMBf^8T`J zHq80`$XxI_<%(uZW>nuPt{;PE5dw7A=qUF4L_bWkJ}jBGDr!liY59FRq1$)^ZqKjs z=-(Inu+K%4#niksf*C~3HmNAR z5`Wy5XuPF`srW#)T~|5$XK&ztVcEnjKXyQ)N8HfkqC>@^?}rpF@3haK&6kw?4?c!d zd(1FyY;z-sth1@s_*9xUDfC_6R zD{+e2wHWg`+4QG>gpgZ*#}F&NRD6JwFqKD7(2u0=H|mE5$igPXJ!_iCr{tg5m{r8V zPNj42X};+YwUn`ZtSF}}{*`z((k94qtorzEL4<`qV3$N-;6VANv83Kf^8B5^SZ!q2 zZQ~7g%L=U^v4x)D+C<2-)J}r7m58Kh?*u>sJ;${U#Srj+CCo)IwlL4M{v6Jt-MoG_ z0?F>@TYQY9Mhw&Uta$@Y4MWys0c?RUrb8eTwc16DF#WTr;^=au zcq~JnkZY;@hhBHATnEoxj2?U{(Zz(^9@I1bt+7%27pXx_YvD^tyVTXM1uQyV1c%Pz zDC={78#Lb$#D|lvJZ+DCL%ajN4_SNpd_F0JMV-HzZNAAR{Xo(^3{TpG74b@jWVpVK z$Q>2|am;0r-!qHoU>EQ92~OTu?>K)_VbUu^i5f$P;XJhW(iCZX)wIwAXR9~dyuX)Q zYhp!k;T9uRPOn+z7e+axv5e7JJi*Q|{!I~omG>LL#2#V+LiFi7TQl>yU4EZeNmY?B zpYE}Go*T)mgD76FHYC9<)M-zp+L^`|1C3eU#Eo`oa*Oc%T(3FBijB)2^rC(0$JlJc za2PG3CeY0Us$KOio+1e>TU>I#Hja5?FghJ7i_t^snLA#FUHz7j-C0X%Lwj31rgYeU z!pDO?9j{Y0Y&L%k!SZA37;%$jrNGdak${0$QQy2m)OI3$GxKR!RpIrl*45SRS$M_v zu&IKaz;#U5kXoi|o)2Ug3EE5OiT#%Yz-`j@r7lVy23+Pmj~!xsWbfFWP9Lxw&SH0j zx2(_aEy2~M_T?Z=T4uS?ilciYEzRM7{ZKwLt$eK2;Pg&d=5X)LZG|keyJN@tYE!KO z%W9wKo0%wSU32Fcv+#DNpC1zIjBtA4NAsMQO;(99Em>W}Sg z1(~q&^ZObe1ybHn(wFj)1#emnJCyg`MI#;4G^{F?C=|Y4PHj0gaAF3Lzq8}OSK=SV zf68f>Ra&-i{{G9H@-_h_{OfIKdeZvpLN z;y1C<^DLjcV82Ky!&9scm~+T~_>uF!6Y(9h6qWB&+h+pDRr$nTu__QGf#}PEbvRfD zud?lpt>HEB>%2;X$z%grRSyS*vj}^!s9V_-0n*PRqA8;w+!m+MZL>`QB^&dzlj6X{ zz{mkt>GM8zr%5f7y#uS;u0uan@#Snr3f<;s0tZzexvJ}5^3GqSLoV8Xy4%RgVJyF# z`j}LFA*lB&N$Xe$;-6hH3lyfolX3+0E0#MTbQk7FAngxHGJ7SxeMU;yA(JbA0ce^6?`jN-|8<^L@UWk-MKH%3Hop|M2t~i<)CYpZwZr z1+#MrgAgQo)D29YI(__q**?_B-C40#Wj{g93@NzpPwE|`DBC-%-q#lpUCv>$-|V&xl=w=5=Y)z~QJmyegU z(UI(z{KP(Q2sbMDy=Rn(uC2LDnfMU`Cfj}`P4g9yvIx?$sH#hM-t@(Qg`Aw_F8{&ay_j@s{T68N<1*MSe%ekM+*(lUQOddLIOP1H~bEa4( zg8|6=`bM4unO}JvNToy;MnS241%`XyP;m|i-Q+ia^WWT5Q^_zBDW=xetcO@!qqs3aN^nJQ4Q}Xd`q3H zK!PUo_?9?d?1Ag)UR`Lxm+gwp<&$ZPNyk?AvLh%eA?X&I@~L3Rf8C1Z$u4O%sQTX;???dw1}ZS98E7 zd;nNLr@yw&-&lOze-Qa@sa>KPWN)zp-%(92vtT`|73sdO-;N%V{AAs z*yVbAeV3+s_$fmO*| zbJ?fPy$(y1%0UWyh;O9Z6710F(G!d(>f2I3%reSN5p<(Ip$Y5ZnDYiY$*VK`(9aN6Tz+5_N|6~w2MNsE`fHR53{NbYh%;Vg86{>M znW>^hu(B7im)PQZMdzk{iOyIXni%uPX#m(&r+#Gn>h5m7xBdi2m%hvTkvlvl9_hLE zA-ICb-VW%+NZ^9`zD5#5Cx%7UHDlN4f1M-4=;F;5Sw(i331DZ+Xx1ES$5t-~wO^`w zCy|P2esCk;!9@W!QC!i7e+Av(e!9{}iK(If)q`>w4m)=0W}Zpg(U;FxbEr%GNiMt# zOO=&d>1H*$_60K(7|sW$??Uwj+|g8hgata(4Y*U#-9MXP$acw-&%tY-L@n$&qne#}au`LF!s;jJf41ZKX(caw zAmPv)lBTy5>%#9|fib;WpuS1^y6cfBOgKZk_2-?XfK*Hf~78c@V*+~ zeWJo-r{Y7a?ftgcnIt)yf6M=U9H2Z|CS+gU2s`tW<;SP4X~jd$i}wV82bAu~gu+0~ zQN-j$FI0NAadE9d^iS|)S8Y*=7W_n4#VNH+p(AwhF!w^ zpa-P2VoDuSnq#oOTTp-Pry%mRc<=x59ZsFi37U`YS>row?D3fXkV{luS_f-IZy{?eWaV6 z62kOU3FS7UN}Te91RkW;uw+ zs1ku&jD+tSe`z)0khjYi-Aq1BA)!sY#QDWOg$VrcA!V<;C!Zyu6-9_|eXJu3AYWdK zi`t=WQ(Q(pFx4B_HJvGCS!ad9_Va}?-R@jh`m)TpN;?T$<#ldD(&p{MGk8-#pd${n z!Rz*_YTTc^e@#aWvxvnhfTwSj%2jeFr37X^NhAq&e~xk)UhIv7qCMA11y7cIk^4hm z^jA|DZ_c-3yOX<2%K-}57+`ZRwPLger&}6PGmm_Cf5oY2$ zVtHaQVm)>nUy&M$1ceSHtyf{x*9=PE&8tNaV#C$2zj~_^=aT-S(<`sNR7!hGKI>ws zw)KHnf8>p120muUKVV&n8yY-zuXv(v$29ze8TXCPi!V*NLs_~4+(>Hf5Qj4 z?zclnKgt6_ekI^imIr1?zAjOFov_O#vHD$#fM+9TX#8DT9mOe!?haKP{+$ZvFZ0{> z5h3nN^GMwCkf(dEnV8Y z^~`pfmjcUX;6yR7BT%*vb0q7L@x6^kgjW(`eku1y;-B{o!?$}yUgq(7aN5ROaV8Re zh-eCB71|#wknUq2zxovlD$G-$$B1W6Iwolz#?p7Ff4`=~Yj40V#UUeGxOJ7xp-l0Y ze;rZ{WcvC+`5;-wXL&zVf!m$H@>t6(%fSnRvwsw@W&Yj-1I4_577&7fenXs{!;|HX zXw0|>Cv_pWPu|r=jZHda59*btAPIZ)Y*o37GY@HxlDzELBLyi5?;1r8o6fw*IjkS# zn}TssN0Rx4-2AC<5-g;jMOEb_vi1_if4DUjd$Qf81$epL?t3`~vm7t?np>AgE|BC# zEfQ&9IxWqh88_`SXQG^U7-#AtUoOpXKP$m1Tb!f*42xsj9zC!e-A5OhF;2CtMbN-##H6>UyK2I9GVK8Ccf1$Cd^it6kMY%? z^c!D$>Ty=rCgaY(jJ{$+q4(-SC1Wi`WW|0rHJSeP?us)WbK4z=Bnoy4e`aYGa~>hL zT0>=DQh0EAgfafi0OH$9d*EE*frayx#1qcrRkMTy>B_fJj=l@SEMw`P-X2dH)F{V) zAVPypCL>Jwrmt-+B%(zYAWz2spfcqXX2FlUaJlhNO-U)}T$+;^*n4+Hr$8mw!tfv} z%~k50d-Z9w{0=j)eJJ8Jf5}U7j^4~~-{r(m-36}dBiq$v<-qS>)*jThUd@jfY0hQr zqWH&rTNIw*MJQ~I&cbF`oUl9mfQnP}fSIAa$+CMCAQlN)pF6sfmh-2wW+C!RbU#hh z`N`{7T_6d`ZFtbbE51{M?dz!xV)B}rT;K3SZj3HmnKQ&I(}zs#f8Pd5Uhn-nRUx!4 zs?dckb^Hh@Tq<@sP_)Vk2Qcv3iO(?2h){oFP5EsQPaV9P) zes?| zW*`1!oXK{hj(y|)1qLE{x9yXd=Z09Fom`u(b%MmxD%BD7Lc4)8VuUE4;&Uid=U zZ=kmF%eVj@bMdTD!ZwSgH%DMtZ^zO*2BDgzD1MP|kKEq{5s(tzUcBjw6Mv_>%Rfj- z1Dgg>bf7*|e~jV``dZ#6vU=5{`{5J!2lHA=r4sv57`_RL;A6Vbx)*tXOJjU@2?Q6n z=D1GTzW`;O5+bu+&3( z%##z4S|aMUY=f~&0N=M;;3Kg0LAO)yGAr;DL(?R$f5+6*s`yJ*zH)C3+Bqup6rlN$ z4{HzYiW{kvdlN+nx00{VM`wQ}&QXS^bZpA#t++~K4gJN0t$1|veHtPxJ=2ZKR`Nyj z@iJ5?_AQcG8{s!gg6k;f4`~YI!2r4}kSJ*paRl^rqHx}zwMsT-XHdt*kD)!{{z&qj z|J||pe{l(KchT441BwS&+m1;d-z0iRl3S$8Dc}Xqx+(O<|p0l9DO_M35HB*VIM>KI%k80x(Zxm^`0;}bth2C?D>`eF3`9(Vk0n$1AqsT+!DElnynWuQhnQUXKQh4Dyrvv6 zP9D>k-pYokGe#d&mDD8|Sbq3VXa|NQP&z$dm0akZd1UW{EP&%!g9kdzfJa$^T>dX$^1cc(c z@g57p17C!TgLpELJK-;?Bz*JcZcHn$WBJ+wok;?R8vQ1ZxP$ftQWLsLX@Q~MFRlAe zX7c0`)NM>^(>Fo#Ie&`=DZt&`wogrI7C4Vtb=$^{rBSW5R?*MnSNe4Nf^=2yH-awA zUN`kM;oh0fsQpeVf4J>!y$?MW2!j~nZ_N|QsTzNL)9ArnFCrQdF>2Fx6tTEfiBDZ; zq;yYf?dr4>EN<#<(#0HR#1)~?qy6@zGN>{SeL%qZe`tO5A{V;!5~Z#S1%-Cz zmug0HU#R3dYc&y+d*lUU)q=h_4eV`7s>Wa4R0QiZJ8Y)2*NfS*G4L>rXGp83myh6B z9D!mc%bf@q8>b$ftJGm?BNU{)Z(wdg@nl>^Z2C)kNUDT{bHn=6;J5>gO!b*g@U~cO zh;AzbgQ6}7e@Ss1mNJ2gn7x0LRc}-tTbDofhny{W1nSBUu}OIloY;p6%xrQh-2}gM)UaCp}S^$GIPFF(F~`i!`FoKCPn`4FjJM%v}l!J&q_BvKpXO zHK1Lv81Ozwk^7cx1Ftj)&B+^fK)6$h|o_@4iWh*(Zl}XGWQ|TWO!6e*_PzxwSp^^D3AK zl~?FdS$icvUkr!=@rTzS;DM{+Q-meL_>;0801LRdRUosvJKGvTmKTJq% zG^f`+bnS+pz&ucjckNria{9x?qr)G#QNJhLnegsuK0^Kbhsfgb(nC?Gn(P$kZBq0k z{;=bYk8ZiG-?ndNT4H=7V%s-`>B! zf6vj~C5X#ZmJ;;|}4f4P2|p@9rzHNykTa1^C~-^D8AN64Dxs;PgM zFK)(eg6{iwq|Mm(Rj&2ET3)!W1CD|;!B(J#kuCvaP@p~AQD0itq5e~AxSfpl?iJVi zN57EtKkrE^w22tJ4piAKAeZRE&^O}*rkvrT0oJF6oG^cUPwQVo+=wfQPuw&_e>kp{ zPDbFVC&YnXmifrY(zS)CM5>B^L9~!^7N=ucPR|vOD1_tYQ+7!XzRdQ;9wfRIw%foh6P+(UDVI-`?`feTUc!@!9d5#=O zjwxMi+M&yI0{wFx;2^(3tY~}~e;gVVr_S@?$lFb^esEGk@>r>m9lHPr9;~a6N!r>J zY`s2_pO53>n{2U0>qJ8j^lbt(R?;7WQ}A4`^Gvz|A|TBlyl+a|#S7NK`}{-`qquM{ zgTlDCGpK(asax2VX$K~k+t!ENt5azJ&YCayVYNeL$34_kgq@O+5=^;qf8?wwHzr(I zZg~+u7^HkP;kDyw7E`ypOl40SfPiD19U5%0GM1>$bie3ElN!F}Y2GSgRoJRUrDE_4 zj{$pjPq|%-DjX0Y9oIG5hNIK?`{XN5mJqY}ug@@a!0hf7KePjZS6x#Yd%d)EoGl_G zTwOryJpYu=k%(H|m+1s&e*oQLYMIB?tk~1N=~k4Qe1faFtH?Yw2m|)m*WkLGlCb`^ zd?~-++W5_2K*!7JX^Ir+tyWqt5?s0leZ`DFR(QVNq9!u1F_T9&IC1G`n_yQa`HF#R zYVuD9Hq-1bdHdLfosE2Piyn=71pg)h?Eb`!>ubRZR!`67GEta1jfVUoM5$Ox)UHQm z&ztLM=5EjxLH%#Avs366BEDrh1L!J+MVFmA{YwR$m@3!bEr5ax>$CTxXl%o&52;2y z`~LOvQ+7IWP85c(cwAAf@ZDr<>rcz4YnXnG zH%769bQi9hHT@tnC)*t>DPV-N0eh5IHI48E_9Xi}=ay_4ocLXng}`5jwOhXP|6WyA zv^sy7IyDfCf3@}vZ>-No3@_M|qD0y`1Ge4v?Poiav2@r4{gOF2>QC18cmC05t}>`s z6bU$$f@<9rpB%G9_|lM0SW6l1b=W8{oQ0+0I?mHzYMbVI(7@iKlxLElhFCms&)s#~ z!#r(|sq00Ex_`!a1}R|h(W7wu(WKAyi;Zqa9^vSZe*{>QOOxVEwn!DnWUBK2cEg)< z0D?aOOtHI=-Q@jMJBDm?p z7hAv6hU6$v@vp^UvwtA%dL`NGQi+Wk6N$*y3A6W&@^R+GqOx8&8TS|i9YF2+WV*E7 z8gjtOV|P#r?S*Q3i$z6Nr!oGwX}7l&4056E*7}EP`(z;k<}mVQ!e}hL2ks^foic~mu1I|3U_P? zDIIzaw1>rRE%Iq&b#5f4a1)b%`$bU;e?)%hiw;E4pA;U8$Br#Uh(c$CAoKN(*a&Ss zxGY4T=|tM)?0Hu*_2p<&dg%RDI1#9hTm<(j$c55hF^c~k?Z8F}sC`=-y>&m{!w6R0 zf!G4WBP>Hne^AnH25T!r{S4+Oz0Sfa`C}ie$H_b0Y}mXr@G~A9vf9leI+F&8f3$%I zPV9)&(6}e!*o?S;)LLMVf&gC}nqV-w|3=DiJDBXMC;;(8b!{F;wGJ5%@ZZo$ET2>NPWzxqo2A$A0P9MB z_t+QJTlQ)OZ_v?o_H9E#pjZ%by9WA{*2Mu{Tas!4(j{1a{t9V%mme**;Pg5r-Il1xjg zd9;g~nrq>M`=CdPnlq;~B!7A%Uth#ld-eDN73W8EBst#h`_(KAM^R*ZzU;}&z+pT3 zr6gP;AZq{VntVa%NU%4^tJcQe69srMX{&qwWL8xwLZp3kYhry=2@=y}`FFu1pI6f! zD1u^M_$?=)qy54Ce~D>VN?0a4=nMkz11yuPb!kbv^pDztVy*i1c8t-deWa)39m*2I z6A1t1n<&iRfe}tiS}Pv*Qw z?|i|o2@Fp}bVn;Z-b!Qd9K=JnD}dQKLz=Pl47ww5mnJ&hf3)5ua*}!rbKRDW2%Otk z6+53ghTlE437~gJVEDAsVlboXf#R1G(TNPGBwW*aF{p+Iqm7G&OsP&Ulh+xICWKNg zQE14SLblx0qy0!i%FehH@zEE6s3`4-27bJZVL>Yisa!R>l)))DNb6M}P4YE0<<*2X zbG4TLHNAe9e{$Z-Y;c(~%wu>k7{55X2o6z64{7>eu9u`!(xmxh87%rbwuwZKtj|`FiPg%&Mah~F?r*=a`a!XdBGG3 z1mM3^)%>o|mW1LFu+Fmd5zAf3i)X2Ubi}bs$lpr?_Q|u~moU z9c+wT#0)VjcRcvL`qRh%=J`W@JuZ2(3CEK&|5hA$P=x>=Z5Gpu%F<+5J~tyX<-8yF z>)5g-84+hba*tHBg&JEJ1B$Wa&qGx{q!PZXP9EcfJ*0rb!E{5(=`e&}SiBZ(!+Dv1 zZ?p zBXAXJ@F}&FnfqSQ5BL=Ma~}Et$-Yr^-eRD9#1Y9Qt15`L#1l!6d++Va#p(>A1dg?D zQI|qZTbF==_Eg^!Cdli!;Mb~0O&zWa5~;E7f4zeD_jFNMqrO`nSIz`X2iO=N*P+hp zGK_Z6{0eY0;Yy-d$KI?D zmeC9r3T1-b90s82zm_kcq|g3tpk(F+#3K!aF8%u# zf4KP@pN}Ez0yfpVB$&S&TgpugcQ7zg|FO5vriV>rHV5fd!Q>Grj#Im=?;mm~*@yEk z!;y4%bc&Z_@_OKMGTha`EWuKj2ER%nQh`oI9o`9`)6$p_E0mjQe za~`_LcOW%T+%&pRM~V}ESK0?B+G1^(owy+~O8baCJ~i~6BuMgMM`|TI8)xO{f6y1z z;^k-2d5(2qHxP_NNPhPx>X5=!Keh3JXS3Z{jWLw@AYo0r(-F|)KjC@8!YMEUOHh}i z;q^xn)O(z5@2QPM5x0@b+MycQY7eYTI%p9jirxtDBJY~7fz3s@gAzRp<@VBA#Asf_NdrP3ogkFR3b@z2{=W>f5~lKJYTy1 z`4xzBbJv`VHDw$=Pzv!$e^_|azlPZKK|7q%$X6BC#5ogIpNG-qn81MwdQX}E8qnn} zRE74m&7jUn%w^;8hdD1&u)Ht^l}D57sMMSAbay4iHIsy@4jrCteVW2rkP8O%yW+fE z@!_|4CPbkuW%k?Qaj!(@LsnKBRR;XX;bA7i293wIU~QXQzyqp3e>7f$4zc25W7_T= z6p|?H=v-L@jmmoTmu#_nFxoIOa5z}BO8pY zvB5Kug*IOjp1xyZ+~5EeUi%>(9<5}KU3+k%zKo5(yUb~}Z)RP>l|6D`?FRdogO~lq zMv$2I6aJuyUF$k}fBWq*z#uH?D_W$kW;ZdswGx<%byMRqJ)BNFG5Ng5EXk*Vs+)> z%~5(Emz1ch_vjb{3HmZZaPjb()VI9l^!6#o5(Et>#QH=Se_~?neP7&5Q$1JfQ|$@$ zQ&#|6*?!}}cE7^2iC>E%&aP*{3w|RQHueEV`C&Q(hyu}?jn}PGQuz$DIy)()e@vlm zGRjC57&vPriagbb!DGatC^2b9j(Dbfp^*_uN1-`u^j$CXwbFNs>I3&Z>~>FbU-XpS zuvd@Jv-#W@e;dg)dV@DY@??oS1rp4t$Wx%eqh76V7^Jw@RyGC+q4c+0gHa0y|1w9X zjyWP4gwf;}8V2h<@1fI~g2A!LLLR+%dvR8mqEQYjKIS_6G0--$!XKx?rGurHcKyIM zmxECEDE+CxsmlK*)nSvY3oL;LCeXg49H4(_LVE3SfA=9mV)LGWjJ_-5vYHZTDW-L0 z&uN9~UPQo1v zKOu(6@H^q^nzGLyyCC-%QmX^XYuVLDjm3)Y7G4Gz;{c#oP!yn3#PAKQ%=XyK9defBT>4uq1Lo#-wbLvLz*_rq-ze;5Af` zq~*PTLd~A_x`I0ToZi%x52@DCSs-3KYxh_Fad)12$=?WmCV0%ypc+X0KZi==!_}>@ zm_Kc7*Vl`KGA93td{V-CXGY=22LP(I#e3aT4bV`6MTh|k4ug8WH$bYxdfdnw_wy!T01#0dsnYikQkm zgJkPDTa;z&jcIcWznyj&?>GciWlM03*)U+ixmo z?uvy-u4EipOGk-w0)f0iZg?tSZE`z{0*@QW6Xx@tecoHYtX%ij7Bbgk5=Xapf8%|% zKhXyFN4?ykGg}by!q~U0w{t=8D8@!Nd+aQfJ!3(U$p~kS%XEWXJ#yHEx;pc5!v=*D zyauKi8}%h)oAT1)Ht>LlrvbyN$RNMz{83#Y2P!4&ozaK%5inuQZL?f5IK_i|$Vy zhmFdbd!+}9a2u_DsL9r=j|W!ZloY1sW45REKE*LCDL+FRK*e%B~UvaMt5NzP_J0e`x$((SR2%#Eh;q z;(%`~urLchA$1VMx20WLNFn&vTH1wxa$RvgAdc?jOxKOChf*@&o zM^*X!K%HY^f5t`dN@oGY1WP53A)bcXSZ=KAzjRN76L|g78eF=taes#`DzrEUD+N&; zQ>0Engawn$&x?8U>~Nyw48+Opo7r9aSh@zk6;d{OyNelW32YDf_6|7fKScxFsYtFq zKMdvh@@IhI__t4!8cao(luzVVCw!M*5)9cyCz5Z?f15?c@##XSDys$6cZ;DzcE3jk z(Kv)nPUpyZYZES#*)yG6qR)|!LYshZyLf1QT*DpAbYKX0k!2M|^jqy7sB(0H*@nQ* zVf>!D`7~6QE%JUs;JT^q$!C8QpNZzmQ~p5!x7uaBexkUu{zA`bss$DNxd zbRj`9f5*L{MK647KrQgA$`bI!Ud#B4Uph%-Vl1fIhPtp?pKmA-fRW}|T@y?eJ0e4h z=%|7%11roi<}+C7*vmuVF<1XQzbovu#C<=SvWZNDU?Q^KqnZ)j_u+od9Hb!%j$+*O z_Bqe21_`XtA$#Gr{-HMq`dIqJEdc;#7Ks6?e@qrC=y#$T1htPmIp*W21FR79iybem zGh9ptb@nFa`oVj@03NWUDn8?m>7I@}Y(+aY;z#HTSU9I)hA>%nX}y6z;mwW9S+`)A zqo}fDW~aM-R>Ing zf7_&^{pEXD?7&=Fr&>hUMw*?;x8W0zZUr^^M|Z#4n?JkgW5>2GvR83spAQ))US!@d zlUicgF$2H;@}Y2{I)4+*ZtXGY>G8_BamN^96AVV&eSH4x3>}e}e!K_XD9(;PnY)5@ z{7V|l^EMf~UR~7m4eP@fuN}7BUG?4bf2R_qVIg>^;+j<&OnnmS_%`VWxDCt0TELzscJ1 z{Sikxn`=;!7feuA4W8tKl#CZ4=bLWy z(m_P6nVr~Sia8}U-q2bv=H)*)e<;Cvps?_wG{uP}OaN&lOuGcR4R6@TUtT{Vx=nll zHGtUYa%mJ``jVooSGg4-3HkMb^Q0{g^y}{U0;tnz|NCe_@5kYUVUcFzX!y0ma&fPm zJ~?zb!0yC_ARJh%0a7x;nTxthG(-cNrTL7u_oZF}-vs4ANM??yy0Qt*e@C_oDN!ni zIyx1_N&y(}O|*d-QAAB)+yOgY+b1_HRUOU#5!W0v)NGK~e&hKg4aTAHbc)h_!D(s< zSxUtwx>SspWJ*35Um!idqtq~Co>Uc1eLCD^Qz?tKu1kS*$C_HJ=&JlEhxie@jSFJ| zU%wul-xBhT&GDP|JI)s%f4=3VcQ%cMvzUH=j5lW$OV9;#kMJ8%`j^yybb3;jVIyVA zrXZ`ug6qtDbMK+`VwR%@$#fuU6~AKu{94&rB+PRq& z7=Zyy*-}^bbkujTfBZ3y(OqoUr5YbC5Qr1ec#&A%%@HKWsmD?BB*?B3*Cn@P+%}J# z!+u)=8)MuO$=$?uYDwVmw?#5fVc07>zBfKD-7EHA?0N_%JI1zF?!6q{sl33~9W^cR zZY?`Wszn8&9>8~LPt24!J-G2XZtd`$CPy6^XI1pv$Oysliz|Y)Sh>Ws7 zSopnBsvoU=Um0EY)PIpXgVxVQ#AAjn4U^IpO)&FamV2m!Y$uptUHIs-FUM373M=#-9P?>4 zSlD)#wMHMg=72Xd#ytM{@Zvs|>8BK_Nt(H$s!U$zA|0hh3Ot>Y*!UOv?k}Q5BeO7j zj%@@`@0k=M#}hHyMXn_yhx};seTbWUOkU2h|Q`lREt^ zO+NJya_~c~m1ql=|FgGAW>u6}Wru7`F|Nx{MS&Ku1CJV5&f5m*Ygo>D>22fR*=0Z8 ze`6OJx5PiuYd#p>K7V4!fT0NQJ~P#k%IYl618U#q9*nR6afnQ4pTQlJ8rbh=2$_K! zH_4EA7l3#+l#&;0-zh+9rnInhPCkug;lv{qif2|aiCT0&bxlPMhhSFVz(o+yR(ZWc zN6LYD&8#`ScnL128Z4BycK(&3Aeo2mf9@fI%e|M!7aH9)XOgdK>E0Cz?%jA7tD-R*bkPwJk|3^ZYl3fR?oRXBVS9Z?d`QI zLtB()FgfMy*HB6*TF-<7{!ZRtEKKQ=9^Bi~#es&uaJlb>2*p+B{jDa!wuqj&f95f@ z_AV>_p{p&3g7PVW>%{KaICB~nHOvk{p*q7KaACIrt}C0;^vpN9JNDfGSPVO6zVc7^ zO4%&dzHWt9%d|HX{)O(E<2k6@hPnNBiuE+>kOL@%Jm8&^dR5L=ZJ}z()_NzTdr1jM zE7$%0a@@$D;Ebjh*uWy(!BIXle*_{{fRyYs5Geso8f6pl3$6dup%g(NFnL9~-VrA* zJpuUm^}SG&@!Z%1XZ!c8!fCdaf3W%YdhGp`zjNO>oVmOl<%G#j%f<^BeQew1uuctZA??=*&?TBDl0Hw$NMCmjWN7j|&c~)Iv3~t1aut8OHf_yKC zaLA+tK_2V!{i=IeO8>Fr#_s`q${mj&sU>UqS+JNU@NZOUX?Ad1Vj;@h7CTpN_2vS4 zA5Lg9%;02aoNrZZxfBsEeT?eSB~&P)qPs895Y-w9%$e6<|oK|S&e?aUGY7- zH_q1p5`S=it9(N%Y(N`(+kyk(3sU^glN(zwHR9~Cx_pz3bZZlvT_pfuZKe(Wb?&<@ zLUzSu`a!PN(0Jd56aR95#SEf3u0+r2D^;S^T;lRP`_+7YzhITEf9D>+7h>4*HuJ*B z0eWUv9Ry%eCRo68dlf0%O~x!`qpfIchH0Kbt1nE)K5RT1*;S-KkvSASDAc#|9m*(f z&D|pdqa-F;49J+T!RWg<4lH2|TSxeydG?l(FQU45^uI;D-p3zv0HLLZqt zb_&4i|8c0^KqWR@e=xL&8h!hxi!w(*hLjJ6YjuG zk&8sqFPqlBHH(=jAe#ymzgewqgug>t@!elnL7~y8JLr1te}Bjq0ufH-hc%MIZd`YU zt;w1#1xbm<7yGL3A&Rjn$ul5bma=CUF;OlF`y8L3hWLG|ho^=%%+$m9mck_XCJ3pj1fPv&A6dJ;Y&=?YKi-I;4aMy~m-YQX-O@bMKLwya-N|fh8jCDhNgY;wYO6XCItB{kvT4yznsPB ztyMN`1KmlBKsnJKt&hi9Nt|>k-;{N$w^+g3!G-S>B%cTqm15`pj{xA*vwXb#n{t08 ze>{NsH4YZH&;PD)-GmUrtx-V^ru3{;?>J{Ff1E=DU_LluuRi3ofbVpI8axf0sqDVi z&)!ntzI$~jUI+a4yLwI7yeA(n)UNQ5ti6M&AY~fvuKXxXWROwk4fk_5rMO*yd?$O5 zIegjVgvIpd&Q@STnZt{_TzvJ7j^-ic<+hCDt8+41P>&xI6<`*i*Rg(O>`!zyCp1U; ze_G;I#tT*nyKPg05{oz+J%7)+arX!`RWqMD(oA=PfXia|t{B~s?b42#xCZOeL0H?L zHO$*Q)pD{p_`{9kCa71K5Lu%V;0+mha`(DSGSk7FD7xdacR}`$DSK*{h+2m6 z?>gr53c}g1scLHjq}BFXe|9m{S?J|ge?;3ZFZkL?&uBU_UeMS7D3v99mRI~fcn&hx zmgvgu2JYhM07Rpsl2tc>=7RcLkNup3km82xJP+*gQtha$)Z8E9$_aDqagn3#reIQP z8I;_X6?qGM5W|YI@GGgiMo_bEo$(k%jYnPo+>L|^mObAsGy92KeyEg`nzORbe_pgb z|0M0RK~Ye7oxvp%HN4*4@**tKVV{|rB>)!z8*19sgPC1zjFR; z!}a;YB30B%N#2t;^`pdSspRN~et)SRSBDi`^yX#s*3MtfJ!jKzhdOuc_f{(=0&{=i zGzeq|8}A=1N-^QNuK_FHU=(=yaNLe8GMDNDYIty)Ms=nN?#c3&zo_ye z55l{{Y3bXtAia)EHzUk6NZuVLv=Q3kL!6!xQMMUQPtri%-RGQ$IWk7Bf8d%aO_H77 zhHqsnN{V^9{xZ)wYXGH(-8V6KTrqI6`5-#$g~^P%<30O@b)Q+(@1+0LGMd1KY4RSp z#=phEh>7HDI)mC^$?2tm=8q4IEU&DP8FpdZpE`EO5h{-UhZOgFo>$mQR!%|B?&YRZm&_HEt<9xM*$Lp`_ zR5bu6!oV#!yXw73T~G_IsE?z0n%csLNF|QTal*X^H)$kS6Zid2*H zqCWOW-|OgHU10b+g)%FztBO3&0JD#}B2TCMuNV-L!FM-(9*_;#%$mBPgkD=U`k0snXhY5k*Vz4w8**tFsnf(HsYZ11TDl}9%b zxSnoOc94Vae`!6*@?jR%FxWbWjqbSak{PBI&7xD>$&(Y$9ImC^<%g?qHU=m)kE^1h z*wan|qt%WYN14zM9WLVxkpqfTmnP{YCfO21V)*dGp_jYlB5Jb*ih4^UhgNG!n^&)a zg51_hxy?3KDo?$<7hfc1A-Y-#JTz6$LhL+kp>3-)f5sv1*HO_Ewyh?~X@>wlK*7KI zPxGLV0FvM9Q1a40Hoj`x3;~AR3%H9l-2$Xdoc^7a$5vJ5{;Zd<8L``g99glZwv9Hr#yX;0ztP6MZ(A<%gN(VvnwuHA`RGn{W=v$mtB=$;FksWIw*sGDU3`g|{;s{)n&3|cD zsE#UBc8@uAH}5u(O~LQ%>P5@X=&{gK(|MPQ8CP5>Er0D}2-mWYPk;rdc}Q9_M@L^hZlki08T@^ut;w z9R%%6sDHyOP5bj`j|@iQ7z!6>ZghbwCOc9;f~7Y_d>-5i=RE-Co;$t0GqZ2k>sN)a zL;A;xr1D-h3+tm{U}eeklx$PKQfwVoF&c{pDW!#?NB!b<$a6#zTSt}SH*izX0#4#O z;GNa9_PIA3eCVdJ>pmHLCY{!_spm$`$tdh}YJb5QF4{1Gg%Hp0Pk~v{5eM~+SH@8JT-MZb9&gu8!}1>#6nc62#(kDc^j>s78-Eh~X7$*R&t8ZRsaoeCBdWaLJOe$s*2-Z> z-9lsCw>&~Xhi#-{<{?A`UqL!ag90hP{NepIwzXvthX&-rQNdZhWj=Hp&H~ICDojcy z{VN+JBaBjk*u;lgz?$WH$ZfIyYebYVX%Q~?TAtw|i9}HwVTNM6=+qPk1`*o#=zk-C zO3eJHE12ch9YEy42UKeq!L|+2Vbd^I%X*O45;;;9mZZXGY1um%iyf<4+y}W*#;$DS z)N|vvp_)c9KSG;aFs+_S6RLpij)J(UxvogXO!aKQWV2;Dz zE3)&A=?O5&lNQvy!-~hZ6$9?_`DvY`UJB@&(xDxpu)naQ;uc(up!LX$#(%WmeduW2 zK?uQ*U-6kB)Ai7|kGfp9^80bJWHfW8nf8)9o`;FrlN(EYKjCV}dVNH=14fG^S2eqe zXf)|}~0psTo>L9q3D#Rd5 z&YwPP&c{}i{ndrTWYYaVX464mb>K zrk|zqVwYj+#QiV8P}{LdB(3E16wI^=1Kyzg7G1^a2kfgzn;W2+ynfkT zuaOlb0ZW+Dqr3hEz(tk~gnbRU_8UaXc zdCG~SQ0;tXAXhLV)T%)ZXB24%k0HaJ)7jiL5Wkw!eW%a^1%~7^SnzzLxZ4w}To>7) z(2p(lDY>nE2y%MDtPUf`} zWLGEsfhK}>^aBnmG9&tl6tE-=bmccNBuX-;m}O_nCI$}Y!(rtcqOr+GA$)c2gpHtI z)ru8uFK`NHxbnq|LTtpyq_1IYEEnAj=)=X51sd$``IRjBWq)KEFo5Pv+j}IF5D>2WCId<( z4G`jA_?q?bunwM@1KAA^%PZNi2hz0+jZq7uDsP;5xfwe21UvIjZUAIzWe0Mv{xt=* zd}odbQA|gMSE1-xvK&?lN;@L)EZL!KW~xq1Zv}nEVz=Y4l}J8Oafa6k0t(<3>W<9O zG^=rc9e>^RKils0J@ePTv{tL#rH2EOvFcE7_YMuT#c*KCC%t}364F~1{?|R+T~cEX z4D|}j32!ezun61%?Ge9Qeo6q4$qyMJo$%t1+Yw^U9e(M`1-uyl95OZN|BA}3JZXTVSO zXQd-ECUQ;cWxH^A@yP$}FhNNGj>+~ErLYD(js&Sa`~_K6+tdc7ca`QfK0$-+8$0ew2T)EHxgI_JH!0SQ#vhK!56Z`>pgp*L3Jy;_|DV;^MH|F44^oWd-Z9 z;lW-2coiXmFuc*zVG@!FaPCHBy=w9;PAGgpSm?qZ`PrS-^}gHxa!|uNDWNZ!_CnFk zklhZpdy&u{4Qana8rKB8^o_Te*&0@R>=^*)e&e@2j+}qZ!1b==F z>8_9{zG*uEd8>_;{1$YcjuF17bXcP_q9ErG)<6k_{!5{{ecn;#gh_+gwM^Rn#Hx?w zMqWD(h#mSQ-$E9o-T^`fSv}=ucv;(G&aGRr5&d~&;*Bx8Yz34$ey0(X)MsDCisHSw z!~ANpi#AzLq;AXcPAjz1v2Oo#)_v zQ7^tPa+)2WMG{{G2SP@yF)4wXaq>gQ*y+RqB`}bX@d=W?AE>tB=ftNE4v?`pq9oW0 zair7DiofZ2uETJMK-QK!v`?{x(MJuqm*e-HAMzuFF)@Mw=E70Qstdzlgny;#+J5Y>Dg=VKxmE@DgYx$Yx$1 zcnmTBytS%D=KTQYq>)CM1PWdjnCbi-A+iO;x7=8#YzCJFSSiF@jrG31*sF(of1G%| z4DAvM?Ua~xIVC+*MFGsef`9rl;A7Cq?-wxGma0T#b{HHP_m2gGInoUgxAG4`36L7M zpqrFj2aMU}N1EAspUlZJG{?@n`% z*fcfyO%mFZrNFPg#rKoWU;MxjWUK%yO!2nbM98<-WcE(cCVv9y_90L#K5q%6Rwo}Z zn0V|ji+Pn33DosyhUF0sB(2iMCCXQ934zMMD;WU=z@V*GZ4#3ijB+Ou_0Bg&mbO&K z7QG9x=9|<-5RHt4W`$UbyeLETUUz@j=>dnK8gNNnBJv()&Nc(Sl%N8LR za0TOhv{ovi9DfQY{d9;?F*hD!D(+SULXy}ivu__#`c$bV)!p%vvMyMqJ!@0A6L!S;k7 zlV*?^CZC;N`7uU`u6n)*-BwE8N!!0nTEu^OjB4k!k)C|tUHI-?8nZ%&*%URZz324% zyU^jI0`Uq0U<{K(GO3DIva8ph6?ebCX~|(-QT(U$z>}nlr4h@tIL;=#3NmyzmS||C;>4eE5j1_z6qA$ic_2=|1|wZ z(@yeLuRE9{5nxWnu#PowV)$82CZ+oTZ0ooMD>QArhi z5U55dCEXUTAP_qHeSUPDqn6=d9YKuHn}2(^zYIsKD$*p^1}h+oJq+$C9|c~za%zF$2Hz}toEAgwSo%f8Tl+G%?7O%yN20GvjvffJ-;D$qWOTr}cm1NVCBsMMZUXtj|d5Hh%w)bl;ELVt0N1>aS~}RvNO}-pUKAkNIWB60ERAb*XfX4 z%D{m-CFZ80y`*5WK2p^|8;=FvuJv8Lit`;*H!DVUFdJlW1$QE_Sge#(#sJ*3tP=&W z;B&1H^q7|`?}Jd%%f8LB%;mlf#D9l6CD7ZjqmDJ~=pBhv(L^bVso4#Cr19<_LIhiP zUPa~yjxkM%h~WY;E1OJgGzRrd>yEt-D_==&RHVK$(aptJnG4tuMeRe28EZQ?+`;{@|I?)+%7a)9Dqi%!MPCn7 zUEYf{;4(9X6P{U09Xu(;RXqZwOPfy~R-^cnIs+36ZaN02sQ{cbUc=)>{k zq)*lfv^V13jKxF}v9D^vc7Mm!L*9}v7?@NRGI)CG^NI$U$(wQEym-l$m8WnC=w(Rz zeVJevvryr8bdfx-84(1jSlRPa%_NtY(7P0vmUZ-BU)hW}pEo{(g8!***{)3FskbexOm21tbhynhapMa(`ZobxYHpgI>Ku=Y)DG*eyeKdI~9Z?F(cs+_b3hve3w%(G$RbE)R=kX))z zN^N!X(Lg9Szp0Dxz9ZBWMFx<&vRGchVxMzwpg3bjs$<<>fAO&jDP_Lexhb;+$`dA5 zFs_QO!FiN=iktqX&>Q`+-aG@yAegB`7sZnk1XsKfqks6>A_VVJ8B7@gaDjI*^ABLM zD}WmXf&L=Vb-+#}IHiEYj zcaHd3o_|R{>R~Ax#;a3^wM~3+94!vv7t_*)KYTaWV@ufb_(}uPQ!|^nwi=W)bY-H& z9V#L*_VfI>3qVhlYsht|$BJs}YE91+j2dNIuj(=4XS9k}WR5Ypt0}+_!ABoi$4OeG zf61bz9m-A0dp4S;5|avN{JttifcyeRj-1L9aW&k>aU><7v(YB-<#!xR)vk$D6p5V{ z-;++5)p4h5ltBt*Ze(+Ga%Ev{3T19&Z(?c+GBr1sp_~E~5;ik83NK7$ZfA68G9WQC zGBPuh!EO`z=YyHhCc zE(MCaySqc-qt8CN-}Cny8Ofb>>AdHf*BTK@QWbSZQB$xnND6G{%*e{b!Us@LR0G=r z?Km0LK;|wsKt})@6AKFm5+$X$BM9hh3AU2}I)nHC+|CvNWfSN3)c1b~78YJ4N`N%T z4&?amGzA!Y02D#aKn)Lj5G#NN_|HNG?BvX740L*TgY3*L?Lf5eDdJ#z4@XOL3+KNz z*cloBR{EPQ#srW9nplI~oUAPYKs!@_9FrmwKnd*jZnOl@fb9UrAPb<4831es&;We~ zXsS!9sRN|dlr>e+k+kd1BS#qm$*|w*Q8W>Kz&2zoEUSnmK}P z|7ifAv2b>_=VNAeb8}-dcX4uN0y~;B+1vbsPs75}3E&2Hv<82?UmZau*#YfL-UFS1&Mr;>qknAgPmn3~zW{;&;x3Mke|sqYr_1rb+WaSU zG4T7H>Dzeu0NsE7eaC=yE>52RgPZ?-+a_Q;Crc-1r+-xh0n99IK!4FY{oON5yMJto zqDrz-lIj|a3h%Z|Z+y&#Y-@>EHsAmH3b7cN5Zo z+sr}E02Tnq0RVD0v0(n&?jN=MHM9OTztiC3We>Iom;r5^Kt7gcp!W-smlMzx1aNkA z0r`0SPsjgWA+d4;Of5~E--Z4@EJ*)Um$fqk19<;sen;}3uK$n#%|C-m`#zu z&Hit$cSV|5+ku>%0Bk(}xIphL{2ShP>i?nzFw1|6imR)L(*Hk_`6o=$&ID{~X=e^# z7TW_vm@9Vq-|;XeklKs5JjM~qounZ%eyXE-|g>@ z|9pS<<$pDx{BKGBk8Ck9u)7x{Cl?ohk)4Gdz{<_d24H1n5g0wgXHsKGpN^S@(^_9$@D1)WsWjd+A75Xd}2eX(q(ME_Tk+Vex5-td6 z@=vEK04vDweeq2Suq*mZ8H{7|y4IXn`TKvyR8?df=&R^U_(4+iSGE?DW?;JFf`3^D z8SSB5cAic#$5eVtT+1hb=C31h-nP!iD7Nu8jH~Zt`eiLExv*}9Gpvo+jy9O?3+M#x zgbNexkj`(9*fHOLJ)(Ra? zg*&w)6G0IBQ4p1xO9QAA^pSAg(s~s?CP9Dw{Q)wrz^TI}AWwEeoH{G$2)`a;m06`hYK;!8sdLZy;`^8nBqoFXovqyu*(Nx#|V{Ab+$`nY>-Ul zJ78svUaMl97bYErL#6Mrl)`BTj%$yIpD0V`|2U~KS4t%kesiOw*)Bnfzho$8Tf;W` zWjML?fd7<5^t&6bjE8O7#R(TBF3p6UdRER|1Wg*kqu~czR`%CQ9@*4ZV_<)9>Q#@; z%C)u$wJ<-J%q~mg#vbfvx|E)gONJ4IjfExYyVFz&9M^;>?fxnA%^&0EC3C6N=~6F*_ueNewTmTL69)wGhw6z zTZ_HrkDnNOLn_lQUDwzt~+dcV+ZD5E_0EhxVuI=9|=Ohb5Q$WNm|Pxa`DW!i63jY9SL+7X_q+#<6e^9H*d#gJ+piVSn*ZMI772xX|qBbG3Kph z160<*l#{K>f?wFFhfIvt`30Og7JUarP|w9rvURQ!G$Dxv#Snj_|C}_K&;7&~sPz?L zTPYm1{e;nunQ{ru8p+-MeYgVK+S54xvr6;!v8Xatm+YumF8p$g+6w2|PdFYU77_RF z#CxFf(*iG21*huNz@O4reH>aE^Symy(@MA75+(S*D|%tC&7Ugb&%0%%MA|NBm9Nlw zsoE987tAb#XTN`3chO4e_EULrX%Ti9XZ8}r4kkMc6ZcJhOgZx=vTW-cIO!n3SZrRW zKDCNg(&vU1JGD+<1UqCT<^Bkl{ZwY%l$zC9c5@;|@u(N{=w53l=*i&NAd#>O!xd6k zWT&tG7(#kEk0GLekU*qEh1TmCBsD0le#QX-6$zfxcEC7)N)@B{HS90ylA z+U0+=Zxs~33?&Sc$-b$^6J7Op6Y!;}ZKOe12T+tCcT)ADv&uRB($N^0;~j5!$jQA~ z6jdh5@w3g_dE9-Xg?*-SSI(x+zrLc9`0iG}lVj_R3Ppb|-u8*RWHz25OE+XiHs$py zT6VuRpWz8Jk>SYhxowj!#86hi06~ac4|9Kj`nMel5OG{?v}=8Xg-$r0@5F}-3#UtBi2o)MEW1PEhMy>kBTFAfqdLV)wfmz7O}S) z2G{;cQ8lui*Bg}HQ1L^#NQo4d%*~#t^KRS^%85!lmw~1vu=xImyRfvIm#WU|a)*C# zzI}Ucl;(^eMXeeQ&Id$EXlON{ag-OPB2iOYkW+e22i@?B}@u#a$TyUO22%v3Yl`9k0m!nESO9lwU3X@2iA zKortfvmO*c*x4^YIJ8M)Y27}UB8}Ih7NTi0rR+tRpb4txoeB`;-To#&a=3pv#_Ifg zH78l_;9@jlK(R97Cp3g^&^OwcFyo%x2gyZEsb!2OHqP|c;s+ROwO{gEg9Svbk$Uks z9o3E(qL)6JKhp!QC#ln7BDNo+iapwtadRxvUZm&9T?vF%kTD)ljHP^2PWG(X;u4OH zl^D^Uzb{Ush%`)VixnU|x#52(HTrP&@JqMX#w*RKo$mN8hWPK}jGO~srC^d%u* zjX1ZNA-dHm7x^UY7o~)(7Wh_?%jO+~yB~Uw%ox==D2}5Jr8ACo2z1(vTnWQ#dKd?-ze8eiRiklw~FG|G6!_ zQ5w}Fm!c=fY;q!7VRRgyE}|x$>+wEfWE07J^rnlilW;c*v^f57jKZ>f4LJ)(dtzrU zrVibNLOW*M4@F8hCO2-TpTH1Ot-|Misl3jMvU_Q}5BB+G`J;>R0Rikvke!vn?oO|7vV z7JR$PH}}G^_9V(#AJ~0CV}=Kz#uaOAEnB)Z^OXybJ)?hAZ1a&7vE_H5(vSTLAazl+ z^fpp^f~k@M-2va2sSRNkBvx)$e3F?TH#4d0a)3lj43;~qdFc{&(H4`p%D2}9r{_P& zq!n%-RI3~YKUuqdZ>U$Me*Lj{k$d?&h9{oi1%AQ?-!JDo(;fe+p8gFfL!2S#qrv+;PVbA6Hf9(o z5BonN%x47d&tsa^v(GI5b%uq^rUykLh^_EtegETC-yvEQAXB&p-5?hj8&hU-Uy9Ui zU5PtG^!rzK%DyQbiNYj`D9J<2X{E-e9}WbDFbRKGjfB5hdTSZ=p(Zz&xS$V0if)Dz zvlVq`uFE;Xv0}2RsMwpnwSdZ(R~MGaq)`SkxNqws%^t#%3KgaJ;E(c+RQ5MCj97xb z9=kuReXp|*&z*;w)gZL!Ps28AwA*O7OXN#sGU=L$DGPTTFls5dPdVknwx~q)yG%y* zlfi!oS8@M(yw=_$70e`)C@kU#DG0T|er(v%)vGc7p^MPp_i~=Ac?Y?5L8Dz@3J zG0Lq>x%Hi~^u*suXawVBE!>o1Lk?0KkXP2&aje$IT5IB{^c}CNeNBJAaG3vsz_YY+*X3A>k4D23QkKY@SN9NX zDoy#8q{I!5<&j@$MXEaw*W$gfS-+ZyOw{Y z?M*jUbI|VQl#bVzC0Q72cvwEZP5*`eKu4Qr`*s?F8@)zu;nLMpF)jfK8FD559MHE& zbG3^yF4D4&og{xsoS6KZ%N-H7+c$Ko*{k(cn?L|nS5FW%xBxeG7hsQKpt1g9a-%?T zZz{fUMWf`qX#s}Mc04;n`9P+Zl{Xeql&# zEJwkEWNg1q42tPcs`=OsCLB%pS-0Vo1pT?`lKb>lGEg%!37>!FM?Sf4GH-uWLxBNh zYP)CXlq%0!w2#~zxW@1;#jM69VuXJAQ}-Ss^t}F*sy!hEbKn+0_xXCJjjv)VICVrZ zLBoocS66Qj2zi1OBx`jM=AIcvm$$Bdcc4B9?bm9u>|8jX;#|My-OHP7mxdL9aBKc2 zmjW(*=Jl1CD!_PNs@!P8e-3{)TM1s_Fu_>VUD1gMR+5Vz;?ObD`~LPo%W0>n?}lPF z@##cQ?F$WT86u-UlR~?~w?lwQvV7V)n;8l6XPgyy)lw>SAu~E?nSG?>0uumf`Q68l z)=&{alt$rFWy8pHH34UDG@r>+$FMKD6DX>)wLy1{?8J6s(gw4sr4 z%?9sKsyFrk`j4_dcI^#q8_!wMkT;v6{U6qA#`{cao}!nb>c;ZqcbkC!OPYej>}b0$ zr4}oTkZuj-w8K$^hHGLEsYt}=o$(15rh8qn z4pcSXAp4>7cR)?g$)K`0fkw`(L(QndbZ5T>DH&(j}^MEzom==;&GO-l&ED? z$7Pq^qHU}^W)6QkFQo)m6G`2t)GTa`m4ED)>?3ZQQ|3~l=)gA>*U!}o=A=3N9{lag z#EQF^7@4-|K|n>?EmpMMUBbc`6q> z#aLY49%@fvATq=&u}y+T{3U9t}3R==d7`rS?R-ofsx3_b{kQ`F8~vG5wB3uRv)xHiW_vU zZEAIw@WNc6fCFf^r3YlPXI?xa)-c~ZdHa+o6EqLuIUo`I-G3k*`<9cZYR&u<(ZCsHZZPY3P69g zJ;+EMgX7#5Xtev%^Oa%!J9+|>7^trZ9zuU=iwXOUI*frW!*t2?60+cMwMGg77LOYr zGtZzoUZs+qVFBTj16RK@Z8$6Y@{#^zu|(&bl6RDoKaY8GCQEY5upBxNQlMp4>JmK> zs006J^s7+o|MAPf9@=rSecG`17z8n!yU03bI2edAlM z%h$Zmwo`3=PB%uebFAlZZRy6PhWn=4nH!^e($Do75n0oam}TcQMU{r!Z$!vmxUPzG zlm&kn0%Sik$6vBjTt_^)XOJD$fQu{qf1giQe$YCrLs?8-B zQ|h8nnF3&e2=xWfoM|Oy#pwm~+swl1&)CQ5TIntE~PX?n{5f�eOn!fT4F9XG zHN6;#H>}SOG#JU1`Ha2<#fI0MNnD6J@ZnGV-hjn10dv#ATs_V5NbTvUoDRWQ_3~VwXVDXN%i{B0{ zeJ=|qY`ZyC{vzuN!+xb=#14O_VnJVKzS6vs$nq&)fyc2pR}xRj6*$!7)z-;RvSTZM z1GQl4l74^=b-KNiJy5qB&7pD?gv1AvzCLi+{ze-q197RU@!Po1EU1KFt0ky|=3Im! zzA-%lNl4SAeA}j{YY-s+z_08id(z)|*0D2AFg%7eg0@uJdD=XFnHqoH?2^wQ+z(07 zQ``-m`16UzvDGcW=M&lI<7hbyF~uH@=hl^^)Tnc&63XpXy0eO|Yve;VloiWkq?ZGV zIcnY3lG|o(_GW7E#>U4a6E>(xUShtBP%QGhs#VlQsQaz>Og`EzWNV1>sKo(4eX}7; z*YE_K+zJ;O)$=x|7j-O0m>%I7 zzO&t!_; z-*n;6N;Q3Cbtk{f9$fwWcJ+2LkT_+lF~!g&wi(>kBZsy-_tSqbH3dWdktt0v?E7(( z63#6^5_Lv@Az!-nddhmgGP=;%^cqk&6^P5D3|vN;Kq&X5DgZzJYK*M!l_;^BolfwZ9mQBBzbiY0&GPd9m`3Ig|=1~V%R#xR(#TL7qOzv4ucVuh4do)}9+~k@#|>|2}_%dRvjHLgd$@s=3?&7Im31*&xrl zj#{h0PVQbu%Y<?bbXZt_PT2FDF)ti^2#?)5w#-5F^CAW zkgm$~n5F?xc+4>xt*UShl)SMOCrf?sAZLF{d3PwkQ4#xaUbynPXo3jMn^tJF&vqYO*zd!2 zt4E{2Regyk-h}CPV)UMmM_P^i{D*(Un8)|<>A~SrCrAD3o|iC6aSowB4FgJPdFoPw zBV&*(6$-J^ie~nQSC96r4EfLVgo!_7qQb5#NK6U9d1F5*RMI0wV}Eox^(mI-kU^H2 z#CAxZtuw?NG@mKoFnSny_GrjRXgxA4ziT&$_SJ~itHt#d)hCq_AnTJ%i|2oqOTX@O zv0t?$<9(55gX9s`P9Lf%l{!!giXGzXjbg>`T-@oPO6X3tHmtW78O^CsJR z@y`H9!b0;oy92&-gB}WetKTN={={*BFTy~vk-7KNvA zvug6LWziJhZ^b%=-Oo2kI)I)=AFenMPK-h~t|@5)k5`?%*LGjt3%7p^CNO4$`5PTs zyD1`_rW&z;G4RxT3n?Ma0p~trL!^1p5gv#PO zE5SiUAXQUaG|P!i?)-nN6~IUyKlr2$@Qtxw_eBNwnL!R|_GHaRnm0l3t__^5TAL^i z_Yv&bh<>{+Fk?_*G7n&4CRYuSEY`Fbgi1mw;v{rV~5ZZeiTPR{TNYG;(a$R5tFj3@s)+ggkoA8ux!W7W&kwSMB;IzG{8Z z^a&Wyj^uYor1Kmzn>0|F4{Wno13CIK3gu@Xpg)+VMlI? zw2kc**%$DSZuQACi0U1A8B~alA~ND^jm&?wK>H=oAf)LeZ!V<1u3T_65w`aL8on9c z+Tn&*N4t@_jpTnG6u1iU^latMg2BL{0NSq5<7eE*o*Em&@R>5273nmHs#wc}kosY< zpyKDL#%$M>n+0Ng0-l>h#}a%#J>6oyLo3H5O?ViQt)>X&p=LwhgRhY^Yfcwg66rB4 zhEuyO7(TL^?ST1eAtoA~8%E!4`A8QI=XvtoP2G(|-Y9=PNY^;QojzsV7KjOeO8>^t zIru}(V4zH4i0OqzC0W0awQ!Q)*Cj#bt|K8Cw~PY|wH7DB)O!`5P|V z8n6zKc))+u=$RrtZlz7RcEwmz3d4yh_=Ga=ANSIU_i1iLZn3e|Xs@XJ$c__n`v4(~ z>9Q@CI2y6|XTmF{VvquLvbmeZK1}h+c7lC15*9Ztk`~>K&AvymJ)(l)tGV0Uw)0Q4 zp2{7Bul+0jktV0I^sK=o#>9;k81*DCiTecu6>fiH?BNO^SadB*Ovcaye!L0iuUQ=* zFonN=taxg>n8;SvRQo`PM#K?WE>7t&S~N(-ieZ5Wu#Fk6DseZ1(+xf7@r${jhG_XU zQfYV|zU#<<-MBV?SazU?wq8njy#D5Xyyz!#SvNQsNLqtHJicN6eWLa&m(>LLK_=C- zI5>Z1;QDugyr1eUytnH4W?eUM<9!v9iCo`~*J5eKI#dCl0k8=rDT_E$SwjOi~L{1{RIHP@Q^yuiq zyi@Z!Gvr*BQQIMB`UD}fEnH11^IerOT5Dgo*kDLBgbT`r zuw;%jy&yLy(CnlMjaO?u_({(XV~0boiL)LaH7GX%sWw(G#RlVp<5k6%aH(J`w^o0g zYwh?I(`Js<(`#%WVg=?wYL?Cpdd&@EtYKMvjmZ*~B+b*g>*``RYB2^0KQdF;z+p#_ z!7p433(LJFQ|z&|>6J1J#~dXIT^fQbBcIMcPwg+8Z|*YwrSgb<{l#tuxBS))G?#h< zW$*@-tl1U%LC{~}yML!xmRFdh!-Id5$f}?>S5T`!J9ctMIE1kw*}CSD#2W|SAZK(@ zb{tjA$P-(GqG8h~G33~J$oWnwQZJ|5{x7B*rGY~MB?vWgD z);_%HzE*h6 zRg4X*GAAM;>v}V3=zV`I!{P_AT1jH}+9;iKU56t@r$T_Ru(`#0!k;zbop1-J4sEX z`aNv(FF2<8sbRIzOvf<9hl~^DE)PG>JPRBOplif-DL%xDYs`N|#BtiZZiAs;!fIe8 zB0jzm6k>R8iE@8w3*=j!{pj};m;DT_9ei^4%dAt!YfZR}%98=h3pU4Ne~@OO%GtQE zZ)zf~uW4-}Pnkq1X9H@XSz!rVMEmFL;~!D06}1mqRAdkgg6pVyHIugm&s8W!q%0Dm zZvlM}Pe&Bh!a_9It6G-G!T zpiNFe3`f`#W6agxCI)K=(uypLV^-h-Pz^L}ra7jUvJb!H`C}1E&9U)_ziqOe6=Y$| zwcDYNpZ4m@qRQO9EEtg#0&5n3V7PqWds|ncg0=C$OqhS|=n`)R_A`roLs48K$hTot z)?ln33DKS@JzH8qz?ShfujWF~@EkGZ88f5y=!|!2ypd_lbUpttcDE>;yCHgDAnDx6 znH?8HpDDbq|JaS&+?`&Xd?Omr9e%nZ23AZ$!Kx!_{OK`36!;JhfQ9YyHLaad$;7lD z>v)6Ap{ak!e-!0CtyN91DiDNv;9bSVu+TDqMPb98TpAk35lOTa${DY4T(scEAsycG zzMOqyVE@s768pN1;3d><=G@$|{_MYnr^Odu#)z?2#*IC(G^^OF7R+W?6`cE1_xCD-_8suKbECw}?o%S2l91Wi zGQ0c$afYdq@Bnmx)pb3xGu>LC>ALnG4=8+z*n)1M0~B{7eFJ)Me5>ZRLJXv}VceM4 zbYBToE+FgU6_YY0GQkvwzrSQ22S-quMxRX-mdEUWE&}3r$nC@ug|e)M0zKlB zCi6~zRvXXDE8~vRrKO|pvdOh>L*A^uZU3d-qL!)Kjn*!&29;yYRJEyYb={ecq8s!V z3W6DuD*1+l!VeUWl-DJTjo;yycw4-`$6FPjy%*3mukPq$$;?BOIhl zqk9+MB2433YlM25uDkuP8iD10Jfh&IqxM^2tHsr*8GFOaOSK02UQq-kLXvFRo{&+; z6;0&VrL#&=;)OJ}UlH-b6H5QbXP7wVE>K2K+}M}L(KXwgKLT#Ews3qi3bj>9Xb~iT zW;2ec%cor%AzrXPkm*1B^Pqeyt@QC2+zc1OqIfTjexNEFL|erfV=ie+cXOzjVY6k| zyDL^`Y8OGB5EIPG=Oo1g9}y$%CxNwF0foE|v4UCNr;6>mj8|9-x>`R*Le>g}CTKHA zYIL>0~_*#r!_?UbuzT{s|tc*PeMAqKJR6} zR3=sEiA)HWq+C4Fz-+YVdyAT&5e+xd^Xjc^e$^#5sSnIrb#4)S?OHy+p`Xd-^{XO!lJRFYaHA<_?prTkrn<0nynHmW&G z*ttgQyZ9TBf{Yzw1kn$=HxTBLl2|sb`ak|BR>k%?!jc%+k+H;5#Ttu6>b|(W`Fsm4 zk5rHQB=R*Pu136q0t_kpnB@Ek;kOhjaqycE5f1a@D#58t>s5o{7g+x8w31-h0DV1; zlFS_j#c^6C7JTNnMD4s!_za3@Ul? zx15>0E07UwhU}t&pzywSzaS@>^pBl8b0yTBRz<1X@jX{BRLY8+)R632*jgQnH9yT~ zU*J^~P)g9B@IMp|yqEUGL%W`PaGl+TlW+P28mnKlDHd#Mo8GqyWnj;FmCqlL?%bFC z(;|CYb%y=)D{{w{AalomDyH;glif;I=Gx|-{)_N}lG7D{d_ee|x2Z)IhqGmY6|jfb znlpF>*}E4={}@2Zh%vpP%{z<?pHH6&gkZj3h;wxD}F z#Q&)2)sp-hC8q)p=86(M#gFe!pgZm|_Tx&yq*Mp8{BZRcQRvK=J66?J<5r>gpTVzT zdwPs(Pnh-t)@Y@F(bdi+UTG(cv}F)sv$#fHbYh*YqT*a^c@k6O=&J>W4~mVE$5_LM zA-1OMl!C0F6=&p_Yj%%MCFyaFESK#*gY z#loQLA71WpEOaiFskxP!PrD5UPFn3T+B&}IBMhmT7S@ML@-n&=@W&(6FMSO7e0x7uji5B2MSB$K_{ z7hY@5*UCeMP^P+l%Iaz{Tr+!J8?7#Ogn^C0+GQ999LpYUMjPD!sIs*2PV^j{Q!N%V)Cw=yytHP8gi!iCmaRfDH}@T`PPy&kT`v z)(F#oUY!kBlS|6kb)~mebX&?eZEWO_PRB#QDP zUj@RS7E$|Z*fYP`@1mudoV2U_ffVz8AyA6)3wV zHx1a6YK)uNk2PNt6>v5DRWTgS(^wXqvCH$!t)c7SK77A*1+Iftl(ARiiA{QFhZ@I! zV=$2WC5{=hUleW^ef24Y27V3ey8*RpO=ZprB~!YQ(p^+)c@H-D0~)ceog#Wr)2-b#e+n7n5Mglu|4Wom`r5OZAhg~UHEE4A ztN7I=1l|19g~6TD1@tZ;FF#C#}ESNIGf*7-&Vk@jzSK&z1abSbno)<0pE5-lYe{j0Z@^ zAGJ5*mOKpC9VR~zf5B+i*dqq!NOE^ekMz>rwvZv6b zb$4G1V9ZEC1XB9Py!Ety>gjiU+Jfd}1))Oq>_G;Rl-ckb|9Bl&`Cfhif1*RhYheW0 zUWb~s+vAG2S3UN0r3&P zWZEH3*AL_<>uI6W8YxxZSUEpxz;(g6cH)|v3a$4>J16bMAap-c;}M9w;-&gPFtxm? ze0U}p)L81)isxkf++jv7)$K_~tFttc{msG~)4Idbs>q44B|VoWRVffFm7wkceRkW*!Gt!!-V)(|- z3|N0ZCU+`5NZ{UiZHD2{0(w@;0VkY3+#-Uuk7D0tcs0_!CiWLWvAxGIM4UkIWW~12 zO?qxO^BHb&+m&o4%(7N8^#Kj_sAgvf1(&U^wyBeUVFPo2f9vlt@<=J6-rp;?d0v)< ze@xTtHd}9rMFW0d;8 zg|ScL(6yOD&G!#C84{cg+7Pwk%b8xlI)km>cW$C%{gSSMWwi7RTURi(=39IJA6VSl zWeR0(WOHQ8HwrIIWo~D5 zXfhx&F*7walfiBk1Tr->HJ4$=0ViLy`g3$--?lyu$F|)S+qP}HJF3{W-LY*O9XlP{ z>e%c!9p_Dd&b{~Cd%nMa-%+FXuK7&vxt_UJjZsBTtfWdWY+`2wl(4gPre|hg;sMCX ztJv8X+H%sX0L@&i4IP*I=>#5s>H2BG#Ka9p4v+-e0v$h18vPLY=P9DE~0k!9*!1f=FWd(u+r22jr7-BgaII9Xl!NY=4537 zFtjxR$S}w=02J)pK0ylrm7OiX2xx9-Z3?h61*ieF0P3pZDyjfU6-9MfB~@yM&%mlK z_V#v;|5b~qs+zha9Y9Q2K}{S0)Sv@Ms;jE~y{Z9iKkGN611P9{>i_2XH2mu>FRmu6 zrmZB-%=q^i0L%baprez;-?aZx8^vd3fPa_v>6h^81R#I)shL|i0o?2ytpJ~QN1!$E zpT@Y@ntZm?*&O(<0Dl(+AZK9=v~>dhb&|0Am(u35m7h+Zxby!M_Sp#MzcH=4Mb3>DHC)2a`@-cM#&lNMYb#e0iU%mOik8Nyc>tx~N?DVgQK!B-*HSlls zPJh?T!uB6bURXg|LR?jiUhb24w)FCLpWU%#aCUe8$NFzPVKF%#02dPnfSH>O!1PH{ zaa$8nI~$wNs-58ewolCBvro=;jvkEv53j9k?c9HCz5ZX^)WX)p^l#@)T_z z;Jlm+U4Z~+M;D-v*Z)@hUkQ$x6JTOt?EFde&tZZ4C%Uw)sU3j(U+`xo|E>Bj3Q+ws zsMLR-Q)*&oYwZCr0h+=wD%d%H5`yagKXdjUxg=bytrZMyfK>n4(*LwGw6U=E_&=8a zVWA29TPu}8?>Je1 z^7eD@vG}`n0qB{TSpGxzNl9ZXTcDE@fR%sk9~JPk4gXQ_XYc=(3t-fcR}_&@r2T(5 z^N*Rht+Abng{>KYg`ERn=;&zZ0mt-71QvF7fEV*8r%izF|1br>$Y5*d{OJO)cX9Rs znA$nQ{asCNZUCe4U+5o+nTZ*|2>c(BneR7`p6aReu_b2`TlYoEx-{bnfyhTLp+`Z`8xL5)7EZi&rW_FIx3o{Fw z&;Ri?{@4EZ&%AxI;=kp;n-2g8bO##4tuEOa^9Ea{Hiwq`iWkmQK$3GaoL6B9XvxGw ztY*w~;^T+mfoM?@W}1_6&c0<$dvy z#D&LmH5k+bGv!zOE4oRjPh@fnv`g9MGTY4;tqX37gf>7z9thm)0b~85<&!+ zdT(F#R39T8BrA!JHMKDNIGsK_?{S|G@NpNw=0O~Exo}v4SjI2d5_yLmK7MJEVcig` z)#ZQ0W90)2rq2SIL|Pm?_7cqKHEvpl#ok^86RH#o8mj?!w$rKLWxRg|vp?25|E6nA zsApWx|GW4C_B>tLT<$#|Fbsj&9T5Y%l$^|}jFSoT%{3>bdLEHd_2`ghsEd_C%CL`G zcX%rB2{VVCv|Z!U>Q)Slxqez~wOVnn7I9+=FUj#l_!N9fYRjRga&@?sZV{7Sc zPQg2&h(JZnzk_`}5IcW*3rjA0PVyem4NzpGB|?&gai$xV(if!owaI7MnOUN!llkac zc%ASL1r?)4)+)m7wt1imiIx=as836Eg_TdsS1HPdoD0w>q>IN$M-lTwSHUaB=n<0J zLicC&6S;gxDAeS5rP`xR1)v(HqhvePD{CG-t-^Wr4(B8Bz4;Gxt_We)Ceyp6w@3RH3l86PTjY|+_?CH>vDrr`D;X54l8O}x zA!|8UT8Qf!dfR`5uo}`6Y;ppt>@Y~KT^R9x(#{3lmu$SpX?UN9E809>UMosfs_~>I z?zNfD7m&F=-OgfEdQ$pU9AYyZUC9VG^-Ru`gJ?!ZTkv0b6o%$Cwhwm+(jf3ZuPtXk z8nnt2OCffgBw*w>@2vm43_fcaOj51|_!)mkM*6YGDy)C=SYA?TGK_)C+F)C+KMN8G zi&92-M#J5RXM;|T@B3Arw2~cG!5Y4z0hP#yrakDqkU6U^Z5&n? zsw*W#e+qxm+R?E*84p{Xmn3KmfIQTXCFk6Mx~5T(B6>7gE2lY78hU6QtHACEX*AvD zA;)PFBa>|#?k}g?D|@UvA$Pk1aHboxx|_4lKmFUj#HxCDsUFG;sec`{bwvmi&#%r^ ziXolIm@Nlgve$!;nZIJ@NV#qyvMAWnGVT6t)un$!dc*FMPUcyr+j*}1nAWNZfcHS_ zdrzQVjzqxj9()W~1{2rXJ9E6k7ZMZH^rA~IzSDvE1lqIwmbkQ?fdBe!??Y3p(GEmFN`rG|Cs6?z=jM_1s4u9@kqkv2b z8HxojGZuPN44{gk@k3s_$#YP5AaEtzeq>?4TYsxGXOAIRkRCfbCpWb2bzOJ#Xcd3V zCtunSVHfJWYr$cg>#=?QIWd4JaNDp8gNzX@VpojNIJp1`vcZJ0D8S;77?5aP=e*1r zHW>f&rlLI&F-63bJ3Oscv}YmFtQvqee5UFR05uRVV=u#abYqe$#TslzDvl_SVQj>ahsh|fY7mP36U zh4ABY@DWG~k!~rfeJ8fq)qz9$9yHN&up7T%O^VUOn=J-YG4R$VT$6AiSAODWF}tI4 z23E~W=;;+K=$VJBF|SnWyU;VoxKKqRQw3~OFWg8ljxEIwqCXe<TI$U?9&0)k0 zsaeCvvcSnI4rc zHerR;5#)!alGKFj_ttB{YC&aTR?^Nur8q($kNtwHgIQGUSIp+>Qr}CFdt`~FP#3~+ zYmM=N21%0{rNJXqD;d&o+AqgoSU#MHR+DrDjw_J-zm5bqkLlr- z6Cc5c>~}@4>dpw%!X$d5{1mI;1UnC6p}A6V!hA}#v$ty>Dw_cPp1-3N#v+C^wNwy9 z6@ht|yqekuhqhU+e)VyLM^ku_pyn2EBx1YXW*}Tckg^|-UIV!e>_N3@@19plHf;OB821(z4<=cKqnTfPe1jm`s0|HE`ZTKT2MXbX>X( z;?IN(2RR2+OAlN$#fTXrdj@m=Hn1qw|4ozZk$T>7QLEZ4L*?lD0I+>^k3i)ag3x;B zeCw2c)yqq5r3&6L)3(Fj`U+ya2v&3baQ)$+xYEa^G6#H_!jU@{$rIS{)az$Skqq$t z^JMPF%4`?a+!22}YDcaYAy21Ma2rx4+bm1DrfKQ5!j3>?kf;F%u~aIQP>NDsM)PN% z80oj=;K7TpiY7;@{6xsnSQ|F~*>+|FuX)Hr!h4^4n-q#LWdW_hRU!$GiNAuxz6s(- zj$eO?s}d5f1Kko379V6lr1;niTy)~w zadRkMV1s4yPjClZ(e;yB$k!YHv5qMa^;!&x`O$o1QUrY-nIv(YLmeX75h&eSZo%g^ zGGld*qiKJY7Vgfd5U;?-J5W3p#)loF8=4xv79R*Q1mFX&c4KhEK| zgT%AY)*i=9S!XjTYcqk@+)(dlz56syN42(qvHhUd(K7hzit|`3uraZGg}XHavH+&X zFAD2n_&wI+m%>3lYu7pl%)N|WH(h`g;4M}Jv_gMOOR*~C)clYsqt3amz;ju+7J0lA zfxk|n^j3EA;+&kU6=m|O>}DP2F!RM#0hnH{v&Vz{36czdU9OLGc=t`S0mW6QdB5FU zM)R?>gYN5dzq@=Ky>V?otC!#!-A_q+8zDEn6$YUj-4qC)aa#!eM91`p@p?D@1_ zv2lNvn|<%KXXQX|P3LKGk4d1WK*T#wjNZ*=^7TFRdmmbyAQ^Yxc60<;`(@_<4@V~M zi+ur{48zEtfFn4lX7Y3PmAzWHH=bD@?-D=PTBXSnwLirG!Vf9o&aOOfUF&v2^ENz> z5^fM4JbqEsn0ZA0IFOQxFAhr+c2|Gju=&Yc1yXK)hO|BXQ~(dWVrU)dNx&Y* zdAhcj)s0KBG<%e}Kw>Tx7Cjo-DLfnJ7{RR`K}!od2|foHZnZ%hZ#BeV^>@0sF+e_; z@5kfNyMqRs{vxSiY@84By$?iFK|lI<*QLn6F|XnhztW>Dzgm~|z3;G5 z<`HV|%LTiR(vrQuVTF4={z%x}%4EN@C~JcM5eTYTzRGI_M6Fc3E@Hoo1}{3wR*Ey2 z>-qiIvxr{D1)JEqNCT8uN;(RA1A)?9A(Ok#;hKvwo!dA4u@j^{69^jU&KOMTl)83E zo_rk7F))jUc;JNBoS7=&S70=~{J z%5WI2O{nR4LoMCJUR{Lnq328HysW>qk?-pYVt2dQB*b*o3X4J51!30cUHnMb*1p!8 zY`S=OB^Aj%lynR|^T257k->jh6;Be1oJ9*4eU=Y}#)s;$+xgMoHH6yEi~(t(VZFTT zV*z0hW-yC-CqdruO%hJUI+{7^pQnG8i`@|6<|4u|`C+tu7Ed%0Q0|V@qK^!`dRuYOtF1w->;urx z{nn^YlQng^)qYjI4<&RqVTI^oUv6xh-#LscU;M0Nv^;fP zt+sEMA4FqI_f2{p97J=(q1cpQjj-69R9)fOCwBv{k!4!Jka2&69J#_g)tqbhi$z9E z2z`=$H`>yPbKCwDvklh&CSX)?caZz-U_)rIua#^}4E^+^smTJt>n0A}qF=O-0Adg9z0T+F5$=#uebKkkfOZ*Z$S$+PbJ> z)m}@_mNoWUa+v@~C9gH%zACQ&y`&!tgbv>U}%Xs)C?^=3x!Or&Q;{*HgrMFa^2L26HAI=p@^e=3-I zTqIng1We+hE?XJ1?<*lb*mknD8RSyfUd$=&1)3KdkUE^N{5p12MlRN}Cc;88ebH`d zIF|{~KEF>`8bG;x-yxYja##CStP0zD0pI$yknSi>BG@#=V_TwZ$4v|h0?Lq;$VofF zs2T8+L=b;tE^WskwnDg(DDXv#)!S3sp7%Q-T+8N{f_u4Wt$YGT!t)K#Amsb3&%w5> zRl)Kq{9O%EO{!Hs_+Ix5g%2$fx5~poeiEE!Jksn|=#{JFdFBE;FpU37orRg^+!r2-XVACp)r zSwkq#af4>- zi7nmDpCVqW{kr&@7*z#dH<<%p^P;e;3t4|sUd`l9C%-DpV2UU{c|WcE`|yp>qxFzq%N6L3e&)lRIu z`bJ9hXGN~%M^)*2UtANhs5^1cS;3`a63R;@itJyqh4utyMO_`HAl9`rv30W-BRPFSXRm9DTeL7A1h zG{FHXTNPq5wZ`&Y#kKc!W^7x_JKvvAA_>R@Il@&v*J6Wzz@&kdvfR}6axVSApJNS0 zJ|5&Z)Au^|c-?M*%j)1(%;v((3U+_Ngz$J!6IQ7UTdE9#y~1nr?bWVypM#OBxckwG zE9b5@D2D1#0t)((ddD##o|$KSUUlbp7P*cK4}wGV(frIoRezRKq18b|`IYL@En8UUNZxZQ<$$#g{Tm^Lu~)@056;F8W-OS&Md9;bDKI4?h$O zp-n5olIz-7Ju_Yf-2)O=A-2JH;`PR>%R8~bnK?n_Xvp)ylF_SlI6?ZH-<}jIeTaZ0H-mA0^`u=sgjA$(jf)TJ3vj zx*l|u5$n`3cM*MaH2cgAYFK~XhC46HOPU^_Ic8BK?XO^_+*2SIxl63Qx2d5_4_}Ly zjD5c4a0Waz;FVV~SOxyJ42k(DUv7CyHQ95By02K?r8JCMF#%a|e@&>1URB(H4j+9; z$8mL7kxR!uyE{@XMZXHymVyi)v$NKM3&4a~0ZBWM+xw%nI}*GU1P_0*^YX=+FJJXi z(KSG-kGTOzKI?SlxwYG0aZ6KTd)T01`Q<^aeE6sA`CZhiqxDTuwuoI@d7wtmP$5*+ zMrh5mog&Taf$ojx%XylQ9xL^0&q~tl&3oi*$54T9D+OD4qmW)4T)Ea0$&e=p8$~al zYTgIxudjAHeZO@~8ZUor2SW|{u%k>vv;q}63%RVnbfTjse*w=W%-{@`^R~$jvB?I@ zmoM(h0rfF>1x1ss+!cIaaCt4v{18Jc89)O`xgxeSBBRb8IMl{>?}jbiz1-JeOG|x8kM{o0x#Y-q3$I3HQ~@$;9i!-jD@x ze(YVUPG}iV9YhvrKcdw1O{Zmodp*H&l2Y)H2kSjee(~e}k$)a#-IJicXxWB#&(g!% z@lnpfnwEl(FBf0QUw|D740j>g+1^udn*>}<#3XzOVQ>C46caU7ZS71heCT0r48ls? z9;D_lVdI_mOW1!H9$Rz_26s^*u0VgF!Y_ctavtPgc)K9GS7>j3g^r8Uz^vBJ zp9LnU2y~Y0ahb*0CFA2;G)zV}I9hbtKT-u0a_iTt1g3xBXP;Qyfa>)Ir?ihTjT6dx zD15)W>=HsLSRdi?6Jx?OqU&zL^3)*0(e|Z1k`=Rnjg-=Flo4~+MZXr@R^(mH} zji|6x<>h}70VKN?6KvHj4E86 zARd29h3%uS54e34v?9{&858H-;cZcR(Juua^k(`^&S!wbX%(RVrcZmv@pLGzjK*P* zsVmNJ4MmdvWg5>tj;=NYJ{p(#z~Mg}c$=&^yx&kj?fu&?=~Bn13R}LQ)y1a4nzEM}x&qFmt1EGp zr7lBizNg#HNjeihl+ooM5%9?8?mnk*ZkVS%xCeJRoI;5|=AezQr;&X5p`CkBi?XN8 zk3qn^;Q-rNda^-*L3Xw;oSu|%EdY7SFixp3AvjTZ*gxr)Fn9PT8U`(jvMm+z8qI&z z6hY7iz4W4ukj8n3#&JzW7MZ7`xQrAn9a7^UJi((YNI>rNY6S7Jq$bHvs}S)gY5@?* z7jyAU%6f&LD+(jc$2j_;$-y_Moc@!B7h>gT%}*OhB7wDhBgYJvb%9B5-;LiKu}=B3 zvxdu<7RAgb%?Im6AdHL?+eu6`)J~{t%qV3}hkv$WQTbP0e0w){ zk9JCwI4a?-|5QXUjvSusCiH*w4L9)g!C;6>|7gPoEWQ!-^#{Ytw1?)D3zVpybIHWK zX$@~mb6pY?;q5N^wqTtv>seaYA|p3Fl=4V^ykwhT>{xB&@6ByysildT`cgf7Xi(tW zwcLMIux{?+T)YxY#BkG2uL$6P(X|yHz`l12F0FEpUtP+WOYRe4Va_R?QJa`<`F*-J^P#WG zC;*I@Q70$%SlD?JY8Nq;7sC8aG5DBUsl^Hp^2fRpNZ6HA13tfyQ-uuiE{rlfRsnx5 zn#q@D?|s`waNp_cD0F`^AM~@JV9<9+c$n1Gq|=|*+=Pz5VCqJ7vfz545^$*c=AKHP zk!tI_sg99%x~1aoDtEerS+{Y@zRY!b-r{<&X$mYXxblHTSPmDaDD8?~oTrF7Dh=?n zkkA&!{W9{&BD0g0UZC;k%tyq!oQE{?%8=w9@|+H==*MI*x8#2(xu#-TO;(kO4%}}g zx$;8&#+*M3FCr7MO9pfeOK%XGZc z$mzL%rvHpWZ|RjS^x3bWr%vbmC4AON6_F-zN0|EY(X;CSa4~!5lR#;IJKvBQew>h* zFS*Qg1J}JuW&?k?Js`;xLZXL@uEi=5a6FEbnmYyDgl- z2nw!@ZzTU95|8{fj&I6^KiYex1f$|y-DFj9ok&b1HQUN~w9fucB6UX)B7j2betwX@ zC!~V;P&8xQ#kv=fVlw8Iqz28!Xb}%ehU~6b`$>+|Ye6O|15fFbQyp!$BljtILX*6HvqSeuqy;n*E zAG}zmA#0L$>2E1_=W_yE*QkLEH`sg3^|wP?cWE!qAWsQuH!4P_yO-u-c!upyh%^00qP>E^2x=+Hjts(9KYeb7 z?-zfFz-5G&%W*RNSYAS9dUvdOcj`kv5hh*dxAMpLy#xOl%M#{$EGYmj!VZm+QiZQm z6Ub1FMJBFKd9QU0sTpxcNv)4<$aF~iTnVb)6WcFpvTvcwulsx-U zs4C87L3>wgP;k?zXwS^Ekidq9#G{hl9ER8)0T`IJczeU#Dn0zICipTpWenAFmBrJ2 zLF~SO%gHQ;cE_eKh)rs}8u=S@M?VnmnNX$XKMZ>3V9H2&z(A(`Vk``t^S8746^wta zDa238)Za3wytrTqjLy?T`i6HN8dp_I-bLsJb#Web5&=A1sxJj*d`wMOnig7-$}Pj2 zZ4GNqqk)~7nC0y^oidWWYw@Js5b?UxE6Ncgfw=>a^sUR^X8wrfOTu}YRcMHvKDx=S zvjY-AYK-%Be9~BO&(iUkz|gN&8UxDO?hQT49 z?&w;?&*g3k%m0z!L4?W!@b4D<(s*J8Yf#p9yS@WD0#{j;0OwMGLJiqE(eQw#UMt>p zBDC%n8Z05VGt?N~2KvNVkp7^@f{lYH+f}iM>=G&f?xhqD2$Rhhb%wM(625=7LPzVV zGB#maNI7z>XFD+~^LE*&o3^s=N3#E$Kf59wn^9~Qd7_MyNKhhHfC#-w&+BL)eIYo0!#Di zevNTHL`zSy&gEHJfQue^*J>%J4JPR|@#Cw0GmIK0qFc-pS zcl5>y@njz8hpHrH`mb?dk`Qe(o{Nbd`uPNn>+TkCO$ zAbooJ>tOT(VmC^i&wd@1tGtrHH0H#;SiQJ5lf(Z1bt#3&S!@9PI_K4%qElS03^PG)U+R{v2T>H@b?UPa&_1O?! z2!ErSH<^Dqry6X9dZFNWE4<|0zvcnpH(z&bU1&V>>_riLeS1tJw%*hA{-fK)RR!59 zrj%M@4@>9K7EohCP24bl`*JZ{0G>8!&}A4B$o(=viJjB!&}Y%wLIQNtAgx z?+l?V<=pjsOY(Q6jy!t%G8eV+V@pE6t*nl`<3|cRhuq7<+T|m@ znAyBuGG5$;6(6%3(N7I!?yumeg0FNJFq;w)m!}nz>;fMm9n_*hH+^$MaosRG)MT=_ zgR7No!DN3&HlT@qS?_#zdu}O8%l+&8MPeAIE@-k%Gsl-djwkvimONGyVI&%VDPyVf z*5JE<<8aVE>SrikKq`@Y;}nLnX5xpihBSqF0v4K1cCGE}s6GbB*Aks-E0XT^J7JaK zoVGpgDmP*iDgdjkR|ahs3!;%}#k62JoSbbZhjV}QHuVg7a8DXfUJuYqI@YmqljTTF zJ=SZHh&q8r>~A&5Bo>Dg#fJx?ZqbF#T!PDpU%J6t4i8#BW`1{!Q0xxehi@)YOe=Bn zv@CcjWgOlQ)Pr;fu~lxju~AaxbjFeE4+Gz7L4OQ5MV1XH zyMBM$ZycpNJul)GrB&k#LzoNy>TpSIH)MkbdLE7P!_90`1`EY|p2;8^P(?TEqBtUl zh$2&Yka&>OMhP`^S!ar$ZbfTZIw&E>@X6JaZ3EZ={U zm6ef{{0eTK*zF!BKmL!c@snPjoiOe})8rYQq`;5rvUQhWKd+qOa&8BWpd6IOM(Pt} z{#*Lt>I7zag4Ow5+sVbRrxe|6*AmbHG`kGgXlgQ+eA|LgzX?PV^F*|)ee`dky1?`D z+AyG=z|D62^M&pIR2lm*VLoADmMMRm<;z?bmWr!o&_%~uCr;F&jrR?E$94^-WpJ+& z(IxoxJ}saQXlG~J^Ey#zPNRDfn4ZT>!)@^LJXA-0Xv8`a$iL-x&iV|!X zjG5WpM#=~3cXvJ5{xBkQYw)j1>Jjq!sm(jkd;MO2ZJP<%n1*Ds!(MbX#kPeuw^afg zI6jJ;2o*jmO5OYwJznDqUjB^e~Guy(4Q9$HoYQb+;^nkmGk%dhGKVnksCH=DP5=rBTL$byC%`1Pl7Wj0ft&9qD z{-n~+mB^*-32j(hcqxA*`r}~tZ7a%(6c_5Akk{lq<8U>Vd}MUWYc&Z^`2)<_AnFFbWeNuuzt;cTz^lX+U}Bx*BAPD5N=c zr3rgut-!a=l)V^-`_zBOkw!rUeGB795*X&f*A!+(uuNV1$!cX|Q3ert^@fe};~9%k zb$9I5S4fP155C zrTZdUE2-(M`jJ#)k_7TC*P|1!8VshYZVH0gG=xb}EkQ>JKM`bqOHrWhRCN^$ZcD|%?G-+`V2i0NS45zM<{jRP65RN6Y*s^7Oqw%KQaHX z6x9S3owa{1xT}&xjod_h!lA!LE%EqFByGi6HmxsumZ-z8I~!yuNdBi;+S|d9twXCq zGyVm(I-&?r%isG+;qWn_n-@#=D?2h5icpQ$FEaH;{sx4iFfXh-k>3wKCQ%8BUnka6 zh?pZWN&)14?++Q>q1L-+{42o}FC?d7O}9~~>1=-=l`u=9Tuk2-K-Ycl8?hB8CwR+r zLOfWo5~WL1Ub>r;j?sU*2(=YVRvE23r6G?+y~S8_#c&mxaJKY@)O*L-59aJln{~W7 zZ4)Elsr`_M;5t*r7J#S-#e5=s>Q%SNzGy2^|IL;QtMSXm$b4uF?9wONK#VBjdxB6U z@5q0(VuvPWCc>Fev2Tnq8_Y)poJh*;N!gP29lBQQS-d~*;h17upYa=cd(Hfe0`^8$7 z@a0U$%uiCA|8##}4brzs zWW6HgWY~CojiEt8FZPm}2+Gy}VSOg?2ZxtJcb+Hjhc`F(`$_iM$kpW z{+v{=eB!U8X(?@A=qfcvAF>w;r4M*@-AFLYm@L2V17ilcFwY8oPp{ijn{?Du%;#Rx zjF0%{A1>Ui-*MFTsTtvcKeXwh$||JEdg9pHQE0uCn;25*t}zi2=$mx&=yK^+hIWHY zW)9uUEn!-+Q?|V{D5qk6o8No~U3%1)8&V~s!-g_AB4v4A9$zOaV>2bZWBx{R=lx2g z>VW@>CCA-;(6n?8VfzOaWMBMD;>(%@4rG)**k}rOi0C_Z z!j;_;y*2PR{POGX-G)b@7+LAynx}`4rU-MhX_pgi@Kl2KkOtp6a(tnw$kB%c=*IhF zP!WswN)xf{=63a)B-qeQ9OJg#c{rh#1p~wB~u{~biu)@jpuifrF+mY(kQJK0qEXUZFfryj% z2YYn|8f%2qPcf6A^Ldm9y%jV^u?$QH) zvDHJ%-Xf0jFyfIOKrdj`5%JrANiLS$5)?Q9FD-F zb;%cG2Yg#1=BS#G&8BBF?G12f<@QGZ%}oq3I^6(B8${=-a9MfmpiqA{IVz~Zd9+>% zz}@$R-gX|@;gGcB8<(}uYK_=Kk@ReL7#i?F(>a8lmgXH*f{7-kCS`>}E<7D`&36S>DZc^IF z{FTC`=<2(Yzn7tl_Npa!$e@G&4QC#0fd&_F5!YF^tFs*9NG0Z;Rzw_HFrX;)Qp^JE zbizSVMArv9$+4)jB`Zv-$VKXPWxvc7+gft-!GQZ-WS7{g=Dnj(OF1j@&39(dWZ|X^ z#}{|=Y;{3N*F)D!o)P#Y(^EMl@y!$ZCm}GBC~|+|_=YjKNI^4w$B0Y?>x;fVII@t9>&l2=cT^|R$e{>;qm=Vq8 z_Fp7|t7OjvJ@K9u88cjsG4&n9^BfyDd5D5~Fo|28B~@+3eV#vMBUN1a=0m`j75EHH zKhfin(J711q^cxXM2x3?NmP=YbSbQvOzFUS)mJ#o*zsgHF4sj3h#)4rZYSc9SdHBv zmQBaWEP8OUhz&NW7S;utu|_~_{SJ-vy-faeHtl}71|>&B;il2Hm6t(jdr9Ln!CC8d~HqWEI6^Iw?8Y$TrnX5BqQRf*bJAa%)I z>kvZ{@i3&co$A~=S}C;mH+K&{?#f$X^JO}(`OvDET~Ynbg%NM9;B5e*hw}$w(8xg# zTvHB50gQu6P;@o4_0GXv>PL~8efvidjXOqgXNbyg&Ix9S^{@TSC;ke=`bbxeqQJ#B z1v=;1SDcaYnTtQ3*NtgRh%Q94hWLidtQ_w%g=ET$m{TEMcj^1E+ETEvVnkg2>5x~2 za^3iMxhZo2?h%!qk8uFo&TfkYr>J6LbtdkMK3oG{%z^(0BXx(a7?fM1l30vK>)PjC z=6EMe^AU?VPx13lp9bX;Dk;L>^)==Y%q+Wcr@yn&f8*MIze-QGRtXgLxI6439|-$q z`g%?f9{Y;(o!d_ap!xk*Yp(9+HGL+pQtP@DpJ&_N_bc(&04vNp17>AIP0?S?C|evS3^wJC2h>-kljl;#{PLrkW4GB#d7nn&3TlOOwxF2 zc8RYE&>K3b>%A2~srl5a>o1`_Y}jb(R4EDe02rS^$X;>sNv~OBF%$!K3JH1Ddl!qIP;OoiXeuimR7uwBqNPYf{bD^BLVW~92Rwm)5TjTp1?xiZR99bV_N%f$` zqvn|yI`Cq+Y*;VLim0;(wx^ukf{^${?V2zda}WeS^SDxg{_&P;y)(XvhQ)XGauo_R zJ$M&v6_&{u1HNFNt2L{QpIO}0b`n;|;)$l_48kx)kC@yHNtz4t3ksia%px^yPENm_ zq^Bq_mmM-2z)O~|!%v|DkH1fv4GKd_U_uHpjTTy@WrN+o-!+m_FD-4H_ zpD6nc1v84*@7S&$iz`eVFnbYFc!`w1!QI1Ml{MZD%aB5Bxyf2w5JhflZB}xN)4*NE z#2kXDb)^A@yv;Teh*6IzCCGyN4ox=~utp)ba$o0w6NPxt5FYY`Hh&5LO*xd-r2~`V zAaN5G!&{Q18Q%jO?ax*yPk}#j#oqEChhcRr?H_fkKTFHk7^x?qXN*VQN#zHwl}T#P z2d7kg)rPb@I*IVs!%1Mjyf8$ZRN$B0Y=YbhF~*ze2mcAPyhJU7BVcm=lY5UEuoGFY zDys!ZX8)!-cY^n-A?%g`i6P~Gw&-r}o$QSpG~nVhWd*5qqNyFs9Lt|kHu52X={WYe zsmQ*hD6cDr+dIlG*Njj3*?qnqIBid+M)8|oo*}>O+J%YCWTC`#zgR3_y#G%d$gg(^ zf|bD^qyHXIB}e-!iB9rP!@-(qH!3R{jY5inLiBGE=1DFHIfcnnrUKm04CG|(j!6yQ z&Qq=BRy-20@(*tw{o7f3G4YRD1*$|Z@7*3>A!|{S%m3OMWo$lZ)D0n&jmfiq?BbfC zQ0n0c>Bb?~3VuLy=z9NqsR@qmjnmH#eMrwCg7x&Ac@ zT$#eyc>)tKiqs9J_u^!t{(rv`UrAQGoDqc6S+)NaJ}J&pwgNQBK55>`wTbno6LMlm z5Whzed;icD_Lg6NYhzx-L;Vf?q&ELKwJ>C;yxlGR8}QlB#9V_BFp*W-^(=$_jx^T`DAG@z(=;^b*4DqN>+W;vt7cE)F!z?`MmJDc zo~+X~jLoDTLf`Dh$2f3R{<9k=!S5!(7G_vZHZ2B=!j^l-2TD7bFGb{)i3v54ZTBT< z4Pjx-mA;vFnitrpz+D`Xy}ug#S|s|kRe3epCqc!1L%V!P>fCwWu#Qy`6Xu5p$ZyKK z1dzz=Qu1pSYOEn&EO7AAm=>))WzTO*zW#huC^hJ4q~=gefHcUa*2~XCNLyQm3&3#{ zqY)!B@G#v*L{ecUz?o`&#-+Q$ITrW`%nG_@08)n(X$SRX3WlH5hid zT2y}XfuJ*o{aL5(kj;Cr6+EClhPlXgPf_+1BI!KY}#m5RtX z9K4sCl4feUWpJRT96ZM+>fL!4B@Jc&v4!2tc?uy8;2*ks3);siDt@jZiAQf(i|Z%! z2{~INDdNp{OZ#LRynCwR3$+|GWf2^-H>@W9tr@Zp*Msn)5f@d7R%ikLTZ**wpB045e98`3(JIrD#`NEyt11ipcKyTS3(pA;}DU5E-q zhEqd~f%o?wL*wvV+($4PW~VP~B83qM66q~dwDr}GtpRVGDx=C{!3rSA3l;`dPBv<> zNFCtmSVb|R97u{%LghRFF@2s`7)K+@0t32>z z1}q3Az8#$ntB;~K*V?uz#Ws~%jZl68po3TfC%>YXsWg1KI0ybRMtcUjz4do}P*qT% zdk>`P=M*KQTK}*Cx&xH>xxT@R5#OL3bcAPc+obNd6@XM0^Tj2@@6#P3_Cg4xTY!TJ zi8HT87m3mj@uh4h|k>Ee6nPDG=2Se!j zcuE>DHj(Wkz71?U7@@wie2l0uPt%CtluXb4VN^{Gaor0BREA;pl?_6_M^Y##CI1ri zIrc@rfw>(rCRmleL)NtE+{tvUDT1il;OE+{J4P(IKMl=UmHxO9n==e3!jak)SLbItP{30#xA$kn8bOwO_$)*+G z4{*FM5426AAP3TuvFngAF))~jI}~A1q#bqe6kW@hUR~FXs$9iq_d&UfQmptD>tn^t zSUtA;+iY4FBF%YP``w!h*}qjy2a+Cvrz~Y47e?5CCY!Vn$*dt_n2nUt8rI^1T;JMe z4T&RUJRR^?y2aka13{BuUz^XA8(U2CCYJs>m-`{4 zNQvi+g=ANj!yoa}A7b;9QNgG^{kqa!deLa7C-cvC;l-pOsChZt%j(h)TK1A4zVtbH zr2pgE*p7U@ECel4pdbbl_fc)RO_Miw0v`{Mhz~~KuEY9GI%FW%YLE(&GeoZjL>ooY z=JmVDf(K54f9)YWQz4VZ8Ey}=iboVpss$B{YmrNvJ` zo-KJKo0Bv?#(wjs#sVY1#6&|JZEPUUrxR*Pm`L8->Yx|5An0I7U!+?of!18|j)hQ= zrsB%6`q(*~5@wR-q9%Uaw|y(PgefRCuS&oRiW+9fJx7eA=Q)uA!N|m;S=LQ$m8~A4 zBmN!RIqetSb~GYyaCp;OqVfcXhouV8s3Sh5X#|qY{;}O0yL3(nUGKikfR~$o3_<-Pxq1~yZ=&eY;vcvjkc2T&0;7usYPv`k9t#?PV zlHsMS^@3y3ZW~sr&|4)AoR`+A?4M(QkMc#R0(P3&gXFMRgKmv?>An$s@1561 z_gH&>4#FbqlsAkE zbgotLs$G{=-@4gh&)#b(05ik7ZZI zyypxRO4qwlSI-;hl-=TJgfD@;LVw;5eF=t9jyyCg0efS(8d1wLduXI1_hJ|^RKL@) z%_Y4PuX+sISfvP>dfGMo*&r^{MK(wYSv)z$B-iB>V?A;0Kv;+u^S2FvcFx2KM!9Rq z8o3$ojR&TXxVBcKYvdR@TCGK*mW7}AF)+XL?8{Tv1s%5?b^TxKh1N}CKwpAE^g2?3 z-@BHQ|HO%Ln)qjIcd|{Jf=I>|Yud+05M#p<9d&bm6J;-s50A7_;3gy%;m?PqGhDJQN(A z0;7E{ly`RVvH<-}F-%E83;JZYh20di+UlG{0*z=9htDlKh6M@%$jO(hrU>t z?=PAd^LkWxd}lbmMH}>m=*63)s^}D$+hGt7lz*{om9%{JaXnE0756JQBL3=G%gt?4 zZ^#SOzZ?bMG1-Eo=o>WTIm+`isF6FT*`YCU2(Ji4u`#(|hcbV1z%O1){RX*L;x5 zJIAq^w3TS6JHBDL4=@0`MukbSl)WyE|&~G+CmIU7Mlq1Xv`jM{F*2O&#{lB z&zOzgH86V2Cf0_H0chD_)1rUFwAh^LCN@x28&L*vmhl4iRPPr-+pXd~E_5n7E?q6y z$zbm~?Od5~F{s~7E6UyLeQKd0`#Q702g~S(Hr<=RD;i};uYYomSdkhfoRJuS!Bao5 z1blD3FAa;mDjiW*Mq`NG^k6z;%ZEj-bvhmZYA1pzf!*30N ziLa(*uHGa}Loob)0Sz0TNM;CF-=h5{)mLVItC0t=r_X|9+Gn~lneIU6TzfSuW`CPL z*cm!&Gz)Z60DR;;y8NR>VF*4HafJ>xU7Yi%J}@5|_+^3-UN z1pd{mGx|UySV2y`y17vC-PUO9KuBj&G8!j2Dc%3D#(JFp9qT(WvJy`UuL} z6=hvwaG*gvIxAyVbW6ZNNP1A?Viza;vyqtbtHLs3O0NZZR@IF)K3l+6|>Tw2u~ z(4}B-EoUvsiw51(=8g=g0=JHmO)x zTAiL*)S$rmI6SPDL>(2c>^|f0cQJvYUAKX%%29zxS&ZnQD@0hihmD%PCrSZhM38K&<)Is%`PKOkmC>%FbO(p2 zyyl3VzksH!Q?X8L)74=pD}SQNM4J6^l6AkmNBhI@fa-dLA$i|-rv~acXNU^=uNoL{ znXHo%F0)z&CeE)?qv9>`%v+tHt#K}d_PR(+I$g5Dse#ql*LbEX6`$cRynOaLRc~c5 zNKnYr0tO3Z#8qo7@o_640M-F#HpzaFrhVQ1bj)3LH@{wI%mb@$z)F2kvNI(G=Pko; zXSD<|^Mm{cvPda*w&gcx{V&~($FZ=l%I1CZtT5qMg?~n!dNHNNwI7VpdPH>9yibU3zHhD@ciY=*I zaf$vB8-F3_w9Y5T8B4)bOp>t{L3(l+vN#nzDJapRhm)Agjv533I~Buieia^{na*tv z8R`41>HT-=TeSKolyTCQD0_%Q{3L$6Z%!jKXt;YRgLmxG--rLmXn1Y8%U;(n^QM?M z-_CYAmQNRm*oYlV*A|+le~#5BuK`L6_kFUY5DtGpF|~-D1^l)q%&mx&fl~w z&nhh5e2QO@`5Y}Ym&9>?q|;E>tG8WL@Vc8Jg**a=?*qqxJMe^~b-W0u_AnetYZ?g) zF8*M|Fkf~hs%8C!6Q5Sw?HdV_eudwngX2E^2GV9v6&cxu`n;-P!sEll9n(I7{z>O6 zq^=^AXXtzEwqeHB4YjXZ928ohhMJjtvr%Y2Cl-($J{O@B z+F6Kew9uFU!t;lu>bhOUc9}L4*3OE%VMl3Uu5dCeS42XtY{_F#V+fJvW_o5VI!7C@ zX#e|wh>xu~XG&D(%2n2i^zSMxO>{%a$lQhVJqehwpJkHCxK6{=?_HMswiC$6AL6D8 zbAA5OW;{clMm*!DuMCb#es}?{8V*X6W4ts))pu{yhwIas&X zd3=nn1f-NSy5|eH7)Eida#Hz+YGF*ym7k(Rbzsd7FZtQ;nl+{vT9WOlhJb)DUqK3f z&RS6s4uM4Z`ZHabFvRQE%-axqjrvcZd9ua${Gof{h_s!`-gfq}6$CAQU2*rzUsT^A zKgXE6`MR2_gFDTFQ&$Go3mRHB%1q~nPvmO(DWDuQlz_aV9oE%k{HtEIiTS$E!z|~& zEuhJzzsNlGe=G?tbIc?sS&4n15EXTj+F6dFK|abkteknH5(atUoj(iR;dK0}BY?Ra zJ&_^G70}>*2`p@ZLQ<79%NcJ(6<{q)P8cnwCtuJMr(9Ze&7J`~^&GV_+^DCRq;HB! zSs|0?)bqTkzeTaerfC}dlMBAOb6r6e2dI$K*@J9mgV@?8`Py=%_{>?al*lC$H0M;C zsH%($BTI7<*d+4!IBEvTXo#P=NGZS7PB;I2H_+nWQ=ykm>jTWkdj;y z4JrpKQjDtQ+`9u~JFXl*F;t^t@ba1i8C{NkuN%mZ{y-kt*to~k80@Am(Bw3I7=gpZaRGyI&TF6QCji;{sp8NqtW0SDFN%C=8 zKrCtxWS8d0g!TYIz#r=a513{}^O86NMC&+BS(9~6e3LYQ!R9>YCsbL(>goVkX^Dci z*5nKy?=;y=F0-I682HI6_HAAtQoeJ<#V}c$6?1!JrT|*z1*Q#55Q|W+prUEPMDP7M z|5TRz&WH37GlGo#m)LB!BJ)A=5` z;qgm6uqv5FH_Ra(;y)%CtG@80%c`qwi-@9+RLS}b-D2<6$aO?IHN9KHk8ON;C(!i{ z-KnJ{XX?o}Q#69O@bt9j!G;?uhEvJXjPicLnb-l^TLW^45LL;Wh?V!S$rm{@yHO(@ ze?@neTor=Vek#2xO^;hLYVF_S5_(H*@})X%mVtN61EKScYG4naPQicsJnaLuV6wPW z&YJXd@Ui99W$v3@=f*?}M)7mJ8P7WR8o`IgZM&9g-;dq9s??E4=J`Je=OaOW?IU4{ zxUmE8*`)TP4KoDl>1qBm-bnv=XJMMWjm3!MR2iG|cU41#IVA>pojM2~nogFgtT5?U zh`)o9srLAxDat)33OkCctbD`bgy@lV285=12L=1z;Aj$6mfbI`*AzFWn7COOQ)+1m!0Q@1Lwm~nx39?ib4Lsc-#!q$E%g(?8~ zv0XWsQk0;NxQS;s_bVAC?XN=qd9?C-J4<&}>&05LWgGAVY{lPPipNY`TY_Ckg4L`7 z+5^zD804XnFpvahD2e0d1-JyWy3lvX4cC-&GYAQg)j24V-Md+%1aYyq>3+aZkh9ZbPKqDj?YquaXqLm+PH_foNsIF`1c_s# zlH2AwPOP|%pewN`^DnHCeQQPcUgjtx4)Z~Whkiu{MBYN6KP0MA5^oZ>Y~t|3$ClHr zE|hfVzK6B^ivnL?v)`i@w=3CsPMr=xCUkDuwMsw|`OH^EX=fSBT8T2BD((abd95N4 z`lQDL!eCgds&PDUAA8dji2T52a`x3h#d+UY3*bYk<xi)XleKGCs=>J zN?Wx}y>Voal%KG?E5rz+-k!jU(X~NP#kU@i()N~A|HyqT^I^$|E*1*d4?)cie#6*1aBFUzTaVfhT#yYl;bUE3W|wEjk;XC~V*7lR=~BzLQDD0cEH+vIHMqQHNf zn~GHn;rf0sl5%?Jf@q-Q>My03Hgqn17T4j6^AnoV#!`}r-zXoU5o-+Shz$%X77zBS z8Jt&O9K%#+`EdVy%LmKY_F?3)?Ra~nY7O$Rl1ndq-4hqe;_ILkot}J)Y;eqghnC$qz(N3!p8<&{D2{WURL|-s2r%^pwggHLRl} z&hyFZv^K18$Fc4xUO0h^1?r}DxS*>Igp;Qj^1TWx4a_^We46R`7Tm}FN}F7#dy9Or zLRN6Br{HEL@940_qn_I((9jY`2I>c6Y8EsF=#F`P{a@b-i1t?+xyAl)o%1qbx7(ql zG0~-6&_nj&v*|XJzB>tRK}knc&*D+%&Z&1c3GZf`&}zB&FLhXwMTmmHzxbK$x@$;N zU*Y}f%vZpm*b6v$pNhYt-awm&+KdjbVb;qwr(`05Kww93N)Bn0b{+LjKvtUV%$Bb>KWWUx#>Vwu(wLi*jrYH#aXKml z6wtvL-PyT_vaz|jN!iAAd5K5S)(Po}d`XnMjkY1!<~qK1bpG>E=CoVh6}OF_<> zt$D%hTydE+gO#N%92#TCBhlHZz9I0$6wM#MIGgs0H9@mG*Kl}2wQw>sSGLE-CGr9# znbIFUOeC2^h(Ic0AVubf4#*$KgQKGG;{gH^*cNa;e;x(Uk$e#E!kDD&3h+c+5%YU& zFan(Kbf2CtH6Z@-6J9}7`CU(gG zCmnAJ$EJhO`SJ&{&JB!>AQ(A9DT4<I=WFqZ{937_t1Y`RJ3X0)eXoEM zBoov@gxYda*#0X9e;As*@9&b3>U8e8{g(|$VUv@y^R}^>o2REGi>JGXaib@jrBmZe zOhI;78GGO6);Qkv%_#)X0{Y2`qshOR;M}1F@}<5#TMn|%pb+RW(u5q8;`E}ncxbo-V)>7}T+_ng{Ys;+D5ZdIfLgd;o`Gt9G+fUF0!V2e$pRiHr`QG%jH@K9|#NL1_2@{&w%sQ@+QX!Oick(#HQB| z9*v$LnYgPw;Qox$fyB&CTQialB7rd}^mBjS3gW-Sou+a@)a1}Jkc$8UthU~2x%I47 z@U}1WPovx3`mZFAWkcw+*S*y2we?jmF!>-0r&zd0fQdM`@b&8`_d}BzRudl|l3bT$ z8A!PA-HWwjv={gyzwIUC2m;zvX;=7H@mAk6W*4*v7Qn5l%}z{AZW{VOCz&ox?u-15 z`Cak1N6X*MRli(w?S$OkoS(El+dDw+r+|@H;vQs~Y^`7+>7GW}qyxA8{)nv1~v|g1}2J zDt4gC&fmy0a;1a6k#FP+$5%+i>OidCr$+z<-dCK^TFyKE5C70?KZ2&-l&r67_LpBH zpY|3eU@Y06;B4SHL0^HyZd0F#t6wC(niasa@T=DQ=7XsKR{p=@rV|kNTVePD*=3DM2pB7m~u2OTR?WrvkG3#RJ6tysk;n%iAtIfcp`^AJUf-5e$1Njh_ zy!ppkg1#Wv4pk%VA(C(w1-M$W)Vc}3K_RGn5Rm`NDn)}_;H}#)w>sFXdV~mmU3st6 zh=6y63J5je5~*mnK_ePkBqDUCCUqlcd1(SUU*?^Z4FH&Mm%p&g9aJCO$h8D zCbUcCFqEYoU$pJhBxGG!U!N-r?)pt!<1(X_>!VzYW;AS-rdL}+l)QU7TNZ3{7g?%p$ z`6t>0KhHju>}LvOR;kP6%<$J-Zmn{@GyF_(F$G8l5Bb|4Bf0h$-k+-3YY|3%tzcb^ ztxtKyRzste$QGBzL2}PpzT8!mgqw=V6(R5PHyJ3pl{hMs;bf&Gx}8trVG$n`+#x@r zUdP>|Y+(M-j<`V$Ai=bJn;4<)Ylj7u-R-(zur~m z)&XtN1(R^yz7To0Uzo!VsTgq&m`5wy&Ofv5dMk3Q6v>IkU&^ubUnjJa{MC}Q2ti-b z9-MLt4liA9_z6Qm1Lx=ny~if?uRUU>rjnh@QMJNj;S~SXC>w(qV%7;U=f9|?-!9S| zYip!Vdb$Ug8eeb=J=)Tp=#w_ycunpDHvn*y9x+aY)iAF;S==P)dh-)OPQQsW*1p#`rIr*YSKJY4));f8i@Lm_3*tgHef9K zM;S8dSF4JmW>2Xrkr^x|d=8~JO=@{!=#=9jK-Jb1P9nuN)CqwYBsD=^@iwIt))eBg zQFfp@?|iW#9uE^D3CmR5YD@uFe-G0NyYUig76X~zp3=$E)tMayGi3Z_9y8vplQ~!`Gp~yS9rZZ=v~fz_)g!i^@~1?nb8l>_x?~y)DLID`0wnYjIE}FL_5r zT^C85?!$+p^zmS;&^@w?<-3dEs9XPEx1t;OmumKH{_N4jkxX`W1l2faCHne(6QYl` zpOKXof?a}<9KXs}8~3}^DNrf=*)G3Xn*qlO|5h&J73;k?*nx#WGxOcYcvS7x6|#3A zsvqfGFLWKh%kWls0c;vJy`2mG^2Ou`@tUjPO)bnwUaC=)5N3;v2XIBd2*6JJ{LHwg zhx+{2z#VzgB-ue-aPKb#lQshtoxxfmHCZ8Rf0D8=_@2`szvzbezP+zzsEhL(e-fJ@ zr-+Mw2ccgyukoUFkj~q<`}gc1T&bpy`nYxw&iUxQ_V&XPEl~Zq&!Cy55VH2fvK5vz zV*a7GM9ISx+T^Kt2(`>&=fy+~ooRB32TMb(LS~i1NtmxtS#;3v7PhzW*dCkpJ!&o{ z=cCIMsQ_f`qtuH7naA>-LbqU6V_;Ke6&sxNd4|lGKxAn2DQqgUcCk7G=}u~4;gY)* z1hUBl@+bl`2Uwr`b{m9ALC&e>(_~&(ZUQ#F==t$4_!UpGMBv$ebj#Ew=X6~Gu31Y? zmvcr>u;!G>M|5`xks>8y!Ths0Dk`nXTr-YQN+-ft=q696&GGx~AL=PWQ#2Qe_kug#gz0Qs z>LwS~lqN=VQbe+UPnzoY1a2Cx+*C5pmUer3+At}w$C5WodTi0!;ciOMj(Z_BE9quK zg9pvr5LV{2rSWybpSZt9oX+m8ycEVHhaXHa+7D0~yNjo1VIM4)HF(fAI)m^TC_cKv zPpz@>Yk_THriuaL-oH9`6p8g1%$jH4Dyf<*TBh@nD`bK&$&~g_C4?$4G&0CB&WOfTBsp5G5%iFnC*6kCbxGJrvn&HP`@a5_$~^=p-*!3*ZfaSippKY zR-6)tJyYIX&8s;%usWmJpdU$__4W^CA2RLmF!x+AlHq;Vn=EfrQhJY}w z797#Y{OVa>$iq<0oooN?6Rm^)yDE>LA*?#xSFwS@CmFw-V8qu%`UJY z?pwzk;zD4>Q%+J=r(Y7*#EMzKE;Yp7qJg7der++dnD$m(>_Xy2wR|b2VM3i3(08(o zHg_!&sQn}?cNal$F)KIMQRI*FZ&7@zud%4!0U6B#GX`&ap zaRf)vf%3C*=5^tXrK6erItNJ8D|ERrP#5*TN6Iu1Mt8WXx+HFiSo!mEVO=dh(!8^H zw`br!=Elxi2lj^pqkrU2`emKw>;lNF@GVyKP^85jYN$L?UGK&{1KLMgS|}lCTxQkz zXkfAT)P|OO&?Ozw+J|o*tbT@YQTd+Ov@M7DPVKk2)2f+l% zX(Zn-!{81t)0UuRunq7EWfC{t!5{C4K-e(roWdDt4;KopK>DL?<4(XTWwUV2;ufoF}CGtqxainQfi%U1U4Ys-&)7(A@@C z99Le#JBKS>~Kcd>24N864N30@aar z^5ng(j@$1^&c4R_APi}D*q=g}+h>}A`;*%=X&V99+(y3AoRpaNgiExob~hNQcyVB{ zHgTqQ!xi}e@K4FWaP?~Yo8o4} zlT<-3P!vxDCuy;TM1t`$1w8;dI_wmN-Hou_`lM-{&)p})a^EPHG<_JBEGa%|afV+f z+OEMb2`!8StEC!`n0ExDWDlLtaep;<>vgjBrZ*$K_2b{W_e1{V7cYti^+7u*ZRYCE z(hSf5^@y05W#~`p{yf$3*cZW-c?)smMc_P36|l^r#=gB=eC4DpDIdV;KSCh`z35=I zRw&eiTWEh_nl@hGvX1cZh~_ngz6C>Nsgq1MM2XCg%0I8f0c=g*zM5oF@!G$Lf^$%F z@S~1;$7h7t$h2Ogi3`NvYa)nPF6uKv@B>-r+1;lI6T`GSj9q68v2A^8)lPc36e^5J z-<c5Ni{ES%E$+&qb(tO-glpV<74%B8A2-jV>y91QX6~&`n+u;E zvUIO(C~E#>cRM#U2sN*Seh{xY{-B4|AUfl!{~^Xh!?4f4Yc8Ry4&>W}f(k10!PF_o zM?k>gKegD;@-}$9_OjK>{U6F zTVwlKGEt6`W28xv)h`PE>ezhA{y+IG`Gas=_?95g>8#fVxnNvd$;#pI^~sKurEa;P zejYhnHRi**|Co|ac{PVRw3VPtlD(EfizY`RM!~3~SH{!CHcAnnog&V0*$0v);1ePt zbgcCQ;380nRN$HJ=araG+|a`2dM{bLVX6&&NOX0vN1f;u7|6*n< zFo~4Q9b49fE8de>6bYUpLj|?3(diY=Awwak}OE3Yy`f0oMPkgQ9(X1 zutQ1|Z97Xbjc5t2lTJ{s`XuyVeI|h|-iONA5_n zW^jhXI=gQpLw9&kJy80;G#KG$_YP?z$sT()K^yjaXa_9oZwCtnp4|g7h`wqOdTbfi zWG>8GrP0ftBD6g7eRGnervul^ zT=hxzj$H}ort??oM4(ok&#szX#woY%5{W;J-IbUG-*RLrD6(g5X2T`Ad0R=5T&he4 zT!8gq1mE}C>)25TJ}h5epBG0T&(L?g?uT+^LsVpyUStuzexONu$eQ(+@M7p9%!+YM zDLk*dkn8XKSw7o0Y!3|9K0VKhbH(J0HKNAswxg^iKUKP!x_#kmNNi z|KdMIwSjk!AA7XWmtjJW4FZSkw1^%R4AmSVUxFX%fKj{gg_{9D6x0RgF z9Kl`Q_7C6Jng^U{Uk;u0=VkCR^iIb*+DL z+O}j&H2-b!-^g7G^g$TNH0>1YzlGv%zZ$2ZmF&n?LNRv%kcW`eN3M5 z#h0(YIOOZLMsym<#mx)rw&I!EHl^l6AeSdTb77Jfs$mGq`?r33EmSz$_g^moHjq?m z%AF`bf0swq{|^8}K)b*9pm7D6eL2IJb2!Gr{R7#99ro~m<~kV!(cAXi{C*%sy)Ztl z(-b>4on4>IWxYCGYJYbpfenbURG7(YttWTyl2@&Xk)Cdak%pyaHBPnN!U)J|Fe!@f zO6-?Lm^82wmaCc`&V@$&pRA$CN7olSM5PLcH_OY8HIy|trqehVO(egu?Da#eT@`Ud zJdUtwnf)%D(FH-5*G#9CNos5a@7>NkQwC4+`Z>w*9X4k30)OtAioc()3z{oI>b+7{ z_g4(pIe_IdGhNj^i2>#2TM2IH3x|@AP&y~JeXvHDrFDL9ToY$QjJx%4Bj=DFsYml> zoJ1Bzz<3|izpGE_^KWbS)OkzOaxt8JX*Hi@9{in+UnKa`z(w%2w8B;wIh&5YHgD%V z{ay$vAx8>A8-G$KSrrW3jQovK&T1IyJJ#55IW-XYzUF3J;KTBUfXp)s2i|BMZ{_SR za5||;O342DcYkxD@C4LRaLHsGYzeJh50O`yjfEEevgd-xtK_1&PnAwkqgv$DNtG8K zH&PDG{;!4f&CqJU$eESY?KR4}#*ySWQ)E7-rav5CwNT=-MIe z=lOqoiGL4@_q0u|%9>&MD$|^G_E^(($-=iamYY-8bQ)$A`JSWfkwLh9x@8Gl)u&E) zKP3gXk&_+SRdD(wFlR&Gru!XD5Uqhf^s&2zlunCEl4KjKM&lY9ayoBvwfYs~IS0Jc zcCr~WBJx@Td?;Emx5hes{;Z2Ey&L4TX|U&d%zvJY^%<;&x-q>YLK~$m_S>vPCd7CG_3 zcGGJ@?EM}=yZHe;HQY$F^OY%95iY*GC(M&8f4VE^F(!^c16dnuhm|<_3{U+kF_J~< z{(pV!orwYV7&y$P8bu=&0um^-l^n0Q7Y&jU| zf;LD;frpOKjroygE)a?5UoiY>W!T%asE$$+;pIvX8g9FEa|H`LB{v#HA_K8yEq|c1 zG00NMlz(P(_+iB+Y>k4+h;vJI&3WSRu|*f-9fzd#T8HW)w2zr-ecLOhfy~Jm7-+Xz zdVxVtE%b8Nc8BZWPd@J^rmN|Ar#7YaoJ0mM8fo4Ui$#p@zV@?uEqLF!H+$Vm1-kN> z2*C$DhWl&4@X*?sSTtt%>sQi3uYZ{*_)bdWYh50C49)?Nm{iF~{9RU5`cLPeO`gdt z6)kylU8&uD(X`MhF^8JgTvuu(vhP>@yyD87VQFO|?J%xY^H6V{5ju)uKU&|VxLR$Fy!xLM9YzJDFk+KbNj zD{PcTi9=M#bK+$(7K#tTnn}0jQ}<_h#GyzaH}FcE%uFm6pI5|rx;adnD-n|4F>Oza`MCC(QvbX%9AGzV1id*Cxor$#~Z5TGKAfkLfb`|=xW*1?`n zo(uJ`8<9=9cc4? zv`_Na4-T!@$&;YbOn)hhr%IB7YmL-JKe#7_PjI`SV}5vvM-q$iO_ zpZG|bF|2x1m>`AnXDp6>A!s{l^Vz)-#G<7~D@pn9J8v@wN!Koy<2<(EIovxSI%#idkU}$?SwA$T#yhve(}eWz`$tL~aA? z>~kCApAj~1ozL5Y_aE0AkbfBOaAY``;U4IuM41U_vaBX? z`qQGKvfz%?1`(xOWVblzsc&g_!^h1ifJ6&i5d@BeVOpZ4^6h;x z^(*8pI!9XmZDi@8IOP(aEO%kQk6Wdu;rCmkHFyb3Am#J@?l1o4x|yt5^K zk5B&PAZZ#ep4g5d+l~yk8J4vh%GLn4J<5alg?}`QltMzUladtSjwRK>=<%@ zuWIttcw)pA+u3BzFpxX){sJZZ6vsrhb)cTmEA)NAI`0VdfvEgZ*q3QfKr^^%N`p<6k&L#!X^)03Q|Ssr8= zGJm3W??1X8D6L6+(eVX-)>RrIe|*9^m6hXa67|c0wXxgK3 ziGNr(C6X^Ja;HAojLG=k^xGyu17i#UH8i~`$%>UOS5O>%H|>ny^pzeV6=Q#hjqgTxaQ0@^zI#P)f4SlkDa@{8nb@}nw4H)#9&<_V z#Ey|&?2y)Z=IAA$%H;2$Isx|JlEg05r4HIicE8;-^ChNpHNK^%Do_@@2*nJM@1U#* z_t7-p=oBI-5Xkp(fo`9 zXYr^rZc7Z{o*-14&l~@97Q9a02r4&nYM3F&BV*n2&{m+QKYO{8WlADyX8 zTf1bu{Ph`~W2$O9(OH(LzK0`P9xfM-0pYpI{5|)~)UPD1d3(p=NPm%{0usN?m8ER{ z7kUu{E3^fHt-i(w^&?t$hrAVt2661UpW`7IWbyJj+`CinBlxg3oVjoZkvF;)uW0$BY920A1psZ zn8fGvgBSCMM~e}7uzzwMp~exjE`)!~1!E(c52Qz>Ym>${?q>X0kJ3fmwudd#FYk$;JXb?69H>UED`*|{; zDC^8tSgobShs@j-=(D$~8mrmz#`T6{@dG)_IKt`7uLY;SWk!)T@O~#xfgdC-xq?m5 z77LW?5GMoyT5}Q{_@!eSkh^4;m(oM%%il8fbP#}jUbF;JRW{P)z|MXC=c$uU-F!By zxY*dtM7RHMVv&pODfMI2~*hF$*|~GvMx6bB%JluJ^HdcXx0fh`=Ib4 zgT$p3Hf?Hn;e~m^MN)H1SaU{qAwuFe^B>bjWLc}CPk+jD-lzVOwOl2Nj2mb_yuG^* zg4ic#eZ02F&W+0NzJ8ny9OH_>d^Jsd(el6)o>7lW@W_Moir=Hawm(Kr})Z<}mAP(^)3*OgX z+dzN)x_goLU+|J zpr$I(^@H%|fFQliRWdfH&Yq5lZ0OIXqV=^{Yy+DGx8u`zeKq;GBki{UenR8}SxWKY zJjEEmjWVB^+WNSrN(@=`lhy<(oGnON=u-txM}N&`SO)b*0axF8)H>NiHpTL!s{w*r zAE93f&M{wJInAXv|bWDdzdq?XJ>lmlegf{%^URk zc7H#~W1nmOI$F}wqz4y06foPa;!Yl?O;QU>X&WDu{Z?V*gQlFd2jha!ARQrMwo6~S zHwzM!&`CjCN|MB%5Rc|8WdX3Gd#VN4M=(Px;wkmzr$NAN0mVDHvq}~q$0)Ju8U8S; zAeix{A9uPHTNgaC&Qtnw*rBA$U86D5^MCpacLO_eU{X9pz~vQeJFtA$?Q={PnbHC7@=Oe2G2qsX1b>7?U}oH9%JZNk{UIxl7Mohq*hT!H)^D5*b)Q=VZ3h>+G@zz zR}1UU|T1%XD4KIrA~mbyIAN;!^QmTilFv-E?}3(l}YZ8A4l_ z-atQQSX6mchrS+lIqPo6>{g6mD1Tx4H2 zh!$)~i89)8mzsnr1~DBIx%vLfB8>X_@(sSvc?e;KA3$G>4cQ`nFvdW#$x9?YFVsiL2yr8rvSG@=hJ>EPq`=#?rDS zF{@Z7Y!@l+nJAIouDl4#!6xw z@{liOC}<8d+QnLkg-7qN+q@aiYeD@J+eWiC6`mpyjATYBHGnZ0)Z}3+tDlkCEZV3W z7*I8YaQpCmiCN$gOo3r}8h>&;^$iCXn3(>J$}tAoZPZE3AZw{+?6t5|CHQWMj`bYY z6Qj481hg&l;VXE%N7p|f*8-)3>Ixyj57W!@GCvt_Kq>Oi8A!6CUUCnS#L80zJtd3z z2RQ2Q@7Cet^I->(*P}!y!Q=qN;`~?I`&KQ!`L&>ereaW*_;BIYVSf%hc50+!mvEa7 zIBY#hVsI=C?aB-cf`V!;OF415LgzedM0BF(I`kfgTN)8&%j>qID7}T(kP4~4ls*JZ zF0Aj5;X&}6vw1P5@mu4THL^D_P(3j=*>&L28T(>^9x6+K^)FPO9As>dmGL0g&Wbqp0QZ`xs*%a zKxez6Cj{y4K7YL^M7wNe4TtCeb4=4m{)JqMhO#J)w}15V^&JM(t)JxH#bfK(CpvuW z^T;okCThPPQiS-2_KY_d#xhflEoP6;Z8peHJY_th-t$A@N^6d#She#gP@NKU^+<)= z?q%Z_i1Scb#WgY2^CgI?4HmMEjuQcJoWW4ySzwI9lz&&-0Jp|z+O1u72*FJzrAqI$ zdR*yLE=>R5p-p=+Y)V(ba6Ay18$(B(@6?e}AombG8;p53Wc(~LTEV!nG|m&9YD*^E z_{7dzZ<-EOr*Du0&oIV?P$|%m!!6=i-~v6Y5Xw>Pd+K0ncE%Pw1sWX2BRJm}L)Q+q ze&0m&aDQIep4AORv{71|CMP|9LCX@eowu7jh9-@LN1Ty>#%L>|B0XsctZ3JMA%xhM zf@!!~~oEh5!H5%#1eGZ>2 zH%2BXJ@{-6Z%BM-RIN%p+%uySt{C_?Rsa$R>iw>TaBSVyzn&N-g&{hYIpUKT5_N-P z=w=I2yJ%lHZ}uI(_S1)?LD=2-X7#zGKag~gX(N|pZ4@;Aq+?e(KnzR0PmANoGbBxZ zzJH$>9A;sSX1ZEbg(u(h76hq9d5JBPe?-U-ArGSaC|h4!%;^%~E%9`4q#fo)u~2 z38SgzV?WlQ?P&yVJ}GiB!Uxj$S;R=QIylNzdqt9=elsL;gG>hMsk)c^(-;Pi+qU@LL{CD2UPXROmeBd5~4hWzHm(5RKV}BxR z#ah^<)d;uALthcyFwM_rf4Kq&gfo31JK7NG*8Durzh}S(;m?p<8|AfgZ<1m+D8TlG zn%EiGbBL3TMBAChFP@a}9653G_W`>~E5rO_ur~V>Kyz5HEXJW3IWEvxPkC#;Gp%M= zajydREPnAs{DOoPXNelUlgy9a2y#KJWuxBznDX5ob;5lPA2 z%4>`7=bL*nH`jV@VhNO@s0f_ZXoI{9{g*R>*Ke`m<2(WAf~Os0gWB@j6@ON&za5y$ zOKS5cTfD#x(G+Kt3R!Q2V$idoOP0t;yUJtSBn|xa@tn;Jmn-z?l4UP=L^KJ} zVyBPaTh&ioJEI~oo04WDo{Bdf>bb)d-vCY}%+ScsO39DNX1{#KkrMpwmsIDDI1hQG zD>Y{$zRG>7c*TutI-CL_f~s7$svMLjIEZi%!^+)9uyHnY|4sdnzJEMNkHAne?D6GC zvZ*MN=!_kr2VyCCC7a(C*IIH8=~AV%+60AK6j>FlCFb=ExvioxoKKfglzZh0ZY=tp zE7_M@3g5f--iU%l#{HFM6)}B$;f9F;bSoyrUy9-_nhaUz6-;%;xjB2a2y1xm4_M1$ z;i?K}B;gKUfpDQHaewF}ZEv(Sx|hJ?h$Q%sMV^9Kr(goKBARN`6RIXa(FxmljIs<0 zh5XxM0RrE-s1(c3xbm8&(Eu2~zyw&s70{GlvPcmppPVxuX*E*;b-3@b{Clp#Wj_ih zzXVmu?geO$`EIBz(YV@y5CjxWF_DAJUW-JB^J7_1*MCZYCx1ttJ_+(eyU)tnSQ#(e zH3|II(0o$*#m(mtb`4Fs9sus5>c&o$Ng7DX~C8WT#ENQ`2hvl{=@>q_l}T> zT>Apf#8OutfAwetDqJh1)D=1@MtL!NMji2YGWxt9N60cR-} zPXzatH~GcC!1=8Z?for97!(F(g~V4DxZgR5KTQla5EomR0vgtMppk2(qhD^=ak;D4 zM+GF$!C2-sCNpL$LM@BqN$PA^Cz7&I<_Z(!wlMqO6Ex+HL#J4-;oP?uCM=%=L>z-oYtV8?aaTwJvt(n5d zk|muoTj^?wCf=*XyN9Y{hd6PwfE?j2GN$N>Pv8s@R3>v=Dn|@}P%dRa7q#w=_#cLa zuy-ukw7RLmd?U+ccHP%9g&}vwLwk(k1DxKQ3xD9r2U>@$tW)(2dAU5GS?y?iJvFjH z_L`$)(UDI3t#K=_yl8VvUYh=eL+xM<7VUV%Rc1Sz#evaJs+C#2WIec{c+I~iimX*o;@;`|o@MOtYK`(5UH2q( zV1IlLI9`+#Vj)UW>-ynM=13Jn;xGr9vO!u(nwHBR~N8DPP{KA zGYo*uH5cvRG!5P-i|FFM?!5+M>jd16use$Yxm8bgrVAacCo{*iDeIUhs~MA?4So17 z@EpkPU{((|a){cmX+^9QJ5;4N5(AhhrGFyx8&5%>YFUFV`n>%>a{Y!jrO*cr^OJUA z4+JFed9+#w=QP;#1a5Xj4ds4(?>kg68U!_4>%GjyefTw)yYG$EBEG#XfE7>+Etj;E z0P?Ge(`k{9W0MLwVq$e&ckbpT!P)!e@m&54NBAC`Q$LV8s)c)_kT7OYTsPH5Xn$y1 z{!{MM(P)Xu1SX<{KQu?+V%zXkXD}*MUvKhH2Gs5+hB0;Nwb2S*$np9yV<{sCMQw)k zlCeqP{I<4wWwG8ky~Bb9{aQ4Xmi8t6RyA65r)ckJ&t-C7rV_7X(0ZYEG#ywb0hB1z zczFl3%R{liDH6xbSr@w2Y)@xg6u{=86>o{qCZL_=#PAJqK-1vg2-R2V;V67 zYWAVBX)VvRu+3LQ6h)1Fh+?=Y3yy<9#kYGNLMMw3mM@R&QvU8U-Z}3Z(kRcV5E#zW zWg^)~)kK`6(}~qiPI8jlxJ_T1(MmBbY*Vb4cc-DQ*78D(2umGG;1YK>ZhxdG)!^~G zv!yIxZyf3(7}2^n*@m5Nz+(LRb%&V3Xj;{M>~lG9CAVWy2!Afkx*`8+Up-Ye zU3uIfCjJJnk!Ti|N+zNV`cl{$EXdahL;f4g`F+A8O{%J&-v?ppjpD(NXJ#Sb zNHFML(hCRqdf~xseg{gng@4Et_sW}?y`^_UkMif4ljCoj-5@g@Bi;Lo4ij3(qK0#% zw!=MO0oqO8&S&|Xovv@af_XXGy+4j4Ehi&bzaRCC&1=?RAPecBk;=xKkjs2Y#(xil zH<)I`j>ZJ=x=QNZh%K74R2?K)aDNEvQI(7wE-Pq zCiN%Yc~HN1WVI8xHGfz%loBOA-f`6UqE-~FQL`LPAB?A&5>RlSNN;(I!HH*lHDx3g zFB1q5r#pl(i@vR>b&B#`=h4qK(|#x_sY>hXz4k^kY|O|)0o(0|TE~9xvC(bHQ%blO zn0-)6hakYS=wlh3+qNwjbQV`Eu+iD+P$wY5iI2}PZe4%n9e-f-g?CuZF|^1B#rLSg zyepoOp0ii7NhFj}7;oeAx|_p|tB!9nVUCxj&a&zJ$>kc7oFM%?syc0$rZ*#O7`Ho9 zW}{dPD$6*d>#FxW5~{>}DHGyhZsAap182GuSK|1nF?>z=6KrEnHLxB=j_K8dVXv2i zh1rE}O_9Zg-haL^3$>imkP(Cf-{X^5u_4C8V+)15`HY0}xZ=n?d^dM0LHBbBw%(06 z=>+r}_JK3;J?Q-`OJVE^Q9p*gota0_aKw%gvX1x-n7$zHTY4LX^2**P= zJ90H0*kusM13Tul!6Z-D@vvhtp2#17z$!+{mQ!xqMSpUYGRmq_t?di}n&YCopZoZL z1mplyX!;d{D0-nA`e5y6=6(1Ch~5ouvJrHILx>oYX%sRH4pQNTRP=TX<}rX9=uZ~C zDmd*=py(`-K@8_iyK;(d_K=%_2W<3yW_)XeDYrkz((dIs!3zT?0+QCRFWj{AQvE0^KePnOc)JQpU9_Ej7c5tR+CO&)2>=(GUVE@v=tP{p|nI- z^F)KeFZcJ$FyVaZD;$b;YTwR-Br$L8Eax~AlzQ|Qw=XE=W_@(ZSBKY z$bU&l-5a5gdbE~}FG%VWGk1o^OmY$yMbKlCA0Dh92ZwjI2}UrQj3C?@!&D!AXd~kz z@uVM=s7`$n7)uy91SKA)-1~>9{GNTXrgtyLun>C{;a8XM&8-M=DB~Dx~Z=4>=B|UTsdj$*JhgalQCH3_E z{qub5M5al0{p}bHv}<`rk7%L9-Yj+zq%3hw!~t|pT<|1^0F&b(yuUwZQxVJ!W5oE~ z&UT|7ZmUJKa(F$sq8VJs{+pD|df7SBQKKu&*AOSSxZWx;+&z82Y}w@49|P!nuYdPD zSKyuWEa_{{{fNHOk`GGwQ0R_IaKld&OkLx7%&{3xw*$yN?iR(~p@ar~;r>|cde(iEWf2I*sU#NV*G9`2Q|uUjsAxC$ zHrdqLZMOry*YEM`=Mc6IP!O9k_xKTUNC3?Z7=h52ALNRn!EUNs$A3T{aAV0?H?T)m z(o?N-p<)}st_j&Sj0HoJi3|?`%I=KAmFxy}>QA&C5A$xP%OWzL(#5-=kVk7e3dsa*g6C8V}E+!A|O;OB{XbkAJS6 zwjb1%glb1+wn$?4)rv$bGln*w-R!rdoq?d=Z2w*) zVO{{S;_+3%a5(1(qM2#jiP=Hb!D;p3-(0O9od`lF^~$+Ao`3uQ0{STh*6+;s8hAG= zgXEI;^4*UQpC3Wm?K!MCEP+sI@iL(7kb#p`?QY8 zt3y8%^na=YWu6x3xX@D9&EWZxW-S8n@%5Ci_U^k)&;rqYm;QGc?N7AbX?va79!d#G z_V0wXHdhcU50v}e2UlA-Uju{ShvbU9npXCDr&GI!dVfcaueY+AGddrG;Z6Gh5QQj2LUnLrX67LKzf0%~FG+6MSa20Rhxrb|QHwr60YUCt5Iq1n!T*Mo zDSwanrLXBq24g_-3V0`Wy+v`>dKJJ~=BS*iCvp}g2|EQyU;t`WKj-ortc)pz;y!P` z%X{G^RfBjg5_IE6H+0_L!;*WgdgE z%7q*`lPVj|PI8o4#5!*Y*zfQ5z%Ew!?SF+h$Vq0)`$p-4hUg*2NuN^j5I`x^RcIpf z%+)$&{_5A~+WZsELoX*ZXv{>eYh<%EG`~iJvwoE1d3gdLA3SD2axOyI)Y7*|Do`{( zSaHO>B6_PqpRURSz8egZ85J&*^OhjI2&}J|C>Ys4HC@4?Lk^1|EHwg zM24KT5tz@|_v}pe|8RP|o?3iY(ZsYdH!cP`2<>n{OBa61)r4wCPVc^0pVFcs`sdP)_=rWrE6nAk{q4*E*?9~e|TR5J&0R!j)1dOB zmjTTL6@L!<`#x7r*Upc+s_$N%5eD%UIsm04^}W)`IX{HlOD=kdQBJ$L65aJw*8z-nt=Qb2({)j`j?v-9G_84ZluRd3 z?R0AC;UZ0FxB&bO)PyHJqKn~&W5d`g*m^U~Ac`LaCSehf=#t+JfZ`t$`a>Ig5q@}j z{hM!-jTeIvQVrP^^BrWvZhy(YNUg9-?tf;7dU+DzY;5^5YTq2aLO&mkC?@O?U6gYG zVIhb#XkvyK4-q$Ku8IOOb`uA)=In>~Ad!Ritz#g|{Y0+cfO3G_2bFx5&Ql1&McXKh zY&$#}v}^p`p^)k6JdOAswVM)BP+{%)+cbj&&Mi|(I`8PP%5oXDcw6qJ+W!J|kAJrX zo6}$nc!3Cv#Rubl6Wm?+TFR#FT5C8Gt^{3#INmdhz!fOB@&SbYG~W+bXyT~-kC%2@ zr%pWPG|t~)Z)INlt1RjUZeYgwX0Uu<*hz`!hm!0+RWeXk6V2oc+IayLdSBqz$8L+E zQi{_GV2DEav|OVRg_3H#IhVxxY9pxuy4f`awAHt9-iELq9U$u!pvokQ~ZM z;N=FUH*5$FmbBuQX`P&JL$84eYkiixYqpqNt z04wf~#sa(6?e1^U86)w4kAHgYcG#OdJ@@@cWNm7JEt5@wU9NKwI;DV%{um-~GjaNS zphp|2Y{WsIq#{5BQQiF;L|kj%3=a61k9MS&b`h~3E|!q$co-(N+Ke9L&m88`O}spm z?KYWzKQV=qF-%rIfRPzl1P(i)|0yw0F3|1fmA(AzBnINt?M}JL$p1IufLgRY_UP z@>$qc#u-_4k1Z)b9)=Da)4#gLi{I_yhmCaA7Be~i*o8X6+p@kjp}o#yjdA)PGLf#$ zkpIDIJDu`RUioSzg?|_wRPpm_faPIfC*sV)BPMi`PG&17svhJZv31Z(+Wm zmd~*`57QW|MbqcNTqz01jnt>M*gu)-*F%;PiwqQHjOTZA0+W|G$2Crpgmt#kaDrP7 z@`e{<2O)@4OMebzIt64tih~1yDd;lr7N`0oyp2#oo0wlC>!8U8w#>Apdce-9@S{WN zD=2K|WrcDeBubu`=k(U)Lt71~X$)yJjpe*wL_WZ38@`TYfuxF_2m$|^7PU25zw?hl zVtcjT)sud2k`^ba!Fet8>9TQ~2uD{7$(Ho{Fz9E=jDP%IowyDnrlVE09CSkiZ0Z!> z2mdK7)V@~&1P0J|46Z!jv2cV_&&#(CDYpm8b8_d&bsmG5uL5JIdfrVtTdvm{*=sW- zpV{gYwnaO`nk#!#z!mQ-3>YEOlGgZ=ZT&y5V5w&g3x%p{rsJX7ZD_7fNB+TN(GyEU z-Rf^bj(^UZrZVKi3M%_@6pq%$G3qzn^>@Fg8;WHd2Uv&-t5@EMpTrweGEv#!Kd)d+ zY6S_ri~0BILldoTO5N^Eh2LjMhJODKYFy%+Ss{Z;eSka_Pkp6iePSO>=vc+BZodfn zJ5hZ1&TbODsa&dgg+SlG*<8fC(NGDDTYc?gbbmtBa3VpLO1@-?P9c&$KY5*Y0!~ni$vsD15M*MZhv(oBt`6I$N1OTbu+}xLWNPHIR410a^piV z11scBy{-8tQ#%9>X^eXhs+UceuMArpfcHuLVmG2OL`WB5(8zSQ!yn12zJAK3a2pLJ zb+3wrmL*PiwAIxd(UQNu{x-Oe2WB=riMCzr*i8+RKF)Q*TE_O;gbh}Z2Y{WK z$^ebdGww@q!C=CG-Er8~xi5y7pMPh*0EX7+yg<}}-%J;>YoJ~5~`p}ryr^i0*&dCb{Z+AL1S1;r?@6XFt;N4EQvD15@H&V9A zX2+p9eSj7Qhbun=`C<0vzSN;*UfeOlHPQz(e3dyqgsv-;d;xjZcp2^ zhApy{XDq(>z<3JL&e1g>2kG9O+Y}IVLp+!iPjT?64efI-}uIrc8@3;3tFpqpgW{=YJo93tSFniX6hN%6ZhzC=03hde#0E(;`%?=w zt&vsl1JHDv zy8JEGHm$xOG=PO>4v~)s1mKeaq)V%fye~;jDFlzw5r6F1iw7$Z#7bby))sPR?xn6}j3 zgIt}~ZW(K>%O7lM!1qOQUoV3|fh1}?ZXg^SK~y6m0^9qD4^5;6HA$&3Q-eNE#|vRZ zPmQx%U4I&}>GyjNN?O`#tV;E=83wlKPB_p-cGOBl@d&KiPCzZYe2;zH-4iWjb=Wf9jHsddT>nv2<5@Y6Ehj5v+^Ca{BNo#CUqLk&*b)XiP|KlT^_f61 z{3hxOC9(2*Jn7nbgIMtfbSJK`Du$cwB-psgI}{jrPzuBE1ER6A1OvUQ(dZaCt}B{I z(tjxjBc?5PAsU7c4F1|7ncgtv4#RhTjR+MaK0+&u(r#Ox^F_Z?hBScI_Z+YLA)ufl zu{glI^}sJZCeY5TDH?lfOQ$Ln^JvTau8R<#PHqP)-83*d#tr<|k(iN>q%;ev20UqD zRr>p2O@7;HVae;KShL=>Er2LUXa$#As()|61QVlkso>qtZVa*jgl9J)j6;vsz^`E} zxT4C=3ucJTy#;4ue$~&(yU9f!+IHaZZgp}`GXWVyN9}W|vn3FjbVro;=>>0i)z~uY zPf4ZaCwUZ<$TL(efjl-2o*JQ5;KWBx5Y(r`Wn)6v5!CWf*MI^i^%zu4E29VCi*!Kn&h>7Y+y;?2$vVH-%*sIv9`>EAD zLZ%QV<-M<2mpONEcVSgjF3uNEt{=dd_wEWqqlcykF9+rlp*35?AHmr2ATp2)Sbs$VKd@yG9q(SIr?!1(+)5 zc&?!{4Ncu9Pt(YCTMD(%n12O(vj4(4ou6l?q&OUsgBWfEg6{c=FhVsBfhDH=9L6Ue zx3U6AC4Tot^-#YCSGC+`2PnxxsB)DMnw2%+IQE*5P0j9B>UjPLXP5U+hhQk9!MzB| z%w#s@aXMkGx?`h`w|CDsPS2B*EVj=w#l@mn_uXH+t(8`kcLZ$c^?!8V)zJiv$bFxS zzd9&{dj5);%rTgQZ=G@66Y?>ms3O$T@&*w*JTQIRQE~_X^^zaQFqhD@eUSv-T-RU% z=0S+6joB}VM@o*hM-`t8#0MFh%=q!oQO&@zDZ?3V&4C=2q50tRG zy~z0%UEKfh5INQ0@p~#B`ts)h96O0#f=%t@)_zJUVO=Wv%+FFX1#T_U;&;Sru4slV zsfmW3xJm&?P=D6zFv+W(Rwoa;%`*qHTSp6R1?7!X*cT|L>r}t+^go-L`4*7~P4kEd zDVCG~Xu4p5dC0#gnMX3b#eI^C$b-1&U})tZh7IZ|i04Uxmxu66r>V?7+xgAl6Z#}N z15$%o`N|8&{eE{QR6*OgoSx5#5BFuugrAJ;(nGr%Lx0=CbK4u?z%c_Z3BwJ$!443H zW!tUnmw#?}M%OuNNyTQ*9e6&+v0FnhqkqZ4za!2?>3vDzXDK?nt{G3LV83FXtNib) zjVQ3*YGNC|J%;(exFRfBr~)kpV`B6MB&WCiMX0_I9hj_qCrV~jUE3TU)d@q4L;uqw z#n#R>=YQ2k4)9wVQ8v#k9p1EWaUiJ+oBT-`@<=|IXyDZVXF!<0o?$zg2`r2aSBiDH zY7=nR>ETOWp!;pofEul^h^oFdk^`YOpq zeTlHqdar@O)rHqiSdC{R!~<VN??}_DdEEKoi*XgS0 zTMye83g`q7#QVdfU%oq}Ma!uPMQHfE!H+Gg{&bYYs7q7KMWZGv>9c2` z!@&oC-u-h#wc-wB^%sLT!UujXq;!r-UM=`|KUJqEM!G>ZcanWil)gl?M{K-qWFI@c0${zTb%~tzzBEdyk+cy^&T3eTuBbf?2NpmyG6w8*?ZA3g)@Qg>dP4JN2n(pl`C;2 zCEP~V1cWcok>QQT=VtI9Sr=pRZ{gSKZmNGI^?dqV%Y=oKFH(3o$>Q;dofOwv*A(O| z`3L~thrM^d*qHB}b?vbNOEXe`Y8QW86=a12<4&p;;^<$no7lsaeasE^*^gGs9F|zc z_#_CfEd9iJ+`3>fMW`#)SgOn7Gk%BerQC81Q|1d2vQI<`K&GFpCKKZ`8R~t{*yw+T zj=th?;=`bpdaD<;Jy@3@4h=30*#b|3cxPk#Z|UuYAH0*@l)MAaiOMWD3h**|OM!|; z$%KN{U;K8D(C@h$c&Csy5vA?{K7iEVlGw45;$0&KsgQm6=;!>Otjnnza@Rx(d*L|+ zK&9j>vLRMrjz!kzF~>S4YcXZTSCN0LXWyFNu6Y@(9@+!0FgUYL$W}5i?7i}0z{S?| zi#sYQ9z^Z)$l^J}JA)lR>@yM1Z4g)cGXlJFzg>O1WW*Os9LtBKlw&VI!oCxqm}m%n?A;fgwBb z>ErVlw3e)QU_%&A-hQ=_m#t*-=Of`x6)i^c4zUSHEdwOF#-TQL@_20k%_E;Kl%D{` zQn-{u=OE`blsE*b`hGC6f0cg-I-dq*ZGuW}9Og>+{+?*CS^I84SZ)=4Th8MS!~RnC zS|GZj`})=>sTKZ3*`GocI*I$X?tz)SVfy}Bk+D~2lNly>-O;M^uVZqTlUYNd>sz2h z9FdBLm?#womCq}ujYsvqwl~kNTWsqqDm*Hq90Qd4#bUx@6AIh2-y(mdvxUZH|7G^h z=i&ehdxGM!M0W&mS^6IwX&awvg6wp&nP4LQMKbj>;d5VHBH7$F8V~<0#>ts!t@^ci z2uGDi?boc=d@%b`r6Z<3Qk1yrvkKf%QXsda27&F40Omc3$}+A7huk9}c%XEh@!qKd zNj??;ww|vN7rEai2e5xRacmq!x>2e>xtR#GYY@v?opA&;Ku+_8CE!01(vFsJu2x_9 z%6wYW^pxeE85A!~6~^~6JUis_ZgyU;{yKPQrsnjcuj-sJ{Jxa1oTXRcD8dy*OR8lGdRRKSR|mckY9gZzxJiP>_|k7Rb$7L zu-d1a=;0~n^~J3lbd|xplF{yEluMqOY`qW;sr6%^)i=g#L#=@Zf_F)4#5fZT0H_8D1SS2S*1Hv?~6!pMG`~6sfxMyh=yF+HEP8 zona8qH`STcueRXU=S-qc98CPbfX&GUalb$XS0>m=p}SMk!RfbN)OM>1Bm1 z@^0DL=-H*}ml>*Z5qHo<`&$^~vC1!5X?cQpl%q-QYG?&4%!E;J(cLottOBVT*E3sm zY}_8ip4JgW0Q7QB&+uR1zSMXBI1PoEw=oJm)q4}u$Bwm(_x|`jz2adl;Z=p*S3$pz zrD0rW+~a?A4gj1CGyku-@DUXjo@N@r&N!+V)J1bGE3guNF6iN7*R=z)!)0{(ycm0!2FZabHQ)bxI-k* zQqG0=sKX1w)f9}Xch4>>`X+D2s+X-P8Za{S8H;}s(ATCL2G%o)s=JGn5d&Dw#ZQQG z*a2v?M$wiO>km?rsx?#0T6KS=4O8Z?7_SMTxx{%c;6r7abE0fs0XM=3-0`OrGgTp8`P1Zfi%$$Dml=(q6(caZ^cN7=EF5{qRjtvcb z(a!(Qr!(4O)|Mq~j)McZ9ml$e`G&IfEBt>PT6`If{GfC+G^=ED(FLXCOqmVe)2M$s zR*X&Ya0CguIFUB%9yP%hvWe|wktsx#cA1RSvstizhXNOu>E>w`bRkcyyabyi&UR@@ z=QwwNQB4BbSu)j+gNn~N{~v%*#4j?#POM}@aEYCWj9bpyze@U~cW7TkP1WfMb z0+}QGr$@MhZ*O9>lBfEI4akWof(C!g!LrYROt7SNWH@1dc;NZuk%!L)8+e*lsDjm4 zfk(hp>pb~)inIup2o`*ulW@R*3L%(lU&%#Vr~g1)aY(z7VQw?w<^gVG#GN~3Fv_Rr zN5^!cR&zxr`_@;Z0CDeSMj|=5oL%TR3=tN}=1}vepzBQTNQ~vn) z6`tT>Jolac{nbEv=7t?GL$ZI;qtEMCF0XFA2K=ZX^~Ub-M;*`Rd%9^wc`K(YEjwL1 zldasdt3+$PA5|v$R>-A=6q5IJ$Gj1%;M4cEE~r!SN!^A_;1PhI_#mfDuxKuK zL$Fmx1XT>~hHn%X83!frWOwH@HMO&D`(6@GA7|m!FaT$=N(p5^ajzvw)aCzfUX~Y4 z<$;J|x$QhSFpecC@lWl^lwWJdysJA%wqxyFD=@M0%WEUr)Nz0I?xtisLy;D5*Ox`T z1so;;g^)zu_t#?41<1?bksBta#l$+&^vbGYJv-sxf&-c`{L0z&B$m_eR--Gm^Ebd; zRLskp|Hr&^S044pJ z1hTy$*^A^x*-3w$%a&WXjChBBVjLe5rbVcbZt&ESm-9gNbyz9}voGirapQ(WR4mI1 zCx5AmCby(4L^Uz8U|k$3T;G!+GPn4}xL*{tj3I;H4i>r-JbGmYypel^yN=Sty^tufvMwdkipZmlUrN!5eoeM)sjGAd zVsZ}8BULOn$)7kAxVMBJ#qVVBPGOU@qwU}{m#q+mbjAC4z78?ah;C^GO zUt!%;A&PSe)TuzJap0)t5e~Ua8W=13WEi?0<)g z=pLlju6qTB*oSa1rIngr;K+e|-X~^wTWLA_qx>tW9V3p^y8>=I*ixix2CT68{Ppb) zfTyDu#IBT13pq);v2**NnGDVQTbNzd#Vw)#zz%;`E$7*c^8#%X(XnCJ^uCIWK-uyR zPYLKOv*BR&QLNt|B&tI-8K)-+J@TdsbTvckL!tcir^1 zL~@!Nfm2&GBSQV+truGLPuy*pP_YbiDaxeDsxT@sPg`wrNzYg1W9HJb<=5W4c5xWx zg?fJy{PtXfNOA#j^|55TRKAy)y*Pe|*7q>*x`fa$!@bc-dTDRCVm1>q+OCl*ySrq48cND8e;9h_{CM z(W&V;*KXp1+(zh^iZP;LD1P#dx4-8d!Ip8NHtA!%IWSq0?!KvvBm`TC z#R!YaEuG0?j}>KNug*L$$G2}j=E;HRMY41>TIrmCz5U#Udw{=GeQ0?k_d~69(+h*T z2+m`DTd`GJw+Hwb27TWv7$us}EZcukiyMUTC-uI6l&>ZAxuWp~zXf)|foCbv3-`el zkd0H*t4Qf%a7loZLI`AT#T{#RyE4bK6SuP@g$wsi#hrr_5`uE8Gj+r14m zx)Sw^dHZLqp!G}f6Ifu%+WTrKE$ROFT}&mk9|Mx2zU~uwPH~1$*B^W;Y3p`{RyW3W zuSTaLpu!%^!T+mv(X+OE97ueIZv8p*&DXNk=3*hRO3$3)RhBe$lKC7!~jV z3T19&b98cLVQmU!Ze(v_Y6>zoHJ72B0u#4iUjub&12Q%@m!X^j6%jQu3NK7$ZfA68 zG9WQCFgG=m!EO`Y%G?|bgq=iJ}l$VlEi)7P`+oEf2|RM%pav;dodDvX=$ZhKtPBM*ii-u0SN*4A=UsjbI5;-s|$dO zgF_IN79bCD1i8E@EdXYo02L4fsO{+l;sh`N{{re@R|u;a(Dg+Pa1Tnt2NQ0d` zU2LqZA%9|Uv$Fn)^v7F@4WI}#w*$Mo+Sverjurq#HWfC2D%kx+XaisXI|9r=)ljp_okGqPjwxqVcx-2LApECeB0d61{SDQa+|Eo5-m&ySD zF73tD(gp1BR{{WoH3Z@$#Ln*S?#^Zfb%n5jU98xg?Ek7y+uFtz;0}Lwu>-t3T|oAr zzlec4TD;H+u?GDe;LoK1lx@sGj;^3TPIBPCl@2ddzBs+eA^%(03lWe%G42002e^Vj z|B=QT==zthvbwr5zyWCE2mv_)9nD`1AwUS!6=3?8?Bxxzp#Qr-5I`F0;_@el%D+@D z|C{DtrAvWdPG)59?F)Z&|L+?EIznB&{=vz_Nb zar{fBBB`n%C#$8+s{GP;j;t!+7j_)kARdsvtpCK5lu;G}2ypNLI0bnC94}2O>u4bj zc5ry9+7c?*B26T6P1jWZOaAoD-g zFCx@`%d9{U00#i%3;=nUTeJU3_gA<45p(_#ztG_8?F4oLSOV=`LB2MYpqB@#w=2*M z1c10eLB8JqRQxAG<>Uug*qB3J8vSKhQ2&aq;Aja32>va8spMa(|7ih+zXp}@WlAl; zj`p4a3y>u$yDEPe^3o6t|9|G}zjDbz?d?^84j_jAru4t)Pse_wWx z&7T$aN6+_Px|h~8w{rx!x&nAO{!)Qn==iU~U+&;f*#LibZ39_7X(i_W(>s5e$vT>Y zEo>aE09?F$0HBKt&=Zy8r6IU@c>&&>FTHI6^7yM`0PJjzV91LLzzGWR1z3VzQ2*Sj zAU}W|_($|N5(KcD|1aX?-~g~&`~z|V*g^k*TmW{&{sFlG?9TsyJOFl=f54YSuK$310Cvbf;LCxaf5HExQ~l3c`D|_I z?AyPv7Q_W?2hz2%c=@gQhlvUh;$q`r$nnzdoG?NezobCNB0bs=Jo~4$ zmc)vQOA8H&ZJ?iu9|?x6-2Hl3ghmBoNBom7kmiaB}u#XQp)t?{ko0G-i8X~Fic z+h~8T@n@`G$y7#PTEBlra4($YY{GT1$M#r!L)<~KIN1RUdA`MsjRN*cE-}rR=6%E; zRYY{^>B8B8jVcs>h-BEw;P?TmN)+%a|L0P@G){Cmbj|SrJGyg@ZGx0ivBN> zH$vYByhGW%x;>LsPP!*s5!nP$h87M(kOr0j8i&blm6(Cyj-nDDCgdgG_XKK{#o2#7 z_dA?CkbY+y%b)acPPwixXihM$RHT`Z&o)UYm>Nd!0+v^mr(BN8sgpoCWTePN!$K&4 zqEbM1*Fadg%r^^j{MEBFpOQ<<#Bo?l^Xv7iZ`8K}iEV=uz2`#E5pmzw-m~ilWMiYH z3QJ0Hr|zWiB#+Ki6gO0&C`5(AC*ObF-x69fMjj6Ym&01UuNYDZKm}riry4rV-nJaaWK$AikBkjTlMka2Ad!_a z8k#qY75Hv43O-9{lgX@RCUjm~H_=xrG?oq+Sf4Y{@Uuy95IyFe1TFyx(R9j~**yHQP+ z+s_#bjHo$r1oFBNy9^=kvHVdFvT3UJ6)?~G?zxDPH%8(!;#S+*k-~pda_cJ!qF$F( zC)?%Dl?}-6EW4CK6HVGI0{u|Z2CR9pIUZ9g0-uuPJzuxt)OWUg=zILOnm?&rl~?Xu z9Xa!X0)5YsaxxzVSKK%JsyNQ!dg0sRtfkUbhuvL7z`~gSCQdsrnptb}V}(HCz`(>4ZT|Pgtcjw_Zxb5oy~= zDxG5M^dO~oN;X+@m(!4Qn|Peu?hLc5qT6Kee$SstP+(caTIf5 z%wu$@JFzdfe7?gZNOC2%`G_GXlG!#Mk5v-SJ_Nf@wQwgE z21g?Z`*TCUwzDVs%q63tOF}8^M+|;?p)1Rr6wF0UCP<2iCN%Q3}bU+z5+CiMm`z zE!}WUIoA4c)B71PEr;4~P3OZ7#(up|b<0@}xl3Ix)IWPi=T!OYn~T!XxQ0vlT<;aZ z$3%x+v(ILgM$hQ01#UuBzicS!>hIQ#zfy7-%GNYLuQ7k2Oqj!7ei&~0&O9OWN{+VS zqi}T&E1SYGr+6iq3F>u*yOukJl4(Y;fmwnFbLzSS5E}q5Rf|TR#*yC9Pg%paWKG^3 z*M+OBM0UskK0s#+w(UV`4-?{6hnhb19d5SM#+Ue_?^Z5zEURIi9=_q^2L^KEkw$zL zXvjWp@@aqQj7oVAVK^xXQq<~vS0f3=Y<8EM^5UtQrywiI4rB|m);Qo zk3zy=*WdlLeSKTq7i*sFWd_o;{AT}n(wn-@Hss`(<360Lq?tKz$4ZayUM=eFjIyv5 z#;AY6Z+LTXOg|hv)rW6KNqJ%^c$-QR|9u(D>52FaVcg_ob8=L{x{J4X(u~EhKs}Wl z;RiT^XAlHRAd}3PsM|R*#wVeY;z{THIa@{JLJ_Gp2R1Il8{UoL7ZUm=g7WjTae+(Z zFx^kaT9N!2*)4ytxN}g)a={GqKH%ZX;1I*7lX}A8laGF3 zfG=HQedCq__PdqY6oxW(Je^l;nsZ%c2SX#dV=mKlS&)LV(betM)Wcd8?lFeiA|5vX zX)%%~+|Wh3aIB2xcP_K6BF+tavcqhj&UKGWK4hFyFPG}!vK?tKcsk0BqFy%er}}@e z&1u&8h7{pbJtFcQGCZt5z_4-qBO{a@YpRg1pB=B;kuvxfdDWUCF;Po!Ol8c7#7s!oI;Du;;OE>A0z7K{C&}lBq#JuyZGG#EtV$nnA6rsS32Rh_9t2l z`uC#gP>B~7f>BX$ZHX~^*H4a%%q2B@}gHxls~3dMhZ*OV1I z<8w9)!wS#|$Grah&`%xhtl|6FTu#4O8DO{R!Sx!pejV4?VE}J9YJ|UdtuSu)2y=#q z=OVnPnEC-IFmXAI&_=m@d-N0g0-dfQWk1~Q2V*KBRrY1KUTrRb@C3d@rPa1NOxc(y ziR`;cTci)+R&j%YbC46#oT`7RXc#5o9k>U+EKcYo?(=U2{+4jHK$5|Q$;5-hqVS`> z?0ng=8{_lQd$Co7PRKXiy^4gQ67BT0L$uLqCYQqx+7P=|SU@ z3puI2$s&E9_zde-fAgX;myWMgKH}bI!*@80H{nG@Uc7@J3{xiWd>5&*(4mv3!5VHX zlx-72U4OUXnY0kQl&Kq1+cY$Qa?m3Djghy12PTo0?k8>BVxC}gxzjcg9n*CI!5+@) zLRm=f>V$D==mo!`wiKSfyKdm*YAbHg^vB#s~tL%ci)w#aklC0tU zOm#u9nRG=np5A`Yus(mlTQke=ye{}fkvcTZz~lWGTgLIvrsh zI)19_Ac?i|IB|baCmTyokId}Cr{9@+YQZDiR^4cJsX}PC+6N#Id;`BaQJiNLV(u0%b18NH z^QMFqi-j!IQB`^*qUbBn$=m5t+(Pw!^l%OJ4x|1xefob1{<*{!W?4}LbdC0NZicNY z2n_&tO~5q0rREEcp174^u58I-`aq;R02O5rx})W(+ePFsTU^|$?=WI~lM_cmaRDG> zQg|!=>9PGx=~wiUavF|V5=6<8%TEQWeVBjHm@gCXh7Q=}nftTXUwdg1^`!BGpZ(kN zXMzK_x;1~{9>YSo>!0mPvXLmTNyb_WNbjoVlwV&&i2{)btqaD5iuI2s5+DT^Vd{Q0 z1M#>?-``ul|BhG=Es!^-kU$oW44(nrQu+my@gYvK5oq~ebRk(NZOd+^=D>D=lLkBO zOHtayu);SZt@ShCeOz?yR{5nsEzsIa>G~0Z4?nfB`N4T+ z*-Xa^-mP~ZpJwWk)B1Mr44;#^G4zXA6`X9CkWwLQ4EUm=Sy5U-mnlaq0 z-L8M3iWL{%7`3~R3OA+dfjgc8{jD3rJf4oDaZp<}g5c}ZA)7%#tKSLwQ?>E;!I*M( z$%ol|&vz^W(4p{&BK1QzXB#%4m&4$+rF0r3kLPU6&=Dg^C)DBz1y#0r%BM+bxuENM zxk2FNZ-UE(PYqDdYVwdr?(&WRM1V^Iz0-fV&eE2TIM~hxezY3ME=X%aCPtQN{QgGA zm_9HwHaVxCm>*!2a=Ep9Q2MIB4(1X`Kd+up8WPKDG8o5kLH>(XmAi>~@r1FMmfct& z2;D}#q>j3#*&;^hshJ+kO8QetXf6!lI}BhsDf^11xl{h9Ju3G2R^Al&!bmjMWX6A+ zOxINCXGI0SM|{F&clqWwHv-D>J&pmPvMUUSVj4#>IXy|6PjOV^@Jc zOFA){le%xgL@KPz_xZ5FPc$)^Sc}e;=vu>&?<^ae4{Dhq3C;Qi?&do({$+(DT;TwY z$d)2wF7($hl7ggS_*)rx`>LGiP@H05;4%gbYuKPxRwVEmnVk7syfZ z+f!6xk*!v9zRX0(c`JR94NA_CWGJN4SP|>Ei`9P~dG9~W2DogC4thwh(vJ!o|Ml6} z4yWbar(QX~<#~sTT5V)C79KY+-xBlv7M}PQCOLoT)a@BQp~Ye$-iD?r7`F)_bSup(Ac#*V1nj-7tYudX zCD4f{i>)jc<2~}=y(0w^dn%vTw8Y@neA^L?ui-z9OAgp^X*~WixgW*r^TZ2UKIc58 zT}-fY*o8B`u4(!$ZKxiF*(eNleCIhW4Ulc`c;E=lL31u3pN{T<&$NF-gXN_ISyFV^ z(%;3}tBKb}T(CYYWJCt5-fS=h#>NUG^E&4Ma(GIcj1<}N$D(6RyN6yQPmSdl78Z5` zxwdcF(|x-u0eCXsy##fgf)GFUV|NWjN%_Sfkfa?L0}Pht)yU&!!c|lahiPCGYAvC{ zM9PdUoT8i=Wo{qsBg}v5C)+w}vMg z20%$-&_8LcDqB;5>3rZw3%U<7ixdacgC|7aV^g-WqINzqkGF}!FCjMVzdmaF-pG5VTeVpffS{Delo44rRDj;3lS{{CKA04FSd6DiO%K@n+6NI27WE5tSxuT1=ie?Jg$1eHh9)u24PK66;B zs!{hK&Pe-fV}fzI!_*VyXAPUkpqwj~sewR>kGiokyPZw9DbOIUrn6o5?BSrH!Y#LG zO3WfE1yUudw_$&+jD^K2tHyVX=4rMZ^WU4JVI4weYB-S|g;eh9RSlDSbZFJ@7R+N+ zOz0K00BXp}eME?ar9BFpEKU1KP&B!wV$U#xqe`?2z=gJ+UgF^q8sj9+JHu|_;6zGH zJvMXGuzX+KsnTnAdyUQ#kHG<(x26j_#a*I=CdbIO#GZc_j4bfP1%Vdq`DAGfzL{K& z_!OjbqBT3_X1QRf&LgYhJH4uWcDfP7?NAa|$&axFc!QfCJ{C`I#DBxJFv~`1ouWw^ zzG57!9d=VuzM1&KcNf0+rP0(ydRAtZUZo!Q&VXrFEmT3M8-@+1vYV!@bAZ!6?@%6~ z)AQtKdTW1}aQ{wapS1V5=uQL{_Gb6+d!dWX_KB%r7MHsqHL^YONT`ha?UsrP?WQWX z`14rmK&!!y5iU}@Q9oqhEG{FA?8&4aPBNG` zRQ$*y0t0w(>YSfcsSmrZ zwH<$i)c7B8h~r2_SkHe>`V{uu$bTGCsZfs~g;*s?mnYsbpJ3|o`<9;EMxb)whqj~E z>xEAtVz2$x1djVsr|qDWuAP!1&TjAZY>8zo1#p&B;ffq?dl|Dr8JewI9t^6f>v#_r z^fNq-20l*z6yknTc$zi+3|CA0tkE|zM_+%^!G~8Md<0|z_kF*jI+YG+yo9E|6MMk* z@?py{e&tiOiX4==5AC^{&LdFRBRfRQ;|6xGA_hg>d&ct_zTTh^mb##h6uFt1IUrzO zQAe>)P@n`v#0WQ*xC@u&-6w8$+C^(3D0pAtPRqVZR@h;|AtR3;oc*M5oc|5C3`u{g zmHfo(l8OaGCMzbI7&#MeLvy2D&0yz_klaIhuJ$5=Hw`m_D3iiOwRDE5D(kvrnKl3 zN(}`PP6@fJHjhfLZaXK2x56HD__Ct>wMy9>T z9(p$(wZt-*ZqS?UO(Ot`!6LIenl%pbV+8v-JKEJS+oZFP#I4t@y1q`Hg86@LNYaMS zwE(NhdpSo+3KctBwf%l1yRHJ`%r66rC7XaBy`as$A>)Co^{!I^g_J+)XFfC z-=b=t#DF(b5rq+7EauwOQ0b* z21wEAsua!zRipC1^$LF+d(Ii*v+%~*ls3-V#hX7hlq@S>PPIzABS>6&sAHy&tf`BP zd{-^}>hl(Wv-nZL3PUvK9XNZjVYdaWhr*uTBpE-l%!oawOUIe=VL~T1-SXwcrL+*^ymd}}!3*6x9iVqKMdD5&;taonDgT@EY)0c2 zjwcRUV3NTH)ShvvTWNycgTdNHy239);>B=*I+6T=dWG_7t&r8I=y#&8y=41X1rk&x z_*vo_L{A*vhBSX0KHe0i6)E4JKa@-lgbL!7ytNL}M8v{3sN%<}MyL?I-v!S}x)-x_ z3hpt*nRTc5@1Iw^W=Xo^CeLh5}QFNqES#Dk!!`bH9?pZ_L4e`^f+Kt0dEg(5(23k!6Vg2id|p3eTT?9 zwZ!FyYtK<~cJO6pM4CD)LzZ8^=w2 z7J4L~b=a*Duo|Aks=Ot?Cpu>giVoF$yrQpZZ83k~CPYI$qbE2ef;ir)w-Bbg++_vQ zvbgl_ep>Qr;gg_a@5Ea>k;MqyPMIv5G{~&mH$jw&0ajZgw!d#+!0BfscDCef)iD0) zcJj#AD3pz`c-eu&8HF!srZqO2Wj!gC2oKDd=*@VOu_a(S=rng^h_Q89Fn>+!q49nw zhOmEH_7Y}J3FfslBJYz_P%h2GQ6BkRUPP&!IV(b&&qG4e8%l?>#++^TUW+8ER3rLC zQoWrkv}7dlAQ>6}l8^+3Pj0gl=;5o2qP^_TQ5Wn!>I<@ScjAn5IhLzC3yyR`l(RUh z!%^$}dDqibC%PD0DlDA@H+5_d<@^lyaAbczhO;-=Vfu>v=ZF_o9VzxI4rLPbWgt^F zqTbH$uIRea$4(URt9OP`cB5b#tQlV-GEpL^ImuS~kV%>>N7$9aY+gS{jAE-!Iyb30 z9p8^bzJkVXij_hE5FrgXz#<$*$7MBCcXSAFm3tfNg z^6DqBm-QBM()=?SPDa~#2z|d&X_0gw&#aMeq}JY_HF31y&1Plq@9))N+qS-D@v%RZ zM||^*(w^(Vc2ze>fA3;?fh3DPK$7hqpBxN+k zAnrlq+y|Pkc|#rfy3il&UbMz(=ezGU(axa!-!AJ^Iie6`2Gi(zj{#G2qW$i6sd z$ZdT#%X|u)Ol>P^>8`y(Sxc$1sSUYr&;w)s+6l*B6#DiHG38<~?NP_qPh_RKU$}nl zw_=7uIbK%RUA8&roc3POr|*BXMzSYi?CWCWoSSUBpU#svKRht=@4A?Th%3ugpqZJZ zY(xbSlnSvVmfP*gWU_hgcpx*4bV!mb3@Dh>->oZY_rQTRP1FHVQK+s->WS}SSlnFI zYx$rP4(j80fp3fY8~vPNM=eKNV+yw>Hey}sykBLU&uNWIWCw(EC;xwR?rgY}g`o!#FVxjMXea=(ch z;K#d_sh7V_{?J{sqmXM>(x0FvLe|qtgG~t&Dn2b~{4~a=cJo8U3sN2w++ve3ZR>D2 zLrpo)@Befh@D-bO)wF;8OUp;{eA@!N3(cD~uH4V#DSF|ryYLxBh7jP3d3fr8IZcWw z;$eVlCaMcl_ir$vUS@+%jj!-&%vQCzEJKtp&t6rpcu-P&OM%+4zzLWc zU!^})HSQgNJ`{)PjJKun`Wq79jGqpEH~KWqOaq~%`_#9~JxqTVBd?3I`)=QNHs#sU zmUXEqb8n^FkI-$(HQ8NH)#M`FO#u0xq_HK4;-_VX=0fK3%q3jzhM7vOM1}gw470qm zbHbke4QSC^{q^HXRROt)1m3cgzmQeyJ|2gWr_vF#a9|gljOS8akk`HNr{4y%@d}YO z0u+$dL&u!>?1q1{WYvA4Y?O@^G_R(AK1o|_;IA>vWY=3*fj&34&4@DX&3N7l|74e7UhcZ<aXX(s54r#0S4KfW$ii_Vu7S`BuY;7#pXcr7E6t{ZpyQ+VBg>UAVbBdqlPV6F@v0W2_Bp2KYFu4q z2n$N!nl&G$_LzLsc?E8dzyRSx&8|j#m=!_|d{%$%&*^i&^d)~Y&V98H$d9C2HWSIY zU!{n5811|td0Qv^O!^=-PDS=A?V$QS;x|5{_o-ArzTHZHdHOC-KL0kN=)KGE1h?LDaSWu{@rT9}a5qx7JVm1Be-8uO}!;K%0L|^Qd0M4%@6lC;7 z12KOw;AAXrp!s(>_#x*>H}zZj%zmxfFrQmc;Li3u*#XXco11o$Uf#$y8}W{II)kbEr~SQg|mEkJW_9gI5E9Y)Y@nV%BQ!eRb4jGjUP z+xXR%b+8Jq-A4{1CktBsv%s0&)}&YXuR?!VZ|pjwIiN?wm|1)~ANF4lH#p8(JP4`c zPX|&(X~;Omfl&2v-4Uqo-!^E#jMCJm6-RlJyxNQ+TA{M?LcMIWr?!iCX{b`wv`L(0pq(t{E)Z_apdz7)vEhjJIg6 z=1G+NZ08KqJlcMTy{I+4?PiE?U?yhSLf*+a@eN$D3yn&0<8j7rdrH45nlu$-&v6`V zNHJkkqb{lHVmHQP`E*Yc`Wzgnk~n`Tttf~~BH%s{aT0$tBG?@z?7CmX>%@UB;3l`y zjbje();(M^U6h~{ET3aPQvNcOwz6%mmo?U?`HT?Isr{hY!5B%lN4Fph`t>agvweAM zeF9&pMP}d^eM4KaPDqPb$p=E@JJ2-g+fly9Ys6-94%@Os+5VZ7kn;SS7KDE=^?Y7T zXoZ8eZLWRHj_$*|_cAx<0kL!?Y_t`2l5TY!$yg0+Z=MTxX49c=1ZCK-Ga#<;Jtcg@ zrw{dx4)eP5rGe5h6@kMh`4e7RHMxBF0GeMg(ZH;idH=vbD#<0=I&*_(uz1SS&{##8E}>_uibxSqj^}p`SmwfjO2ez5>P#ooapdQ z*$U*=MfT-n8<4A$dAkRdh<+H_^GO78u3snHOw8(hD?Q)ck7j3h|HRQQM{>`OrV5;A zzEaG1{w8Pgj!KyE3u^D7!j<=*a$^ zIG=MjV?|M{?d$I(H*nUw$dN0%8}Hhd-$Q@p5E6txK3XPZeIx8RN_>jUMki##kmglq zVIZ2P)3w6eYjEdR28R=6Sd}!p7ISBvTA|LmWn{aF+gx3V^;+WW?^_S%lN3s3@L@oa zrYnJ;Q8))q8MuE|%#e}sK8&SvGNX73lTzfq|xKx!1xiW#)K86rIM6(tYB( zlRD<#UT)gzLO=Jpzb607;WU7>CY7i+$UK}w_vyJTZ$f{9+&DZTbEq5DX2EH21f${Y z9l3lGj9YxkdWC~^oM$Ntx*ESs_5r%6xLw2pKF6_e)|2C z@YmLDHOj~h_j4wD{&{NK$t|DrbtC1KW!DLUM_9ruijZG}%hIYvSV!Mh%%oIwE8X%R zeQx2@1SfycTTFYqLzQ^li-IASrt}ESJO|Z+JP1Qlp4e(>Tr>#nn-{E2953AkYBR6XAZ>3vMMpmJB5ILziY1Xy-~?q$ex+JZ#R@ym=J)Ac zu#ta6&hnE}XQrAIUlkA$h(e71GG(-@sgj(excyaWQgK+jt4%ail+KEEu|ujg>Wlv* zakiR}xdl1=bi<-X=dql-{c*CkzU;tJ?#`oKVurTuY!*ok@MJ58l!jGM({(A@3q~tx zF^HVW4i%&vtRkrAy<15wKg|0bX17=@$ufU>@~vV{ehW}>lp~^YOG?Y23^hjVRHkoO zBXVu@DmZDp5nodJ7wf;aZ7K`1&^vJiSmdz93Y5pmGhN$^YCY3jFY6X3o=~ul8`tOX z37K44Kx~^64%9OP1fgGn62Lvj_^vy`XCsNrGkK>mHudMtuBI>M@7x&LNX32V*P?$< z3!VECSyL>SynF_1Z4P&4tI;>g_rK)|v+}x#o&F@mTp(PEsG{HFTp8L%wc|`3cdf)< zALUTh!rt?XSam2|mFcyM%BhGpVKi1%u%IO?zUqbdjk)oA)L{FW-|=%OJtJp`X4V4n z_1cTEhW&;mMCAlQip3v?X|R;$+b4ghDSIhbnv=13(vOq+3}h(n6SBk;>Zo~Ch%*Vq z)rq`LWmNNpVe{BSMTy=4M}$aP54}f~_NZ}HN2$Ya^0W+#7nBL&bZ z;|&OfV!MV4!FEGmk{D#x6|M)kW*K*f!QoSTDG!I&J%`ol?Q;i50DUzbM zwllSYM*eZ=OhX-Ku`RQ@a;fdns{9J-ykoo}WW4d7Br^4FndxFV(v$maoda_w(6()3 z+qP}1V|Q$)W83*++qP}nwrv|7C$CSvx^?STojkFup_0_AwmksD7y> zBV(&^94|N#lwLSwBW3OUuq*2l@6`2i6iqnnnsiIZTDe^u}V?JO@28J*BQoXR4e)aeX=U zS2=r+PgC|~4Rf^91tIrBkJ?5;cndagJ4Y*-ajw)KELi#pf!9Q3rw^f*bWCO-&LN-V z>}3mtQZLOwfFf7@b8o9HMWfFKMhR7pcv3rF0|~d|_=*rxZKi%Bezc`#Ed|@?UhdRu zLuMUyMBU}{%C06uE~z*GpDp0!zVRfZ-|c>~JKv6+3Bnr0j@$XYNb{mz8`}wIyCD&N z>W*^S#5WR+>|aa!3!S9JY-Un%{w$b1r-Gu^-$~9!z%TYyq%0}00PtjKb$n>esbmh+ ztcjZ7F7g!~fq&p+`{Bv+GCU}6iiwbg)fI`9uqlnKQrD@%vpoX~%}EW;y8EO}NRX42 zAYXMPR@v!qFtgZeq)f-ss$bH#!RSNC{Pe1UDz(dcnSRofnn44EGQoUn*o%+=A9 zM;%1~z%n)-3QSvZ^1x$5f?CsK=0~G@3KQmj;TGD$G0r77+uzKs!xfU`5Ny&3gjXe9 zt(ybXz5yVW^mCzuU%tukzCBh&Te7YN(^bgswpBGNAnCiFU_8w+AS{hq;)0EaHyg(E6-^Rv zGEC_}MfJA!#|rTZ)A`+>YTwKUa)wM{r=2Oo2SV>T;hj`=fMghdWxZ~gVLmM+F;G+Y z?&LJ^k^F~j_Vkwc!7d~!M>%V;yrafclJ%Oowhy~NF!AlJegl=de9tQ!99M8BNIIGe z09-WEU;3xwiIv)Hu{U zw6+e7qBiX? zYxI7*r6%vr(ceJv7l3!QR#Sgpm{D{Jkn*d@zi6BcIM#fBQ=I>K{T_e4FdtXzf%#TE z?D@}P`&B0LAt>l~@%^Sc<*2XjvKN&U>c1o$RdL~rV2ujgk=|@|f7C|?WE5HOzxu|> z<-M({jB}bk@wk^io|CC-^u1a>PFFr_oz%qBl!}!lYvGf|*0iFu30M5jQKf4R01JIT zN4>SiZF*=kHm!Tq)DF`bH?@MqhH;>bsUWDYJsiEhZo-ZflP4?s^HcN%WklC3u4sc< zac3^MOHEQ23@n}`*YV!kkYDCZ5^GJQt1mEiV5<_NmK}#{&l+4Um~gRB1zaFL}8mRj80|WvD1s0+z#smtrJ3j2G<2IEAa_ z*M5+gnz4836GtyrF9fVPRHT7xENg4}+D14bi#)w#vj87yt|5E@kK7U_KuO*Ez4oX& zh(O~=z+A4h=6Q(U9o2?FGWksIGPT8kKkJljBuPcZFt+Tyue}52e2U}e^SP=0@rzj3 zuu+ z9Te$(^q(k;24R9IvzZV{fSjV35^PvPDf+%+ke8-4|4sha+Q(Bt)l`5DPh^FCDl7J7 zerIr$EX@A!4W|jp9Ej(N(4+Xf@{oeazq-c zrPP8_voG_00!?~1_iJ%%Oe=_!>qGFtS9TjF3m#{-G3cP*X}L@*z!s&|E~x4{`4uU* zj1W&;?V9eR@4}{*Wa}m`cHP7*T3XNl!U@u^ZIL~A;@3lW$TY@Zc%9_yPGU5P(*FEf z-*NgBhy#<(zEQ$RcYAV@4qaXQUwoXA5lY$CNn)fJ^64@wm$NIeg^Lq@|W?>fdK=T(n#e@rL)jkC1aqAnPI`fx-) z9^4YNG^ZavIZ29op0_N#EE-OwK^1VoU;EMuF`mAitUkjkoko?p77+}+Af<1;-84Pm zld;}Ma|JLeK(>O)drJ)%PRL-|VNlUf*ZXEUd&>mSEIb`Rhd|YdBS42{%KKc>z}_+!D+Xbng|mFHbo~s+UxC-+tEav7!@^^Daj7^ zTbYVW+-mtD;AuEG3UYXha3YtA@!CP~4&zJtj_IV-xLG_T7-{zX>a@${kXP&%sbZ z*jZAm0>N<;e+=N@xmo`wUr5BpnrMJW1Gv`FcEW8<@LjD<8{OtHLAXh+SSnAr6^Jnw z>lsRY0Hu#Mxycs|E<)k%_3gDaFl8d4j-|_$YoSq9L+xY3IU8AxhTv-Y7o|*QYl*-h ztV!TGSX5`h@(z)vt{9c}SgI~-65XDV=Jl+hAuY3|rCiQw>UjY1u_@zoFN#i%1;m|; zqQhOts}U>cswyh$s?QhN63b9o_K_tCPyd1m*+^u_0}?nlCjeoeeH4pKWn;BeBn!}D ziN z0d`I7FGOPEg{z9<@Ipa1AyPFm0GLQ+LycR5mVtCumJvgSC^0KU);1}a zV=%S)b-)~2P!n@6fM{gY)-=r{FD|2x1LRC z5xJqAr$$84(9VK1gIKOj`GqG1T*(F3l^WEZ z)g4F=CLuwE${y`?vGxA@` z0a+>LP(Y;(Q|iN^8n9@<1N`bY_r)3eO{5BZe1~L!SD>I2L;{lDyr&38i3?=~W&vq% z`*k;{_w_L8p}Y*am}pwt)5@jIX?BSYhU0#`ujjK?g@HL)Xgb_8A~&0Hxc+o=(BR29 z2hX?{JiroX9j{KZCAj+@sOMl}o^`dgH{T zTbp^TS*-NjfBZfl`Ru&ims@67>l+4M<@=gnK?qVVP1X`>&(+7D?9WE@?~>+LPI-m#=FTMo!pQP#N*Q3_LzK6Kky5F-~|PRC}I0anyD3v>Q!x!NqDk z(PlQic8`MhSVZAsq(rkBWwzpkUWqaev6IhwCQYwSGpC!QGNoT0>WFtz6Og6y^^u55 zo?8oVMW9eOV226C-|0a&wna6*$z(pU^<#EJjcU&{u*Pj%2Kb_k$PdEsGy9S?&N~L! zIN&wL_!f-Plo__?iPMxB@SsYtOkz>`9?{KlF|TR;#BLh_z3KYa^Ka=nAWPHQ9h3aB zZVN-)y&w^Yaf>Imi}Y;gFS0Qnnc>ghvPNr!7UFNHahRfz7sVQ_j3%6o43o2Xr850f zjY=<35jy3K0tkFlRu0p3$1g&{*Q=G{K0|Y%m6d4rKd0(JUsQ}4eTw5W*2)OqN&&Jq zZV@1%32~Sjc?;i$D6O7)En;1uGR1qKFfB4bkLwP(#StdQk9fiuljONRuLXAS+X6`f zMZ?Uy0&e9s#P&lUtz3(dEv><_163#Ikk@ur`e$ff0E~On>D1n}D54WEC#%}+fs1N-Op&M$W2UbVvDMwlDH(rAXgu{{yvd_{&7*JJZU9h|h z_?hqRt^RCP{pr=xn1JR0vW9+IU2U>Q)&D1E->s<1UZau3d!xNv5;f@&&Pf=e1sQcc znLCSSZeAo~hPVP|ph}peS8~UTrD3E71mLi9?=!_ug z%|oD`H=v;<_Rpp1kU=Z%Vd=L^E+z&DhLIZ}gq8VYDRT=kMlKRT>K{NsboCbl;kBjH zhI{5yBsGa=6l035pD5KB6aE%XtasG(V2LPhSBzcC_;9E!yk%=6pufz1cj=#9J)Y|hm%SlGs=OVYkV6ry zlum7?;aM;a%;!;Jlrez;)uV+YQv5F%3pnhIMwf0a@W)mPJy7NIxlUiCCd_hg5165z7o$5%-*-ucu8|2YVd$(%M`O;2N+%= z=SHx_CJ81a2Rl?_nxTGblU#&KpoBpbr|e%01d>G@E2UN_3MYmyrpDlsC&1P#uFy6& zWC2Y#g|(@!T^9|nK;UU%)O;5KPa8&&>R@5m!?UeS?HOBPE*95h*=bwGK15U-K5G?OAU} z>5xeeN|%g9Wp1H z+1QZ0PN`jk-xj~B{K6!N1t99O6)xh0H6K;gMKrt^RRmJNPch*W$Ki_ak$E~J+3AB@ z4^B=lz9?@W6^ z|HU-FLu0|&6oK$dTx@L zT%E|R>7W)b`D_g9?6nx)pEo%%-c}?rOVsBm(D@ga(Gmxc7hIz=dAN~!wN^kUOHVZw3JI|k9vR1L8{_UGa->9EwV>8F)g=iyv)4+&pft%DXdbGTA=-vG#0seq$Q>3Cyf1M zi_SPxwJ?rwN4SIy358#=i_)GF>B^u8fgHm?J#2;a%YZv!THkw!{rOF>z8jKIhEsE= zF>N^I%$k8ZO$)JAcOI-hTam`8fCb5vR0hQg$iYm6T{?*InM2VYgMy&G$7tBy zYv$7U3f?1dyETdu`1SDMp^_UuAi&2#ll3qqLE?<6+S7JgM_I?)0^M{UK`}>pFqroK zoB4Xm0svh1hwtTJrRlshrR+^S;NQW_O+6M4R0`0!$*sq6rp#o(Sx5P5K3?m6@MIO0 z4}r1d2A`ydCTFQTjIRwM;trP4KF#&9+0GA2spGHYP zQGKwX-j;IQ9_kWVG=X?@%zKEkVl-d*V|j4W1W;A_=NTof&BGEtuQlc{&5LAyhheQF zbl^J96KPLDjKCaYB7~65%=`T8K1cqYg_cL|i~FZK2r00`Ih z9*5WaEOSkJ*+mwcLwGZ@*{!=*tS@&lJ7r7lj5^#xKWcZot>jK?>$BKPItqjHcVQK; z*lJp{Fg*>pZ$~xdZ(H!rdx8Q|MUJoJl6YU=`YS14^0yk#-yZ`fU7T7n=*Qv_G7}@; zoZEF3O~#V(eo7){uq##4RsbbU(t*lY$Dj;p?vewf*OyTb1Y zyFEQ`^${UPT30vp{!Ch-_9h+&u3LC$nB`@5&!@QDJ?tO4eSmI%KDQ-ka=*u)z9`OA zW=|lOp~UHd2oH9D!7#b2Gy2uz3GI`J7@Ak$+9-Yq_WC;Al}HBG0N4}fgFxP~%j28+ zEBhe`LsKFOTgt6S+%J7!)-w}O1x~)csc&D$Lm(@$|N1zNt$MsL7CaK6tP(PwJccxu zuRoj}JT2lG-dYy)v6g4*GnPDdwDV>B{!Q(c2WZUrA&z`ys}-bYNa;kW&-zU#H2Wc> z3$`}Xdx}Zx{#uI}32@o4NND6NZDgxdeZ&>5HBJ4h0O)bZb>~dSW*Vj_{V4v-(_xB` zZJ7%K8UVM${l1Ywm&X10mw3mtpC6`TLiVi?Ao6s)@pa`J(Ht4Ag5BT8a*+S(kC%(c zqZaLg;f%L-wAf*Ac-ctf42VM~wyENJegA&m44(QVcyxn80^}yNmk-Fi!OobRWut52lDFtVhz&WG4zIQ|TeP=3DNLb~Xc7?X*EhYO&^; z@(QvDAmCa#j1BNollZCs`ioqF)Edl8H$GHx5v86U7~WjiqS5R3c-@`sEE?^~T3!ij zjBS>b{KOn!K+&SWb>bTT2`c)oQts+R!J^q7p8o-7t+6`&Z>A^i|EQhNkh!_o|A)P> z5V5kcbN@%}1jfd}$(9-)3rqv>;8XEhGt&t&PbJ6GZZRFvXhdg$3XG~(Nx^msF+9m) zcDhnbSt!tM_;YS*5#OwoM5mY%DJ)%Vja*HZN=AQ+z5U^O`M4vvJL^4@^~S$z_V%4) zvy`kmu0hKq3uW6{`86$!OUT2Gg&7+|>xbVY=^4CEt1#P1810zv+p+b-ZVk?({R8I>v zuuvg@2~;3L1!-1Dv|*x*n1q89eieAC*XW__X=X>T&w~i+L+(PN5DGr?1C0p+&Dw`j z83SW8gv#^(rGf$KhwTU8Jp)%56Xj$vI6V<|Ah+6A7(HS_fIRu0Ho;xbHfn{gt9Nvz z1j!qv=!+3{Jq2_IB25U|qwZbB9DH(>k?dxPI=4E$xRRsXeewc<5#b#@qBlA2W;SiY|F~75Zg?T3 zfEBL$+e?x)6ivUFnH>Is!Ai#h0(;tjp++vS3tYEOV*j0$D}YOpK?!yuzW-A>C_=;q z67lvstv~1t&KLj85RVVsC?v#x)8?B)SnNRXk3SK}8HfRZ3P>CRZ2zr4)iacl;%?Yn z$;gqJcI0TCh4fbkEh;qBd(O%2!!;CoHY_bw95{$Z0Ie&#pWm{{DefP7tCBoKc-0)xCxFn@Df-~3pNpx*?2iCa=F4Dvib z%fDqdM5%yESo4L1X6K;t9NU+u9CVwcp5Wm9vHm%bzMPpH%OipK5CV{w!1jWO>w!Q| zA|7dNtU>m4Uki#8b9w~)N`?K|7_=ym4E^Db^wau#>u<$=Aj#6s3W!o+B|b@3MWW5A zRtZ7aKz6}j6P*Hb_ID3*ub-Wxf%z&Xat8<}#HlQp*rKrIP5eK*A4N8y`dEpbXVN5> z5M7J`Y-E|?HF1Oy5MV%viWYPih}F|&7?ALYi*J)iM+KdSqs#MtIy5{4Dk}+hrvdE` zZW{}J7vE)jyOX}>vf^#_P-o*sg#ecyrC*g3CgL{>Vx^IO6Z5lzz23esdEds&pOYIK zI5AQE7wJG6sH9B?U;)Sm*49`bi6(t7)tzjBRrA6xr;}PfATZK?p!@Godp}L3yYUOq zVTU1Be)53}indmh1??_8CBWtEd3j=L{Wzg2aBEIs% zwY;<4UZwVOvm#wKd7GRQ0w#!bhM!1Bd(xyj#=A?YM(^9(Oxi4kAly3|0(As@|0?igwTQf&*u(X?w)S$JVVFRE|O} ztZOpXi=aD?SMy$&OwEt2RPx;-=*=OZ+&J$3H5Ieqc_lj9QdDUlGSTB24>5Zi#)wDJ(!1GeSBJSH{GN_lS(Q9_-zth=G7S|E*U zrAOd(yrxp?T|nYYSz;E^vd*6N=%h*9c+p(h9@LuYZww{#LQigW#IQH-0+Q2&sHC7| z+E-7_oPUY+&*-mHm8K0rX&nr=f5(Xr&4!x`%AX%rFP{niO2n zt7%7T-IfVWCeVUGVn(;Vaa(L9QXv0tJ233YI9Vk|mfkWSiAR7kxy3%f*7&?`%5yM8 zV1Mj5b{nRft}~}au#=Tjqly2(xhY^goS(gR)rx9@-Zp_Y^@BA?KX;5Tzsm8pe3VU^WQ&bjeSwG(^N1;DvuRO`Z zJ)uG|67fVJgZ){iljaX_D+L?}zsm7C;O2xGIT>mHbY!Oo<1;EWPqabZL|eAlx3jYl)`5>`D-uI${se6Q_!zlgCVCc+3Ch7i1AWkI|Aravsl{vf@4Dn=3;!#_?Ia`YB%98`ZiSRA0VLN35WVBT?i8 zdenIhLeuZx*DmPmHdps(-~_7E*T6iB&Ce<@?3fyjS+1G@g;JJ$yYE6LmOxtA>B1#n zW-L!GB*NUrF>V1~X=&??4l|at#DlDV0>~VWDP2mb3}H1cnReB~_JXs1n<_ut9Y%!SL(1xjC8fh(o(ge$b?srp;5zKcTpXASuxynLwT z;w8!z64-#@m}3>e;?O2a(uC#8Zn+KEiA25um+)~HABXcz7sxPGM`?Hh5vy%Pj*Eu8 zdy!T>s;?4#CsHpVAC7IfLHb4BM7D|sUNz6;$BdwBz5C4S!cS|t#pY!6ke8b|`a z(3RtkUD;#tb6vks7w*;6Qf+nH8d-7gtP*zcRGgP?e6{c1)b$SuQcd^gPX_Vn zC=YXd8B$axLZ)hB*z)F9(v}^7?A@+E9iwH~KDBqoVHES1y1ULhni@8%I;(;=QMGU{ ztY^_LA9_4(dajMr&qB77nXvD~VGxTfgwU7^#Ank`!o&GsR2Goa(>`VtJd#(^{EYy} z)BB!to_FZVS64GJ4n&>8wQWMErqLgQaeLNAU%CS>geF{~5}f45GSl~6il*KloL-tU zD|mCbk{hyW=rb+T70jeeZZIqOwJW>6Wqka{*Jw+u@1C2LoHh3@*wZzbov;sU_P?sz zmj$v{bcqu{L(szpmNMkk!E(F))}aA>?px!Z)M~v@5tXb*O;TaQINtu1u=nH(PF&2b zY?J4pF`&|vE!v|0y%7iU>N#Ms$nJl`2XSMRTM|+of#hqk(9<czX-7?jf(JGoY9OzTs>P+n#ZViZ6c?cVuPD)2D#LAl|4Z_6--2&JV zJ-NE?RCc3VPd4@VXyx-Z_bC9kGlams*bV9=zeBvnd@OUj%5-27MR_R z@*eTNMUnvS>E9lkl;1GN zddU=7W}#JT)L1FEL&}@GFlak^@*HCf+jyv7TY+n0U4IgH&PS@-zN@EdT3j2{a+(zr zo=OZT7Vm}@)iXwv9Q2$nFPx+p`FEtUsRw&$@+G(Ob<;IQ-34_N|IL}Q^^=k*9yX`< znopz;T&`0+Q_G$c%<6!X;-ky@2&7Vjuc?q|)d{f=#MseVZLDcgYt8W){wiI&I=54i zhig4a_EtGFuu;s-(VE<^4l#{d-EmS!#6%qHd8W71K7yE)$)I?TeSbls{c}WldO98( zif^my!o2D(neL{rjRMbPe#}vRiySXQC+qQQ?5hdj(t?3@vSA=KN{XboyQzl~a8CdQZ#mHUf{y`_<70 z`#kfD=Jke_B`}MUBcYEx8Rk-?@G|)f%rFgq zGE_CBg2kDqP_@O=vD%{$iqUx~UzVOYDd1BimmqoE+2&%uM z*CGa`Ug!XBF7&=-3$r+9T25;)p&prxzqx2X;_|Z;D(|!SC4IQ8e<+&wp9~Yj&rX_X zmy)s>>9u0Y6;KKvnuTFsglAcH^w%Dso$T$lUzb2uD{xOg&VGC~;rj&0~o6YDUD* z?9NhYKt&A3)QFy@tYpCr$;x%}fMUdJ&%6J7-1GPRoVP2v_|9_O#I||<@9;*<3yi5L zlb_$qGg+*Ke)C~&gUeSD++YS~Zwr8tCzPP@DjMKUJN%& z2lT?nmYLVrPz~)ifH2M%d~28u%B7mv8kRtl zbq?VxT|6H9T+s}E<a>=4k-{ zZ|YO-wP|GJCs3{CkLBH>mPMJ5pl`6^qjaIWUVpdxF-3dgc}WjGa9EeqG}C<;5MtPA z+C0}ugG@IrI#16YrW;UB1(;PJzuV3>U#I}52CJXt85v6JE#>Jyz|URWO#cN=ak3CG z5!o48!tkY*XMw;Wb8s>JFQj5-VPX3Rsn9`L*f{^gsHg!d9vY}-1T~Oa1tej^pmD#^ zz{xR7?+1W@MFS*J`XVOc-V&n7SRG7-B_I6)#u{SXfnaDZZFCt`Xb8l*G*&lg0``Dw zI%p;jf+Z@&E@?jG<|_D}X9YYG#$R}MJpi}2k2u(+dom6*=;8`wlbEogsK26gV(NK< zhvTHr(}e)Od`lTmSnxw2g7IOe$LQiBQRGxCc*gspLI2c}UQ+u%f~! z3uCc?DzI@P7|L2v3UFP_o5V3j8oo3mM4V*JV9-7a(pV-l6a!9M<7Tt>GAPEJ7~~K`3Q?vK*a!H=`=7E7|kva(UDn|VQO!%vbupk zY)VhObcQg+Gz*wPGRDa)K&aloilp<8e3RouUz>Y~)WSb?2+_uhCrzZw9bL0z>5g`Q z!+!A;VFy@k!f#>)!Fl_ID6zAd)UgBY@T9QIqrps@HVRo8X#k5^fs1#;=PF4s^~ug# z0PzDX%0fAeWXWRA{LRe*3#>K8fs+7Xf~4iIK)0`O?Ax0%n~6vL(TYw&HfI9x zgR(-yiz4PE_b(6|SfEZd`Ch#~4WUAUW+^mEKAPLPw_Ger!Gn|Ong$(pUuNTUeSw*0 zd(X`rpp~}*;aR#5Xheu@+;65b3sD0IOIto8-3 z!XWpsaA0c83H%7G)-WK#z*6;8;8=3j6mtq}v6&6IR7guG=!H{tfE`+L!0 z*6x<+6@!$O_WIrBT!x9io7?rezS~9*V9a0j{@yI))=H(7ni(X-Jno!*tC&*)2t z=QjREI&u#`v-c6)iIo8imbPa(?cKxtQu*kV@z!sebF5YYL+^&p-SyK*`C@L9nh7UG zIDMmbhtacobMqzZs9pf|OR~u19c4;$pewrgO%=MX$J>MEW?Ti&>h14tbK9nzN7(R_ z(j|JIy92VqOlx|*)gDT-(VFJp7IALFH>BJP$e)qiq!hM3)7$kLU1*GwQ7kPnu>5(vPnD z&+26Zu9+s8?KL1HE_gLWPKJi2itrlMV$IpC_lJeCp+cqW+LZDw;r6W$fyR64*@QiM zC;d}D$F_ab-bLzd2Hg5!o=|Oy`$BW_f=cBN4Li{X^F?l+C!g`r6Vy{u=6T+Iq|}pk?=iVIm=DzC)Hqng2}b<}Xn=<~q_Uu345jK*iR zxhV`qTr|u2ns}S!q;1d|_3C0t-g&6lX~??@r-ju$rKPR38n4 zcf)0MB~w-6?&`$1Q%0<@6--gBYfsgd!__;tawzjvcA2TR@T&c>WQ?lF5gba_{iv-# z+WoRcUg^bnLN$Kcq4^l1=JZySpl;p_s@CkYqJ^%WS%Av$M&p)kBh1hz?%0QTq zNCSM=7rJ>HiLCe^Ry)e<8SYJgUJoRv6a2n{s99glIzVcE?XV7$^6Y&n6h9BCl{mtm zDFggn*s|ke`8k`42*&jB?a1x>F*BQSfv&r}NKe^*k1uVAc7=5gvW1h2IyI+H97G0bK+0?}t(5(*ldzX3Yuy_t&A5UbDE` zY;?_}?F;TUwoXoB68)R!$Fa@JCad-zn-1t+%3jVKlID|Py%-X2h#R^$TN{b>L$5KL zP5hrfz3@Sj|7|Q{`~QD-od2hfg^QE(KjRPxH%Fo&9yOp@)r(KXf^b($2~Af)iEpWG zmOZtMyq!MXA`Sa~!7_nYqttJBGw4pLWCbdn*8DzE|ZkV83Ya)kmFRR9*ZeE%Pi2$iaXQFIc= zygtAm5+Od5IxIDI3W#IW>!IK~4Upq=Abm0r@#8v{F;rYoa#7lFqJfwnxhQk6nki}m zCrC%E?}{j-gi0fyb!&YheZJO`-Q_&}!Q=+^=7N9F(~`^fn5B=)piqV-)9 z0Y&{7WL{Y0QA(kRdrF9W=7(ner;|$?2?IbGUi{%heH2re=ullkw~mJ?R7C@`uI5e- z0UpD8>KuWzsgbCg0t`W9Wmoc>&bCjs-?fpKkp3UUB%WuXH`_E(;kpznn$6P~B%c9h zO}uA)Fa}{}aGW1IbFzR3(&W;*a^^mrW8yc2wF9vRe6?fi( zwn5@Gf;FHlpP3fN?!ZnwF&W)wamXxOk4%D=GTBd}jShyIjXj#fg+T5m^lS$1+160~ zBPL5@hR6nTNLmKObae$xmiWsdgH4zij+YndH)YUlsIe*vhzd-^z9>}O$Q}Ti2qn>i zCN}+7Bcuu#xpVlQgS4bcF)tm63bZiX)-DA^HbNN{ox=8pBQqJMZ-}|8A5Ahbm~rv> z<#b(gV@(3X_2Z3zUO)vqWU3*FJNf{n96I z^rZ#S*g&_5C8?OC(&P6Te*sO)>W`ZxtQiN!3yxr21aftX;|%-(?_M{p?6kxv49EnI zi*P~btZkR4zg9iF4Fpv2>E>nE`x^>aLi;vjCM{&i*{sc<+og9x3gG}7V_Q|VWaK?| zxDM`>tRLDy2P@~1%Iy+j6V>aFWpu&q;-3Oq)Y&MTbb;2Dx?}lkFz+YEZTxeEY^zFD zJg~-!V$llD>0_)Z?fW+ZkRtH<>%>wDDoqiU}^08=1?@w|2XhuR?FEzzK z>?K;?>^azi_Q~ZWyb74us*AHIv4YuX@7Clm6SrgNS$Q{V2@YVG5=a454?bM8X07)bcaI*5;ke2bIPZU@9Ri`|FmZ*WAr^py7U zzFa=Ltarau)*|lGqxZC{Ih2u{D=;q_YJc_pqL$88RUmLZkJ6e*?o(!Q?RE7C&8VHq zo_DKz*k;UhV?QIBUZsS82dsKZ+ZmZoEWVk{j5O1WZL+;LJY$&MJlkr;dpk;nCZgUx zSdxu!+!M!S;@(uHTcYb!7ygX>y>1q;JNeArSQ8|) zdj}%*Yy>nju&LAv_zoEzAohQAyY8@x4^qg%CjAu`l;ig~<1Ll$rneoFG;n|*Ei0aU zSP~l|&@kryr|)|=otF8CLX6C!-lJGBfkCNb;P*I;e9?ttB*XvoCBxjReGR*dT1S$P8{wCsqPAgJC~%#pJowwhLCjpoex zIuxl9eu>3<3|AyQSB{ygX6fRoWua-9ze)oRimviiV7~A2JKp-x-p^d#SlPB5S)COu z_W+zGERE}jI$LDn&DAK>vH&`JERxlsZz(^5GENj;Zd9aDU5*5=mv2%zrmfg}y~#FC zUOhLG!ilpXHazqq;|aetc1+O!+Mjv04ZEsU$yeN{^4YDDiA!$8H&g>Z;x%-?@{2{3 z`p*O2cija@x2bmWhQ)dUrC_n4hM!-K*Z~jfaXC}lQ#Z0vffJPP=U|1p|70rpzjj+* zUIMIU`E~m;(L6r~{kW=w99yjx1Nqe;G_UP_Bhn`m)N?%DR&C|*vX+pgd)40N^tFuS zJ@>e&P}b;FD|eW%`PhUsw~-rLKfP%>^A)>YwGR@L0wl2IP$wc-x4p0CJB-T@lv z?Ulp3P!??}N`TX|3OIW9UUjRLh>%m8TDs(vTZ-!&n?^R~3;9X`oC4(Tb3Ji6f2rvK z`EGwn`bpM}^1sT{%WNg^2(-eU2xY6i8!|jwOvW(|^}H)44aGCTN3GqJHa?O)$M~qz zTCQBN*K!#K-vQ??@y&b}(Y@kp*#K7BJD$fX?c@Ikc0h^0yQUxRWN@R^Ce5fhkm8n< zR{q~vqmP2T)-BzvGcU7rX>R(2Kc4lJoMHO3-dre{w{p1uhuD2Kt#6E8B|?5YhM)qGwR=lK@gNDt}q;>~{B;XGf@{Qgy$F z_W2ENOH3~Gx9@IDNNs+*zw|XLMCc%YAf0)Cb-<^{Ie^SQpVc&6ciUsx>>|9SIpRvR zwdblx#S3shz9Cw7vQ{X)ZK?Vc*P`1<*p3t5(DU9Ee{*g{VCD_Kj_NMwIwAA^*4_QYpn7N>MdZ|`^UQS!)f#$sPTNixG3LWk{;&o}+&HR3a&9b1fu)W!T1~oOD z>hzBEQ^qfS3JuuZCyUZ+1P`uIWG-z}@-ZUwB=rc)6}ZXjcCHX+Gv7r>(tLQ$<}p@3rK)p^51iMIFrC`76dsnHaC}H#sMdPw6|qgmD}0|3P_hU(v$9P z5b5sjX3{X}ZjlyA>F)0CmhP06?k*9|bggeM*WTy+J(ri_{p9_`7~_SKR7sUl*bHO> zlmOYgFtReS@B!rHMlumuZ$3ojxiKoV#VbOI~Q04AOQd7z82nx_Mh6+mPB7f=E@yD*v6gdkZUj zAT8KM6y)IPWMyIL@;e4QBjfK#zr97605Zm=HXwIr8!LdZy%|7;NuCLy0CEQltpGG2 zdw>bh(%9A<05S)t0kr_?s^TiD07(@^btP3=CU9ULRaXZGkkkKh5mi-Fmt+8l2`i|H z1ArO~07-RKwcnT5b_8D(PbZ))@UO0$}|JHYRmmr8d8MkpGX$>7O+Jp)LXfSEgs{?Q87*zY~|WcLX1QXJ%#pmrPz*L0UpwRgF;&ymi5D9Zy(H4!nxoJODN}HUJBFNyY8WL_v0TVAjrvzuPBf1@4mz$jOuW zf7jZ^9^`KC{r?i1TiKhL|L(h)s{^yTy_KUYP+IK&jKLzrKQarT3xEXxbOZoBOf8vz zC;Mv{SAL6Ge~ZCQ@bz{8IRMO!ZJmL>R^~wPmuq+g8#2woM+Nb(=+gG)AOP>*Vlb2c zsQzyOX#P5;wBR#p2C}#H1egKM5t$W0F5q>b`TysXm$-NYJ%6XZNhM_^`v2XR zzpTXVO+jW>_7(s(PA-74lasM0A`5s4*f==>-mKtlHUoP6wIu*%CVP+z*ahI=>f#G9 z2RR}Bo+KA1fPY!|x9D%g1z;BWgSY|AqJIz%fLZJh;sr2^|AV+$0L&795G#OL@(*GM zFiZbI8~|pSKM0&p?hgXzlmCOj`4s*ja6ZL<5Dz$?(jNrQr~C)80hm?(AaHioKM0&% z?GFOiuKovsxoG@BU@n?}5SWYB9|Y#2{SV>=TN?j^IDf#|jlma*la;g09}}><$sYtZ zF#)f+v#qhSuPN-uzEiFgbH8H{ieYV2Q=Q zAeh9T8h<&!4Y%}kumsxw%K|L3`WFO~vi=tYH`nH05M1RSGF;$tY=0l2KYDOa?EXMj zu)&{HoZwjY;G_31J-9y5A9i48(0{4HwL1J!gM&F3gCC{;8V?8S|4ILQIPBnD4nU{B zp2>eqx&D$_f&Pqu1KceKTi1V8zzUW){s{wapMRq(2>dRY{A&iRVClbR#tQD>p9mb_ z%>TVvtgPU~e`s)m8M|0I0sj;VzMPm{+(G|x0LO6svuNP>e|;S|n}VGF-5&5T-2Mf@ z?Q{PF*}y?P{sqBVJ^uy4t@ZlD863$A==3*(|Gos3e!u^JJ#H+2ZpHumF!~Ftx;TMs zfPb1+X5f#)f0@V|gO7`cE(`c&Vg<{=fBy47{r^fp`R7snm$!%r$ithF1KcV`c5s>8 z;5mSg2AA)Dxtjj{iSpN@2)@1lgMWV?0DwRbpef?=0?3p<*gB~(q{L4=Z>kiAl9%bE z9Or|UOf2+r>QpV7c+xBI>C81*S#!Ol0 zhq0f$9|5Yk@Mx9>lX_5^{8B(^CmHRbOjfRT5ywngYiuhqKz;N`l()U>@iW`REBe(} zGQHB))f^c2f;rYEEGJtGk0mtx4uYkr4oH{RN31VV#=XMJbhAdeAvmKluns+4Xn#8N zNx5oTN8R4Z&6j1v#B<>r`i9YWYnp~@!;dt6uM%HEHr*Q2FSj%^%*BN++mw&rn6_16 z=PD^2nH7XOn!?*QXm zaTHH@pEoWxX;QCG;13&|vHn7l^?#nSv|VzQFlWrn=s^PIDl=4nZ=CF1pGl+62rm+~ zg8c=;W|e+ahdXK&+#@dx3%=Q_vUatCD*c+bd_Cp|v#R;)9J(xX3OK`|xk+!|9m1Ch z@y-!61rug8;C0XTV5x#_o8DY2S2hWshSBu7~WysS>0mpa; z&Wa@F=1;7;PxGrmq)@hOYRS~RQlh1u#z_H{ME&6b&+aKT5mn)$7-#GTNur+VadXSQ z1`V%YKXs$9WeEp8v45DB^nYpX-Awp_FU9nL7q+k8C_^a=r-5d)`Hp7;REoPR_@0r0{Q^Z`llP8XGG@c$EdbT?yoz5-mgK!m{pn6x)v(}|+ z%k^<X;-4_1M>sA z=#ZrC!Fbc$R3P@@Tw*5vAqtIFZsUx_v&cA|Uai{}jp- z+<`#c{=~m=WdOtf4ia5QA38oLhG@;O$zkJ2>pSk=AokHo)eRgcguLxpBBX<8gvk* z-s{k)9P-Nj-NJ0Se)iBV@N+gQ4e_2a#9IQ-Qam|ogD)ohLP?#_2SXG+eA!2HZ51Mo zf>WgCo`8cwyMJ9RGBGJ?NoS}8h;~L+dNF=6U(fw#Q6>LKgsqV~$Gt89h# zhPc+u0{qjZx#h~yVEY@w4m*!+v{@Jn?^H?NL9fZ6(jF_4V(-+zJc_Jw7@^aSgs*Pt z3ma@Al7A^2w@1n36<7knV`z+Y_5zFLAK>9zVjYaL%Jm2~8jy)+-`#!w%}sI$rHWNjWktOu8a?(ocW9MC5+dVrH-1N{$yv*rlVR z#1Y&elN+h`sIoGO68Lp{66a&@nM5~@q7WesZ-4UfA%TW_Bt;emSH`afl{`4ea4(=X z@CE8B6~5tUd=Xo<;J#X^8~W`&y>90ti1?HzwLdG?f5X`fh&}Cm^E1cpjL3OkPD2rT z(V|h^S*Z4sb|B{2rk9b9X#@6-x9D{4r$Y;rD18^0Ev)HoRzl_TZj%z z41cOUs=`4G*J}Ao?3c(QNJxL!d=9(GVF_Mgs#8$bPs5?1V7~sZLua49t6|=qtcHrJ@vUCm7q^aBh6UUV*)({n3~f&YTohAzFB4 z!HLCi3(X&Fu9Q+5ZX0?wAgmF@HgONfEq@5NuUe_@$jqc?xHUK@)pP_42)M>Q&~^8Z z!xe`1`So#c#;^}f79%d_ffKi##vy~pY=l>ukYiN#A%HiDunQ@Ws9;K*8xjXxXKFxdXt$TwDVi(>F3)H=7dadE$tL!zu~i*xX7CxlmxnzXL__8kM}HF< zc{P_Z9-2Coo-?7F2t;eQ0Ditx1>#6m_dI@!sHX!ttX_aF-uL63;bQ!L7A*BQiMP2# zo#@}vY55jLDX>Ka_=hc8WltZp8A7c;PD<_M-XBtG?fQIJ`lXfGD;k00JL{R^Bq6u2 zQ|6Yu0gvM~MR_G2yW4w9lH5&jgMUBnv=Jnl*48IQdtPrOlyrPFb+jh@ns|^YGTU9e z$`UlIfs2t@;S-I!@u^W9@8dAdyM4j>A9KYN9H|-tCXoZp zM3!`oil`T{(E3ybRHs&N<5~!jOnMWK6UjlVzxto&YOGvDOR}ECVy~L@S%07KK78M8 zW~yXVtM*QRZqaJ=GT6ynN!5bZ$GIAYvDVp=M8jY?XhMLE+BA=aI741RE=f}s)3nF! zt)x@&%p1wuj86AdYrv4;3#l>TpBEJbDzDQOVL9M%5ETl=_r2dDW-+~`Qif9`=@5c!T$)p*K6>%O-~GgJddO3x*j zI<^5@>HYNa=y!2CJLX@y^Ty(*O6$<#`yi`W#5cx0RjD_DwhI)3{iPwp6WtrGLy9i(F z`U^ngF<#d>sGT+H39w#^Ca9>$w%1aOTy`rMd*WO2KgP zqG5TTA>3ksBQSY`U0zy*B;jgLBj9p3dHRU>tZ%4@zyC4)$W*NvIuk}7GWfW z&yT*Ecc>!dd7B9NDYNmt+(RtbQ$9Wce0zU z49h2hn14<+fDerbw1Hd=X!z=SnFgn7u{mVWGh8js0a;_h3%3VWuGzRj)&{SZrZKC% zdUuVs8_TldK!}ztc%*bqo8MCf=+*7?9_7?w{$Yyhfx}HNyJunpSwkS5{du>`cSwS# zLDeRv&@Q_OWP*||ma8X;-UJW{5jbNvVb2B?OMg`<5bL=QFb}{=y_+QXTA2roSZbd_ z@;xz8#MLm57FVQPN&a@QkRGswzh*ZU88#GtqBqsUl?EV?FPfltOfZpWucxFgIR8bW zx4XCVVP8$!MmdG3(qe7=!|?|B2P#XHBn`uz>1~{nA0-gXyfhxjcCw-y?McbIJL+}VaeqhHwVQ$5zBnS3Mh7Ao(>(7mEYs=We#|sT z^sca7Jq48up4(##ewdQ*RDk<*7@V-Wq3lD!NwQyb8SNA~G{3dAXtF~RWDjyVeY&V0 zt=3t3u2+PB!*;Obu?Pyr_`UEmbr7XLU`G^1HTt>&noG5Zmapt8TWpmq6$MfQtA7VI zS^x%WFHVa-kmN*NS$x<+WnR=OnSJ^boylnLukl9($}l7f(5$jr8uQ_;P=rnEdzm|N z@@s!w5Szw!@(km^wC%RSwiBkpM{KhKF$aW zHZjo=kV23ki8BFWCzLm6mdSmu?SH$j2OfSNecOxQ=!hlGJ%0^M65TVBxn6(r{#pN= z@VFH%`qP2W@A^yn2}5<)lc;TTSu#04pJ2iyvYXXuCYQk~qfW|Y6e(Rpbbt7-7>d&F z=EiLDFwo@4Wgn?77YARYc8it>#W-+~3oS7OKlq5iD}`t!p1|j0Bd4_@0e>W`cP{n% zo06wEk-G^y>{w$JWc~EY1>a<=#W9WGPQ>pt;+j5Kzp&5SD8uu%$#@ar50Q+@w8dPn z0a|%p<$Sw@=W`=ef|JYj__CLaST4Acnm6m8^mi?~=(v4aJy}~_Fy>y^kSC%o!ce8tgd>SXzv~&$m-A~{`z>_prdV%&qwE{ z4b!Shd;b|H#7XL75`Nz6kSzml6!EDwM$Q>!!H{s(N#q?InIj8tdw(Nm>HCEBLX##A zCSL_NL^p(*vqj4fN6%4tr?Ch4gvW=?q|$Ns6*ci=)5y>&*nJ$Oq@v8;p_6^wnY`5u z_*Tl7fCNR0RA!Zjtzc~^a*k*%-dHw?I@GU-qFJnZLh(1HVQSQ}?~YA^->iLID&2?2 zv&Ueh`zh>qI7sBbJ%1LSS%h52n3|dEX&MNisCM#O&Zm{`{!T-p>3=L(u%y?3q5?w8 z{Z6dBHBnjiJ$Jy8i8lgGITmmv;8#Y^Z;%hoT9n53DB4dG!&cKH{_r%ooOJW9cZKcJ%^pS$|=8T9!(&oLR$ceyf=} z1KdL1TvB6p*9Ht~m1vXd`J=trttX<`?h48;M$>5lq`P7a{sdJOUsW-W}Z1Vbo=B zRN6F&$hg(V1h3@prnn(|4V%$97|CYE&^2!CjAnMuC4a|J=U+O+fn(5|4r90tyjCd} zh0H>fQ-ANV=z=?(Y4*qWocGBKHY^orukOgH@Yv_mP>{PfpI6~_nLfce9g{-2jn~zz zmW@c(Bi&R~gq-W11?dTXLbBh1>EO56Tw>4J>3=V8b&s!kqTsab+rZtqQsXGg2u^M! zZhr50+54bu>{i~=lb84{km$V+e_d9sVmeM$y28sY@l|re9Yi%zN|G*C*T(#n&Ipk53&Ze7!t0Q5fEx*+J{C^koy+So=y@DK=^2$c- z_$Ou+`lJ>;5xIw5ZYg9fP9j+~Fv2stxQ(;riCb7GiPcjzau z%v7dK^Nn6BVObBP-(YqPX=kl^y}xa&qJP@YxG;NHjBGF!#}A8IcvjHFIkmtf9LxaM zl>SzaZ$7Ojm__v`EdsSt@oxQX9U`%Iq#OCr7d4J!2dWQibUuUpx~^9xNMrHewD?J? z+l_~mwUeG2>gl$2w{~aVIdW|sgr5#iL~O#+*}GqVs1LV;-Xn)4-*iV?d<<^YR-B`-uCBG#A<>-VV`Z+T=_XQxTZC*zRjdDgir42hrgr2#)pDDF3;!b z36Q|lxWuoMLq=A!eD_Gf*lv0d0e?a`A!Q|(K~cWAYIioXq@S@Br-5(H3!*vfpr*~& zBym5`mKM$}WZOAFiQ zMfjtfv+y{V`dxgj;d0Jw4oSW^!B_IY%!U-T;W7w94Z}_~a{F2iewoO6bWg#>nlCUz zb+^#acDbm4L_!q1 zmX+2J+yy|d3$qYrkG{>O!GBBYo2CJVOl#!u@#jX%w#$&jF+X_|ac6Zqkl?btl|P5H zrUvSEUt~P5r^qP`y!i*7rdJqs+cp0x|8@FxvjtY+n$zsP*XbpOovC0>rlgC+W5&1$ zhs_Ij7#b_|MhT<0UE^Q(-i8SrDG+{*WNYi)@^&4$LN4>znUoBuzEzd6ichL4Q7$Y1p)qhKV_`tZ!*+BmQ)%q<5f@;aA}gPwmR96Ux7SpV4~OI+`&KH`H*PjV z)wniP77u*$3^MJg^g?X3ilzOc+eUm_jVnKL7sSU+SaoZSZ+|bPxolFc+(|cO8|E-w zHOPQAfmdTPn$(FpmGOIs=8W5Q-xRxH>c&o5#CL-4w?0cfGy0nzbBqyC`zAiV)&Qu1-_b!O8 zR9>57;l;q|xq;pc*Ii5u4gM zm#sY9!cBLQM z$==az&>C0IOsx6%K%v$d@Vf$i}t>_KM<#Bv8Povt(t;5)qVHy zdfZLwKiEbSSi5}nweUn}^Ym5cVJLXtO0DT#;<8YaNN(FCJ4p^Ar8u@TY+beqPpx6# zui7t>^U)N9Lq89dr4MHH%^Rb6)>C4Ho>G!nmw$~Y(uP5lTTrl=w}qp(JHX5*qMqAc z*hXXUuVHC61AMKUiPZbBnCSq2N*p0gmNlm+KK9o3n;t3h(agtpSv=W=-yZI>lfqI` zEGGE}U@n{r5}V_1==I)sC0`Lpl_@py58|}GPa3R3BV1o_5Lr;XHj!2RPD@aG=PGyo z#((DyM&7|95)ztG%|AA8N@CsNq~}w~%P2sKmzx2R{!^j;azU2TiBr$=V`0A zemD26fecuBsE73RLw;--_T?mF!|1gntAC|W|CYT)`ABUppW_rU5mWP%z5O`Pgq@+VSim} zNW$_UHX$L4U?#!@vV@+VyJZTaxm^!& zIA1@{9a&SahRr_@|GWIg8bi`2;|&*QCD|o($!q=a@R<>@&UKr}>?~z8V2s5xBh+U+ ztE*+M^onR#?*djP<@nJYogp>SR3q!}&pTLd_Xrn_n!RtjFq1!ZOB|z}OMij%qgE*V zNoSGsa_t-Vi8r?Sxt43_-cY=2VZ(z6jyO10hm75U+FW*r84DB`c0p2Hd7J+M`I#!dV;vm49z2V^$O-i zKj*S7GwuSCSC@G;be>NG1H>lZJM}Ql{UmG8{aLk5iyD#5M-%Mz5|J{-nh~ZnGv=Q! zBsNKml})8VGDyL*OR^_#pHUtuC_^PEMfIM#$^Zq*TjIf%zn0kEd4ECv41HLp`h5;k z*CPc|l*z`7s-dUIHBG9unK+ub3}WpE76rrHkD*@uQ4L?_-}lJnUQ?pelphguG{=WH zmuCLtk!fXDCP}TQ<9&GCQuUbBl}JtVirbr02&+NI8u;+yBK>0DN zQl6-3JLih96aq0AF;nkAFBpD=)wLq1c>foG`z< zFLBEzcR&E2;x+o5Ws-CuR$UQY@vB#Rm3gsm?4izmh^yQu?%|e|lZa{Gu#e0hNK{xNyM`1pF!{P~S-y zPll4`%V}}A{d!yX5k>WI9CCm0Bm4d0J~m9#dz_;~6n_&ywaYeHqljI^t$RV!RW+Ux z>X(kpPjBymqrq8GCo`gL_@du?oxc-o4RG_5e?TZwRupanLb*j6C6j>0F`iy%{@ z^D&VE4}Iv;da-l2^JI^8dXLv288>F?aZ*RU{fAK}Qho(U+ft(!6zosrXdPy9@3`}8 z5bDjGp??L+^$tj$s6$nzHOQUfuIn9Sn1teV5wlpA{wOSnf7tZ5im~?_8*7t{f%k+3M}_GdNF){Y=I*tG%)qErLpVMt^WXWn{t2ND2XXq4#cCNe7*@wmV$~ zHIR6HX+;52HtY$tSvm(>LmsFDV}s#~ zQa8NYRJ$UC2wi@wxM;5%>95v+!~!qW`3#b!d+AP5R`pept3B(|XrZ5qshYa!A14!O zOJGRE9E*+by%9Wv zgP_P+yH=Li&KVMk5U4sP`|67m(P0kp_#aX*FhH_%=6SnRMsY+}ogL147fw20w|^@r zkcJdLt>D+*?AtVW$c)v!ImmIe8EJeMMEr$`(JsomydF^% z&ujAZy@RhlO-vyz@4F~S2NUcXGJjT@jjPMf$yKfJ9F`*EOaZ4@%JnX<5ADuE)7kOm zuTO4Pc!rgEo-JgID{O<_I|GlUg-JvP&D=$kx^K1WdzG#}F7o!yOfwFSBY8&-p6`gc z1T=`$(!NZN$GV3-H(pxTSK45fs;p+wP`CClp^Dd`RYak`v_eU}bB;{(A%A_m(;-Gp zp*D?^WV-(tw!15@DKVc-EE!32S}VbR(<|0er0uSAHkc3Vp;wdBB91fHc6ZnKg`dQ$ zR57&(vVW!mp2K2eqSNA_KnsXsynF%&Z=5w^X`>mp2uM;`rpTPgI(QzidqLK!DiIPc z%#?yTnNR{jeA#(F^;V6ae18|dA#m{~3Y+SO1-awkdW*3`yO0~_|HrL-GT#=97OX5{ z{#G3XK8X}KP3kBrIK@|;{Vx3;1mb?*g>BF88b?#-9`hWJ5IYfQ=cizdv2*pdX0)=W zNrsHs;S`1^OoF^K^2`y-m)vVGnYPkuByYw9m$M!;v4Rxh<1ENhtAEzhqj>zWFU;;f z22Xbz1kl&;eCMJX;!{ImRwTc>KY5tplsb`?a7kZHMuX}X7S`CL09#3+N83w%Q0 z*A@vohgyYG6UU773<+xGgKj1HU>*q(bsA%JFQMk#gO98PnlSj05RF5h;a%c7A+1&^ouhW?v3v&l2k6`31rkJNM|Z zzfOGQ^>AmgRl#6Yu)_?HdY^wQWA?M?Zrx7eUa!cJx1Nf6sIdUMvXmzws7dtg zrow_=HoMLl6OXDRPn&hR;VbR#bd)g8@w!sJt96cPHvuPh0i{Ow80M&um}S@Eri;6H zG07?=%)awxoPVw*pX7t=JAgwep9s#IlO7WRHqQ5pmNIzdM&J62503w|{>2u8aHgJA#e_LjJ?1R!uSy z;&{f7K%W>fj_Yx6dBmS6jtAGt{BH=~Ol_RS!Kd)Mz3F2hY>nQpd=k9PZgw!a44FiE z&RSaQg!*xtw3ix`@9QP@FqW^uy&sahqRLw5v)vM@7fl!+7UEmzo9~ZbBk5H~tupY$ zDayDc8-FcxB5@fTK$ldlMyL17wuAt+31*8fvlNs5vZL4+r?ryRd)JZ2t&e{~EMIHj z_8bSQn~3e>D4$3udkJd@WE*FSw$dm>!Aat?j2ju0)4X)@5pWQL@yGHEnv?QvCJaf8 z$Tb~=?8}dEDpq&%8i-!vwlQ1l)Y5s%mjKFZGk=T~P01b(6>}`MtOgJHa&^r@sADZ! z$&Nb;+>9{l5ec(Lki(nBsSYd?1m$aSsN+hqm#njEu>sPEDZe&mHXHe6?MmvZcLIEA&O@3k0qCZFzz%LG3@b(7%3Fp&dL6INHk;GS7X^BoOC z`C^NEHO6q^{X``-s3-JUTZ{5A$JnizrRP zv8>nj!A8T{!T|$sD*qp6LGYlx$uA66+|_A&d0OFB>emXhPf@q7_DZ{%BCk&_sxXms z7H@cP7TS>OY8ndqrdAuAhqb%h4zkQkh0WqBp>zo&p3$7{e?q}-^vEzp?c6`4@qf?5 z|8T4=iVP1UA_k?dd^gH}vh2?ul41{yOEiEIIZ4u|KlZnpT{qntuOHu=r~q%nb(`bu zS_?wwR;bNfiGPr?iO2;s(M1!4u#8_UCGOw_drns&thd z9!Vwon;hu&`WPsuV(ir_LR@G9^M583kDyHqe2l2;>xMm%XcGIb*WF_=Ionkq6Vn!M z?2hv~HQuNyE$jUBIiT0N+u<%MZr_nLnvKssk8%`kOllxYE)BnyrNawQ-xMCh?gxXk zoORW;TmYW~O>c+G=p50jUh`+9)i(KNp&U3$<9F2|zPaU3ypMP1M1g~FYk$3xenm&? zex^9@Za$lSP|sgUAT3izX}T02B@cb1lXanDbf>Ld6AzN&b#%j`AQv|;DfK%=WXKqZ zLM1e*VtQ%_{1CA@@E+>8X&_Z{+YD!_n|{oJU%(#s^E>DEGsKEguyRLN z*n((oiXOwBjV~LW=*(1QE=H9>!8C4WB0ysHb%e`vKX=<8A+km%%WX3-{g#_Z;!ZfI z!RCw3VeD^1U^IHiGRmx;Lx&XEx)NK|(~}b#?iv*8Wc3=*2oXNl^MB=?FO@-XLNU^J zlF<(%Js164pX+33t~7RAbd{7}lx%&P1;QRdEwu^{udgJc3TNi^tn-q7Ehg7etfo$z;~)dUynQ)a$!;BqnQ7xV2nds3 zRW6YEV*8$F56+P4Q!aGm)0E1+$(MS$Sy>sP2<(Px#F&S`&lZbGIMSk*eDjql=O>k*XCNDyFjou zlhi*Tm>*0c;`_QiUi%|=A7^Yt(<=7I*?HxL?m5Zb3L233a)775whjj57o>Njem|pJe{-iXbZgQb;{g#LHcYv zniQ3f0wF!wD>emzc+a_-2xh}Dk_Np#amK-PsuW)KqWemkxo#mYrb!!{-KHY?333hZ zyp+wcUI9^lH~>%owNg{IQ5bI`q8NtAxdKiJM;IyI>^K~|4Yh}k09?n{Yu08)gvu^5`Q^bGT=CWSA=y+QbcJ&WjIuxaJKo$pdA!$Sbx$He-jQvh}ljc+jmdEddr2>^Z8@L z3#1hTrFvfIIeuy+xv2Cqk|<^T>w4{DGp769-uO}aC1F(AwFC+ieGmH7s3}ODzV?~J zyQ4v+;^X2=nvSGr_bHR+;WrgX(dnL()h!n;?z$AyN*Ht$vtKYbQ77wXgC`Me2xnVv z^?xae9FuD<7%x-->ujnqgt=tKbdSPz9{Z$RSA7JvE6MW%VU`Yg z?6z9cv$Z-j$oqX;6^62ciFHb7+bU1qGZTdBwd}luN54b9FMQG14}%kw#I!+B`F}t0 zOyS`ph=;y3)*7d!ZV|@H=nveyQanT8a?R#fePBW3lKfgc|BEru zn2Buv(m1qYSx!2r!l5-7kEGRVgFwS3G4Gz;w_~o?k2N}zWg;rWiy1(*NJ;5YaHdZG z4&&XYR>#nswQ(Zn`TYLcnLVprSbtXuD@#;@Mg`YTAqp{B^Get)nAyeB&!isB`iGtH25ASD&AQpTojU zjJm5L#C*S53ye|>YK-A1n@Q#i19+Y!G-mOIYG>;Bo-({Qg~s#`)>`gbDt~m&`>gVn zPAMGaaR-s!G~H)Mvk^{#a*4|MFkohg8@><9YQ9xWk4-_iWj;+0CiUdKn>uZbTXEpl zX8mOv#3Upt-?iqLnRQfna8XAZAi(@3t~9BVlZX|xvERQ-UP!g*tPF)J3hgI3w%O4q zQbPUuz|APvO3yWxw;0;|OMjTlk$lo`<0I4;Z21q}QCiYo3GzC3tdo4{7faZaGj?C_ zK+}{>1Rr!ETAE&^BE22Q{D-d5zc4KxH__u9t4xv4vn3iv8>}a8-D5IHhHU21SQ^aM z-YMZI;ofI8(cbAzb0gIR+b^OI7ns2=v`XG{mRY4wzvWHQDhN_OM}KSz5}Cl-d=J1O z^5iyw+h>L)HbPES{3>i&kx?wfs`)AHl8GB@$rV;wk&7NfG6@4J9CmlYG{pQ+Jd!T| zYfu+g;p&MjzUVaFuS2HYvCJ9Kr(UZR!XLdIOSh?`F}7Ljgt^_+aBpVm8j<#E3mS=* z2W7iBVdgp5i{gci9Dfgb;b1>+MXoYl;0Y8qh^h_M88TB!;{?EDt-SeG7GweGlxf~j z4HKfSD(FUMlEuqZl6SpSLkIM1@_6@(QIyfx2D%Yni2*WdeGTk+1AUuQPg7s)D{_00 z%0_UC;p6abATwio!upVr$H!jkyw40jV}E~-t8`amvp1`rRezkl94ex*p7y~o6yua> zMQ=o zk(}!{+}e$@ofs%6a#ne$J8W0!G>#uN<|Dx8QG&e`YRLwN2w1q5Q}Pzm36J>%4}RVl znf{z?B-kZSkbf8)pcDQ~@RN?VHxQ24Q(}oo0393Vw#iDDnNtO;sX5>dFM!*TTab&I zT0%F(e;vxP4y~j54q7n5MXicD`fAT8Yc(}z4w1&ZhO30vhsb+`CsZxkk!Z&VZ`(}o z(3DTzWQuvXkWmvP?%b0;33o7C5-#ynZSma;$+XDSvwtuvr^!$6+^5Eiit#%muI<@p z&{<~e-GR5>S#2Y6{iDxu{%ihG*TrDWkF_^2UbCaN$o;m>l^vha_)Wq@BE94Swvqsq zJr`UcD>AZIfz;fBiqNjGkvE_#ZtmLjK45@g^!UfO54I9(X9QFm9(B5dSYnyhfuJFS z=%B|28hj za3nC_pZxx1nBS&rJY0TQAN|XF%Pmp#WzKM%LqJxG953p5%tw|g_m(agR4$@n*I%+G z3K+Rb_4D_n@aP975Vn9yHJLd39g3^> za5REe5)sHfd?5ZD)ofLJ_q7&3$J|$@`smcEbJcARN}Bf~@zGhi8ALM5eAC*PnnsX| z?;Ut0-ulDgkBNq?6+>Y6l7k=un6HLCnE=*h6LT!NbxP+DZNF(WBU~XIc zQGeIH!A#2vW?n0Avg|Dh2bES}q`jiN83hLNzz!Q3h-(av2nZ_%ybF%lvr8R5Gwi(j|Chjl=u{?nCKEY`U+J-8V}N`I2rr*H6|(2iz*AKI{Wg zZ?5M{o!p5xSauo{=Bhe)%Z4mv`-Lyb34iNt#f6h4aeCVD&@jJ=VyU zW4s@}3tMq^QK~9jnMfo&@uXC!Jov;ON!o`MnqSyA7v|`!ZW~-{=*dKlMkqanrp~-b z(slikKo{XGufJK4>b#^6WhhHaDN$L18y8MF7Wv@}fWUW^zhkKV$4@%9@FeQePofQ^{pH!ED!ch~>i`0FzgG z(B%gjrGJ0i5Wh0TLO}f27~I|D9e)afc~)sR~UPIuL1Pufk~ z4`|iFvXaHQWAK4Q&R%N*8cGw+YOb#!ataOYcaNuJ!3|Nn_#R1oK!1q!GAIu~ zG6=jNsY@rjG*UNklG4WOANrcicYPUpcx;b~m-+lcZIW$6nWN~C-N7S(UI%r9Sl zk9=TjC)z(m61jL*mW zfHNpLwg_rS?w#b$$}Ip7l7AYq+6aQVlg0#4)v(RmLPHl0LQQHYEzY;D9rJ$+RT`I9 z5%|TlLL~Jr>D*+4)XV<1N}C}CPQ(H8a#ldvP<+{hS0GR7F+%WAK!VMdQM49!Plk8? znGe-4b6k8sayY<5A>DxMi5M}j5a6wynk|Xg)8JninI)2)%C}>J@FD_gnSERt+NywqNRx zbp_6n@Cm-}WmTNot$)=_7hd9WY!o`@fe@{f-G7!L6a@YfvcyN?pyFrK4+Y-`iD0 zro3~dJNxtTb%0h088?oJyz+O>V(T>6Td-iq(HN@sj#=6(hkNRGpRy2 zgXVNLgcV;rM;(J12_#HD?mrdikh)=3+)7S@!89#!VM`9^;z`B2u1OI;1q1u6x+Y^{dR16%%@c zidp0wsj5UO!x(=IuRHJ+xVv1ogbY7X`S19mNL>=Kuo6+@7#amGvE{l!Mf&3SU`iY( zk#<64mJD=?j<&pEokzXe?+u)h-pq>c^D*pIViHe#cZxUZRrc&F9HKF3(-o4$G#T>(Sf*{42_z)XL5bgd=V<%cP7F=rXh(j2zr=*wL`7K(E*iMbGbcnKVq+Ba(N5=7$WYE9nAUHc z8hko5o}Pb&YfjCc#xS&$NjCt>ziTKfP-hD8`9^v%d$s1W!wqFLmEnNN$Pu5~oxKK^ z)cT=W_+ua^)aWW1sxcSl+$U`10*MaMWA-~b8=}N}m(!#4)I{8E{)N#b2p63jqZ-k5 zqlkPu91jmWjv>fWc&-puyg{h)fiEGSE-)oVqj7)7b0y%$%AYOJ-u;-A5Z&`tB zJAr>w*2zf~(xI40l?lU-H-z2Gq@7pB1t~D_Ju9J6rCJq4m#e9fzgnhDO5~*&eapT9 z$NOCjm2B|3YzAeRG)>E=r15*I>N@Zsz3=tqbF$vjvW*#GwF@EWIQ&r6aVu&ZwcG-g z-T)xK9?6a(T;O5wwE&<(1R$P%*x@BU!a;vJFIF+XZbVxV(yUhG!^4QZJHtB}5gH7> zhTG(uaZqi7)Fm)JdcR?4xtUcM$QpXeM5W~`%Tc1}rOzStK3V67C3A8RJ#x%V*j#Kp za`0GGF#jz{N0(vhFc!;Md`;b;X)rWqm6Ns45BX`E=1S=(UoBR8HRY4%qT{Ieb9^lH z>zE3fnz7VcOo8#@hbbu|jjKb^*z+^R?ylu1&a8U{nJ;0%|4#tPFgDM(ska2%9DlE` zVH8#=Q@!68b#@H}BVe4#zlF2e6R8NX1c}%K^k!j`4YG*3Jy%|M&Pm!99;0=3dTY^HRdJY^N`Ky05F3v% z9<|4I1^Wv-9vrLw> z%2)T*7NJ7ZpCv;cJGHe-Ktejm<^t&lTwYM0bSl|ewlJgNeE6YPv(Clwdo;eNF*B}8V#crPg8J>|pDB(mtY)|yq7ryQ;D2#RiiriJjtmBh@)`GTYrwgvEYwY-QU8xO}{gsBYO zI?r?WODjy#IiuL|DociebAS7;oJi%lZ$=MfQ9iC%hm;q-LAsgyJ=^<_IP~ZWvtgI4MS@jBmPGxknXy#Rvfj-uWr?@EOVR_jxlMFxo@1b>hDnNd~Yg)9RTAUQ)l z(z5~eewTNe_-_Of4iY2o$jTd4Mc_!8bWUb+ZX14n^7Lv~4yP)(zx+yg*65Q20$KkL zaE`NON<3!m14b1rf&5i(4@hM{t$R;cR4LCQ19HV0iMtr#4qtLPc3$kfXVM7{%r0dY zi}&NJM|3QOh<~LfiCXiFA+FTlH^gPQwmKN%g_v~u@?xq#;ny8_8`vl>LMWYpIgagz z5(831JHB;ygfA}0V*7=mLvfR!+)WPrKM_|$79yK-e(|gTclf#C3zyG^YEoLO#J{st z`V@!@yU?#-YE}DA^!7wwhK(e7zII1`QC%qpSegYehJQn3-20hoM?Q@ddy|k5j=~Kk zqo!gAgB%E}?Lk@?v9p9Co%oyel^w8cU?Ab*xY-Gjdhj>n&D9|T>@Whcgp(B}UoX(l zZ1X=>z&6ue3%Pe~w3qvQR3}z#(*$4ibWEn^`x1g2?JD8$I7lE{OYQ?D*g9bvu?Eho z&nwoUu78^v3fRWv6{hK->r(-AOId^wCUNpB5$dWETKW6@f!++IB1v22hywQr3+!>K z$1nB@Pm~1(izW5Frd#1FeJLqR+cA(bRxg6Zu9#a*0Ytwmr|WDV_f3Swk$$Md(JW>T zf;!-v*eDuT^aJvpPhw=H`|4%?4K9-0 zHX&h)9sj41K~9AvvuQ3&u8WG;eac#{Bupt|_+I&HEi@Mw0eij}>{un02@9NSmEU_N z`G4xmN*B3_^4-MDrxYu?>$9V=bXVby@{WZhG8VFo-db#fv&yt({%veMGbf;NDk$6U z_RI_VPH1UX_>2b?d!#YhZISiJ$s6?m|3=jxdG_D_?MI>BYk!KL;?%Lst&;2$j4UZ= z{xs3}#kkFHjggM%MRmcBSrJEmIM?5Acz^z}_~gD*bC))8+C$b?>K@kT51KhT;jA?@ zsBTfjbK^sC#2{aa+oNMuZA$ts>EKf3m(bWSJUOfyh@H=f@eJv0&Ykb86;dW3_;70e zn~0k(h@9V_Oju`>0}&@Pe4a3n79@!Ptx+C85LH z%x+>53#@4=5QSs7kLLLub9XS*r3HUE5;(ad`N1&(6S~L5WBX#T*vFGl^LGwl>iZ}e z7%u}e9DV0=4k1XbHa$RO>hDIjxqo@(D5!*jDjeK?QbUVcIM&YL>1Wla+Dj;sj5kOq zn?iJ9D&pTr)NY_eGaza6&+;>Pg4W*1>r;{VMOskXjN-TIk!Uq~TWYwNcNCLdie$_? z)VVd}+8vSwvc$z{L{c7hLkx$8raDdcJni1mCjm0(0T!5Yc zXY>N&ZFV1g*5Z=L(9N?>C>vuS+d!5d+!mY8#=x7JvOD6hE3=s)073QZ^;QCQ_YWSa z;tADJ%iwfj?83ap{*|}$<$pR&>)=Y{kt#iK16`JX?0cpH`&x%cd@~ZKF;a!nR$X+a z(rh!gw3Uytg6Rp1o-{jtumy(rsE|ZB8Bi@6Ct20Z%d*-GkcVvON2$9XL0+9o+8?aw zN<&+tS&HPp4-Y~Q>Z=6Ye%t&-{0Y%anWmr20g_pU0v;n(9osXIrGFic`oV5)N?f#( zFB7TvL>c?1Z>b%`lkr(Jz&)8Ecwa0U>?fSr`)X{nezAz0LQ(EbOL8$|4jf{MV| zTikS}jJ(JnI-vI<*dTq$`>Q4pw8rWC54rKgIQm-IeSC;%~BO-&FS zD>-}R34$U7^rf4S4&irT#%9b*Hz?%K(wBDJ7DQ#hQ7i6yj#qea4|RV4Lu-_&Xi)3( zUvBDswK_}JOMj{O*(twUmZ|SD!la)Q)()CvSmF4VdWH#N3tEmuRMNM{QbPjcZr1jt zMlG@>1dYPT=oFXV(e)Uv%6|!Vz&tNAzt;C16AMr-GsYjKN;lx3oSUqSkJ+0ka*n8W z=A~z8wjqT` z(`wmyxmyPrbDlx!k|EQxitwH;b)bYS=woV)2nYfwd+L>l2#4a>&YX zL7+?IAAcCK%^45ci^D_@W>YTaI~%R7(xfDTSE%5FIWu~4RgE?K+3HF?HMbU?whU-V0TbSW&gfg6NMcVQQzAoFc1^8b%u1at0kZy)N{sYf!t56heX zkU0P4#`7Q9J(n*K=-AcPBsDw4y_)Dhsm(X)m4D?ux!fU&$cENAAaF4fkv#}eVGS>6 zY4ou|6sqdMPl}CW6hZyQ_ReVv?_|<;cwhwCxx?3-YrsQ`IVurI*s{WRGVIzAaK!># zbdLlI4pO3`mawNH@k~~iD@|%@m>kIKDwe{3^(5RdZltNKt1&uMB#~STd-#&TMt8#UdI5@%jVp)q_rp09mC&8KQJvA(c|lDEZQQhl}||U6xD=1pD=6Bhl{tvxkJz`u0qCSAYH%Pe$KV8wih8*U=NzV1F@DJEAOZJhfVb z&!iTb(|Zj<(_?`oKl*t`%}qYd)MESP3C+lS$UjWYTts*v6n zrL+@*WuxHR(bR`G2e!bcOQ5G&zS*;i{wLHA3ZY7oEGyRUxx7s$q_d8;)pe zf{%y^)Crd!$Ii@Bpu>b=axLqicP>YX@J#MCz_b|Z_U1hVowqHiS)?(vkAK?QmFR>m22Q*+Hl~F z-i^zdRnmUy*Zr>jH?J11wvXBa=qg#s$K|X()JkM>XDVRQBX-h=Sh6$x%#I!gd+WD# zceD$qf|Be?hr(eD+2O#fWq$#TcqiSvf+Zua#z}_DqvZ8L%&do@Zo_NPlmm*BQ$mg|Vbh z6b}6xjwC}}0_#?lE020-lfk*EQq{?3l_8`&eFdvfBaN&!0q#vIN8gPQljO6I++9k% zv}SD9_T#ofV+&DLRB$QT@VR+>GLeqafQ-x4z^;F)RQ4kfuo+%Uo-Hmww#@0cLVJzx zG5pGmGJ=+>x=)}mFMk)0F&d5t1Y7Yy4`v(!sQ;Cz zCXukWEP3&l+o-P$C4EEfr(xy zwTNaZBj*|CM@O(Je0HX(d)UT+d?B{1s_C*JIQ_Oo_b#c$G>|`XR?&$_p@5yWYQTE@ z+gOu#)^n8`)=p>@tP?ac`bE20EAX&vqQ$hZ6@Zrod8~n20q3QxM#Pn6o>uhRWoS)o z)UNDG&oB>!tAC;#3hw43;((u&HPX!Xjjt8|3eRd|0{)VQb69lx9FnI#A|OQu1AthJ zLHxm(tPRb}3UMAd!Qtz=2-Bhf&7DEOxNl0W_7^8@9>HsC*uOFb| zN6-`ZVN{zdKW^*n_35=2PWRqeZkKnLx23Tqxz-QjQ?kj@YPoZ8Jk+; zAk+_Rzvn(RVR0#Pv_dU8;f-=A?wX`6WpDm|>AJU5ZG+7#E9htd()xUoTR@<#3*({Xp0xdnYY_@+ghXLRyk#R(Yrgbc*l3NPQ4$N zd2H4DTz`H@-nZ{sBTjDL%Bjdmn4E}$FSm>a6YnV5M9&D+{Q z_!B9|(zkAmiq!DB4mRz3#j&xZ%!#U~_ zynm>lyzPzwcof!%Q7^Lk*1U`D-IiI%%l!RjNlhVAe|ndRs9B`wc(Ks;EaU!e=^^Fp z)r1^=gF<^*8Zl%xQnJDBM0yqq;%KG)0>a0G8pzo>vCsz(>~q>-`tb3gA2$uVc6vh<>J0I$RO{EWoiU zXaq9vi1P)ze9pDkE)*1LBrV3?&X9lIBVdH^-@-g|&}F)$?uRj$j911%?i_RZ0PeK` zaIJdaZ@Wo0nN*3A#!@Di1;xQk6$ZazkgoRYqpx3Ir5CNWgy~zEp9CSdqeW?}*?)l* zlN_n)5QVU;K&G0{C5sc_3%e+%pfwHd{Z1#Z>wg-Un?bbB?IW}{gKkT&_-43TMB%~x zw~1FmZx%7*TGdjAd3Qm!PLfS$WIhVLe?tgMqXpRAtuvPod4JE?;M&-0=vKP9rzqFqfg60uvK5Gc+>_FHB`_XLM*XATc*MGc=RIZWIMEIWjXc zmtn>MCx5iJb9mfq*9ICiww+FF+qUh76WcZ$+qP{sR%5$O)7WW@lkWX~Z}+>;`S)CN zWhVFHz1FkV^P3?fQdFT6GO;rPird*b(=pLAasy=LB7#oDHoli~-E_jEtJ6lmhXCOC#!`U35VC?+v=?GwEWPjv>B?CwRZGn#ON)v#Q2S5(!Y^dsC z4`c#R8vX?o?VOzHj0~OL)j(S_3tJ%7yNigOy@#WPnYr`t7%X&jza#zj7N!SC8yZ{L zxj9)`01RzS0Mhhw^Z7Q70AK>R0v(+!ey9BxH}ZF8fIrmUT}>VBZ2n3Bpfq=Ow&!MGaC38` zH*;}vrnhr6qqn#Ii=V2wg%iNd&e00+{(tERv2`%D0`7REqZ zC*W@EFCRm7Cu3|FZraPe@eueH1x30nE(I0LJ$r6|*%Fv9qyxXYB<0yM3Y-?|pK%bM#>N z_gGum+PT?!{lCPf7Pcm)zx!_DVt>z|W^3W#0+bT{kMX+*_K(aA=nP;403858cVlyg z-^u=(mEU5f-{SWs_;}gd*#k@st(|~A7N)@W4_GfJLsuZc+0g~)4uFY; zvGexLno_;*sEM7ewFkfiXbQ_9Z-3|fJ`R-s z|7_X6a*4ZGTgw~T04e{~(SMs6+E`e7{Ey+kEHr?>sZz?@IocRn|4V1#ByQmjG*Ps0 zHa7pOiGPd#&Lm`OW(@?;F|pD!vamD%tx@~EQP%IH`+ogc{Jy>3_3Rw~(!Ecmv6U^* z$qB&D^_L3x-iv?Hem{WUq<;Yn65^^_DzY^Ho}0g{#B7c2Oe}280L*Oc07FMdLl0QS z_hDdWV*_|Gy-&3X(EYDz0Wi?p+Bv_w0PJ0yeE_C*jn1{s+D1)A%pqdPjzT(0g{HKZpy!VEkXi`kuk~eRKa*ZfCcDQhP7nCr^7q&O{ipXo3CR9j%>VEf7PfQuqGRP^0?@I%_kfdy_4gdH`}~iq z@!yZRzb@AI&Hq3A`xyfO0^Nbeu&YaU#yr86sV$-9zG8(l6%b@x^e0uA{F>77A67GF zy6~_?^S%=U1%HYH+Wa%gi|k}2x%GUL18hq)$$~MgU$@$ms;6&ElmvGTedT=d5XFQh za@Fb80yE`S{408hsSc%c3$#jE=Q2CuI|u=46GtLkUA+&{%u{bDS1H806&)M-5N^c_ zOs(jS)~N0)$hh5jD>L1o&TkLsu~CNoLaWsC1_hy*6Mxc>_FsCDwP{idR5efZGGX}9 zxxJmx!m4Z%2s*w34UeOuF;;@HqO6NryIpCz;(EEqA`2Ttdp5x-<8*Qs!x#G{QZ8^F zrKQ^nu@suJy9d*yN-8`j$@|1?9Wtc9zlfcM#%^AC`X82%cZz&{smR`U&x|(jk4~f^ zM2L5cw|{-Cv@Pot%>prd96){%yNT&Cbff6=xk(!I-pG47%BtTXjorjSCL4%I#mmTm zTaHeQ$JI_%e=?KARfQ1oqkQ@-r7s!z?dKwg4{3ipE?JCjr-y>!dL)IyS$m(w>}dRi z1qH?k*|Z(=kyq1AWt`%e(xw|`^Inw5uqG4-nSaXhfPm9c?bmHzjKzBw3JVK|`^S?; z|5yJEd6+rSNftLac%?hBT<#1Pob|oVWWJ2~b=hPpxn8?63*E62|0{S zQ()R+v)`0?wYf~@@@h)qU5R)L*YnR7uNCBXZs1;QB~3#V@owtIJa=4K$h>s?=|TfP z4}W`NAdVoPh7ki!;dQ&dRqXpc1|yq*Vt#E$QVxww@FZ<#UG%9))4wYR>y*&kg=*d^ zRfcEnI)W;1%5BUdg?c4r7|~j=bI$y5AiGjj?_L35!BGx!F?GqF5E)HYXf;5gR%bfO z!hxS~h8Drhh{y|3@J0xdEdL-pxAaW$=6`LplaR6-b9B42{fvZ^q!fk1J6FOoO==bB3TlMVT}4Z4SCTurfuT~z+CGCWNs~& zc<$S7wT~7g{7fK)N`49+O2~KbI_dD--y0NjV0CXXUCg^=teH7maRF=COf`CNSfY3)cS5iEWrOWj4(2u@ovIc?k-R*sq!KKdBE<^6Y{JU-{&Q(* zD1%4P>K6q~D1CZqXM8W~ELO!p<9}dz|AgU$m4x+z+VC`4blT8n$M7$1XaVzUF8gUC z1`5aIh}V80$to?i!Pj2_dVQbq09KylP#s2nH65a`IQgZX#_OQM;&=aXAGMG1^bB`QDMG(oq)y?@5ZP+eKjit|b37}`(BQL9b4G}l-HmBgdI?4u#XeKzUa zBq489x`;%WvlkV2<8OE&2i;cD7&fj7K+kA~L3MtdR zR;+RGjQPpviXU&5E~lAA^P@IgG@gtwF5Mh85hVL%{enMXg3Q4%tbfS>0>1HAUFL|@ z(|0O$H1gP!*9elQz}XSy5veTICU?1q2rG)X33Om=)<>%g!YBwTIH-G{ph2mamPXxe z2Z?qPg|*`gSEeAIIV6*x_Udf20N#a9RmRHzdIl1u5V2A<^GWb6ZIsUDW`(;F3AMD3 z#$gA*x9A==vHr@K;D4r0sdC4gY;wfA;u2RTwf$$-w8;P!`5znyllE3c1GD#EAk=}M z9L~p7{X>Z})&`UL&+Y=$W-DqfaRDgAh|~ian24ied*5n(lBD(%(nj6%#s?w3A%91s2uf4vSTaCr=|6`< z!?D;~x5+3m&+MUM$1K6Jid^afdZ2_`A~U?Lhl7WdSw41d?%DAs%C1j}v~%W=+t#s7 za*a~%2tPw)&?0@&E6;$$1$mfVut9MxG z#OoHqKa7LlHh+zag)fRAtR@MRoKa;cY+A_bnsdx`AAXCHmLhQLwHwoeZf5I_ji!QI zNnV~J+u~gv_?dcyHmKCW!4p|~xFu+Lc+#oH8`pIAl$1S_bUvcm`-~6U3@`S1CprjY zRaZdX>lYjNv?y)bWq&dRnpOzA1_y(vpZKd+pISPn@_(YP&A__9aVRAIXN}JvHe|i8 zITP3+`!}sXEF)^fu^>uLMebaRne4-etr)g_5)yViK7^z=DZqT#R`yrHPrP{Oel<2C zj$q^R57*y2hmh0W<7AChaWapWN~y(<&HTP(aLF|iR9!qAn}R&!edzS7C-XD5ZdfAv z9`j0gL4So@Jn4pySH?4cSFKPOHtQI!=10-~HzrUC*T#bhX^|`DD9sISdJ3sD@0A&j z?YMFUUfY7*&4?+v9lyF2Mw(ZX@6BoMZ4N2Rj1R92Jc*dkLT-9DSK%XgN**?(L%ZsD z+xPM8oSGD^Y48j?RrP%W7^nc}vsSjR_-TNT5r5k4!mLBu{hb+%UQPMOeWBcac5w9x zqn*Kw0z)riFkuKFa?_Wsbf5E7Y2$XKLiuBM(Uwvpne-jGeFIZ!d(Utp@^W)CIo0xJ z?3eOi48)i++Kf;xGP1Fa5bZ5Z_g`t#M>*#4*s~>yPs^!v{DI*`0#Wxh< zn15Tye&{IH(+M)RLE#@sOE)6KicpPZc6?XMZG5kY$oRy<~isvRAmduux2X7|j=p2kHn& zzZn6kr~<{{w(I*VL&?C=5Y#V@abQHdfoQ%3cE?bFXy&zTAufOlv;ta|&otU#jxQ@k zy?At~S*M77!lrkJyH~3ABqfrhOyeBXo-*AtzN^e(Z2mvUIhHPa4t5$G;#TnhBT;E;8}F^6O=B0(el z#xkDd*NzX_wY%rtrJK8NG|WAq9$OvbLnYgbAFUK6LR^EJ7L$VFBQd;-95QJ{{hJR2 zEp|J*rQ*z`(SfhqlJO_czrOO>O@F$S2w+~Z&oDmGAik^?JA#x^IUiljTZ3D6=3G83 zfh!jg^q7|h*fD8@UnITBnkY~{HyiQgvk`#JeLs*70}4Vm8ebN+NRod|z933Jf4)&I zg6+?yg6a*&(D3XIBu>+>S#HUnj39u*RyRGBGW9UK6wAfdis9|}wh02KRDUTQpmx_; zlQl^C-OW8hMMC>HWX!mwS(O?F@jwCdi)st>n=yisge_YiPV-htWzp8s7W1X59MD{I zi4T`{#-1|}PJ_NWSk_uqc~_cir%ahl5nAX_o{z?w@quqZZvyp*goZseVZK z7Oh<6q<{(H-v5(s_taA9ynkz{*f7I*j`i0C68@1zc6(RHhMfU-i^y3e1jPi&Z=Ap2 zZQ-JhPK4bwZptWgG4%AWLEOb#I>ywGqvj?bXAoSoXjR|7(i%!ZGx;EIQ*MDp*Cd%p zQCcygw3yzYN5l`PgwV*&1%bviqt&bR&T?pc*zBe-%ACW!w`|>A3V)qOp2Nh2xhKfA z6~}-9>|ogJ$V1C?^g&Z&*Pj~{%?Nio)5t=*$mN3ckNqNK!ZRV<@`CEe^_!dW=LYCV z(tuwF#{#wZevo{_eSpbz2`%x0*p_8C{Sns5Aa*ORuN2zLYrx0q?X&+dd>MMZ)aU|w zSdH#Ox~9#=Z4+MyPk*V?KBi+gBVoYLNXJKIcl1k6%(F?+)Y*NdrPY=x^u z9gMg8Bg{j7Z;Cs&_&7E z8!{qaq>o*?&VPpE3Lj^q-I(iDGfEENsoJ9nkhUIM!ODhr3+dk>!Tk#0LZ70>h23L= zyl-4Q68Q3*@a6?F1&yue@qrSX>Kfibl^E8fucR&Wb-}gfM@CE3(bW^{IkXetl2s!+ z2YYrWAEE3FzJ7d7m9Tul8#7P|T^Gy9_9xy3=Dw_xY=5GfSW{Mhm5qz(`CiY0L_@Qa z8!7;2LcVKK_wC$SrSi*HIOiCZ%c+w82h#QcrZ_WMTT|{!_XYbQIvm zcpabi6eJe?CaFhv8*cN?67JNcR9$JS0R0Y{WfsY~3DE~~&|&5Un6+)O7aV@uU-wdY zPKb7Fh<`60XjW$5A0~ReJAX`8ZMfx{Ulm~UfD1!U%B6<)?M|qh3?sxSOJls)lm>~$ zZ1XI-X}+L;a?O?x?-iMiQ(V)$%}t=Z40)c8=z?;ucP@WY&~)rc7Cly-s6|`!W-@W* zsas_a6fgVeK^SpKr`3T~$BMj{W9=cxLu~QItd6z>^OgyyAamqgz=}(ybanmraB7ezh^_DT!6DLwElf$8#+8g40z6Gk z=YJbEOPa5>KZS3vF({11&!h#wrI_$6>rs%V4ULOnW7?G{Z% zUr3lwB5n7by>glDR9hxQe?fMl5T#IXx0z8q^;Scx+fPAA_QeVEo1Ihd5RHndd zF*t5c>i{V{!6E^0y#$qS*1m#BR<)i2Xk>37h9^UYWfUULA66D&DAJncdTd&H-d$U_r2bX{$H zb#zUd3g<>F9QLl2x0p2;qgRgyEPipBksR_;E{A-%^K_4}2jc0oVXPWMQ#k7o)5;lo zb=yUkHB29`&d@Nxt}?_gJZPNg!Cb^&immdSXh5K(z?YGf))O-(8Iv3uB7aC6GBpEq z>#^ZB-C3e8Kk4Y|}_%Z0rXG@0R1^ z@vm~-?RI%A6n;g>PrR-O1lb28pm-8bX-)u6=yq6-GSoI$xDLlH71C4gs-!b{r+IQ8 zn-LQc)dzudyF%cDei9F&`=V$>?N+6}nFuHTq$U_@T?=jzkdQqOh<{^aJa4zy3`9}u z_pnlp%$m`Mfq8i&XkEz$sr-n(F$R=TY(IwayT(VG0Y#MNN%FHu3$#IFn$cgjmq{}l zWjW=a0MSm_(2GXi{f0u!*+7BrFh+}6vPf$&=5eeRjo#Aa{K_vvU0YyT03!(otU-l? zHA=Pnf>Oex8shTsF@K1XpDF9ZVs2AU^FfY@d&SnN)&3An*T#>7tVaAS@UhmWI0ZSx z=+|tCVC!_BWUXsc+@;jH`!Lfg8@xq`4x$L3di!+WvMRDPn+S3Vs)aM5Q?AV{SeFl) z^01ij%{L{&JWE4A*CC7ewb2CY1@RDW;6{-}XR+HofQTlRkbf!$RRt)8!Z@VId3YBi z*N)WmLQS{e=|~%Sn&+CdN6|LX1RRoNT%f`|g)^Luyy5y14=2>Tc{3k&$6B25EIyHK z(QqV7D^&453$?M1nI+!0m~(Y3-=;XTU?~YwK8k$Hg0b^H7yJ3jDtTEOV(k3#7+$rN zUV{6H{F;H&rGJZGHt4dERJeWm1jQRmo7O)+{&6r7>AGef=jx;lyvbPjl4v=gAm7WrKZCGd= z>3g*}4QeT6;mazBZrHpoJ=XlOa8bD)hFnGEL1kkXr`{C)Xt8at%|E6==-92}YeXYk zO0?W!x_{ZPB!&hoyIVk*=Jt7r%)6m>QeTcjDoJC_XO!VZlchpuB{~{cMrvz==yms% z+eR{4J}Wi}W|?M$VJkBFTXrXK2$ZW4QD(Gdq|+J2;ln;>j=@%e^zch zBt|}9{R)~p0C}PZQrOtMkpP#s%E_G{etOa1l6WE?_kacz-J)SrV$7k!V&DNO5uQ|K8HgBbekR=&CDWMgYG zaDUXCS=jo16Jmxy>v=Cwa=|C|FZPVJHypjr!yG_I0Q&+#T^lsmfLZj70$?9oRhPle z*SAR7u1manF~rj7b0%VWZ9vPk%RO>Vmh9REB*OOd@!@T2G_TP`cD?&SNzDjl(0GQG z%gjWw{HK@mS)Js0)o9jk5Qq7lWTzCE*MFmC7tv?K*rn-cOX`RY-4mf=bic~ofzl** z-tn&hnxN&2Dm$UpxSEFdz}6LQ9UCEB$sILmG`&THFCE9emy z6LV?A`jAr$EqQMj%~&J_Na?g&;{aSHHg{Ex3Q{uyA(2$n%9+{X_xQu zlU{u!-;m3|fvBdSJx19x&Fg>~WEd$xa?)w;b_$u`WFRL#tT2WD_LObD-+Pj5*E`XT z2rF+AG2AorVG!X3n``!h8`*tp*MFu)7Lki|@fjzu>N~2oD_M%5{2?QAM#aSb+ftJi zoo_4cX`&AUP{Tx|yo+W*F8(%m^tstt)qf=fv4|F8mVIEmejcP~$nI;Dr{LLu0?N>? z4ikHnwDRWGuFaGnsSa=A)ij}aeqr_2^dQm zJwGrUF$e3QC(xK6ye4ptzvNFDIes{O>V-#Ffi!z`!E?1iwTUGIJ3-{oe|0xrG_Tq$ zk@3f`9`TgDUA6u3B;kAMkewf~(`zofh_-5KG-<*snn1}5bFp?^lWe+IgI=s(p}Up6 zGW(0cc;I@JoTF|bj+SpMbbmq%hthRKaxkBI9DO#1jZ*SrrCBv1c2DCr*;(D5t?Hy( zp`lZTR-s50ruhhjoE&Uy#e=i;(`E59CR(1-dWh!LPyF`pZ^Js{$}Mp>+f!J^6CEdM zz!AmqwJz3ZaVTwSGZEtNep_jF2snsiHIaH-+zcvn?k7RNj_o> zVZx)MuBtZlOK15{G{bNrs>LQUeDSHVT1e4_gU-uJj+#Hmg#Eg;@OjN8dc2P4WuTcJ zlm)StH0#3!V1G>XGpeG^*Pgl%%mxu5g_SA)?}+?)g&Gh%J}9*rQ~m7U-4phrA;CGy zSa(KKPMT-(2e6P>iGNsBR%uMgCmkU{U0Qtx6h^vqcA`BAA=i0pdPk7C`kJ$meNbVF z9;n>;4NEVtNHhcQzRHOH4@%R?i~e01w^+q@v*il&F z!yp?+FGMX>dr&~FzcK*q>!_yQW}JU|!BIhrU(u;xp=HRhj4L|{0(sRQ|9>FyR5wtV|4I4NS3AA59O$*$UW^Dui8WVruzi zZ{!x$PS8;?wtSaHsDiNMkTF&|H)|HZ zi!yYadIa5A4~-&&XA_93rBqj33ghzzxrLk!Z`0H)4S&t}uC*AK8L}IRRWEA24LE^% zi0FvS$Ob=?*PZh2<0^eO_XROS(aq#CXmmltC}tnd*QDYQ(YGeGFbdN#!SU9lj|p3f zf{V(!9#P>_y-(pNgvlkevzOI_XxxeepKSAfL%KOk+EW$yUKAlkw%lE!VcOBH4M=iz zCiw1iTYpMUljoFQf6SPM*9*=R#`hBO1MB3h2QQ0qzI9Dx)ViK-1P_gaj8hzCADP8* z_@#62GU04JEys(Sy*B>Yd9qv!@|v(Ka9;Fk%^H^MhH|rzr)i-DS`$RUGm@diu7fEHk>(uUh%;T5z3%0NxoTX2<&m2+o#RGzlsl@X1rdFOl#aVpG zpMP8?o?nD0_jE~$>6+7n*cc2WVea&#`r)>D3u=^18}cT*%IdFA3Ju{*OD=y??YtIYmP+Ca*4O&vHw5l9G?asXz{NQyOg1&W)DeHSDLp-1IV zIhwP{=iB+_e?g7LD_&2Hh``ip45!uZYJb_h#kTV5!htGSY?%$Shi1Cq8l)JXV~sE_ zTsyLJ_HqOSe0Z_DQ}d%bJCH*_kK;5ExOdxVmU-%`cuWuX+z|UF?*hA;vPuto-A+db zU<5N`nx|8hFk?_;bzF+5akA;g{;>E1ee&ND0suqHQ35{yDaMZ-(Oj(-&{ z^on({G6yghtU~He?P8lCUyx+y#EI&(@X6&ZNA3~32{>X{)ap0}jAanme{75(^NJiu zy5en9q>gPgVd!^alR$RHRJE5DWGhoB^7OTTWx*s}=T%}>6iXCTzn@Y+N5J`hZ5k^>aQVQ0F8WCWRDStmJOw1O4i_`|KcCG(p--=&v!cguCY5gILpKYeI zWaDdc1aKO9rBS78*y0|t!gIHy^PI7UGa}vcS`Rz!`f#({*ivN@foCCYXfrCAad908 zq-qa8KCT37BeSr8LWtx$qjDx(;$Yo~-RDI}C52J>L1yDf#1+ zg$LuAn^R6guz*DrUp3(mkAL)YsEo)V;M`Q}Zd-~LpCdxA>DLCUS(s%@%KLrhIp{q} z(UVL=QqA+BX<@-Ec##4Z>@}k`j4q+i$Cp^k!T`o_ zdp}X#*Fa;W#F`=*FMq$5L)A{Dxa0+Qy1Scs>$l^ri47ZE6@qaG?!_IaM`M=t*Ns_F29c?$c z_yT^W{vru1l$AV%q8hqHh_8C$6x{Gc&1^sJWv|^MX3Lr)zke6&Biyb$K2p%6*jl#q zw(R}E6J9zE0frZCc^1>u7_&a58%x& z#K?f@U^5z+c`cDFlF7JyqAh)nu!24d67m9B!qK`$!GHAqjzYC}Vs&qMLzd*;%TTL1 z_t7l-G|X{xtq~;?`)&sF{_G~O$W0ffMyfTP?S$T}*_8T&G5(7$n^lPIsc&dsx6U1o{ocVYm<*_5;FHo#;)zjJjffR=(f@t9NG&Xi5tr=o_RWjD+g z^(aLFAb-f7>N*?Sr=qR0Qn$=bYg4Ord|r+o)bi}$GrR>@?VP}42_iyk`Yc;Dg-^dk zHi++R(dWfj+$sB%z(WQYf|CqDpU7a+pRzTgzi&v!*rz~+fQ8IN>{-5;rFDT22Ca{j zLCtUBR8J+xByWu0jk9h5PBkVVUJ5l5ZR1KHCls*W&aI{rV zI!G=Zu5jfp>$r@#^1aIT}!-jAdUj;3^{49)f4>g$%s+!^eZb8Y&z^|hH-?!oQc zaaK(;0T{kCE1tmStq5vLg$Ww*MDy5=aDUKESMiLzXFHvoyvJd~L46!W;@1#pNaZOz z0@|(9xE@W3)RRQDkeUOddx5GEq~jOqrB$s&c7Bi2tWpbpg}nuAB|)zy8aiR-OqiLO znVFfHC(JovW`@axnVFek!pVf0nK_xwfA7AhmG(-jl1g^T?dp=+Qrl&J=F`rQfVB5{ z&cV^4BJCFQBmv)2{8{Fk)+NXP;|dJyp;Uga(%YhUWv0ME35snIA-ts{XiGcDTYg1nvK{NA^KPLmcYw_{$3GFagQ?O$lP8^rqUqgKPE85h z2$S_GCslvzh6J3WbS0S5HYz_>yFZ9>U)J;q+77e@{*3;<7%nklBw6&}9?|BYRqyc| z@N80XzvlmH;|~PLFf5{$F6(dhNu09%MAf8wKn7M*M5Pq=?;9p5C%h*sCIt2Qq`@|o z$imP|Pb|(D;U)b`nGQ=8YeOkO!JOgPIeXx%N@m__3K@Gj-YYtC^(zaNZxn*wcD})t zly91d*V$APyAx08o1sG6XlLb;WsN69+8g(ofLz;I7kh^2l~PiJrMgR*giNDOn#D1V zya(>9Hd1R`pdA!EYwhEC4vohwPi*(hHV;=%_{{^?YJ}#^SdMqWZfT8))%xRyhr%bJ zF<{;x!To)~glmG-5Z7hj$pcUA@~C5e%+OsU$3A_5rss(>7+!g1$+F>}?Ac>9w&RkrhY z4Dyls^U6<1n#S^;%rr$7RUUO0eE)c3N1y_Z?Fp4{kR4artJgRJgvHuelmV^{hE@ zGL`kUlo+aMu|s>$)7!hI*aWk%=`WM|D)P`r6RRWCrx)c17x#1t{=y(8jNK$2b_S;Q z=TzV9lKS3B_V_PQA)4W{^fd41Q^O^lX(V}yj19XW|5UV;uhE^k4Voy7ZgZ~rS!KgO zS7{CsGit+kKWWoHYjTU-vE%{R}Z*6F=~!zKwX_zzkhCB zy!}#nBcxJ!5}ywt$*LSCe^T3Mi_X9N^kYu#JWm#-k;PpcYzmCyQ_R`LTcLFHFELQ9 z#Sc&@04=hOC;S1rF=U*JvIwk8ie@NN{Wbe+>jR&fk*`ccs+3Vlr*=Vwo7Uccg#hYf z?D1ESOVwVPy0q9wjCb{c(MXx-O~NE3ae`oF)6eShK={s?+0}pmFDu%jBEh;GrBas- zao<&aR0s8u#m>So@-CH*1RQa!w?sNj?QRAewG?|{RWhX@fqLynI2;g|C5EC0O|;j} zx6wV~AXDzliY)wRF(_jiuh>a*(1>?|_B-Z4iZgsHj^=Xce_q)5a4El)^VhZ`n3R;J z#=tYw-it-)%nA9?-n(A@W*`x;TwmYQT?F!DyXUN`2?XVQmb*pEh%sQ?xG4}u-aHY$ z`LqkCoJ92N?Zts% z32)zTMhs8Q@*_zl;9p&2(;mmp0NU>YFlRc`xaYoB&a|_^Qhy*xHN|*dgr9a_W+#>o z*zBl_ep48YfFh3LzhnFnxBkESF_((l;cHhK!I_=6TLiwgQm47kmA%h>K~omZg4Jc} z?&OtnKl*sq_U|CI>ML2N{WLOlpoz8CCE7ke>f&b%n(a@Us&HVvG^rQG*q!K&<=$bh zer<7r&WYG0KvDs-$ifOn@1z+QcjLvAMj7Ws|1cNw%Te0lk~t8dE@MMNmb^no(MpaL znpKo3(t}?^(5;Xaq-w1_BNS7e++dk9_1w31J+hNukjctp>#Asy>Ej!zt zec8OFyT^y@CwNmnssk1HN=H=@zGSj$`wJtXQ`rq-&Yn;X;^FyaouHI+Q?$|%SUefj zW-MnYnlR;CM)a#Ar8c_9#d4%7#@ zee6qZ_I7}gk0i88ojl68o*xjOs;(&*>7I&(^_aa^{kfojR&$g6i#xhOJ&9j0dN2CH zkFuCpDY`yJkW1$cKZ>iUl_oNBL%1*>_45avKFZ$}T88#TIw0@%f94hO?&%*RZj4xj zV*JdJ+-&9z)hH{miOpkh@{%wQ4ljWZXvhA@zvlsNCEq8`&VjO;#aDiZ@&2MggQll+ z=x&TW2)(+~{i_twf<4k4m}Czdc~@MGdQj|;8gBZD!YH7wC4<}=9QaY$IOC`x^F#qA zg3Cu|t}i0E8hj~U`s!U&TmtD!T&$)_`sz@Y-Br5oPqY#4*LkJo7GTYPK7G`ptHqs# z6$}r=Y=rRs!t3R1G9##7?D^?K|6~QYd`oar@=u|n_m$ovLc#BaD+zEF6A%26V5U;JsurdR- zpxhvy@OIuSz2cnVVvIpxXuKmk{)kFSu1T~{*K0k3 zr$Y)=5+Y6ND(D6;l}C`lVk@zSw(rD@e;h$;cJw$SSv@eZGh-F&vlKzJmfoKzSE7Du zu9qrftgCx@8&uB~rlgOkZ*pKz23!K?1Sh6<@}5y#r~eWL069oI=(y^B%WERD%oeq1 z$nh(G%oDe5K5P8}{lOlWMV$G=0)APt8#R7(j}GAzZuJlM8>t=3R!&T1io2H~@m3!A z%jStR+v*8jY`v#q?|?y;AZf0~Xxb!A6F7T+6|yD+ue{a67USd5@`AZpQl&cZtj{^Q zFH>mBK2>!rfLNLaBl78AEu*#|A$zgVZQA7(`GUMmuxWU0X|&k~dSsFR#F(uf;K&iQ z=qxsxN>KOLnghzFW_C$XB)^D-#2$n}sQ3HjN8dJXr_=jeGJC1ztOP1OsXM$_DKR09 z{=jjep|EIgWGn~{G!M+-gfAM9>iw}v-nM`yepTZXK*8)^=sL$N6w7tmQL@aVd8W*W z5hp&{HXrHSoSK=di&mpo)V#UeVDHnEV&eLDz~;fydzI zwsC!%v>k8pg`(kuhhBLt6&Ya%ej#fi)eCRwhZZ!!t)^pPnlPPL*!+#FBO4-L=rN1D z>7B48a5CPuT&O)~M_twL{Ym*N#Y$D~%wg>hb?W@Dq<&}WyYCLZ!p^vGUpmfO@BD4s zgp(Q@fr|~zjYy*z=thmLUp!*FD(0)(IiB;27>dQ$Jd00bg??c~=qAZMpj#xyxDQFM zHr^l!#O~CEC?6ZDN@8!o*W5C*P*JxMbuS4W=>aMZLcb^KG5=Au;m|CcZc#^MY(>KXH%pzFsTUKb!D!>h z)?Q79ldKJtf`6ORz0;Z!k+2ue7@5xYiLoo>`}NX#?8Qk!TU%}TThgKxqAvO=w~Z+u zO>&ZCWr_R%ik!ZS{aWuhvYjAu<$g>!!F+@8ss@2PU-AJhICT`;(u|uTG68jM>%Q~ zN!Y#+y9vJtol8~+amew-@LOY2$3p&`1dy>2fZm4&+OCQK8O`)5N|wqxjhth5lb^B@ zyJPV*_M7PMNhMfo{WuRotw9i8nNS_!Xrjs+|b!&Koe99%~r=*MVT_Rj!1`O z!TkYz9&f`D@=R44v+1Kh_k!HVCRn+7X=jxNOls@KWo_9v`3d87{1BQAMvYo2tbeIe z^_4!xhYG-6jIhu?kFO`13{9IR{K}&N)=_|}} zjnz6%V=?rDhz1~*wUSikph9pyB%t1^x4o8|p*NSJHZH|3A1idI!fo#I$q8%9Tc?ct zS_d7Y$ua_jU5x&|!PZL_DL0zI9ALNHjVAV**Z2@3K^4_3>KZ`(6=&F*uo)5D|BCY6 zzk41F82kB>!67+Qc%0G4>)?TAf<+DF`b=~s5hSs(?SA{Dc=)aE}2Ln9rGU5cg~g- zp!}K8)C5k5iYALvdU~q?beXS`Ax#Aab2Lf$A|zd^RmERvnd9@C%(#a*X>%3)J@6Xz zlG=4S0eR;cc>KAwtRZEZ{Blv864`etIgLiE*#^xI=VzHl2;#Wlae4i)Px4v{eA!o( z;ypYcZ9m!g;8TR}`|C8yd_hik2^54=po7^V)O&f7vs}7@44>aep^#4+0xk`!?D;SV z^|+|lGPDO5OjG?CIY@$>J4Fc7eZ~D;@P>##Q$^hKot5|3K2GiNI&N1Fh!M=%ptY1J zYlyZ810`$75xpB;B7gR;9){mt!B8%0J&(l-i*j;{AQN~%)Of*Nh(g=wYfe>mkTTkXC3CtRCk zruBPuD={fr2eC{Y>S)^h>-$_8sv_O9BxwZe{Uz^yS~}rDC@c6c+O3j9?{{W<%0q?` zCI#2l^;N)FptL#zS^=UTi`_vw77&@lsJ4kk=f>_Iih%b1V-MeXeV=crXDMxu?foVQ6`Iif{W-z2H@XK0fZsJbJ?v=i7h8|e}XdyFd6 z*!@?QBnPXBnu{uwc9cY62Pj8H2>Rj_CtHG>gWF;g_p>x%9Ri-*^;BEE9iU;Ju)--V zw1b6vI+nC#-M}cB=6x<&R6ncYqZ_O0B`wg4Z?y11MAVZ|jz?{*XTXBNpb(XAW z{stb^C||F9vNinV4oULNHXxdgR1%gss&FjY!5E;c9hyMf z>DUKV#7#CMVM#_dhV^i3v2sP!VZ^OiWO2r^05Qjfxeler*oBCA<80@LuR)f)n?$_= z5Jk^82CiHS8^-Q)iUVU4To#~-fZw23LpdmIYBCv@iIR{$Ot%CA^_{sOeggBBxLIdx zJ_x~(#&#MquA(VQcB{ai+AvUdP{6$C0fz~8E7SNup~<{+hhZF23oyYE4os0fXo{x# z)V`ZwEbM!%6exx&g|1I?M6`!nUlwfzcNZK*`t4M&2x&@Kz5^~TpeE&aEg6E71a&Q> zh%8Vcp(Ea|2d#0O4ct|WW3|HU_;hf5k@k2M4iGfwz3Kajl^m2!`2KF=pu*b7?*_Ie za%%xfeoY~>DCW<0UmS%OxQrC9wqTq6{>6qy+7-q(ePblW**Uach3qG3i>G26pjHce z+@6;2GK`%_mPvzWRaj-1`jz=?$V z8>4d5*-q^AQGRAE-zVQcu!KG7g8v;*z1YXhnD^8B3{)dJ?v!3O$8)QF zD5v+*zBsHCAS3(P34`2q$3d6NXt-3`l0&9!1>lp)B7j>WiKkH{Pm?qIoSbi0)%FJpTDbL1&!exm_`zqO7cVR11p0j~yRZ{z`KPZUA#?Idy$EZPsc zv7-FV3$hkh7qA{|R2(-GKH>eV7V|3)we^|gtmL zi~sagC!0fRgmunwC|QF9syZ^EhQgmO5G8J{@=@@wor~mL4t@)fLSLZBhW$O(Tr0s zf$=OFw_`4Kd>HmJ>Kx+H4;n0^?KfZ0-XkAwG%@T^p9qYjV#g}-Ka)w`_P)Vjs}XfV zXQxA`Y0%VP9<(ZQmaZ1c_R@MuxElFT#1rk^!!tz1%1I>bg_3&!7qUiW1oO}4CmMH2 zjO48BQIms0>5ZqF-f#`*Z7%?VEIY3PNF0Wxk4F}C54@jN z4eO3zq%8FC^*OCsy&8h`aj4EWNzbj{|A2$5T9!d{_+;t#qC;B>G)6bBlz?Qq5oAIq~=xY2zCa~Ijv|rm|;Bio=gq#me&Ol@O8Zv`U=Q)&j z?rOUGb$-a*{OnzE77+Peb07TknqiPT4g>PdNRQoVZv4YOSwN@`KkJvwFN2qA zgu{%b_L9^o0TpAl5wY~s#u_}Il-s2)MSY`UaA=!#Vr_kbL@aEy<}%Cbj+XEb&#Fe6 z6$p_N%!$jMx~+0zf1#2xB+B|e`L(=D_=p@7iHoJZ0}y9`cs@VLgh-QwBG5a;#p;j^ z3sT2#``6=$11!3{OwUwl>UNgm+86VA-{{yb%R@^3XKu2XHe7i!6EQ6b?DET|DdKop~z zeQQ$gdM%j752ezAsX9z!+O!9?oFSol7@_JtiJ99O1|AT9WDbpUQy}pUAm`V0U-dms z&5cp`2lseC27mhU6L(SqSsS_m?(Y;@Mj{5oC|X6?IG+ca$y}(%k}rn>N&>_+wWo`q z@&Q4%be1FO71^8nuUwQ7_>xZxgiB}U3pSRj^Q;NANY@E&FF0dw;6Ycx?lreT zgm)(A{#5PZIG`Q|?$=-GZJ88cY1=sXyvPB@gOMjF`m1{L$_dtqzYc6X)hW+t7CRZg z?)Can(K7+Zd#7aX80JR43uowsjC#%aqsvui@X_nm=@!3!z_dFDruvZjK;zUOYt8TYLSBFJ9XH@w~A(_b~q`|i6RKoE%??;+tH>8M9#F#LE3FgZ)y5J2} zzom}(8gEv#mX!d>9*FHbO={Ys=Tah2>TLLsDE>QXBUccF*uCFv@>IP>IH>BlR9?0)so6E+t>w!a$vIs zx7A^jcsu(iW3e#-Xj<4tG;)Ch`H-4PLRxf@QJbjx@G+paq{nvC*9pGk&aGr|v8*~s z2Lg(nRZuQ8k8i{7Z9e*i$^()#nzFp1n|Gya=u|mcf+)(26te|gJ48Ra}J*~spC0K`cGY7 zl31Q{ASvC#aSLG-dLOp+Ds|!#T9!IwfFwPpRwy58t8iB>uK6uvpe3_~?0Ljd&UPyL zwP-;(MEEk9DyU@uJ%YW4ZdsTla=EOTHGTaOIpgHr!ggi%mx^Xk3rp<3SP*Vg|?5QF)&c`LdpShH9^G>M=_=&TK>F}tyJ zI3ewhTBJkG-c#K43$#3uTgI4gfuH)Bw`qF*Uu#6mgAUw^?srhONv zGqAao?CT+N*&ncPn^HZN0p;TQroZRY%SZ&x5Dfp9g7kozpIrGpu0&-*|UrQMjrG zT9WLy)e>U9BH&`jG%m;wxF8Zkgv?^9_{ROAlDGo=xn?>&-aM=_3Z$|K@|#~695<{3 z*8>knS=zv#EKoswPhQ)n`r#>`^>l7=;z=9km&O6wken@!@go}_Pjl&7q2UC45w7&d zv((n@<+%9$Ai*wtQFB2#D~`=@Oz%roBZ5v&uJ_>{2SX2`G zcuB_cCpi4yPq#SXsKn^Vmu)1&*i9low}kDa5^R$4&`?NmUVtKzsf3v#F}BBmAGnWU zFrx66q^F-bM}ti~AqK4qa(U;G``j(?lTUG6WjI&0)QrAT*t^+z;}do6UHl^Vj5ax? zV4xW~RL@lp>f6dD-M-bdv->j+y3nYDbav5yQP{VRF>t|vxwq6Ur7xJBymmdBV1W+h zFz13XVK=o(BfyK;hMxHK>V70RpN=fA3 z1pTf{e*t}UDG4vVa*UA!;yYL){V8kk+#xQO#(sp~Uwh;zVGXJvBIg+JN)CtUOM(RE#b*S3h!tdY?bb{PSvn z59BeeEUCpC4g`^2m2+L=P+@T~`Yt~C>K!TfHr_WwOju?x!~G~Mezur8JrWa&D^EL6 zUq9FJQ^rQf?z zNVIPHA0WTdcliLAt-0)gRB&(>F4pvDcEDsS7!P0z?3-mv=THO~rVB^`;9C{=0es+K zEL_QfkZ7&BLV%S2$aAE}3IT-D38etE>E8kdt^dRTn_&Nu+GRm&y_E!{{YQ%HKU#%a zCu9NE|6#dXzqOWrQ`}6gJ1T&R|4_`Wu^NC6&~J*RHAV|i0tU*GE^G`yPnXmM)PoIp zw7%&A#zAo^-((H`heL3)wX*91ioQ4I{;$`&(g&!3W3zB`5HS%sn%Kbd@%?{jW<;D^ z-07h90Gjj(b^ua3jR62Jz1kR{4@|!K_3PsTxVX zNh{)1_hserGF4ANY$3hn!CoC0^-j1o(7Ji(E8zWt%%Z~}eu_kFR@Q(21w0sjc;e_4 zzy8~Zm9>SzOPe+CaqPFd?)Q0G7@8tmKXz|^aDF$+N$)j2YP>idq){^{dhXQ_gDC@5 z1&_iCM*^9MY;1~*83LYI!X1G=6qRm;98t<*kQB5MFc$ffh>cvxtojHNg1k1ubXS}4Vc)}T> zGMcC?*A25J*X(1HACIyiH7U{Gm5=MckCA77|s=8&CQ4}HR;7VfIClFbgVPH z5{-KVOMtgT!_JlIP=;|d>Qv3f*OqaN(|F)nbAsN1^EdE;_BZpxSR$dVbTYGq;YJv9 zPV}#OJOvPWJ_n+WjO|ukC+qc}w{y)he{mQZDxS7EuiLpzF+NF8zTu`QZl01P|AFYq zm8kwtANhaTl)5oM=|2X;l|EthZBr*^fbIXV+^yd%Ap|%p6I1Jj9RUA76mvSf6JQ3E zu64r+zzL3{(1D%xf2(C>Vrl&r`>zLBTj|{Xn__E~^8&zvgRwIGmp$3~0-nIWHFBhX zFORj-1pq|8SyuLRryzhI0~-@FD>DlV3l|dyEfX^(6B8x%w*%;CCT8qvPDCZf!@|V! ze~6^x1p{KiSvZ-~tAYV|I9#xd64uTxu0-tI-2cCkvi=8Va5or04b;(9U6;c2f37_l zHEzw&FkDQpC@%*Clcpd;CJHg5K^nl6z*WARtum(qt7<(3$Z>(c$6Sh-C_0nY6W$bNcm0 zK%+>qbW>ujBAb{BQinDpIPh*ndz+)MMdct0n6zv&=D<-vftDKqLn!bt$l_vY*nRR! zY=tJi#zRD)U{oxaWax6plMq#44s>6rM9Ha`W1v(Tr=CPYJhm0%L^wAAWjhBE;0B<2 z4N@#*Xs+nPm@PYaTS|POCUs*pY7r0}86nA@dej(_7%F2cLLh}P)Y0$#IDO1l;Sjih z`v8p*yGKY%;Efb0<}Chx86W6(lX#pbX(Mi7kOfMFO2v^y-cuU2D8PNb&D~tkR z{?nJq00N9bSDm1OLQsC`quP194=q&lp@6-1F847ypxu3k+?|~#8~!o%gV3m3rh-Fc zh?~bF4U@>q0kgJVDfw%t!K@iik0IG$t#xK8l6hf!-z%FoodvM{@4K0>6J0fhhNA-r z4+Th2$#&Z6Gnr!PV2Z^;xLsDN;0aka100Y1)qTjcalc(iz=AkWL9|&4Lh?u7I4}*= z2JuG(aBOMkdE0~J%(dFWZ~FpY&=$E7ZMH_&4(jLKplsOZTt4Z)I}-9@I_0u{O29S!CHk` zV*I%jfmz9{xmvbTG@fEs9!Zx`Rh!0AIGx#~wD@SY;zL8$j-ts^Dt+|9Rgz-C6X3#d z)t@wPMBQr#LxY~)s?~;136g#xMCL`FmW;K!rM-%NwMF6Nv>Z14Ia6;D!&z0L3vxes z;J>`%2YNp!=HsNEQq6~~ty!dpH2)%x2Q;NDbY#qiJ=^GY3p*P?2{Hck-731jA_WYU z5!g*pN&ERTkv*XrCFjvrD_GI zM_6f}7b3@3tiSH`gsW?AXF7?fh(A3XP=k6U|4QxN;|r<;k z!G*&E0;$Q7W?Hv0sHHpmLv4&z+c4dOEGn{RSDs(7LOw)JPd6YqFn1clUk6zNz`Vy< zsJeo1cohNp+%PYeRjMA)8jj92mAoUDMw@_jrP@DTER>RB^#1e-jl^sT6I{v+mI_FX zhXbo_iTraUpNO_J7+kvUh{{FDQ{C!m2JPT#VQkd=@xJP>2iXF(Ap_Nyfjx#ABq+F? zcE7arX}t=!Qm?B?_GQcw-27Ihf!uRp3-5Ltc^J9~MX^UV*k{|zCXUU$d|HBG&Q6W} zPCnpvBE-EojK{Ha&WPVZAorkp`Nt+3wNZ}A3UzQOiq$e^FnYBUiHs7zP0lF>KO6WW zMWwj~6PTwkZtoO~d%jmtZEp@8#7TA5;5EB0sk;sYb1K6n>%M*m8Iu?a;OhrU3=usV zRr3kepUIGtdlK-*kTo$?yqzQgbJyR29`h{P1I-qPAk)+|_ioD^21PKQ^7L+*!~#F( z)A&ULMYn~9yBaLoDrRX-$ktf(q%|NBMx?7QTNJvuJ_MgmY4Y8Rb)~zgeSZMRNaK-O;#Do^Gu4dfS$B#2I2pTQo`T5%N0D+YZ$hbD-*DVVu$7@3s5k2-Rs$> zg*D1Z@S^^rOehIJn~Bx)$ec#}_9BLIh%wlj!5ln1Ack_0U^fvcq)zj7jqwo8+U-v8 zALb>dX-e`m7>}AikCn+6(`cHyQ|`$AsGRMQeu20Od+^UZPI%g}0K!=C{!YY*c>L>RZ~_M||J~+sW#RfvuBMh7mfB-7_M9sh zgGay3zg5^a{7_sJ`MTUfj5&hWtH-(V$HO^TdqWV8P9SgQ3gCjk`f8zbJ>J9CMqTj} z7lQdCcw(eCD^T+i%su|Y{rze0<-)|Yanop!*Mj$84N|8OZVmXd1*v&QVKCRUK8x-e z@toV;#=O)NTG5OM>y6cRE2vY)*&hX|Vd382L7u8lvEPI}o4ktpPlYq!so*V!U}8H zBKL7_Ds?qPQjkA5bEyOo$%(V&49J!xdmAstbefLUxV!6?NjCw$M?(B+j`;pLk@qM2 z@&u$7>d$W*nT?CxHt9-9q4=21@dv(avto}EZ=gZI6oS+W(efX9(-Y-t0s#M&K+D*n1#*Nl z3b4H$Y-PURNlH5a({rKUnMl#L7mX=1U=A~G`M_bU5Ab|?C{%ol;*vN262VQ!DbR~o z#@2(4M})H(nL*fe`~(8YV-JFO(geztw*a{_iwXWysPvH=lDh2z5|6Oy$Q>NBuY~>U z2wRWD5Izu;;_eU`+l<5zIWUp*jvNJ>A6Ve<8%5669mxTnR~ZCP6bUW>_W~iH@ScT` zWap@dsUfO|zivs`$DPwIa*BnpMa*JTv)qD_ zXx!8t2p7vF_|90>O(6IHh*8XU9c~7;wDa(j`^sA$e=OR6v*41s$C5poxo=KfbTBp! zeg&%He2ZK{W+FIu3R?spI3%nRb>fnhQ+Bsbtv?id1P}e#mXT8jd&e}cVBzYE9fI`Q zCaM?S3s+dZOf5;>e{X9UvsDt-s!}C2gu;}q8Ee&wK9oq9rl$Z-QmtTtcTY~~I<0FY zwfaeK(QHh(J1)s|wIueQ$!h5nLAOdiI^JB3pHbH47F;JaH9u4;mQBL$e#I$$PImd6 zy=jvgxsRGuXJVYOp8XJ7)HYlsuP?jq3Hpoe*<}jdx{Jbo@!O<-L08IMA3vgl0ND*d z1hF2uaTLcm4@MyiTYsp#Caps8YRC5z>-vxW7EZjDpZLIBYooG^Ao}TW!&D>n);#0U z=|dS$e3c;CCz6dr@Z103X0dXl%O?SdfUK;X`ml_u*52ks-y|%fCXp^P5i1e%_o9lU zqwDt~+jr1H1(s3T!NT#IWB=cr7?CcYI0q{i7pn*}6DKneyt*ZIldI2ttGk;~3SQ1Gc_Tx&U5=7<@esal)7t z_;)xzWYD_=p$>)PRvV*;7_e@PMMgB~Mooo=HM5$&UIIfEPOsEIyreW}j7r1Z)TnFB zTa+)OSMj%H4U{+kM~g7Rq+PXrR>eh?ZjP#PPJv)h6;Zh)C<+J1$V9~8g^v;Py8!ib<`sG6?@K|vH{ zx{qzDk8Y|TmM)^xdq#uqJ9{wHr4IhP9BMT!VCKm^3qz*me~+pk!EGVH+GTu?nRlhN zS%kf-*ma$(MR_Gyb0J%q{|o^g;;Y@FY9iKZ2-GE-opvf>>VE1_>T5k}xpGyn_cPIX zq!u`0YA5P{gfgNsnlc{~=Ng@x5_#bEn9pQQ%}piTd3eQmo1=tUa8HM9MQlZ8`A|dM zo<_FPio5~7DZWkF=D?5eGhqrJGH|)4Uy%|>E>`i@3F8EGuT=j%`cJWy;#A^vxIYM} z4*!pFdWw!5iyHeI<@xR(cs6GF?>cLV1Bba1?ZlZtc^4AF?Nv5L;ip1*IMf5fl_skG zMUU(>vhO_dl19|>sTEfRlKp3UowTuqAHeKs*^H{@)1Z*n->Xd|yYIZ1Ny#gR_X{Yyhm*Z7$7?*ZIDDM(jx_l% ze_hf&yViQWrSXG1&FrYpj8V?a5hxn>vpP+x`W|HZoojy_X@Bi&Z=SSgH1O6D7IJ@o z6PRPdv=;z4Y9#wQ!VAhWe4aeCj=qW0K!cND|GI>#d{LuUEpAaJx_a5iuNntEr+*;& bB2~TVMyUWi1h((+1{*spIk~u^1nmC;Hr9U3 delta 270830 zcmZsiLtvNsdYT%rk|rxRF&@ zD3r<)QjDxjoN$!0izBOWtm&xeQ0Ne>oLs!g1r9Voi{_T&1{Vr2V_5J5H$uxlvamJ1 zM0>v0YQ4~z8{vuwCp&UU%Ya~Gi{b0C5N}WNS=3Z z4skb6Du*%T9z**02U=Rt7@3NF!}cSb5(%hRv4NHQf?-)`0^`Fc0gbsvfw zHhx4P2Ky@FW#O{!H9I6pHCQ4cg@rVt)V#2rN}b{!4Hs=rGC4) z$bC`S!8g2O6x`MOG`hz1UJs?%*NfD45_JefQQ|U3(7=a4YXlcLD!7_ERzdAt?%*$I z)}DO~{Fnv5CZm<9Xuqqsj7riwr%0wmW%v_4BcimCA6eHoI7#PYnvEpGCRm}+GP=d* zl!VFVhbZ5tx9w@B#yihb2MPl*E29l_1qn9_1Dy_E2<42h=E7+aoce=<J*~CAzg;qP(op5dCCG!%8(bCO+gr{s3XYn{5(W<}n9{n%TQTfoX%_AI;UT2bgn{M&^N*O>$Z>K?$8Az5#r&>bt7lueJ zLUO5gejE#GrzSaWk)0~k`G@0mM)r$X0l(q3#FSr!C0Ihvm&lWky;G;aZ@B{pRUCQ3ow|IfpXOE)tXVVG_LO!Bg9p7SYG$tPBV0oxy z`SI6mYZkb3`7yeerCw4J77mzftWlfAUe`FBxrnu3aJ@Z!6BH#$)W4*V`r0J6ytUcuxqx-Kuq==NvY^ z%5jyYW=JjVQ)m@+5_k20&d%X!?TijPY_lGsTDGW|96U9at}7nh8Dw8Wnq9j*!96$J})v zO4n>>-Z^guH)e%P#Uc|R^3JH?H^drAo$?uKgl_!dRgpLideNEcp!mS<;K3p{a=Q2* zZ-Uoe;@44ft8;YjK{VOdv3#&&EgZ0ZqgX6=OpK1%TCYx)3wLF(MY>l4i&wyv@1SdD%k$6P!d!6u zV`>Z<=+ISMFEJHhu^ohQlPgY2e3yRg=Hg{xm)$xwEXkGv(%EBX0~Y?Oe3BprX@>b@ z+J+AnYO^Fkg08_f{0EZCBaft>Z@0W}E@YWAq*|BnWiwil-k)0(EYMZTC&fIp3#ptPcBF-oX^RYmxlP|eTonBfvE=PJ(}|nJ>p^_I>oW)7O*Fs9Th?FzX2HiY+wu?- z()e8~^pGyRu*h>Va@0(mB*%t3}O8-S`bIEdQChn_h2aWO4&Z_r!3F4GgXP z5i&v}_-4P^)unu`SljsH2*r;PB*QRWqE`6)P6n$pYCm|1~5eKm!4rp??w)~r}6 zXVjT-UjO=FfT`_0wjlW4+nUG(Nmfh9v9q=pvG20-`MRx^`F(=n>mf8{E-Oj;XNZPj z7wKFpFD)D@R5!Gx!&&Xxo5GX5E1Csjb|2j(qHD^xfGxlQry9J#>hx`6p2tDHH34t2Q+nb&SnV$3%Xou zdRdhO4K?gPr-#EPdWP7nt=g70#J6-zSWF$83KQKnRy0od5(Ue|;KJvlGjg)oYmvY$ zv;Mfoyiv7^y5*;gs^#XbL7Ao!O`RdhnaYTYd72CFX_Ki*+@ZRD-(2fT9OuHvs!QJ| zSg~bNZVs|I{~hZJ0Zd`DtAb4DhJRwfY7(#X3vo2eaH8kK_#+5&Xjz~B5trhn#Av{} zfk>covG9iLy-da-DG~?;RjiPrL43PQw81;!qL@7GUq&2EMk7^>M#0T*4u~}>>uT}w zS>oD2fz!)rVXo@D*m!%IU714i=)-}Gv^U=>Xt4MvKHj+Y3S=Y?DV=ufYi@Ja$Yok) z^xCasiCVQUxnF(;LK=Y3djBNkJUrKdVg0T+yE3^P!-c@`5q4y zhlcLXRAvFiD4`9NXuhtn`>B^P^+J;!nY?zXUO6uTenrK$ zB$Kxi1JJB~CB&MaQ99YmSuAT~GC(IRa`w z$r3tT&|8nP$&t->jXRo6{XW6@9VYd|vT$dzKm2@al_9AZ! z9X(jn2c}iW8prbdAGvb_W>A{)lqGX%HxD{|zIhDPcuSso9r)v?n`rip3a(Hs;6A zkkup242BYe1QCM1D=tu$-Reu-`?BBL?y7vIMPNSO+z~*2zb{Fasna9rvB@(4YCYw$ zL9L}jS?eFD$rg){_{MG@y!6w6*m(h|%*^mwPsis}XoFL-R3@-a8f9B>{R~&A3M=)9 zSULOT>e^cji_MCc3;AqN4{XEj8K?=AO%_>Ga{+c2y202{T0yu-CrNDq_r2+w50zVR zY4h4PnrEx4_qH!D#*j&B3l<1o+m)tS-`AmJrw*6yGgu)r&}7YXG_F~oWLjyi*$b8? zZ@vze`6zvlGPPgMnZ=FjWhW_*3>M_bMi8T)8@9|naeG(tmGZ{q7U=c@re88iV)KTg zZC>;TGVPd%ushEw3^2g;_1H&~-pW`&B*uj2Ko*P0hCUV$cjwrCN=yYS$uY49{vfA{ zLe0goh@YYg%!(10Kr07S#4riLI6X*}C#eInc$vACD_i5mm-L~=Gn6IB<<}oR_GOzo zy4nlx71nCYrk$+fGIRdWUrt|EViE+8xNaLlMx=#i{{w-iW)8Z-=J_SjpNE~SWC$@i z(+492xvoWePzWf5P)$W94JBmXD)B$R=q{x{jzZBN&i(VPZ$D(p zkc9|z^1NmWPQ?kqrz8%+->?qGmg;m`@^|a`cZDeO3PstNf?GYRr*=72b2l1)I)rtd zU~2uf(?JBWVA0mvc8Sy8$dHLV@pBIyjgRSX1&hE-^c&!lrJb0M`#a6ThxMh>I(^Az z&){=~H5k+$mTlvpu50!#+VhEuIQA56{6qOQ^imQr_q%f4BJmAuRGNrnf}#LN1m;>( zw1_T#e?Zr;WrM}YFlcyULj469ZPwAlmC@5UIP9}`Y1-q=f&~w3H0tr1r=MH)ozR6P zA3B^g1xr@K!r*u=obOBT&|IU{zC%}>E?Nc4w(7e6ES^|bs*HS-;EPo72I2S$l`cBW z7q~y%F%n=V{J%)c$&!34j}Feo%lW_Skscj6*UeGX-g`}wamZ>b>U;m;l3KwdfVqDzyL?I9P9E_5TwAB&+! zMHuyKG>Ew8X~~kvo7k$u8X&M10*$zH3Q4J@);}kwgl)C(?1i`(hVsoTnAjLD`*YYY zhix5J)oe@>jfE)|hf!G#6!ytDBVE7h430nHRVc`IBiXTEtEf!`Tu=iksL1o4wTzGe z=^LI|E>S5M8*9y&KyhbC@Te5H!am!syI&(IV;iHwee~glm6QD6Po?G2fQ3HQvO!>l z$N@bV8x*ReM;f;2YnRLE`uhdulDDpAPoAFP&_!*{a^Tp^y|2~hd+&?-Rn^X5-B7Lk zNQi}Wu;)Hai0N;m;=hMLp8_2usbkTVQGsEA?6w-D=v~2SYg%QYu{{ zHN~LL--9Pk8jUkwL(W_sAjvyx0R@7CoWQtNDm|ZL0GkV1R(Fb4hK(pDxBCKL&WJK; zlZw(`MG-CiuoxS1u#n(U)&l@(hJQ4ed!e5B`EWPZS*^P=>AchY-5&GZYb1)uP*c)JuF78U_HP(iYB8Te+HK*onZ zVUecuOIW478Y(y;VAt`ibQQl*KCq^-lt6t&G9@ZRZu=uJ~pf)ZM;*zQd=h zBR2n{xW>*(JW4plPAQuP%5U}voNALf;kpN}f-+`xAvOARh(JQ}Ik?s9vn>=TT!nLa zkxG>m{pM`uY$DTVKr|yR2{xD_8nUaWl&%fSV&XS7%dEHIrJQh!L$*H+o*c(ZroZ80 zizl7EQq-stahA>&}S zY_SjD0CJD3S;0MWxc^PjSAFY;=U2^5yg~!f`gHtnV9<37xc-s(Wjq9o!Oln9isAIPsaM9N>?K*~9pu1u>}QPBdo zOnNqMzkOIj$^G*$dL4P-V0t7{B!#*8wXpVb@vC1mQJL=evUQN!nz)h=W-ax-&?fhK z>zGRM9!Sdzqh=kn@70tRc|6V__KQDKxT!N`{UTx)8l7cHd%URBC4TC0Jy%|I)O!j< zCe4KU1|VyIq#dJ<`Pj)7Q zIFrABNw|1^ppLfH{)90UbX#J1$q!?gFB6M#DXs@i#AO3z=Ec;08ywr8k;MAmO2l0H zhWN-B|H~CbCq`0egRDafO4%8R#UJstQ(VW+1c<;xsQl`TX|cz}THck7>9GvLCD>OT z4ZJ5U@PWLgJdwOjSG3-jmmT71$Ozd|8bRPSC!FP97GP7Vlp>cWL4sg^*IGML$M3Qr ziZUl=Hf4TNM(mOtyN)iX5~92;peZE5kCR7*2W{!fdT6ZiwF-}bDbXklgc4Wll7u3y z0FJ!nqKiw&l{lqA+seTe`LHo?e!!zy1NXFopCM>&ZgN=WR$&`iqW06>G?wo zo3UNznQ~K7?eWb0ayT@J$%|vX-k^3!@R{IqI2UWOZp)u9VH2choNGw9iqkG(_ zxEBrEWTpR`Zv(3%JMi)P`4YX6cVB+3c{Q9?`V&<)@%*VoLg&X; zZx-8nHziyNcT;#MRj=ObZT(JH=LVPIRfD?F%CfR9lE_m8j^IMQGF<^mwD4JhcW?{Q zuf9%O$|zEIqd56y1!)gsaP2fn4bS2gr@{4N*r^xqM>-g=qA5vSjhylF`)dROePAel z&cV>IuAjwJh<|GpHo>BxT=PloxQn@}qBpDlpg1>!ba(JUOmJLFi8#5uBf+hlASlvDUE%QwnbIl6tY|Dd}aqR*J;L0quX8=L*Um<*>m#Ms4#VQ zyLl~-+A&%b3l@B8q@{_@#>Q;u#0~pEbpdPfE%mINjg2opr`jlPvD)f!1|>Hz-+?KW z#H_by_*cN))Lw22RWwVK_iusm&5cuH?vUg?9nY4>DC3E6mTh!J%9fud5c`Du)?Zd$O&1mJnNgWo!^05?6q=Z~FlHY_5}?SO zgPqHJu(b*wuvVd8v(+dK04`Y!LU8uTh>5n)?sN8X;W?@o9UG;1NS=FbB(;s6!Gl|f zI;$aPA5%rtPVG*fTF6+uHu%wl%Iy1gs5G25;BhLU!7^Kq19)krCP;7Ep8{{=U2vyJYL=PFyOfAiB_8M(DGCL&|oNh!C26ZQ839Aitw=cJp{1kSXCwK{K3 z`liOq`ZxdjjjIReVI%P+hD~(;DegMCbfOy*;bj8N^z*clILA!cgen{D2_bF^T%abc zvU%PcR=DBJp$38^z`}v~%VAZWm_>HLCEu>*mDknC@1?zs48J~*-kRl)mQe^7^v3e$ z$gp}7<0eOND0^HViVflG%ft@Q=c+go&fIBfWaDT5dDBITy2(OhC->RN-y0zn_1tXF zp6{K1sq1T%Xzl*$r;RP|?nzNtgV6EsLSNLPdIxauJSaSe1q%FzH~k&f19IhgVvg~31@j|3$k+w_Lxftl@w6s&Q0v@-_ljPc*SP*>riTDsk429l4u8+cz%=9b&7hSoMZ{#sSd6QKzX@Mzi zImbgTwBDJz(~XIMY}B1YV&D_5T-=dvbbKWA7XoW59hxP( zy)@mC;>PS62tE-ehT8S)=$e$q)AcR(IE)x3FO>x^%^jqNUWe=RC$aW@&yR|_@auXq z80h}8RNg2t7ti?s>O&5x!MlW4x%~qGu89iH6W>cN^<`}Gw}JT?`fq& zV&r~{|8ZN$-^wkhkYL5~qK+JXjXGL*>Y>m#C;=-AffaBbCO6)%v+iOcJNr%~t-l5B zp2DlJmq_(Nrl72?Wa}WxYRposui{RmUZ$XO73Z$BQCF4rbCjg&bXr7!V)&(uvcGzIicwE~wf_H#f&>_WBrhQY#H~ z&9hf$N^}x_uM`FDGuMiJb5(zj+`w#`Jz3{kE5fl>F%Mm~iaj#iQlLgqT$3HK5?dZu zrb?)W0LlaOxHX5CIFiforvug|NEug?2C*iMPCJ!w?&&G%Lh8#7TH09;*cFr*HHagc1%v^dBaP)V5)zx&+6{aS3l@^@iCL=thJghO7y zS#J5iLdKq;c=}%|FapYMFhqcgJ~0r?bu1-pj5cTA*n@Ybkh|LW}zB82O`t--xlxC1~ zAE-NvR(=G)4~8FB)ySL_pw7AZg2garoJbrJC zPLCl*eQW+LkZN>g!Gh!uUPXaXn<0YsXX;GA5k!luQF$3ewilVQ^6 z4MJ$SmEf1}(ixwfrmA1z(KFPdSUSjveqw-@(OP0>DPNdbX1yez4KIrpOFco1>Gi^+ z5%=q>H_*XBBl$7OcKoE=lOC*NduwJD(Gwk2o;X_0kYf-rNpCj!sjga@POKS$6ELAt zhD;v?fJOWlhI4!j_nqdK9kwp|rj~sfeQ+js&AU@Gh8Z1xGx-hPI}=M;INYPjn?TVp zLRM18RB9o0;K;BXtF(){d6i~vh_{txS?i@}Qr{d`z_J93@`e;#TpR>$i@+j)US|?z zZBTLsSwznw3|!z9R7LZLpOcD+3h##-O6Y3?vQ+uX$b-XLR%L7vM7*CPaPwFY5%=zb zg5at-QsM>XH@{=dT*;~8S89Re!dUTBZ$dfd=#|KjY zE-Ay1CRP5?B=YI;>cfZ!le@v3=f9JB4T5_X*M1JAA)q{L9U@av8Vcp)lTBC(vV(Si zgMXNZ`wRRD6|3p=9UAI9`$49|Qh+64aR2C*82XsN+`E5)8v3}Qtd*xS1wn~YwOOeq zo}s?|`(M5&0aw-uVzW|8(KNnU4xU*9;P>+?_kGC&7ve%&Qq%zvDABAi{D~M{?KnrF zN?${gRc5B9%Amem+@&8rnY-`Xw6nskz`0nVk8AqXrTVvfqq(`>>2JUvD3z}clf8h{ z)dCRo(kxd-`(OdoD1B6uX>Jhj+|-~6cauetMeus8gbJs#vT{rN0i_Jv&5HzjAnzYy zW-rax(j`94rE~*Xg<3I}LE~?j)?jJuIhGWU8?Ts2Q%VXkbCYPEuA_A4C!Sf7hfMT_ zW4m&deCzgd+=ZP4{@lfKwv?P&>t;(P_=^fA=UWxQXce5Kntyq zS+O|R#!DuZxK}APZ)oCQa~y>_P>%FpO8B!@8VkX^;%K`b!8Q}FL@Q1QIqW_yf#$Y2 zawy~-orx8?4HZ+W$o(>=Lps?LT1ksnb+s;hF3uohsFK+t`qh@25{;8<$Uvk6(`3Fx ziZxXKEXgdo*M_QfO;XpA^zzk#^ob05`reUp9$=pvnET#YI)HvgA@w(?lGccf#k`ei{vD@Gkzm>p_c$Z}@c>yIcj-PX-4iT5FBVgJRv9a*HGBz9eR8{_ zIzOOTEWasB1$qFh%XITg`9BVx(@b6bc9P^&a^8ebfK@qXvyh|Blg$&~j7BCljfx-N zqTv$K_dGPvctH!PP?a+PIwf8)jAY?&PF+;;fBG>J?$fo~w8r)&Z5biE7jVS;^QDo7-jE{&s>&lfs3;v~?_p{BX0DOjX8 zKv-Y@`7>qA;w_NN42hsduzCu^9Ec_zliy}jmK(4w|c(>uD*A#X=+j&_6wgW)%9<=EG1eXpB%T zsLoj4c((rXhUG+tMM`uwyZaB-qI2ZqnPUd0Qde9^9`u@&h^WAxFN_h-{NNcLHN;gp zt`zy5PWNqSDf}B0+MJi*{{kO33keI!|J>mP1mKwE%^fV=tVq~d**Hi@(ue;*PysbM z|3P3oYVW_g(@is@>Qo8ULL_`6i$oc!eg`I~rvyZl4&AL~`L@H3H{R)yl?Rby`MxIU5#_-0DlLH6A7`&KzqAUd{Aa=3oV=7~W=kj(Z%r^mFY*ea%i zM>ps4ESu^JR(hPOnYX^tYW8ap1c?9JIU;Qr%nXZuE4NZ2W*g~_b-!nCP{7N6mE(We zPtF`+UA$FR@L$_JeZb@Wp5@`>)_UXrq&5GkagSo*{O8HsC*@3E!*McjYznyk;_Z`1 zv#H^#;4(IOWolzBEu*5T64$;r7=;+Q)pG%KzdUMnE)jKh01k@@D$?u#z|L$QcP-CM z=+}^dTH5i6aaPupJ;Ax2$G^J<+tJZhO~r$!4d6gyMuZ`5U#G<8*+?ico7+Kv5FCQ0=5 z^XE#QyYQ8tHo0wX8_-`ac#IH6lJ4Y(&}l3~vuZrc@XnU1+qqWtK%UYsb0n8k8f13{ z6HsI%N?Mr|$baMW@)#*Iki)8tf&Ao>W&F;^iZOLT&^@$;e^^2E32Q>9Mh61<&FCIE z+$n#pVDYpkgQxkQ7e_9|YcQ6*Hut%KCR>tL|1cAMx2y+F-850TUp9V+ze#!*Z=7NH z1F@K&DnO*I~6Fw~|f`6c&VEJy;#hP6hru-D!*c zD<~JAjAU_z$G4*Do_Gm@(*S`^Y8lqzCP3qgR;&lXpy zOj!SrjdBkbiGL!q&(@T^BF7#bJ`jDmquuW_N9_9Sszs(hx|k*j+j8n}E^=O2m=tqH z*D^bQp7H-C+-s{K)YX#?p(DKld zx6ODVr&b{q5G{W`Z5kycSC5EtUk`4=Xqo^<+AiX`P60eF7JvEXo;#8is9@+|TN9La zatXa$^d$2#;^HzTu^;f#VOmf{1A})f;}H1aH`6v3W4lOi6u{skb0#bHw*bE!a7C%D?i1 zyuKN1jgx|#-|3xP+H*xYW^dgEGTCxD?53AafD2_ds1%5toMbA7%(J$7vm9%j-c05# zek^SXq?2_<)-G4yANOa0!F!yC2*TOs@P&O+d^#QWQMS{}^vRbYPFP@WipRx{A{T!{ zY`iOoYYA5^j8m%W1nYn2z1-tF5wcL}j{UY{2|F<^gQ@+Q+eHMbTer99gp+jDc4n3W z4X_Un=)d|NIjoEPTikb8dL*}nVTr@Cq*CiX4B+Sw#4JBcT;&{yE3KRgxeQ-CeuP-v|oi~nVcnL+TN-|D8i~}nWSapdD=;>doW@{^$Y83W- zs|*^id&hl&U+P=ZyO&n*pYn!u*J_DA_vsnRVnih{Xg0sH1V{*x zZ#3oZN(QQ)YP#0)dhhqb(-vC(%xq^6AS(@I>lOW_lXzxsJO7SN*^aP}NE$5nniMw> z{8zq7vqZq9eIK{R#5RZN+nTU0-iK_ErafwnERJaPKG&HT5Xkj$P_GV2GT9==)$8!R zho2GYbg|-z@5g2th|~o)Mm|jU0dnwm5F==`@%Mhg5~;MBX@r1ej#cn3YUr}g_9(@L zhiE!+>0FFWoA)EFO_kLbM3V+KihqMF-(1@4W3RjHcZ9lu{AI!r%7Uu*2j-;SA__IqM=j`kXhi?Ib^{(<6=Ij|9bjRR_zE4xi~2|LMM;z49QP* z5i_mm%3*n#Ldji|{NuVOM4uj_9hON~Qz%qC{F!Vyeeo{eea&$iA2_x(hhB><0nD5B z{M9feX4O##W$4&k(QKxFtbOKYijVt;Y<2-wMptGOKkn3E+`bc_asI(^c8H;G&PKKQajJd%d|%WvjW5MbUBU|tb$?T_n*@}IBY+D!~#|De`2i`|b`L!7cbn|(EkQNg?Zeu1@ZiDTf%XIU%VogckX zLf!#liYml=V;2NM_=*CjCEz^zsGOU%JXqtox#aKM&@G|l6aG9s$CUDG!qmK6>3vNF z?mof50p21uUnb|LJZbYhJ|WvT+`$Gx&j`QfID-t{c!;)Ki4R_W=lh3yZFw>Odna0& z{tM1saLA(AK{OT*Nxt7hY>@M64X=OKPbIt0QeTde-E!Qex{1SjgQ-oiszs6bMJq#7 zeA^J_8U-QIP+E4IbT;?Wo2!_oedBDE&7RH84$KayvE7CBb*&T(qwN5gM73VVl@PN6Q8Vi=x|a+$4zS7@uBW$mo{1L5g>&NSoLyD^5cS<9lo{7_|$$ zwh1&Im99YLRA$YLwZ*5gKQB38>x^9c zkJuYjw~rI=?`ALIPbtsBg+5hc=Ig` z;~G16lcn9;O+~n|b!`up)5W<2tK?`M8|e%0Dxpu}>{I-MexP3k)d#Ya>6-?)_z;qQ zu|z!4e}stD^CFtgCpU`goLjVDfraXGnOk8Mklwd$|EVqgFzh%}4tr^?Q#sAMEwhuM z05=b^6i)iX02qlr)kXQRbAw2%B|gz5Ua<<)`|| z_gi-ms`-5f-M^uLH$UK|?_1fez@28&9zRQ;@XPUI(0N?pDz8=K)l?KD@!D-2tsH|v z4GBX#Lgc6_HC08V-1N&)H;^mR^dc3N{~B)vF{6Ls z0=5Qsz1B=(e2#!)xx=qtOr7swGI}Y?8eIPGzfuCwR2;|A(q<19Is7`A@n$$b@Fs6R z8gWzjAi)sR!5_1Zc02;=vt9ATbLJ^iZ;!P+0gK!(FRTcR!i3SMc1FHxSh_f~VbmBS zKI)NXbzOyLl~X{iL?`tA$uJHH`j~mozA*Ba&GQ_-lB)$*D#H>9HmpG?>aj%qVqbvv zsgu8^u%V$}=Q;QOU=Y=XJgwAjJNJ7P_dl!FP|v=AIQaTuA7K|{3e+h`4$rkZ&2JAcQJ-O=w%IS+FB zhZK=`{gKJPyu=)7f3sQGMSjH?D2xrG960gPUCEG{n2;_?E^ZEt(dL0quK9Pte@UXi z-*U%gKGFcYC)21`K?-{|jl}mRgG1FFAl)W6#7N1ZfzLt=LI$zoC?y^gb&JMT>v{iF;pUYX(x!>#oVRcc+V%tp1Gd@{t z2ydqwXt2e+z2ddX?-yMpf!XI68LbAL&8`6p{M9x{Z4b6yqGM-Z!ql$8Lxk~lJ zK_$>|o-H{aUH$KyBofH_v=kE}zD}x)00C7R8Mbtg^J7aQJo5EY$}k7&iL+ATYRV?& zoT9&HLpVjWYwkD82r0*FfD4joXzwoZT-gw?Z$yy)%*Q7^R#f^y4sGGpczu9LIMXFzi5WuQ6!5#+wIW{Hp1hWl07Bh$RNM}26z13b&h?0x zGI$wz;Ljmg$)VL5l5jPQIRpX?z7vMBXnyM-{gaeUzU}E8eT;GTx|rcNZfq1*$cVHL zIRR2SLOhNXB5j=I*Acze?z~eC0Vn1FUs<-Lw3D(dV;Qg5dzuih>uY!?Be`t`dpNfi z_xS{W5GNt76NHC2jlgcs^_fiLEDEX>1O+qmY&A4)-SJsYr5_gBI~^8ORPDBA_N=FX zy8bs&@`uuCR-D$udgyd*uM@#%8bPuF`?~8j3lEIC$e29UM{{#@pac}78BZj@EFG+y z07ZBe0(Z>2VT3wshcr8qR=MO&Z^ zfg6&58`sK?dx4K}TTNU=hbjOJ^-QXr7OzeS z2rIsr#5lR2XcW5jp7+inYGc%~id5e95sbN|>+}sUhu~%dtB}G> zEKt0dj(TshZQ02Ccnp7IN_!1v*@CtIT213>1@kaZHA#SBj(0ORNkOGC=qqRA1f(Ud}&=&KG*Vv zLc@kPWxyZJ^3&d&>o=Fqm5lhkM?H9u;Hs? z18zKReO>Fnm*d10Pj`1s+@JcA+rma|@&a8Reh$g?sRY4-5^RO5uvO&AjfHKBeQv6P z)nC#kB@I(wU_%0!nzBb6#?%Q|vaAy#nFMULps}YF7xNMk^>Lh968-yccAxqvl~byp z`m-p_y}>k!a)L5gzA9K2cjr8zcnPYaF}ogm{YuZ-mAhr{paS_0DoQ~*o^tf6C+=|!JHK&BwgfQNH? zibDZQP6WWx@BxNTjDjl5bT93WT~QlF=pRRR721`V>~*_OQ1sz+lnx)HhDMMhd-9S4 zdkTZSJS&ZY>mktF&Fbad#MS@mE^Mpz{zcM3)xRAJU<;-8vq~}(aY2;`LOf%TwuVkc zACnsW_x@=#0CFTx^e*`GzD?((H0h+90#V4@XAKV;CV|)I0w>(;bQq;TY5@IJ9)De)qlruz=cRacW!oAhJ{IE zVu?9ZxO*W9o4d(jF<23;+_-41qP14i=O_^Bnmj#R%~zA07Hjt@;w)FvKCoXI9(*+<%0w6XWv-NNmhs^N!6ukE`Hy7`L) zQfYKtf$dQN%CwVF&I8Pu6DGwGi-$IPz=IH&BzRPosBtb#72Cgp1_+|#_AEUDntIZu@>ngaHkbCl%tg)eu^gpstwtH zm!Rn`6I{}J1?Xadnj*9_sv^p)NeX}=G0aIe=GH_x#aYr}>QLhOj*}*+<FM5c6#pHVl} z+ZFN-1Tds0-_c$nm<)(nt0F}M?a1(?2uz9%P9d1}2`IvzX8#XwK#;#{HYZ!BGB@CR zY78GOiN|ySqT?)C=c&j(hPpUTE>aF=+~+t7#OhPW8DZT=Bltoi)V&lUV2FemdBQnV zLQnh<5zPT3V5)1LW?J2@J1}5Fz8oRKcoq9&l)2>cC*@f)Q8+zGm`pRH0wszYGk>?n ztnOvZ>Q-YGJhv3zM|3953VuR#f}0d!@sn&hIG%I#!kS@lyt#PS6u98{wAKE=;6r21 zbMmlybj){(<0_&h5C?ckvXSOVJ0c{@Q$q7ps0KX|n7-xcP0h@9TlGDnGHS%6;#K z!*w}~BV&w*4deug6SIt%j=G^=^nm(yF1X_mo!JxnD9NyMAzgJb#5qJu6~} z8*i(wetQmu1S{Us{>p>9F6p0}^0-=ud{gehflbvo|Fk>`GGE5L1gdgF0Iq!=N(ZtD zj9NYQNo?J_=Z#HR+rF<~HDlVkZ$9`%m$870L``SrRGOJ1gIs2+fi^Op=0!2j4_PFd z6%r5?P6n?5g*#!F&|9faB!7lSQ1HU}Jf&J_Hq1oM)4oTJ5$~?+BSYotLtQo7K4#Wy zk);ed%^L2UX>&T6*GCp%y>S+qaE7=$4?I!UnABu2JHbJ#Jn6FFEBS&q0VNYGWUg%V z;J;)nmeuDVstBCYgRbLhzFtzofZcxXMc;nzMsp=z!@Q& z!8ifuR=`E>tfMfi*ZY=c-|gMsvUjhY8^A>0t~X`VR9mkLO2koegCL2(72t%I+7E{v z?2_r#C8|jUk4Zn(Y5Ii}kZ>LXgL!LN!1dN6jqp&8$nh{;)swa7F!0gZv5pX1f0Aa| z(x=D*@dB1?G29&bYk%+H*ysqk^N?lp+SbIKf7#OHJDMutJKbbgUBTz~ZkMZ!8Tn3f zl~;$Z9K!@(^*5z0*75!w9G6GrF#>v5m(3hG;qm^`AA~Q@0roS_-8n7~`;A8?nPU!~ zP1#*lWbN>g^?uV)tSNhUUOApua^PU(-Swuf_L~pxr9F-0$A1WgabIJ+Bhn5{IYZ~4 zHfTUdU1_6)WX{WbO#T?GSe`>0coi>?zg9!ndVx0f7*-NjZAYj9m94HV4fe&zNj_?? zlTau->*1JFa|&tKen(&K{Fa-peO11y8;8P2YziQkZspF}%Uj1cjBwsqu#yT!%e+7; zC%n!Foo(G!R)0XL_ZmT?C$p~AAT|1=77vmDlaIu}j&jtAGIP#&p1Txq+D5M0*RLII z>*ozIW^bdwYm!uERRK0U3O5_Wg56%a2lZHn5oF&shf&Q7FYs(Ny{ysBNVYCkroj<2Sk)RT_RQGe~f?0t{wV6%)7=`z0+sR7H@ zT%}t3Sn(vD0SNJNqbY=iEMaQG5Lp_Ydky_wz5hA_k`>4qW)UM}5tu<#86r?bs){`5 zUD?oUlaxdvOW-+$UQyg0dpT+g<;n(wIC3KPDwylCVHL*S5tdfS&&`otGI}<1Y!Jc+ zG0U>=Vt=ecS)keHXH~3?L%l+dUr)S}z5SMhaj;&jur8MMjWmZRJjwVHO>1Ek1m^c~DVgbJ zz{GGD$Q%GS*!s`Y=y=9c^)b3=l{zH`6o0@N@r9ns=aYBff&J)0JcyT^XW*q;^71qu zBy7gy5%%5AH%d;7DB^sZJ70ZC*cO+NiWpW#sfHG-xG0vx_|1X zLAg#{O&IZ1Vd#7;WX}j9xSe!Y$vAxR;(gYHc+VuI`Q z|70kPkcsTY%({!8rFwhso%l%Ue}Auf``9=F*2R2?b65B7JgT7cxVU5-JCEwY#la#C z=91szTylA?xRK9qcoxMg4BIFUX9HIY-+rQaH4;2fr*4QxSV|pn{vLI@Md5E%r_WO1 znonW-|B*V~tE&2Rb()p-Jl2nkbX&Qg8(|+@zin-Qj;`hu(O{7Y!GT?yr5f^p2jOn(f6bD#C_Xh`YXR>G(^q9DjqRBKlPzHHrNiy336KDpHZpynhjs(ND_Qu_xz0 zC;R4dsC-R6j9(h|l`q#1H}lU3rM*;cDxbq3U{K~_+z+KP;S4ewx{oU01PhIF(|)6- z;1N}Bzi`y!7mj~`L2(5+?{=gRG=`!=NBbb@fk{)Ur054Di!hjR2z53?m{D)7&_3mK zP-8&x!$P3rjLXZ2rhj%x&cn|Sa##+5i{RityNeMTlI_y7FW-(c*M4wWUmZHSqNhLh zLZ1fPawy05lVm)Fgx%cAjOQ<&{q+5}7r(uD_Uz)f@1DN!LX|ch^*{Dd!OW2zj~Cp? z5nt)kNBd(p1~bQvU%aULLo@VWga9U@1CiR|Lvl9(9qm(jHZ z69OL*>MR36K=2&h(JRcIr&hw2smq+>8g2AcZwwAt5{N zukV5YDUy<6@gYANT}TiD_Vq26yDRG2Ow+Yjd%C*+GTJ*j#g?NvXgC;{+Gwg_%RmE+ zwSi?LVp!T}qFwY(&t82vKe;?RKKM9#y{98n*A|z5c&1fm&R^|m7k!IZy`SZVj4iSa zSb^0g-B_AgY}`L*$=u_~(WyI|$L!SgSh8Ot2A6&+wiNOB#puO@2>9pQmw!w`e&$DE z%xN%Y`xTP9U}}kru4F0A07<}LpcgOz&9IGzh9OmRrxl6=TS|j-ilv!_kU_{xTdQCj z1Pv{J3_qoO!lZ`vdZ>)XMK7ZKb1MSutDErTZ{5;=KY#c74pV-ZFySQE2o?rKV!P5h*{zf|QQptZk(2R_`G?h=ZIg^YoHCyM!sn^hQ= zaBcwM(Wzl-Ls&xwX^2KcK@CC*c!z_3Y)mxMaFA|6B=A!ih|^;SeS_#dKNJtw2V|Jd zgn_u@9uMU+|EzvU7?*>2Bv*vf$_gI4)RV)M2Nh(m3*4sjV9ebxI24a&wh{MeZ~zzY zmb+s~07F6-#W2Z|1lFg1iZh)I1K9&dGsys9ok*SFD8oL(P&5s*=Yjmh?n#1w@XQ1c z7SC?wBMl~{4F=24%+d#pDzJ7Q{F^OaX1`#Nxi8wqeA_# zc$SCAF^x1E974!XG5$fmp-7*3Y|LXJjCcm;mVQ)?%#FGoVaRJimd2MK*T zxN+ennvUH3Y{=(?`jO`bv&tcVzFU(@;-`fEkO*4oa7O1~N~)xfv*}#sfZfPJ6eg~4 zkwiYGFp0ri2FgdF=O%qQ@heR@kWU)RYL{gFEtGc_NFNbn-wj;f{g-m(f^9n_1q)5% z(65~us8H!w)4LjBRwDk*5aYlWVr4M~PJv32k}uiDCh3u)+LaAraE#S|ySuW&5Sd1v zc1d=bAsCyeVIVRH@0vp3hmn0i*{f^3Ig^gy3N-a6b?p?&Oa_c4B*l@Q|&8yP&*=LSWZ<( zvIT|SAL_iHOO?6jx)3Fdp3W6ffY_O{a2K@@geo1 z&-CyU<8)p3CdTb5@hok+sM7<|*L7H$?fzJ2_p@hB`ZA=!rWLKI2e1}?aBEeY_v8UQ z4(~kf-mLX_JT8xM-ME}6R7G4(W9yR%c>U_`hdntp`}vRJ^xQY#_~`3)UBmU87!Gu3vTey+ zX#(EL;A!lsb%2&Yk4fD#xI{u6n*xyrh25&p6jWg+s(G*6CC8w3x7D2L70efZ9TfkU z5zpR|7>~UGObvIkEbCqMUlD_j3c#n86YYw?NAO0rJFN$Q>pS4CCj72y!nG;kt~}h8 zhr9A{R~~j#9@f|hNnR6O{)eSxB_$9jbQ6c;a|M$NwtJ#=e5v-gbiyptt9oG$grN`0~PK`@5xY$_>%ca%`<{=x{fsj!tRk$!PCC0Ig-0(6s~i+ry1VE7#?T8P{N$Si*CP3_RvHM|Pq^`^qU3q(;%fCR^6&={@hhCAHQknVq_Tbg% z;P3=Gy5a%faV%vtRiJGG2SUZMU0|5DGMXso>I6>*7k{Has=VnBEc2E#ls9E;dqu_` z@C=`lXBMxb&Ws}je0UH%mMgA9)IAL1W`9U+Up}ZtiTl*j_T#gxqZ5ZdoafQg zI>4jmPHZbdY36sjGdQd{jWzzT#Yu$EC-L#M^lh9(__QZc|DjLfP8Dgj94((-g3}d= zO8l#3rfC4*He{K(sSpoOOiS_UGQ-LE0^et=XuYaH%L6Vn6x*?Y?U~AGK`BRbJkU(j zQ-4q6Xkd71Du%BS31fblpv5u_q5)KAd?JX(;c9{tKB8KqbZb6Hb9Oi-@p7QiTX7g9 z+B=k_K{U%~TnhSGOoDX27;@hQd@7HS(lmhu727s|V|ZN1HC;*xEnV=ppo%7wAf>e? z3i*w3%!C{xHpge;DPKuXm*K0o^x=G*#((@iz8%;Om1KpoJqzZU3N5p&!dy7hbAb;1 zvUE4J#vhobO6z>e$2ZgmjFEG)90**!vQHFEGJU{;E?mb`Y)c1@Yw$%v#isg}U>yCN z@WFHyjm6&SXgv?c1H)D4d>DvDIcXAytIg_6Q>L}KeKPRq?DaJ>EGF7nh@vsOzJKPo zG2Jnv7UeoHEOstD{*%GIG$WcMez8g71CJ`X)aCezcMLK>vI`2xR9p%$X2m)OcK{o(K}NLSlx@AjDEk zDVH=DXf2#muQx}VnXml%-(J7VLiuDSzJLVSdLK` z;z@N2RBbwdW}#_TnyG1;m3QLj&`tEg@0%RGUk>_ zG&j7NDge3FQhgXy$9v0VDGbY|FGFt>EbylkFZU>qZa;iQ2b&IHY0;pDla zU4e$w&3n9l)=hsf{m{j46yM-HV|E*}Mg2VEwgYa9*?<6Uf@N+tmANL7sqYL&nCGCo zW0~=*BvL&cu_UDm=9jmK1b;}DW?7Vwxxhe!^xJU|z{__utE6@L^od^OV*#718r zc6SHyreM0d{E<=I#*|$^3~Mnggn31U5fHw*><7Yfe-#L@pftPd_@em=8J-}!}?{A^A3lk)mZ zGhN_NM^MDodK&jsyZ()C@rh^#v&R>VRr!{&Cc$}(V!Ft)UZ6o9v3jl1{*2iRuB=me zi$!^M`da=iHgfk`CKOuIT!_|QLg46$ysT7V(aAP9nr1`bdVjF|I%h<-<6t&g#JBmo zr8vTQX_~ov@p>h#bfr^z{+_fN{NAF#BLq>WOC9pPB_a1lQMb0y{vNOUi=rJu^Y)jB z|C^B9T0>u;X=MiXDAr8>p;+4399z=2crmrja-+wywb5;Potjt!}sMN6za`# zkiHt$_vIiPfgtK~kla0$z7jDE3%C|N(mwD!kIP(cH@+Di{0AJDgr%3!wFDCaF*T79 z69PClmqFG6DSz!-S##Sq5PtWs;N+OdjYN|KFJ+pC9Cp%9oaXSP?YJ2aL_rc9l3+o| zhkktl5|jmsQpCfqGm{sYgowr7`|VOTw5eujZ}trN_vOjn!IA0sny(LC*VaxZnq_;s z$5&j((=Fg=Cu8lj_l6=Ar$_TRV3@@FUr&DDGj!X~Zht=LR4c7~db6jU4jjwrJbWjuW`if#7)F+%xB^WZD0Z2 z0iL3Tc7Nu4+QObrgRQ+^szm)bhcTN+M}!9Gk8pg7`{!S4NYZ;+Cb~-SJ-W;Y3N_Xt zy3VNy?92?VqYn*`Tfxh%kQuBM^%HLH&kQBaiR`%PJ{fLs8-^QfG@P10K9CfPm?_R_ z<#7eELJI}c{6t&#fTaygPagu%eGZn3=qeEwQGY2fxhP3a$q0^ch}rcg$e-(kfyOee zyVm6-MwhiHG>QbP$)ISsjx|L`2Q> zk$-XjYo&*m!{(VJ`xD5t0y3VOjvLgG%}J>$$CtFKh`|jN2xZ$^qE)$iBT^~F z<%d{ZpK{;xe3g4W%(L>JGCOm_1@jQHB7a#U829tb3rI1HgCe!ZwvJ_C z7=I!Qu|#y1IfLq6-m6%Hzm^nMiWw3*l2km9V}&)w)FF0>=zlOpCv1i3|88S`hU28U=9KQ%2aX*MQl#vtrb%OIYUi8vShyyTz`S# ze7W+HOOP)Jss~5F=E4tM%gs=`ZU{<-W^w@U>mIk7Es#97`$;4QQKE$dp52Qe?-8=A z1X7k?@#ar{8}J_A@_URwl;$g}*qCyGlKhfPO5a`VJ9bYfRX{};F6qMv?SGrR^`t@u z;JeulkqXU%R{(U+^)=hDbaQCsydtRyz6F3Bt%!^KG?1O<_M{1AN^AhA%%SevfE$lz zKwILex0xcc;={Oh(sKKo=}ufFluWsFvSr3>wt}-pp?rLdf{^P#=p@|*I!VvTOVtN{ zJ}wZ*oy_vLmi1-3_dl~Eb$@gWuf7!ic6S;wjcqC_0=N^{5GSpG!2(f|$~lRlD66mB zt>(UxI4cS0UP-jZe+7_JQ{|7rx_k4^p++faG6$=a@tDL6y@E6(pJBv1zIeJiX1fLK z8iXW8rBPn%@#nrA=^#sZ&rZ(#m&_c0--m=4p>#H-Sj?1+U6NbL--Y;{h*2wW*2NGB zZzzT7ye5QfWVYGIZD69U(jtBd=_H^r#9d08e+FVGFFl>%Pfp_@FtQtJd%J z52Rl)n5$N=G9GKF-W(Hl9xp$RdP5jbi-FXkeAma9X|`Occb`LGyPeuyPQtaj^y-Bu zgslx1!E-{-LVprKmd$;QcN`Ew`tD|-&Jm_jF>W?*Cu?>oKktZnm0~Cp_$a&i%;?eT zYUB4wmgQ`Y+V(G$biqr!VcPh2E%L^`85{&xHAM(O9TD-B1Q zpn%;v15Q;cs7M1Tyg+AM*L91>gO6jvev1-9nRxB-V8`Ry&Ysd4xm0I#OJ`DEKLHbP zzvhM3;Q=$0|C3P4kB29F{{i&;BN~%scSQp;GdYt{6)Au1TUm1)w-J8dUxBBT{oong zM@n`|wj*`SQUq>bn!AC$2=DTjsL z10CQ)C<=c|Of1+5`y^MC*XXlT9`M;F<$*6JGvkKE1m%IMV4cTSS_3Yj$Abe2I%B?o z1P}?ztOMQv5u13z<0d zz!N=$1Ny+4GfB@PNU)Ga1dA3($ePnuMf4OJwsL;~^d#VkpeF%O1fB#uiFhEAlptB) zDbdVQhA2REqDZhVYlsBvvO$k^*(z_bj-s+ao;^f`{S!pwuzvx3$XEvvCSzv>_zK=< zkOqaQVj&XH2h{}!p%#eDL4FjOhcHV*pAvMdLa@Nko_f@fRd#U(ErUrIh@rGgqKY9N zLq&fY@NKDKT`)*A0Z7I>u?2{Xt6)Aca1}&`HCU0nojG>I0Ewp@XfqfT8V^j-K)W=m z1K;tr-i6l?-aJWr+?mAgdHe&p2ADrv#(`mfcC2nTwq`bWpBJ@v&Gcs=W% zzdv25{>lE~V%C4PJXtMHR_9nvz*+xvalX7bn=j7kDl+r8#mnRUFPHDs3r%MPU@CTR z1_WnVN#7K(hbJdX;CTU0<&Ig}BCXNV?af96$bwn_hKl;;;pC6g;{{HOyx9<)gAO2zg z;QRT}{>jPW_2++Cyn6NIc)nVmd)%i?GIir z5BkHS&rV^5=l#p&y#HqZWP0n}yJArwyn)um&y zoB(P{?Ch8;1<}1;o;^F=pD%xut4p5j!ye8~l&z0{ez$u3460tdU`-nv2;Tb3#Z1MQV|eZ*A|@4E)(=Rq z6&1MZpPVh{&la#fu=4dI)jwanTV0KVR|2sMR|BzgcMHVM?g+ch)RlkO`gZRz^00{( zj8s4h=V5A$w#%quoP+adlJQVo$vvMe{&yjM(CN;6sz!$H{A5cXgEmu7repar1vY5Y zm6UhGX45V4Z}L2wFQ)JvVWAD}k@*0O+&ok6Ibg4bq^0PJ_dGGwu;wYDoROhSwD zwM*uw^0<+w3|(mGDMNqvV_|wZX5C!2c-hc(QCE3;AHNFvs$cnh8^78}*O$q*I|Q{c zcP6s#tRA!rc5Ua@bvgRocs=k29vxz*bC`tJ2L~G5ZoDW6jFGy(b6b331Pd4s8UWYn zVkXgG;Tt7%Nw9?B2|S|$_S48^m5gKM$F!B9j;Gkf$espvHYzWM6~fx)?r1CN zTD*#Pj8}1byoy`=G`P^kZDr*aScfA8kM~nxtxX@<|EJ`gp{_^z-Kx7$V!Nv%(^W;L za5qJ!>BoZ>`+R;}&)MDn@oBd_JH&}xM9|~8{{g(?1m1uDFhA|B>0@tj3enN^I61^p zaB929O#+=S@dk>wIe3GdmU)F+QkRYY4ROK~L=J04YzZB${f>Mb953H2R^9U5D{S1z zJ|FQDQg3=--#<8Co$b$8{ig}%H};g=hu*Q8*T(f2ybF)3fYt=9fl zF>a$7eoB~Pb@$ZFknL+C;a3Blx9M#l$h!*5nCrqScNLb=KZ~$#w3sUu`rxAPqlhY8 z{|e&nEGqwt+tn2}+-_wb64s_ssy{t^b$WJqpk9BhY3#pV{CGTHJbnD7d|`SKEK)gJ z_50sX`uDq(f0ycSRl+FwQAZ$H@o)3wbnMb#u0C&OZ9sjhvO#&OLd5y7!42@C{sOGd z9e?>C5Du%cr;CmlarlTTW=p&>V{~#Ie;JWG{+=RXNgE4La2{I*gAz~$L~k>Ci&F1$ zj4gi>PS{Zu?SZ2p?s{wu;tDYooKd}sh2$asvLi?a4Mn9)z&g(0E2!wmK_*1@fX%UB zxiML$<)O9-M|GTlO(B&@55}R5+B0%NMOuZ`#+KiHd2Q=uMV)QyWLEC#Z%d|qp_CT-VSV};PxWzj@yAyNLtNQvxj zbG3pAZG&&P*Lze8sQZd6Q6!27Rk4d;+mxy1vhzvHg5qiC6-C8*Q)|3{HYtp^+tGiO zEvqyL@;0r6U^WWm9{1ecUu&?M>PtHL2kp3iWs= zJ{R#{)NB$5WZDi|5Z|^T@Q{VJt*E)Sf`0gJK;AaOZu+y=s7RNztX;5)hoaMT=f;*q zu$aZ=0~t#ay$I)Gjno@HBl1BpYZZUgIa%AVSLYRhH~eeowCnAIZkD_e*oNgH6T+S# z8`?`9540zB$Bsw^;tfr8`+h$1|(-w=B1XXB7G7dRx9ZzX-NXhGE zw_Q95b?a_^Gu(UpX0&uX*Gxy+9gCc;xv#E4*2}Gh*8~FBPD8G|z+ygQ2CjeOAQ}2T zZN*dDY$G%8pykgCavP^YIuZ;YnI|T~h-FguaERhsybTS~WzGjLMU4&2wvlg3BHItczlH zH35yAYhmb)(RhZIQwMbgRb0($y32@b;tBKv11{dq+1e7)WYNd%oGEUIs*?T&ShyE}hGlO)^LP>O4 zbCU!QS^%v_i>0Lx$UJ`y-t2CL(RC#-dD#S{(rll--0zANUIiPLfm=Z>e;6&0Hx!?| zS{jx`6=G243`?n+-)lfDw38U3XptV9!~sAsLVl83(2P^NP$Xb8!xz=7ve`xe$*RSh0 z&fUto&F5~cxs!9Tqq1$FZEoTNs^yyUf~xp#s7?m@-E87L)O)k3CAB=2g#3I%^YMUOV~?1 zb=`2sAmtR+HSB*CPFkEW;^vcC7)O6h?@qex-0ep4B!V`*8uY$69QqjpyQ(MTE&rCkc)2xusx;=ELlSrj43 zJJIb=tSVT^OC=|ws~}pUX_OKgI^>2$?v=!iw2@x;>cx4bW=LKR)5#0|NN<%C z$=BdLlEYy;F5G=ZVni-lzg}Xb!2_9U7Td?2+ zcXxMp3G$KKuiw4hD+6tz3QBzAW>9d5Hhtl28!F;IWw>@GV=mt<&^Dh zjqF&M8HDX^OaZKn%*^cY6ci#Lppmnsy`89$Gmsa+|C5Y|52O&T(*h5os*@Lv(vvK0s&^0Ho!mZo&M~ZrQKgL zIU#u|aWNHD2HE$?|E!fKsCWWBV?G z|667bbOta3fQ|s5yNLzUpHzQ!${#VyAMtw$e7qd&9ROxVHcmhvOEcj61>Vca$Q1~1 z2Dt!zy#A^9PXy1x1u(TVaei;|_k#leS9B>mGkXBfzr^oM{;m3-?Wg|hkkY)LP*Zz5 z8xMdf&bOQiPa9ND}#?EBEM{4=uv3@q%N z|D}8HMH6c~ppz4T^IvYj_Zs{c-}l1*VGCeVl9bSYQWK^7uXg#%NX*W}-qh009Kg!K z2`~bIj6C3(-+O?Sg9G5j^4`j(K=;3z1i-{-XYc&(0&s9~_5qmLgW&&cBqtAmN$ij4 zFT}+RU=sfuu>zPR|3>TpCh5Ns7l29be-Zb)PW68g&%4g(e-Y=q&dB+1<$FSt|3&QY zN|X106Z5w@3-db%(|tyMovZENkma4(KSHs*Gqe8(d}rqHckcJV4nUBl{Xdq%@=n(AAMl+l z=pXQ%nbSYudjRKu!1tQE`~$udb^Ql?C+hZpH)MS$>i!S-PSoQs_@Diy_-C;GH8+_5 zZn*#X#rX@XID_o1ff|;k@4vSHFp)EI23fl6FuxyqmUsF4>)+q>{v!d!-}CAp-onE6 z?p_S++?)UgRvr!j3nw$zpVF}T{D-f}zlQ%`1Lyr@{2Tw7yZ|839cTi-IA?Fd7i^V( z(imFmE0#Y|22H`kcv6o2NmDu=YB7DH4If7|XNwg0xgem)KZCNsURIJ<&o?>1u1J$2 z7|Z5$tvRV;{KiyCaNEdN&KDn9OlUY;olz|?LvF#pteuqRP&zwLtC)Q%qb0tD2%t86 zB*N3y@%V*x><#VeE2(Z-%StY^Tj30U%MVPD4Z8aRD&9~0g^8cw&To&HvC&4|LW{K1 zhIygb!_qJgT^*>}bSZhN2KAM52c|I5Rb2%5wkp(ih-&TuRd-k!3y>93MC=KmUST9g zQs=&i3Bgg;kdh492Uev(j_*}3&1}*lrOcaQH_UusuF1tWqZI4C)9>b#!Lx~vy&qWUOmwEWr#PMP$DDCiR_I*$jTRy-M$z;hD1DQ#qe`AgRNxpa?-keRyr`|km1 z^QwK_PPw?hUrHY_w$N6`$C8mM2qptz<_n=G?=F6}_WZJ>&)CnAD++7-if#WYiL%;N z@vzPsJ-k_iO0}V-aU|4#d(n9(CA60VBf{rC>7(KR1*JPm`q*q602tpv{8980yGWWi z&7Ccrm#tt_GE*FwD+H;_r zv!+PK-`Un*D3fjO5@JH>kl61TTJf9B@N->>Yrn$)g1ENI)zxf&0Q$>jdUFBnH^jIQ zT_y5tdQ!p06MTJUL_h9en4Mo@NpU-OLoE#~CoIZ@COVi{+?NT{MC6B4;WxY~5pW_| zo>*1`*WQq%>aA&C-BWfsXMFR`ez(!bL;nyF6ohp%E^bp*`v^@gvXGg5Q;F8SVi(+I;!EzwT$p(k~VO$^0Oy@&To~2eZE#~ zES&#woR~;|)+lHut`GKI;cG`3ePndRjC^HofllK|9Lla*UXL`@KIl3xG`^H&={wtw zL^VH7u*<>qfYET=2J2}njRiolSqikJ#sUwf|B>-Fr@xr_YhAX!YccPXVbej54O zx79|_?zrjhLuMWgO;GBChFYaBVJ}%)dv?{A1CfD$Zj=H+0Lo<>6y|g4#RUhqHnCLU z;35RV9W_Dulxlk9fvF^+f@^CMJ`U^lOGmL!?Mx6;7QQ6F_((xy3k_M4|GV#gH)>Dt zC9`Xm%N#Dm+c5i*>)Nb(?!IdV5&o)?Rhe0bj=AcY_aX8@Pvc>){Xkm*dm*K~DP-$@ z5GO)^vNC1x%FiD``YFd|39({F0pi%ALX^I$M9{U>C8Ig@%7U5EuKEhHomZ-IzHS3x zY?#8ZE6VodHK83Yu}>w9?&}||qzKaJn2qL%=u7!=Lv4R1?+`$BpjQ}WXO?`LDih3` zR}dpU8f7j3{UY=LFz`0h)X|>6NlczJ(Z&6LhPre%em0>Se_9rtdK|p!zfu?SHk9ov z7)gOelbe-5kL8z^CZ}$|QJz`yXB3AKBuvS9489R;ZoLw~>_@Q89dTMx+-?O%v( zHQ*^AWJC=9t{dEtS)4dD$Fj$BU3V+H?kU&?dn>qy`e|o!rBt3x*^b@mE>+-elA4l# zY2(5bX36nGNKgC5a{(MUCf!FOLdUlSt-)}8KP$wFt{Bmu1idhNjwKJL9%rle(~U*~ zA$s~B=OB=%R+tyQ>O}9bQme**`6F#M{-TnM8N&!8{jg;9bMCM^lM&dh?JwJU_7t_| zm(i$qFCSXF$y|B`MmHLX{X2U=Nw8~wO%1N0tvh77@NIJKo3WaSYeg0&kN#YYMQb|^ z(=~F-6||~kn!!nY8Xo(H7onYR;n4Kzf!B2>Yv}?P;^j1kXp>uC46U(q!D$f-4<=9}l{o>17 z%YxF8ueh*Z#0NX|sEA}4uQ3sS#q|^6Z8lvJ5E=XH0(3O53Zi;va-ME1+qpkWw8oGp zf)#8P8LGG9JalK;?LovN#^JJm5g3G6KN3WQXiVVtWL|yrEHPCdDAVhyj|uddX!h8D zo-vqGf~x6q1oO^(eyVp9I~~x!#(OLD9W)+{I;%(5KBJdr9^}HY;Af0~)Iw1?lE%rjl5rbXxvv2;_NsudPtEVVlp&rI9PfHm#ins#A7#ZZUK&rUKj|!&yru44 z(|!JAT6g<&g3H{^TnLYwPqE{C$+JBYv^Y5zwl}2d{k-+Fw(L zfHF^Ar8*C;$91s9QZ~FTsOtj79BhLK=}As?{0no-r}zx?8+jprj9oA>zWb1f=(VhR zA!={RG|}b}^ZP2cMqZf4apeUA(G2yWNB6qCN07rfZOKVhe@5%F*%$$y_>+Jmm{ZuV z6mT4N6N6AV-J9~2-Z5)3LO$QLOf<6yq|XMX3X#vhRN<9U!t+zzQINb&jjuZ?FP#k{ zLX}Lv@*HVWDw2MG=7ewm4fgVpOvy&zI=^w&X@F)DQ*O4j5*40}e@epMFq5hj)32nC z@z;V|Q~0|M0E# z9K2I#uuT$}xp%HBEo7+cph$gs2pvhuY8q_t6%p&dbWxrSD^Lq1- z*CniSxtLU(sq@+D$9Q#Z6>wj!ANk5{tHLjT<(!KG6IPi+WJE}tsS97L8d~lME`52*+Fg6?SfiE|bxdyXRQ$f)i1=7rPPhxt|DN#nt$PcMk8+xCL^-Gh*a@jQ&v`Euv!DtPe)d3klCrf1>P~7cB`N|<&UOt=_ zu7Q$m8IrGvt&_yM;%WcPc1W0rCa+bOQ<66Y^PQvfXBC522hQfQQozRw02pRavRDml zEcZNrnV{5j8Azfj!&9Nmw9pag!Zzl{SaKdQw*zCWi@K2i-I&~hfk zoTp-8SN(1ap7NUfJ{LO4fj?W?)8?hQm;GFkT&^QH@wp`R;)xn+qp9N*qflvkgsL9N zJTX%S{l4jo#S{pP>04WBK&#EZeN_+s>a;ce2ly=en(=@92r>AB(J{d`{VaF>TmcPKNmCPMm2s;~`HTR@)>r%|Hia*#Z7mB}F#e zGt??LFxF9;83$W6!b6hI%QFHGEt+tZ5Xi~WZ)B4Xc%f6VQR&)N8ew4!`@P(&FP0Mq zbFlzBK*YaEu0GTI9l9`8XmzE0@tGOPIYOcr|DQ6!dr z+Sp%e(I2Z*E19M%-$pZURnHjoe=+Q0plu<7B1Fr((O!4lperim?SNcO*4aFRLJI{p z3z4Y4X9fZ3!0B!LZ2OTlSd(D>Ls7!SJ@;`BORyWj8>OJjtxIrfbER^!wleIS*C|SW ziSDbZ5?oE0!RcW}D>vATV=GwiBi^KBEo$^8;_wr`0PG4EkzoJaFF|u^fA9izNUJ`? zm0x~K68aeAP+~LYltnX2(WTTuC=RjeC9GaQo^-o*Ev2pr72ReR@4`Jl6FKgrVQ45II^ss|sP*$DZf~G+ z0@_}YoXIcca(?C-Vl4k!O`!cSJo?awK*0P6okE15rClY;!xoJ>fAyFURNEqFd=g`# zZcq&Ubbd-Z-DA0*RX4oG+LU-lf$Oh>f@J zG+5Z0MsQ3dMbku-e;sPP(q9=7VQF?Rp^Qpa+Yx@GN_vF5N(6ZLGIBoXr2Ljl*V9Iy zNo_nPh4gqrwgw~*vVEY{;D70S{oQurcHv=inJ4edZpRpf7<1*sVXhC<-pmk_%=mi?*dlY$MM8 z8Nd-Y2|ayA^-N{#h6%2AR4I&bHZMb9I%2P$BVnzBc-Q#w(+=K;Ll)0Dk6Tbe;CJr5 ze#fjiBo9r=f3>l@##90QT>YdXSQ4_Ro?0e!+R*-x_~=2#3tXAywZ!}xt&!x$f=x9g z!$Cag0kEJ}Qa}AdY*9#qEFSBR*CL@bjVwfIXUFr_=VLoHR3wLjER*;^KR&Xefui(- z!D7f-3ONnsh#Hm&-NYjoD3P%b(72eJV8OqFDk?|Aec%aBrxI2!lqgj=AFlM{Ajlk3DdTrpi@v6g^FSuU5Buv7_ZykDoD#Pko(> zG}y6ff6$nJoOIm=p$pC!Qd`qCixo!^{)vV8mx>{v92XnQ^5@2!tw(j-6i+L4wSr=G z=>)sKx*eyg-go?JVSaWOgYXLSuwYn^AP-s6SQyGL)Ms+f!KrVrs6@+6o^{kzDeYbH zrb_hwlfMoE>0(v;b^_A#T4>esL|i9GKmIoTe@T`Q(#C4bU-qr%eCic3Ux!VA8e33F z=dmyO{KRD^FEmI?2suRd_eFs4ncv3Rv%ND+!A{(RAf>ZraawG?bVc+-iyLK#Q3N?? z{(01U!o#|g&;~$Ee@q9IE*Kiv-Pinb@s_k2ivg~g_&HpIP%ZrUg|K?tRAz8fZA7G+ ze-#Yvh&u0pTB{%7F7541$FKQXnuXgQcFw9zuwl{&c$D8>i;o8&O8^!Tpo!B$%Jxl< z4P(!Lo2H1iEvR5NboXL8YSEMQRKbEgUWZw`Jk5sJHKbBLwN2CX_elIsAguma!ba{J z2S@Q;-{#Dv#u-mwkqlnaHiIaS?@?Epe>Z~le#Q~(Ez(D34Zpu;?5*~Wd?!vJW&KVN zws~?GKy!8cO{#l_{W8@=MxV^F$5F>^A(W6YDRAJ^pC zI_-+?%@wkR|K?ZypcdsiAZ;>3lt#Ihc&=M?+P?8B7slyBWGN3pg@8=CQ|i|rf9T+I z6c@Q9vEo(9mr9aTfpn6BvYQi8%oW*-#^(YktT<5kL8$ zWf%b}pRG{{XSYlsxmC94%LS5y`IAP2(Y;vifu%~Qo*1zX7@dETyg?O4IY@6)Ow(U4 z`3o#*VjIoTN@xqt2 z%16-tkC(LY%;uHR&;3}YcGeNPvCQlbA$e&>_nJ=|W9}xx!Q?uJI@ZZbJ{H=s?YR~z zVIJ|&-wIgi77gak*DWaye+$H+SRm&{t7M-5ms8k8j+N+`;w@jU8JS_0jcfTKLwY^N z4zUBPjoHJ_nWIFxo}bRkX)D>LkYp!tLb^!;6LZLa3UX@Q_86Pvw)HwWapE8!%|Yym zmB1$UD77s+=zLfK-^=Tuno;iNA2uQUO35;{EVvmWpm1UBjNI0Xe=Ulker?_M7#*=B z#cM^*WRc`*K`zbM+ROq!^zA|^QCU_#q%3DGZ!gW?LA4M!0sR<78Z6&4f49B2H;HoI zVBSF{)qH^M^wThy_SY4?FR0sFyh?`9h$cqQlWYoKGpLAKBU(2?ZZG0vWlJQN6i`fT1r3F@e(EzYlE{28RUoB{BGu9gvWns8ydk` z{aUsOZEGH zW6P6DvZxxD1^HQ@IZ}1+qpYr)UWNWyGaCGk#pH;lrxU&X=@=UXaAE&ghbm84z3`d@ zBCMSU{DD-Ju!(QckVvp9Zr1#aRkMtMX*w(boWp63xCD4yw-uJ?C^6WcM!8hB)9sV0 zWIW4*x<*(8e{J|6we^D<|*V>2T>{Z9Hq6R?^g&T<+0ZC4y}p9Vu?r}wc4q%3h=UKw!V1 zbUd<@4*@mop|!)s<;@-wArA)5LQXgu?clLt4E|g8{sU6}4WT~V_WJuGg zGTi?lsu)G7g3WpPG5EVbICpSE(MZ@Kt2BjJ_k`I?2{VfR#=h&vRgKhf*KsvHo9LnW z+h}n`f5!*A5{}38jY?rc1Wo=eJNH`fUu=mEhOTo=vVymGJWldIkqBX$q?`fLta8N0 zhK(TGh7I-0>&Eg?SbK9eEhBJBIV$;JIlOF#Gn#74Qm-}7D?oa-E8(|=l$uFG&Tj_Gke~W}~B7XO(?lZT)tC{#{tiilAneU-t zpQ)2Fj}&3Q?B$IgJ&{z}@Vx9GWPLa%n%co%EdT>v_em+VMDgXuZiBeRmHdN=cOMXosBDZomh9bm__7-u)dPB z_jpjE7AW*BWoHe@SN9vS4S-CaS-;AtnZ)}DRoZ%((?EH1P}`##oP6n^Vl)Q6u_K;< zDHWXE6(k3;B<%YGU(CC=1A`K-Q(}HYe>0bn^2B|T`5f@Ir}Xy@On$vDS`x-;vih44 z=&~lz@tK^>8YSThO_BD7iYMxusglsI!57*4QOv0foKZ^&BMv%LeO{CzZ|YO&+VQnj zY;{t_C#F2k$73nUx&xy8s#unqnib@r7_fc!E%CY^fJ ztO2bo*#ZhG%I=~s65v^{aG`b92X}{V+6jJ)d(X#ds+!Msm0rVnbB-2<52kf)1c5UQ zM21D5c`?G*)gRVL$+g_fCh%v|f1|lRuA1*9nd2KPEN5-bsk+_NPUvFu@B8YXe-cK{=7fi3 zmhP};Sd?MTqy|%m(+!=QCO(tV36v3&HL$Cv;4D#tr30l0^O!Zca~%;gqkf3gKBlUmoivu)-tlEtfuH6U^d+qb ziAEb_6^7&VOK0cDlhomFf0Wadd`Kzo`(OeI1*FQIty<=oj`u|jhebB5ri1D>@j{*E zpkJAg$qByIR&YbZprb*G=w6ts9O%tb1TCPe;>JnaFFN_!Acrr z4N1?*l3Isj2z@x~u%Ekitj=1+caL}8(jk3=zT~V0MoQpSZd(tbsA2J`tasHdBzV}x zBHUB4#OmjGN_kgP>UvO4B}9X38skiW7=$$mM#0B4^=-@k+!v@2y00(?8_tc+v^Wx7 zoa~6RVmnY_Jj9Xre}$aSGN*R&`coh1o#jL!-1n2D96x@F3}Vx|32~@uG(o)~Ueu(D z#ZO8Z=X8g|?(z+tYW8Y<)xhIN(#n?!BlXH9B{=~%^QjVxjb<`hpplXU_7yU@%8YA* z4OP)jPgkm z)63>j7cKAE&s>2^@rLU1MHq%&j8>Ujn?8=IP~cnCIGusnAbYeN!=n8xpJio~hhfi= z&1Q5V8H#7dfA7AXXkTsA#_dOm&JQ0D7Bi6@KdV__ZsawI%Aio+F7k?6PjkGE=eke^ zLOOLmSkCaC0wO|g3+ew&g6c&ZkqUr-Z#r=|va>&&26$vdgi)Tjp6v7S0ir1Bei#a6FX_AFqqcrtAHTXQ&V#LO zf9+};HxI)8-J@%arp)g21}WU&RYOY#R%y#so3updQaqVARJ_jkf>OkQKLlD(%i}^0 zqytwAD*@~SRgI|#L;dWYw;NV5{7GrWpf8>nVIeWFKa?0$&gcA?4x@eeqHD2s_(eU%1 zWLN(ER~w?SM9zj=D<(hJp3Y`>&`hWLm|>BSZu-SFy34x8Cs|)BYt7W;qJAl9+}pw- ztNX`~tHv@;{bxEu6_4bXe+#={ z^YvkCP@cWF&TmXR9d1+RfKtNTMT>bH*MdvlpOVNc(;^P{#2K$_h^!N673RM@j1z|k zg$2Iao+_{tl4_8Z8paRqh4b+uy;!CP;v{-M2W-8rgnft9JF(VXRTF8!A|*`0E*FrU zsw!Emhw79AY^ZR>k0V#Ij>;`pe{S8tsBH3BGF2sKzd*jBW>~A{9rFs{Y(#h6Pumhh zC{`NC6+837Rh<;A_&ZD1M~Cbfkw9hac>t3g5|T#BB%`^8&OfZ5>pfvSXzV>|0ZcL0sHx=bMGrNytC~?L~_cs!H02 zZI4*~K7Y~5Z3RmjJx3zslc5r}tqWo6avf0p~phWsfjzxN`T z7BF{~g@$SEbmm!P1%9DaDs)n{PI<+;6O1Qfr$yHaOteHuuU;>PO(EcR)_cQKy^ycUAfPDYk=u4CQv;CU2#Ou2>#9*G+`f&N z0Zex3XOa}_N&Xu=;Ldj0)<^ly>?0h;;8J~^$9Rs4#hfH!i665`LGe*o-UW^sbfW$Z z2ZEN{t<6ptGb9S?>rBA-miUh_(^cO)LVwT(Lazx@=K@S2f2BcjF34>WerT!Qo3uTc z+LRw*UiAv?f^(BVX|s)-<@>c;yHbSg4`xDFYs!w4oc!s$r+tjLq=6?99+T(|871KJ zs?^sk$Le_Y6y8z4T%Zc*QMp%aGvP8?f2q5V_d?{A6M6*)r+n|>LXxqmYAV0aL)DlQ zy~AFoyO*~`e`R`G4u=dWv3hD<-L>aWlwBSXX_-<<%SHn~KXudE&I}?f@S4dHO=9y6 zE`w-FDLj>cYh2lH6)M3adB{D!YtzVAO;J%??-bKic8-Q}bEHjA&}_h5MDo(GP7d=g zv5QzY@pALR?z|44JeHkx%-AI=SX;35l!2)<&U5=ne|5U4-dWavZu(k(p^*f?&0iog zo7U+bc>7JLST5H{LNlE~pkghfrifQi;s~(9FTXrlhMAZ@td6a`JUpJ_u7*_{<%MWA z`ocR(awUT0uVynka!<(lsbP6^ym@q!zVnr;!1`F|a4aozm!z4@lS=uE(Jg7znKDPVs~q7hbV zcvV>@LR*-JKz~1|wkX59&LN#?i1lz1T!Doee-&{J ze}EcMb-njtioC3vaA+HDqpD|(XD{369R90TuwT^53|Xv(9b7~FDvB9ct}J;0?92x@ z455JNp9$#YS}Y5jVTGbpaQTFfm@%y;PPWn(UprVV%w*lFmSpr6Pwm(Psd5-A zlcMx+j;vAkuaIF?EHV3q&yQSNIc+zaPQ$^rMp~ODbcAQM%?Q)KMWp87bY3fx^rY)L zf;6}s)Oah^X|;U6VW;XKoFow?Yepz7pPj4rP}wJZ7)-GN#pl(v7`Q)FoJhR}e|2%6 zFCaUMc%$C=n;>0=pJ~yGEIqOLpzqa1S2o53eE`o--OC-b-WRUBhMIdl(09z1N_Sqf zhD60O7vA2#m?x2HW`@uH*-NVcqGE`?SVpg^7?C@p#3PEoE@+25<7Sx&LBdXXI_j|{ z-QEBGOdqU3spzWm~{)*ZPXmCxG`B%Khvyz*Lj-^~$=BUTxtcCjNfAZ-%bpGLS z1p?pvv{0oh#yuQGSH=3!Ga1Y-;XRkK1tKz(H^Z1nY^BIF;>fZUjN;Yp zL-IpcsG?&*DsJDJr`*8^f8wI-amUtPFT%Is=NMrXb&5+BMA?u;pK9W416Phu_L#A+ z>z>TWJ}o8=^#Q^^BGUEb$uZMeu9dC#SCf5bUIm8-4oBla22m78ib z^ihX#Z6ZXIALShfBXassoay?%f@DxcA0Ia*^{eRp$$b z7i8w~m4r<8NOF>=pGU5x6)=dg@DyPQ(qf82v_)4qh<>zOj7@1qg@z}58F3AFe~3Ip z4tsG&kHFN`f1P?n4gfsV@`Ne80zkzquqeM3lOIv6`zTEm1fU1*h_+zD$?MB@ujiaA zO5wHWsS=qS(l}CsT$AF6T8>VHkm)!wrH_GV!5Xu@2Qamzp34lgrFS+8A>lMcij7w{ zqyY9UJK@SnX&SSZ!s)pIch;fqSxKMe6{?joCy%Vee-Hia@}u!IpD^Kwo5`H|i9csx zOZ8n3pj;34v3^}QDv2ORV8pdyS8QF%0*^ID-EWeB8~zzRnEJUBdC4|UNP+$OK_!cH zVMaIKszM}1yW?^8m2R?rTqsLk|BEZ184ME!@o8tKCI!C;gq=J}FvYi14n%Wu7k&t% z>q3J-f4r)De`ZIE+dDi$!Ax~$?q4JJ>2c&q84{Iw1tds0=6wR=F_tegWHr&_qcE> z1s?y`iW62}ez7MmG@r9M;z~5?Ai}o#ZPIL#e|IdmI2B0?V+T!X&xu$$RCo3A3MEFI zF+q(FBW=kSl|UZ(aJ?OXxZ7O0#tG7-D#Qj9Y{U{y_lbQ)gt@nd(c+0n<408;7+|l6 zlM{}8*t@DR`8i8q*i!IjW4FGE=bPx!Zu3AVKKowj@AhC#;j`gE*a?72pOLZ7lpY<0 zf6%p^d!xRREg*|yE+-AntM=Go!#|FVYo8d;n#$@t>a|P0%H_7|@!`wmiiuf_2}Q_m zAYFz$rL~yE5{XufLS9pn`c?QS9_gin!>|6Vpq{oLs@T-lklWE6RVqCxr?WLJN<_Z6 ze9D-nUZUHF6B+?s_cB-s_LgcFSszB2f8WxE=vC88#iHGbo zwi0nCe$zdUE4jcUt}ONNNM(UQnubh+f9Rbt zE=jZntE?Y4B(`s4hsS~d|AHbs)v4^#cjnp2zeE%9p&oyeD++H~&Q&i@**-gTyC@jQt<=$wCn2M|2FZ?w_Wckd#3cA{W|DLH#jkS@w zbydU}L@C&>y4#@ZG;|4P0+czgIrnNL0ZM3TkfyZea?#3s1HbA zt5PJ}Be-BWakG6v--vKO!If#-!M&cdw@4(v75zz9mG%1);sO3ZtE68?kJ`d8ewpli!t!|8$n_B}hL4AQN6yYacv zRhX)5cv2Y?e<(^iKM**_hdbYoP$vh)`(b|2hox|*q>&<3!bD(6z>J>n3gFe2Kwo;9NA4YC^o_d7%1oJHjbdZdYAGJ+ zL{rvda z%S#9J_mo|I{CwhradqP-`w=2Fd>~HmqO(IWRdOh}yH0-ub&XIOhJO!wkm5NA<(Bb; z`zENwmaXY^m}4(viyI;(93AvoMMx#OQ@{j+kvr0!{e)f_{V1iJbh}MhBk^;pePJ}J zU23iR77c552MPJs$?B*0e?ulPDq>KA+W1ui6{S zYp@ce-i$xB{kB9#F~bcJ31#&RZFM*K_+0qi)|FN%Y7-@-*uRMIe@czQT|YGAIT@$= zTedB}yCqc$Cti0XZt>m@p>1I(M)`!pVHL?L?FV1hLkUGLgR&V!YOK7~ds3>Ky9^kGs+KMkW{!5kQ*1%k0!>WjMQ#}uCd zb*N<-_+NR`Xc{!>f8Y^%D_^L6S&=yRB`cwmfS;o5O%zZJcz{)2F!244Zj-dSUR(T) zr<*nu8;i%VWa-^q-TkT$cz7fR4t)|=OvwC{!zC;AjrY6*7*af=)Kw%Y*22|RCXSh+ zB6O=HBoiL_Iy^MCk_URrjb1-Vc3$8X)AQyl)>9ICFC5uye^YheLXk50DttN62kCtW zEt+yo=0}a_fo&utFLtCw1&PJL%1&9n-rDScPP;n z8O&B_=ZFW9K{KF3x9;sH%|E*vjR<qwy2i-G)9DpI%e46pP-ZPFfGQ0^YaS zU*vD1Qzuhny5VQB%ld4IN`pbXme;xXl#C8C3Db ztaZ|zmTw)^sPLpYPsz}WIhnC@Bp@Sr$IO|7e@kQw8D=w(Byqo&uC2Ss#Hdzxj9_F^ zTM~nx=G`S{I`{#xHTkQ_Ex@?Yt9IaGrqA=En6hEY=XIXZUjISb``7yy{lq?mFE#Nw zPPoVD3mabfq)GX^hfm^P^l#(xf#Qio_*i ze?yirW~OqT&8V>*!i+1νUfwSx!{p=UpDlI`ZEx%%s95QK~7-}^I3)~qr&rSlF z?ltm^MJaa5BX6a0r22EgArC7E5SJeY(@yJOo*0f8c;`@83Fl)l1b2ucYONK+HBGn{9hwg*kcV zwP4UbwBB;nbkzVCOGtLH$m^^+7G-gr<~lXp3iR(=T809Y9v}2ZsIcn8YSD4p5@Syl*&Zehe&7m3W*rNf7POg zG8}2}i4_N{r@!1$R$w5@Jwdr@@J!zSJi;!$+d_>F!mNC482w9?c#wX0n-wKhzv_={ zad5`l+{4V2GNfqH7}GEC?N`yRj07xSR6ss+Qs!~_3do95JB2g4}Qf7sr!8=H;I#%OF?JGO1xwrw`%PSV)6lg8)Ve0T2; znA=&;Gi$`8y9qQMl-lAjCo+hstsdFoDEaj5b!GoNrp}#US(YdG?9>hY!e`7l9dd8} zdFKcR3H%5>6zooGcom^tr{F}cK)Fh()U2g$Ef~y7s#l*Z4{C0EFM3?xe~pI|djb0( zF*I|bOX)V=7#;SY*zgH!RKemI70a*fx#CGrw`xc=Q0p^zn+nBbV?OqEv22C`ZFr+x zhiYUiamqtuYr*BbWtypMwk$&HRo8Kzp(H>nW@qb`8FZmcl2C3%zg+kN==T7aVQC*7 zfeK}xbtH9*znH~(w}R@Ze+El!9%IP+*5FLZ`fc*8t%*8+@c$64J4dvlnW`d$ zH5)K-i(5=_N4j-$HFFK0ic;5dAXB&{?#nvCOX9aam;fv{>E$7@S;<$f0!S+Vev;du z_&}MrGj*a#B}1_U_x!QnI6&wR0o%gLFh6M6R5jO%%4Dso@pMD#1z$LSEI>432NW4ZY%s81Y19QP6OSW&rG4 zSr@nFEqW74`PUpsfBj7H6a!~qGKzmEWOoPq_OQr0^w07UYlkGr=Mh(;5Ak1pU9i-X z*56v1L!i-|2N^2Op>{~aH^-mQ!Dzfu0_8~|;+uifsN0-4^Rj!teT~!jpT}kjTMMB@ zyp)|D^B@_>w`ZjMmHf)e9gv7h?|pv2P4pb1?VTqp%_Yi)f4;JL3$a(R_oj$B_UWWr zC)eaA+!kgMZ0NZ9Ag7h<#Mxf<-)mue!5LsMH4J?Bgj84rB)j`)v6&jmj;A;A?)`1im`vMyrZrkXiyX(|) z9tZlgunS@#D^Y|AM|x+UunJVtF@ZLr=`Z0oAKRzD)e-_ptcEHqtZ@*ws$8rP1M3TUc zUW$kH7;ESj@nzyq(djMzEHfAV2LQsm^vp-ru@#1%PQJ|s0;>;#zAN&YKJ|LAPV3o@OZ$H5({mBO?-|_>jgnr{ zBRp<=f4NG_j8Wzs8IX{ArW7Kj>DC=Pv16<&4@rNyJ4FqQXjHJ`B)yeLj{I~j0#ZVO zPmpC8&SXLCsnUe`ln_q~9SFoEgCx^hu`J3EnB}s|HM~@OAi|&6mksdi;Lr zs;_q~D6$18!u~2AJ^9I-o*Y6invMU?{x^C&e^Bg|Ue9!0DALHgQBuC>;NVRfyGNUY zQIzXP_Nc%jZvHw6XwBjx+uw#eZ=aD64&rTw=G}O3en8(T-fz{fB&0O0tc=k<=r@bX z_Uk)Ot}$`KNx>bw$Tlk7&>A?bjE9uDYdqIo%al>G4;#xjpS{v-t;7|*RAqYN2wG?cH< zaiS&ht=NV0ae*=k9`F0Cy~y!M-TkZ+f7a`J#C-nY!pA_v+M1_rw3Fq{(X|cIfCv5+ zK&kJlD5%i6MC|q2qJE+QN(J4~hgaAW=~&oMCQd9rAQx-ho#(A}b(e4TKKR{|Z4~}k zx12faTmc4Zu~=|_>V2I^vM!94lOJOH5qUSLRlKF%k^0O7neTKyvMTc&Ll}^h%K7Ug*K{~g&_X(nlp)K`& z@fS>rid8HMd`U{L%#;?q@B7lMFBYcH3CF`A^j%4P{5qTyS;RV>c~%N3JtQIR8wd2b zFuxSI*gpt_B!iQefd|gO_4Gw>e?%L|Dy+k3$+1r8U7(?+{^*5oR!^j)zZVh`2*a(^ z=Jit{Q-@q{DkMKw(t6WhK!$YKJn}o&Rp>Dz8FSAliG15KUs3ZgA?}T|U5(IU%50~( ztmM&f5EcEMLQu-BHUaAef8-^GbQM+Sw4Q}cHyMdS*GCq25dkP!f2>GHxN=(V zD+{fPvaaFJrBx{m5_FazOmm_kggP#ta_BchlTF?o)8GfvNsW=6iOQ)_0X>obUekWn zw6jF)pnIRg>d$$H(IxyPr@3*Ao9SOs;)PX$0E*Tz2U%er54o!f$P~=Wru^0@v?*8p zp^)^u$|M8HEmXLo8*?$?e?e&->Eb2H*I-k($GsSZy)K!pJSVpk#lbEF)@H32J`p@G z8EH@l9TZHm^23=h-8_bHxez8*vdZM!SJY#gnj#xO%c2ocR^M;)0O`IxC=juI*`XaGjuiKXDPC3Va+fGfm>I0nq88{cWNWa*4_2xB}D4;(3d` zu~=Pb0Pq$1>-yQ!f6!k#k5JiV;H9Zp7ZRPgcuHogDFAH?*&q2i^Ff^myGouQ31LFH zxay7EUNTbNIlK>N4J^GQ2&s!-qi)Xq#R};8F16k8kphn|L}0qR*i1R7 z=KhX!kbTvp{0J1`=hc?WWJ{=vfyslwVa0}Vk)atJg%SczO0757bu!0UUTxzl**mu! zq|W$svHMw{Py1i^o6h#k{$Z*jH*FtAe@+CkX@Pg{Sh0pDun_l3sNdlejy=6}3=E=) zt9$;aemM|le-drhCIrBehH{O1TccueaIUXJy)Werz_IL5{2CVPYMr}666j!L9VLKO zr#SXXwK$r;LZD(-gKw!kLSlL-Pm|LZ@0Midzm!CvVtrn$m1lC@4;|kHZ5fqgi>c|& z!?ykMf@YUuw4GNe9pku~aGf1NkbJ6FvF2UWclbX1e`x>zP;Lp7=&{rSLTwQTHan43 zQWRstl1*>CcWQap?Cn#oSJ+>?FE9x}o|n2pX+!2f%DM$ZE)=QqyFLtmqB(Up#&}I6=U;{_;Ml8(N zL40)+e}z4n2J!i>_DAWH&!PZc8ju=GrlBADIbT%aGw~TNttCmJ+PcIuqTa3c9@uUw zOOi?yoX&W;f>4p+h;gf%oaNBq6ri13QFQD$$gep-ieMf=GJ&u7d{^nB+HtweS?^^= zKL;)HBUXb@u(3diLsen&tSsIXG?%S#rtUN-eLrOPCW4tKTTGo;&B;BRh>nD%iNVim5DTw^|x0Em=H^q zwci&WRtaQ@?^-LKxN++4WLvYXiu!GA{|jx+0}l=vT?e4v7cV$a>~B^BvXS*gia0xI ze~Uej7MELa&|Dgt@b{t*k~73JMWVis+$K`oYkHFwx+r$pC1Sa#uVm8*Ze^dQ{mxR> z7~aF9+bJ7PiP5w9iH0MF44_BZmf+WSBtG#3?VtWh6F8$daKL|&n^_Az5it�N#A% zp;yl;A5YZ5vOQhW$wdgn(OL%_`1*Ko<7#{DO$Z^LKwa)}NYaHfZ3ZFo8khY275k zKJV3eYudoSix4d-hwDW@8}13$bd1)AcBI1FJ4Ze4I;A}9$uM*KB6ym|9}(Pqe`Ite z3q|!Ls^{emzPf~r7PU_bSVTd$;|iUU)xwl57U~QC6BS0``}gWn16K0Vb9^%Y=3Mkt z-vU;sb8Iiq4!89<-xlE=y1(yMT>EZUBWXx}88vMGKJ{+2ntIzB=_bJXT|v^{vq3TD z73v~b|F%S^70I7|GbBuKN&K1}e+!y9`%OZ>`mz3Et22h_U{P_#fC(XBtuqflGXWay z7gsz}%OYH|cH9eb#M@;7Y1gi|bJ7-WqO1&P)?y*a>l{yhj4j13g@$3`M$;*haTtY< zU)qeJJ0CPeJ_7RuayTu^iOUX3;o4Eq`I9W;<0d98Ne_Dc?xsqds1fDif9QzW$(Ttp zi-jX;JMc5~!1vUUew#wu!!o|^`A$52X}F(o!p~dh88#!RmHC<fed2p!rAMcIWmWx7DfBh1_GnFs0b~WA}wzo(+ZX?IyYZT`ubAm{!uMz*K3j4g2 zdW|{+QVmqIw~5Bf?9+(>#fx8W27iT}^GM*AhkdGZv)&H?`&C$9>4wye`V^PZp_bEp zkE%b~wnce~@97y4f=7Z({)K>dKYjQ?wTa_o)u7HZe(Lhe~OegJlPmgt6}nO z-t1&xOliFuP>$I{D|JAKun?LONvy}C3R&q0D{_#;ftX`W7vzt)(FJuzd!}aPQQ=EB zDV9jKFl+qf)TL&}Ca-(BH5MJMKe|JZ~5@{YnKQiqT3$5CNO<~P|{l!cn`?jWfXf7Cygiw)M@E)x#fhs<}d z{afOvwvP9Q=RNN!d4|Kynz?o;Rkcj*f9^X*FYR>rpdB!+AX ztsh=3A14UDT~k^IJzUVcH~W)DyrpwYh!4mnW_!1lAunycU2O20oWv%zA&>N7PcDzN z<*DozY84?xf6DW#G6x3{s<%AK0wtL#+A@nw*OM`65YqD8@e+Ik1dHwtykP)>oUr<#%DT<_V zD=v383YrK*Md+WOYC;tjt=?OIifG|)#L}w4_5<2j3)~>x)ue5ELo>L3>o9TeY6gvy zs?k}tTnTX7YO@jRwy+L#(`E2I#{yz#PQhh>bprY;fA*nv?WX8V+C}8BH9|MN;k4BE zn+f}|e-$1uLN*oX5B{T#51YFXKmlubKvgI2LXD;d>h{DB$P8gcppT9|F`-2){gb`*S8pyUEHC>L9$i4?1LotJRHm$%Cx1caTy$KVr<2*^E;}=AM7S zE9{hh#PyRrv+yC@GF?wF@pilc(N-~`Lm6v+jel-1WCZNsT!vM3jY&4FLn_tY>%)={ ziBx|bNWvU;I_#OV-~ta`mtzj*DnfRj>gF^Y059Q>iKX^Jw3}4#3J!9=@8}t(WG_n& zW`DX4Ca&QS&nKt!5{IGYqbWc-v{q~L;Ct*Nja?KxYl>a^RX23K zy`*0raF`P;Rh2NcDL}sT#x5W9ePXoM~t|g~*j+KTWLvUGuBK#pBVUYccbv{b=fd!qb`)|3%roBlhp5)L^o_ZXa6)K3YD;k#p+$)r zgAr8vlIW?{9?>e&*#aWQNK(`kcYp7B8q0i2g(a-PCH#0_k{!|?Wvo=zEttcVU25Yp z_0c>vs15_3m9!&TfN~uns8`HQ{hA#w@yT5x2ItzIJx`a-vpq)kHJZFjKN4MsFgIO6 z{3f^*XZVjReU?%f&xc?I+-sfhg&pFxQn-~|Wr^*^YAK-NU>b5x7Qs^jtR0$K1jhkSTHh>3E(;V7i$PT5Uf4$1FJNsXlx>7 zZzrW$r`m$9P0t;?k3keBS+V~yg#0IY5Ib@QrG#JReCt;Rt|M$xvoWO}$ujiNa4n#& zl8aJ?dSk5!sQ~BACNYUN5P#;(_&2Xc#Bi&Wvhw40wTqEqF2SZWwXc~oTk0Pe{2nd; zISepn7JxR4aceQDBBZD<67jsrE60S;B{*)mTV|$XWI4pOXXa3)7hVF#d3&$)_4|cQ z+h)0it@qCUPnbV?i*Io@tGVr&D%J(>ilFR)-5pHY&r0bp5>7d07k^>T$D11|h+$R_ zc(H|1i}Q&B0wcFtxBF#bMV9L@C+@#QuD4LHxRT##bN}Mb4Q>86m*Qa#N%2#G zm#Bp~RQM?9K@uXTDC%sj1JyD1({=EBgkug1cwQ_hYz$M6GA4!4V=S)<^ zXRUa^uG|BoTj4AzC+9k7u!~xf26by^@H!A84gld#)z!~?5cPJ>opp{-?^U-{p_`nZ zB5}HKRN1@O8GjbaI5W1t#Rl`N!0-47ltB~&=W^bEJr*WUW^tew-jAK>FEy?aq3*-a zY+;l-2|Od-g_g|RO^i3=cpScp2|>k-ozC_!V);AUpsYw+XXOSKk`A~)x|0C1N3b4J zQW=lpp^)Zf2Bt|?7$axt<^OD$b_6Y#9i2pLdw8%KgMR|l60K(8D;nVCU8Q;v6fb5J z=5gV7=USrwYB_`V;OPtJxS<*arPcRe<3$$a=cjS7)?ed&gimJ9c51+g*?nlCvfCWe&RFh7=@Bh2lq;%y+^3Om4H-F8xuD!wI7p#{zrxLj-+zGpHUz}ePgFC&R|6_(uSZ=)TY{@y<3j(*uPUQSjf zf#J7?0}EQ@H^d-+$X?5@c<3Q)ycE{vlOa6Q>*O1tcNi z$#mEZ(*@|#;)OND8spg@VOmvk(4p_ugJVo0I(R5+wUrMs048Z&qKAPfSGF#a!F(zt%qls-RY3iD;}OS_2fF*rJL#C<{k@;LGA zl}Y&{*&3h3&wn>~?X4y;uSx*-{P+Oo{x3V2Yri+d?RnaQNQTefIp0L(1?M0s>{AW) z84XR-&OAA29~J*)kZMSCS8jKJT4tlsjel=PY)J#4qOYlE?O!(}Z2RL!*S+DJ_%)Yr zAYyp}HPzM3nmdrRUX9Q>;=_u+G@HU*K0G-ahKiJqzi6cfvozI*4dP=o+E-PYaZMb-^U?qg8rkW8Sp2X5T4@>Xl5v|VHtqb-mlrnHTW(v z72Y^gL?fypg}b_cz+!B8CtSzV$N;%FK78Jlj9BA+n@S45gfC0>CpJW-A{)WQE#*MB zyUb5Wg?D&5p);bC^cGzgE=?;YB!7uTJMdzc@hPiq(C}k7AcdI@qIyk!(RTAg!=1Q6 zsVrSB3P$iFZ+Me_fCHgUh#aIp>+Enbf9VuqxZ}_wlS-iUOlQA(Gqi&_f`2OHxY*m4 z&6A(^+AIuHKT|6+=ZRtFj(kK~r~D&YO!%MWm_rISmmo?8*iseP)6wFZxPM6FSESev zMcQYfhoC6))_SxkvTCA3sPI~uC_YN}wg;uJ?KZJT`{+nF$5>YiMH!>8DPMqf+uZ9-|Qo8oh%V@No6Xs|-2D-3N4 zo`x?iv1yml6t)Et-}6Nlr#LrwXUo9k2}53%6jn=qYHjG<<7NF7Fo!&(=J&r_@IX~X>*cYpDz9kEw3_rfxdAIPWmO7zHpaqht99z+*t;L;q%UrIVdBy9))H;Cvc zD@*)+nzw~VW~3u?z){gJn0Ncm1I0#i1<%V?w!N_QCQ9N&A&+OOCOT6`gj^gE&K5Vc z%fRZ@@J-<Qle*TRz+?{M??LI%BfgF;OZ{nYx@R{0l5d< zV##q3dzYBVdGBjM<{dd;atEh)gQ401ulo@1ie6YQ7k|X^x}-B13nwSKSg-ZceR3~U ze7I7@@7W|q!!k^bj>I+Mki|OMlD*9%<8l=4bUCd8Dob$Q;P#kTAPWc>!Y(a@wFML- z6e&E=uH9;zgPWZsVCmfQhTLw7&ZPb*B)00Rxyt$zVWqGp+B6L6J^9QG?t82kS0CkK4C-YKvAA6i57jVz?i=FFhAl~_r+iyph$ zoQ!*+R2nw){!!|gv*vnhV=Jb*_fmb$_cX59YpVis1ExlI42toi(_y^AlIhx>9Ufw+ zGcae}xdHi7r(*ZA`X`er{?``K(LLBA$W8hNy?^^CWV3 zA@%S>YP90WNFplofMQ{h{p1J34#WOs<84)nfl)gpbWf9t?T5;tK&d~3euz@gQJVYS;V04GY)vj#8-WU`!A~nUFSml z;DYD(^5o+RWYY2v8vNzgEh-DBEX86GG#qk~Z{@MoGUBbAdk90;B?w>69rXZ|s?`}~ z?-ho6kL|D$l;sUWF2O1xM4f@X#(%ba(8=v$X;hkycLU_g*TO^<1OCo;`n?4hjx^u& zBgtNyd-UepNC^G>@Vun_Yyc&Xxb5^Gpg;lxUa_p7v0ij#-TQLQ9BaCn5rF;A2KO-! z8vsgGE9>pol{WI}OA7G|*%1M;pIgQP0#do0zb|Bf?+}k$m2RSpGL+yr-+yMJu7*Vf zD8?8`7Hv7g$4T6wETI7+gj*T;7XAXd@Dc_6=-`r*n;rI5jAitl3KuHlgN0d!0Vjc- z{VWN(B;V0}WJ^9w?s01YL0zWDygUK~AFG5%_DjmTYe!{fZ6PEbz5P~ z?bdAuAs?l!_iGs2ejAM8n12J>%?y#&)z6zA4gcTEVSgQCDv<;?V~U1`+Gp~Np;kCz zn#`zXP=#-N^(U!?gUQ`p=fwf@Rb12YvzO*GkJz?rYgFTgqO{0bz2VUnURpgGMAY8j zZHSX15_`{b@K8QQ72+L~f;)X_R}n1g@uXZcjVLAb33FUa)-~mlf`6p8x`Cy#_nM7H zRyR=u!DWeBY4-id2ify0v(k^L*ypZ##J;Oezg$caX7FNgM=ED17^5{EB}6f%d39h& zpWp@Y)^Shhy4!lK^pN5*KGU_p2IE%>2J-RFtVdREH4iydM@!%Zoips%+;N%pNZ>9@ z-lCCz>xbl>it`A!!hgO#D12IEL|)>_%(_JRar*C8dkwsP+eIwI6<&jqj!bnV?%4}o zGpXx7uguCFuq!v_lA*ICRfDK4_0tkBzgkGiqe}MYN+yjAE%d@3khR#+ys=!a$6o6C zrKrw4_+XDmx~`U{SG_T2XCq1MrB%4VhkQSj5$sn7S~$#1EIa_F^!RGWWWY{{t*=mY|o>wFDCa zG&qydv=kCEGBpY>Ol59obZ9alGBz?fFqaYB0u%)@H#RsmmthkGD1WwPR9s!wHHro& zxJ%*g4#C~s-JQZEKydfq794`ROK{iVZo%ChKJxV2opg`;_l_D=F_+D`*Is*{Lq?>a zOebgpG%^(f+BwrP(KB)bWMq|qwuW|0%ydFP8xsICJtHG4EE$=wqp6{@CD2a9(Akt5 zz~O8GkT-UIPjmz@Gk-F2!IA;QP3=q_-<>7^BM*SAsk5PqhrKBifYR_Epa67orZX~h zdUu=JnOoYKQoW}L1MNK=EzK>Qf7f84qx)UyceW5cK+4eA8tCR^Z3!^6GXY4^%hChn zfNt+bO8_O%4q#+zVQ6Cp0Ga_*Of>+i%A!ij0C6RGRRv`#`hWMr$}aZyK*#^nBCM>U zDozU!5tLIA1(>SQ0>o97Repb~nA*MTH>U;2sl5At^SlTCPL~x`5meDs5M^Tcy#@di zz}3{z$?`Yt|7atBR|fba?LF1Z5or4l0f5rN+1Z|(fx*qqjo#eF$(bJLXijf$^N&6i z3ri<}8_>}j@PGd6Xli5nPh(u{Oy1k+Y+?GZ0>8HeAY*B4YUgD7J4p=qFQ@H$E8mme z?au!Z_TC8R-!*Oi6%KGRHT^Fd3qz-Wa%B`0WB|5?mUhmjc7}Gw?}5&S&Mr;>gMV!A zf2JlB{}N~l5O#5N{LLZzZ8A-9UD(?Lw~pb-7!Nu7pKpE_2$2qZ49(? zvUGBG`d39$fSIL@>2LK;zxT}2?jM`1pq!+bsIm&3%=_Tk(a8eeyJJW1?C$(e^zV9t zA~M_nPDXYB6BjFh@qI`|?M#G$wzlu8onU{rPsH-QPtHI`4~GAlYHK^7o1N$XTFor& zOw4|F-G9Wzo$4nctQC+x36jPx;RwrFuW1CO|tI4}giO8GkH;9MJiF7%2b$Ib;9BCFWvdBWGx9 zO8MUn{og1g*R`+n(I{=TySbW9v<|Kod~MPq9_Qzs_?JNrK_)At_ykKXsj|5giN zP=A(^5K~m7`JZw5CrH%J7-(W?XAWRyV+R;IIvRSwGQQ6MGaDPglj(hwO-$YY84>^k zy&cf`Jq2Lz;_MAD13JR~-bi*f0E6If)4vcqfI;XF;s7uR|3RDp29ZCA3&0@yAH=~3 zU=aI*m;emoe-I0RLGlk`1u#hcLGOGre}B+BpX?v>&L{T=z4OWc2XVghDf~h249b7d zJA=v}^j=f_KZxrc8U8`<3`T#@JA?6m5Zk-Y7-;jpcmKAqvi`Q%+WyIBVtkij@)vwx zx9MMy8Ngunr{KFtGfUUM{qGj@zu!e`@i73RENLdyHv-&;JYrTzu^0(I{%@1 zCw6xGyYxG^%U|$aw(DQ;UAEgF$o!t|{ug{#>G2nQSNZuL_}>Rd;rA2cp9_)k&q?~f zN9jLU+1U|jZK`f*^8Om}SBR{kvwx$dyEfzdZN~I&fB*dZKi&T#Ap3I>|CKEy1a$YL zV||}#I%ZBT02AB$Jim92!~4H-jsNvj`{yQoKl1;^zaJ?8Q&V?SW7x$xpfOLNRdPdc z@fXp&$r4C1F8bp#3_cC1IEclx$u?Xpk?bvEQ~rFvCf{`Oe4va3x9*ojKYzPI4YELV zo7c7Ggz|}N6Gee-!!NR5a1liXN3zuDRsGXt7ko=Ph^Y>wvT`+xSbwIs#I+CrR7Vbl zx!Qg_L@|%QAzvmD>y)&tqjo~r2^fgtLr<%Sp%LvdU=fksXCPG z_(q~i*5X2&hKmo+<8pnlR+fyl97hE#N9nW;Vh}Klsas zax3*Oxt=Ym&n{IR=~N@*1{9vCEo@MV+T%Vq9;m$OOvChhfa#yVl7C*1p{;*B3qA%^ z#*=%U2O7F?3SV!ReUh-X+KT~?&5U}*9a9t4w34tvw|SVAOjR%|s_-Q4!#>`Y_`yas zq(?_E55Au3j#v z^N{O|+l=5>6CE&0DSuOBP_;p5?N_-uH0gKX2TJelkgq<$=U-EjNZ-`A{e`m7VtF{f zq&2&HE#)8ae7F+lHm=3Pv;n^#Vk&5?@AX>W`rzw$ri8$z%4mQ<385()o&9Eu3dYn5 zP3$RC?yBxV7^af-b)a+d3krnv)#8!hf%ga50l&VTd7!>ZM}I{%NguDE84o;J0-HS7 z^laWHm(R~%2zrLfn$&sMC*M=sz5}V)o;r`B{LRspMf2im<2YlZg;GA`Q9JjVU?h=U zKycncdtL^2h8=#gFe|^7M)P!?zD$Zvh8V2O@+VnA3*r7rI! zOdv|PH2neScYi3RLCY*-ikc(^EdiFRM}!2kFXzbcW;kHk2RBXC6t1oDM9bxv%ax~& zk`25lxE-|Kci1Kg*qutU;HTY697N<#6is0%p_3{6phKe}Ei)doB0L908O%0|&%iIc z`U!EK{iI%WhiVx4Tl{A^dAE8P&gi_CtQ@H1`rOqgOn+$t!c}{%b8^lqrier4su_$L z&qRp9u&!suJgdtZH(U#C*)K1tCPEY9s?p~=W=jaCC|=)ERt^Sve%aj4R4?UL?9d;{ zL*0W14?5PX)fy|hLJLvg54H^!RZPC+9Yb?fL)1=lWqu-ZobJBPEnEfXwL-9Fr@xLb z`1A>vgMT$ku~n~$nPVV7loJPYyL{`awSpC*QlOwAq*}}#`(taO9MaD;eprjHZV76* zvA0D-?#^ByFQiZX^%uI;hk6@!%-7t#7f2<(XNBh* z)rNALb0-^9Zk{jY()f z9){6TtDU0=NP_aM#faCmuzb9+r2hVBCj2~qqvx0qMc1eGtbp-ED^ZylgiR9P@88IE zB!4`-(DNdoTr>OW0hx`S=KE*U`-F5j53EB+?_b$b8=emA+A&N>Oq#d4j751^U69td zoMV7iwFMyY313++(B-3meq|DQv~NDlSop@3wM9v!{?CnlhvlC};m6Qcl|$z;L#zUu z->b^HR>~XQ1Dp(4(#SfadEoafNIxP*9)G;Wf0M>BHZ_wfwRFY(oZ*?+PF0m24~O7? z*^`yt*(|5l8#O|_a6W8f%(EM<>2|~$io_?x*qPv+su$pES$hs zyZ6PWC+eh?uBpS#J>J^>ag)A!D~`w2Cby;MQB|j9>2l<@F&E=GUK~<|HV|E?jel^N ze0e);d@6n`9D6*Y#pL-&ymxUR3{!9;hvcavnP8FM!wc*%;DbApvyud1W7O+QjTXCT zIhV)J>k`a<(&1X|prlW>C*;&8x(CGWSGe@*{0nADi=iMQ{LB-U+FjszWrZP6wb#@S zgK;DS*dQ7r8o}m0OO%xbBrS*Qo_{BVJi3~?Hx4QY(5jCd-j5c(H)J7ER=n8015=Qy zQlq+1WrqX^6lU_aPj+u1QLq*UqNbBSTwWqJNFLdzOd31L9`2Fz&Bh_R$F7r>t9+vbnw5VZ ztA!Z2=3tzD@e43>CGiRE!@gg>`qrcW3*UVL!*u&?GQ<7tnzD?d?VKqJS~6aP*zz0G z4YHoQN-l#~B97vvDES>W99Avribe^2r7?~~>2`uyBoObQqWnn>8Grc1*%SI;DBKbP z$uSzir%(4jZt;kt#^Tzok@{((L{S?$azL_=b}F(4$hUgezEQlO8ZchVc9gLBV8m(G z?z?4%N*ZPnFRYehW^7-7prGxX;UU||)_MBsF&MZZTTFONAg$1SzwAf|PAjlqr!EL0 zLhZwQ4(j@ajxjDsTYrbt4rau(MV&EuYcg-ksndlC;acrEmak(1ufdP81hA)s*HDK| zG7c!o^4f`aQBt-Xwo*+$LxjA*D;}Vxh=kC_Cv!Z8UPB}ODTJU3>gFL|yVlY1O%SqV zTK)pNlr&&8o3&W$yhhp=6R9?3@t|0dGbqh37Fme9{wx0eVSk_1vc?lu_h-Rzg-@0A zUkY!XPV`wXx_-hLq@mNVP2^fQwtb59rAEhG?0?A<7md5fROhQwyirU=0B5RM`;mvM zfW&XiOogaKi{2lvgd&HeScJ}%-i~9-0nygF`F8(JZ6bs37BVaVW}xRM!qW@Vx_;hA zfi%|&Um^(I&VP)=p$ciaJGKHr*%W=C2NI&aXfq?Z58`3^K46nM4wd=<8S9s4Aags; zeDPQu1I=4NZm+!-`E#pJwCD)KVhMe5G$#&di;NtTvjfQ`EUY7@*~4O?Yt}uS035;c zbD8ltIwhauv505+Y`aF4at`jiJ=Zs;Cm!A)VB0N;c7Hh`0_TQ=sVSw;!9A7b9+KM-r4o!5PMW#y$XMa60ky)>J6TOSl8l(d*X8@OU@mxTc zVZN_swiplQ)%t!BkJtffb0#(C-gCcsK@(Dgsp7XUXbKx}&65;~9Io8M`l#p%`>YTU zThPs&RXJGK;LPo+UYg0VPYKUp#2e$fVq zFXKm8$e*Svss6KOXnt}?Ph?BVQ1CRZBFKvdG4kg%n-2c)PSQWYQx)XFrC((LdwHnj z?kpM;QS$kbI8B&>kM?bdu+r^FGGDYhb$(?SyX}41=|MZGTnV zeWNHE#kaO7Xug5yn3nKHBOUf{8a2p9H~*00<&DscdeM4c)ST+HM+W{d#ur1H3XbaFx1QLi~!GyVk{@&kN!5uKSFyqvRAW=A09@8l)%YRh$6RYJ* zP|f9i7NUyh)5|S2pZHS#;oOW5IOOOul@~LtM4qXBgVt10XV#z2^nn+2BGvsTu>kjMg+#UgpL65pqr*UrlJH z?eV$Z$`h2N+?3Ql9(YEl=6_H>k1B{PhP71;8n>elH;x;FCM3}d2J{3(C4iE{I7>GI6{(nHU7VM4XppSz}7 zYlS(or%aM}zx$l{=n*Y9**2O@v;K8yU5+H%#|9BKWL4#6upJ6dF3rK5qoGBRKhP@F zbE>xK+nJM^J}&|tfq%fSZa;jEA+V&c>(L3fuUz7Co7|_ndYv1o-LWPkoeKQSprBbcf7z)6Hee3=I_Y7ybn(Mkffoj0&%D0rN&;)vYy7h?%> zapmmsuN$7&|ngm}maJdL*Y(`v7}XgW^j2skkgJH4+5Hc_(oKIbaT^%y!)YnQr1 zksSqu#qlY@h_02bXr@ykCuIQMYInkgN~K9NCn5mT(9P$;0Ku)Zf#`Xq$#18$b{n3cY}zYhLl{I3aSeJ zoj&1ZlYj7fk$oZ>9){%lKmlS3dA)p_>w}q$@;Cf}@_-1K+z~_e;oXV?>Xuk%T_uN5 z%_KpUI7uS!+gfAuLeD~kszjrGO5@v3(9*-vJlitA9(d%3aJTCz5XltrO(fb*mq!$& zQ2fNX<5iBTCIF_HxdNhwJCWLn8wabVSt_!r(|?ikGhRSd+#x1NyY`3l#2Z<^Lpxzc^gtQfp)C>iv5U$8+!D}Cw?f34)ICQS2C85pFLD- zMt>FN`O{sVYa#Trq6;!aYtrF8lN!bN=-%9e{S z5Mw}GEo#=As4OM|Z=t3mnF4_M?C1If6AESLdTbXVQ%uxV@{HKCCByl{*5sgDv+UBN zhk_(vUdiSZ4>JPKGW5Z?6~TpdhQM6!qD8X=o%^h)B(zult1n@hVg6Ze9Ik4+_kXpB zI*yynV}~aE{D5{xgvLovZXf@)PJa#k3QUl92P1Y-KPZ$xlE4Tw>8VDfq|;*dEMbM6 z{?I+Ko4_aC@n>2lTgfbgz5Y(wgDy-~9XUnkC~h4^b9czt)o)n7m>y3(j9zd}1@59) z=C(#}U~-%w?8gSmsEH(IS3Qbny?-oZ24H;|T;vEBQA<@VS^^2Ss&MX1xu@jzHP5>D z1&Ba+iC}o8*RvA)`a~8{wHW+t#*Uj_q?Md0LN~-VdK2WN{Es5J?POGjAaM)D=W&Ml zxMf!8j$Q|7IUwm|n2&;GKN+hx#$C6NyJ2ztu}wyqt)rp?}axaPKpA zz+-YFkQriC1$*a~J#szVp5goTL#=iT*?U_npI`@=56nspC}cxP#^e!DRNdRya(_oM zaQw1rpkVspWTR39`{SZ`Z}SYEloj~8uTM&UOehD@?%pmZGgOrdh?PK!s&QH)EfikS z@>RoHE7c;XDLi zg|N*7tAdMx1@#Qs0Nxef1;~kC!O=!T@E?@9cZZ7jf){Pp(OURQ}&*3N* zH%sW!u!9%a$u|}zyC6q^eYZ#?p0)j3LdQxoKgAh+)|D*lWJ|syddikl+Q5le7LtpJ zm*ML-RkWG-70cMo9{yB?1OY$i!zffrbr>1>fMLLR`Ver&LYl0IF}`(!QMZ-s26NKR z+gPD!qq-+_lTtH}MSnuK^aK#Tbv|?&Iu|~2+RauZB%pL95ki4PKa*-4!$U~^JpVbb zI;}h(7BV=S2&T#8l~v6Svo0q)D?JC{ zblyjKP@T1u_}MudUwLpihy`tl6;}O0(k#nNWs}ytU(cFTcYho)wU1;%jLrUb#>BmI zBm}QW4&P#Zj<4NcZ}4j@yitcuP<>Tq~J;F^==^R6Zf{le$S!{AS(D{yG9XPs{)y!~)7x;|`%=M0fbvd~h?C@b|dCR;X zYg_0vLPs`7{k-d4e} zXnTrd`oT5D7(y$Bc~IQp#U|?~bI0M7;l#H|w0SDh6VnUvxl5)x!%86%RV19=B#j0x zptLHINUIj;OAOKO4TYy-lbPdme3LT+13tl&r7YjH;#cAFi?s?WV z;SNxI{aWKlj}`y@si&yVCM*%k`hSgI;)|3uV-c6lZXlofTRNM}$YFtr`uJ;P??wI! zlV!KgEq~lx+9y1r7%b3FLoRHEzwS{)C0IJnHN|fQrJjO5f>m{%vDvqk#AtUC6~J5) zJHhuGkEPTN8t)QR@VB^%ma22>>HQGs67y^MsRRs_sn0iBR|M%(XM@ZIet%QmPF_!% zY7Pw6g+=HK!?GovecF$!tokEyUYs zyVD30U~3aI#7os`rRz>3MSp8-SS~jNbg&U?x!*tp{qairQZtC7zxeP+4cl_9E+FrX zeA4^CsWF&Jf|0v6 zC{@}1^_-=a@3J*qJgFL!3&)HocQ8{-Hj4s}`T>=1TzN0CNxEOn0L}S@_d3CWqy5mL zgQa@VnrY+HWPN&gdVdYC5EcXp)UUv^PIPy&i*_sKF^;F?kDkcTPEHLoJpKDt*|Yb) zzc!^0eDZWBe7kmF_KPIpTN)Jtt4F!vFB9cMmQAmXW#Onri*QZm!8-8gLfSy%$x%8q z_j?be#q%;Voeq;;FGGggDdM!irWdr~Nn9;gFkf*bejoi`lja_!S9Mt1uuJXm#ewqA{7G*ysB>gP!_kblm_V z1!VARv6BWz|9^bVuuOP*+amSABdaNL`q&@)hKIStD{Va-Zl}+0j%eQW>H)1-ZRbFW z#`0QV3d^ax>oO-j$43Stet>kN;V#}>ciSc$NJ{Nn;<-%|I}M19TfnCdfYSb;lOXs} z9|6oT1lb-CrNQ&6KKD(!?=;o-MQcO3m?p8#SKf%$fPc#9jl_eADQX?^htS2rOngjV zLmV}ZKu8^AkPly%)fxz!vVZcF=AsJV+s*V=q2-1pc1gI@kgyP=L)eaee6<_IB z_K4oXrzaEBp>M6jm=>9QZ>>=Gt&PpjfUoOg8Gp2g+*r1cU8rH8T&U0$TbPaG@;JlE z5JcL26ah?#*p)3!N*#yZ33dTD&R6yxAMa3SFK9poPqmS_@6_EqoU<3gebg)hyzzq| zTn!w5MV!q^G!j`#0@b_G%rCbrwl7QJjUF;h>szt85T%VRO_jH60=fGYfx^4pzW2*t zBY%@N26f^3i9zum%co_>iypsHs0(5GDPqGtR?}_2oyk>qc_35uk?);+s62|I%dd-5 zwmHir$dX^^1mOdcQ14ix`hUH=YBxocq#rh)<+?G9CR2w>1f(^qIUo{WJcN=~f>2*V zup#RY{<0Kb4A~UogbB6n}kWa)41#YT~-fE#9_0+nOOpC5oXQskvdt z3+@=JI30kzxQzNp9deVuxJGjk7#2nE0S@`#`8Hi)U2B*wps1?6%fdn8RUK<>{ct%u5pNIuU$23OC#pzDK6A61gQWLHX9uk+fxk;4r>22}E6gNL5(wQc0I46~Na?Hc0vuuAKIVPQ^>6(m|Zl*yk4P`fZ+X#ieb~HSqsSa+1|Jx^`P`P%J;Opuz#bqEuK13 z)%zfr7=#1sQ;OS6X+$;3XxU*AmR@GbbrMB$%uR!gZ_TR2e-YypMQu2x5~rW?$}l5H zyo0>+#IO?Cep?ueGLh;qr8fJJpfrf;)QdMdoS*Mn z8nZ`1#-Dh7qpqvMk{(Qh9HXNOA}AzJ)ygoVFc6dh6%Y{qg&L4?KV++5g)WikOPu+d zKcR{YE()T)<@rc9mxgcg+Cj!eH|+?o;g&QIPdhVLhGN`xj2J|S7=OUxn*IP99L1eL zBF+M7faHBkuN>YWX7be_YA+ci*V2|aNVSMy$Xb;_O*v%YC#G3YbwMyp#So$cDt+D>>g!M@aU#d|Em+@u@@59al9 zP?qovUW_7qZNv7Q;xbY9c9{0rvf&$l;9l~Dw)!l!rMn|gl|J9DUG{Z!nqx)xjvku5 zfxF7kDhLHK(bG=JHx9~2~>#Hrv4Z2&O2bag1BSJ%j4=HQ{^jGoscwu;ELRWvS%(TW#pe zT2PT`^wXISQxSZN+Ks|qfh8;3_I500vgIk8EQPp&{%=+A#@fQ4Pi?A&ztcljbnai1 zB+Er^KyyJ9E?UeJ(6fqFyZv}tY?h$~iMf*kphg_gA=W-?vA>G$c+QT)e^z(kK3DC` zesDa)l7BX^g)m2pb3H|uUYUc)%PVk=6Mu;9h|)0)8kOPY;BHWc!?ExA}jM<92;QW6H}3Z@Tbz>#n-ZD;neTuea=e{eKegzUnAsShsqO?wX7 zm|l`0MM_mRI3!J@IhAT*XDM#g^fojcsp(i>cYjytu`00AbKU_vG%kZ&yD{@eU;Di$lTzCfvtNmoAyz}GpZqD|HY1eM5uK)K32*x7nab= zzJEWMqJYiBzWvOppkrI>tsNFkEVBaw-G8CFMc2u~8a!wu$OdnI?OO)4ge5KK)HbN~ zb=_vjB&g0tOzQL~u-9?tiAm-u(M`QJ$2FXk=uo`bxmy~GZ_a&&eSMV zgwWi!_a{{8rM7n6R|#W2IjHnU@XkVoJgM<;_LVXIVc<_SkXyn-$_Bw|g@kRYb@5!GJ}Vp94fF)R={P@pEeZjL#&oPUh^u{~h1MH6AJuz0!PYSkL;_*U zq@RDW{zQxc1-eBpZ>6xT#eBcKgIOLTvWM891!H%E4CUL)D_UdOl<^U$PxL0h3G< zvu{2X-j)>|qTA@G#okNN2hWng1Aip?dC1F33!>Mg&3C!ET0({t@VVtPRVmi3XUfG3 z>g_=)+rtFJ!@8bz8RL_)4WJ)0*6pZGrlq`6l3B93t#pT=jn3Qj*V1C5G6fQZYbOsX z4#eZ-8{GH-6u$RfRlUX4Q8{|`##YcLDV%R-k$H}r?D?N`g|MgrA){RRi+@e3C2;*U z8uVsW#+jnC*`+@S^W_T*=H1d1m`VlrD-u6xRp|vlgt(1iX z?5Uqljx!mq+9-E6g-hZ}R8$SON9|nGfMDITPHJR-i$l0zk|j8f9av)@o?Ct$Uq4H> z+JQnL8MZZdGl=zo-V4J0L4Vp*n{V&>45VNsU(W{hYt%%c^R!czmT03XQLfmDIFkUXAUdtOQ?^Pw)5|? z`WX680$D8b;Ypahtfo)S%i1>wNiGf^mmf`NPu=vs-H4NEh$h2pRjm&W=bA#t*?`c1 zEmn~wwV8!ITtdP^*D}s2|81{MCM?-o<@Jz^??cw%+pjX zSA&x|(^o_^(~2fJ^PdmK*lXEAiqpeXJ0y3vy1fwHr|>ZKQQx1)Wo;WM5Y zh1yYXuoSNeNw}chW*&d`EK>4l%e~|91f|gOp+tm-t%2t;(b$6Pv*ir_Ji3kEg8X)R zpBiI8pdQ$-^&K&_+0<(bV!kjK8?lAl^_xA`L%QAjF(I;}gc)H=vZbeoUD%^ek(I#_ zh5Q^72DgP?0B7=;5T&7c56`7)wqrkT)pA~;{6ghdSY`KZc!ReJ1XJ^rA!uY@nLn2g_d?s>&U&CZ`t2QzKj79^> zyTML?pf5*wETWPkyRx{)N-hJmf&P+LJB8=K6bi+a?5Cj(nL~ph8%c*I>`gE(+1d4O z5meX6h`#5%biCYFTY$p$_iN@avy+RIKE>V;iCd9PTd#lAGM&w9in_^SaAm0&l>ws= z=$^Nd4B>8ZE!u=<^`7hVFrDmJ;rEvN^Kq}d6Fr;RUt|~=7oO))7GFmD4|xY|(4eBFOp5inoYv3Yif}oD^4+w&ps(Dl0e!IuHlkD<)r3W|Pnv4m zhj8`dpkRNXAX<}5ZoXA^x7;9Jzb+rYP_JO=1j=QBiQNx_w*)fb;tS$5rol`u3D-7E z#v{dYkbYZ}9T#9(Op(|c^)1G1;!o58>42c?Uidy~D#BwP`Lc0P_WT0`y1=4@8N_mB#HnqkWDf#vDh75e3PIhNG zTt$*@1t^)o;=1-)mb@<5jP-^(6y7ufwmZnAF)1!KH2ZAva7u?{mn@^)f!8RByPLSr z&$NAvnP^NMhb{Yk>CkFsO+-%=+iv(R+Yv+58T2kSxT;V6Cdt<(eZIC>{L+=^UPb!N z8>oMBsKuZoS&*@%B4`8^h?uy}QHacEJy3-L9~tlV@4To*f_0Nmo6lxSy#&E^#M>o1 zO53P)<~J)YM^OqaTRaOgz#vjE4~*9>cQs%da|(Pi`cT^Y2rgCP>5c)aY!7r%xyk-H zAv!kE&Q*gp2>if2h(yeuVqI~9ip+prllgz~yC}sOB7V*0z8N)EUB2sWVFQ_=`tE%t z!#+SGW#1+yHMo+4I8lS`xMqr{JkSGHDknZ1X=lo&6rvE|+bI+8vN z;LPmqD{xsrR6F2LdhoToP-JJHpViW}|Sl2J&JVYLz=K#(C1mldom@mOssCV}Unol`0MUVwU~ zR3j@h^o#mFCby_w`g}Klq#KD-f1Y7Y`jyO@)qJr`3i>6q^@8B4p}0 zuvB#z0}c(g1R$!%q8|f1Ul3}TAjdB#F_D9W&rV+6ic%ax|k`n@O)ddHlx0A?Hplst%Zbfr= zHwb!y@Y|grL`YU{^NzIm&2+RV{krVPS=l&G7^eEPO5h9bF2F{{O@`4;Sr zj(Y2jw;Uv#(vnhHF{Ee-qL_bcM%RIjXWS_kJ#{g$IxA3b(7jno#+}}EpN*`gC*s#; zq?YRT=GtAI1?;&C7<7i*eAGxlaPSteNnVnk-0oAORRJE-M^?=)Qd&Y zZfOhrB(js+z&&rB8*G3-+G5PLD76d2LI=~Qsca#ec$lreGekx!wV8j#HDe`jQhG{5 zLFYDXdLDVMNQ9Y(5?yDgHlHgaqz3Z%Qxjw@U0h3=Yr(?`t_9mL&>>q$*H&BsTJ#>X z=%yf+9+KnGizJ@TW1NF-rIsIsRiBP!EXZ!TtbqdWJIBxFSDF-r!q#vb7&}a#DHrTc z{pnaMu_NO+M(ok1Mah3HUGF-+E7~m-$f1rU{|L2~(`Q74s?nA*$DMdb!CqqQ0qAT$ z=ZKV5Q!X%PPTcE0QdSrUj*b_$lADt0bP_6v-l}dyHd0O$ecbkA3k4 zXP%2+l?yXBQOc+lL_u&b1?gcaVdyrx)L2-BU`^PNL$e_YDJx8}>sv%XDp;10$9JT~ z7iPf0B~Cyd91?%tH!~4*qUiioT@jorfZ#B9gDtaZrkW#bmbp)wL9V1j!Vl@qUdt1C z!@H|o7G}!Va9tUi^Mu+3vZ!j+;VpT?hMEv9M}=PLCJnIT!2$!2_LQ=4_zG}%?jucS zWeXXIUOC1l{5b0x!F*GV=bx^y;c%7yjGE=J0uS!_PWpdd`d_gfs-f!vOqSUR9OpNQ zAA%em z)w&Z=Mg)OEHkQ@jb2Rf+iu2g0^FW=^3_fb#qYc@f)!MAPemiJcddJ+ z`>zfsRLME;pS@j5m#7m{nCNarMZwcqE`&h_K^uRh1xf#;1azv6EFCkN$yXAf|MW{! z@G()0FE(alLW!mr{dp6bfy-IbwY{;Rq|NDHr?YSA*O5YgB5LX9W#CSTo|UW zTacd?Wgj^qw#C>}SfX4q+#M@l{Fst2tCoRL2XPfNKxX$d#ZaQK8=Kg@4cY{NIX7h_=y?F9l=Zls@p2E zDW9eX@umd@qhHyBDI;M@bQg0%3PoRk)PqQ?d^aWxdW$+U*K&Nc5Szy$`O>w3?E;oc zzAbryjuLjhOA|U)0{`H~@bA~C%T2fYUlV`8FX@?&tX7V2sfI*-pOgrMU-bdA6N;@C zYZVMzGG8bP$BI6BzSxwz><1y!wE8?Dx>SGEqo+U!$_E;cx^31=OufK>#8k@@97Fmf ziCk6`5nvlkPMBelGYP3%tsqlUe5Rm0JzCbggS7c+u`T$VQy4xc;kcI2Biz}m8l`{I z2jn)zP0;%SM z#Xt1P+H|#I6%;<2AL*%;cvWoT)kTArHbQ zA<9bVspcfW6@_M_4@>Ne8GbD?5NU3hD1D+B0xk}sena7=0I~*@#;T(>t>Aw)_$8fq zrW49?9WD2?52BlY`1B2jz;bhp4)R7Wz>s!mVJX-PUsD+2+J^*&puz(%WstJQBZUM5 zjc2t&|M?i^k~pTgZkU3NYgRzvKKNL_3_hZ>eCRqA^G1okF9 z_b>7lHP++yN8Gb4LV^fG@m3n4>aFuk_QNl52ssVD7A%^KI#=TDI`n^$qUkekq}%|d zDb^QHBKtgQVB!!rI9!i9{=T;qjZ7tV%B^s z4M=nWW`e(b1eR>TmHED1wCUIZBv4bT**Nwi{2VHd$e~N1d-#~_4D!A#)@3ms0Pe9lAGO>r>uig>fRp_tZ5t5k5L2U+?FLtila={V0DEi&Ck{6FgC|uF*p7 zj?fUR5f@Wpvc##OY;nuG4}FMjnVIr~jTNJe%3%2gY9wu7v=Fsc@!+`E_>vl$(Y!Lo zKY+40e~Ei1uYK+ckzQtm;H4sc<{z$D*TT&t>^<0)*tTM4K+6qr%Yo_xu|!qyF^iW1JK4@x<%-_k$=iR_inG_@r3u`cM{YT*#Qh4! zs+iS~dw{xv)8%?UmEGj5m7(Unpc!g)HFf3;=PjLcutI4->-38u_f0N(g%6U`6T^WX zIrK1e3dirFy>p3gzX62*DV66bdF}8FO#e=5WDFEm*VQ zF{%)swl{y5)Di0#)Cp`T2QEyaV||4Bm%c}3R+Tk1%Vw$ zU(ETY53O02KI<(RuwY~{WxrA0%z?1gjnY;JpgPlUMsPM$gbV8S{Vl6c<%DsX=Ta)pI8i)mV*@J0KqvAn|sX929w zJIkRpQ&pj1QJ|_4j=qK+QdO_O`(Es55kUgflytx7;W@#pkshG)2BG(I0!E8b`8Fei9)b*EvRv5f1#e zx%J=TcDko>s}(3ea+pX^9NZykdr!iDXQngupA>h44VWNOt}4G&hs-Nhm6LbRc;)F) z$*5Vkte~tq7uY*xb|_WCceT+QzI{fJz9oN%sj{12MyJ1oO1^*Pc2E9(c(9_S`%`bN zR*2xD-F@SL8}-P6B-H~B3aRq_HSUi3&>O@_7JV@a^@ZXvKAQd;`nowW_J^A&gI!D- z-{-N%#~+8l9hxYd<9lKuzjCzw%F}B7a%O}JlHt4hAkv7cJCBd)8T`PbSbY9pGW36| zcR&D?HSFOecU{mm@0{hq?R<<6H!pq_3JXu@6Exo>9MnT@1fpUN^~0y+!+I4EQ?G7R z4AR#g`ekyf4o3nOr`$4V?9Wm~4`Myw8n>G|5E6}v$FY+hm!A*>Kl9AJUL-z85H+fX zWwBl;mPDQ+LLHmsaQUN-PdV#(s$hR*@q$3{mDWw9SI3DE(B8Y218GZcYPU)d_aYK_ zJVx>>m8iIo;l2bOGaip8?#39IsVMq?1ijzGPeWc)=F;U0InnFQP(-!#(1d*SHG%sp8VRmyw!I{PmBW^Ym=JICEP|?UZ!K;imV32i&*>5ID zq!Uh>n7YeesY!WNi$e5zBEOcOHw7oaCK&S_&%2xDNl*B3|KWH;X=0{1E-Ov*(|GC<`CC}a4|9VCe@ls- z1ZB3KT#o&4pCjm08tnk0yEsvyeH#SAn`#{IqL5kkxi|1ym@8aiG_HB(gi|$xPMAn1 z(7F8hWQtmz))ZjeT!w#4efuz`0R0zZypuT1gqm-tUzhKumsrX*U|1F4|M$7t`a4^p zbES{H#^wH~* z6=t>qO2fEuEgYmydljKxD!>Uyev#U|>_%+t6sgGKe^(&<(n1ahHE8o6 zG%*RMus9T>dl-Ks$~(ST@d&{^h%BvIShi>ZFHnasGDQJ$o^K)S;5zd~P5fwR`HNc5 zT3-0uaQ25*x2cDzX*)%czu_4`@AgY1qrE?k8|%ByYM~)`%5s+**4=28?PIyjWabpI zJE7N_{&Mzcs=PI_TTgd^bwE;1C?*D)!^UqYFR}xC*xG;d6SP3Pc;<_UWOv$6@*uDj z^bnLfNkxE$1vTtlGU=mYn3UQ8UAf+o?|>Cw`eG9_)>-szA?=GaqG?B4d0 zv8rig(D{G(>zSl|l?aTd&{8Dnx^CyF7$vq%NfB>p=cfOOUi69J){)FnDj1PJs?t%LNQ(OUWM#EjC zdJoP;u(%ZU1@-!&j?5pk7~B;(hOr$|@l1av&$0Ss%$MBmK+xL17eFq;iy6Ar{z&Hj zKm)$e)F7k3a#dY{&SAg{R`L&OGnz;Vm(kip@;TB9j#8z!O<}uFv(O=`#gq+~^Kk`= zj%lB+6iWsVX`c{q!DPbCWJoa)G7-g2+(e~0lf1G%MpAbPr=W);N{T1)K6T;)AWMH* zxZ$weF(21`QXvkq2R!Qr;1oB2>nERiY`PbttXPx^Cqh2EIIMRY% zoP^_D^t**x2R+vtayK&N$kVByoIiga;!YI5$96$g41$}4D1toOKxn1rxxcPE*2eX< z&Tb|(7vT_?0?En3J;VWP&{8^Zv8wT8bYtM5y-#&_kKg%j8M8ea5kvo|)zflrj{?mR z$QrSDSbKQnSDRa8;lJJPNN(Dr15kik!*w0Z4cn6@j81xJjh;Z`ZvYvsDsHP0uFknJFKQ|_6%vc7&QB%hZ3=t(g5!`O1);AYIV4~kxuS`-u zz|JGx2!Q%*1!acL$N24hVm^OW7jkc4C@71J|IopxU4M|$c-IvjS=0?E7*7BLO7Xpr zDVT@hK!6jO<=N6`dQay4@8!QT5ppI71`aIAiMl=$xmdv8TCb7y4VrJ}ewOQw8&jGq zgcQINc@GP5(PAky_K11n;>s-?*IsbpNTGti34b8)* zbW50(4Px1%7fKj!Q~276Y*psjVt@V97hj>iea1+IiL4euXL>loOy(Ld;G)fJvLv%a z2(Uv6`v=~!cikgEu{%0D0bx!W-+(84UqL8B01~bN6DFiBHLThT>H0qfied|Tji*#3 zT0p`44ELeJ1k}AQ9cq7$_vPKP{yp=srB7NcPISYUPH>V=^Q$U_WoxoxR6ws1EQC&J zv6le-`ium!?pDq(1ZHM&WBU+GpB~U3l3OtQ)${n9&QxXX{IOIT^mC6M@yKOl-=Zk-%yC^R_j>$zg_oDK% zqFxzt)G5gN!mFYj{gXAiQtmMhqGC;Jre-~ReHatfWN|=##>#hMDWZOB5n%m||6|oh zhpx*bl_-uTu_(h)-=3^M)ti}SY*<`IoBv_isFT_OcgnYWv4izRfdwmJ(bC6bmj`X$ zuTQavIY|QQ!MT4DU>0! z6$-@-%%ibqjyNG>U5UF)IbS%X^FcRNkGoFOWVg^0oj2~M;((jCh_M)orFD8D6-)zz z9Q={+I-H=jWP(j4a z`kJ##z1f&PT|^!CONr%$6#k7+S{69EEG0OaNLpITW`Of()Qhdyh^3|6QbVi}cP=4AcT~ z!F_)O8PtW6{?sP|d`VZ#XlkW~n=22ga)5QNHUJIiP`WxmdOLYT_b6L!CIZ7{bQ`I1 z@f-FWw@2lJ5WAzCV5Pts#-?TwLVgVPZ46CVi;FGt{xV-v0y1zPur%lrAnn&gxYR{O zROKtk*dBDG@$JnCnLQxDMhKdi>RWK&Z0Ub&5QCW0iG5M87r9m@aLSUO9>kUJCU4y) z+hv(@sQ9FOd2OzTf17%ONA`bia0=WHP;pGm-3d|=mU3`@r!BQsX~B4cG8l+`GS1m*(XpoU>Cu-+P(XcbY!R&9M>2oh zHZa(CVaex=XibHY$3#T4fI=Uc0DuN6?PdS-IiV?%=wQg1&KzEd?x--n4q_~`&Vxtd zp_%FQTM3z;0=|um|4qXZ=A=~I&GcuPH%rhGKIA=RiZAUrw5)#ArT`JR;zY1H?_AfpEL_|CbH+8MU#(Y*8=R z=c^E341dxHIW(jTk%dN9ucidU>V_s7ex5|J?li+>nU8d{FD=4gLq@Y?IJtjK0`+E` zL37%Cr$mN7*y?atIVhzP$H$B~W7*3IT>+mF@5j%tdPUSCxG<2vaXfwn7mK&{Q;2S~ z4(bP~pse4$^=8o7)N-;u>JU_a>CuVs4uyXnBQtz;=PqcCv2;K1#+bsW`wDq>cK!Q7 z=EEtxPAh~xm0C5o2>|NVehGgfj*>c&viEsYLYw_6;tCJ27fs6cf;u-Guk~sgY7ae) z>g@`U9q`O^=-fJ7o$Rw%8AQmB8du`AQyU_BIC()NH1>jay3WT5OLL-W!;DCEOI|%n zKBS4)-jw;fMyfj;`E8032N2z;TpSiWQ9UKOCQdkzt8(@5#gmnGE-ZhepUL`ze;-aD z_2W&#n9_Y*U11Q~cA~yA%vjV9Jjxr{R;Tyf*e81tV0m@SDf_tBBAud^B)1NRwDWOD z+G8YS0mW)Ryx~sm5>QJzRw~^amztTBd3EFf+#Km_Cm)%10hDXCg$xOOyqDF19g22! z;6;M17j_42`U0gLrQdP( z#*49@12ZqGq$J7?$+$Z~38SgjXQRzU2r_fU@2AW~5biAWelX#CXq z)LnpG<(}U+S$6OoqXyJI!>66~* z@8~372hgzdp=QIwy#}h^VjsPP7CaNCQ7D;Bbjs2nE2Dpeb%@1Sx$^4;1fuu=D;pEy zq?UD`^d<}q<&f=8cyr^IX z#WDjptb9UmEzi+9#F)1<|2u!-p`{)N<{&e`TQv=siO9NaXO!ct2Gxxzr5LR<7cS|# zG&Lo*cBOx#GHHu|(Dq>E2H$KQ$wZRuu{Umu@Sq{&2ISAr(c_D}MpAa;Zo>yGZO0&z zD^e_!d&+xQZyAh2YH{DF&fDYONV1`%CTHC3EvHm%DqvDw!7>Sf`qO5-v$|(=#PLqACcBB1#`2tTlGw6Sh z3UCdT2ZkX>H-glkr(o>f_P%XzxV-qgh<(<|HID8YHUO@SNHLC1xw{|p@MJ-L|=Q;lLH4n zW~+b1-w2plozaZitS`t2#ZTvx0WA1!ur!d+VZ!~t+Lbg2B98B7W*=~Dqe~?B5&u^nbwE849A5r|t5Z?ZvIs1JYDP@CkqR%G`^Yv( zFbs@NL$*mO8}XFTktyN=8o9LIJd6cr=MR6l>5}=4;c^g4SrbfG&0NqhTfc{0aEHb# ziJ@e;Ej&NJZ5(@+w41UA|aB`n}_cRU^083(C^-b|Jgi{rhbzCa@rEsio3D#mvC zvGP**(Cq@AVGRAciA}g{+{e@R(*JJjBNeMHYNFVG4EL$br?(pDph{?&S|P766gISK6l|Gw*HBSD2Lpa*G9~ps_ub z0o(|41tMcx4g%sV)H{(3oWNqb3`96Ded(olWM-#DJ zfTDIzyVfFii9;cQ63vA+J|65~*s@M8$Z>f*FdiS;!{xf)tCtEdfsF26n1O#3w5(oj zrz?M|>98K~8^Ryo-2<*XlgL3imM6w$b&JTgmJ*tSj8ZQVz!__bQ7F4$4s#tt{eekc+$2_An%F42Jfx{K)E&~GSDV@j_^4F;`}`0-DP!a>C8zb3ak z7q(;z2lx3%z|wso_>#G}VtU-J z(Xy_Go_p%&Vv0SH9xMUiG1CI*1|QKp2T_P^=jW9NsB&i}1o1h?ytg{+} zt^UoYA7q}h!cf2X3D_P&emn9`g0L0bxC~Py#Pc|CzFg~o730pn-IBycK=&5X-}PP#OP6yt>t zb6B>hWe(i8WTu~`CXB~1$JDy=Y;A}|s~$X6nB!PWB2(+$^mV;@h?B|=MYgPeLGIc? zYXfOodIZ&_9I}6<{`ILtsSGsIw?#L~8&p<=DT9R{$s*`E?nBYlEd2}NRd+^UjgjDG z(iyMAP0&Tg$+-lHgl?9FD0q1-WT(EOgW^pmbNowU*JiR;+b&5*_fSxa0CwLHFe6=v zD?I!>+0BdQHM3E?4Alknd-logf>#G-cKgOS_%K3aD9?Wr7!S`CCYC9~Xjw~pkl=jB zEyicJWm{VF6UHDDt*FAqepvWCh0HnW*A=Yp`X)(}*C~{I)Wghp#-b*$aec?Bbtv{b ziWG!LL9H(&*E1irWgx*+1CUD8Cg_BmJ<3+|M1TxErLl!cK^9F^big1Z{%;N&NOq+L zd2rGvG_ZdsC|dt4ci`f0I#p=(YWk}MSMHPef5)ZTU1G9k#)LHY$ZZM{z6?K{@bkIl zS#o{VFoQC;q9Goc1yg4X{NWyGDcq~4J)GxVbf!Pzr#Qv4CfHD=-r4LI;UCZ3R7)s@ znOp>@;t`-%RFsM9fnUAh++=ASK3Z+p%lKpR&hvi*FtDs{IGOEw`x^$^KSCS-V6@j~4=55&k9p+zpG9GbU;!aV)2 zZv;wQDynSAQ5wGz@2a;Wr^pu6dYeDrsXmO7_cQegtMXroMP6<)*4?GMgbe3 zV&H$R4(0Q2Y}I#dU9q=KKgfOGq){v#!=9zqOJAx)6ipg$FN^+~ZQh6ix-N#nHz?6W z)taI@CS9l1tdC%ky@nG=wMWqWx3jvP;=!Su+4+?B|I@ROJYa^Jvbf=K5||Czk5%S_ z6TbAz=vW}Atu%mcx+`izpWNIQqAvE~)t`SH#MKu>q+U&}yR*z$)BEPAPal;bw%}a~ z3oZ}LGk$9)PGr*^G+fF)&;0C-gS_ovX8gtFd1MrO0>sKs2nM=R_^6Sni!V`^+CwlI z;cwzn$7~@-=t*3&!oMvU=i736S{&9VHrC8|`g@GRiPK1p4*LDckYQNQ9G@|&aNmF2 z?cU5$ynTv=XV;l-Rhm=3$IKkPt}TKwyL{1@>3nsTQe9ji;vH=wxn=OIT~@C|k+#I! zH*n@bxVBOvJ^#I4wR_8zBs3k2SIj>yDk zeAZcfpx%ye$$z*`eswnI_QoM5-FAPF*}EPY!`H*7;ki{7?l=Z5PN!eYZ>#Awf&SpL z#8t4>vGWeZZ|IjBg7nc`bm!V1u51nzTlxW>7KPOKB6oJo!DI@D4+7GH*$^j~3vj{o zDc%!ov%BudAg?a=rfVdQ@hLFTqFY4Oq~)~Oz2@Vw6u||dhvco`7;B2l-9>*l$%h8L zV!j40(E@yZkSZhLjmbeT#HUgM$8bxZAQ_*K-&-?<0YEks=?C7*0f3G)w9TC8zJn+& zbkK&$^MjsGpe}{#3M_;)9^ZH&g`2UF)xg7|S+R3cgpHSYSWFHs7N#4?h{{FKyj!7> zMUo?!luq_D=%WnON~HhP}M?q9R1I-ni+XJGnVWxrhgpPG-!C@d3n8g*U9 z6?sK*moM2pzUqb2Q(j$W?f9Sv$i-y=n9VC*oXngwR4{Z5_bxOna?qCQD9J*oa+MI8 zl`{%-qEaanBCPQ)=l+Uwh6gf|X!Jw~t(Q>G0Th2E?xq^RN|%Z^?0DPP^x^|kIgiTi zf}NHC*v(Q$0%0q$ags|5jHuJw@jY{5QB?E{Oa0-2xeQU)1yPulWq06tP(r2LJ-SPo zu@#R-ll#LEuWV~rOIYWkp#CjKmf20gN|)&`B3%|yt{KRQlsO?nWHV|`LA69@ikn6{ zn6`g8FQ`uvRD^uBBkG2c3+diC)&O;m7l&hO?62(Y zVi5VA=w9N1B8+o3;C~Ty*tnkm?|%93M$KSNdDQqZVZurrp?%fQsgkI;C45 z6_6hKX8EqX`S>6d>j1!g&2~{mWz*)|x?6w09(&qa+VUTj=(@`b1fw%b$odWm0X-S~ z(HflXxApEbDb~)kM0?-X<7@mq6As-5ULBd_GUK^lhJo{br zVxe8N2Vnyuq~ckopUpJ|J>AVV6*8whn+bR zHORuIR;KhnR`YLm;}`Soh2(#qzXXNhQb$YW>xk1_A2GX!J%;CVzvJn7;!s{oTYVeY zg?_`f5?i$GCxi=67gO?AHdWNB1;GH$Fh0D;JGJyr_+b;8p{{676*=Wemn@euAE1A62U)h%zWwQ? zfn)gAYC>LPebjjj$fSkM3smc>&Uhm#HV|O5sy$O61?%Et04+Izxi0QYJnWr^Ey$YtK&cpXZXjqBJ@TdZ*ZQ;c(5E_i)p`IESU zwiAtlrb2ev0Pci4(0zX*395S?6VZ_R!*b!57&vL~D+H;ALm5d-q@c!JVr+{pnn#Y% z+WOFyjGTIa=4JB04{jMNp7cCPgVYs<5GbnMg%=U~`ppDz^HAJ-gy3O32}k_!y}Az* zXw&0~R41Nax~H)MRA`v;8;unB*#$fzE?;b5$`*eVAD&qCcGvmrnWEd76Jzyut+a_5;T8t36x(6C^K zd<_WW7)%RX43sKiK~Bb*oGNf(ZDZ4f&3 ze$e%{u9cu7@y8=yhM<2m^~ZImU;pxVBMme+Z#6v} zQV#fAMQ!D(M_wZuN5Ku|3R9g^m^?^z&{pgqT~A74zwY}%qeHD`s!cD(t|zj37sU|m zco6x(Rc)Q^xu#X_G@l7p+ihZK#>rifNvD?kzP6O;6T@{txuVUiV%&3^oqKilQx&Z| z$`E}aDc^r6WfU*y(J%;clcG={9JAGo>tbX1>a0)=JQ9VGjxpr+x(;dyB6Jp#8&ZSf z33aynESQx8dH^~$z{cSFX!%U(e*gbO`v9S`Un{{O&u>HC@j}I^^Vu6w)tM4y^!J=Y z8;)j)=(oy&iFZiqqj1a$n_0un$k`3A;)&mrhiHF#P|ssq+Ue0X#7L(2v{u`reBu$i zn&=Vc$38v(@Ca5Weg}GpAq#qyH%gEnx;#x`+@9|^>~hLIehEB9*-lIZ3PZ-J#b*?T z?y|JadnT@?pRhNe?eg$1VaFWc>A{&2wn_mx3W*tH=$QeP4^eH6T-Jo9W?zh1!J=`* zlstbaAn3^ZKzGTK&BLUg@9-Jg&ekWigWXxSnM{*tZhf<9^qDoTk=>2G7=S*<<51`4sp zDGZ&ELhw>mzMI`Tov~n&5KEFJ`IR_i!?1r$%)swe^cK4cx`2B^dNLu$jvHIU+%Vm4 z4D1y}9dsNIw3xjcU%MJsS%j0E4V()AyZUM@L9QYI1#uZ&sa)>xk#vxU_jS&HD} zbrWmi$FSJ4jTvA-=UFP9Wj3{ zkl5JzEal*)AR~B*L7x=E*!%W;)N$|LeBhf8q!>w#r8`<~E*ZpRdgU&j95FfDKt6@0 zC<8Q?pmR{%v$r0=;j7hrn74AXve(j3%GM;FJQ%naCZ?3+UJ}T7SLlj&$+gcq1FE?_ zBYe6Vh2Wv}m03{Iu5JVJxV>%k$4P%sG1wcT*gXvzBFX=W6l1oV`J9H3q%@4cu!EVV z)BK>vVuz~=^kM*OS>R713SWSul6l4YXGLCjFKf^TAf#*U(GNYLCQQ1>R*3KsVI`Kt zZ~VkQQI(I0U$4VjfcRD3g!(^YByltyxE8XjBj%im4Ut6VUfwB51oZ+e(q+d^*iWbMtyw1uJx9iH#xF8&4vgNHEI&HOd?Np;bEjtUYdI2%Lzr6jqEN5Cd6Gd>-jMuw?52--%zbWx+c zlDA!;{1eG|Jpbb{B$Iz~8b{=r1WF-(__tMDlRcigxr743>ro&b7(bENH`>Ygm(z8d z?$W!iH*1(GE8z>X%=gb%oly(o1^0Hh~;U&W<0CDek5eY;)tu!dN-XF zEBFh>5fSbKoYx5S{*00ecmg>uS`N_%PTI*=9BX$(w{xQk%w~`U=mYc%fHmQAmfyZK8J=n!5b0}X0b)jYfS*xHsx(PhB1?A>%P`|(ZgMiZ- zxkGtyBL-Y0Eo4ZISiFZ2HO@uTVvY^b143~nKgWNA^*THmmPxZU<_zGiZuadB%J2b_x3LCUzmnfgJ*%pp^KO=Xmz-2o9T$ zh^ky~P=HVUqR6;6O@;MkaN&2|PUPq1Xr{g-9X5$Z=y(bRsTxkua=!DSEVQFh^#5oD zp|XF;4-FEa9kYuBkxyB%`s9;2lO724Weqxul8es$KI z0*G9YlbeM{%Z>|m(=UWfi&efEa_Pb=dg)no)3btc(35n=%J29(Q$`}R_45mD5tE%q zUjqEkxyJ*!2}4FJ)!>OnXi~kas@C@T5Tm2UwcTjU)Vf90%Sfuj`Mzoz-2 z`w;TXpy3(oj(L7OL`(xkZp7u+%k9{;%{N4YPK4)6(-EdXJ>+l`J^a0wf0-x{D>(}& zkkSO@Ts_6PRbgQhBY^o84O^b*1j!B_vU_+OM^a}1fKh@oyWy}2uMuSCx*9V{->-ke zmG+L2bHQ?U2eX;&OW1HWqDNO9n9_kVWw|$I??|FG?ztYwL8&fe5OdzCbYXc4WImu{S&5^w9G6QQI#*q6OK+SbD^jR}E8o!`+sh z^K8`8k^`)Drr^S|otHI|c0eU-F%qTdB`ttlLRo_L z?Wz1iMSS1opJsEMxjuS2Mp#`q(pOD`T?*psZex2Ce(2E$>{f`Q^wLkuvkWH(^dVo2 zH&aMXm>ts-E;4y1*%$xb8F+t6gfLO4PD#=KQ(aviZ*TO-u)V!8Qcb-OVO%>U)qEZ> zWi2nH&#ZQ$n2LsPH6Z8t#Vth-2PLnjQF~O#G~iqayRtXhFG!#w4(JyABBAITjeuYc zli-KKuKyN5DKE>-(obr6TPq#6bTtVK`(>%TL6ZO%DR@Dm3O2?;?0J8OHAOYawNAme z;7!43DtWevYSVKi2)*G&QOz0b&Kw8mh{;b`q>lYsKkK2L03nrcrv$U_R=Iq#)QI_D zaTjvxqO~fVzt!)o1$s(E>;=T*YD;MT#B5qipCNOl59obZ9alF*rCem$6O*6$CLk zI60SK69g%LxpQ=6-MT#-+v+$K+qP|Y+(E^*ZQHh!?$}1h>bPUu>?B|MJ@@|ZJ!jm1 zzfq(1uJv&4x#qLR9;3*Kl~n14P3(+-5_Y!E^vn!QJODX)6+0V4TTXfrJ8KgF3j-4q z8yq>gs3XwO*}~3N%+MLg1K@Nv2Phglf95#?SeTf9xZ%hFl0aLaZ;-@ssKq9MRg@r zYKG5$!m2Lz_I8f{g+)|VOASSG!CJq2<&;caXRn`7p)qu92_|5153TmJJzkNOf z|E9}}s|l-VDTy;P{(S}jGr$$-=w$J??SEjS_(TTyA84PcrjB+t|1*_NvE?p@LvV~ z?g&86!Wd}l1pJ#MVfQbm%_o(gNuPG-{|D@o2%(?7X#N=kA7 z8$%0QXP~X2t?_4|v!Sz#6X4rFw$Crngz{eifdEk#N5{WC|!bW0MzFkd_cv zRil^t6rL@;yxk`|whYeh&i_RJttTud#{=ME;s7vnvjLbsMJjGMPe;0d3bz2Ju7ofD*e}#UU;Qq&E26P56 z0e}twpu4d-Kg|YLe#6QOb?w{(?wx)If?ths-k^Hyozc!!hpAn`0oKF)wTWb%13D6Xd ze^J5C`BMs1|Nl(bfAo@Yv9?w)v;k868=wCfWN2ey?eTA6{}G`H{0o%o|H!p)lCW?G znkZQ~8=L=&(|_5eoee()FKlaO4gB1Xe@yCsXUO_fte*#t#ozM^K+nv?@*loW9U5EN z0-c-y?9BhTfS(Nf2i#BE|AGZD$|z|le~W3;{<~KGi4nIowllG?H3P7)a{vq-9SuF; zm_7x-!p;uxV*XUI3DEr?g#Z{CZ0(#sQvmiZ&OQKBJ4d*`yU5JM4q&wSYx~!dg$cmu z{?GE?p(y>GzkdYA^gr1C>tOn4t?KM(X9d)>F!?-`|5u2-p|hifyAIQ*I+#E0f1jWK z{-yVC4aomT*#9eAM8wYBi=Lg04M5Mz#0FsI*ZvX0|?b zqYiIt=7Vq%y)sb`Ihe1-%Zoqj(7)=t9m3@8w(VwJG2sftmbUfFvgh}q@MS~CIbC65 zg@#4#5K4MqdPxP_geD%nPe%}c)TK*jOFl_6@vTNr6&U@YfvNCa5$)g<#Q@V6(xonJ z7|sTo2MwBtv$7&`hklTqe}{+C_4pqA4olCNx^x;KPnZJPD@tIS-UVG~E11}v>f5ZA zr-E+qgOP^!{TjDc&25SD7~Euh#5YnajT2ouvI=4dahPD_6a&=asm6w9Unu1wJUZwM zWDW+C))epidZ-NZcWRsy6XQYI4@$o644@;chw}un*uo|n7KUyOe|}X~D7-_MKDJZ} z>~~E}36h~(%OkNF*H$vgwY*RWntgVvof^d5>D-M1n)Zdpe(Q4Z{2)wNP4=}OogA?~7(vx_TR~eC;F}2oh7zj;)$Xw! zXfHI>3XcmT2-y<56T-cwFWVLBDM);hQ<%6XuHd2I`Q%v&H1k-g#&8k1ArCJFa{0zz zG-QWb1G#*qThEI00t)wB(dU2N{5fseaT5=(p=>C6LXszw!nS%Qot7*$(0q}JkYvR7 zHL(eIeW7#9e}VVbaKtw>=rv^kzfPV=ZJ$OjU-Zu2IqK@{lklIdRvCXXb?G}RNpQXb zGoA|%DoXR`lf9kaD7wMK#O`%IGiSH1KBOGzo;g%A?xoGC!YD?AlF%-s%goNQ6H!Ca zeWMz~o{UHDwqDmm63m5G&Gsi3WXo#GO{|&Q^0U>Mf906B3{95hz0k7w9&5i$zbbY# zTbVh&VDCRZjCzjo$_VN=JMK$J+9#gN8Om{5y9W!QF0}(p({&1Mj^wp&gqB+#ILOm} zQ;%WVbP3!^4T|xZomeW*%OMW1zmHm-!5cQ2*F7eGxDtcZ()m@MkGKi)=h{sJng_P( z#e`$p|!{e-ZlIky#7Q!2&!P=N6&s)gEhrcm?77 zTx+lpkJbax?>x~#wQ!~{()RKqUB5rb!W$@2#EBeRWyp;bnb@?y%9emBJ7-W4tJ^7% zux-H)FW~^IKANxj>uzPa2r5{{=fA7i{b~`oQmFA0PXm&3gD_?2^+>J#XX*B# ze{XY(XsxiXP9;y>U!^7{+==R_(S>#hjXWR0tqhd}pW}yalJ7Sdar^eB?YyLwvNkr| z6K*hG@a?ztL0NHpFUlqH3E;_?%fWf~d-L!0!9kIP*F7Xx$zWGNH#N74XvzX+`>J6+*0 z8l;YmFj35wdv6g@jSpIB2}fD!f7ud@4OJJVX>uqLDnr!E6PFp*jtvD3ri67-m=v@k z9B<`Zcb^Zl0!-9(SPBMQSi++~Tn&rrVWUL!3%1x`V>m9t5$e_$gG&Bs+g(PC(3=+s zzVVYT0*2#*kSuN~c-C0XbbMsPgUd%8d~gZNeZo+4N{>iVUvcg|kZ)7NYuWC}yClrI$=g8(gl8RvFoa^83QX+?@2;-49ygV7j=_ zHF`+4LRL`e6#cNn$v3d~<*+VI45gxc*nSdkwj~o}C9LD4_sH%S{*WFo8^U>)6&ME^ zf>~kiJPz8>nEiW=rj`>4f0>Gzpr=w!(#QQrrK{C!tLoySqou_ok+L*3ztm@d1-oR7 zGHctRp#sCMD&)rq8tQ5NVI1OACJxo5q0o~pP_C)}`yv(Yd>c`9uu_k1wWPyzmupSe z+5LUZv1&X=aXk#1JiLtiDao%i=%?V&d9l zwUy@}wbf*Au?q)pEp>YTn~S2Aj#)s0*5iDoFsX>$LY3e&+pAkJ*dd{CVXGRG7FoxV zS~ccK{Vk^-@3Ve5e+`JrhHJ6Q5{c{1aQR>$sgWEQ2*6I4;NvhZudyW)${aCZSWe@{ zxuLEOq|S!Jr%~zA*yt@6pL)AU41F4DBpc&H`%V62w}cgbw8WRXR?5+5r)Eur*Q~C{ zjaD`Z{ClHV&rAuz?t{c0IV_|@FIf9OW{=;dB2B{6R?ot6*s zK2K{f!P2f;fYdY+b5(lWP1&r!#`yzhGak?RcNcAN;T&Ds z)zE?^CG&I}Fbs^&A`Df=-xXAW5n?Amd(&3AFOcy}>UO)~(;FYj85o1jc}fpPak*#a zA}v|Gx~Xwxf6EbAM;?VNEh*flUc(XN)EKbt+xZLwM#E-mLg}@V`_EhcPJn6s{pGK@ zuMiy-XSEV351u%54e~6DG%-gCXA)bO-OX&uwkGHKr+1lx#+CO4L>!kOYG4nm6;%f> zb4bw!ztP8tcc!;|P9&yGmdiu%nqzVvgeH_*2YMl-4 zujmGI7uTh+o5M1l+7{BCPatJ~2Gm?vk`+S&N_)+*w89*>=}>%IUz{1fkBLx`bcC4a zma#Va4t5{1MA=6C%nXjKyzata|JJ1S#k!8FW1`ovSbhsrl4}EM-f(LLQ*o{%1}CJB zOF7(ce^nm*NnqWM0{hPhbs+bqSfl*MpB~|WayvNLIbCkzN!oG_Xw9yNgESR8=-sx6Z=fu=rvIbwLd+8jZf6>(O)Y%A7wOPm!s4T4TBNSIdM%?^YbeB} z9-tTJ5u`d-YuJ;D=l{*Pg*`qjW}6`@&qQU;+5_~gE2XQz|GHk&FBZc=gLFyU`dUpV zLe6rgK{GNs2-=D?TvZmyga^_@ATkKtf1mn@CiLB zq9=UcYi?(CS#EtLDz|hE9~XhIND4$G>bMs{*ayGc0tWTbok&UFid_e(;yOVjf2s~P z_C>ZIeO?#f`0-Hbl8&_s7_FdMNw^al>M5#>8Lk@9(bHzD*IKz9oZi`R_g9>zjgKv{ zq+$$k^&zKnA5%M?!6NvAxN{Klymz4R{_KS(dUOQ|$emn`B3_o(Ci{IYLhOzBPQ@EY zF++=Y2}Z>rZ?NsqVnj(2;~R`^e`p4NP*||@R3ieG_s+c3o0sJv^UI#D9v4IufJRbM ztlz_ytWUfaGPDD~!?vZL9q8t@A)HW2uCSUI?g7~bvaE2{KrMYS zxM>K}%UqeK{&~nxCO$>8(PiI16VASyTW@!oA`q_HOZ8=GwwyO_=)iF6N&`@ijjoji z3Z1B^+oI&KW%ya3`++zT1su+BDRLS+4x3059i^uO^OWXRlJLu$yc@TurpY>0r@F z@OHJH-Oqlj=Z`c=zi487Mn4j)AKf%f=wcbjuUw^TXEJJ7>pg_uf9mwSs3Gk; zAcae#-l+`m>L0qj`!8)dyNQ<*t&>9@I&CHDm~$Q09+5DI31aS@eR zO{a&0xY#!zrEflqf7~k*fpIF#xXH!IXfDnx($I`yqH_D);|{NBn}kMSydl#ED|O9n zWb8mj?z0Kk$a-F+Q-8CkhVr@LY72o|%vAgA!bR>t5) zU$q%fb1L)vVfeC!6vabFYY$FckyIihy}uvEMt2z`qXE;%e+y6}IFsGoJRU8QMfdHL z8TgJyH9F@Z3}`rV$kbhRK9)&ykQzLLAoNQ^i4|4WvWBC1f5cF+yv_F+rdvw@-4WnYD?g;X;p*&M8yF<@CFFtmrR36 zW?S-5mJRx_Io~oXUGw8DmYLomTghh??`kqV%0xOM#8ct%n@(T|{c{SnHM2%zlOqGJ zYrV>su*Wi+#W-I*6NIpjd|jksmYre$tzN-M+gZPhf2Pv*MkABqNY4s zTuXO?(ENe*A7q?EQ4_MDT6(TkYZGeVW9|*ECah_t)Dqm;`|;wy=A$n6%qzCWB{B}k zEGnU>e<)o&@5sJmfAj2;Zp?v~)UmY{8m01%)YY6OE(={Tz|R=}aiOU<_j106bn85F zQsYAC<;Z4BZ^YsPtQO;`^zlI1gWdO4vOp|`APe=^+-fa1gU}Y#PW zf1{n}j<6GihL{%ZZvr3VTNWwJGGOngY?SIw9O_shLBzHyYOz@#PJb3~$^fq4g#k$Z zaCKWf8)E_Lr?L_x$@1LEl-H#2h;s)MRydFt@RrhsAcOh|Fjv$EVW_?M4<=r9%hY5t zH=WclWZw}uJqqT*l}=aTYROUaorvUKe^12m7NRj{lUvHXSB&Y%guQ>82u72E#Bx-W4?+zCl2e+!OIFC*6NvU-*fkWt_%<_2vqNB$JtC} zpG4|cH7YDS?L2#!J(&6CEau4LT+vYmYm^t*4`SeTU zc&e4&vZxJi*TCs@%=w6|_@$b4ty(yFerIVr?$ZiEN zX4VdGB|ABHBgw@t0kr5fEI*?9=Sa-i zn&;A1*ha4Kr~BeRVD$AG;Q@~V)3YDc-?+w09J0R@D`puea4&*%iH6l|@n8r2z`9CE8&6?Ui|jwMP!J(kiFeTKW32VFrUZ?={sH z8Zqj?l7?zk1iu!Y7J(fbKk;pm3}`mbglwc>cpaY{-q1&F&=Byk#kqoJRofZuE;$j< zAf^MhYOBn2+qx zBaW7j78qNK<%BAGnHBh<55BhfLHNOkqRA`RwO{Fsf0btIZR^QQghg^(j%5Yn*b1(O zqwUL=NT_t9--_uCnjoo9tapOXCsTe$pk=%>aCN^zQ_Sqab)_Th~Wk#m0upVDZReSbu>?w5R1S0Mn)ap;E8_@zJPwP~jLc{)h8;r@{RzOj%Tl4w0bQABArYajO zf9=S7rOhk-aV0t{wrY`a8>VepUND>Z?7N_@OapLuo_W-v>^g^w%5pS$>)l|Kn9KIBYdMI}0?_dcYgvOmL*Ltj6UmHn4>}+j1|tu2BpT(rF~qSk^Gp zF)f5d(Wr8(b8~g;6sY@8;4XBd%H#brGI~QNJ{KYNg5mfMaX-^(FwUz;NtfoW(1)f zpqle0u}WinAZo(auGYse$T=4Se>cGEwcZhPU;~dS(d4>UWr0bX>|zsp{XP_;TqL?&3$)Y z1ATd&kegKjn!F=pVUmaV1|qRY8uFVEY+8A>V?EnS5kD5OBeESKSzB-+y;r5Dw-LE# z%+-&V@Wl1I3bf-6zBpRqe@CLBL;a4y$cdH$=+@!X_WWby3;GT`mso4LH!L?Nu^MFY z-m-YcK9%ofmURB^&ZgqYka8Q!QPr0;Ph9UzgnZjZ{@reJrq`gSw;%mw0yB&Kk2)WJ*k-(7B#I>BRnGSfXU4?WAU>|UsmEN^5lDIy32o)Ai zkvg78H)jw8h-4^;79HbF3C@0X0kW|>OBrfPK@r8b7sN=if16)nJUeI4yyYUyY&q4`T--;_8F)3Cw#uID#e_GX0hM{E*_ zY1-ge&L9O+p?-9YBb*PFkHItMswz8+{SXg+yQmCOe^#PeP+6Fjv@=jCo&d;Wzu@X% z79FRBSrS**%xav7L{fqD3(~PMLv5K*MEn|pxyz5HU_<;*T5x=a1tx##A{LQ5=os7G zZ38Ety}>4aLnYP8O60Yf1@%q+v7FrOw*%K*kj`cdZe`HiJaU;T^UK}5oxG3Uh$UK# z$v88jf1FK9u(#L!g0(fAXdkE&*>{H)O*e-1X51=fS`I|lr-XIc`>4<93iT4s_r9*dzeIb8d%5mq8u_bzbWThrV`4LIcW9fNig ze`NMZ4ZIo?1un9H(~mmbl)m4gJLV5g-7uXesQZLU2_B1$U@&HSi zBYWb~uEj+PhgGu54HA#O*#6^$y*6~m^14f3k2)hp z{|GdI%F1twJf^A=e3R8lxKkLU`daqK~$e_06rftpXywqe^{H~6hG+|_d*SVkyB~*N(Q-@BsBWZC|C+QsV-P(i(%@n zl60J)E5_5hr1W}1ja#y;K)Z-qDLV+vg%Y{r-s!2&e=W0y9fv8DnMQv($V+P0 zXNejWr>su0Z2IPSRV3Py{_VU5!SE~O(e_tJW`pwz`6XUkFA?5MfkY)1^>K-(o=ug^ z0M*e7V~?NeyBSZ_4_NL-6=AcgwI8NRnn7P11sjP~ztx1knZ~8{8icPZWz5o13l(9P zlo@{0ceTW8e_%-uMnp7=J~d(yO7XfxIwBj~3B;!aSMavi1#))X-h|Ub<3f`gd_dS@&Dn%(3 zv__;OOuZ!buye*v7@hP5e*YM9c)}%c-oyqT)QggAe|J}7r6^F?TPVXUEVcn!6(A6d z$1W?B$?XsaIqxa&>N<9|Gu>qg0P^k8Ml|0G-=~-B$@?csgj1ezv0GcWSaWg1IJeG- zA1AeJM9PD|wx)&lKde~J%}bbfD}c&mU9@urq~yfJPa43MJDy8LuLfKZB6Rq6_oTZ{ z4>9a>e=yb(LII|(J2j3OH&hGll2Xj@W`P1R4+FFaX0=N{6k%0jf0{&c$3BC&&k|UJ zJqiDSDKVDRYNE7288h|1Ot3hyR`1tv*m#2mby})p{MdAi^8GGC_51hqHE*Dx)>COd z-MbTTpc&zNLQNOphq@kajs(!}$oDnb&-RvJf5LEbb0Cw_A<)@8Rx%V^Q!wvsfu5kO z-3Co3wYdScM@J_wg6Yo8^w`xhF!VjKlr8X;;QpMYee**8In7u=RSJ$^CGp9HSz~~0 zSlaXTFkc~`&@@DQ3 zf6d)RSF?CHp#9jx{9uj<%k)?~Dktx|jrS-1WN6w&*{LF%=_>gc8zMjjyn8u~hCw#D z>&G8xdj_HkKmB}rFt-h)Wl`b@P-EtLUi1<1rP9*==%zZUr(~b3mz#S(WNVqF;q+e^ z2`%z<6RfMhhvjLaGd5xDDbE;2mpj!?e@;pg?=n#Q+89V?>>ZY@*w)(Yv=t1u3KU?^G7~q{)tz=Jkf;;`8ckf7F3V zAmkaFJh3y&@rbRJ7L2$_2=ij-dHw>X7`s7V+fAr8nEv(kL%y1{+- zjZ->e5_BCtX}`eB$WoN5mvuzP#KE9cwXWf;W61N)F7Z!`5xDxP9nAX(g<7tb^OskX z-UvL5m4vT(wpe+Wy+zAuanfF3e|n9_WX9CEq&6-G299oH_F~E!OpOSNP~);NQma;b zu8@vb;teDbg|(&=Vg-GItsM*70dFl2SPjD+0q3xH$xXN<7C}^oU5Nvfdk8I1Il26i zA8tD~_+rHL2cD^8Imi%Lz3u(Y#|Momz5Fza*Z28zzh_SB&Y-P2TWH5@fBcVI4+CEG zN)h*tsZ=j??o+|PvG_cljq~r|aeeP7i0-YR^76GQS|&_x$)pA@a;l!_ph)8a_|l2U z4czpyhZ4-*?W(EluWdkRpwo@=Afr9QI-lYlexB-_l0<9ctqB|W7mpKd3m@r=JNK~X zCB)I@2yW^=_hGdSr(?VDe@}c5bgM~7P72}~;TiMN2h&2S#ECfOc|yXbU}b`9?Sh&y zyB83C-Gvxt%)iDxjjx)2RXk|#{HZxTLn!H~?q*^bVzk=j(|UO4Kcj*f5Kkp#lDFDI z@WDN+9{HkN`c`$t+pt^z&hkZzz%*#0+28gTZ&sOgpxX&p#=?hRf9EUuU?O)Ik>MRu zhsy;M*{wVFaNMBDq2MeURz~^|;L)=LJO>mh4S`DPCk{=dzdb8(FW?oYHO#By0mCa@ z7KfMZJAu`2B{=`{)XNwAM~l0{(%<0xmWZ}L7EqQAZDLmgH>}Dany6>P#1UJ1-C&t- zrx46H`KP&ul>omJe|ciIR|c5bQz=FO^<&Td2&ukEr}*AXV$v`&s83^f|HognZx?+~ zwRIYpS&p)1r_`KH4(@3*Q~UBT;208XmZK1=Bonx474@0Su+$A*H-Sk@xJCaq|d*%a0UECTV@j^N<^+xAzz?@W-(6VNeOZVn0$c z25p*2cWoV4e_3Ai<#)AQ{GS@!a9?PYu#HLimVM<-dx4~!nWH2=C~^!sRy~>yI15Jn zeJBd4ErIxxQ>V76s`QfmAF_BxUY>Eaqt{6FdzF$1AHr=^x{m9M2MQjM=%iH`zN0_!&0_b)0=B_ zVbxFpGfpDubpV~YtWg@;76%t%tfu5=PBl^#T#72#V5a{(;ch&AYEVtF$2&}74&7x) z^lF+dDS|5&IKnq=#1gA?MRnVxSolXbjuW6Ce~BUVsTcDT{(XK7P8-9Oi46l}xVzjn z3pt;1+rf^nu`&uoN$eZfA?SL(EwyK;oloM%RPyZ!_2!$%Ml5@mWzrmT2eeu4kE)Fb zeKZPm%re&<&9r7nR~p)WT2)dkd3?6tzK`1BdcTh%dC-&2)&WQeLQdGT)|}mxmN6g-1Rag>g_Nw#8I@rWJh7qr!(Bg6DKxN(2fb*R>()2C@glF z5@9Q`;&9_GQJj&&YV`h@CBTA@nf8c<~ zfCdJwF296X(^M( z*y8Tp3kl%!J6^>hs!zjSZ?sL}e?pucwR%%6{UMTDu>fBD)LXZM~+ z{}DWAHW(Do%MS=yKqw)7BPPc2d{AhhT7^vhr?ev!$v!ps#O$kPX?hP>V#ZWC7a)t9 zmc*4vmbsQ#XhKJ|InOT*{hrvu&*d&36(~`$Vlm^pTPJTiN!Nkn26{XW z!n(JH{mXL{ zzFX}cwmvXoMkIrP@MzM#CMwI-CTCpM;N4{fiX*NxdS@-9=0Yd5+z#AcD*Sd&6& z^*D~MSwaq2PHdc8t#5BPC3YENP>*h9-By+!&&#TqYnrEi#?Zzct6}`*=Mj#DUXJ_4 zc#qgiu}^mKe*?S06N5Ln^5M1K=hf1PvW%xt9hLts5O3%;-J*Q0I=lyzR`qF~f+4H; z*4`pJ)P0i@9`3O@trY9Zv%;YND|FjHpSvjuuvaa+87ljQF5}A;lB??~8-=O1)2|z! z!MfYuGnG|@<;~rO`O~i((f#6F>-}|D*JK8Geo$Lre-3FG)y(A`3Yw0wRcO)?7$q-? zIXpoyaFJDf-+r2|3K&0-YQ6`#p;89_QEJ#phDT&-f_jx?^~rhz|3JyIQY$>=;m6*J z?t7fKA%b9)l*7^tS@(j`(%5Oh@4-^IMGIb+lVYVC3G2JgO61{uI~?S-svjMb$IoAU z{2}<^f6bWXacRl~FPQAe2!|)H@j!GxP=>f<9ZJRYltUH~>zQW@-hALzl^eAVP6WrO z5IaqlKV~H)#Ko7Bstd>0OlUu!wv3HuY_1cV4DCqLz-^Ccw)LtK-FP%TU+~>)5|=(T z1s(BKOv#6NKR?}rWNW&bARLU1*s`2Zs^deVf2C_BF4$B$DW2#@YPNK0{yfEkdyBWj ziy>0%MMzzlxYFt*XHX}5Tj~P${+Y_!<>ilEDNgNSHYZCEkY&_?nZ1+qUXZkz zf1{gZjd$sSVn@hfZl&KtN8h-(?psN>6~%6?cCVwYl^;Y2ww~Ub2Viku$1Zwb1^G{J zO(0Pn#Yg0k`x;ZUc=^Ggf-I~&r#mQqlus9p8l^s(A4=a=MrzbdP!w9sn9RSPQ4O_1 zy;5+z6TsWqM!G`pk2EG(F`q;8H!Ot6mg7pfO$%I z(!>Z0fCpzm2bagbHW(bBO9K5=_-yS7IhWrVDX#b&uVoV*q@ z@0)<2MBWaG51M6W!5iIqwc!jJf192fHQ8N{jv^by@bESR3_AB@msknu&$V~`g}HWe zWBjBuVJ*9}@kw4DIovIw`r|7y7nEJM;VVjOV!GeGYWyj>qBGB{*G%EtomwVH;2a_n zU?(zc-V;<^iR%ihx{kw7=)VLBvpLyX@#z|502^{dq~9%*g=#<^+BHC@f0}1J+J)4Y zXxa;aoO8?mZj4Z?;94i*DPN{IYxnHXCa}mARSNC){Pr**=8u%~4K-Ys^!v3_6SAO4 z2OGm4`Q2BBib2vM+WN!cnYa9z*UW8Z%?cuN$fBx%$+|73KAQs;DOJT>;1pyL1Z@7Z zzh@mEAPsGy7i5}dC)#7$e^<_iKN|jw-+2XDa;?p7xZDRFIBtV)$s!9hr&MF_R{{z=qN$Rk7|jTcO2Ek^BtgOu$gxqLnFh#~dEJIQdD^ zO1|&gS}U~H_UJpq_Dh}^!mz;Sn(KDuexxq@Ttt)-M{D{Nt-rglf8WkEcCV{%7_9-{ zQzlWq_J=}Pcv&Uoe0q28K+Qgx-Xf(@+?_sCi^n!v#$oZw;qtuw^v{zLV4OXTNk-Qj zdDLi93(MqI*MLX`<;N2zy}TVnki)MQmq^j)IQc;jQkcniN{=zC!733? z@hSPHSATZIjwW?Ze>_G)8GS_*oIbN`?dsy^i|_jANwn|j>*t!e@E-PKq1pS-k?)=8 z2^H7@4a)o>Y&2mt(hnt_XJ{E&?e$Zaz5$O&-APrq+pg7q%yxV%Xf9TpuEBEaqk>yxHbz_9R z5m-;vS_+%UDVHv8M3xHbNIMyvx zPqE^C#W>{XHz0MtI#!L*!8m$7B;wOAvMYuwu2144@a?%5LeGc&NoC22ndE|CvuO0g zA~9Q(2)(Pse_>ZeK>H3T5_mpEZ`CMx-ZDxsLM!q+14U?40espdKn~5UEGbqHXc5{x z+N+TMu@o#u)PkwXc1|m}pM@%fLSa4G^tv_f{T7oH1b;6kj$Ma# z%|+(DB)YcSTO7U}htV8gj<-YDqSq_J;qSe^ws#rB7wTQkFp&s~5Vttfj5eRZ!#O<2W`d z6+tJNgi9K$(Dlg~Cx1>xWa<`r{5n~Oq%n%_8s4T*lA{>z-J%6dc~a@XX)~`?Hc*5k zQKJ@LaMZ)$fd0s50SZTKz<3Njq&@4`aV=j0IHE6ZALc-20i=Wq%~#MS**WPDe>H7k zXrh|f-=M%R68Ac_Hh^m)SwrD5zv>mMwLhE!ghXNCL`$7K9#pU}n`FeAck^qII4AKb z7vO;J&2>uSVZ>s|7thU*om2|DLPom{iF1?88f|AB9kmH)hc+WJeJ zFa8Ij93oN?L1gc^KdztlW>~Wde=l?V}J@l;qD3+q98uaIhVBL z%WB?860jj?H+wK5Dk-OaADSo7Q4c z-L!hu#{1+ab^7`=g}rNVY&7zBjFL+OYDhfM)l$lJ<%2(pZ*qgE4=)?*UTa+GXU1fWP`wr7E9QOrQ<@^lf1L_aZ1cf)WKX5o=N}3b z5+Sx=!B5C&eK+B>WG5b1v#^x^UjT^=cJpfM<8}tEnZQwOol|pQUDT~(JL%YV$F^;D zY}?#%$F^;EY#SZhwv&#}`<<#&-_7|4>tfehd(<5Bd4fy-aBXo_!Tdi4nRJ>vdR7Iu zkLI**HD0bJ@^hxOH{MVul-k~`YjjJWR5Djj#JW;%wO2-u3{{s5TOnnOh2f*2hssWv zM<2lL{rb1#vxj27Wkl-8Tdt;Eoj}LZ{UPLcIDr#iHY7tFsgstT&l=dH(^~F4=7TzV z4h&%!;yF$DiF9Dv?_1fjiYbAO*Xg}MN3c{poUH{DMJ-5wu12B=SDJc#^7|le0!Tac z8qKstO2@=L%1zP<A*hDTA0%2eL}A%NsmEgrK8ro$Il zr2M!=jKrk>)MvFM+WfD_nq(RtxY0BYVxZC0N6|<}>OKZ^dFI}{3HzOa&y-Co{@|x{uDIELs(B#M z#smW064+~)MM$Ga#sqffzB3F?xFm6dDFXj#m?gw5?%|0WJMJLmbVqbfK%L39+XLEY zjx83vYa-XabQDiFL06wiFTVuK2IQ9?-sHk{Zx4|mRF!;HK=Qn{=L0|-->qfZzCLWLw*1jQL&Q_lOB8fIF`2L% zUoOKKa%((MuOZ!a=JZ)Fsd8ExmAciS~N%~;66d}GYS@!2ExG0|5k&SRF>m4uPx}oWIN0|$t?L6f@j2M6} zj~}RJPP8?vdpouV1K{zR*kST$bb&rtMfxr%@GREcTHl7s zyMcrv2xvYS^Bya+!_>xQ*|q<$U?RsAF05_XHt2|8c$@LxIH_Z&-uG_W5xeVN|G+*MjML4+uP|#36K-N3c9l~WG|_Ap zjTk;upvDStP3|r<)kEG=nuE*!kn5m7POX-Ag1;;>q6d*3;nh3^U?4tL!_7{ zu@WIX+kWdtY}%0Prh!p)BJJ&3SeED?u&K(;fW20kUE3d&a~E7y+Vu8ts{TGV+eI)AA1mu6+O3`Oxak*(V|U+a!sZK%&KPXAVN{`PvT+KNj( z^iQ@Gh?8g^*zrR4qD(RG&Caw}+s_K3zfft|2`i$7l_=^aj9qLMIgeNS?a9JcVe;}k zD#u2C$Fd>O09AG2!2|dRMjZYVb_TtjpZ=(;hH|%Qt~n>Ni^`Z8#3q%8t|QoF?{##o zK38jjT&MqyCx09;&zr#jxQTg9bEM(WxMK=uzIy!eztk?lyfYw8&K%JKcLBNEL%&w-J5*o$Xh0N|3C|>X} zxtE3GdNLQ@gWRCgWc82wv{*qzoXAQ{^kHcKBSmVmlg>p&{JcpszN^qojT$HLWlnohTNoyH`nn9}-nyOA1}81?`0Q(+Fdd@?kF>_Clz zrz!D2`=T_tcvR%}g8!_ga5aS%K4T%VVcbeu&MJu;zvg<_t9y*koN0cec|twB=x;3r z<}KdMI$1eR!5?Wgq>eT4(Qc>fJJ1Mtga3Va(}{@cMn= z?7wRjx~HDGW0M|?kupp9OJTXB9jO%wplcl+;PnaKqM%L)IZs;?ULP(4g|~N&`^)J( z9M10Q@~z+wYjZT&t3@J}uWL=Q4;rxRt@J`tK*GDI1Ktv4b1<&Z{vzZ=%$^I`Vjb@h z%`^&qFP!1-HR?D3ZJBRkAc{VFnP{XU8gYVutC_^@uUbz>O0KvB>es{sGXCric+K0v zfToZfI!~=1)pCiWbdQ-~WeHXVBN0{(B-L_W!zL}nURPN~G8Y`JP7@1CpC8e3EzoW) z-f?jnp`p*-Nk5BT8v0vt%avf@5iA`uPs)%iVdPvYAGfVebCWAzE%ATew3GE`uzbHu~)eE z0pwVyqHL3oRM@?PfT#rUKYFYG>{b>cQd1Piu-?SB2{1|ODeIxe8YS#TL2@qnv8y$F ztD$g`YN@@o`hFPNT>*{l^VWN)-^JnLeP!Q_2;(%Wm+%9Lhnu< z*%bSZ>FSGJUIuLLqMC`|JniI^cE8z}@Ji^Fll3drLP5H}2M~cbu+4lxv-u8Fv5K_B zi7|P=Jbt3T0iDddc?$f49Bi2x0xu5KmzcgLWy~XK=_T%-ahn|SKWqFZZBQJW)Qs}_ z>7}X1&1Iv-nv3TFQT9u}bt9s!v)ppfX7b{X9}N?CL`R=PPFiS}1?U5?gUyO)f;^`U zW2-j1ja*il(J(;$N;BUHS}*aP)UmpW>yW`*?>woIqJ?|h!mVFMxn8WJJoV=S(odwh z6I6ILgrFIjV4(<`WFl(@v$KU_{2!3S5e#YTKaq4Au-85p5|*p+;>l+@gKQ}bV z$bvzGGl(;74-^mX(#hm5WsgNJvfr6z2;dUIy}tJr)PDe?LGG;ldelXcqt%7X=^8sD zLMZ0*n|n@~6pjM~`+m1Rnp60GmM)V% zUccg+CMvwn*{pcKqfK2Tr*c2=I)7_2daF<)xl}Z=Dc_pf9y4~(@swZwnzawY5VZZ! zk*Bm24TAz2f2}e#x2@{sYY-{w6PBsiV7wb0{I@XX-k%dk1R_l2+FdMq+=siMP_gIb zU&+j=;{Zl7$Ab3|$48VXgJT$@KVJOCq>bySfo=HHwSuA##sVKS#a0Jnm1Hk5jVLq< z!PlKpXTa(5NzR2c7VYe5s%wnVVq(A|ewdiAtm^DAH$?e!3l4enq71$*#!CYNw)~Gv$hB@9!U9@BGiJGcy;j z-aXs14;=)T){>PR8L;m`8cZRU=#D%i0sNsNk{=9%C@A}XjKcGax_>;PJDvi30Rd#^ zr-t=fE`(B&N@GE>0V5!RA^*VD;-dnDdx(*R^rD%x`fx*p2qRfR4M>DQQ9J&`!=r(? zy&cAoO-VNSo%v!wkqB}?Sm$H7q|+TXe14!hA?VrJIgvAOAV9Cq;{-ZV3&tb9o7fM%%~?$7&W> zHVl11m%FyG0srwIn&FqUKQ8{`nfePd^!4Km51-`68uJX#XIx(HSxWas<$)4|kPs_o zXME4MV5&oXB!;PI^Kn_;g9vRA3Ac@S`dV62&nWguIx@{7j~>aLyF3FH4}nVQSTOmT zgkzvo|G_NNEqPD@N7{fkp#c7@Kn+NYr0QK7CK!1N8Ih|o!GXVG#QW*lG#&xSK?|{W zWe-&C&#|%3LMSb3PJ20H~YWCB3Km_P1}L6bhoIM9d8 z*_csD8K)q%T#<;P4gUx|2BF@akq`&mLKudedKkVDgc*V`tsy|z`MLW3$5ON-#zerD z&rqfiEFh9EP#7vuEeVWeL=WQ<34m>6@`T0~))D*swz&V|nw06=wgBT4$4oZ!3zVCMb2lZ zq_0l9KQWDXZt=u#pzm4#yF%}f4>?~U&;m~2gMugx)Z{qwCJW%dg<&DKc9bB*(!#Mb z^~EIrtGZ-mYvmZIf8If*ca@RyaiO@Hu+F{gI51k4cwI96Byin?DJS^+_>jzU2YFs8 z{TE|r4)r^tDZ)E|V=g>|Bakpt0UX?Th>h078cR`uXWdWmW;hB3q@O81& z)zy-02gRQRv<`1WuIrCMgwhdei7n)u$8Gz%?gS-#+uFZ6B@S}z6nZ2Zwu6h7XqF}d zWKHVY=M3CT#)o`%u#ijY)---?rEpR`dcyA&;>VHUJ!?rcNSryjOv@dh?k){XmsTLj;l3$dtm_?tT1y|BGGjEJ{ z6*)_)_+Cp8ZCeJ*2IhR z+*;-J4HXrc68`x>@H`U= z8r)ew-N}-bnht+RygT82wnV<$E|7YJ{i!-=Z{N#b7t9xxErWU~h8KX62@yh{(>K&x*ZQ}P-zB)QTDl|pv&Hv6dF|D?AOp<7fW`|v2}U}ow#vzKL;ug z5t^a$=6fSM|2;0cyZcs}YUvE}er}{gI7`FrFEi16G{yDYD91$vZ=*aJ$f>5b)qj~i ztB+JIPruqrv7>A-ilTwTfDP@Y@L@#(iEg@si~6lF@9UvAWiwWulh;(4vj4=gKP*~8 zeBySLHGXp`r%3p8y;_-tt`Q*x5p*2L57%{?tb)tVbJ*i@JZRWcNkKDkNz}g1Gv97QNWC^}S@N z*wl*GQ93%tuS*p(EhcZ@2MIzsH0C;04vB_}FW2^S30C~%mQ0@p3qFs>$35>Eerw!H z1*Tj<)ql`*2cX_2V{s}rq)~*8MO+}J6N{Zogg7X1gVg=yDMXl=QBe@7DJoU|&HM3)o zo`*J<6bG{MP&Op&2`hf7Q1tIjxjWFH^*qUW5&6)}QXh&M7sl$rP&7-@(9Cu?F6hmM zpRm6VASmu~I@I0z_jpj57yW+e|1pB&ykq*D9D-GL^aMwE657>yRmG)2PG7rKK}pM4 zJ&}Eu+kH|MW|BnC?GdQA(tb#FA?r*ld!z3}Bm+>p@K>8|S?zi+`6c9R6?V=-Aleso zjMx|4NxWn7eK;mC`q3Nxi~3L?pCviAvPP@DiLe6N>Idz?WF~ttYul zcEHsgmBbNz3mj^7%`x`ollS3xfp{WG@+|>X?BMz zCflKzzu=XMno}SrURJYI@Ic!w&s~_&_^Hl!gXYVsw>jHccEu^-zP&K6vsngIl~y zs_h1e-l1D9F5bKGH=cw)_kCUo4*>ibN{@Vnl(nMETvUTK?cUZ*yf|mPx_r$I=(PF% zRJQ1|FseQXzhx(85N+BJA(i}Ij2YKO)cY9XdDHnk>P%2bxN$8~;5+n7Y-OHqPp`RC zYOr)FbGq2s!dc4MNWyx)v45`41JvKO7`Z!s9rnh)yx@bI~Mp^ z>q)+eaPgtV?7MvNf!{l)LA6&gh47HgQ;?})x8K@z$8b0DXT^8M>G4V6$T;&z#YtG! zI`zACDcC^%#dn@UqKI$eYrPT1mk5-#TFZ1@Gm1<;GrNb@ta zP@n_vxaPh`-7|2i;$xGyWpkUFZzV`<+0>NzM&13#pY~(6QeKJz{oSFlqRe-*u0UM$ ziWszDdpfa;PDbgis>r_v4wEP%Ne%FB`Lo7Xxs z)obdm^uG&Ds9UpScDz!m$9a0yr#{w_q)7W$UGtfXjW?ZDOUGFQt4@a_LPKTEoHvXn z@}{}TxVj_LTiE-ZN$%7OZ+~U#RviL1`qBrTq5=QMv5bTm6}(zmuinnT)U+@~p2@wH z+|(z$0@=mS;{`PANYL%if^8C`kN*>xF+kb=H>!CVywLiOiA z3mJimh8IC2gg}5miidb_xao-OS$+A_^3NUky~kW{0?j2^IBZVw8d5BqCp&gY_d2 zRTJ9fnQv|_Bo;z9y$QM%X%_+|=EBaWDJO&ZEAD9&q6ESThEyNS6=;YA5(3_bZ44kW zF{?1MftBN&XPn~Q!5D+#d9}5Z#D5QpkB_a2#SrCJ=i5|+1*G4DFUmzn*8wpkjtGFH ze?Tp>1ds!5;(1kDWL#}%TTlmv(NPNu0^unVPkrjP{=GjEVFdM06!G9ZK&x&B;a9v>~ zE?h9^{wwA%OO$nRNY6)|uvd{j-EWi-kYv92u?u{jZxxd7oMVHK+Hy-Zzr@k}Gi>?cANFCg+g8qnE? zs_)qQEqehH8ca~D2zt3k37CTY?(h*}Oa2~(CL?_#a|y`@9RLaE1=+W|A$QGrdpXpN z3S2RklLh=Zz?rw;_>)3qXtqdeu?nEWV=n zkGX2w!9x}wQxKckfq!3dMsIf2V6Bn?1&)#d;cXBgA!0$k;UUcEq@;{Ux8TN5L1&|$LVth{L{U-^A zF){@4?F4H4UyQ2n^%V=iF6#{j2^9wwi3K82`|~d}QOqGfnfo8X-mr$)248=MS4;P^No{i*(n7FzbMaCzuF)zgc_|!Crr9djei`w4`01 z5MtsWV5Ix$MwpmMU{aCr&>z3cJ_TSSCTwni z(c)Z{4(g>J>OLx8C`U+w~hYGab#2 zmxfn>T;Fsz()opEV{jgM=i#;sPBQSuGMXhB_y>hQ_^ecxQQxgCx|W0WuymmgR7kkfn!qOhT9n! z-haKwHbT>Ji+GDNMdfF+FiS$w{QUTndQ==KbyzHmrCIe+b-pYb>+_P`+OaUI#v8{? zy(V%krq?ruelWPCJDH~K{fmRc>2Toj4xWi~#!an}I#5I0yPsGrlc?XtObhXnB ze!P)NCs)-vY|Jjt_|^-g@`hnKzDM0>mfP()E}D>Pua-N~m^R!F^Fz!G_SH-2$l^)6 z#mVXjAgUU8>T(75A42n=beAJ*j^3@RBl*NhA4^JtBEUQ9w$_I-Xv22$RG$LkNh@jW zic5>Uu@nN*E!4|a3>t4!p2-)a@=(9r$8}X3B=lW@PwGb-Mgh<)-6p3TCczQPyN7T! zh^Ydv-**C*D{Ai#bsf~gyY%9`q#o|O~0j{XEp*$Vm@lji6wP=lI%x1={`m@<@I;B zW8<%X^hatcW=r?75}NRS5=ZB}Ft$!%l2shjLj{SJ2 z$tc0yfxth`dSx*S#j5*~Rm!6E#XBQc$|T|7P*A(>kYOe}@HWPq3Nl{mIb(ftc?#|6 zOxm)7pLvlsJ^_-cWYuFi?KGb=2o(iKM&nj>e=^i(?N(~UyQY5$L(Q`1aWfxE+5s&|z1Ai&g}q~-AtaEIHwQ*%*lE`n%V+%C9SY>PP-K5n*6Vh* zVION@W&`V;L1@%dlpU|bBvm;p6iZVbS~KW!|Fk6>4x8A0b$N2L!a*G#3i@OZWe#Hc zo`5WMLHa!K)Z23&^Xg|47k&sv?`G+1Shs9GL z)Lv(C-y?j2PE|ja=Qhc?I0aSeS8e*wJ}(-^On&8H;@zr?A1vX7vZiZC{4KRhT>PyX zZ9UD1h1#{QR^If-vc!REhD@rQMz;1jga8e{C%*qzu9ofdGWYPU0A%YNonj<3rlS4W zF%6Rk)MZ*xNt;&d&mgW43RJ|^*gH*5ds?6%;*JePdi2QzBr_G{L`o229u&=!>-Ra~ zwD@B;4cqN}`+>0m`a?+SIeLHeWK0Z7u=Vcj)YjUktyS(!&}|%Y?%D_h8j+%JJK&3x z{=LuU8M~XYG~<4c;4%g0+cSTtTRrI`iQ7vr!1J~e#+=Fx*#Sbifl0J&*c3B)se;gC z%}w0=Dd409E#K7U@I`Gu^6k=^OE_Ho@accNL^@e2aeXlQ_(f`vv2?j#-dgNpPj#%I z+{zG18;ho=aWT)^I&Y@2*O~sa8Tix9{${(2{d$l}dZWm+`;P&&xaT=?q>Zm{b+Ew; zbXHgQZhOeaD#oo9P7_i2{ebJrX_!K;I z@&;JVddNY!bn;218MxEw!eqNU>UR}`hc)_UrG^Ln_moT1kKXg`kHG*ZQ#4WsJejxT z__ogcXxy~q2KtPWr+$!Oa-f;j<%?+}2yb9Mg#}YkwLjzjuBs3&BlGz5Qq z=$X?iIRE2_3+q$b&x6EqTxdR@lQ?8S8T6P?c@n%z@t`wOyQekI@sNwO4^4{VDSZTU zKvv)e3sWaGleHDy^{hxB7rd;*tr~-)>T;BaYR9}skurmt$H6Xn1+;4GPd@&r<>A0} zik|#}$?kaU9g7g<&f!lv&GfMJ62LRvc_N&3c*KhLV=X;k^QTU3$`<3?gM{Sv&rffX z55AT=?0n#ayU`GZ=0fnYsbbkap839=;9GWQqKyZuWay@rEhNkNF?4eHfLP36*ptCB z5@&4pL1U>EFR{z}1CUvsUeWMqP|ZmWzo{b^By<0sHo_QGGqJ`0`LQfQDr?inAgqwM6C9@UfcOeO$-2078!Q+S4l8&0I37+Aj#h5s zKn=)ZmWWl9OXy=k;rsBub_|Ip#5)JK;q~4x(U!0RKrhjHe~ca~`5bRKh%Y5QDoS(- zgCeJU%D9XWE4L$OUg;x+X&{slj6dT@=6qc^<-bXPccRDxqr!<$?3g3AELu{ zPE3UqxP4S88l$r-M!T!S$s-#5I2gHPqzoIx;oM^_iI48I3GvCg;s%MJh_7B(F6(jU z!((ljaa_8EF4$M7gDiPf@`-#GC5x0w~)*1D3k-e+d!rPeekB0Xd%ZMM9}e99^IZVaJ(LV01h>F2s&$v2jB@)r38USFEo_Ud11b&H6dYOeNDW zTHNd-7vpW|a_X{tH8NS+f#a!|5$5}Cf7Rex%D-3s@m5h_%|1KwW7TT$Vzulp{k%z$ zMDP=APg?oXJ8(W1Uz3Ey^FvbJY2B;<8s7Eu8grvJDA++;eowJT*-E|17wmBfUW8%L z;P|xpJBb*5T}|S9G!bn(5*UshRB8!w6Sv0e(phsTg0&yd?4eNg4QHp{7(Eii(d`BL-=DOVMi!S*8KDStig8=Shbql z6gx9w%^2~^vnA8RR^abJl?3e%LW6X|TI6FsI7rOt`Ef2Am3_ekZm2F{}s7cOT~!Y`a+ao4t*;#W~n)G?PVJ!{-($UdhF|r2c)u= zNM9+!@aPCFsB;*_x2#tC>QvDQFw<;Z>E`t|C==74<-Q3tagX|}7n+iq4=T3+ONHgx z{`DqCn#&m?{2|X_FyphRG<MHvDQgMS70hOqo_EpmMwR;P-owKhx>9r04Oz>%ZYU z-kA!errol)S<(XPe!kfbiUA4%k#qWuGP3OlYf;wie|%upOpK7v&{|0l;C^V4w3XbR z)3-%l2@^g?U-mG|>*V${tHcqo+i!|YxF%KSm2YI$^4#LW3YT#?HiWCtBd##e1lU0T z`Z~NQoU;9$ZE~T4fnaydA$glZNHV{^ti7I=^k|~Wc-_Dl7`+xi5G*uE@FnGCe$xB9 zJfw873uOMw z^dI6M@LCda)>&BTJD|LwV0rmhT_2vLS=gSdxOVZeyX1f6Q)t;rI8Y1HTeMJ{H}E5I zT26hiAF)C*wYZ4l@XDc6eF3+H`?%azbO-?JgOjHH8eWVRp?$LiM*l^XMyx2yQapNF z6M!mr=^_b=;=JCLN%bdW2JZ2b+PNH-?3A*Y9Bo}Pu7>bS{<_ih$uJsU7@7k+;)=6Zijr5;2Y->dtNH4(Q*rWeS9f3xMLGJBp6S5QUNk@e@pWNaHW z<3V!ij-8i3Dn@4*c-x0hR2;|rpM%ayh+7*u)B`V zZevi^YM2U0RW3$;e{Iur?df)B&c``7LvgarU8p8{4yUoVRGFx_%M81-=q~9gKML8C zf!$HooEoe!bmvB;;lRa52KRSI{_+}tRS6*X337kVB$wU;Y!)A9uaXGK?DeG(>2L%x z*;2hk!Z+epXL+a^l103oAk7o{H%Uqnh=_6p*7Tg-UMDedGKcD=Cukb-DknO%QdKQE9R)T^R?$SKAg z@3oa&z{I-0?J=oiOg9%=GgQO!pF7UBF6lVwsJQYB;O%zSW*RIef>pbF{OGvFV23Oy zA-}-+^ERRGNXe0LvPJZ3Cz(Qia@%oYtVhYNH?QImRK=X&CBA9*uaXIWP1?@Q%i z%7nJjfMoRJv(MFKPWu`nld|;Gzp$LEdp?eJ8Co^L=UyUx#j9-$W5wIrIOWDCq?=Oo z@il+COg(>R&Fmc^tu`vI*}plH8Vvgy%N2p7IeG1ki`2o}OL->@&^OHa0LGGoe4HCne9LVG$2-Yiw3tq`Ug-l9 zE_&u|_hRZ|hD4CJPED&RoWK#&jjXPaXV^prjHOl<2QBjEMu9$6OCtq=pWFfkUlXa< z2A+wkXAUV~^s41^G;ad$h9|Mxyn*{OtNAUs#=ABIqA{lCU3A`VUtv%OS{1}Yq<^}d z0I6}C;0)w??plQQ*CETx%NjPjrYQ0Ry)-mEe|<*&{(vtE8#IO`c|SCoS4_M$^SW%0 zTD{9bBkyP*vbYP!QJ_i7V7Oxq75x|e`VszIa;Lx+gU#@9?t`c60>$y&fTd)adV27| zbg~B0?vJ#O)@xCuW_8ZspVM_3Q8qX`fSUd?wm@l`#ZM8vtI*wX^eT$;+C#pswfqgmADEdR)@;eDO3TYIY?H}2#czLEo_7P)@1eEb-7*|`YC9Ven9 zdLZDo((b0i?DLc2B-z?3TGe7R|CPhZIU+mqP=M-auZX{)pv~gwJF_gAz?J%9 zv;7}=5pNjN)~;8V_60J5G^rbJN8rBg@C0g^1^tHCV!0gn+IG5pp=^v3pj?A9x?B8s z&-jyYvf9Jq48saMfp8j=FE%NXnm4PZRKiHJU*c>N^s+CC5_8Ev_IZ^45eY$VDaz9? zt~rGxk>yt!G#IB~(tPt@s+gHMH${apw_p#N##C$Zj_EA}*6zv@Ufq$rv|M7hkr$8H z4m#@4-I}tQKa7R0u*HOyuos#{zANslGMO?KC%) zwb}MVCTxih`FlJ|kwZimUv9XM$wsT=nC*OTqZHLKtIIY?8Byf0vSu&KsIMu!^yulF zC~Ll#Gu|^zt@JT?WJtRT<7OD+rR#m!P@l%V&&<=IqOUN=qE?0XQB*Um@BQZ5%wy< zW?)%y$IZ=B$a3ikxMOM~q;USNANi#>f?8#dx8|(BB20iRo{3~3O|Mt+7QIFE>?MB9 z^PiHhbnEzKzia}Be1oCrHr_ z4*h^eGE*RdbzCBR`zjiVZ>eXNzAz$UvL?Mm2I>Os^d>(Ua2p1G*}dK8hnl4ao(*s& zCZRQmbSQd6O}mSAKQOouP+Y$jb`EDzM5T2%ON-`Rs?RBEi+HzL@!j5EYsW}x(=<4G z3ksA4KHDqwsNQbp+d9E$p&L{pOK~2JWR7x=e(#74@5c`4rxS6!Ky@Pn~h4Zvv|ml7`OMd6tt|hQt7JYT#{`Hl)cI_d$fB%iIK`Dl8+;%%K3M zQ$Jyz>^J5ty;W3Y?A|R`O47vQx>cuNd|3ww;ANrI$XPT04@c^CH|-KjoN3cDS7Cr? z#oS3XgF?{?-V1Kl!P5H`#D|)t;QRE^?FE$XyxfIR$notVBHEZW=>|1rGpHfm9sy|_ zB6A^t#-!I_;CV4o5aJP@s?2hioxX(Z*nXrabTL&nERDw&77P;pnzh>LP8lpo>}iP&07T7%w?*#GAJ)RsUJsG~41Q*+tO) z`CptnK1fA9sURl2pyrzND32?jmyP9jDyMOryJ{hFEaPUo*})bJ0_!GrWhDF&AhQ+H z1i}-w3zl+#qA+)#syJKb&M|^*A<>2gKrbG*YUXSoDBL+_!M$s*u>-Q4`837jrIyR= z5}<(Eou_%ZuM+E0Ld?(+>c5o9HeKO^BfCcqL;62D&DV~p3J&CdEW09`r5IX8oSUk# z&5&-W2Y)tz{(*DF>YYrw-6dHV623eQ%@)$(^jBgK_%RM|n>}}7b#(RXao>IpAfusj zD=tCEYMib?>N-OeaNj=^cXk@LP41AX*4H5{UVvUYq!`zqtIwNT_-HPa@t#|Kvn`%S z-ntZ7$tdVH-+DBeZT`0^QCw3fw&r^v-F&|_np1RQW<+^!V-1EboupP%cwbC@n;9W@ zuEBf+kA$QDCw^&5HY4m7eIY0TP=ni0PfUGE^ElsA72hjj|FR{O%U1~if|+}m))(SO z$17<#(K}T6Xc3PUIuckj zXB=r29R0S?pE}Pxh;IluC>l-^$mfckrevf)X&(2ki6+TK);}BW;=gTKfwdo=w2kOS ziXRWs+!S1YJFUieJ*L`dTtokGefo1C-c7f6Hs+0s;&O?3(>in|A2~ABQ!07r=yFQ@4(=r6C%}WL4K#NKeK1IE@p4gni~cxDPL

    FGN7yB4~| zPz!+=t^eIl;1=1MR4CekE&H+-C7xXG=Z53yvehQKz<$Rc=2MH9$gXcU(^+xPKm4Qw z5JBxXyEz)1$65+J{$?67DqU!&+5!HGm73jCqr5nAGu8Ck@u>g4GDfGvqNHGp3?}Dq zWP1tmjT+_yyh)_Kw$gLnL|IMX+NrEa{*Ju#e8&+{`_Ssn&CWw!7Yij>wuhnjf8UD> zYYpIbN_eZ5Ig>iQFShX3h9SDb?=~R~IFpPj%L<3!t0@qgeIYwB_*!WK!39F3o>uvN zcC05TzPUc`PCj#Oi5&60=n|KWb#14*8;>zu_UxwEn50v_PHtJjJJxHE(bW`$ zCnH$tFonSiDfLlr_`GCi9w}qxW{q_>BDGJq*Z5Y~YqP=)&|g6m6hNNXk5|7hn~J+2 z_|H!z3nkEXlWmksb=NDUu3?MASRPw1KWJ5rkRdn|j?Z4s8lp2;luEMK`Nf6#qNd{G z1{~45>=K ze#Kw;+1n2i_wsl$lH==kMmMpWfr|dDJ7!e)+1o z0XhZw4dtsK-oT>CpLT+;%l6*aa_YI?Eebap$pC+Z>1lU*;{!1|t^O%5dIA~Az%NBk zdcl1OFK38=&|baw;aEZ^r^p}C1ovnBo93vVqcGcI7dv`aRbBSXvQp6Jfmh6!>EQ zY1oEFi7P4HZ~Z`vWvc(A-3Nin>nB7mpRKR|gJ#e|2py$EahQ#K5 zUuOxR?*_8U7%e!EEmM^u}|43BL5DNrRuD+^6Q?rRXz%*l6>s z*~_6WbmDNANwfNPiJ7qTnkrH4=d*i}2v>1n@WqXZ#6exP0H@dRnAAqt_VqRLXFqgI zbjvSeYPOXN{%$7mju*5wwqfn&TOu$%3L)~bI0JkLswR-SqnIwf!|}%BfFgdQJ_#BE z;?~JQ7QJkrVD=T|Nv!TEf8G9Ebe`co3Le?HGu%n7)I-t}a_0p{dN zj2%6ju$O#fYvWNPjr~2XhhtEPydPnaAan_!JI;;~${mc(^1s?-{Bc2hdh^~jFtSG> z0MrOYMc4N-RTBFtEI>YuynPp3zQy}M5w`9ck3zphB! zkyU$LRBl0^M<#!j@OTiah03E-`RT{u0${I+t(nmNNF&)ct72s=7^=N-`X- z(zW~KlM~Ak${8s+6S6aQD#_4^?A<7qaapHteCLe1)H!e^atji85%bH{t>tUM1&T(Mw zIK2F?!nwdCl@`yMx|?dzM^FU6!I(n%z@M5#@HoS1QIUCNGWH$p8Sk+I&->bc;556r zcW^2*L`*$V`q*wOgvh0Q2uFP4H9%AwD{ku1(cq>YhnLcuoYgCG*`kP(ElszaY)c}y z)4%ipF_`*`eAK(S#QsT@{*sQG9|_r;w|ScCPYtd&aW`EPO>c}z%DRzTWwgyLA2aJS zefL8U)?|`F`FpaG)Wr#?hh}y49t2QGd)Kyqg0flErcfOj$7BlWR&#fn0rV0o&t3j2 zH3H-+4dGFJd$R4z|Ez0uNt2ey3M3JlXZKZyG9CE=_JrT${qoPVr!p~ahJS+owDHu( zye@boapR>N0n4Yk)av|7Dk`y@;v1TAq)G2tJ__AN_ULyql6f@poM%WiCIY@HnK+h5 z6;AK&Z5R>mHq6fQxhErZfw25-HqM4kP9_^6uE=Y;9AauYJ~9+V?=Oahkyr1lj|pT? zq%^Gv+o{cBGfYriU)x*4*5)VDkUls!2s4%G*>(I;d%)45&#oeW$^MyH`8e5Y@9M!k zRP9`N5w~tcu<=*g=G$XlVyL;A`j6iys@KZc(4W4?;3*GMB+Hlrz%(BM4wb^e)E?$| zU%EqbK=1;C#9QvKelNVHZ|ym)vx?#VA?f{&7sKcx#kShb_A^p^4pO=20Wz$I?5W6> zGEK%=9bN+phqQYLJ}LAKx46aEY1_F9-#XYehF2&Hk}vOwrUxfve_j9dLcVeBar)6Q z@`}2*p0`sx>KYi|2snnv`5Owg#*u|b19&u1>cRRQ)J?{^+4@9zhjn<3gWBC@4g+=Z zLJ)n-l#Y!Sq~<6$Zs^~21jdw;4n|UFTJ$9u~cQ053zjym@^k-!${_=V=87&GA2xR4Q^Fh3cnpMv9uFcg0xCjbf#Gm0@mj zN7;gk?H=lr9F9@Ha8%=0UiR4Iu6AFgnfLXUtIU7%1&k|hL%M;{ulM>uN88?E65MQ_ z;xM#we)bF4IMW%+y5!_AP*(S?J9GMCQVLsgFe6*_0X~f(LoU0?&LUZazF8f}ww5Q= z)tEai4Yo6>|#6t9s^RFh}9=}IXg7PE8 z*Rg);c6>wcMNN`vSRG&CZFF_J`gej$EozkLN?qn;>Nz)4wkhIDbv2AdXwDX)F~ytR zN&Vu0-@-dqqzaMwsM~&I8TdgN@01# zLgD%!112jmCpSCme&1KDF@w0en%f)EuX-Y&dm8+=Vb3yPo1r6{V^Ua zHE+SWkqtGuBnUlBGFYm+I|l^_inKTi1RCYu4s*CEN`0RZDUxa?6>hw!><3T>Vy=jT z5i+7yfMb`#2nTEBO#)I61A>(T79$rV9LNkq{*o`8T8>cw_7Kho(it3x1qUmJ?o3_0 z@xi~VFpYE0`K1lE@yHLNrJ|Da<;h!c40RW}E|wI?h_R30I&^7;ECC`(?aPg@|5S&z z!8(l-+m)J_n2?Y_{0EUC@)mGQ-rt4x+rhEyM+p!2_8GztGz16tEO4k7N`Xal1{s}p zx+mIzIgGps@)-o74-8x%O0=>I$DRlM3v0v$9n0JJYC5#T5QOJRr%*Bid;oEG=aA7XIMml`fL;9)Za`H0%SeG40R&VgGDbQQgc%v+ z?>~+6eN}fuKHqs8I`9rZs(^yC6Ym0z-yqfxwj0lUPNWQidx{9ooM%wqANY0g+$I45 z1&-w8i(mxp8cY`TSrH#*91qx?ANmgZ2XztCKlOtgFJE1yaikj{QIii|t8^7p@UQCwjrq2l8hM7{O^&kQgeGlhiN3 ziJ3T5Qh06}AR9yrM1eYeNQj%d5BuW$T5RsgD5vtM+}0aXxF>phS^y1s89a~LnkqOi zCDXGZ%Sy1tIPr&Ak~F*aV2z&&gOrT6gJIsRL~or;h|RN@vCXLJIRmR&ZExOGzU7{N zVeSHm>UDnUT~YZ^_gA;>4%=n$yLx+>pE~!Wf}bIr(B=3wu~Sf1sLVLv`;U4xdWd>M zmphOl&A;ijI35wcIc?FZqAy3=^)9R#sHWG5jSySEx{sjTt<}!_n-+wG(|L|C(7dY# ztJ}Ti%4^vFSVAw75?nNs>jC$NKhTdQxG4m5wv27JSBsesD(C$XXp5c~%itloW?bcZ z`pi@yRw`6!RllA5ZNiyHd7!~A>E0@A;I$m$@*IzM50JkP3vVtZzH@D0qb2_khnWA@ zT+8Dd!M(u1-XU)KX@N8U>ci<{6#RNjur=RLyC?akh3?6@?te7V*t1h0B2ny>5lajB z%7KbB@vk752Vg_iB?ugk&e^&c+MF}+Lok7u{n{G*g8>`rSu+oCX7cEp8KFx zfb?XPo$+=Qc{)fHX%;CD-ZJyk8p`*@2KE2p$=iJ_KPEcFkZ)kiw<_gUx9qUM=#VR> z_&W(!c{MD6a7vjsDC9NmCYSupUsVGj`xP`t*6$z@^nxBHAPRk8pxlKud-!2bX)r6dv zdFO^Jc=usKWDQQ%pY{2g1TL|cHhdyu~=&a6F#_`sptupEyj(9YYZom4a><1{1 zCFI;>D3(p~Fv>LEk7-r)y=K1t32x4N_p^~O;xjB>>z3cXo^oa?icrhXaZ0i82ic$7 zI;OBh-ZLetpGjNG!!pN1V>xg|>fG~`fVeF>HIY!$;@i^}^ZF=UUt22r(MRkbw168U zSG32``TmwtyoF4@V0-{9^CLlH`@a9V^l|GYyEu{mCDAU9W=~j~w#PqhU@5)l{KHEn zxR*A9x~7mx4!xGa^OZj@=*Xdat4z3n4#TN!{4$&KIbM5O0-o%nVv0VTRlGE{A^+ne z@7_fdOz2DE;I0OW0va+y-I9x^*}ziV^b2!3!8$erYM*W27NJ`J-Vh6QzJs? zgd8&JzTb8@O~yLFsd%|cg~T=A`ukdQ_vo_fFQXH%1Q$q%k7Y`aLV% z-e}l_L1$&=#2vT@f2+ajOs*b;O)rWjVRzTdgQ*O)W%tIwp@8N<3I~VY>nii{Hw32CWk&O(wW-%!M5=91C`B8ZihjwYuQ)OR- z|3s~`MftRz<%~S*(lJ)SPO|rzS(U{l(_yO*yPMn6Xu8`IO^uoa7@kJH`L0kbfD zCP6})&kWDQNx|lr2jut1J0|YYym|=kbm%abx7i;Mr;p;1x#&u?EJC2W|L`r~t5!sG9O7QVjGTM2CiQqYMf%%?^10 z^L>DhZ@Xqb9nJ~~hOni6Dt|~pg$;2DArpmVsR`G$Ms6m%y|LD5!kC;;RdM*0zeQPI>3$Q1!2`j61vQ`dQ?B8D+!0|Nbf{ID z`AD!vgPkwiq;$Muqw|j4SO1()&`D!YtE&ORA(uCvWD>P%*~YW%X4aWl)w~Lcf2QJT zdDL)=R1@>F%X<~fa*Nhgzft+)*zYq&J-m`F@byGj#+Ut}FyMYIEC zvE;krpjPe4Hm#<_{POpDo^`6&oOD~tuxHYpo?-Z$lE*rle*oX+T6Xo^Q@u`Z`VoNg zd??Y8$KGt9(D7;`9~rYU3jB!44X_5EXhV?W#68rK&#p`S?%8n(&%)KDG|srvZyCko zMKMI+1D5R^K$niA`#j&lQfI7Du`3UNesS8nZFSafY4q*dJEVWdz0mFEfM1kHW@I%e zHQGX2@f*$W>gbxHodVk{B_i&O4^gh;BeUr#kyMkj(oUq@2H0oh@5{i77`_oD4Y#v> zZ>aA&N{@47d8zh<@rGAA<4ZrpzGP9w$7UO%{5MLBcJ;fW)|%-d*TH+38rx} zfTqhT2x}dCh@JCt)1@q3XjWbvS+5hzA#s4-m2$S8Pvfn)_WeGtV0>4G{wN zhnHDb@2{=|4|2Ak?Y>9FsX=a9rk24F{%?d)r~Lf`+(_mwo%BuO-;pngEon?T*?drK zX(hPkd-rs)BFMxT%5vsqjAQ_AsH% ziMkfigWo98ldD4e0;)k3SZteAZv1uQT}7AvsN77sV&3r|u}P@e z;flR&T1<0BOaT|!J|OttQGCdZ%XySPMj7pr?77e3g$l+utoiP*k5ctpw4e#Ub1j6e z(lg2^ROy#IuCK3F)nb+dLW4lPgj8<{F>hBek2c|&wqd6xm#6cvn`~6TtkNkpj_zDk z!uzS6A&-}~M&O2K7`aX~WkbV$K6JEGO9s2()jWYUBW&~<-LQKWZ!?f(T(7Lr=dJ0) zqb-}5*2-E`QM-~6Nix0I`0y*Hlm`h3UsjjHvqr^#^|q?+4FwY@nS(EsGi?9sYehhq zeCOY-i>>XWOvp&lldvE_UH3Ff)EICUDeo8yT_ds}X2<+jp~d5)d`el9%tgFB9X6*M=)(GFhH0N$HOxvY%1DK393{ zDC{XDY%H&7#r6~v3z|-~>W!g}bKK2)jpw%Get{;)@zfVd0I6cFKW#HNw=A^NZlaHC zn$Vg^F9I|Lb9PX9)Vbwjic!n8@N~Tanjb!&phJn~w`@R0z+s*v)1zY*-+xtXpY)md zg8fa2gzv$)VBjgg$Iqd|=6CV}?ZQjQOs{4QS~5B5HQd@yt-Pr^ZJb4Yagr-N1_MMn zEkhYo@V9#S=tbLCizGvWMpLA3$+&7K`FIIllGNJ#a}U&@A;vh{BG(c~VOEkpuLu^DQQd&dZ!=(nwPLF+~#i}{CtoL`(upE-DV zwMzAy(meKP`j=F4I_bm>J{^qa8$kqWSQ~Vtk+mzSn(<>hn5EPKGAejl_%Pcur$Mk^VW0|8R1` z_^Wv-Gt5;iF)WK^erGD}DGA zJ3S)6?FUAt_9$Yqi-LEuHyB}=9mXOd{ejxcIp%FZv@@g-X2ufrv`Lg*)E^!rPAZqw zV*8n=LihG3F@t{>Mm0u=dV(GOr7|C2V=Mu*mAN^< zJBK#$cRv2w9yq)ST@x1M^6#B7YlOWT$F2@*f&4g4_3usd@TUpoaD*h~h z{O<_Wk*|M)8cup`?c_3(N7b5i4qBZT7cJ1<`T$SbT&3Mpk3?}RxXnVQQ9hn>J?8lN zxsv$YgYY;<&A@d^h0UIy(9Y$*?eGfIua=)9Jed%t18|rA3J~Qwwl9gH;h~A?K=L2L zm`5|8Hf=*Oa8+PqRKrgz*2?u|2)w2Pjp}61k&kclOZ_d5*5AvHb-8v-d72JI>poef z6q~4I`D;S~n8t7&A-~6l3yJdIp;e-=&^imJTLKbOM#0!NU=_HAPD0A8E1Ok%pTP*< zgwjBio3XB3y1Be^t@iUc))o#i!&?<9*wCiXDvQelG7c8YV*9k)m?p3Rf!%Z<$vpCx z=acWgdUM#e*gguax*QFCkDw91pfJaHbZ+?Cg> z;4j7aqf_g7Ps7u07VDc?ciD_N&;d;W7r*)(|FZNx%ypP_Yl=@BO>%7Va74sfBH`k| z^cAYtvg>{_x%BK}f(AYMON7-O-aK*fd1q;p&1TH!K&@67x#mDrk=e?N>kX~4w$DDV zZCA#BpU}ge)Y?Vp&G#Gfo3)QV7uiEusb_E2JYH`0=?U7_Af~;YQY6nDa5QHy_Y#>y zl>7_H^A%IPv6_5}nMdZwBHJjh)WN_uPf4q01!bevU$|dozw2ZP6XCU}Af49oszXlB zhrvI1ifLEGYY0vp9u`E}ZBbZfBI}URTdJJkv{aY$#GdwYOMKnIa4j4QVwy&%JM&- zm%P3`5xgrgu!SwFi*e&`p2WoP)N=pSH5gT{f=`Jex%Yxby@uR_1Jnz9U)wcpq1B5R z$69bgIOR1bbMn?Y@Uw9`dZYF*HSRohwd=yCO|U{!?G$+1>nJHoXg9nLpC=@|K=-kAR?KFnkS_h$sawbdl&&{AhTi*6(N z#i$B>5@x@WZuxe+0gw09iDGEj0P~5;5FyVNL9E|#FB?ur}(~@9_y*1 zFk1GLD)|q?D~9dqPfV6O{c%0+$TU5EoHUh*&yVT0w-0O00UtFE*}Jh>Pi7*I_zI@I z<-76Q6-02Zd_isF0edxgPAc0LWM4l{2#Ygj>w(2}Q4+6a!jc>Sbg;#u$D1x)n_@yNQJLCd5|6n7xM;&3MU z>eL(){&{kh{oRK4B#TH0&r5-$Kf9hue@)%Mi+#sdthxAZ+TeG`jKvVWZA6H-1scgS zYC^7%w5i-*Pe|nzfV$a~zaPC8L=i+&8R%iQ+%t(_m>eVO`gD>-Ok3`p@{sKDzsa$5 z{rcp@fDetUY*+Dy)24*$(2ehOE;}JB-Lnv3we0h&0iIVa81J+F) z)YrK7+sv5fK~~>&9DH}Dtzk}LIp(t(Kv|_U%5epNlB~8G->LagO#Wx#WmIysd5z1~@+cjo9enj0`t;QanWg8hMJvig5LJa6yV8a6expmL|D$#* zV3l*c9PFjL9XOkJf5k;#D|)jb7}1?J@}1CqgH6}?tf)wSZTP<3>6MI>BjY!w6^nM^ zCXpcnM+wA2*wS_0rJwDx7VjHR?N?1H;Cf7HS?P5iHG5HMx3>0ss7|~x!QY#qk@`Bp zV`AlKiMI<|ZY=|y3SRcM)%CFtGDGSjP?b2tpM6!srA>|!IoEb&X<*+*EJ}mt2_wI2 z?+JIjt9xEcCOc)1ja0)rwejx)HRolx()MYrXZOeK1iQ?HP5;RY=ugM;(^a@cpom8~ z2A14MH$lbwOtv$kH+4VzwA|!Wd z#gPnypa)52hOc21%5{jDQWbFwphus;8N3?X-_Xqj3fU zr|~juem5WIoa`=pf1}KIKXYGs^}+<*k*#C#4OtUtldn!oIs zWPD725;BL#k1;!JqQfdT0ct|iWyE`M`kYCh?MK)AxiCMk|2KP2*rk9>;;FK>RIBzs zbuW!DGCu2C0v9+MSJSKsXgM&`X<77kH?fZ{ASrwIoZlHbp?i|MNz|Atpa`dLNd{f8rVP zDCXCiBs>oM>O3Kvk|)RW)a|9;ZyR`aL;5(!vK2^bJ3>sb=!JP5Aple8+QR_#p0SH< z-lofqJo^(C%WFNxOR3_zclsoa0+18iOIhf1V31W6nrq4ukz)3I0YzA}zk9n;;ayRK zCm3p1316Yt4bOZ#fn&~y2)>GSU09Mg6LJ`ZLip_=$bvNZ~jAq&v zuSc?o;Ni3|9WS>D;8?2I?Gl>l_aLkS#ic~ca7~ru4N_S(tTIuXQ+;#tK>+Uz3sM=UjYbg`82QDs*ed8zKpvqlK-d?!raU$-TS#y+Uo`1^`pgl`ytfac<{9YQ7pl< zr;}O+?32o4;)*}}F}+6bu@f;qCmgEg_(_{Z&Q6fazpbzZm@N+b2DxTs@yOebIy+YkD`kfpjkCJcc$xjhqxzwHtyF% zCSGr9Fa4DUysm3fO$$=Z?$cSdYOwlIv6S_uzC14!5^BT_)zyTFb(4;ri_B+HZ#P1z?hM)mB2qrNrd?+@EoO@zB$_9NT`oGw2h9Q{f|Pu+4HSU%7d-b z8DywqbjTPb+Effh@I(;5_nt3{Z;3P^@2v%&qsur4P>4LX(Kod;X1*)P}8 z>${>kQNqu4U0qxYasM-pDdY;mtOs{ZAc(yH%zYk9qx~c{*m{$RnYVEyQ5g4BZ!W_(J~{S zbzF5e;>-Dn@xbjO8$YUXWx|9^MOU78r|8o?L=Kzlz)%g<=yGLXR{2tr*%A(3N6B_w zc9sDLb>tkOANs|8fohd7S-pMzSn(eBqLqXWV4xO1*XRx!kXOm2ek!jyK3^h;8-pNY zJSAv#I(Dp`~q{2zBm#^Vw=G8zjfE8G8yJGfXm z|G&6{n~ja-|82=V|HaMh7C8Tv%cQwt<~!uLl4Ud87$?EtCm9=3Q{6I%b7g5MU{vOb zVS=TlWu!g1_S#18_^<9hzj(GiAMrhovTXn6{dmiI!`J%J^5Au7m$;;4P7XE#zXvW0 zg28@&FZ>^K$Jjq}$4*nDU~u8iY@d^#2Kdh^JcOvkXJjBem<}UW)HK=%BkO07IEdQj zE=VFV2stSzS{eu#D41};v!QrN6@)PAIcO88)itPE63kCL!78x%)pbk@%LLK3jf{1f- z24Ea<29b>5L&QLJCjPy;m@tq*V(VXIAci)9#AB~|XdEbL-D222S!nRoLpKm3w+P_X zHKctoN7=#8f%$oc@C7InNzjHhE)H~a2_{u?_-9#A4ebymIqvx9?dZ^xf|y6&y~{9% z7h75Rv>O`T{9#B0>gpU(N&UH7K=KYS^HIYQBS3(S1O|irga75*Y&I^Zor}62FESj~wjs1Nmba^R7zh&w`Tb-si&Ywt}~J z33h*kCIrL|CJGeT@W=>g(cm6PA5ad=K@EMT-Vhbi!swC7$1LOXj>-eUG10(VU`jNl*Nq6u?b(^pKshRubDKT;B^vopm%W?2)ADVAq zXA8iw+Wn{OkShohuLIlbs|cUn&aMJ&3F_eccZ?SjQj#eIe-P>OiP+d-f|&{U8OMnL z+3;19vEBYT^F3q;MajMd@BC;TYzOjRcI{BC4tp5&BcQ!d;$;$2!f~cAK}}RRkyB_{ zURVnP#KRrZcOQIC2Mq-a>N#-s%?kYCmBRF2l@BaRGy-Jy;sw+$srFgu3Ik$CGjvdS zC;ym97{9;n0_yFTIC{1I0E!eq{TkOS@eu<58TZw@-$x({5&-iXbMMj&UW(`g8$on3 zgXp!5=61owS<3L)Fp`*;q*H-=U-b+)d=*MD*eR92o?f(;zOmwxz!@r z^VP@ayl)wS;apv-D0$|~cofM7|M9y9&AuNuJ54d&Y2SI=fyzg5>y_(vCW7VZ)q)Id zUyU8Ri6K3VaFwT`cS6U2?HA)Ng48)E8Cx#$EZhz+OD^Szpp^-X^;Cgzr*~SlW-+H0 zlhPgEnDxr2XUcw9B{x8HFh?{ZI&IQ=bvTyO!a`fvpP7>^ip-tkyDLyqBy>-}hKuD% zyNxgAdf8)zoAJ4Ow!BrHcd0fIa%7X6MtW#$#(t2X{=@Y(zqhyu6uX zn}emk2ezxkvXP~h_i#F}MCk~E%s0kBB#NWLQSJA!bwWRVd?V~%c$I>S-!>*VoXd^Z zn{cEPawhqxdclIFO~Wtmt7_X}psl~i1&ff(5sZ3+j6`p-XW650Jds>{%IjIDNopt%tbdouY`daq zkW(j*Dt(-D3Z#*K=v1vtOIr74JX-~-e4@flTB2`nK9w~=fd6#HQt^D`mVM6T949^7 zGu}?Y36i#Dny6gsox*-%z`iOM=rzZd<-udO7W9n-Hv{%N1nm4x%e31}{yIPzeG;_u z6ujLJ-ZOgI;vM!n1xSFX=@&nZHQj)Iw>DbwPpo2^=fiav z=*46%+xT^+4mf)-iqL!f-4=&@*LSc`2h0}zjUq7!g3(WyqPu72n%}Js%%=3CJBbP# zcPpxo?JpxxvyN?KMt>tQCDK?!KB#HPud_JBSQoX0rKXh_h9&OBL*L`XY8j?dt4)@^ z*U|z>zitR-JITspb5XwWkC#N(H=B2YxkIN-p}Vf%#`Aq>U{TPZ@s1R`o!G6Dvr1+8 zkhnRkWh!&zPq`4{;Fa9q_l%)~LpL$=2Z38&FG3?n^z~g2Owb}=H?gt0OUNuRux&iK zpWPMIae|v}39c6VxBkiTHPM$d%`7%9;A#V|oFnVo3y_E#sOGm-SCaSQav0VFep0L( zG_32%1kI1QYjo#H7%1py$?@gZT;f4nNxI7w*Of-W<<;T?Ju1v(<(-pyR-x# zdWo$|^zooG)JXM|>GjkgotflvG#qGNY$GC^XxKIE^Ub=Qg^g$W{BrU5J)x0#eZiEl zCs}++r@E}w_GYWtQW`z$vChWFF$IpyHaEs$0qQP4GRoRoASIEZ@^FoPA%R$y%L@-@ z>I!x13Q>MGtKrOA-a~pIL$;B|hqf13+OI5D6NP2}lpNEeXKP_BFY$e_iNZPRVe>ye zui`v+ZL}Y}>Y-iEZ1~#K}LlZB1+&6Hjd06LVsm zIk)bu`_-xQwyXM~_uKAWYxVkdf4_u_X{8&NV$6g;snSKHiX{`z5p3|JW#-XjRRpF& zS!gb$HXTmFognjK>{g^?W{JlKuAW=U12jA73NJ`Sg=I1hE<2B+b&vCWD}Q)NI<%== zv59W1&RANVj~KOHCl%9ww+sk(ss9E>c_x1@IDeYe{4l@^F_rM*mfarXPW?kCPTuy& zGE39(@J*e7t@p;4>4vMPEr5nf${*m2U+pCp;+u|x&R84mzOxwM=q-FYa1#sqBJ^|< zGI2H6i}_GG+iLuVP;aoNz;M^@Eu1>88NiAk*MSn!^aHXf*?9a-g4{S2r~T}Dl3SO| zRovike!XJX4;=bag8k>tnX`g?8|B*E;aF|o%bb_+>Zlm4kY|6JWaKw{^+}+Gw#&j< zhANx!c|x}T+HqbU+%n^chb8$??1c7rqQNA=+@?8yYISfs1m3xV0F4JntaJg+BWWgR ziZLdeFEluX^xP-j5J8!<3&b9Jr0An6>85=?UhlV7&+-LOoOl_eS|mlw`ynB+t5lBp zp2^W-4jjzANlW7MB5d`TG+N*!o7a%+N8daJ>~c5$kp!kes7(pw_S{45yAyGWwEaKA z1Io0NJDNsZPfHuh_2X{Jg`~@$g&|S6m0oVI;P_c;Dmu-~0aF%U@SZ@ba1+6zhdQW_ z`hV@A?;Nyq^1L99yAWB(?T(rvhA)+}y{TZjPOW#iRxe;ZYfa9EN`Nl5KFl0JOVbh0 zgAMoaYGwNAD;qoUAiUhjqFdPkE;1MO^AGy1B_cR?%A!%&4U3&9(BckWtQpTi17}KY zo7$f1+?9V`LK&+Tisi}mU-C?>KA#L@icSUp*6f?x@0EQ_LM?BKQ>P|bVtrbWBrc8Fnk&9V6?BymxnMkT`-iR2VhK(?I^0@=y&bE&wfm4dM zK?T}z{e_wQ=jNuEU`_(pC{~1qhMF>O-nXD4EB+eSf1(<$MnQ+cNDd>1JO_(V=47J+ zpf;Qieqe=*l(+~<`&NxRcqzLW8XnR+({0gxZ*>OyBLLtlpCVx+;G%>3`=hHLWr<0X zzRi5#69m;Y=t`7jA6IPs#R3sI#2}&i_M@CMh>M@0=R-|mM(~v1rcLw621EOIj(854|A!SyL`#=0qY8%glSm(m}P3+uY zE%V-Trs~d_{0!RMHdLD}GbFkLw{vp>7kyEWaM!82nBXLj-6KbHbsK2!_R;N;ek3CM z%lz_?>u4(LqE}5|;Zy6MdpAtg6rVqx*Bvkw*^~W_HbILx_q@jZ)rLG^viJEA3(5boIm=v^6>zJV??IeUUJzr3PdG~pY%FGECIJ#v?!Wgx(- zoR0hDgf%+sHPiOT6@lkqBFm$py)^%f{LoB&J@I&~GJl84R;%o#NQ0yKpIlydlJn;` zN=GS#X{awRD6^%m-vV2m2D9g*V27qP1r(FkEQp2tBP?_!+%QE7rA5?Lmkf%Fli5AYdC_I?OPl{FnC*%@sjmnQYK=*d(EBUE}P6$BZum&7g z^9zYJ#OMUE8oyKyw_1TyqG8wR4a#=KqDbNWsp4R<;t=w1+)mlp#PzUSdrFquxRTMj z5Ib*_r!02VPm>wZEQ~2?Sz>0DPOvr!%`WQnLUEmM*;TO}+; z&i88V8FVq4!>EM5i9%6X%mZ!?lfx6q;h=^RCl#%eC1GFA7=JnJ@Xw@nhnR~69L$(p zodpTaOGTmv3kUBzmdcW~^58#}{=(a8hk)_OFJp9HB&nT6nfVdcxvB5IS%yzQ2<|3D zpCa`6k#x_Xl-+ z<0r8oqpeIy!`VBtp8;r~#%J}-SzL47qr**WNn7T=)01`gX^^a_9`U4R)FZ_mGXYb6 zv^w!Z#*YOtu2y~I0{DZ+Y%>c~CFVNR<=1M~E{e+Vz6?C@ZrnMk)+qM#`JRj8XU`Y1 z_DV`9FNv_5^Wnkk^)^D-X^z}Zy6%N}+e4l_HHy*_2F{aut$?E{Kbw@1##Sxm5^G#a zj1wr~$Q+e~DRLLXAbL$6(K&gS={F?>pAy%<`lU=P^mJCT$s#&)WoXKD6;9BeOkO6x zl#biKhxGemSRZ2KPnxwFj@CI<9u%j{xpE?B4$FaPj3Ti6?g2gLzP%n1 zpB@Frhghqdg8;kGcKgs7SbQ+ZDEZgE>DKvVt=`P8Th&IfqiIqdX9+bGK4se!nM?~3 zl_K4Xqm$EoxqWT%6YtJBv7>;SnD~`XC3oT-uW7F{+Ero^gF+|Pg3UGVbS;~rtx|=A zYjI5jWewRRx>fL~F3-j3+_*1e7rM7@hP%Petb$7$2VnDOH_39{Ev?S9TH1oGg?@rj zH}ph1=1$k2F<3Z|Y1Wof8X7I8qrp6sLW8LS4I>iPCEk`lHsx>~TUfWv^yLF_i*18y z)=u4{1`}_9;h=WP@4^xKF%J5Ml|rr-E^kH10RM;ht}*zJB1h@yx06;i{QJujLm?|g z16lGjAppf>*zBJj;P20I4SpPkY+UPRHaQJ{WY6=_-=-UH=_c}-Y%HN<$+y^dgmk7) ze={>#?YD75z+6Whj#SJVaanlOM#WLE8z5Zyy)Wtg>EQTWL`Ou)hF+Gv#-I1Y)x~#Z zKXf4X&Rm!_;ylRb^4w0kZv(2xt)KCD{PU~oNC=P^xluM`aZafU_5>l-YTue(>h)Eb+KyzHn#?QTKE zAuz9K!L(g6l&U;>`VdBTw-_7V@klf0cBF>WRK(ibd#B)XwQl{nG(J8=!BtrE-K$=f z0`1Gff}Y5)M~a_7ECdypeKzV|T=T}q;;`L?A zF``O<-)V*EzJzMDOJcQ9+_DY3wrn2P7Er^072DhI?`a#V8SZ-F;_dHHgbu-&>Ay_< z^N$Xgj2_7k6@-;`j|fm-0`x&=mg?21E~r;=NIUb*_3Al3ZGtZC=V0dxlCI9mV%%O9 z^DyDZEhbWr5!!yv;F`M+aSPe}vmngHp{ zV7NYElKu=v7DyAlY!0I8%13tq11A>qn?zhCNG2WskCdr}>b z<{1?K+ji`zVY3iyqt?Ff)9!kDHgL+l>8CvwfFk+VJY~#ywC3Kxkj&PL5=HEtjrFNt zc)88)%`?HDtYxCzS>ox4&(u>t_`696bfh}dQ;|U^g^kVwBWS9Y^?V-<0xle(=3wzS z`L<0e2#2k@gyW2U)^=*The{%EwVmu zPp&pnHYTuIQu7lUdNAm8!t7Ddyy0zhNeS%pP&1cmIR8>WXgW|51|@md;!FDNq0QSd z(9@q1@N#N1rbB8oJVjVl0aSPHX$i6F6p=a7m3F*n)r;};WTAqOEN9z(+=}MD8*c54 zCVF*hhi@t0FYf)S5Fq;)wtYC967(;GVIAUr8Z8wMF|f44bG|lV&HQa!8g}n{Y-Y{b*Ef1zdwG%Vsy1(j+AUchbE+KwT|p z;<-MnO>XQV)44O5^4+D&`<%_fimys~9NrKY5MndXXa#;+@MYrs!U^gUl5VA@j4#7A z1qQ~rt0gI`S{yiQ0NoQzu~YdaFr74ZR3_~TQDfVaNh%fv80@)qLu8GPmMe1IHY}>~ zP`QuU+MDgu^yAY$E~?OOj=9g8NUsL}mg?LW=Bqb-Jm;U6KLud@`mb@TRZcALtoOQW zb})SyVFbf6Lz)FxxtiS7wFGswupd#)wo-VUMfL7f#smsWfiINrPd%C#22rOPccfZ4 ziv={Q#DY8Fo7?pF>fyj=(#h&Q*JD}!Rmxk- zi^sPVeRth?$19Fg{cO#s`RwL+g=&4RhpKuMfecJYrI>_jNp9X{cmfHAdaWH(@s`AL zMILWlv^v}$K%rU!yU08mqn7*N8?L}vq!`>x7t4hXVMt;fxK^wd%@8HLilu_@AUD1J zbKXJucc%V$lU$~Sf6u-CPC;$YL`7%U1*J8(@^8p3 zpC8S%sMi&eJlFBu8huzDRcPWWt>dau7?Hz$CNod#04T)x;_Y06>=M-)D1GQT*%X~& zc+m|_^#!6#R}is?=IMyUuHecnib|?Zr(k-ZAT>B z(AC$$c1akSjO51@sTsrZ8sX^+y&DOBM$E=PP7|eT%IIB3SlFB0=k9Qb5vkF+RiiU} zsc;hj;FX$O^EsqGgO|C<0M}S?xZf{a`CdC^M(ip3br7yqhLnifTk@dB{jY4dl?YCh zr=o&>IYr?6=s^p^i4=mE-jd%d-dhJRJ)X)t6ZO7%TBp#r$O+CY4zonlZ63Bt@L{S} z-nMk)vMB+@XPYEi0ufG<=md4b!*4V8$NWT)z&C~s7~XD;s*&*pCrAXGTm^z;k6T|B z6_^7CGj2{DCGDP=S~^yNYK8#WHt(E-h)^Y=!iZ5XTCL=BM@Ri)_!3%QO6SM-3SCc6 zc5gdiUWNE5j$&k zV68$fKl?gInTl;KgRPMP6vxouj_{kQWye^97GfhY{ZBt_(T2(WeXfsnhnWfn(Rsn2 zc8wno9Ce4s4_IO8_MiE9w7kWQ7{5_*#n<5#7gOT1<@rlrQ*iVg-o#X;7&@ga1jRET zUH^p7M>ONJoTyWeHHSaN3{ihuSN3F{2I4q~3w_1jg{%C^zazD(3IzYG;cu~{*~MN! za;Nn1M$1-ZWCIa&XXkI^!je~0aI<# zqHbDQ7l962t{&Qka@ClwUa;{@#goSpW=zQm>nNx<(z5p7iI}_h@cvd`(p6t2{c12( z!K?vk;+E#}UKHogHbnx5iJRe9`Gd#s)IHvKlXzF;GfS28o<>z4_6h z!6hKbp^;D%Te*=xPJR@l`Cl4q$S)Nq@p3 zaOJLtQY$#4(oWk~@>S4Pi(sz3xvoZeK)|oB#0#4sB?vWpm5#Q{AlH{VjE+H&{v=B0 z@2$@H#ve|+xj8Pj{=pXXw%uDlhLw)dA(X^>e>-EI{Qa37fABvM zHhE=(dSQyQAi|m{3VUu^Z}!_!WYe@OoDg0r zyi@hFd1q}%V(hqWC>5()vqil8#i0=VLb3IdS!+ITJQy4Vm!L#P2UZGU&VxlnhF0gP zB=TGEBpNCT=g(x)ZIE&&p6i8QiI%oX`u0LYY$fC1*rgm1^r6w0@@~`(vz2Nz?XgH5 zpJ>f+*(+%>oGO*f1Tw0Al!`jpA}h#VJXQ6DT0 z3C#Daf0^cZ+)ISK=FLvW*C?`tvg`3P>gR~#3J#bHxTw6Qg}0eg!O-#*Txi6F(Vv_1DB)m91ih{XbMQyX?j*5?y&W%ovBv* zCKS2B*HP1!b`Nh2Eivx+ecGW1AXOP@{VU|`&-C@b86jAcjoUDgS^qO9fPLF$^CSqH8#M*>);t&~K~m8_k_i|p*gP>< zRLT(7nb*wA^xK#1$CvkV*2(_|nAjpfR|O^pkYZayD~plNf{_Ldum&{NCe9HEYiY?T zX=$Y-1P@||g^7Iz!ScwFTv1~Ks3iA&FymLq$hg530khb7jHsYiUcW$5ScJt@B*bMT zw6KveFw;JfP)-@a%LDk0jf6FkXGKYgsYMaZi>u=KCQ+hB?C$dw12*!YkrUI>_P;I> zsXK)?jUS023gAV>NEkB+E=8Pv!B`^&7x;Z*1nDA1Npy|Fz>1)K&vf^~?2d;O z3kvA)68@JIP-H|r05D6!;3gnrV)l~Jg9&efM6?O0{n7L^CDQy2I374+tBM5V)6HWz z{Xz$Y4d4-GW)c-b|BVJ#uq8kY>i@NIbB$3L0Rs}Y_7jvZg6x~fv!dI#Z_dw6Blx|1 zlX&&WBUXwK$e(}TKg>fDv9Kcp-rmK&{CY(@*I$w3W1c_N-rMA*VNVgBVWnh1z=}`@ z0wU^*sfj6Qz#!iFfEZAiM@`&;uV))l{Dgpqd^;BVSH+P$05;&QZg2M=w?q~xQkel_ z_fzsPZ2)!PF@q@a%dz6i{iToQT{Gn?{r49i2?rAQdt2sP+s7Aku%3}qe&4_O)w_TN zydZig2K1i?!XiOPtO_1OyYrY1{7Wv0*iOhTrV8v zPS{{30pk7s`g8&R?s)^OG5<8bj_Kf4!j}Hz6k$%jzh+QJd6c@TLqSVTfDpdAA|?`@ zBr(-M4akSF!0bo9-XVnwfk2UBAA$Upf(61&yafy7QcJ*yB6A_h?XcW9itAw`y9{r_ z!f+3Pejov~cUZ3{{9j?i%*>nMfAO9*O&$rausL7b+?ch$EI-~z1BAOt9z%%A5*`~1 z6_yI+snnys8GzY}Jx5P4C>~69k&(~lEHJ$n@UAQ@jc%pb^&d5ZS3t21D~^=D<9PPv zee=<6wS@AMnfonbTH#(teF=Z~nCtK85yBjt_z(w>sZ=OxQa|orvn8(S>}oqvWXb1- zOaF+lSF7&(H}l!^r)-1j1!zhhR?~d@V>Nt{Mvx=rs_|&<*4IJd^{u39*cHiCJ~VXQ-eDrJ;XyGeJ zpwZB3`~$lqvC1K>Qat@#ZVWEQmp`O9wS@whqeYiRwj6tFjK{2GV?q7C~bY0Wh-)$ z6(q`yQ|RdvbrLHG>E;a7b~Mc91?bFAc!>Ifr8-tHU8O}|^GW{QlQA_r=YKEVeHUHd zwW36;>qD92R;S*lHsa-|)CIYK!N-gE-HF=KvzA@VI#}ODfX5%&jXYhFg99MZPq`(} zr7Af&NkrAmiK+Ut8gQ}2C^!yD?@=}w$X4q_s1o-s{FuR2k+ zQQT5^Cc<}xP6@ohu}!M7YC#JAsWduIEHg`AKo>{5u8h z!Jd}NMgf>n2%cgPhtCX@eo(-4p;Y~pj92lJZD-BwfHe!8@DevmSv^z~f4*n`-sSZ+ zI6`TldU)T%8P@h&G)8E2{?NRI)Dql6KmG>Zk0eX#v!`iw^AdP z{H*Laq!dL0YB4CgsPj+~MHx)1N}TVy2^T?AWJgsLllk=_F@2A11>3+ReDkwa=jlts zLAibUf`t1N%Qn%*-VB~q`KV(7x3B4Zd4}iZx*y}L{M%6A!%C4<2wII=WamKVU+hyV z(L$OmMS>9zA?(rkKhrR&lT+N?KvxCkc#9B)H##T_mJqyvRUpdQJ_i@`DbNY*MwXSqrCFopByL5lH>~|7e9I{)-ZTZub2PKWm4pRH3olw;sq3~{= z_G*+6ljR9M(Qlhgd3}Q^hwR+q0nsyQr*B*L!p^cE->_G%JhFjnx7SIBB(WL$DV5ZO z&%YwM?k`Chut(Lo2k9lYHB8EKj%wJgzfhqox!M$`YTVALSMtY1F`L7w^^V?#*=xsa z_;JizFsbzI^Tdzk&sy#D6@9ugp;I?%J=lI$D0TxcjP)jmhz#8c;(0fxt;&Qx*r>U(Nqn`QCT zAvhEVFlVHjsSs@O0~KRdrVP@*Q#3sec$y7cJX=URTY+JXb9Wpu@wC}D{_S;oiibyO z%d5Eb+mM0@p zrJ$*_Rc0}K1~GTP`=VP2^_j!&r*^_aR4`}dZ7*U5cL3=w!cUB{~p6fcQk9#k}c=&Co zS%G9L`6HljCL+&gpqZ059M0QA3dF3#9?Fa8hH`M}X zL9*tp1E>6Qx11EGk>gAq2nXUGRhbFB)V@S3Hi@;ZQjD)Cf3jDFfQ%++0G@^|_u(k5ge zJmr16jIf_Qru7#kkzj9R*73d|f;N^fxgY%MDBlSgiK71=SU*Rxi{Pc1Dpir)=~1-v zUpE2t`OF6m@8K@0;dO5kkb!kndA!+GmEu*7)-uVCOND;?<51NSopy&k;He~hMThTqapmQb&(Y z*SS_runUEI*e0t@waQ=B0CXe70B$ z?<(bUh&CIX0iHB{(_!Dvyya_BtznX)OH|$(00uxZ{q{^9Z=XKxLSv&`>2{5v*qj@Z)^@t>!=-<>Oh*-2nF1X|cE0 zqnJa<_IHW8)st8`<4bkL^BZAtZ2y^o2nvI+0;GlA--TXTq631lJ6FN}h)$#Vj6FWw= zV}DqlA;c)+(&4UZaQFP}Wkx}vND%UeF9k)qZG=p2gRJXn>~9m3Uoy`7id)rZaE&E# z85iA$r*s*l2}%a8X!p^+yro2>i$i+!u}}5N1WDrgwp%1zEbBIOs8hPlnq$DNSDhL( zIT-_w0&>Ck!J9~{Sbadrq9U=}E8&sjqZjh`NHj&!yEal>OM;yEgrru^(X!2BC6-;d z{B~NbWj!4pKR4|5E^qW9(aD|61=8$;%3V+Nm2&0A)J1Z$VVz}$aGMI+11FVX@ehF+ zVYT1o%wP&w%83|BDMFQ&7lNC$;yZr?47G4ctqzC?-6{vYndyNvd>)%5gGPBTzMi$d zqlYZGHs5>ZQ5+F{s(_koHI)78#Bct#Wz4z7eec_B?oV+#2^W>)5=Mn;Pst>+g+-FU;uWdCO!tjyO$kAMx8xKXNORYNU z`ub_)MPH<5%e279?_!t1k+f2KUjq{SJyCz>qV|Esf@h<4&eEH29LGRqt|HOov|RR_ zv05S#&jjffhsG_())l+-B-s(jSU2W(W$HmJrkMe&>=Mj&t$nt7JzCt1!3&S3#=vQd zZfc6!5$)HZdNwcZYm_Uj4vI|*F+9Z=q>D4nw?nP9_)ON{+0n2yGStZTlGV%j@PMTf`HHw7IdBq^l6yxk8o}gqcCpnS=``{syVMO?G`M?UMNfindCMa*Dmu%ND zgHh;u!X6?ax(@}R_x~*3F}I+Np0`R0%pin#OW2@D#N;!{NU(0!!sgl*dc^kePv$-B=$UCc^J~AZn z5ecY`#BDr>{poN=(GuG@o1d$jvYU`NBbZY&K;wwPpsjXPYYxg&Lr7R!q+^8-7^AFP>$EQ^nW(zXA%e<=$u}djk2GBrj#NGzh{_4?N>sq;-<*B8iU|szYH=;(R z->7=3c#gZxn@w@@b*HM?djzNFCOFSy^=0EiCxyTMU!}(b&wAAs>x;)zz1-Zf+0^rU zl%V4KEuxq4rM2%XMSpjqdL&@G8z@)jhCUg0L3{8VaTd_f*nT=X8S3Y0!Vh!Zveh(JW%!Ik`wHAK!!#o2BGqA* zJS>>Zb^$a}ZVew8!sd1n!YdO@*BtGpKRB3)o=R~WIiRPOtAF3cYFm8Ulu~r_SJbGS zmBuGST+t?0F}QnoVk)_Ukg$EtX$S_uUT!x^M~#;%*<0_bYS6qIpTXCsm2^x zw`};4*zO!?#}1wO`*f0e1h)hh%Ur+gIa8c$vy9ywOj#mT?8fN}Se~X9q_EitzxquZ zAw?U9jG%_}DJcmlQ~t`@ewcDAB(3ru+BSW^utqfTjmG0jJYFbSuk zG7X>p(Ajs&IzscW=#(yJXB$bZC(wr-?m&&?D@y?&POeS%CT5#cycOf`mZQR`1TQo*Gto;JU z#rXHLnm=kK3UYPL1)1XuhHg8pff&ZL=la`9&h$CO)Psu_nweiJYR;xX% zNeD_?N{x}P>jhs3T)@0{x_dBq29q~R#bu>d)q-SOlA2FXz8}q@w~dD7f10&C7Z0C5 zEIUkTE1l`$5P zi0lS{vgowrBFPG0bup%NofgHi`1KsR6!Vr8mnk>)qu^O{@ytzA7h2tRxMo~e@|6LP z&Z>#{Pq*BZmNU(T9eSjH9bwO_?0%oNP#0*;^+fg^h-bIpKDyU`+=G)6%%DF`QmIWs;4`rS2V+Lx|5$KVVaz zUla8rIr0ggcO<(NC{?NrtCAICPjLviyO*;cdz*9p6@W`_%s0-a(t!CEyIWJc?+PgC zKQG~2ek$t;en8eY(h~i8mx(c5mhQ3j!jI^S4i&K6$tIx?&H;K}MiSMgwe?rupw6qD zUU`BVtDhC)d#1qUD_`4kpujV%5SJX;Dx}B2=!bQg?ej5(!r%}MA4%g z*u03IGxPTZNv|z&qzaRM0LO`qJ7(s$LsuQLV zZ95%J1~wT|!s{>2JZRijNC4C=!SAG#OwC_%X?)( zAE0{vjZ$K-fM)Z}h!4dh3_suFEgYMJXDh|OIPqIL<(p-id_}FU2IIvOo1ntT+!)`% z_|hxw+WlC!?~g<}|JYqc;k0)g)W#oFX0jk6=VLxGbuD2XvZN zMFw=`qP7|skP};d%&xf=lVEuhIB^G`G6_W|Pf zQbDw*LRnv%c>cT&L9p+x(?)e8NV%53HvuEwGHyv0ZCIMZ4s(@brYs8VC?xf(-`=8h zlm(7fni?i)zw9s{d<$D!3tMi%2hDcmhZ#CezfiUMv&`@As*~KF_CXj)$k1F_{FhBn z^ICPI#QQ~;=6`4+=pc~AW(cJ}4yp?eNr5`(xj1lw$IUmH04Tenh}ym|5m*9>7eT9Em(p-`E+G1%h4({P)74!RsE zRF%rm%UN50v$i>x&RG6pXRrL`{>^~`K5nF5{OX@u*%at2AFlM3SLhg05C=}A%RcuE zZo`>Jt^<6FUqc7nw^UQz{{=u?X%-C5H~;miv|q}kMDx*I)*&b!`3{*imfX4&Tc`7F zlKMJqI{{2^8DWJ9HXM5SK@LS`IJ!69FmQxBv9)FcdzDTMrRAs=W>|d?2jJ`0bIg87V(=KM$4cFx{}3^ z(GVyWlaYCaRP*N30^d9oZ?jJ)O?d#`T@|SGM>8Xn`QfLj z^ms!2U6KyvUkH`$F9vVl#;}NlI^oc!=REORwbB%KrKIh6w7c;)yBB6y=e4;gg0!0F zsZ(RH0SbPUl~ClhtETyE&hP@PZr1~AffPQCP;MT0^J~>RPj<_?Si9}^bOr_b%xZjn zrS{5ZjxYUu6*6xp?Hd5r^@r7rHE~?qq>rgFECYHq{b-ZM3wGIYVp>a?r|T zDEOcURlzp(hT0|fkD8~Qr7jJI2gt~2qTvWAe}E!&gr@@#)n4ReD?x99%k@7`ilRY9}o?=EUoF&wf61yxoyONjQ(*maXv z9pz>7dWqjLdz*o~2~9|E0ZgturJP(dt84$o2vq#6rp&KepSlEbF{mdE@qKBFDjT_- zlMtV1&WVbGl5tLIUTqCiwng3YZXf<9_xlYPd8{)vr0q$scQ~jQ9_v8`mnp(}#gzEP zM3QA4*82;KnCEmEypYo5ME|Zf;fU<7*)po&B;^mh7dt?#v;AE0L96cW z&b{nhn^sZ2mYenBPNXtHXX)lVzP_dUiT_?x)fy7YK)iX{$x5MftD<*K!OUPp6TvS0 z@M&idYM~$CXs25N0AG%O*x7L*6}=GK+~H~6=} z{w-KsVq_TH9O8Zw?*5>zE(i|~SSKo<>!xJa&%U$mBDh}5nk)aVm6aZg0!qy#Bh03H zE^z4$F};j6t$=qBSPBFL9!_Eqm_s8_ur=k13XXop)&hV_siH+hVcN(C=8K3DRe=~# z#rl&~TmiqRGDZlN;L!qE?+miq{<7xz94HLJhy44ANX&=IKcKh*ZxyUy2rQv3JRnE8 zg5rXJKlhi$GNV%A7eCma$x~1}UtfMXpaXp9LRi7bRTV~fY;hRZ3|gI?s|C_(H9J^@ zG4Bf_NMUw;csMXWb!lrWcX)9+b9fsVlgY?~-9>b7fGQ8p5m9g;hW}Mp1Ug>oUhuUz z5+s8#+YH6`)$`NX@pRwe3<69T%dY>JID&0)6vG761x)w|6xSsR1OpoR(9v|b4C5wv}=!3Y}564SE&vW`?62o20@LLU+x*q%m& zaCVmXNX;i-g*8JI@Kjv>>fYf(_VI{#>a&6k)6)8+9U52)REGz1cY_?0{xpTq7yan5 zfOG+M0u2;4D98GZ0&>UPX7K?~6rP@fyxJyTuCO-489GAyKnGAXBPTGeqC$KGpIzFW zL4mb%cLe$Nd~H5Eikh2(YXwZ{gIEyLF+=?IaQnmh`_3_}H2`fD+z2GZofr?~`TS&u zO3W%*dsWO%0LcFOo2ET%)>2Gfg8ij>-`BOj|40bpXdy@l!p4V%{0j;=+ylLFx&`(9 z;!CKcdCnLAyh#n#S_gmroW}B2`Wjoi%;zk4vy}P+`b8kSM!4QX46=1?0U#WLWr+a| zA3|;KhKyf8?kC;&SI^oP7lpN^?nd9YKc5ZHU)UMzf%XDlEP<_cRq$@;DHny{pf851 z1hYHf)ewy!UF#p$wK+gEjT`w8vBqqxg@x&t56T5S!Xt=wd652O&DT{{-%5+Wd=3LP zm`aNW)K{lj0i*El*M-RFXJ7%Cf8gtzJw!kL8gz6NeB1-Jr;htj^-*7xgdkNz zj{A`HGM|)!AXSTfL*NkgGGCOOAXSr&LA2EGlvZ*jI}ouI@7V<`>Yo$_R&q-_Lx@J| zU-CI18dEzE>a(x%N|3q#efaoy=mB7Pv8zkJ=Ia(LTb{uS)dN0-t-${APN4&q&X7VV z%|4(-*}%Slz**Cl7x2PP$A9IhR)CmYvTFy1z)Isc5zNw$_kRTifLLwi1u5jL^F2_B zq)iB!_V5#Ltx%K@Aa3@Z5kl7KUHP|0e`$Gjb_mfE`_)NV(DOp{d42{R$S-_c?z-@J z4A#%7-oN8OI~1{%$rTQX5})koww4(#gh$fl21v)^)s0vemrc>3OV9jhl*U_Yrj6#? zHlv@(@p1I^Q@ptqETe9LE{#F+#1Qp2>aJp>59?5iEMLvh}b+nlo+PSsYh> z0tS-gG-WE(Fs++KBOU3cH4hI@j3ypQt&&jVU6A&9N}-)bvaknWizzLzD^`98X_)y4TF zB1H1AZWGj7NPhjez1C4CK@?GJh|3p3M8U5F1>$i7(0m&xKP(Aa8&tOFm5AClG0vR7 zVk-^b&oISLT>b0{Qh#KTxOjKO0~rBjsoXg1eNxxjEKDWS3DFMTIV(036gMs2iM+v0 zFTuJ4Vk0mPHMb*}f#?0GovLC-sUlWoA(3&gbx?#R>&z_lube9!ip82;qP3x%wEZSS z^tirpD|sUCe+da#@j{2nm12?wvxB0k{q6pRy@%(0aMD49NRG^dS13_U*pfaz~ zbaKC7r@KRi-L^jAf246Nw%WPinxtX1)8W-Nl|#YvQ*<6 zvgt<{w+A!NG==;Vz3imwEvsB9>I0QSw=-M9=Eh4bd0(MHkVU-E-nda6^*~YQd(F<9 z!}g}0k&oW=gae2=;&J1g7Sk`+Bh5pVj;YWpK#OPB<^~ z6*uy;?@)C5fT(38l>Is>CW3edWx5oL4N1+-TkzPn!LDpa+rgsL4Y5+13UtX;KXO2G zqKA+4V&{i4?Qs!g)#^50vsGC27OsWKUmbzL{Q35nq-10tuzs&R4j>U~Q{|#5{3wwqmgIu*25aHjkt|-n%(N42*O) zM8Fcb@Z3ixd+_i0@=nTlVH5;XY|aeCwYrSpThPZS{LL%$E14E#}1a* znjHB#Km9hb+}4tP4~fLIA!UWPi$*8g{{&eq0%%VwY)+SVk>VUX9D7uv4%nC03BGTl z`s8bSC9J`v^x*pQ9q3xT)?_Hs7lbNfzWaXjGBB^~A@96GukQv}if1XaX&-h!La;zs zRAY}}<6Qf}{|jqCl)u7rScsm)(KVyUN3ov~;ncCfQ8SFfW!c!QpAD=0=u$D0`6hNj zD-f-(8JT~2kH_1wJL(egV2Ao5B|--oE58;WbCdh0Q%iU2k2{jgacRUp4Z4T06_5mQ zxE#N|u1;@8K!l{g^kwS49p8|<%&Eqn;4~G1p3F}a-F8aq6}X1)G*gFW+`3J>bd?N| zRU)QrfPJls1OYpid700RFROSdO=FZl*5JRew4Hx*<^+D&Gg&`(U=3h>WO#Dg!u)PkHpfGOd#PBe-YIn^1&O@T|4!0E(^60+SfnDk^m zSF@7-dY0{qdKGm?k%f!;qYO1`_pJGkLxR3vu4IDdzk^DzPOHip6f~l`aF6-`ki@Gb ztJZ(&aRSE881K1gF)^}}IvH*sX>PZi?ab(!6b+=#;T-OXNZM)XqQzxk$dpw}$Oc(q zY5y~~POC3bW2t`o>m!)Am}rdQAbCk!_%IC959Z`m5gn(VbliA{fKY<@8DPPT47SoxV8_!3WH%ETw_-M4WT zm8o}JFCiB^0k78QwK`_rf3ziKyfLyO@+`{kj5eA-O3G_loiJ~wYFICk1xwWrm$jLE z{ZWnbEdlqnq-1z&yUop2GP1JRWamH+LIT=JU3RV69Iv=)1G-g`0B(d>z>dVDAz z1698km<-qOR2hJ`T3Jv0MjagKzB_*|?BSnSO1rdCX>^pwD082z%8l#j8A>8>*0SD| zdYdU&v#PZjRgG0x`(+Ky4}Nx^j7*$OpbXeY?Eb*m=DcOsEy2S`)o-53e>lbIN8hAg zkVSb&Cz$vgzW;@Xt;o$RL4iXWi8D5pAp;@XJQFOZZ9-3XkDo{r1SYGlUax=iJ3+#8 z1Z}QuRIKsyPkG);KH)#>MpLCy$45szJbkGIZAypA@!gN40#vS%ml&?+8cK6lI@&XF$oS2x zx+=CnnH}#RV~R{6xRUa$n@4}-WvSBXezX?BLLNJAAxf?n{s?{Pk@ybmnZza2lm(tn;-<66TkCPBha zM={AkZ7rls8~1A8fJP^QXXW@yoL=s!v58-&qot$ltu@ z`3Eu9K%8+>D(Kt6mGybXU21s@-{&npG6YtYZ4 z4x!IQRwfp_!R?=uh zK=cIWTKoL~qc|~N21y(-3I%74LvQ5>Hit@~M5!VC$P!UtraZ=T6<#d*QT*BCE{$b6%T z<=AiISNmKbBu43k;-tXNui0z?i3+639~TIuU9Pa7Kdw9_p%G8X3`{=1P92}8Gi-&u(aZVR)YmsY6P;8`&m)}gd`hWCD8Bp*8 z4UT_ZKJFf)9@UoP2~pM~E8ELn5TPuw5TngDUdZRtmw0=P5mEE$aw7*hC&j%umTtBw zd+o*;^*(|}4VSb)g6YH4G{!*3sIj``cNF|ZfaioLHaa*|-_$-sv7?kBc5mCbYcBgx zGDvP`KVUi39$^w|r2Cft;Yr^}R}hh-eei$nPh=6xDP@R_)qevN!*GPeFLJHK61 z*rkfZFiSqlwm7b>rf?Rs^0!~KOoNS{kAUrzM2q@h65vjinyGL?PaPcYW#&z#@`%4x z$HS4gV#1{=`oB`E$2i#VeaCqE#i25XAtQ%hw>Rl=qDH>oa(fN+=8jytzkYwvDqEv4 zXw6D>MPe6FMKU0@}!sPGWT7*jT3S!LaUJxesTD-vIkvVS-=dc zUe*hZ%|6srDl0Q)ga=e^YYczSTEx6_^WJgRwORx|eRWOxJP{vN&&JbfI#O|9R@g?7 z{q0j!nr-zEAN1dM#2=Y_?^$~J`*lP#Zv_s>u)S;TEhS7$iteb(-7eRzn7eI~$Wxjx zY7Er&?pRh;-f15^dg8)Dz!cEcZ_9y8F)lyBacCrvSs%`mZ88pY$Z`56!F zZLY^5XNK(xIkC|)RPcY>obMUV0417SB^2DHtH9Q%T1e;w^p5Ln5#$Nm{3gHwb2*?r0V3V+YifVfA)oT+1pM^LCx3Gp zo?tw}s0)0Ca`zT*_9Vls;$}DlQ&V&8_2uCc5)RI7e1zC?y&hN3amVqi_52O^jc8hR zJ@mz_^t}qRd7DXi-k!%neQf!LolZd3v)IwcDx7?wCQ}bzu11oz$hbaJoxUVuHe)(Oz9YhjIct)!?s1qqCW!@*%S-XUFevng6DXmh^i7B zH;&&sm3gj491eY8Z)uu|3Rg^R{H|?$q?HUz-dIq(mPdakp-PPiTEI4?wP)!Pe8}rb z{w@_EdDkLevD%+Q!cxMNwV-dWQ-KUwBHD`wa$M`ft#-sCR&XDBy?3WABBa!EBRCd+ z;(t90&`6}jI9k_-JW6-6Xr!T?ZRnYFQ+%Sfn2oj{ILiQaj{BEkajK{a97>#Mt)gn9 zS|RJPqfLKEY9On{b4y=k$ALc#JZt~*{6z~OvejcKJ!NpeYmNLUm^4glfADsv-t02= zC#kruS1G<7Rd3qt(kHaDBk~wc8Nx6fBiV>p!j+iN@BJ3r8QrrycDVfPA>;E1;6&7k z2tL%RM`540F>im6_7gr?pdedg5d}8(@kyvfAqjs=7Zjp)g_WL(=RQuyA`?HtO?QV9 z`Rm6NsxTy?Y`;v6jhDLrq&af+NeBJj#DvpD!%O?sPh5=ACU&oEGN*bh}Rk-ne)5~*t1_W6fK%h8=Fkll{ClWwtaIERxD2C~^*_=qu7(C<(41}c+F z+*N;+$;2}kWTbdX_z zJkRHARX2zdR#5jg;x`uv@PH34$wKpl^6_;lD$GSQ$C#M29VdyPqIuRQ_)MR#&CfWA zKUd8r=_4}tc69ntjN{qraq0Vx)CYAqO5uNFG_;oVywioZtRR4;Xg@^)O$;nE>hA!A zXBF*&iR_;ghPi@|B`mMwh| z(pa+(pNhU^O-b)D_EQ2Uol$ZLhq!r>(EVuLTira6%n$(<0UVl8@NV6aHm%2BFrp*| zpMpYgwhvMScgph}S6+sSOa!km@G5@~S1G;xPPo-J{f+V`-!tECTV=jJt@$Bd2EM{o z_vkWzY3E#K`_=FQIpZVwb8OGK_-6pF%^_eVX7d4p2dBt4_^(0L)VYG3&-`r>&dt5+`-g59 zGKmK~6o-npU;Bi2b*V?D8!dl!5)Z3N&MlEr7b+Y29Vc8n7L{V!X(e$)=%w|$XuP?# ziCfGPq$_dM%UAo@T)Y>aC?1R2@^`#G$@6AI>-|oSbSuw?g!Uy?23PIBUHODD(9_- zqj~IEFED?ynpuZb{pcg_;FxN8gS51kEjvc zcyYB=qMD%e#rFEsPN7(TDbWVU7%F4X>4XIgaoNWNQAhy(9L{^)7oT+*su>fA{p2;? zA2(Ws7wY@Y2g^(=`doiDq=!pwsmMpBwRrZ}9bi$hSMWccgjl>3zch1qSZ?k%b00;Y z-GMvNWjdFqEd#iH$oo26CzT!fBL+D5SVd~?7|ud%rTO-W!-C-RD6R2)?RR=N!peC1 zzWgBW*C8cu#N9uUUm3=-Rv!HjmCXSbN`_Ew+?%S;#O-d_vyXomPU@>1jpY))*tDfI z?z!4jm~ctb^-YzY6wcL+c#Sar!E&@wFp9|ohxG!RbQ`=TDa35G%&TOJd=r(um6UAs z{7|@_Fii3@LUJ6{a(rQ$6h&S2bB|DTQ)Cne8pbT`nz|w`drkCr+HV#@Ujb2CHM&A{ndxSm!e;05|dO;iK>|@*^Sx7hYFo21n++?U0Z9cV(2TALU5y40>Tcl zgf|4d{?P-b0KImQ=j}TSCn^%AMK2U@%gLoZ59iX&lNVmkg#6QB3Mf=uP-ju)1;ctB z>rDuH^{t0b=gwYFKj1wtuAsduxT;nxOtEZiK$v4dJc%kD@)KT(S$ik8L&c5q#Y@5F zOuO?7I|+ZAnwH{>W8v~WJmKi&WqQxv5GA}}{@k;RDds}$;dUWdBwGFhwi(Mxcosiy zK*CKN>=qh2-3*?Zcd+RU;)^xvDSRTExrApM5mr*vL;4}o1L@9Md_>JR7Zb3137Nw` zrdy-4NtW=kNhPyVrZa$N;+8{#I|2{*6d}{{5A1) z>e+}IhSVTYiEDl16R-DN1U36IvoS?LRw30{hUqsPz^lO88peFn#zjxt+=rMjHWmn()!ibs6+7Kei@Oom7@6E#>-5czEvC11sjSijbGGKgU{6GRsWKEv9O6MA-+ zno{wa%;&%|bM$-(q=tIX8Vn>_MR0$3f($yanmq7`vK!}#KOjjN z-FP&_vdEX;L7W|IpT_YIxtI7{<-hA%r&2zc%;4 zcFueZhfv&VR{+1hEXKdY0}YrJ2g84j`)EbVs^^LGGfKlLIM)d=otNsoF2AmlS9P`) zW5>DV?tHDP#jt4g8$uAtM+ka8otR6fX;gPtrmE)E9Gs9b<@KOzAoIjmi(KsNL(MP3 zKN@5aD1DNtGch;hauXZ9Xaj;7wQ~|8%VtU0ZUgP$R{7LS{N8@Cr^ej{&ryHg#>l}A zl&~}@%Gf<$Tgi|Jg*#f<4wnEvV8hvH)g21@n|g(Pdh7PQyByy)m7b+QsBp>PMfYi1 z%@HQsrqeU}VP00%%`o(G+Fc#Do}en%92chx?2DRBM7j3^lJRSKdXe*|ALsI)x1CoM zS{N1#A*S|CSZgyXkBU~PIvsx#a6NIBQ;xM?l^uFF#eB?C4%-}H{gI(fwXz`oc1WJ5^L-zO+! zOr)vyyFo5bEMTr zO>#L3sM{B3@)z+}0_T5as1UkO-c$hIh_6O8D|ViXuYW6X~&exE!}Xw5?AM`PnN5-o8g!%y?G+0^Z^lu6&@6cGfL_xnoaA#I3c6F(LlvOObg5+UU3l z1^0P{k){{0*;}ng?Ss=w8EQb!L<6T>CBo8`!N&ea^M<^Wik0p97B-~v5c=;GY1Sp> zA`>}!sqHCwbItDyd{sM2Lh)B&tR;J2e_M=lS+3{0hL?YTg?8~yn=qVHa7sIq10{I% z%0ur0g_rVF09Ls@-N>Hk3&q|2cB)-JCVWV9r14GTYPPQ>pUK`)+|v0`ah^ScTC&na zX~j^GMcn2I0gRe!s>WB^ypUMVl0?*S9_xY%_O~KxdGKv>6S9R$>?(yWPX%!b4M;93 zJ@Z;&`htH$AFX%I@G;awX^$g01S)UnWSpktM34ux28`nNQ+2q?Mcy7ef2DRES*<}0 zPSDsO(Mfu`5P^hsAUURB>LW+S+BDy{%2h0Ov1tC>bQNCZqlINf<#h%z$crn>22BNs z^RC4V&_fLe-Tvo8DGEPcYLfk#~a zU9gFQ>>XL{wRl49am4LvZ_pcQdM0ey#4v{i4o1!m`bqs%wHeW`Um6n7ZQvhfH%4?f z3J!nJpKlCaI@w<5abJ9!Io?sF9HT4H@jM-2lr#~O_>wrf2=_Y%v1X5D}6`n?&~&R#WUaeNFbMX@1;KS^4WJfP*!h&@X1O}ziFI#qqWHM3z z`F`!TN+^G;*;_vXy7AO6&vh1?IAJG6!i7mZ71Gxt;VEcHIRyAMsf)&AA{0kQJF=d9 zUQ&Uk$fJWz5@Q7XoY-qN=9_LPQ@d07OT8HP4D{%K( z5te(l&@io3e5kj*%F#M!8c*LsdPA7v)bnn!WDM}4hqL)9XNk38MSOo`peiW&aJS|W zKa3$^CnRQEfs84N$A0BhJvLHFxnh`a>{ITw()Rb}JY7#B-Wp`i@!_I*=LH6<)TuSe z01SuY4C9F1PSFoXjEs+O1=N-4` z9O`9rYt@R_kll$LjzAL(l1$w2t-6GE;^1pI!`-PvaW0B`#^d&z+~vDB^<+MMF!?lT z)vFbUsZ}!kk+;odjm=Khlhs|c#`{v2iv)_r{{BWiOBAruB*B&&+w`s#cS6ksMXe1~ z!W9!7Q+M=cBu{^h8Yq|2p03qhDb~|AFx%`avxXb)xh9;0;EN31W)oTQlLYkdPfn5G ziz=i+Ux5t`M`d0n>iT$#)p*b{wlx#UOJ7^Y{Sq0hLXWKuv$|c! zs87AMOj{TdnW!Uk68MRWvX5z-U#NOaEhL=B!cOfdckS;^5nd7_1& ze+%y}qUW+e8Eui%xx*A`PA(RT^6~6PMPkA;B$Z%HVh=%XlmG7wfviKnc#ZH^5nYpcLGy7RME>|zgwGp;4Ieb}&HJL~= zRX~Z8DnWVf{Q05o+(&_jr7wbM+e7|UY9d)$4=pfwy7ePfp5 z$yu}BHxPeD3Rm?k>4{lmF$dR)dezksonMWkPzZk>)s@ZTt1o(XHr+_%UmylF2DhenqJ8zwkISVHT#G|#%Y-PKu2Act}GZ&8vB!@G}m?1(bkXq(CX z4c6bJsRe459T)@M6+SBhoqCHsv0^P7(b9S` znIRup`p(w;A3Y*|V+v(%WOH#Q~BJiGV1pZ%^iY|J|PeDYAF4NL`zK=Xn4 zfsz14O?`b;aR3k~#18}t60xxvz|l^yzvV=1Mlh5c9Ep(p%|a0ce*>d2G9@q?W2lKl z0My)_03aa%NK_IeCJ6)r1c5+_zYUQnNq`dA0}cgf@&nY62$&lYn`xaYsO5C;%oqKwnh@pzQ)f{AsN5rvWeEufqX=_(A`K`^)=RAUNU= zXD|eUbanwFyx|BtfGyk!2GCZ~;75C*c>!Pq^p_#n$qk9|e+PSj;Z9&1jKLqJg8?e? zx&Sby!@v4-gP`CpXg7X0xYMs51%8FW9J4Y4s)%%Uh9S^yM8E1&f}>y%%(;6D{54!h z1kw}X`!}+MBcQgw+JL&d2pA&ZuI?~ZrN3-2BBFm~b}%$R1PBC*1H}O_R{+clVlVJ3 zfq}OR><=aAf0r23gTJo}(gk3PX#?gDw}oL|M80ld4;TQAa)pPZ~^`sOACpiE)2l=FVoF|B0vb{2lW5V_di_zZ#4fE<^Rd_|6P%ayOYx& zdd@!${trFa8Sdo$mj#Bp?r6*!Xd*GofcW30#;`wkR}%(>yF34HttuLfSqFK99fs0; zAi+O{e{eSyxEBnn14l#b|K!Y{a>HNS<^)H;bdYZFU-t{(k2(EUhgmU*Bjyfq!w~Zi z6%4aM|4pilfFPm2R!vYu6aYq{z}`fdL1T~zz!!wsNhr+g4=Mu$_z_4n#sz?B&>vun zL=pX(s;DSHK;f6@Pb3BqQ2Ympi30?*{zVc1e*x`(kT?*-x_^-{K)~Q%gz|O!1DtK};1+|3VNZFXA_d z$&36AViKW#gP6$Z-ykNk`)?4_k>|fq5EI$!5BQ(SK-^I%%q8{5{$R%TH~!;Bgu%RE ze-NVS2_!@+#Gxvr`Mg4&(UWg&=)sL|$>)y+`G)c=3D7;tpRJZ&>Sv_Ss28hDcY{`V@OC-uLVd%LI7?R*rF^0+VDRss~Hw zZWKj3p)Ay{N1u({kE5zR%?63n{*ADI}%2_%X;W{HvI-`BFA(b zS~96jMtFYmuN7m?`oA|m5rZVn%fsaLiIWAt!qw3oW?ydMZwF<_i{LjTrf2m}K0N-}C zoF7lk4Id&5Ke0BfER=l#{@648a6=^Qfj(+lN&Gs!0D7Z(x_~jephLluwkUmG1tdOU zJl4o7>nMu@C$z;kV^*c;V!CjXf-RNZE?|hM!^w78tpmLZnZNw99$!AYx;|E)yYD{1 zmH4VbsB*_CSs)pm=X*u%2tX)+J?+W>$`e9}*u*1lq3+Eu=! zEZ}XupLfPBYM&MhKZksR$@Xt=)<(j(^gxNYY_6<~FRgC|J5`e(Am+CaN>-`^l?hdQ zMy6E$5AO#$t9!j6f2^h#sc-+K_&!iA@0p_hg6GLwhu7R?F$#V;f9s?7nDE-NzM@{B zMJ>3b4EZita}01OiJ$QxZ->7KIT==A?qrO>`Jm(in?3h;$;tFGBdzKzrE=~+?#(f! zOiE$2P&S8<_u=4_U0rBjRTK&a?g6(IJf`|bUFnpOYuKHxRS^_P8n?WZXtD`SL?lPd=wQZsX49|sKE1NZxfdrr;orf zW|xkuMat`rY}s8aqLc9)Xs>3%pniziJ?4-j?Q3luj-t!Ge}XE$%olwlv@fZ+a4jrq z77+#Kw^YAv>(NmoEoc0Q_s;KlRO~6A3E)qxDo*H!BPD$b(ux!I+AgJQtX`DaQL9Dp zI)Ti5A5PE?t{hc)iuM|9JFpjPX@#!r+?w%D7~v{a<5^bt3J+lioImR9H%h!`zxmu| zNs2r6P~%?1f6A`@Pt6vKRkI566|#LAD-`=|r(T*y*>Krb;!c4MfN;xtes$Uq^O-zKA{krh5|OOsx>I>0(2))QGP`DtMGiMN!8fkH2Os zrzbFLT*;eCU3U*|c$e}b(~)_R^fF{RIX92v_(UjkY} zanoP%0dI447S{4e(#qfd*~DT$9m!HN!U>C~fP{~cE@eHIqqR>ct;HpJZNO!-SMlIkuEp#sl|mJpiqPtq;H!_B zC+1ZOe^=hV-%F+CnrsRm2<$f-ZlstHS0D#$?L@g~GurZh7_U!_ z8~43;!s-;{J-j=UWJtEC@wbf7kT7i$blIY<|8m z%$Ga1W9o#mdW}hcVbhakkeK%n;cc*JqsSk%v_F!(AJDEG%4B`9|1b?!8ev7Ug0fIo zf29mdejeeS|MS&1xmO`B4_WKX+25zHJnN}R9{hoSbYS!K3)po!A);|0YOprEPYvqu z_^P}O%1Cs)RKQR%lxe~v$|cLxbCBPvIoYbKHmN1+;s$B9GN+xpCTg+^(sCoT6Sib+ zqqXjTAvg26w$FTJy+@$(>IRE(IbUlYe*nrUV)M~sL?hakNRVe&I4Zi15*jU{j>S&K zMaMX9ZmKEOw6-+-(#?wI=YVwTD~WU1EnhNScR!CEwTpqAFG*N(VPayS*idI9;BflG z*JSCOd&}bnU*1GtQw!VRj1h9ruhe&_5Ft;7T>G?r_~6e=hWi z+6HEl+psuniN|&G7S^wMZcsa^XSxud7oC0$u6iO+%XcuGIY%GQ&!nl@X5lSj@*q~0ZXN6Z%L-{ zMa*#J1?q3El54KS#BKDihrh*^30e6tx{UQqlzBeDJSDgk*m2)a{%yC@e`rs}eD`}| zk9l&n8;q9EgUXeUR0VE*^sDt^0HUOHzd$}Tc6G>ELnmbX{Hqw<&PDkZ#8?l%2OSx) zKZqEF%U-pfsEdseNcXt{}TBhXOhkv-L(j-k6yE5>Znm^9ZA-3^#b!+5< z1BGX}Ke?D2`E{>5I6uu1NT49@Y|b3yr6QM4EL)(Aq|>V+Q1vOO>KdF!HD6~mfxv?9 z>*%V+JGQ2*Bw_x}(|L`k1oK)SrKlDX<&oQ)zGJh;trw^Fi`l~}e+TGcttZ27+{5?u z{HKs9wKV`)Reb#UcT3(TpR^j$zIxN`^^kHaV+DhaACob-H8+gi%!_6Eh;+xi*b5cl zqN^8YQqf94@{R+`*EyS5He?l|;d5t-&lj^Si>DRp3GppznyZZ`7On;tD;>N~woxgw6dQkRGQf1jGAZvSA{h|Qei_kR?J#$VTGfox+P6S0?XX&p$)gV=HPnojly zQ_pnnkWbIV_e6FzgYB2p4q*my$~Xcl59_mN6JV1$(71sg4&|-2#@~sB9F(nf7}Ug1 ziC2Y_7M2ax*@i`{guThtJN)VsTPEcfgTL6Zy}Tp0R{I`8f535^rEY3Rk|Ds!!S=Fy z*#ZZhp8VvUkq9H@SN(og4~CU42JAU&KWlrFsA9?602@$y?GyRR|M7q>KtR$*iBurp&{Y7p< zyX(_-`g3n(f3Ts=VcyTtAKDEdJY-!uY=5v|yppqWoLR0alBD)6XY7=RXZ+p(_qETc z!vnMAu}Dk#0U_>;DP?ho`FLl^ei`F(()ZN@$F#<CqCR}gGKoa4ZmW-E*vSk8!;aasXmPyL29kTZttQ3`ndteS+)8UC zWpJw2f4tk((eg-ILTTkCZuFtaUc{Q?YoMgm4*~F_S6gprYh1Zr5FQ1sjAq_(*aNkI; zx{BRY$Y=8>Rwn1l=JCbz(=5g7)J%VG!u6zSe<>NeeN+6rWJs1wy&3C+@?N)@uim<6 z9xbXSN&V96KtIj>%VI5EX^_u2(;MTF*N+OBmz-zIu`0D+o{_BIxqq%^ zMTjr;%F>&fO{kGttD?u9g|RgA+w1Rj;t}bO+Vu>Fv!b*!T@LAZ8>bKY-5i~8Nhlm^ zf7h<`8(s`Hn{Lj@Bt$x2??r4i9}Ox*2xtbylzYCB(Mn(Neq6fWswvQaf0Gl&O*Piy z&hylP)?mw9mpk~`n*z~b*$La7J@x#y5xSu=z;$ZhVm+~H1>`nQWLk<8q+K$mO`<68 z`=DpheV6Q)kiAJ>7W+<_l#wFwg-Da!e_-4U?bYEbx&ZNw-8dx+p2%LXj;nEyRo(H9 zl~24CpLb~FY&x&FuJ5GdRcEqrMCb0gPZPN&qxM$lxmk=2ZT#NBqyBbt!^^7lkRHiX z+%tEpr|C(zog@z}yq{1AT_*v-z0uZ$bs%TF&=ndkaK?DIca(HSgR}I6bxpiqfAZDA zmgd%Zzl$}%<~9fYS%harLOCl3h2Un#&J~5vmmCPeS?LhDtL$xJEz)3tQy-mRO2JZp zI0fYMD4OgtV9UU9{cT05wEDS79yOTIMxI+mwd68T=dAh1Ly8MIzmfdFRyv{&Jw|rY z%`BN&K#&1qu-%{9DQ3f2kY_Xpe<*{PI40ezg~pxe_ahk}8P1aY=p)XJ`$2>qd@i^j zq4mNH`_t5`bBXsM9beN-5vk`itfA+J^BpgxC2>dNVW$1)d)?bu4F%=0Ce($gbdfJk zx|T?zJGk+rJ50|4%mFaqv%xxRe5Lkh5OPjkC&7T=*6pZUcXiKpV3e-}lox!e(; zrFzL>1UDgna77=p+f|D%8E0%-uR;DE^?RzlT`7-wP1Y6bn#FurJ%|gnJmr`_Jk_#X zul4qcX=rUF)RmhLa$f^_bZ?CKNde&P_)oE+msjkQJcSxQFM(P}MnTy(Gy_SZquDQj zqMYiP=3V(03F@2B z&!S1!YFb*Gef`U&K3nfu*0c}xd7<%V&bV(s`$MgXe!zD$OtZ(%PK(a%871bv_$csK z8JtGl*ZCHC6oy#aapH0s_+Y$rR=aiqatZhM8626u1>%TS;8V~yqVrY znd2iHvJ))ngVVfi#%ozXQ6OGKyZ?PhNxH;OQcUcHnS!kcW7~J70>TPw)y!}yhzd>B z)5wfgovd27i#=h@)wtvYv;0ER_wF9}TpB`(=#`evf83hb^_G`PWmc_kx%uk zKue7%xiBZRvc_q({&C9HjFWM?OQmC`=PkkAX#Bdz;zhIdG3!E!wSMifss#kI*7(Rs}lX5?WTFzS;4ay zocc{le=dp#a!t>2C{1pc-)*kQ%~jTY_2rA$qYu^bq>L}9zF}=m?AF$T#bX&LeFcOGobF^{H{6+f1Kmm%z6wIx*L%k8LYQQhVYzD#j4er zHJjFGv$osNVSdoE@`?P40lA;9D`{JfPwv6Fzkk-*WRXAc^lJj{TfCI}ID@<`3?%6v z`}9B3AQpE9KY&<7iWf|W*=RH%FMz{5$IOdlX*Icx5g87HAI!$8Zh#eJ45LkOxF8XV zf6r1P^3hjH9z+cxp3=2iXteZK<9OO@$2tU9?HI0N)sS$R*v@f3Q}OC*kbr z@wEr%Qgq=9I$TX0mDLF&PkXCa8m65Qf9I#}V&gKToh77Hh4dQSWgBlK;7S5!%CWSX zECcS!CV6;T^h%-^e)^AE2lJ+e?q|sd8OT$;eZB9DI(aZRa;W^2!6M^3$fT_-hlJOr zE0eu`9<=OF`jD3F*f-6UH}j!$&(O1h0HxPq!33pQ;9t+^^UU4|=@j4L_o}MZeva$Tq3R z=R%m%25iu7{;ZTIH}E8Vu1jb(e^|^YB~Q)k*o2GTbS3L^bMp7kt%g>9Su;sD>N*Dz z*B|Kj1vO9mUs;ABY;X8v*xm&!X!{|pCD-xK!x#&4Z;xwB+TSB0+nT(aM_D|Qa3Wn3 zj`cn55kaJenPolV9wmbd6H7=NJq=*~*yGjAbUX(Nm&t@OuxA_PbeNZ6e^n`*CU`e( zEYL*R_EBAGE{Nihv*Y9{F+@-(AO@(I`QA+X&ZtjfC?-9`=5avR#YBeo1wEoIM(;=Y>L@-WrH7!A3*&Q z-jK{-O?cBo((JZB-Ji<1BS8MW=0|?c2Z_6+4f|R5SUpaw3SZN8+;BVG@D||uW|n&S?Idl)d!tlrhCV_6151f&iuLGgWVG!(>i7i80bu%*}xt;P`}2b zX!q1(+?6g7Yv-rLmBlH+#I{+`6%SxThFz>daF*l-R6hjwVWHn(s_=|RuzKyw^v z%$dl{;*0DZmPhv(6D0>mo;O=pn^Aq!tQPcqK&D%~f7eIN(^J0qq#F^O#(pQnUpJp< zpyOwH-<_+v-uWiKbb;~V8{pfy=1cq`j0BpuF1X#y3*36`T*+EvGq3_>r~7vL%$A05 z0-lU0e-vpkk>So`_&`^|?6bUX;h0viGCkFL-P27XlW4T^Kw;YrKfUA*)#I|gGSMOJ z*XGjQf351#up!n=EP?Ttr(+v??T3!mQUpSvZ?ief2jBoo({1>t{Y!W6`X15g`Cy37+=PX z&(C7>C?9w8`Q{3=8IA@SNM_VH` zjIWZFCz(dqz0mSj((^GOv;2D;&2d-UiEZ4=nC$qnVOaow?^8&nA!vL4r~DhA+asPh z?U%{$4{Wde<_SNc=N5t|DvzYu_Uj;4xfW4(t&Y=L)N%vwJhEOLzEygKrbM=V_vuq) zlvTrrF^%xLMmAokdc+SP>e&j$;*M4CXftFj^p|OAW+5Nln`Hj#ZOM)0ZBW&?Fjm(j zj9JGWV=n5s=vB_14;n$g<2UvODNAGGhN_?u*WXwMC)dge-vFn3I2sd9S?z>Ommi|5 zeXN8SLfK1lwDrkXe>M}^j!~(XQ^3(@z>ca&5BSK@J^5AD$3KjLRkQrs6Kcz@4ttgm z7Y$e^D(T=?(b*-PO1#PLq1)}|VHbfWiz02rM2d!=5IEGw8QKwi7hq|mm@>GDNyY+l zLXxZ8f6!@u=qdNq4jTw0RPXFSgQFI*C@;9f$S?Ka!JT2lV zBEHu2n2cUXYPBc=6s_h{aEt~u>nhIFD)ueLv!I6t8n{um@+tEabiS@L44Iuf?aX!z zpHBQw2OHew9~m=Rf)yv$_UYpP&`fu96vc3dqm|508PF4_(H7TU9I@NbH@p;Vv!6gx z1rr>vRt*A4Lpf)vD#GQS$sg!KcQIFM5O*Qc)e59oD}0pzq(siB{iFIR2M#`|t<~|^ z7UD>nmI|euMvjq!8qWik-dM*=%+9r;+n>-jS%bm*;^~*(UOoq?dmaj#uS-%ijyf!Z z5(Ti4)biEolIGnvR)v5{>VGC4JP9!OHzbRZd+q&l=@HLpUy$Qlv0CMsKE?jF`#cCx z_nf$8Fm^xShnLS!O!I||J5et`# zcSL-|z`6UJRmL)*U$s_o$P%Bx6pJS7THM)7XtN@I)YKe&3HH?`lkchD+;0ZGBgBkk zPK9H0{34{~t=geBoBC~B7K2*#3i5mfA(pl@m$o}VsKcuxgpX{DgRdXQRn6INlOwXF z{N^TPcT?{yhzehMU|?em=aOm&yK;!)0|%VnTlCC2>E;7XIQ4bKCQAeXUF*=LGwVE4 zzP9QySF&AeG01I?+rbU`8Kz$8zG9hhWI#BR^PWSj9toVrW;s)XUu~iqi3IwEY}5e7 zRVWg8K}!pTX?TOg#jJtzSI zyQj5mG1uRHxS7BVmaBeai?-&-Prem=;?)CyyVdV!J}VPgs+&tvI_n~`;}4VdniVPD zISK$zpckEus@a|IiO_8+?%Pv~WV{I-)h)|;hpvT;`AA5#KI#u;DFlO)ZuzXQ3UrB~hPk#ex^IB* z<}W|NhDp@Bpr_EVtEyIp?B|wf95~R|dU=YC*Kh z{*2w}FR{&uQt6N=0~ol4f&ZwC3g@9ge`AvIW&Lo5QIgdpQj%DI8#vV_)%4ccB)WMq z?ge>w>Y)BIg^d}i=JXLG!9u01!69@*2GAfUtita)i0-*hAsddr!Dybv@d%8iBy|ri zfKIo^1o|ITU9;bE&5MS_?{|@{4224v)OWoG;^PTy7<2h|gpvNnYg@dQwNfJ6qmEC0 z8hg;}ki)#JU45i#?|7SQ#>B%0f4Ei!bepk#|JXq_OeTYVR>$vl1p5uaU`bk`$iNI_rnAfNGJ$#SJuK$Y4{bZMqPUZ=WD1C(D2P1U(^D(Y2S@^%9h4!DsPi zH#X={!QmMhCy+&gijrJ80$n9NsLG21ngU$I0-9c9^shX&-afyyzk1B8)48VnANhT9 zKh9bDL~9GD$ZWnfLQ(bQInwjn>oWy(mUL4QFa)G(1Z1YB5`;zk2dNDB9CAvF7PP-K z{H}T~@cq^vASC?plL}-9rhptCPVp`PFM-?+0A#9v>3rYC}tgDC)P8qN0G z^gdKsUml^y4|1=xs5so^P0-loqpKDWbzF9k+_EypBL|OwDwYuhTkv2o)}M~hzgUbV zaR0RmA~k{rZS#M@^-=GDgmr}9Tzh(XIe}+yv>Dky0?M{oAPkJ_pn1^F&~09UwxB)I zP?n(CLV)z%kP+B-&VY?C=Hr3$ZGAxwWDronUUtGVp8i2_>u=8BgznJCmDV6ldVCtdEEUVtAWwzzh^@Pti)Ij=G(NBN~*8c+C z2>ma}>nso!4)g{2MFX;Lx7T}T0}f7rHT}PRf=VI*x!)!r4Z|qG(LsKL6X`p?um8*; z1X=$Jj=uer8w%7qK0kx}HpJ!Z#W6(+-F-*H0}VR=)Fyeof_j8XyCL2mhTi^oc;50j zgb7*c&qK}yj(c<_3TrA$O6aF;h)L$yIG&|D|c~FnqTlRxZ7LxO@=TBfgn|1Fdx{pgtZ8}5m#S2 zmpyu)4%Gj_tf=n4CM8F~!CvevKBBIH<)4#=;Zp=q!fp7Df6y)aksCoi94eTOYiAZ9 zRs#95zSb(>povR_Fsj&?SC_9hM-T=k5_xUw8BLVTkkWX&4+h}_f%rYUPZ8+}=zKxO5Jq`Iye5F@-3wgC zGLLEH%$ z7Q@{1m&TO6oa|zZs%qRM$kGr+;ri2$^k29v4b7<(+Qzh2)CF*)meLuJa|WzwR?n_D|WR1<)WCf}>g=^|AP2=%e0w;)%lFtu>mnSD@JQfl0})r0 z41G=-&e=@p9Q?TEPU!>V<5wufMRws-y7Yqv`)$1eJir>qD!Mwa1hvfFe|?s5UO=S##$xSkS>ekninS-ol0R8%hF z{P>i}+{v*zCh$)h_!UpIDH)L08(=vpXaY?o@@-A^Jj8aI^`C`e&WY=9<{)+cj79=c zbwW9@5YRc5%AZ3_bBsTPwrIyYebFVCbz9W-PUFqi)sSCCWqg8($q0*BFK-RF!@B8}NIa0VzQoI|BiXjhjKce%)K*B7?!+ z@nxdsPp&OghvqrERd(yTTI(1U2tI1vL=Q5?a@iuhG3JBFKnyFKYVRBQEi%$`JykG( zITo{TxD?$88?SCaO2f-&;=6()H}6<^?(DrH(IvaCFY&jKec#3>V(i#TID_ z@-|xB+YJ2*gFoAY<9xHEy154*(BSg_#NFyXfdYa2ois*RR=#mWylJVXnkJ@lO$uO` ztTb$%y4^s%iWMfu30&{5g-Hp=7$Tg=ak(Xs)C%LHu83Rew}O8NEq59MFLo;)X-N*cGrkEZYR z-h;J-);4(UDxnhHe@+OMNLzZ|ibP=GrEoSck;weaiD1bJijILt3@y%>#X^9dwHc*9 zZ#3%9d3M=Pkm2^d1jQYL7-bgImI}ly1uIvA(m^10zt{nhCfG;_pJuoFT?dGFQtR)W zTu_m}V=WtvwTiV!d3V=FOif)pz7z9nBU5qucK=$Yy&s>@O_jl0$wg@O<7xeMH0dx* z3|uxg=-Y7Jo4>|Hw;@zZI^!iNFDH{F8RKg4-F`+S{w95yiIYy(5)o8hv4A;hK$N{X zfP49kHdZR@?rTJ=q1q_s9SsaruBF_(Y@Ars#Ue*>4PhRpRo}6=5Ti(1zne$-;JRoo z^W+3SxPALg>m5}6Nl3WKHKx6A(?1-_*04?Q7YcUsyfN>C^o{g`^2fimg)9-5R6((@ z!m)BmAC$VAx$lN3#X!_(rL(aMel$}}FG$bGXde>u%be8@hVsVV=Mi9Q+%8~`ei}&z zH)hVj{GIx`X-wpo{ExJC2kJ-pI}k}b7aMIcQ=&{AHSws-J&}CA-dozcD7_PGdEKN! z78_4cQm%oYij+5{?nM^0W>le@o0dVAf&9H-YDeMvO9yaodSDA`nVHjSM?5#Xp`}(G zd_kExcTENIt^A@+rg8wa6hHlL5*)!HJIH7(x`Zzm!Jzy@|3qa>)V)R=MK}47}Nbfxx zJ)v=a7`6E)3s=qENK{7YQ_@EW&NDHZ0|Tb9o%m!XxgqH{N;P0+1&4YtcXdI)AdBOu z-pqHv_3vJqP6N|}6yEnU%E>A5A)?>&KVn|&2g&9FM&G7k_INPH#U@2JhR2;-{a3<> z!E{azxY3kZjTaT?rm;RWpwCDjk&fy->>A4o0e>4bX za<19QLk57-6t~8|mWOB7P0m^vqMV`|v14g}JO=5uZY6h(KGprh z`rWlr($!1s$aVmrP@i<6AVCmRwY=R;PI8og zanA;~G^^zEVifu3?oZ-N%Z1iRLH9A94pjUt%}?Hs>!XVZaO|DqVn&?DLf4rzp_T~j zg;Yq!VVnVy2N`3B;XrqLTlwgE8$_G#)s@%URzIL(1sO61ZKJddtWV=Fx31!{*pU`i z)E|kt8Z~(2B_e_;Hhi;JmlrsyA%ZgLPm*R|R2|`yF=J7>VK>9G`(l zx6JnGylt5B{n-=+zMkpw24~h)C$72%TbKuqVR?~4Un4CfwirV3|zZcr}+S_+dY6dLosAHGFLc3SJygenP$9uq1x0lr`1Yf zEmkBXA1N}tMDapYWW}ZoQSMK-+m$4On|VZiT(#x&a(?t+!eazE6L{i}K`zU8Nghv< zx)px2=*+UG0$Oag#%Fq7K7!<8Ez^Ned;@u2%QU8AS)$W%SyJnJe;=dftSizFJen8Ch<$-z7z-e? zPmWuv(n>nFlpKD4b5Du7u;6u?y&up?gIXHbvWXMlG0%Gh+u>GJzTZBB=mN8wop0&Jr#kMrLsIcrAD_)M#xfWE_+Jcv;aSl&$}LxD&3e zCq+hYrB>(uoqK8JnLv};){*WAyHyNa8j{7w7qiEe;hZ9W@VAArRkY| z5M?p9N;X$ISaq6})AFu877ToLxlkXU)lF~)!*4xP3?#*Oj$OLdj8IVAri;45=AQka zL*g}rJM?$bS_1JH-G+tJt*mbqKuxMveLz zk1a5uJ7kX{!ICuM>_8GETK9RJ({>Ql^XK$gQ0Y~T0%)F?HhpcgNprmLFg|k z*vPK<#SJr2 zShd^Do9=e{=)r4Z$%25l;oF!3Q-o`4>s7JFHQ1mwISL0!`OIo8I2rHJ>{7(cXvEC> zs1O3xYI%&FO`jctQ5bKAQ^v%~$V;~1rCIwoJkgdzwT4S~bM%Y{ZEUKzaW3b%7aHpz z(q$tl$2SI z)7iu8Yvztx?-sq~ixD+v)xWJ>yh^%!OhF3tt2UJ?!>8Tmon}?3r1|ft%&8<@4m2c& z1LBtSibCn3JpzCTU(laFHQ0H=8xrYl8d((d4sYIc;2%MmGFW1C1QB~rzGTGG{W+4E zSeLBV^CV^|m2NK*xXchR@7h@+X-)&4?mlub!Tq z5@tt9RveOPni(w#Y!9g4Y-Plfi)Se9uY##wFNrG4sWpV*|D679F>$KIp3SyfiPNMu zj&abhPOq5Oyd&eN_9%mYY4#35Jkd&%H&@zr+3hq|rG85)DX4Qa7p1yz4n1K>-xM!s z>@Ol+L74@3SShi7I<+}!$3ouLKpUnqMc$keL`atU#bJLL> z@_%1Bh22%rig!?tDZYDKWiC_;z-NaNf;lwaZfqbdaHI35=n&rKnh=rGB;@$z*mE=C zV%Kv-tmrqo%pl?7Ehgwq&;MKZZsJ{hB273ecq9>^-+?rOY9DRq^iKPshw83c4(r6* zGMQ1)>dN0Gq(mC7XJt*22y4HB=N-k7%NXvLx)rI^hTk87t$n4QO-bwh}_YXv#vC5x$mGlCa zz)*6MQF~bP!Pz;65_$Sn#nE^W#LuHM@G%OcLA@~D20o41Kc0nt{|F8&jJ`oRVVd}C zzLDdb(VS9AO{QT#61$y!x`DH1WaVp7*TNg!DbB~O1nI0r3z@E!SUKD~1aGG-9E#Jo zoT5+`=iYM}?u@PEA6#TPBmYVRol9`^?TmQ{A~P-RN&L5y#{a7J1i|Y&iL%J}*~Shu zRvF*rJ#(LoW9{JnQDDiPu8>%j$V)~#$9zb+LPj3{v;SSS7{pvNAQfIV==4*){S?#y zZp$Idi!%6#RAL7@iv`;63Jc}nlV4}G-bC(%%3=VeYEkiw)PpRus(H!wJ*$S6r zm&4E>b8kIm98KuP@S4U*e^~d2RXtrX#h{Ezk|X?F(>Q^vJ|os{RF~|l?4Uo8t!qSP zwOknCFM$U(^U!D=dhYQ!>O9lNv7Qe`nf^v0JYh4t5)rY~kR9VRP0N1oA*?st5PAPC#ufSXRdKxGusP zU(eWYHR!{y)}&|FIoH7W)|(cv`vo3zjV!;Rqh!M#uYx6&uYO&qt5Xs##iGP!YKDZQ zKg)U*fr7(-7u^su>}}F;B|9e>;hLs#ee}=zcZ%6lUzVh&E$HyN03Re^M9OO9kT-wrv6j#y|x)r!;O8Q^OaUWoa$D5uCf+J)bEE;-Eu}}y~hX9 zn2tp$=Lq#>KjDkX@}xNs%d;l6@?k0Nzfb5%f}`_xc=mH)z^F<&wFtgvae-Nl$oYl! z;p(=GSHHP!k~A$jH|#-xse7iYFgt0fm6BJ%mh5iwy8m-lPxwx_+>H!38~ch&WVyt+ zVP3NpXl%v6=>w@b!kc5;Fpl}T691Pr^hF8=hAcyfYvb1}lY29ON-{z5ihg;*M{;OX znJIaAGe4YAwAq_N)VABqHay95;dtjI8S{jNNmSd2K$Ph1)sGM9rfnx1>4DS#uSpbvMy|~xsk8bx-9c0p3lk2*P#VoTf<($6Dvik zion2}B-8BeRhAU^%UJO9xgsUY9AeJy!4#=l6Z)S{oJ_Ld?YqoFmbkt22KnOo^N20d zyDf`u$KdNns&H=P^RF0#)$-uDtY$~9;G7kn?hkam65ic8DQe8rehR$wOVK7% zl3i$YFAZkgo)MtzT~79sXLCsNwtI33lf^+9zy7bO^Gh>eIoz^fJ+*m@cAEUaj_TR7 z#n)R9HILWZex1wO#`eP`&ai4W$WjHy8xQpHOd-&T-4_D!&v_sT&Tpm96l#@WFBdsP3&ig z_S0;s1#J?bN$O@-yv5vot|@W4sG^^>cq)Q_$b+a0hDu54$HYhV3q~VwF_*;&t@4e3 zj+iPOajk8ul~`qccz+!P`$hpp$~s{nd_}S~aKSb-x*I)0P6>zpTH&{}-*!}%Pws@^ zbfL}qC$;L^Tg&Jliu2WOkBfEo>Z4e8s^pT1r^;O5=!hbG59x^vDVU%njepFxv(q1F zpQ56H!Bf{$i&~|~ zpA-SS4X83JS1k@iRXzMbA8u|ZOE?knj?vFg;^@*3Us+*^#H$}hKjNLDe5${Yvv*Ja z>d%6uE;NF2o8MNjj#kg`xeTi8Nopsk%~mN%Q(&0W?^h5cO|1R9Vioy$=>+c~>t0iQ ze6X|y=Xw*WIxM~487$x--v(*~3*KhXzwZQ0IsCC9v2mwom4P1hWvr9DGGj+Y!m}ap z!S-v0ix{h*7}|JQj(8+-RfiNl!@$gCZXS*{UYP|+Rok*O_Dk3m=x;a2^K@3?X}ryd zCZV{Qmfv8i(s;qc&aJT@n4n%;0=1=pE8tmv+jjd5*rtu&Bh!gSILU3>ENOyXC;16z zy42?X_|00XU9@7&m?W_*PUpbWabd2uc~ap)My=G)v2=4| z0*%=fs&Quf`S3q%hNac!+=puPSw7#2zQM-vE<1CK&n&{r1S2FwtSiFnaE^qUo_CDR&n*p-1Odlh~nr@Vz#tpYrh?y#xCRH0cSlkaT@atNg$dIKmF@M!; zX*Hmi21NKsHeN|l8VH82*o|}ngIC=9Rq$VPWhNBOr^Y6gjXiiR4EYr$!tbo)r@f)v=(ghxM8NfA zEE2=JTiv+E=-S^xmeO=xtsuVhYx1O;Nb6Umqr&x_1zF17;{LAgiWoGYYI38s;*mLH z!{Qb*aod2(%j(jVTXrC6kEgO^aT`17=$RdA@ovp-pHjYD;6_Qt8YgB_i5B@gc^(ua)0GBP?R;qh!^A2yTe|hN zipvl()0bR2%5&AXfu{?Y5+Rt`x~tS4BQ;};7% z+;f2UYNd_0s^!-~L-svN#4QcmeCRFcik*xES>-|E=fq-GESyOz=91IrjivQ)V~UoE z1h|X=Atn|pKT7#)T-ukye#b`hKvO!u6b}~=1shN1$wO`Z7EK5G*G)l%{l~3SHzu*p} zNNH&i#aM;HT>Prl#X=R4X^DGPfgTleAkkwZVq%3R{8^Bel;8)1@pR`aixTQK9}O+_r25*D!n724bh;GkuAlt%e*MHI~aodwHF_HP0x+b8DmH>lgF_D3d&=nT8ANGonu19xry*l7hD>hY;>g(e*C^SgEyn3&AA0h z>@|H!QZB^yFFag4Mjz1gki|N@(HAuVNP> zuPMR-FT`&jzQH>cI%Zzxc(g#o>C$15OwnT_^@p8h58N{|S-3%;lIWAnAJsTQkHb?l z$LbwMjjO^1!6pg*ef)gh5L zGeO(l42Wq4R@VYUn8#il%}4pp_ad=)AuR0qa@B-|RM7xo^ARev+qC3=7!@YV+0 z&wBLsop|0|SNAOtC)-cntz020%6eYd1NSar9dCjZjgeT_CUM2~iF|~i%PuYtV!7gb z%q7Rm$#otxt;&h$RlSkE0FVtXVdi4a$l%lv}A;Syl|f4~>k)SE?cbW|o54yOM@ zU)Z>q+5d~auybUL>%cD%_ocy zG!zl=lTa(5p{Bl=^q*1&I#AFUy|a^CGV9wegKVEosN*m(lO?e7C8p>uA?V~O3mG|Z z=gMRmkP`L{gccD*W-PGSRERL(I}GU^1M!d^W**psXg_GXU;rjmOt11awTZ6ZdVH)r z=R5nCH^lV-1c)IvHr3A735XbaKOSsQ0cg8o78+Q{77COb=ywxCNr=fK0rC)yHaC#h8kl>6hDm}z#_g*WkY2&-p7D>rpK34> zpV{yseTFq0M~~g2001n{Zf23%FlrTncM(J*?#H)|I$?o=mX(I4Fz8& z`4Mj!`K3BM023x)^M24l(gnIm*!k28GF>~>lY6;)0Xdwf=ld!0<=0c7y*gAZnDM@WK*nvxdXxML)ON=nIqfqiNX0w9s^YmmnR7n;u!-90v*jW zSZg!5COp4@7m*qlM)j$LbGUOEn_IU9AogCp)jnJ~i4%6BFh-_Z!OPO``@2bwJ0%lm zrjFb)j`l0-n0A_ZKtK#X(N9fDh22NIwq_>ab-te(X7s%s8JWy|+6EfLNp#wAH{ws0 zTJP_|sCEd@T!imGeJ!84it2`$)NpktOGmxSe$n;)3R;}ZSbjB6c)7PKQ%!vatOv*D z8rjb)k|)SPASwBa_N2`Q2B{C5>`=vZoHsQ45j0n)2lbp<p3ila+69$zAmamYgiAm_m+HLl!bhp|K@~4S&8G|$Ye_v%bbn|Ci zH1vLd@n$EPhjUloKk!Hu+VakI#O|$HcUsG!^@|=v9j#Iyz57^h;hlaUOeS=x%DgmA ztU-AVWWeWe!BmJF0wWj|_+EoMPjT~LIrpvhl9Xs^QroRT4~K`fW4UJqU_BGxt(!-f5PA6XMMN?+-P`r=mZpg2i%KdL58tqv!&k4`< z-GJxiIDqhVY%^6LGZ)=ceByPLj$}RijUl?@6&dr}zCFiH%Z*9>cBMZfgx2nlc>!XOri$$C?N>HpT8$U0~*HAKw8_%lwlGU7X zXoHzL@K5HGM2Ee>k7;Df>HB5vLp7iDG1Li_JGq!(H{A5T5bj?FEKlXxLvf|p{RFq# zkgpfRuWe#?TT@1D^j?k;(r0G)%utD-_#jTm|F``0^jrtSxSTG7*h|q9*=lJP z4jt?*$U-9Pard-D0D7)1Dslpg<{CHCwSh6Vr=2U#$?0$}&@5tBF<8}LF7?}&X{>f< zb9`u#Io}V}a2TeZGWG8K7!|$N=R32=o=1rOQT;D@7xTCbJJ@f+r4E($CiI*L z9u37q8ElAlEpIsUp8^+3g96S2@=9eopf5aKD@o2$Cq{Y*jklTu3V&-WcBog{h;(C) zOn6oI)zXzB|BXJrFU);m-fAqkM!LVMnnZEQ5QJjt)V8ypVf|FG7%=($Pg(n2Gy+a;qhRV?46TN6>7q0Vqo0!n>o=7EPtqe-f?H-L1qb znry8;ZYhb*g6+e*TIuo%V8(feZix~iFTLqzp?r-%EL=D)?7EL;AamTdUKS}k@lnWn zZayChWu-|s+z6s_4_kf8bKzC@^5a^+)&EGx5oKaLRa=%h!d%~0m{bE#uf7T@=W{f) z)%u7g2QJ00^rSELbk1ayDu-tu=?Ul?Yp*nXqZ8(<*NqS6COHPdOsF7tb8sam%lOID zrCn$|*OB@N!?oD7W%?02>aTi(x^1rrDTt8rSMy%6*URrS>0-~Qn;8ovOsLdTd@5`b?Nz(f;bBO^FW6t&9_Bd$ z6&$a-Kur}U)Wi^Fnm9x{y>Fq6?tkT6U|0O##4f1%5(Zk>>^uw z8Nb6&;?*hF3T&rAr;Gg+fh3-*6yMBZP?gnFuYktPueUjoT31xrAVez7qOMQt6adrU zyz~*5WNSG-T0B)B`mnaf`dHRmp8ZEC!J~WThH;}6k0uf{+FC&Pc)8fYupjI1cQP#L z%V#sw+^&dt8`G8U`%#6M426IkSO^?srJw7qOL`meOk|uyWz9Z?ed^pkE#XJU?VQkF zBn_lVH68KkCR8(|Vi@dVTJ*XE<^WJ$u`of=+`HhV%BTWEt!6&0-Q^~gA2Dp3v`xJt z)JlxTF!!&)(4GR^r}O*T`}P#}BcGSzjGjTX;`rgriL0Lt__3q!-@-59#n;ZxZDt=4 zy}-kQ%TzQzvVzF5R4MpcgW}0@Tz7;j;4f0SeQaG;XvUIQ>x+#-PXf2D20%iy#|^&0 zgY?l)w8S(qjHc+$#422(WxVi})?b(|oD@Byiy-X271(_Dx#m&6VY0 zyRzsx0C=A_O;|q~S1xyWuZ*#0|-XexoG}FSgAil&-*m3erphI0txL zlGAFqk6u)q<~={wEtMXn?>5f4!^MOSO^bi%J4xAhs4O<@sRZ`wfR}%3ec#;pS#_N& zinXkxx{CQ^Zs#{@{+j;0@FE7q1~tgKut~Blj91Z1_xzxHVJ3otN#c$lkotN5!lrtY zR5ZQeoNaFPhn0W`?0Oy!=SPPy-UN5et&K@tQj@9`7bIs}^Q=g{V`+rgrmBO;1|Jkp zQQ|mht6M@s7>mg-K*{wAwtm8wjVZje>ze-{Q|kj4FX;HklJA3e`UaMp>iW;AvG>G5 zAO-5zHI@~!mPObGMMh;E14#SSyJmTZcrTaDrif{AG2%`@@j0jG$U?_$_#wMHlRSff zOHyH%IRWM&X#ymz+VeSqV;!NVM(!8Rvi+NBb8TFnzAbKCx({ztH@jfxZNXX~d~eM> zNnfH3N=+h>ea;R0F*3tPA8!5a+I!ZG`Pc4){W7ufh&Uy-lGyF8xL!hdA9}lM&5D}DlaV41ut-B4;0^Ot1$q-?zrGm0&joe=~t30|DX_xVy1K{-VVLK0| z;y($BQP?e724>`_Q%BFnWR~d|CksxnO`dmCg`=J-xHY*J8pehRde)Y1D2u5R;F=@8W(mh1jRLAa8DTu1+ECF^-Anr^LNrz-VTa_zbQA&E@M zwN{Y}d?QU8VIhmgE_V8+>Up|_V34bF#QOk>Im}g1W>n^ zm5Mtvy_#^VdVx%V_eDK1w(DTZ@xBDca``Qg>8q1}Qp&MWUgmumGN6B=@e3duIsN=7 z^Hs|v+kK&6Be0oumK)8S7{(o~+^m)*Ed+Jwc|i2qL=$j9AhY3U;%s46lsKBSL&Z97 zLPGQ_9~V*jQQ9fVl%Kb?koChA709F7rt5hcH5*CU9TT<|3V3WsAt_L})zOeXiE5m< zxnt<=phDSCkT9=d(Bn9@rx(4r>D0mxiT)e5u)L0*<>Nt2w&<)7rAquXbZM41=zG3y zlZt(-^jGEuiPMTfac+_f8?NY%b8}4tmT0Qv#7pUPDPe#76*#%M-9(2S7x4fWrI4|wSmmb@$fa;r2 z$G+b}&&@m%CP&gb3=E5n0GZulO|^|nt;dr{k%E~g?dp)@%_(&?6}8^KJbcWOoNbNF z&V#ZmOUY##`Dr(2BG-voH~&!gllf!hpgANPxN4^rF~hz*)?R<6eemm*d5F!@r?Uoe z+(64k(NBBLie>2ZHMkVW?bXp%yt(7CF<4Q0C0*e;uZiq!G9Y^A0asz}Aq1nQhtwrK zlI+}L5Z^1!M|JI*;6yPz{cos>`EdB3bL<`vm0|rxk_f`tv)_zd`5LMuW49b%PHLdo z;f-;|X*YNz=~`#3QWqXv}C@p9lS{8L7Y)miQFduitYN zr0kMhvqSGp?z_-qfGJuz70lNV?NowpbT5F*PXA;zmg6k~$04SMFOPSYJf>DOvPzPeQbkP^4;@KJJM#ErKy;wzB> z;(RS4P421ZPU5ZBtvkiqJWIhS%E02~wmL5nVH|LBpJoxHOMbBljWu~jYTx{KVn>%H zggNNae?Ymq%f{(OCGp(z_K`-isJGm!)tW-~b^M6E*SXu|s}u`&1|@B5G2X{U>FSd#qn4swhJ*0w-? z-1hZE#88fjrdS6OCWM!eD+`J|b)&fO-{NZZeIBGv0AdI0iobh9E{x+IopEtCFR{;{ zqxA29)>4!mJf<#hoMKs$fY7%v2jPxI+zM?e*kU{u-Z`eDHLxsI1gQ%9z-%Og$FgVz zz7V{o2*@u;%S36-g=rlS%gsc}@ zpZ6EwjGO3pRZ*x$qppN6;>sWIA(eL*`y4kUvU67_621zx%-wph8`|gP zbjTC;N};PY(-P~ib@A)XW7-P8mw~- zuxXCpE3bl8O8djm<=xdJy|#DTZ(T=QyV*~|0KEFTVqn;8%LMCKAWOz84WV-+p9V29 zbHV5a_dqGwbXS}?^MBYnhxR}lCQ8S)la4!1$LZL%&5mvJiEZ1qZQJPBcG9ut{bn