From 3784a6278ce441e516f12a929f4a4e4fccbd4708 Mon Sep 17 00:00:00 2001 From: Morten Hjorth-Jensen Date: Fri, 2 Feb 2024 07:04:58 +0100 Subject: [PATCH] update week3 --- doc/pub/week3/html/._week3-bs000.html | 6 +- doc/pub/week3/html/._week3-bs001.html | 6 +- doc/pub/week3/html/._week3-bs002.html | 6 +- doc/pub/week3/html/._week3-bs003.html | 6 +- doc/pub/week3/html/._week3-bs004.html | 6 +- doc/pub/week3/html/._week3-bs005.html | 6 +- doc/pub/week3/html/._week3-bs006.html | 6 +- doc/pub/week3/html/._week3-bs007.html | 14 +- doc/pub/week3/html/._week3-bs008.html | 17 +- doc/pub/week3/html/._week3-bs009.html | 12 +- doc/pub/week3/html/._week3-bs010.html | 14 +- doc/pub/week3/html/._week3-bs011.html | 14 +- doc/pub/week3/html/._week3-bs012.html | 12 +- doc/pub/week3/html/._week3-bs013.html | 12 +- doc/pub/week3/html/._week3-bs014.html | 12 +- doc/pub/week3/html/._week3-bs015.html | 12 +- doc/pub/week3/html/._week3-bs016.html | 13 +- doc/pub/week3/html/._week3-bs017.html | 11 +- doc/pub/week3/html/._week3-bs018.html | 12 +- doc/pub/week3/html/._week3-bs019.html | 13 +- doc/pub/week3/html/._week3-bs020.html | 12 +- doc/pub/week3/html/._week3-bs021.html | 12 +- doc/pub/week3/html/._week3-bs022.html | 32 +- doc/pub/week3/html/._week3-bs023.html | 44 +- doc/pub/week3/html/._week3-bs024.html | 34 +- doc/pub/week3/html/._week3-bs025.html | 20 +- doc/pub/week3/html/._week3-bs026.html | 13 +- doc/pub/week3/html/._week3-bs027.html | 13 +- doc/pub/week3/html/._week3-bs028.html | 12 +- doc/pub/week3/html/._week3-bs029.html | 12 +- doc/pub/week3/html/._week3-bs030.html | 12 +- doc/pub/week3/html/._week3-bs031.html | 13 +- doc/pub/week3/html/._week3-bs032.html | 12 +- doc/pub/week3/html/._week3-bs033.html | 12 +- doc/pub/week3/html/._week3-bs034.html | 12 +- doc/pub/week3/html/._week3-bs035.html | 13 +- doc/pub/week3/html/._week3-bs036.html | 12 +- doc/pub/week3/html/._week3-bs037.html | 13 +- doc/pub/week3/html/._week3-bs038.html | 12 +- doc/pub/week3/html/._week3-bs039.html | 6 +- doc/pub/week3/html/._week3-bs040.html | 6 +- doc/pub/week3/html/._week3-bs041.html | 6 +- doc/pub/week3/html/._week3-bs042.html | 6 +- doc/pub/week3/html/._week3-bs043.html | 6 +- doc/pub/week3/html/._week3-bs044.html | 6 +- doc/pub/week3/html/._week3-bs045.html | 6 +- doc/pub/week3/html/._week3-bs046.html | 6 +- doc/pub/week3/html/._week3-bs047.html | 6 +- doc/pub/week3/html/._week3-bs048.html | 6 +- doc/pub/week3/html/week3-bs.html | 6 +- doc/pub/week3/html/week3-reveal.html | 248 +++------ doc/pub/week3/html/week3-solarized.html | 264 +++------ doc/pub/week3/html/week3.html | 264 +++------ .../Results/FigureFiles/QdotImportance.png | Bin 67363 -> 66600 bytes .../VMCQdotImportance/VMCQdotImportance.dat | 200 +++---- doc/pub/week3/ipynb/ipynb-week3-src.tar.gz | Bin 191 -> 191 bytes doc/pub/week3/ipynb/week3.ipynb | 522 ++++++++++-------- doc/pub/week3/pdf/week3-beamer.pdf | Bin 361741 -> 362674 bytes doc/pub/week3/pdf/week3.pdf | Bin 425122 -> 424755 bytes doc/src/week3/week3.do.txt | 222 ++++---- 60 files changed, 947 insertions(+), 1364 deletions(-) diff --git a/doc/pub/week3/html/._week3-bs000.html b/doc/pub/week3/html/._week3-bs000.html index ba242581..df1a8285 100644 --- a/doc/pub/week3/html/._week3-bs000.html +++ b/doc/pub/week3/html/._week3-bs000.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs001.html b/doc/pub/week3/html/._week3-bs001.html index b065dd83..cf1a12bd 100644 --- a/doc/pub/week3/html/._week3-bs001.html +++ b/doc/pub/week3/html/._week3-bs001.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs002.html b/doc/pub/week3/html/._week3-bs002.html index 507f2c89..635151c5 100644 --- a/doc/pub/week3/html/._week3-bs002.html +++ b/doc/pub/week3/html/._week3-bs002.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs003.html b/doc/pub/week3/html/._week3-bs003.html index 97975656..36da776d 100644 --- a/doc/pub/week3/html/._week3-bs003.html +++ b/doc/pub/week3/html/._week3-bs003.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs004.html b/doc/pub/week3/html/._week3-bs004.html index 9a11a696..6320ff79 100644 --- a/doc/pub/week3/html/._week3-bs004.html +++ b/doc/pub/week3/html/._week3-bs004.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs005.html b/doc/pub/week3/html/._week3-bs005.html index 81571ba2..5fb4ad27 100644 --- a/doc/pub/week3/html/._week3-bs005.html +++ b/doc/pub/week3/html/._week3-bs005.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs006.html b/doc/pub/week3/html/._week3-bs006.html index 5eb2a99d..fb3aec38 100644 --- a/doc/pub/week3/html/._week3-bs006.html +++ b/doc/pub/week3/html/._week3-bs006.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs007.html b/doc/pub/week3/html/._week3-bs007.html index 9a701576..e2928882 100644 --- a/doc/pub/week3/html/._week3-bs007.html +++ b/doc/pub/week3/html/._week3-bs007.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -275,7 +275,13 @@

    Code example for the interacting case with importance sampling

    -

    We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters \( \alpha \) and \( \beta \). After the set up of files

    +Note: this is best seen using the Jupyter-notebook. + +

    We are now ready to implement importance sampling. This is done here +for the two-electron case with the Coulomb interaction, as in the +previous example. We have two variational parameters \( \alpha \) and +\( \beta \). After the set up of files +

    diff --git a/doc/pub/week3/html/._week3-bs008.html b/doc/pub/week3/html/._week3-bs008.html index 894753bd..3f9b64ab 100644 --- a/doc/pub/week3/html/._week3-bs008.html +++ b/doc/pub/week3/html/._week3-bs008.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -273,11 +273,9 @@

     

     

     

    -

    Importance sampling, program elements

    -
    -
    - -

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +

    Importance sampling, programming elements

    + +

    The general derivative formula of the Jastrow factor (or the ansatz for the correlated part of the wave function) is (the subscript \( C \) stands for Correlation)

    $$ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} @@ -295,9 +293,6 @@

    Importance sampling

    the gradient needed for the quantum force and local energy is easy to compute. The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form.

    -

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs009.html b/doc/pub/week3/html/._week3-bs009.html index ee9ce811..a336c251 100644 --- a/doc/pub/week3/html/._week3-bs009.html +++ b/doc/pub/week3/html/._week3-bs009.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, program elements

    -
    -
    - +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    $$ R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = @@ -291,8 +289,6 @@

    Importance sampling $$ \frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ -

    -

    diff --git a/doc/pub/week3/html/._week3-bs010.html b/doc/pub/week3/html/._week3-bs010.html index 1d71147f..b6fced42 100644 --- a/doc/pub/week3/html/._week3-bs010.html +++ b/doc/pub/week3/html/._week3-bs010.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,10 +274,8 @@

    Importance sampling

    -
    -
    - -

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    + +

    The expectation value of the kinetic energy expressed in scaled units for particle \( i \) is

    $$ \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, $$ @@ -285,8 +283,6 @@

    Importance sampling

    $$ \hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. $$ -
    -

    diff --git a/doc/pub/week3/html/._week3-bs011.html b/doc/pub/week3/html/._week3-bs011.html index 923163f7..72ab5c15 100644 --- a/doc/pub/week3/html/._week3-bs011.html +++ b/doc/pub/week3/html/._week3-bs011.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,17 +274,13 @@

    Importance sampling

    -
    -
    - +

    The second derivative which enters the definition of the local energy is

    $$ \frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ -

    We discuss here how to calculate these quantities in an optimal way,

    -
    -
    +

    We discuss here how to calculate these quantities in an optimal way.

    diff --git a/doc/pub/week3/html/._week3-bs012.html b/doc/pub/week3/html/._week3-bs012.html index 3a486bff..d4e6aad5 100644 --- a/doc/pub/week3/html/._week3-bs012.html +++ b/doc/pub/week3/html/._week3-bs012.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    We have defined the correlated function as

    $$ \Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), @@ -291,8 +289,6 @@

    Importance sampling

    $$ \Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. $$ -
    -

    diff --git a/doc/pub/week3/html/._week3-bs013.html b/doc/pub/week3/html/._week3-bs013.html index 871395ce..594e7ece 100644 --- a/doc/pub/week3/html/._week3-bs013.html +++ b/doc/pub/week3/html/._week3-bs013.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    $$ \mathbf{r} \equiv \begin{pmatrix} @@ -291,8 +289,6 @@

    Importance sampling

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs014.html b/doc/pub/week3/html/._week3-bs014.html index 4a53b98f..0df62d6b 100644 --- a/doc/pub/week3/html/._week3-bs014.html +++ b/doc/pub/week3/html/._week3-bs014.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    We have that the ratio between Jastrow factors \( R_C \) is given by

    $$ R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = @@ -297,8 +295,6 @@

    Importance sampling

    + \sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) $$ -
    -

    diff --git a/doc/pub/week3/html/._week3-bs015.html b/doc/pub/week3/html/._week3-bs015.html index 9b095f02..b30b46f8 100644 --- a/doc/pub/week3/html/._week3-bs015.html +++ b/doc/pub/week3/html/._week3-bs015.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    One needs to develop a special algorithm that runs only through the elements of the upper triangular matrix \( \mathbf{g} \) and have \( k \) as an index. @@ -288,8 +286,6 @@

    Importance sampling

    $$

    for all dimensions and with \( i \) running over all particles.

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs016.html b/doc/pub/week3/html/._week3-bs016.html index 37ff6430..555af7cf 100644 --- a/doc/pub/week3/html/._week3-bs016.html +++ b/doc/pub/week3/html/._week3-bs016.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    $$ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = @@ -294,9 +292,6 @@

    Importance sampling

    $$

    with both expressions scaling as \( \mathcal{O}(N) \).

    -
    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs017.html b/doc/pub/week3/html/._week3-bs017.html index f8efa40e..5b172d39 100644 --- a/doc/pub/week3/html/._week3-bs017.html +++ b/doc/pub/week3/html/._week3-bs017.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,6 @@

    Importance sampling

    -
    -
    -

    Using the identity

    $$ @@ -296,8 +293,6 @@

    Importance sampling

    \sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} -\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. $$ -
    -

    diff --git a/doc/pub/week3/html/._week3-bs018.html b/doc/pub/week3/html/._week3-bs018.html index d218b689..87a5e202 100644 --- a/doc/pub/week3/html/._week3-bs018.html +++ b/doc/pub/week3/html/._week3-bs018.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    $$ \frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, @@ -288,8 +286,6 @@

    Importance sampling

    \sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} -\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. $$ -
    -

    diff --git a/doc/pub/week3/html/._week3-bs019.html b/doc/pub/week3/html/._week3-bs019.html index 58b12125..c4a4ba08 100644 --- a/doc/pub/week3/html/._week3-bs019.html +++ b/doc/pub/week3/html/._week3-bs019.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    $$ \frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. @@ -295,9 +293,6 @@

    Importance sampling

    $$

    is the relative distance.

    -
    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs020.html b/doc/pub/week3/html/._week3-bs020.html index e4c8d802..2a25777f 100644 --- a/doc/pub/week3/html/._week3-bs020.html +++ b/doc/pub/week3/html/._week3-bs020.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    $$ \left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ @@ -288,8 +286,6 @@

    Importance sampling

    \sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} \right)^2 $$ -
    -

    diff --git a/doc/pub/week3/html/._week3-bs021.html b/doc/pub/week3/html/._week3-bs021.html index 7a53d2c6..bc64cb8f 100644 --- a/doc/pub/week3/html/._week3-bs021.html +++ b/doc/pub/week3/html/._week3-bs021.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling

    -
    -
    - +

    But we have a simple form for the function, namely

    $$ \Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, @@ -290,8 +288,6 @@

    Importance sampling

    \sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ \sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) $$ -
    -

    diff --git a/doc/pub/week3/html/._week3-bs022.html b/doc/pub/week3/html/._week3-bs022.html index 3fa3e00f..41c01c75 100644 --- a/doc/pub/week3/html/._week3-bs022.html +++ b/doc/pub/week3/html/._week3-bs022.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,26 +274,20 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - -

    A stochastic process is simply a function of two variables, one is the time, -the other is a stochastic variable \( X \), defined by specifying + +

    A stochastic process is simply a function of two variables, one is the +time, the other is a stochastic variable \( X \), defined by specifying

    -
      + +
      1. the set \( \left\{x\right\} \) of possible values for \( X \);
      2. the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
      3. -
    -

    The set of values \( \left\{x\right\} \) for \( X \) -may be discrete, or continuous. If the set of -values is continuous, then \( w_X (x) \) is a probability density so that -\( w_X (x)dx \) -is the probability that one finds the stochastic variable \( X \) to have values -in the range \( [x, x + dx] \) . + +

    The set of values \( \left\{x\right\} \) for \( X \) may be discrete, or +continuous. If the set of values is continuous, then \( w_X (x) \) is a +probability density so that \( w_X (x)dx \) is the probability that one +finds the stochastic variable \( X \) to have values in the range \( [x, x +dx] \) .

    -
    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs023.html b/doc/pub/week3/html/._week3-bs023.html index a21e5fab..0ad469bd 100644 --- a/doc/pub/week3/html/._week3-bs023.html +++ b/doc/pub/week3/html/._week3-bs023.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,34 +274,28 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - -

    An arbitrary number of other stochastic variables may be derived from -\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic -variable. The mapping may also be time-dependent, that is, the mapping -depends on an additional variable \( t \) -

    -$$ - Y_X (t) = f (X, t) . -$$ -

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, -a stochastic process. A stochastic process is a function of two variables, -one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the -possible values of \( X \) then +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a +stochastic variable. The mapping may also be time-dependent, that is, +the mapping depends on an additional variable \( t \)

    -$$ - y(t) = f (x, t), +$$ Y_X (t) = f(X, t). $$ -

    is a function of \( t \), called a sample function or realization of the process. -In physics one considers the stochastic process to be an ensemble of such -sample functions. +

    The quantity \( Y_X (t) \) is called a random function, +or, since \( t \) often is time, a stochastic process. A stochastic +process is a function of two variables, one is the time, the other is +a stochastic variable \( X \). Let \( x \) be one of the possible values of +\( X \) then

    -
    -
    +$$ y(t) = f (x, t), $$ +

    is a function of \( t \), called a +sample function or realization of the process. In physics one +considers the stochastic process to be an ensemble of such sample +functions. +

    diff --git a/doc/pub/week3/html/._week3-bs024.html b/doc/pub/week3/html/._week3-bs024.html index efe14835..9dfa2d7a 100644 --- a/doc/pub/week3/html/._week3-bs024.html +++ b/doc/pub/week3/html/._week3-bs024.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,31 +274,25 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - -

    For many physical systems initial distributions of a stochastic -variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) -as \( t\rightarrow\infty \). In -equilibrium detailed balance constrains the transition rates + +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow +w_0(y) \) as \( t\rightarrow\infty \). In equilibrium detailed balance +constrains the transition rates

    $$ W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), $$ -

    where \( W(y'\rightarrow y) \) -is the probability, per unit time, that the system changes -from a state \( |y\rangle \) , characterized by the value \( y \) -for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    where \( W(y'\rightarrow y) \) is the probability, per unit time, that the +system changes from a state \( |y\rangle \) , characterized by the value +\( y \) for the stochastic variable \( Y \) , to a state \( |y'\rangle \).

    -

    Note that for a system in equilibrium the transition rate -\( W(y'\rightarrow y) \) and -the reverse \( W(y\rightarrow y') \) may be very different. +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and the reverse \( W(y\rightarrow y') \) may be very +different.

    -
    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs025.html b/doc/pub/week3/html/._week3-bs025.html index 9fb312a8..b91958e1 100644 --- a/doc/pub/week3/html/._week3-bs025.html +++ b/doc/pub/week3/html/._week3-bs025.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,17 +274,14 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - -

    Consider, for instance, a simple -system that has only two energy levels \( \epsilon_0 = 0 \) and -\( \epsilon_1 = \Delta E \). + +

    Consider, for instance, a simple system that has only two energy +levels \( \epsilon_0 = 0 \) and \( \epsilon_1 = \Delta E \).

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    $$ - W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)}. $$

    We get then

    @@ -293,9 +290,6 @@

    which goes to zero when \( T \) tends to zero.

    -

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs026.html b/doc/pub/week3/html/._week3-bs026.html index 4a8f3a88..5d2873e1 100644 --- a/doc/pub/week3/html/._week3-bs026.html +++ b/doc/pub/week3/html/._week3-bs026.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    If we assume a discrete set of events, our initial probability distribution function can be given by @@ -299,9 +297,6 @@

    -

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs027.html b/doc/pub/week3/html/._week3-bs027.html index dcb621c9..fdac3496 100644 --- a/doc/pub/week3/html/._week3-bs027.html +++ b/doc/pub/week3/html/._week3-bs027.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). The discrete sum of transition probabilities can then be replaced by an integral @@ -297,9 +295,6 @@

    that is no time-dependence. Note our change of notation for \( W \)

    -

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs028.html b/doc/pub/week3/html/._week3-bs028.html index 671c308f..f45c8421 100644 --- a/doc/pub/week3/html/._week3-bs028.html +++ b/doc/pub/week3/html/._week3-bs028.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to momentum space. The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform @@ -297,8 +295,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs029.html b/doc/pub/week3/html/._week3-bs029.html index 1d9d0ee8..8349cfcb 100644 --- a/doc/pub/week3/html/._week3-bs029.html +++ b/doc/pub/week3/html/._week3-bs029.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    We can then use the Fourier-transformed diffusion equation

    $$ \frac{\partial \tilde{w}(\mathbf{k},t)}{\partial t} = -D\mathbf{k}^2\tilde{w}(\mathbf{k},t), @@ -287,8 +285,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs030.html b/doc/pub/week3/html/._week3-bs030.html index 844bfb6e..851df226 100644 --- a/doc/pub/week3/html/._week3-bs030.html +++ b/doc/pub/week3/html/._week3-bs030.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    With the Fourier transform we obtain

    $$ w(\mathbf{x},t)=\int_{-\infty}^{\infty}d\mathbf{k} \exp{\left[i\mathbf{kx}\right]}\frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}= @@ -287,8 +285,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs031.html b/doc/pub/week3/html/._week3-bs031.html index fb247c06..7994bd65 100644 --- a/doc/pub/week3/html/._week3-bs031.html +++ b/doc/pub/week3/html/._week3-bs031.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    The solution represents the probability of finding our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution was placed at \( \mathbf{x}=0 \) at \( t=0 \). @@ -296,9 +294,6 @@

    and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

    -

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs032.html b/doc/pub/week3/html/._week3-bs032.html index 9f26754f..858bb491 100644 --- a/doc/pub/week3/html/._week3-bs032.html +++ b/doc/pub/week3/html/._week3-bs032.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is \( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). We have then @@ -294,8 +292,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs033.html b/doc/pub/week3/html/._week3-bs033.html index 2d6ff856..d2c1e680 100644 --- a/doc/pub/week3/html/._week3-bs033.html +++ b/doc/pub/week3/html/._week3-bs033.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

    $$ W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. @@ -288,8 +286,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs034.html b/doc/pub/week3/html/._week3-bs034.html index 81646da5..082e3c3c 100644 --- a/doc/pub/week3/html/._week3-bs034.html +++ b/doc/pub/week3/html/._week3-bs034.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    We will now derive the Fokker-Planck equation. We start from the ESKC equation

    @@ -288,8 +286,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs035.html b/doc/pub/week3/html/._week3-bs035.html index cd2b8e76..229fdd5f 100644 --- a/doc/pub/week3/html/._week3-bs035.html +++ b/doc/pub/week3/html/._week3-bs035.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,18 +274,13 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

    $$ W(\mathbf{x},s|\mathbf{x}_0)+\frac{\partial W}{\partial s}\tau +O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0)d\mathbf{x}'. $$

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    -
    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs036.html b/doc/pub/week3/html/._week3-bs036.html index daa68a6e..ba430cd2 100644 --- a/doc/pub/week3/html/._week3-bs036.html +++ b/doc/pub/week3/html/._week3-bs036.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -286,8 +284,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs037.html b/doc/pub/week3/html/._week3-bs037.html index 60758ede..6e7d98f1 100644 --- a/doc/pub/week3/html/._week3-bs037.html +++ b/doc/pub/week3/html/._week3-bs037.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    We can then rewrite the ESKC equation as

    $$ \frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ @@ -287,9 +285,6 @@

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization.

    -

    -
    -

    diff --git a/doc/pub/week3/html/._week3-bs038.html b/doc/pub/week3/html/._week3-bs038.html index 5f4a911a..cf256dfb 100644 --- a/doc/pub/week3/html/._week3-bs038.html +++ b/doc/pub/week3/html/._week3-bs038.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • @@ -274,9 +274,7 @@

    Importance sampling, Fokker-Planck and Langevin equations

    -
    -
    - +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -286,8 +284,6 @@

    -

    diff --git a/doc/pub/week3/html/._week3-bs039.html b/doc/pub/week3/html/._week3-bs039.html index 5f807427..52c25fae 100644 --- a/doc/pub/week3/html/._week3-bs039.html +++ b/doc/pub/week3/html/._week3-bs039.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@

  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs040.html b/doc/pub/week3/html/._week3-bs040.html index 1fe51d09..0947921a 100644 --- a/doc/pub/week3/html/._week3-bs040.html +++ b/doc/pub/week3/html/._week3-bs040.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs041.html b/doc/pub/week3/html/._week3-bs041.html index b12f99f2..bbd617c0 100644 --- a/doc/pub/week3/html/._week3-bs041.html +++ b/doc/pub/week3/html/._week3-bs041.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs042.html b/doc/pub/week3/html/._week3-bs042.html index 1599b9eb..70c012ca 100644 --- a/doc/pub/week3/html/._week3-bs042.html +++ b/doc/pub/week3/html/._week3-bs042.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs043.html b/doc/pub/week3/html/._week3-bs043.html index e962aa3e..3522cb0e 100644 --- a/doc/pub/week3/html/._week3-bs043.html +++ b/doc/pub/week3/html/._week3-bs043.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs044.html b/doc/pub/week3/html/._week3-bs044.html index a78480b0..a3e9a3f0 100644 --- a/doc/pub/week3/html/._week3-bs044.html +++ b/doc/pub/week3/html/._week3-bs044.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs045.html b/doc/pub/week3/html/._week3-bs045.html index c52e83eb..3db1d895 100644 --- a/doc/pub/week3/html/._week3-bs045.html +++ b/doc/pub/week3/html/._week3-bs045.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs046.html b/doc/pub/week3/html/._week3-bs046.html index 5c259d51..e0790701 100644 --- a/doc/pub/week3/html/._week3-bs046.html +++ b/doc/pub/week3/html/._week3-bs046.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs047.html b/doc/pub/week3/html/._week3-bs047.html index 7c2cdb59..dd07279c 100644 --- a/doc/pub/week3/html/._week3-bs047.html +++ b/doc/pub/week3/html/._week3-bs047.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/._week3-bs048.html b/doc/pub/week3/html/._week3-bs048.html index 77fa06e0..4665816a 100644 --- a/doc/pub/week3/html/._week3-bs048.html +++ b/doc/pub/week3/html/._week3-bs048.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/week3-bs.html b/doc/pub/week3/html/week3-bs.html index ba242581..df1a8285 100644 --- a/doc/pub/week3/html/week3-bs.html +++ b/doc/pub/week3/html/week3-bs.html @@ -52,10 +52,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -221,7 +221,7 @@
  • Importance sampling
  • Importance sampling
  • Code example for the interacting case with importance sampling
  • -
  • Importance sampling, program elements
  • +
  • Importance sampling, programming elements
  • Importance sampling, program elements
  • Importance sampling
  • Importance sampling
  • diff --git a/doc/pub/week3/html/week3-reveal.html b/doc/pub/week3/html/week3-reveal.html index 7edc3666..fd740c1e 100644 --- a/doc/pub/week3/html/week3-reveal.html +++ b/doc/pub/week3/html/week3-reveal.html @@ -341,7 +341,13 @@

    Importance sampling

    Code example for the interacting case with importance sampling

    -

    We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters \( \alpha \) and \( \beta \). After the set up of files

    +Note: this is best seen using the Jupyter-notebook. + +

    We are now ready to implement importance sampling. This is done here +for the two-electron case with the Coulomb interaction, as in the +previous example. We have two variational parameters \( \alpha \) and +\( \beta \). After the set up of files +

    @@ -600,11 +606,9 @@

    Code exa

    -

    Importance sampling, program elements

    -
    - -

    -

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +

    Importance sampling, programming elements

    + +

    The general derivative formula of the Jastrow factor (or the ansatz for the correlated part of the wave function) is (the subscript \( C \) stands for Correlation)

     
    $$ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = @@ -626,14 +630,11 @@

    Importance sampling, program eleme

    the gradient needed for the quantum force and local energy is easy to compute. The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form.

    -

    Importance sampling, program elements

    -
    - -

    +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

     
    $$ @@ -652,15 +653,12 @@

    Importance sampling, program eleme \frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$

     
    -

    Importance sampling

    -
    - -

    -

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    + +

    The expectation value of the kinetic energy expressed in scaled units for particle \( i \) is

     
    $$ \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, @@ -672,14 +670,11 @@

    Importance sampling

    \hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. $$

     
    -

    Importance sampling

    -
    - -

    +

    The second derivative which enters the definition of the local energy is

     
    $$ @@ -687,15 +682,12 @@

    Importance sampling

    $$

     
    -

    We discuss here how to calculate these quantities in an optimal way,

    -
    +

    We discuss here how to calculate these quantities in an optimal way.

    Importance sampling

    -
    - -

    +

    We have defined the correlated function as

     
    $$ @@ -714,14 +706,11 @@

    Importance sampling

    \Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. $$

     
    -

    Importance sampling

    -
    - -

    +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

     
    $$ @@ -738,14 +727,11 @@

    Importance sampling

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    -

    Importance sampling

    -
    - -

    +

    We have that the ratio between Jastrow factors \( R_C \) is given by

     
    $$ @@ -772,14 +758,11 @@

    Importance sampling

    \sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) $$

     
    -

    Importance sampling

    -
    - -

    +

    One needs to develop a special algorithm that runs only through the elements of the upper triangular matrix \( \mathbf{g} \) and have \( k \) as an index. @@ -793,14 +776,11 @@

    Importance sampling

     

    for all dimensions and with \( i \) running over all particles.

    -

    Importance sampling

    -
    - -

    +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

     
    $$ @@ -822,14 +802,10 @@

    Importance sampling

     

    with both expressions scaling as \( \mathcal{O}(N) \).

    -

    Importance sampling

    -
    - -

    Using the identity

     
    @@ -855,14 +831,11 @@

    Importance sampling

    -\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. $$

     
    -

    Importance sampling

    -
    - -

    +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

     
    $$ @@ -878,14 +851,11 @@

    Importance sampling

    -\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. $$

     
    -

    Importance sampling

    -
    - -

    +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

     
    $$ @@ -910,14 +880,11 @@

    Importance sampling

     

    is the relative distance.

    -

    Importance sampling

    -
    - -

    +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

     
    $$ @@ -931,14 +898,11 @@

    Importance sampling

    \right)^2 $$

     
    -

    Importance sampling

    -
    - -

    +

    But we have a simple form for the function, namely

     
    $$ @@ -956,75 +920,64 @@

    Importance sampling

    \sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    A stochastic process is simply a function of two variables, one is the time, -the other is a stochastic variable \( X \), defined by specifying + +

    A stochastic process is simply a function of two variables, one is the +time, the other is a stochastic variable \( X \), defined by specifying

    -
      + +

      1. the set \( \left\{x\right\} \) of possible values for \( X \);
      2. the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
      3. -
    +

    -

    The set of values \( \left\{x\right\} \) for \( X \) -may be discrete, or continuous. If the set of -values is continuous, then \( w_X (x) \) is a probability density so that -\( w_X (x)dx \) -is the probability that one finds the stochastic variable \( X \) to have values -in the range \( [x, x + dx] \) . +

    The set of values \( \left\{x\right\} \) for \( X \) may be discrete, or +continuous. If the set of values is continuous, then \( w_X (x) \) is a +probability density so that \( w_X (x)dx \) is the probability that one +finds the stochastic variable \( X \) to have values in the range \( [x, x +dx] \) .

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    An arbitrary number of other stochastic variables may be derived from -\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic -variable. The mapping may also be time-dependent, that is, the mapping -depends on an additional variable \( t \) + +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a +stochastic variable. The mapping may also be time-dependent, that is, +the mapping depends on an additional variable \( t \)

     
    -$$ - Y_X (t) = f (X, t) . +$$ Y_X (t) = f(X, t). $$

     
    -

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, -a stochastic process. A stochastic process is a function of two variables, -one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the -possible values of \( X \) then +

    The quantity \( Y_X (t) \) is called a random function, +or, since \( t \) often is time, a stochastic process. A stochastic +process is a function of two variables, one is the time, the other is +a stochastic variable \( X \). Let \( x \) be one of the possible values of +\( X \) then

     
    -$$ - y(t) = f (x, t), -$$ +$$ y(t) = f (x, t), $$

     
    -

    is a function of \( t \), called a sample function or realization of the process. -In physics one considers the stochastic process to be an ensemble of such -sample functions. +

    is a function of \( t \), called a +sample function or realization of the process. In physics one +considers the stochastic process to be an ensemble of such sample +functions.

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    For many physical systems initial distributions of a stochastic -variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) -as \( t\rightarrow\infty \). In -equilibrium detailed balance constrains the transition rates + +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow +w_0(y) \) as \( t\rightarrow\infty \). In equilibrium detailed balance +constrains the transition rates

     
    $$ @@ -1032,33 +985,28 @@

    Importance sam $$

     
    -

    where \( W(y'\rightarrow y) \) -is the probability, per unit time, that the system changes -from a state \( |y\rangle \) , characterized by the value \( y \) -for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    where \( W(y'\rightarrow y) \) is the probability, per unit time, that the +system changes from a state \( |y\rangle \) , characterized by the value +\( y \) for the stochastic variable \( Y \) , to a state \( |y'\rangle \).

    -

    Note that for a system in equilibrium the transition rate -\( W(y'\rightarrow y) \) and -the reverse \( W(y\rightarrow y') \) may be very different. +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and the reverse \( W(y\rightarrow y') \) may be very +different.

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    Consider, for instance, a simple -system that has only two energy levels \( \epsilon_0 = 0 \) and -\( \epsilon_1 = \Delta E \). + +

    Consider, for instance, a simple system that has only two energy +levels \( \epsilon_0 = 0 \) and \( \epsilon_1 = \Delta E \).

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

     
    $$ - W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)}. $$

     
    @@ -1070,14 +1018,11 @@

    Importance sam

     

    which goes to zero when \( T \) tends to zero.

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    If we assume a discrete set of events, our initial probability distribution function can be given by @@ -1106,14 +1051,11 @@

    Importance sam vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution function \( \delta(\mathbf{x}) \) at \( t=0 \).

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). The discrete sum of transition probabilities can then be replaced by an integral @@ -1140,14 +1082,11 @@

    Importance sam

     

    that is no time-dependence. Note our change of notation for \( W \)

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to momentum space. The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform @@ -1174,14 +1113,11 @@

    Importance sam \tilde{w}(\mathbf{k},0)=1/2\pi. $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can then use the Fourier-transformed diffusion equation

     
    $$ @@ -1196,14 +1132,11 @@

    Importance sam \frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}. $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    With the Fourier transform we obtain

     
    $$ @@ -1218,14 +1151,11 @@

    Importance sam \int_{-\infty}^{\infty}w(\mathbf{x},t)d\mathbf{x}=1. $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    The solution represents the probability of finding our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution was placed at \( \mathbf{x}=0 \) at \( t=0 \). @@ -1247,14 +1177,11 @@

    Importance sam

    and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is \( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). We have then @@ -1278,14 +1205,11 @@

    Importance sam w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0. $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

     
    $$ @@ -1301,14 +1225,11 @@

    Importance sam W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'. $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We will now derive the Fokker-Planck equation. We start from the ESKC equation

    @@ -1324,14 +1245,11 @@

    Importance sam W(\mathbf{x},s+\tau|\mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}')W(\mathbf{x}',s|\mathbf{x}_0)d\mathbf{x}'. $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

     
    $$ @@ -1340,14 +1258,11 @@

    Importance sam

     

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -1359,14 +1274,11 @@

    Importance sam \right]. $$

     
    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can then rewrite the ESKC equation as

     
    $$ @@ -1379,14 +1291,11 @@

    Importance sam

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization.

    -

    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -1398,7 +1307,6 @@

    Importance sam \right]. $$

     
    -

    diff --git a/doc/pub/week3/html/week3-solarized.html b/doc/pub/week3/html/week3-solarized.html index c785d65f..4154629a 100644 --- a/doc/pub/week3/html/week3-solarized.html +++ b/doc/pub/week3/html/week3-solarized.html @@ -79,10 +79,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -375,7 +375,13 @@

    Importance sampling











    Code example for the interacting case with importance sampling

    -

    We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters \( \alpha \) and \( \beta \). After the set up of files

    +Note: this is best seen using the Jupyter-notebook. + +

    We are now ready to implement importance sampling. This is done here +for the two-electron case with the Coulomb interaction, as in the +previous example. We have two variational parameters \( \alpha \) and +\( \beta \). After the set up of files +

    @@ -634,11 +640,9 @@

    Code exa









    -

    Importance sampling, program elements

    -
    - -

    -

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +

    Importance sampling, programming elements

    + +

    The general derivative formula of the Jastrow factor (or the ansatz for the correlated part of the wave function) is (the subscript \( C \) stands for Correlation)

    $$ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} @@ -656,14 +660,10 @@

    Importance sampling, program eleme

    the gradient needed for the quantum force and local energy is easy to compute. The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form.

    -

    -









    Importance sampling, program elements

    -
    - -

    +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    $$ R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = @@ -678,15 +678,12 @@

    Importance sampling, program eleme $$ \frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ -











    Importance sampling

    -
    - -

    -

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    + +

    The expectation value of the kinetic energy expressed in scaled units for particle \( i \) is

    $$ \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, $$ @@ -694,27 +691,21 @@

    Importance sampling

    $$ \hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. $$ -










    Importance sampling

    -
    - -

    +

    The second derivative which enters the definition of the local energy is

    $$ \frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ -

    We discuss here how to calculate these quantities in an optimal way,

    -
    +

    We discuss here how to calculate these quantities in an optimal way.











    Importance sampling

    -
    - -

    +

    We have defined the correlated function as

    $$ \Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), @@ -729,14 +720,11 @@

    Importance sampling

    $$ \Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. $$ -










    Importance sampling

    -
    - -

    +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    $$ \mathbf{r} \equiv \begin{pmatrix} @@ -751,13 +739,10 @@

    Importance sampling

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    -










    Importance sampling

    -
    - -

    +

    We have that the ratio between Jastrow factors \( R_C \) is given by

    $$ R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = @@ -778,14 +763,11 @@

    Importance sampling

    + \sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) $$ -










    Importance sampling

    -
    - -

    +

    One needs to develop a special algorithm that runs only through the elements of the upper triangular matrix \( \mathbf{g} \) and have \( k \) as an index. @@ -797,13 +779,10 @@

    Importance sampling

    $$

    for all dimensions and with \( i \) running over all particles.

    -










    Importance sampling

    -
    - -

    +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    $$ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = @@ -821,14 +800,9 @@

    Importance sampling

    $$

    with both expressions scaling as \( \mathcal{O}(N) \).

    -
    -









    Importance sampling

    -
    - -

    Using the identity

    $$ @@ -848,14 +822,11 @@

    Importance sampling

    \sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} -\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. $$ -










    Importance sampling

    -
    - -

    +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    $$ \frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, @@ -867,14 +838,11 @@

    Importance sampling

    \sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} -\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. $$ -










    Importance sampling

    -
    - -

    +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    $$ \frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. @@ -893,14 +861,10 @@

    Importance sampling

    $$

    is the relative distance.

    -
    -









    Importance sampling

    -
    - -

    +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    $$ \left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ @@ -912,14 +876,11 @@

    Importance sampling

    \sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} \right)^2 $$ -










    Importance sampling

    -
    - -

    +

    But we have a simple form for the function, namely

    $$ \Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, @@ -933,101 +894,82 @@

    Importance sampling

    \sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ \sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) $$ -










    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    A stochastic process is simply a function of two variables, one is the time, -the other is a stochastic variable \( X \), defined by specifying + +

    A stochastic process is simply a function of two variables, one is the +time, the other is a stochastic variable \( X \), defined by specifying

    -
      + +
      1. the set \( \left\{x\right\} \) of possible values for \( X \);
      2. the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
      3. -
    -

    The set of values \( \left\{x\right\} \) for \( X \) -may be discrete, or continuous. If the set of -values is continuous, then \( w_X (x) \) is a probability density so that -\( w_X (x)dx \) -is the probability that one finds the stochastic variable \( X \) to have values -in the range \( [x, x + dx] \) . + +

    The set of values \( \left\{x\right\} \) for \( X \) may be discrete, or +continuous. If the set of values is continuous, then \( w_X (x) \) is a +probability density so that \( w_X (x)dx \) is the probability that one +finds the stochastic variable \( X \) to have values in the range \( [x, x +dx] \) .

    -
    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    An arbitrary number of other stochastic variables may be derived from -\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic -variable. The mapping may also be time-dependent, that is, the mapping -depends on an additional variable \( t \) -

    -$$ - Y_X (t) = f (X, t) . -$$ -

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, -a stochastic process. A stochastic process is a function of two variables, -one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the -possible values of \( X \) then +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a +stochastic variable. The mapping may also be time-dependent, that is, +the mapping depends on an additional variable \( t \)

    -$$ - y(t) = f (x, t), +$$ Y_X (t) = f(X, t). $$ -

    is a function of \( t \), called a sample function or realization of the process. -In physics one considers the stochastic process to be an ensemble of such -sample functions. +

    The quantity \( Y_X (t) \) is called a random function, +or, since \( t \) often is time, a stochastic process. A stochastic +process is a function of two variables, one is the time, the other is +a stochastic variable \( X \). Let \( x \) be one of the possible values of +\( X \) then

    -
    +$$ y(t) = f (x, t), $$ +

    is a function of \( t \), called a +sample function or realization of the process. In physics one +considers the stochastic process to be an ensemble of such sample +functions. +











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    For many physical systems initial distributions of a stochastic -variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) -as \( t\rightarrow\infty \). In -equilibrium detailed balance constrains the transition rates + +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow +w_0(y) \) as \( t\rightarrow\infty \). In equilibrium detailed balance +constrains the transition rates

    $$ W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), $$ -

    where \( W(y'\rightarrow y) \) -is the probability, per unit time, that the system changes -from a state \( |y\rangle \) , characterized by the value \( y \) -for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    where \( W(y'\rightarrow y) \) is the probability, per unit time, that the +system changes from a state \( |y\rangle \) , characterized by the value +\( y \) for the stochastic variable \( Y \) , to a state \( |y'\rangle \).

    -

    Note that for a system in equilibrium the transition rate -\( W(y'\rightarrow y) \) and -the reverse \( W(y\rightarrow y') \) may be very different. +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and the reverse \( W(y\rightarrow y') \) may be very +different.

    -
    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    Consider, for instance, a simple -system that has only two energy levels \( \epsilon_0 = 0 \) and -\( \epsilon_1 = \Delta E \). + +

    Consider, for instance, a simple system that has only two energy +levels \( \epsilon_0 = 0 \) and \( \epsilon_1 = \Delta E \).

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    $$ - W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)}. $$

    We get then

    @@ -1036,14 +978,10 @@

    Importance sam $$

    which goes to zero when \( T \) tends to zero.

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    If we assume a discrete set of events, our initial probability distribution function can be given by @@ -1066,14 +1004,10 @@

    Importance sam vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution function \( \delta(\mathbf{x}) \) at \( t=0 \).

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). The discrete sum of transition probabilities can then be replaced by an integral @@ -1094,14 +1028,10 @@

    Importance sam $$

    that is no time-dependence. Note our change of notation for \( W \)

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to momentum space. The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform @@ -1122,14 +1052,11 @@

    Importance sam $$ \tilde{w}(\mathbf{k},0)=1/2\pi. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can then use the Fourier-transformed diffusion equation

    $$ \frac{\partial \tilde{w}(\mathbf{k},t)}{\partial t} = -D\mathbf{k}^2\tilde{w}(\mathbf{k},t), @@ -1140,14 +1067,11 @@

    Importance sam \tilde{w}(\mathbf{k},t)=\tilde{w}(\mathbf{k},0)\exp{\left[-(D\mathbf{k}^2t)\right)}= \frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    With the Fourier transform we obtain

    $$ w(\mathbf{x},t)=\int_{-\infty}^{\infty}d\mathbf{k} \exp{\left[i\mathbf{kx}\right]}\frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}= @@ -1158,14 +1082,11 @@

    Importance sam $$ \int_{-\infty}^{\infty}w(\mathbf{x},t)d\mathbf{x}=1. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    The solution represents the probability of finding our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution was placed at \( \mathbf{x}=0 \) at \( t=0 \). @@ -1185,14 +1106,10 @@

    Importance sam

    and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is \( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). We have then @@ -1210,14 +1127,11 @@

    Importance sam $$ w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

    $$ W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. @@ -1229,14 +1143,11 @@

    Importance sam $$ W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We will now derive the Fokker-Planck equation. We start from the ESKC equation

    @@ -1248,28 +1159,21 @@

    Importance sam $$ W(\mathbf{x},s+\tau|\mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}')W(\mathbf{x}',s|\mathbf{x}_0)d\mathbf{x}'. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

    $$ W(\mathbf{x},s|\mathbf{x}_0)+\frac{\partial W}{\partial s}\tau +O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0)d\mathbf{x}'. $$

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    -
    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -1279,14 +1183,11 @@

    Importance sam \sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) \right]. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can then rewrite the ESKC equation as

    $$ \frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ @@ -1297,14 +1198,10 @@

    Importance sam

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization.

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -1314,7 +1211,6 @@

    Importance sam \sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) \right]. $$ -











    diff --git a/doc/pub/week3/html/week3.html b/doc/pub/week3/html/week3.html index 8277d863..b5e1af69 100644 --- a/doc/pub/week3/html/week3.html +++ b/doc/pub/week3/html/week3.html @@ -156,10 +156,10 @@ 2, None, 'code-example-for-the-interacting-case-with-importance-sampling'), - ('Importance sampling, program elements', + ('Importance sampling, programming elements', 2, None, - 'importance-sampling-program-elements'), + 'importance-sampling-programming-elements'), ('Importance sampling, program elements', 2, None, @@ -452,7 +452,13 @@

    Importance sampling











    Code example for the interacting case with importance sampling

    -

    We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters \( \alpha \) and \( \beta \). After the set up of files

    +Note: this is best seen using the Jupyter-notebook. + +

    We are now ready to implement importance sampling. This is done here +for the two-electron case with the Coulomb interaction, as in the +previous example. We have two variational parameters \( \alpha \) and +\( \beta \). After the set up of files +

    @@ -711,11 +717,9 @@

    Code exa









    -

    Importance sampling, program elements

    -
    - -

    -

    The general derivative formula of the Jastrow factor is (the subscript \( C \) stands for Correlation)

    +

    Importance sampling, programming elements

    + +

    The general derivative formula of the Jastrow factor (or the ansatz for the correlated part of the wave function) is (the subscript \( C \) stands for Correlation)

    $$ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = \sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} @@ -733,14 +737,10 @@

    Importance sampling, program eleme

    the gradient needed for the quantum force and local energy is easy to compute. The function \( f(r_{ij}) \) will depends on the system under study. In the equations below we will keep this general form.

    -

    -









    Importance sampling, program elements

    -
    - -

    +

    In the Metropolis/Hasting algorithm, the acceptance ratio determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by (\( OB \) for the onebody part)

    $$ R \equiv \frac{\Psi_{T}^{new}}{\Psi_{T}^{old}} = @@ -755,15 +755,12 @@

    Importance sampling, program eleme $$ \frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ -











    Importance sampling

    -
    - -

    -

    The expectation value of the kinetic energy expressed in atomic units for electron \( i \) is

    + +

    The expectation value of the kinetic energy expressed in scaled units for particle \( i \) is

    $$ \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, $$ @@ -771,27 +768,21 @@

    Importance sampling

    $$ \hat{K}_i = -\frac{1}{2}\frac{\mathbf{\nabla}_{i}^{2} \Psi}{\Psi}. $$ -










    Importance sampling

    -
    - -

    +

    The second derivative which enters the definition of the local energy is

    $$ \frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} $$ -

    We discuss here how to calculate these quantities in an optimal way,

    -
    +

    We discuss here how to calculate these quantities in an optimal way.











    Importance sampling

    -
    - -

    +

    We have defined the correlated function as

    $$ \Psi_C=\prod_{i < j}g(r_{ij})=\prod_{i < j}^Ng(r_{ij})= \prod_{i=1}^N\prod_{j=i+1}^Ng(r_{ij}), @@ -806,14 +797,11 @@

    Importance sampling

    $$ \Psi_C=\prod_{i < j}g(r_{ij})=\exp{\left\{\sum_{i < j}f(r_{ij})\right\}}. $$ -










    Importance sampling

    -
    - -

    +

    The total number of different relative distances \( r_{ij} \) is \( N(N-1)/2 \). In a matrix storage format, the relative distances form a strictly upper triangular matrix

    $$ \mathbf{r} \equiv \begin{pmatrix} @@ -828,13 +816,10 @@

    Importance sampling

    This applies to \( \mathbf{g} = \mathbf{g}(r_{ij}) \) as well.

    In our algorithm we will move one particle at the time, say the \( kth \)-particle. This sampling will be seen to be particularly efficient when we are going to compute a Slater determinant.

    -










    Importance sampling

    -
    - -

    +

    We have that the ratio between Jastrow factors \( R_C \) is given by

    $$ R_{C} = \frac{\Psi_{C}^\mathrm{new}}{\Psi_{C}^\mathrm{cur}} = @@ -855,14 +840,11 @@

    Importance sampling

    + \sum_{i=k+1}^{N}\big(f_{ki}^\mathrm{new}-f_{ki}^\mathrm{cur}\big) $$ -










    Importance sampling

    -
    - -

    +

    One needs to develop a special algorithm that runs only through the elements of the upper triangular matrix \( \mathbf{g} \) and have \( k \) as an index. @@ -874,13 +856,10 @@

    Importance sampling

    $$

    for all dimensions and with \( i \) running over all particles.

    -










    Importance sampling

    -
    - -

    +

    For the first derivative only \( N-1 \) terms survive the ratio because the \( g \)-terms that are not differentiated cancel with their corresponding ones in the denominator. Then,

    $$ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = @@ -898,14 +877,9 @@

    Importance sampling

    $$

    with both expressions scaling as \( \mathcal{O}(N) \).

    -
    -









    Importance sampling

    -
    - -

    Using the identity

    $$ @@ -925,14 +899,11 @@

    Importance sampling

    \sum_{i=1}^{k-1}\frac{\partial g_{ik}}{\partial x_k} -\sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i}. $$ -










    Importance sampling

    -
    - -

    +

    For correlation forms depending only on the scalar distances \( r_{ij} \) we can use the chain rule. Noting that

    $$ \frac{\partial g_{ij}}{\partial x_j} = \frac{\partial g_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_j} = \frac{x_j - x_i}{r_{ij}} \frac{\partial g_{ij}}{\partial r_{ij}}, @@ -944,14 +915,11 @@

    Importance sampling

    \sum_{i=1}^{k-1}\frac{1}{g_{ik}} \frac{\mathbf{r_{ik}}}{r_{ik}} \frac{\partial g_{ik}}{\partial r_{ik}} -\sum_{i=k+1}^{N}\frac{1}{g_{ki}}\frac{\mathbf{r_{ki}}}{r_{ki}}\frac{\partial g_{ki}}{\partial r_{ki}}. $$ -










    Importance sampling

    -
    - -

    +

    Note that for the Pade-Jastrow form we can set \( g_{ij} \equiv g(r_{ij}) = e^{f(r_{ij})} = e^{f_{ij}} \) and

    $$ \frac{\partial g_{ij}}{\partial r_{ij}} = g_{ij} \frac{\partial f_{ij}}{\partial r_{ij}}. @@ -970,14 +938,10 @@

    Importance sampling

    $$

    is the relative distance.

    -
    -









    Importance sampling

    -
    - -

    +

    The second derivative of the Jastrow factor divided by the Jastrow factor (the way it enters the kinetic energy) is

    $$ \left[\frac{\mathbf{\nabla}^2 \Psi_C}{\Psi_C}\right]_x =\ @@ -989,14 +953,11 @@

    Importance sampling

    \sum_{i=k+1}^{N}\frac{\partial g_{ki}}{\partial x_i} \right)^2 $$ -










    Importance sampling

    -
    - -

    +

    But we have a simple form for the function, namely

    $$ \Psi_{C}=\prod_{i < j}\exp{f(r_{ij})}, @@ -1010,101 +971,82 @@

    Importance sampling

    \sum_{ij\ne k}\frac{(\mathbf{r}_k-\mathbf{r}_i)(\mathbf{r}_k-\mathbf{r}_j)}{r_{ki}r_{kj}}f'(r_{ki})f'(r_{kj})+ \sum_{j\ne k}\left( f''(r_{kj})+\frac{2}{r_{kj}}f'(r_{kj})\right) $$ -










    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    A stochastic process is simply a function of two variables, one is the time, -the other is a stochastic variable \( X \), defined by specifying + +

    A stochastic process is simply a function of two variables, one is the +time, the other is a stochastic variable \( X \), defined by specifying

    -
      + +
      1. the set \( \left\{x\right\} \) of possible values for \( X \);
      2. the probability distribution, \( w_X(x) \), over this set, or briefly \( w(x) \)
      3. -
    -

    The set of values \( \left\{x\right\} \) for \( X \) -may be discrete, or continuous. If the set of -values is continuous, then \( w_X (x) \) is a probability density so that -\( w_X (x)dx \) -is the probability that one finds the stochastic variable \( X \) to have values -in the range \( [x, x + dx] \) . + +

    The set of values \( \left\{x\right\} \) for \( X \) may be discrete, or +continuous. If the set of values is continuous, then \( w_X (x) \) is a +probability density so that \( w_X (x)dx \) is the probability that one +finds the stochastic variable \( X \) to have values in the range \( [x, x +dx] \) .

    -
    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    An arbitrary number of other stochastic variables may be derived from -\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a stochastic -variable. The mapping may also be time-dependent, that is, the mapping -depends on an additional variable \( t \) -

    -$$ - Y_X (t) = f (X, t) . -$$ -

    The quantity \( Y_X (t) \) is called a random function, or, since \( t \) often is time, -a stochastic process. A stochastic process is a function of two variables, -one is the time, the other is a stochastic variable \( X \). Let \( x \) be one of the -possible values of \( X \) then +

    An arbitrary number of other stochastic variables may be derived from +\( X \). For example, any \( Y \) given by a mapping of \( X \), is also a +stochastic variable. The mapping may also be time-dependent, that is, +the mapping depends on an additional variable \( t \)

    -$$ - y(t) = f (x, t), +$$ Y_X (t) = f(X, t). $$ -

    is a function of \( t \), called a sample function or realization of the process. -In physics one considers the stochastic process to be an ensemble of such -sample functions. +

    The quantity \( Y_X (t) \) is called a random function, +or, since \( t \) often is time, a stochastic process. A stochastic +process is a function of two variables, one is the time, the other is +a stochastic variable \( X \). Let \( x \) be one of the possible values of +\( X \) then

    -
    +$$ y(t) = f (x, t), $$ +

    is a function of \( t \), called a +sample function or realization of the process. In physics one +considers the stochastic process to be an ensemble of such sample +functions. +











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    For many physical systems initial distributions of a stochastic -variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow w_0(y) \) -as \( t\rightarrow\infty \). In -equilibrium detailed balance constrains the transition rates + +

    For many physical systems initial distributions of a stochastic +variable \( y \) tend to equilibrium distributions: \( w(y, t)\rightarrow +w_0(y) \) as \( t\rightarrow\infty \). In equilibrium detailed balance +constrains the transition rates

    $$ W(y\rightarrow y')w(y ) = W(y'\rightarrow y)w_0 (y), $$ -

    where \( W(y'\rightarrow y) \) -is the probability, per unit time, that the system changes -from a state \( |y\rangle \) , characterized by the value \( y \) -for the stochastic variable \( Y \) , to a state \( |y'\rangle \). +

    where \( W(y'\rightarrow y) \) is the probability, per unit time, that the +system changes from a state \( |y\rangle \) , characterized by the value +\( y \) for the stochastic variable \( Y \) , to a state \( |y'\rangle \).

    -

    Note that for a system in equilibrium the transition rate -\( W(y'\rightarrow y) \) and -the reverse \( W(y\rightarrow y') \) may be very different. +

    Note that for a system in equilibrium the transition rate +\( W(y'\rightarrow y) \) and the reverse \( W(y\rightarrow y') \) may be very +different.

    -
    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    -

    Consider, for instance, a simple -system that has only two energy levels \( \epsilon_0 = 0 \) and -\( \epsilon_1 = \Delta E \). + +

    Consider, for instance, a simple system that has only two energy +levels \( \epsilon_0 = 0 \) and \( \epsilon_1 = \Delta E \).

    For a system governed by the Boltzmann distribution we find (the partition function has been taken out)

    $$ - W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)} + W(0\rightarrow 1)\exp{-(\epsilon_0/kT)} = W(1\rightarrow 0)\exp{-(\epsilon_1/kT)}. $$

    We get then

    @@ -1113,14 +1055,10 @@

    Importance sam $$

    which goes to zero when \( T \) tends to zero.

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    If we assume a discrete set of events, our initial probability distribution function can be given by @@ -1143,14 +1081,10 @@

    Importance sam vector \( \mathbf{x} \). The Kroenecker \( \delta \) function is replaced by the \( \delta \) distribution function \( \delta(\mathbf{x}) \) at \( t=0 \).

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    The transition from a state \( j \) to a state \( i \) is now replaced by a transition to a state with position \( \mathbf{y} \) from a state with position \( \mathbf{x} \). The discrete sum of transition probabilities can then be replaced by an integral @@ -1171,14 +1105,10 @@

    Importance sam $$

    that is no time-dependence. Note our change of notation for \( W \)

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can solve the equation for \( w(\mathbf{y},t) \) by making a Fourier transform to momentum space. The PDF \( w(\mathbf{x},t) \) is related to its Fourier transform @@ -1199,14 +1129,11 @@

    Importance sam $$ \tilde{w}(\mathbf{k},0)=1/2\pi. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can then use the Fourier-transformed diffusion equation

    $$ \frac{\partial \tilde{w}(\mathbf{k},t)}{\partial t} = -D\mathbf{k}^2\tilde{w}(\mathbf{k},t), @@ -1217,14 +1144,11 @@

    Importance sam \tilde{w}(\mathbf{k},t)=\tilde{w}(\mathbf{k},0)\exp{\left[-(D\mathbf{k}^2t)\right)}= \frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    With the Fourier transform we obtain

    $$ w(\mathbf{x},t)=\int_{-\infty}^{\infty}d\mathbf{k} \exp{\left[i\mathbf{kx}\right]}\frac{1}{2\pi}\exp{\left[-(D\mathbf{k}^2t)\right]}= @@ -1235,14 +1159,11 @@

    Importance sam $$ \int_{-\infty}^{\infty}w(\mathbf{x},t)d\mathbf{x}=1. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    The solution represents the probability of finding our random walker at position \( \mathbf{x} \) at time \( t \) if the initial distribution was placed at \( \mathbf{x}=0 \) at \( t=0 \). @@ -1262,14 +1183,10 @@

    Importance sam

    and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    Let us now assume that we have three PDFs for times \( t_0 < t' < t \), that is \( w(\mathbf{x}_0,t_0) \), \( w(\mathbf{x}',t') \) and \( w(\mathbf{x},t) \). We have then @@ -1287,14 +1204,11 @@

    Importance sam $$ w(\mathbf{x}',t')= \int_{-\infty}^{\infty} W(\mathbf{x}'.t'|\mathbf{x}_0,t_0)w(\mathbf{x}_0,t_0)d\mathbf{x}_0. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can combine these equations and arrive at the famous Einstein-Smoluchenski-Kolmogorov-Chapman (ESKC) relation

    $$ W(\mathbf{x}t|\mathbf{x}_0t_0) = \int_{-\infty}^{\infty} W(\mathbf{x},t|\mathbf{x}',t')W(\mathbf{x}',t'|\mathbf{x}_0,t_0)d\mathbf{x}'. @@ -1306,14 +1220,11 @@

    Importance sam $$ W(\mathbf{v},t|\mathbf{v}_0,t_0) = \int_{-\infty}^{\infty} W(\mathbf{v},t|\mathbf{v}',t')W(\mathbf{v}',t'|\mathbf{v}_0,t_0)d\mathbf{x}'. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We will now derive the Fokker-Planck equation. We start from the ESKC equation

    @@ -1325,28 +1236,21 @@

    Importance sam $$ W(\mathbf{x},s+\tau|\mathbf{x}_0) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}')W(\mathbf{x}',s|\mathbf{x}_0)d\mathbf{x}'. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    Assume now that \( \tau \) is very small so that we can make an expansion in terms of a small step \( xi \), with \( \mathbf{x}'=\mathbf{x}-\xi \), that is

    $$ W(\mathbf{x},s|\mathbf{x}_0)+\frac{\partial W}{\partial s}\tau +O(\tau^2) = \int_{-\infty}^{\infty} W(\mathbf{x},\tau|\mathbf{x}-\xi)W(\mathbf{x}-\xi,s|\mathbf{x}_0)d\mathbf{x}'. $$

    We assume that \( W(\mathbf{x},\tau|\mathbf{x}-\xi) \) takes non-negligible values only when \( \xi \) is small. This is just another way of stating the Master equation!!

    -
    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -1356,14 +1260,11 @@

    Importance sam \sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) \right]. $$ -











    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We can then rewrite the ESKC equation as

    $$ \frac{\partial W}{\partial s}\tau=-W(\mathbf{x},s|\mathbf{x}_0)+ @@ -1374,14 +1275,10 @@

    Importance sam

    We have neglected higher powers of \( \tau \) and have used that for \( n=0 \) we get simply \( W(\mathbf{x},s|\mathbf{x}_0) \) due to normalization.

    -

    -









    Importance sampling, Fokker-Planck and Langevin equations

    -
    - -

    +

    We say thus that \( \mathbf{x} \) changes only by a small amount in the time interval \( \tau \). This means that we can make a Taylor expansion in terms of \( \xi \), that is we expand @@ -1391,7 +1288,6 @@

    Importance sam \sum_{n=0}^{\infty}\frac{(-\xi)^n}{n!}\frac{\partial^n}{\partial x^n}\left[W(\mathbf{x}+\xi,\tau|\mathbf{x})W(\mathbf{x},s|\mathbf{x}_0) \right]. $$ -











    diff --git a/doc/pub/week3/ipynb/Results/FigureFiles/QdotImportance.png b/doc/pub/week3/ipynb/Results/FigureFiles/QdotImportance.png index ab33d30e7b46356bdcfc8fb128edb9f0d91fd129..0d39aa312764d433d4ca55097d02641f6c008309 100644 GIT binary patch literal 66600 zcmeFZcQ}{-|2O=$-y(Y@J2PAM-YYY*k{v=a%HDfqWs_Y|*<~f0kV<4mwh$6RvaaXZ z=kxns$9-S-abMSc|NZ+OeUDFvcstMY^?E&@kM%rb^>ozEpQAm8LZQxUs4HJXp)f;G zD2zEYE__8~XnG0$BXLi~Nxp_+R^WXW;H}Ku{aNwV?-f4jk!FN+P^+chFt&#s@l*yIeMq!{(8p;ZWK94p| zeD7U6@ZCyk!$_WMjc4gmdF-X1R+eBU-{YR+_v~xx`u;tQ)RFBwy9Slt_h;x{+@X^a z(-~$>tlAW_jeZ8qn98B)}-QC33PRsu9*hY#SG#neS$Gby+Ti6<&? zQgjXvllkOF4>>CP`AKTAlMfFMTM5%@kdR?3OwZByzN@ZNBnYsYx}={mgp26!lc2Qp^a_&TXPs68O#J-BzP`R?m6f=IyKc>2!1nz@M@QB|*?NYC*ln}?gwZhr!y6(v;R^F2 ze>b1Hj3Fj_%=sAUDSoop!WSpMLuM`4VY_ii%37Gsa``kMAeb z2oyzcX+aO`Ms~gn$r77oct^<4kp8dzeVg7y`iVN{Oy%P;(h%o0)H~7xJWP33vX0Kq zusIShZ|_T&E-A5~uLudTu6)F{7NDUJLZ?4{fDg@)ixq`$gVk;>XS8!ZQql45-QI-- zmPAIm#D#?g%A}!OEE?j}{)mMIoB6tkE^7sn#Ds*RmoLdDCnq~2-1YTI-`l_Z`P(r} z&*Go$jGT*m3DQ%8j>4U5_loQ4C}9B{otz%VFbQ7NM!mCUTX^`83?Eky=?xS~S;9F!uu| zH@A|h=>-%M2^!74?&t4MipIuPFflZYfMcz&R70qkzv909j#5}ym`O~G8g>Fn`0d-b z6}@2NbgM?gLa$C~hXFq=fG5c%)@!Vxf+M+L+MIuV0f8;-(Z7@S_#C*BuVSqzAjU4zNP> zgmiRusWsmsPimqJsUY`NZ|CKXuSb5c5AU#&H!vWtefd&^(O4r3>S{-a0wEC*vfrSn zx;2?+J$eLnO;tf5lqqIsXUDZHdHMZ&EtjeK^HcSA$Rp^o|Suv5wL;cIh$Z*?P(y()IxC95W zww4Socx4wq%+bY#kgivQ#n{8s(}3M|>;~%vLR_RhaB~yDgXvuNZZbD9F_E{lWc2g% zGeR%;gz4og{H+)*im(yJV%1s0o;~AQT3%+pbO{UUDLp-X_0*=g#}Zoe>eW=qRui9z zO|Mt=^~KOW)RGuf%*=A^bgSW6=;#o6cz7T+CVypq+Xq`gTv(XZWydOvQ%dS6id1Z2 ze0Fv=$+kBU1NBcAQB_leE+C-A;-%gbmV7?F`eyGAmo2h)R&mHeuxsANygd0bHRZn4 zM{4~}3~oSMTl*oUW2}t;4N0u>r}6RV`FZP&**3=O*RMavj)6dv zyZYM%+9fm}PEJnwJ9l`YS5i?^v-t;HxpIXqOu$TjPgR*G=EaK_NaKr1ryGX80!yxL z2XyA3b0^v)sTQ%Re%x3~xF?d?BJOmJ>=Yvb(h?yjz_g$_AJ^w{Xr z)0a@C_Onhda$8J^N=jay9PYp-CAc*v<+Ok4A|dY5%E~1u?;;{1aYWC4%UtH+QTFoM zKc_$gt?yhU_I&B9-Ylg2zQBM^W^yYHSB8!V&+NtxYhhY_W8+Mr?Ou1J5eNzig*|_M zd17~pJ?s^{gPO}lu6Xt8)#^zXbaYp>2@leXzq%&* zosDjEq~2X4i55Ee^{ajBpvy&+fX@`pkZX4WEuH{FIUQ`^7|Z{%%g@ek zDvs9UL(s#|R-{d_TtHyM<-)Yhm4hRk(6@d&Z+m+UYAf$}c~RZDa|fwAH*eAd0)w;f zipvXk1lZ!|(Ft6FS&D**xjD~;GLx%D>n9I0-(O0J(Gx1j%98i?788ON5hifyl5OPQ zE)f#w2@z2UB@EW#K%+1bL@b{OhzcUqea&$mYS`=_0gLlld_#4}i)b>%<(7fyKH~nnUI2y$FPhX*+rp8L%*ZZG+<>3T9 zG}1M4J2{6AD?K+ff*y;g;IyPD0>*^iWiAKBaC9^h&M=*{kDgmQP0d(c57dSZ`#%p4pJJvDomQ9a%7nC^+w(a_OF3^|&UO1z|HxzjSk|Aav^a{woEAQG0!x-6d)vH%!>(eHdg+@Q!=FFvo0(mX2z^BE$q2Pz+?n%yjG*Oh66P!E8 z`gv9}EcuQgsqO_hdodrdkUJuI;?m|O{va`tNIXx6PRdJ*b4^7lo@B?b1$HWmWK@5| zVy`Q25k@mO@ZaYcUfcZn*yV7#xk5iv+M&ib&n-8P_XlX=yv#+fiOyGYMb5n2l1u^N|UG zf)8gQD?7WRNGTe-SM7Wawv{*?RRo6T=T|>=M!D@@`l{d-bH+W!rTr8K69XEHdpH7i452VM zG)xVB`4R_ki%!N*xG1oBC`z84o&D3~WbEctgY96x4E}OcKMvF2Zl~M3k9ku11_t47 z;)EqbG3u-jcVs1Hpa~`CX7ZjOd4!9jG9S8!ZSmKydkQ49394V;+{IQXw_6M@Chxv{X>fnhm!YMl zg@&G91xnOqZf^3{PyPNV)7xH9yVMftNNwcFWJJkB;7sP_FfG(v?C_xz?cJn5x{di~Yaq{7I~&Tj5~_LYb8X^zVdhkTZ>HGd7& zFbJ{ZPJFMwIKS}GLP=XYVeVrsed_|D;y0q&^gGTfm-i`pmGZm#f}*mnN&PoFtNY03<_R^EYc*;Rqq&idR`%7kOpe;U~TR8y?gh%2`$IYd7^rIdxxL| z!lvH%Qpe54{br(P@6X;kP{*DhUz^#e&3VbIva_?x%F0Om`j&1Pgm*BZSw!{7wiYUT zV{aTv2o@Qbm^8A4>%FPf-XMv?$~Im+9`kF-1%we4Bnz|`cEcrXPpLee_a8nKwY6Eg zX_)4Qh&v=Vg+n_G`{XEGxysB62*Q~FN=kBvc^iN#03yH824V%UEgAa@m)-wzk#?-3cG8&dMSl1<3Lr zp|4FLf3ugam00#S3Mvl1_QG2mcX!g%)Kp;C+?p@@nerKMNyHvVnl6PgXw%l%II z4fULoVJH0#(sEQyw;q2XRIFPm71L++(g1iPC?OG>C*=*4#s(@E(CWAsN8SDpdcyQ% z4OwPv%NxdZNG@K0x)VzL@}wKdZUMyV8TU09oOO5Zt7ys`{?`FX)w& zL{Qww*w{j5+wpQvrddgo9Z@tE{0~Z=BIqaY?XS=gsSOu%rn4Sd^o!l=!^&1FN*2&E zfbOj|?j#{66VF6t$V>G{^TmQbBSfG)v> z|MY7Kk!>h?!NJl1*{N56>oZ?mwK9 z{??+o#^_GyGkTn$S}e%C^$W5@D<&b=#0zKaAJqj)7aS=dili@izv_-^RrlD_lrD4SoAbzvi%Nl4;r;7B<&1BI!&S)gHQ;A%ch=+*bsaSk08Na$S*?V2~){xT^iLm1kvn1D*V;fs6FIxp`^=y;8JfeioGAuyR0MAH z^r#4nidNEu#MGVRqoV6AYHq#=yIP+kbrD})<{ZB7k~)xnXf1R^(Vyfp($njlYPi?A zG7#AKW%3^HdY)|;1xi3xHqlMId|>UnGIk-IFYXhcYI|VUvITd0thCL{z5s|m7YSSu zCpsArv^q3%7uqzh)M`vfH+qbzA>80vfYA;>DSiL71>EU5ukh25jG&UA>XR6-% z?DRyCzyAHYp15T(PMCt&ty4T zGC~ZP>$`23#?pA#8Q=H!#~!^NKMIVE^g%1%ex1`)^8P|RTZ9o-;^NqJq+!l0`_8Ni zUWzv2c{dZc6Vx-MK5S-!3M%6C)x(uACbCd$CikvRce>8`>c>k`A|jE1{|v8Rub|1% zQ;bIeNCxl+cdQJn`JA9Ahnb{4Sez`j-KM6SqTDHIa90`^4-atV*sU*KB6>Nsdp^=` zl6gRzX=rFjSTwR|lJWf4Co!;XbTJ$N!e~CR5quv(;;9xN7bo0Y;$)IQR!!9{hvjmo zXmEubn|ZxJm^Oiifq`lUuSOt|9nEjqiXac&fCcjP{Xb}ybf^=q;@ymM8(|lK2m@w; z=0Ydoq3ou;P^5|y5)=^^j|n{5FM9pjtS&ju`xyQiVeIAQg!k{?$CnWI&?hIvwSGBS z{pwXj#f^q@M*c>>!bb6&UZr5UCe~np_7+S=oLGVmb2jr01r1c zH6>$aO`MwdwJ^Xfq8+;dnwoC*OSyAU4Fp6)a2lp~eHkbGnW-W+yrUPz-|T;J?i(EB zz)+tSK(3r~DVzZ}90PEJ(F;oG!%*ZNJf%tT!A#I5;pgS8$YL^5dc`0E>kWEAN=izW zOx$*|RESO~Ieb6t2l2o^uiQF}%w{t{9E&M2+25CaOG z+dUMnvp}^+5>UI%cj6EtnC|=f`t~O!;`v0WA2ENjxQ#34jt_TNS6Ag#RB&2<_wX-F zH+goB%k9@B&A&_M=4S9-$@5;AJv*5d$z!Z(8X7OXsK6R}t)6jUcB;vf!|TWNv%@f| z7ixp94PEvxiylA51|>yXorjZt76`BXOJ<659X2%}dKvG!_f(ra044@P=DBb#>A_1h zgqV63v)_QnxQR#P)q{fA8E8}z&^XqIrwQn_6N-yK- z_0y-X@C&J#ylFH3a9DBRPeHuB5`G*=vZ5zs9dPpJ{+pBiDRo_4HB-}Uc2bM$*CW*! ze6gFow{TI?XUDsZ>y^!byu*O!Qywq^bI9|aiGArXxX?pw***Hg*nO+zp!n4*ir}Ak z!6?-4e%&CJ;~C6>0;OnT#a(;v3IF=_Yv23#X=ueKCM5|hsFJ#CeV&|?2h*Egi^xJELgewPnp|hE z?7rZ%*VLWg(<`#nyG={W3wHz8Z#25iV^&(WRdS*Ve7{|AnQf(?J^A5{fr9hqb9QpD z{d+Nq05iE_#P-ec&OqPCkL(!gjv!Un6al666sLoxrULE!<0FaG5yN70l#n+c4dKGS z%F_4aY?1|E2B3RT6IB191qL2PE8;|eQ6BDj#wNptfA>za-!0O|wkKgku5ZTMmze&> z)LS8Rk3^tLp`8d0Gx>XG=IY{Q{U;5=SAUq9uVI_-6|*|50K6OWEmj4QZB z&2Q0NaNJ+uNK14H9Rhb1IxkKHSn=UzuX5U$^#jKk9HxtXoS?zQO7$i(#w!0jJ=(H` zUddMc5OD|eI3tFKuYq&Gd22!0T-0_-(lzb0!z4vwr|u3^3BY}TGFLY@Ra8}@lu4eN zVZZdek;F{-FZT6b>i1q)dpJoTBZ25m zUDf*MG7+74p%37=HOd=-@7}!wWep0@F{Hj9e34SzWKHDrnhGJ4Vbe&}R!+;{WaCT1y0b=Il=kM+8!~`i--^eIK$U)~gKui6J z4O4hWu`MnxE|`^WzkklBnNI+70NM?;5irWn8UL*c->ST8XH49AwWl2q9uQ_}u|re7 zxlGLd$0A#cJuNM*5Gq&52=n^ZRxgn9>L(?QjpED-ukwkkq)nI(KwE&i2?d-~B)qz@ zkp^7Eb#^rQeGVB0UB%!xSs(1J(T{6tNTG5tr`h~f)pD_`~(x{EyOY-BqX$Qb=BGRA{2T5@uLkO9cU=PPPw>m z$2LUL$p+Af=JK*p?@dmcA|0@}SkZ*MG}@ZLmp`v}u>-D9nt>SZR0i?>mci9oxWC1y z)pMZ87dH7CnqMg300oko@x07T>I2{LT08-L6Didz#eHTP7nq5;V#{9Ih`(%k& z9*jjaHbt9#jmgh1&Q%(&{<|N+Up3T9&ft`2FLUOdzNqh3$c)Fm%5_E|T3HP(YhuqH{@REy! zvB|i@Kh3*Yxw*M%<2jL$hLmHM-~Y7GfydZQ?>!y*{ksz)!$Fm53^)|xyZIU$*%5csS;$uy!ng1`N4nLTQu{K%wG2Fh=d zGi*VZ+eh8q*l=OsjO&5Cd~Lf|v#fn5e-2=Yc;3gyNdvpmu-%8C+spXx7e0NeI-%Fu zn%{@RPl9fTW=MkO%qZJqM=d+9G1?uu7=OmN5r3e`7bBh+FL|BUOJ#2ai{`wDLHm&C zE70t$3!_wa9Q&C@JQB@t=Ab!6*FP~ zsj!fO=+N%ku(&!@vikkI<{FN_pC2t$Wx(3)pbaBYfQG45uT>NFc_1D-kHnc>iczvW zD{LP6HqFuT@$v2(6M`zGT3b+wb50d%1k4gnJL;&wO3?4ix4jVXp7K`k2J8%iTMLfv zOzY?4uMA)Q)N|2nLO$X5-b+HoZA0H;chwMKv>C5O6*WpYGh|VFMfPCYliRiV@LTQ> z7`nUe0P_AfH;;K_L281VJ3f~2dW9zP;FKL9qDcM6^97sFuR@$DC>9L z9v){m)^K6cSpF~T*uH2gp8OYr3-G*7|-o_RIX zL%HGFVjSu6XY*1CU6x}4?riVi(6K8$6*MC?T&5SEI-q|D|b;7Bv*0L4g!hhIs`YA?w=*rbYJ60kU={ZS=%N69b@Mv;a*p!1~lAY9)f z#0m*bLe1>S5-1Yk%iDa_zkK)wtiHNBBq;*kTbzt;>}$`3!lkZgVghP1wpX%9TX7N1 z)q9@EF+7qHG8wS}QYqq*jZ(7!`|~;FiFSjX1eiU{|8eh(P+j+T#z$FM5DIxXPP-Xa zIUfIJxG))HH7_qw@KM>w>wyYiW2ZjQuFSxCX`ys^2j6*{$YD(EGF3$EFVvra*7FTc z9~_0+9Y=ZxYg0b=`jT7&g<}1j=SlbaG(b}UaIC;|DFN5&I}Te4Sv6=3qfX#a(n3pH z*#A{V8S)>&DMy($*ClbE4kT|xO3lsf8Y)qX6v{G7`v~~E2;6ywBs{RtK;NOErB(Fz zZ|)ZS{CPi0S^aUa-XKw74hF$tj%?y$L}(mTm0!PpL2ALEwn5^0alr{uRcQznflYlw z&Ze8aOaux73*n$Oj}kotOgw7!PN?&7>Z~Ps>Fn%_4^T~PZYKW?fbj70f=$Cr7F+h^ zbx|F*G!)&BA9WBk3BehCHrEk!`@h}<9TDP9c=8zwWAyzY*JdY&`y=ykUFx;JwKP3# z{zx{^jO8+BC<>4=lWGUlU+j;IEV@r z!m)gSC7Cz6DUhs#%HXqF6z$ea@2wp89>9s)>9H@A$im`cOv~d1YIkTJ^Xr2$2XvGW2M;3lQB_gN7#XQJt;fs!iyU%?NHoO@fL+_!QClyNBd(@`ewT>; z$4Oh!T*WgO<95d1mGGY;;LJ07TIz>*p zAZ1+mth1LaL`!dUY|Q51$5(vIM?I;pK@bBd3#2G#Hp#Kqo@n{kuUC&B(7l-E^3s{; z=Jk9JcKp!fB$v2axp{ds=R;-d)OxyJAWkFW;{=_coonAen{#@o{?dGQscUf?fewI- z96ml8dQ@{um^PBEc6c`-DX9c>L7)W?2{Kls=3v97sgU zG&DX-04t@Zhlgsk;cLikvoz__VdbVmfj@QUhPn9zIA){GclNNQN+Hx?XlRH&3HK07 zOFuukelz~0=SAI99W5gxDzI=OPbJ30`ZeF$th{P$G}+mGrH^e@?kSwD#mU7*syve~ z;}1CDXYlFZnSz4@2NI=(=Z!^P#R8rZ3me_sC00OI>cJH z&;ND3c3TH6?~&B^Ssu`$cPoPUv7#+M9t<)AY@nk{rx*-d~KF6lh3C-E-mGl z&gAH|5@=ucK+=3*M=Asc25L^f0<8s7A#kaS&|dYEvSX?R{wv>;T|Jc{p$0u3?1eCK zGw#r|%W3R)dR)tVsuic@`lc1?SHwrlBT*FO&bOw1{St;8P^8CgclT}ROlCn1=LiV4 z*K~tv!4O5_O|7SURf}K=um$bCu)J-ikbRkX_jAE11ywvw@L^_fZ1Bl=FdQ5%*^@Qh zMPQkh+po3kQ(et{Ki`$Sj|4IrK!D>65=A=j|H=zNRlN<_I}KNEhzN+&y*)mD^U3Jf zwCCXbry?cD1$2|^N{1rqyZuXRun3>|rd%WeMdNwVtB(n>S273E$=unuFzf_*Kq2dV zn`~#bYzjutUpX=HvGNN#QNqttQ}KX=vkV5!5+y*TgUAp(wUY93o+k^si9QW??%%It zqFBPB(jt7fOScz6YkX}ZY;(HFV3iTE>OoEni=AB8zJ6xKqQvx!)u`#7ogFsxDaf9{ zO5opFH6b9w55>(m`^nA6rwZw+(<_B<}VL`d5O%x9IA8PlhuRY8=NM_0;<-aZ|^Tab0R$Zopcrh2wG@x zZCPS2S?J_RM$XUAi}2UQMPibx?}XTk-fn7aiQyUvR5bG_bC4>dx(0K$oD@zvsl_=1cQ#_U?gHYINPOx#xo;}m(k9=<@ zgg@A0-m}=7L=foo3`7bn6ED=r67KU`*47x{_k(Dv2EMOm;sE zbhrwA!M>eHC6pi5ZOA_|GT63IS!aa68<;d{zldumNb6SWXD}~Q!BqesMzXsobWV!11|;9Ra%f_^9g1(tvth@?`y;i=c?IRTWiM5`F&s84`XE<(?<3vD1A1 zrH?6ks*3S#Wut~AI8MD&u656xX! z0he)wr(bDqZU)sM3bJ?5ZQ;~e-@dIe`ooO3nxWl$#uraQLW0YkvZwkXKME;HY$rhr z?T+4RU1ZY*Q6Zd|_qg zel%~rh1@aV#!sIiEr}{YhaCNoJ?F?w!+}^llZ{We#=+c59T1Y1%Plt_E z0Nl@lv*Q&(8JPsoXklAWwEY>ag2YJwNK4;&G`>6w7pMvwn9$P&MMZHzrNP1@0*J}- zgqm+ms-e0%1j^~gM9rmJz59m&P_rNf0ZK4gy(Md{r^y2!zX_Wf_33V9Z`z}iAV@8R ztoWMnQ1y^q=fNmb6J#d7ynl3}I8C@-O5U67vb4z>;&I00-%{@K&f>1{iaNhzHl`@F zvY%BI73oV_|3iMAcOOU+O zX$}jcJFMD4(s*ORAJ$R${JyK1JJ?K6PN7f)2A;&(9oRv1N8!eeiI1Pw@Kx<^4EF}GPBdwvF(XhHV znLjt`=z%;euqi7W8%6gc)nZINb4}TR-_-)x%xdvnoI#8uT14x0*pFiR$X14HnWuBl z%L~k40`7G%Sg-3otnwzFGqceY>rAU8#`}aF_y~^~k+AR~5eE1Qo)&UIK{*0bnJe(4 zJW~j`ln~kPXNt|a?zRoNgs@R3oL+bRhP$jRs7ZI1pbZn|3iYGBTho|SJ({?Z#IKou5bM6c8_aA z3Gi6Bb;Jn~r_)sUWR{herve)Um${q644IpWC+bKAhje@a6MI}e8yRKI@{xk9ENG?!yz3=pbmMLrUUCc`6fE|?IY~$w z=*5|vn;Q~Z=oq2?K=G-s@7y{-L?-=krO6)E0n5FhHbzKO73rz(CCAYs(T0C*+RvrB z&aX|Bxj)DGliTi*yp^gqLA{Gs1H(F5slj<13H&Jt-@AVwqzeu6mkE;hxf3lhWa)%} zF+gk>vH~QUPhIv3W-LlG=;WVFP_oAXbvAkutjFIRlKpw0b$sDk69ig85eM`Yc@)#r zMh3DwO4JH}qA+)u8(%&UG8i#&;#0&Xtub(R;L=&-g}29QtGKM;hYM{bUE^4j^akc0wI6aski)C|r+x?C<+vWq{~kp~*Mz zWTW+YkOZ9`vWE{+3=W8*sECIfkjkxrhFj*U%!1gHtKf0KNCs>s7#~~!BsAUH+WOdNy8otRbQcCBV|j1X7Xr?H_SO&Vb#+!um~(+- zI^ton$bYcyF(?~)>Y7b6!b1B?I1gaTzqvvH1uzz1Xl&dCYCV9<+PsL^PQ$327i{U3 zcIBrXU`>FIqpzRxyzY)4Wrz(N0egFPO-;=R3;p`qkMKhQ0p=55VZR~%UE6FDWEHim zHW4-rW+j{o4AlQ0y@q1oP#9aWI~<#dIkdvlR*4R*{QsI85wO?DD7r6cY@RWCP4?FI zm74tcJbxyVPv$w4a!JP$z%jstf{`HbML5%P$wKKZH-=T#{YNx8DIoi;2JwB6u^xH| zE*Uh0%FEN#!u$rcVor}#;GU7{^>FdWCarl9O}7xs+xg}uEcxg(PWjVdz2lbaWONr5 zQ18MEdluSiYp?a?02YQq*Ryppv(*8!P7qp<``tn8Ho)5e{sQ}tUC@f=Q`8tp_fc~H z=jOH{8FpSlK^x1Fuo*wc9*S%m*fUySJSmnQrmD2wx&AZYV!RAvChVgI?JhPMdymUe-hsV^Z_yy$=TV+?s$B> z@F*pvh-O$C254aaKnz12jx0@us z7I*dlnPhc+z3b(mY&?Rl&W;Dq9(b;NEPDDBSMGS8*t*7~m|^9A6dLq<;yK*wwBBEq$(+t3*CpBdXG}xmrg#sgKz8i3BkXPfiD;RKXA|}v7Qw#0 zuseP}x6Ddc%*l2Z1w{$XOSXkTU8JRfB?Gm+tkakWZNL^V?ku44ELd+N z=1+hud@Bs>K+Jv34DED2?Bo0Q$}ofh2Jg@Psk>d^;e*vf_DH5~@NkjwjK-o$?78Ec z|GP*M0~-G^p|3Q<{K0x(%BA0L#acs4)RHbUq|(W=FtDP;B%m}v&4K!iBBPa$;Xp0V z5A$%kN9>f!LtsaRZ7N97iB^H4xcGf`W)D3*0RNVsz5m-Q-B}&_(nj#Qk0_WZ|abx@WP(|FCX)M&iq7IM8A@)45Z}N6K7-sAfJqHhLt}7tS()S4ZrLLx{dI@L z!Ii6=*na=dqJ>J~vHw8O-N{W5EZ(ktE{&`zknqF>s@WxXx+u5M&rx6~op13-Oy+c& z3~pB>MP0e}V+Bn10XEiI1!}5H%8Tr+86tufh*S9@*r)gZcq01~w|?NjOjR z-3mXYp6f)sG4%4h@KlNnrza+24rcs`b)~nl^8@!MDGzud4FJ;bQaxNL;(7;b^$F4@ zh`TRf!!M_3(=ljQmR3i(+5p&ppn3^_Gysr)mG;MC*l&z|KkuAvzrr**CCIsxA5(u< z>;g;*fvj+Ss~1XihAP)Z9{sGVrq`~8y?v_+^L7zl=i>)oR#g#0?AOuJ(L`T$70``SyOg%DwIvg-<^61d^TW005^2H8z{`0T@{N_N{V){1M^8DouP3i(NQdxcC*l zAJ^C~51X`=K;RU%3FXbW1SZrnSc64C<LkP4Y| z0>E!1tu9g;*4E5Wu=K87t7WEZ_i3B`n*=F+to#u>`0^26w$igbpN%W31dzpM`q8*Z zgfx4oRm+){ZIX;*hs@zIlwMJ6oFPVOTKj!ex6vTulVRf8O1gk z|A1aBpekU_h`2x%&*n5Ztx6GMvy>g6$vxdIbKmcRxOxO6i2JFiYRDypgjnoUcBHGM zIMVVm$K-x4=_?|kWW@I6+GHG&#CVS+sI9IKz!ce!)+1Mht-|M?KYzaQ-Wr)}%bpQx zpvw{>%$+AlaAw>xnEv3aHzRUi0PN=Au%;=uH=6SWobDFDx(b8f;Pz`(|M!R z$biMIoB6#*G+#DZ#a|y0oPflf3uUh$UJO18c&VM0H=C8ARKK8F+Ore}rIC)xmE7%(fS zs>b6%6mj%>|G$$10MV>2I9w=XCV`nvH*#BHS_8gQ6CH-dyoyryfxCVfsfd7R^x`__ zVa^A8NQ^jHNO7p~Tu!HZt&B4Vj|hnZ!AvP^6y=uRWt6x72}^@=B<}aC?6NV-SWVZw z00ed;@Tcu|@gPD<5cW{rM&`a2>&mxpntukanetg&h3Wu*fJY)DTpK(0foN=PfrFB{ z#PjsI!*$+gBq1I)ckEIQkc>*t$tnAH#K28EC2cnPM1m$ICJV{UGCaNh_Gt{HkKKR& zw1!EjM>((KEbmH%TP}&RvSIq>_pYvTf+1ksXkj+~vES6(96AbRu|b-0vQe~-bXL*R z;|f(PAW|A$#a{@n31dM1>(lf!5B`b0&9ldk?XKr;UwG!lzASSe8JN-l#|#2%?w3q{ zJ*+E@_&vSU9ME&*();!;O5TTm%!YT?3Fg!w%CI5g{Z|>d`m}d>6BTQR!i?3$s1n0X zP1J0+{#O=A5e6XlpSc%8@KUee!O{CDDBmdktw5A=Orri zxm)`sb_K?)7W(J^{PEMK76kigZ0kChM^7ri`Wywx&zJ&JX!O zDE#o!h}W!Pw|MD4DaTyT|M>2mB80h;U-oI1LQu-NHY4fexboIBU4|O+is0lEI*vsY zd#zHy*P$VHlGSBtG(H$(5%7iz0BA@EKwJAfBqMmmQCg^(h1)&+9v8_xFtVk37jCEh zX(A)dv1z!b&2_y3Wv5sHp4I0c^NvI%6Ng&tv&rmHX>?vh*Ddu)yFXA1E56qFyi>{pbIog2yrhFN?vFi9RQg_bgWdo=pt}l61oc3;aAuCC@T3-KPgCmlemgdsee*ffVK?zaoowu>}1$nZJ>o+0qvT1!(B{UO&>jr@xaeH(wYSmry>Lz9V zSKE2Sr{F~aHZ`pD2QcdP6UsX+%maYIm&0MZ++w_N?R#HejItIbHT8OH+H-7fj@RaV z*25D({6Novv?y3`FU%CLD?R^1zC6V3A{G19wYR-J#7-*q%U0V3C%Qq3Hp((%fm=VQyQ8w%AvS z18G8b*t^+&Vp+dVUe=gG>aUFDpIIZFQiJp>rFCL=ZEP?he1c4-K`Rk%@~p}4{hI*C z_xC2x{$@ZH@?INB4uBYu`caO2>q_N|7fKLE?d-*peJ`@HzODqJX+Z91e`29Yc{@pHaGDos8jCh^)#JHw4W4_`MoOFcKJC&jjU#Z2OU z#&lHj7GMXA$RXAqB={p|PrlCfY#o2xn#;K1+Hv=6|85nHD*0}#Zh+#>?ChVh1|%78 z-WGIIA0@l{{>lWrM5OiT>lP*o^bsW7ySUxUn2BzO!!`&`|J>P*- zgR&##2Oxmo6srj}1!BWPLqlmBR}z(3Kq-jsnwJj@l!4b8Jd{vR5@0t;(mQA*BpR@IaTb{aZ{10+DhvAf|LV9SWb)O;-zr2Qwqc{%N9_yZers>Eqb4;7WhsGOcE<|dk)`LqG_WP!pStq>L zhRr``kCl)-Hgx+i02PA7;CoAD_qb4cqn^`aW4Q4>m>?@b4&u$9?=SRk{zg*OrbR&P zV4@$6YA*}~BLk=AZ+u7rjO;b7!xTc-QDr8>yAL5jK~nfP;bjD$#>Uvo%|A;{lW3#j z@D$+`M8N=V@ASi>Z@%4(eK3dz$~43Sx!gaa(9I#UzAN+;R8$KPxa4Z8t`YJ89t-2< zsZ_zR)8Us4%fU-XY;=w)pUja(Q&Uq>+4%U-JbCg2nZ=={C5s|9Y4T~o<$b6iD{#r; zdM{>94;Gcv*{XH3*B(>y1+Ys&D@O)>Ah`j8x1NCk7EHioQ#mYeA0HpzmpM}oD{Qgg zhXBlyx4{R8Q6%G8X9nTOpa0iH_7iyzujZ-Ew*{wb1q(;BXRY;l-MEW8ax#VU(!Yk4 znl2!@3rJCPIMuNLRRkAOLp=*rqlm6~%7%EAqWOa}+M|c&WinElS zA5HiQeCkYtf=+XqET2(ufjR9O_PP*fKCj2QxZu;HpBPv}0wL?afD>N7QAn zdQGY@Ns?dRDbLh;G|=0vbmK;@-6sU+uQ}3*tfVa5 zosFtZv*jU}FGwIKD#mDPTl;SY_4=LNSiHeqZdu|BAf;5b?B^`ii_Hd*gO&qLsrU5c z2!`g^5C5DU7o3p;97ISq#5mInMjSs4;wH{Mg4YEVFMWf!SeDH4`sCkbZ|t|GPJ; z!fR~kuH>(49arnX+5v6x$i8lk;+Iu}m708>u#_wS3q z(4Ixm;VtvlfC~_o#zaZ~Y{$yV%4#Rze}h7ad;g%z_xsNENG_NG39i*SkGpLzsJ!_# zd=(V}fhgqV6FYPpyQV?SG~q+wbOu>W`1bVxDf@FhVAI+1hI_EgFFjXW5D&qk_-DMX z8?tNHb~44uLx7N!mf}I@g7Nc00TJ#WI9i6-@9;RUEuZ@UCR|Nfb^ixtZyt{Izqb3|w|OXI zA%tYekf9QlDUnQ>$`lzZB{C$G%*qrQLMl^(IYSDWMUqO&&>&+{$()dBpP%}!^*nnY z>-qimUdQ@lt#y1?ao?ZM`+Z&Kb)K(_8B^27T{_2;9h7K~e_n_@l64Pc7LQp#D3KeFMdmw_-}xvh>j^t{KA1*%R^6rDoyy4te=JKc>6(`E@pCD_OLD z9(+HTD+o8J`*u|d*LWoAlS@vT%VNfi8wNbHr+9tVt9Y}!k(+|P;{?O0+c-b({btyl zW2yw>ou6N18z~GJFn#Gc`CzFuQhu=2Q5l~1o> zr+HC}or#4*;nrTE++Gpq4X3|X!OcQ43F}qwD!UtZXoWSSG+d*``I57!?Xa6%gH-G$ z7JRI6e08&`F~a@o=D3;kNc44j2W@RL21{Ksiyk_m+<@uR;N}PIb+vuWs8@;LPDH-q zjTh98e_c96aNXGWZA4fS62q;-Fk~=7^BKHk(8{xX4R^8Q$&+M~-eTaj#whQ1Cm={7 zW)|}H+d2_rG;YGno_WJe_xD#Eu4%z2Q1gndn3$MWxJMO-jP3K9v}r}EC6q{QGXX6Lt5lF#2hz?67a% zE-aKDx9@lya9UGp)W@Fx^ACR_Qgm7w(<;QB$H&LvNBhx`XF@6o|NJ+CA#(qAV-4Tf ze16}V(XIjo*ZzQekrngrB)4fQ%H2c+9hDu7I9mR!#=$R zoeWo?R*x<%EhzZP8!h_QVE!RG{ z?Y>MT&97)n33?c8m|oe9Nm=EmX!M@|HPBah3JVL1rPWwDuc3Jo!NnnR?s~ifA{~ga zfDa+ACT3XrgPh1HRM?&OPCv;p#-ViPNDTe4yJJH6mV|d3mI0t$gn9+ftv z`Sb5P@BqWV0!ET01Oid z%mLs#i^X@O-&f*ZoJtkXop4Euz_HAppTf;f5G1{wN2@1x8lEs(QtClXkFQn8?=GZQ z;lPih!lYqf1~!?p1PDxtA- zgvKk~u5U5EFu)dBSGMx2uYEpe5%VrW;cj_htafEjv(3S~-c~8xc1o8&xuCft%y`1X zC%1;hNP}?o^kdOnO-029%oh$Hj*GtJ{WiG#=kcWE-hGC z2(S~Q^=qlbVt6!PWoT-kJ+lf30}_!6d~ zFWTCM8pGKe_+|5>xSaNcck!uOjTOuNw?3s`M6^AUi(LthS3_R+1NY>aNxg-?x14*p zoR{k?H0bHt&Z1dGylDuSyOE;unD{2^ww z8T3B-M~QMTRE(88FKfD8ij$9h6%EuaNa^=;T)~XJh^7BdIA}BZq%t5mJnj? z&@Y|ur(z1~Nnai4LbU6CgPxj^^4Dq8l&`q!hh6$3=GPc>9n+URHBGkP6~M^INW_;~ zTO*HXN6+!8Zz>#dp#X3d;+od73b{_Y zdE-VfB#^E~;S25d?=NBMiplWFDf#W&gK;84QzIPz5tJf!U25Lp_Sz8n)}lv)I09Ln zzA~z5Z->)HJ4q4NjGL*cQa{&5h-QI6NJQ@l9i}?A_?1(&hC7tS{-B7>o+xV&ssgr+ zHmOy(>Y$Qdm?#@XHQXi$stn{=FN-Trh3nTrZ5wcHym-^)*Sj|mc4_hc>te)$K_1>i zInCI{KlL1}7lgpK3B-gvvTPnSW9HlNu$mlO#MBP(JG=tj(KP89}${BoW!pKu# zd;vcLqLXoK%7br~fTRk!)%v4n_K?f5izW!1!C{Nst>BMyd!9ah8p2|4BK4}Z^`n8) z_s{Wf(aCe|W|`Z+tv+v^MSch$RXUf?oma?N1Orb2QYvPsf-H1GKX;o(s{bNwmu>T- ziP^Y^V|DNAcD^IQhMK}QxBihR4ht0Z?keoQ@%nMO83kTdE!P@Jjz~Zc6**|awo)`P z5h+9T*9g*rV3iQpKWMOp3KvOXH;-KOeu?R#uSj&9Ix5$UwiwRNCuj=nP98l&!7@LY zDcb8(`PaRZ;Z=mP*37ufJUC^ zn;qzP9mKD#JyP^?BVlxWxiN2m>HfXfY)OW@qK^#t;i6@*Gg$il^9$*DEOTJd$s=8q z&!0C9x*nf;{o+(oB$8%<9r-~=%9I{`Cb7Ap_dQ^9!EW*Q@3>c2;u%%98cJ$Q+3di; z5q}V9GNSai4<=$?Mv-1^jgfPnpX#qo2onkCU*|78kCHE@z~*&*tIPcY18XnPA5BT)_uQ!kIK}j!@ljODRm&` z0G`XT;gF?em3Zu4WX$#pvf}R2la+b=!CprxK%Ey2N|5TGLx6}5YH8j;nEi$TETZ(9 z#Uu%hM{p!xOM`DvomL;@hlRK*OHQLW(8d#I;C~fBGHM79ANnkA-Nk7yY5sI zx=JKVG|rqU96YbMi>HMg73%v=E!8~f+BM;@FbB)Kv+f^0OY}hF0hkenEFylngS#Er z+x&qeZ7+q~OX&{XT`Q?O4*-iGa`i@12b&BG1ewyChfr X|iTzV(J~zo!vJ7onT~ zoS|3CmynbaMi~HsNNnNtF$6mHWZx1vuI@p;P6vqDF!%W`2C^x%o@Ck9`c| z-Fc-7H*a=**C`EdSfIXseO)Rj^`Y3@;3tlMnX|Dkx?&%yi#<3vE-uX0l*ySP>30!< zIW9QvAv%%LG4%DTwH{0<7`aOA5zFqj#eQu1iYZ4oMYCH9^@HwFYLcF?4Q|@I@K-Q_ zF9z}8HZmsnRJEwUXF!RMcl4f6kJ$^1C+cc{&%FaX1MFjMsU95rD63h!+QOx|!s%3} z5@wLyvp+bMv#X{mB;O=ojJ{4)fP`utaXIAfY}wV$oqHreW180-eal$f(84%tT~p>$ zrMLElw~#)>1Ri!mTGibS^+At}$5L`amwWCFp3tajHO-NfdS%v8;=h|M+>uXl>U=dW z-HvN-bE$hBDGK8U7zr8knEi?ayO?IdjXR0N4Ci?K`vlfJ&PiBEfIPr=46m*Y+X+St zUDI)mRGu4az);A<@=z&*YH?kh{w@jDLRwe!5-(rAgaCm=P4zwZL`#CA<_ixx(HDWx zQ0I2@j=Ynf-_fso+4cKfguJd+Xn!m_lcZiOGnZdfWKcY!E6tS7yTB6W`z)y9I4(W4 z1g6EB;gONTQ>!-O)L^hke$8ddy$2pQUDHuhjksogr^I7Y#=6( z*}d;FXuxnuI9}%bG4ZUl?G9GQk5eDZo8EGJt+$lyczo7^O2C5+-vNAF+1mL{-^mVp z--qumwIe?Z$~0Fv2Q2o{q$>Hy*>?qrd&*7hboiPYdbXpkMxz}b_Ik9`Ie#Xu@;EGB zt}j1)_<&!naieZiQB-m#rpS#OB6Z(I%D(`pm@)4=oVmgc^09oX1s4K5Y1am_5U0nT zbzklje@e+&m#DoYSVpe=up*Z+VtYhEF!q3D(ksUuF!eSoiCkE=Xi71P`QMZ3vdnw0)Z;twpRD`<$jYPN` zt_3={exO%@zx|j_=D1@E`NgwmW~_IITor_#Y||CGYiCc(9^kaB+%l&xL2qp$1^otA z!fM}D_P|T3Vcu{*8wGhU(s;aqRU%&MWr?29Ql3BalZn-bgBNL-K80pVtmc0!AKc1& zN;`Mz-r4u6O`ktI^!TX=e-`e?U4l9R?VOop;+$9o9&36Sb z%SYKbF8C`Sok?@*+LL^$vD$+)iMuWx!Cf#`@H5{XoV7Gg%HA#({f3pf71;?}d(Be! za*KCVljj+QD<+RI{eq5%^9Da5VMaSIoYp;h<>TWFr)(-+;=zdhNn6%765M&ps`%o* zF{ysXA~Wu?kJVM-Li<(HKaBi)y3@WRnJtfs7o7`WF$P=in5YJJ)A)Ku5nZ%jDDp~h%D>y4l5DrVa}T5v?7 zJ^pJ#0q;W53xYD?6RJ@ZMqQXf@>V*&?s-;Yp;e_wey+X5!slVTg}H6(H@zOE$Adzc z^MnXP9XcFCbMp$pD1{Bk%F+={H;+{GN~dh8;=^s*Y^R1+RRo^a*w~m0A!}oY(HQ}$ zw&a(?0BX>$7U3LG$*yF|XT5FzfFZT$*CZ-AZo3Zts7p9YEMylUij^!5j7=U&38MZmr==`*AFVD0n-Uq$^0xAWVeuOW2@(J zmVUs8SJZ^*`0_IxnOitxu3RApI6OvPMaP4=|Nk9D zy??#5SW4R09TFIVRE8CUs=(vTQqr;|axSN<&Bdp`XBKlj5gWW%O%e+7!Z1v+O=o9e zQC|k(v)Lzro(@+$AWNYR!^Cu$m_45Ho4G+G0YO;-V_#gfC^we@1DdcR+WCc%v}P-> zPocPM(Tf$9uVQ*TUNv*@rqTrt>6&>#kn|#u+v3DLK#k=r;7CMv*B+7?CZ+Rb{)_TU z@6(ny5CKdyw@Sb0+y7RxAzv67BNc3g+Z_3Ult}j$l<#^?$sR~Dq1!9Wx}}%3>hcZh z-}eJOMN*iT6LUS-8CAO`3!40uD|(wsG9O3w{W z?38`xpTT3rfA2ys#m4?c$+oGX08?T_F&{q>ep2H&59BlXQ&%8d4HfqH!z*d zJ~l<5#Nt+0y2@(sXi4>B@)toddHqBxv7BM*(}W)<380S4bAA5&F)AzN0wjWLrNuWB zD(y>dQ(0B)^;;Y(r?@K5?P+{|*mH%p;dm&~V*Ygu#l^*y3+r#CxT^Qroi{5t<~|-B zo7Fe|S1j0Q5~WizeziWMb$x5Hx$b4|ZcgE35*{6tatNG>ZFoh%9U*VyyTwD8m@v-> zH1zw^@CP+;#1}4Yr|lOa)!lSalPP^{{QlH@Z(HtEe-;B$%i)N_V%Lx=a??2nDQ z>MynwxW#LJm60_wFi7_iyf(6MC(AQ_?@8(HJR;XqQ}=_h-)N+z6@Gtu#yd4ej5JJy zSCJ&$fe#E|TvtNCMHHtI3FE@YO@OTTH><43B6x$+fAAtPruyhosptL?T#)EUPHD__ z3s_PV+lEwDXH-z91+UK5u9z;x!=v-3v^k7wDC4^mSG&^q z;Zp)_3K(?bH%Xk4P|1;=Ld^^V-C(DwbraH9>n8RnDOC$b=YTke4jisYHJ)c+MIa1~ zM;!XuWc9>F{dZe=8Tn`?UpKc!9eou{FdoA$*xJ4=hd$i;ww#(eH=0ME6rnK;p%@wQ zy9aVr$ZAWQ~{`tX$~e18lo?@j?zSg6dyYL`UJO*n4MhPo{hvgk>-X3?|1eh zzuyPG#g#8Vj|En9s~KFGXP+tSJL2~;=F^Qw4Yqb~bHD|6`p$IE!m)+&(fgf|L`Y?J zb`yvWEWz#W3qQFH)=H)w0e2Mh9ayKT1&g>MY9HEjJ$&HhWYL}C!V{rxS>tpit1_Fws3-Z%=Y zj@VDDO?D;aX)k-7i*YrmlR+ z5im!8b{unXumK@f>(=IGH?^ag-fX+tbIe49{N+|Y)@46x{(e_zjU;1z^Z4@Q&=x3u zMn+Z=Uak*mjX!^sgdrHbmLKOTi{2E0(&Fu$pOAZkyoH}4_JoAEUQfj0X4A?J;JeW1 zvbmEUGN?j=TN4QA=3w<)?-L>$eIo7Rxu%P)K(#0-ZLI)r-6U+#7OLSuGJ@xOO-(s# zmdDOCa|X~*df!@lLHLryQ1@#nR7dzc#+qX70HMb**;7T!8{(q8w3NI{&&UqlWRUI3Lb4)e}=P& zH+pEYbA+7!U4E5q^EE+(yhTyXA2boMb7{qaPccE>}-X3q}Rv!sx01L{RIMB*}cCe9mN+C>ow}!o8!ZJk1JU1rq;3n~uO03Zd|lzl9?!L@O#tjy{2 z=keAd^V>-Lxwg&@_+AOT4^A>j>j2x_`z*I#FgAqO4$3v2_|7?h^f6ONf7)Ugj~8to zbh)V3B>-4(>YGI=?-?c4rPURAZA?oka$4lo3< zKW}B<%z=~GFzn#2zXDcD+zbpzjxI;fEpDrw-m%m-uQTAJOGUw=Zqs{WJlv-WhqrBC z2|rj+$U|Kg@UwTO2yaGLj9c9P3w5q1*gMRr7j(F7UaI%MC{@Xrp^WpQi1%FmtnNWM zoPTLgc9Kz^cXt66tUwL}>=+ssMuZ_o5*M6D&+qHt#DSL)UflMC zv2KTvBS_r^29kSxXI?&g{yb<|XH{<8KJrY(hKv%6ro!1TX^mZyh3a?CEAqkCtk?N- zGk;Zvh_AFf}_lX$$^SwtG7{t6P#q**Fnx>W)hqB$jAghwSlK5>t{J+!gsoMWgmq{ zKbBTK#jy`I?f`_I+%)(cQAG}2R#~#`Il8C17%v^>9cz|;t6a^BPqQy;4z|kj<3Sfp zuVDob-cWHf-xIL6D%M+9f}%J@P$^(IZE(gz4aN2e2IQH1Gk6&0;R&)LtVFMUmE{>A zh&9+W;PgZGqEs+Nz%bdPtEVRl1Sbmui zp6aV3CmJj_kI{B~xXlSC&4&--EuSMb@`q*=W3r@kMxAuJ*6KFWTRKnC=JT={26K27 z-MORgsQEgQa?Ac2MzgAWOlITK$LxrCG)?f{ZH}=KSR+8tF^ef5pJ?NoUtY;BlufLx zOjQaPrDwkFVp3E*0}4h$Pb$iSx7WHgQU}+9UPJ+_2~F@O;rgd*Fi^xvfguZ2Y;3H# z_ql-^_x*$SCRDQM7_j|wl#}MO*yHHQsT>(<1o|%#*r=lQe%`*gv%$7 zCpK)hi;rUIU}Jy4G1xXXO(wlklB{07PWx~d{dCdsolyj)nHaBOO$|7_W9LT2pK&2+ zm>e6sX^jOua0+RI-5jk8y1#n51n=y|Iw{Q8h=-xs4Zi@yI+mmM*#6>>98&#M{Q~KF z-ebdoC=u7)8)|GuaJ_G>SSHl%nqLnK3(9L#r`MfvfDDMM20E(Fsb_n2|BzAk;Iahq z7zVY(1WR4)`a&tT1hqjwkcp_p0$^l#}5##;m zGlXg2#uu;ISv-?d`c~c$is;PBKFDPl$HExJP#7EP>~;360JZ{wC4l*51GP2c2y`$& zdlir@UfVPGdh5#MY}+m$jj873 zo0c4g_oytdnhCnfeX2EUkmhhV%r;@!=2e8G7`kjtEPWeD5BH$${;)A2Dd3@im-6tQ zi)hfPWwE0ud%?#fk1C%Ubbm;xws}$5x&%EONIOgh;E}-b5>hng{e+0ElXgBLIk1=S z4!A|@)Dm|2U*DJ*pd8$|a4`3*$3P8r%Z@Qhlb~5qq6@>T7-#J$+s<3(pe{iAX0P%~ zG@=bgTi~adEL2rP6;Lp=I9x>N7I!jS^X`K9d&3@P2tN|^l&F8;}^*)1sL=x(rm*RU4)5+DJ z_ClLU%YG`DIQ+$l+Z~Nc;8opUB6!tpaJtpi+HZq!jH2kSX1rM_y+GC$=2d&~DlJ^4 zqTfDyy`Np9Aj<(=y5}1Grz-q&*7%6%l?)m~Wu!!det$ATB9+Nb>G?>@9=%gUaF^(R12hJhCMm!=yUL9omCu zadDw#B35KwiBb3TeWg&?m4}dH zD@WiDETpicqvy30zLeE2JEL^9L#>S7lQ8W}H84u|BOaS`F@p!7Vs)dUF%B5U+^~0s z{1q6@uaQVHH!cfAcT*^Vu z$^Zc&qi;<2o5U3=JUEyxBQFcoGeMBEk=gRI6ITsm@V4`uSkZ_Qfa#oO*qP zI0c4DY@|e5`BDZsjE|t3W33JDABkU`Xjjk~+v5_;jRxR_uqlD}{|{WeGZgIB-Y0li z3=ThZ-^$%KL&T&(agJVYUN!OL3pn&sY^v2civSw}_h9w5X~EiWt0#Svntu4M?#rCr z4(jRes1xkdtj2vlSlqvV!o_Vlt#!H-|MKTT>7@qgk6UZ0> zb^4>#0y`El{p!D2VJU^61e(-39_gykKa{<#TJPD7-;jn<7li1Urk^ z{TAcDG*k}U^%T0WX2T-}nX%uOcAI4Sf6vJhI-=27#9P<(h52eyRt(?%vX8-+?3>wN zk%dfX-AVMM588Ehu^jrOlWwG@>azsm2VSA?9uX!Ki6c|PpUyj3ipr!;+Ano=c-nm5 zy(Vp0`^DmNYvFbwLFv?fRFVFqtMSJUm{C2~skhU9^rb<0wEoA>=Pe&P1-G|WNxiaG z9AAD!TUR1rBF?V4Id#u7_tD0?`yUEzr;201fDElW7?8n$v~Id{oqER{QU}M6?`NsR z>-RXky`9ZC9=~0i|H@1@OykH?t<0^i^mz|mk)M=aotB<2==;63lfqSQdNg2o7G_8~ zgz6<~L@vv7okdozxsBp4@PcD%@J~jYt2@>}f&?lsj+(1L^%+RtGNMn`6Uu8DGM4zA zU?Xh%wD#kjw%Zz$Ih!`HaxscfbTc&npdbl+s@lmac&bNb*Yvhxj>hWX!PCknr#c3i z?wc^%WQOfaxphz!jBlJ?m~Q>?5J-!QTa?Lps@moCtktkS)1_iKv3$gRGc?{jtZY(~JFO3m$Ykpq+zA*&zgQ%evVeMlf4wU^W36`Z zau4|?pcmMhhvkS;xQd0m}l+U8{-nM_dNtEqSy7g*?S_SDK^egVH(l)u&(-N5C&WiAJ#OZ^u%>V6i#&RdGr)Bj&U$#r1icNPd_&AX zQM?(lPJB|j`1`CHe;ASmRa+bFitl_5;s{rl`HLCSYqng=>gc#E=h9qge3b2|lS_iT zYwjnN{U)!TZ@X#6A|gmbKIT;fp^a#uxVX$VC3jWs$QP#BFLkbI(?^)p`+bhOGV5q- zv%TtE_rQdy|J3JhC7ieO&rNHB_?N$GqL5n8yN{!rJ@N`S<-Yulgz#b3sAFi@9#LIs zag|ZkMBC*1OPvIm&xp+Uo;^J1O;chjxN%*hoqsrSM$W3PQy^tg^!R3lKOgW`<> zqZ_FLfMb1v1*_vI?97bfn{ouN^Q!th+sTt~9eN)o+<2WryG;!YuD+hhKg>-0To)%U z^zD=3YUE!T;MYza{a3Bqq{tsFA2c*OQ1$H}WroE63$t~?K0-v!{~?!Y-;pK5Z%5!( zckhnC0)>KPKOHJJ=1m{TDPJqT@1+vi{j=Cmr@r_douC0@OW59>To_)P>T*1Ahw(4_ z^`3I>@&2S#tCh{;v8y7UZ@g3W&HXdqr0fGzr6WRY-< zT9_S4z2MU14EyzV=n=P-FFCK*qH-sN6T>ws2v=B>3A5B;jjHTGJ#sA?FgP#ilj5$u zdWaxA6h)#TMcs(NJG(L;rthm?KV|>!WR6#s-*rm8|CH|1y@*5Ms&eCL$%n$~I=8Im zx~$x`KNja+aZ}|D__11&q;4}UKp9tY1@zTUPHRzX@EAQK^TZa zRK_twL$CgK&s`+i=e=v5S{OIaEIpnj-4{g&kNAN}k`txXe#^U|Ex=@PsA)~M(l|UM ze_h>dQo@n8ZaeV)s@3-49)5AywHT!&rtbkTTMqayOgvlurXq4N+TEp0iHelh#aaI0 zZvU)1#q9o)LH%&=ae>8(=#ekb0k<$6LHP6jJ9FN)jSda^^u=_RdgLun|7)u-p2)5a zLj1)NT)eN@*#}svP}?=6>?Wm9gZ=e!lHzJGLXSJBGIj6{krJi(upbHP^}+X-7vO9p znBJhr6CHlSZJ0OE>A_AFiq4N=gxi_@fFj`hxI0Mw`vxkthiz2fuhqS_n010RyK~uI zXo%w8hvg${r$jZi*5tl7loUxKFf6_Z72tKp@9%i9=?_ zSldRBW{`V8nwE}rclb@~Oj()pLBZsk2XD#~!*~oL$TkaVXZ@QN{X75 z)hz*v_)SNTr@s-o>W#E8p`U|Z4+08XlFh^O6yzMb4v%l9;XKE-d2g<3?C)ER8OEGN zJ+Wsa_Du#n8K^@PmCye!RlvF8rMo9K&woGBSrMNX?ydI;qA%J8Y!(a^I7Px$6x4tC z!M#^QQ;k<*-|WG@bqK~0D^gt%mgX!hsQs;!}a*46

    J`e>m^eap0iIApfIl*QTV;3m@se zCokU5DA2zsqwe)^dTFpYbx{A6wbGaME5gtF6gNh^AIb_nQzNFhV;0UP0|*DR`;27wA_`9@OZS(L)&3a0JLVO6~JU1_cy57a+gDdCwUd~kM z-*(SqZf(i=L95%iy#4x}z7u_!%k-Yz;adw=`^DbYNx3@vp^aG5KtB44qSds{e{lk7u_P ztT1qmEJrK?lrVs?f8+ZHC#D7?r3b%v=9NRpBLdp^T#(~P``wWRk6H*m2*v;E1p;w$ zm5-=HwpLu@TOy}2cnK7#ljFCcUVr`ZgV+iVZB)>=Xd6lro-18W5Q z6ofrImw68eh1S3w5+7uyUo|d&IF8Y<9&qHYfPS&3aFzdMjB&%dW3!)TG^`tyUTLmB z)2*F(*M^jeDGrz^D zDO>&3nf_{YZWFC;yaWh#fS5Z;6jo7SC5dUAOH1{=d&z!Ny<6Pf z8-R>?BmL^k4yJQY ziFz$&_Da8`>KmM1a2PpJ*kbc+Kf8ax*$9R07o5w26esn0l`j~_ygrh2VB99RosGhI z2lrHQ%*8dxEB!(KKm!1&Yw*oo9byg5VMZd7`Tv(&yffds;Hw;>ma*R7L35w}UDJQg z)mWB48N2m={e(cp>FMYg3;$PtfIML4N#-rEP1v%dnuW@Wi6^$Y(Bc1(8Le-L^Gu?od-w)}sdMB4Ef{deBYqxCTh zZ<1<4@YrV`X4>_yBidkw{PN$MD9}lw(r>yLl|sHk(2Y;;B=&Y=F4Em&_DcElu4wj0 zF-3Zt0FXJj`wc>9wh&S4+>hFP&{WCI5tT`tXY7{R!&p-_%)Fc}$Wo`IvARZK!wYH+CUMYMGv-_hKJESG zla6U8C4l-q4BnU?V_N=yQg{Khnb~R5J9IlnIRf$qeUh}b$;LPOvN8nAg)LXBRFNkS z$i(zRLG(}Y1i(=ZwZb+p{Qb=y>ez}~sHQ<@ZfMfc(~aUDXnuB1UrSveAfY_)eAp#J ziKW2`e|J_o$)u3CFTZJ3`2R2?vCxMOJdzgimE46?V^d*i?v7*4QBTjKn(t24Z{ECG zK+sXt#?ztKO-@dxJPrmcZGgqGAZGiGmklfj{!^5Y7u4Cfk1#tPbXVY4x4{?qW^G_^Cn3zP=@G$G{4k0!TBgo#_MW$J=V%3JPr;| z2r#Fy5pNhp&p6mE$-#K^f*v<{_Ai~raQZj@g&(rMGdKDgi6azjoGWem@Ry#(??KV7 zJc(Z%S&zqd%PAHKRO#h?g_!!rr$-T}MuItq`lZ9o>}WrFdTt&b;?4)#vS}}S1)b%l zrSaeVbRYfh|E?GoWHDd~()vk#DkH0PVPKa+!s3$nDV4L5P#UyL7E7<{+Wc%-Qfr7= z&rTm|?0(ZM{}M|_XA%)7J-i=y;s26@TckL(NSvNn zjHYnmmn7kkfG=Y3ZqiY<=!LJhV+JLx7Z`AH@Mk=FWa7F8yVeemiG5iZ_CK#GJ@RLf zqPm8ny4z&`-lnGxa?hv*By#ROzdNMB1SORe09wZ3V%cISb%a+WR1H=K43Q{UF1$$& zS1q33zSPS}?1TrG+jbKrCR_V3&=V}E4ZFakEy!|}e(x1QgGff)FHuW_mKv-IyH1;W zzBnZ4MV<|Nw`?qUSWV{Ip!8u>S;DN(%$&Wh4k^6cDgb9>=VJv~YUv)g<#{vr~D*3qM&!fMOzQN8nFLH`{j_~Bs;qv)qUC=jzFh@6|q=MTJmO+wzzw}MjB<$MRqsZ_;2Kn zhX2T+*}%uwb(YEf8CmF0U2DUCPjbgDQBhiOfWD>jBF~G_8ct$}#Wxk)C=jRCN}GW7 z18o43HzC2a%)~04gWkiuleRgP*!3eTZO~dX08;~gdi&PIttci)-l?2?tx^Xr?W^6| zljgL@+%(k478p>%qI*Y(SARa-d@XCTl03 zhAt*yFN2d=(naTlZIsmhBCXii5NCk6pL*7@gbVi*L}Fxr;9cpIr72GSyM%>cqWqXS zT*++qZRy>YShKq>4=IS%511kR30|K%MKyI|$Ns(qo24sUhuH903J63*8*ZX#l1k?o z5EZHQet)tvk|$Ymba+LqK185sXZ({WbdwQU>QoUe&!1ZiFhyLT#qRNt>1BJv<|j2yQ=m#DVR^$F|5#WKF$3 z!?@b$P??pfIJl34`66%R;mah|E%XwyN<2XyH(vU9tLm$*n#_i{4J)KXD`;U4=XDyF zBcJxn-&AMWwiC{xFFI}ao)#P%@5flh^?QfdP0-(=MPs<8j#i@=DSa4{q@ z5GX1qYHmFHczz#B@=e4R(VM$G_H&&-K!dLl5=3wBQRu${Sd;P17F3A;^2@G2#=TY8 z!lpvA5Y;H@kjBTx-O7=r0I6YxW21r(rC{@ zGg1gwgmK#MgrXAYi2O~?WuGo#`hDjzjr=y6)b7le;XE6#XlxBlyz)U{c`-17)_`Y# z0){B8MMNzm;;V}y7-b)^R6ZkPZ?W{$KN9_+wMj*M)wo$9?B|KISA24@1i&NthdsdT z#K~bJ(+|r!tdMGAA8cgq?D(9BH}9~ZjDMBhbl+5n%{GM}e)CC*`;s3r)H{4q*=2zN zQi7lHH_~(2l`kWu?xyZeYlrjik}O^Ql3Tn7bXuIhhBssCZGgEyq&%1dfqNrbPZKtu ziGC2wh;34YiNmbZ@lJtl55n}9O=MASUoEr~zIPK+h~lqz z_Qc-BvOyW-1KR*<@mkphXZE zE?d^~;7GpE6F5ZxLIJrj#KJk4Av88>8;+6=>gf#-n*afiBtZ5j&8wE?p&k*VBWUli z>R@^E%~Mmfl9fRf51;4V6&jhnVI(uOQXqZrr((ddfsvv`GU>YcH`kYy#zt(t&+oYCU@7fuTjIAK0iYmql3XP;9D zW<5g}0?Yi|oIP4kVtFS5nR2&c+8t59gF=B>KQ2VvR87RHC;MimNyWmPKIskaPRw=N zdp67{=dXKF?mrqS=0S0NlHK^IRn#|GT86UEIqnq3V=Lqj+V$tTmkw|g({+4jx*xhI z%IVi`z!un29x`oJH`p>rSo$zRe6|scQvWbwpPgoM%|_bHSI$fvkLu zS)s$E+S;!0mVCflE&AkJmle}hEbiH&VnXqSZyOEs)c3r?{hx9aq48pd+~WLiHi>DK z%YUCIP+7NMA!C*xVA$ROpcDc;f8B({23_}jbt(a#SFcOF6uMXrVDgW@0B8iH2yYq0 z%d?mAHrwKpBHG}yUs=#n#EsACP{|1z92CbzJI_9p;+4k{m{)&(mh%3+#jH?=Mw?vJ z)OMRVLoKLmt9a|65u($`fP)5AEbj8|M4f6ayYjJ||O#e62uKrDhKywgT#JJ)9t9beeELuwevMS{jOs6i`dB${#elE~1%7 zvi#cwV`L-||BdmY}WwVmfMzlv=RU1@&eMvzwN>E_&m2_(?$qt6ARxr|$<~q01 z8u(|84yB|?r_S3;r91g8WNy@>yMGCv)0HnP8|3z1ml+JN?>xI|v}q;5V3f_Bmo|0e zaG5s_xBmN;;|)Z0MSz;hv4mm@eft_6o$vl8n`7zxus%ohP)QXQF{ou2JU_R|qX+br zx>v#1T80p9qt<-*pB7I_<+s>l#EnGNS~w@-KJxo7xhXD9KEZ}xzd$HXRMs!AVB{od z+h|;R`mr`WOwQM0Tc1CNSvu>ayIBhv*kMA9K|l4zX{2G`SUW%^RGV6kcApPZp&6x* z5}{f=*Bh=BTv%9si+-;_4Of)tQlktjU49x*d6!iB(VkkfXBVhVTQ^#69pH?t^=_K7@DOwA0?C(&0MYc}cP;L)(nuBK20H(HN6!aV9nmpf?b<`%O5J9JsRIp^IpHf5>0%T9LwTG@>qX_wzoJGk=3ytsL6U|{av zLCf6Gp4wwZTUS2k-=&M%xsL4&Nr*e=9aUUJ+_93$Dst69?K+EBLxW9`vb8JNpj1#k zhE5pl8jp@<WL-KC@G*dSZ>LR!q;AF9#=&hcN z_T`Eem!@_a;Nkb74LG+cTZm!87_5fXq{YzI!{2lZrqSixH1*?6-4BJCX8;xE)I)=lt;(IY}IrnNm+lo zjp%=cx08$zv<4iW0)8fx8^WH7U$k+M5`{BHJq^?@;A{Y3K-ui}7Y)4+u398_kbgF? zupkifLW(DEuEE`lK~NpWx1p(;K3Zm$3?@Sq&u!IM45Vr7!&QY%_Hm`W(WR3**~iEe z^N_(06^N;p0xS9J++w}kO%ZZAw{R4#lI zLXcxza7tZ!oLF0fL?=DHMCu4JS?#~gzq|#ZdBOvNp&*)JM<#od-M?Vk#W>Kw(2$Jc z6R-+lUq$=}U~Ne#^@)2C0_kgAKIeB>Pl^5&XDku4f^mzW9_%Uqa6#k!1sO~xFigxS zEj>Ft3RB+(kB9vfr`88(XRi;kP*1l|l#*ZKn>Eh*vTnrBc?Y@NWIT-x4QyX^8}D|( zQ~2WmlvPVj<;ENe#7(L4PvdL%@Yb2sE6u*8b{PJ8Tklv)WmxTRX=?hypv`~G92$+m z8(Nr*5IYBV1XVCv7Pyy1c%MqDXeRFU9&DsXQ!ObaCE{E4*S<$ANW;;C<$EaLV0k<) z9gFxVkOI@w)5PD2e;nom+rRilyk#7XHhcH(J>^B|!AqFid7nD+-?tMruw*#cNS!b< zeB=U&)c1R#=1%nO^)XI9j}^9iRkRsjVOjIr^l?~tgc_UwhXW7U=b`8epuxtCL~KIG zC||ht2$IS$%5q(KdgpxXEXB2eKVwA`B;~QAog#WDj_-vHykC%h1^;QykB|Hf#G(?9 zYzl(@kMBUF%00Rw3?s02kDQMf4ZI@aR`>7khYuVBRWugFL=Ov9Ww?k*5;21VODm_Q z9+_I82Jm^^RP@<4KBsk)Gg+H8xx(SHN}kYtmJSPsXli!sx+*!AvHHi9f+V|4e_sKmo-*N@z; zU!QP$Ka0zbIemShJ-pM63u|zG;u#_QT@bTT2BRk+4j{|~F$0CAh>W{4!J~6Y>Vje_ z&wi2-vj73O4GBRhL~J4&@Kcc;C&z7hhbzz5(BjI8%)J5o*pW7~bQMf^LE( zADg#t_c+}B7^|(M5yp2ULs;KIPx}fh0o*Tk6cjQLY)=#LU=La zV~wvaB%!ll)o=(wtVAZ8SOM8R zdX1`YJ30H;+$!pB47FI!^;rCWgbVV^+c1s_f?rSoAq`jp>+%X~a=%@qNL1NA`!nV> zKWyJ@Mw@)ieBR*8U-q&1MQ*jVdo%1#hES(h05@LUV7oJ_Du>AuT~|MCo?_B8oF!e#_hX+EHu#DND&a} z7Whqw4~v%Hmj&KMQS7U}yC6r9ApT=ofS;x`4cp{kCdMs8N%BRAw-L0EMy;h=eG40L zAZRsY-mbT^sacL=y#D@onB~+W$5dSwgBZ>J69)9j2Q~mpPR#j;70d*HZ}6V*APGMW z!HFj>Vz)u{9@k^Pe6{`G7TLxii~$2I!{C_$?V9igH(q!A7UenAr{VEQp{M`NOn5~pS|R5~3`uL>4+8lrv0+zrF; zob$bZ6^#vG0K+OVrA$=(P{R(`b-yS#_FW*jt;Dap~1O?IurhL zt_>UZ0=MlT_v!q#2OHX-*ROFiS4d$m=fFs)eDdNNVrFn^Jp zefv4Q$YPv-Uye|I*D?=!D1aXbJ48dna5JuAt(@c$pMg2+-W4n;C(cMtYhP9v=1}Lm z^myO>A7_{Uhi*Xx#xi?PfYs7@p{`$0QQ?-Z^*=GX@H;l~rT7&v`hEZYx!$i+)B=!+ z$Htmq)gyio9B|pnoWC|9z!!3}e%1fN+(wShYpcvlN@uC=dQp*M1*@~4eb_0obDi$a zl#;|op%gju*72vwjrn3O5whI&`Nd1Rdj)N-a7VF*M;O}D+zm??h^SjropimTRt3p3 znoB#WY38d^FORejxbNC`(c{&E??Ef8jYdXBa502H;%)uG-tl?T^vDrL@D$MTT)+GC z5y56Sae{Wwo;?Td8o}kbPl%1kwb>OXkILhMdp}eY`KDGfB$Xj4=t9uipfh||mFn-P zH1M}RyW@FXd*fb~uUs@29xQ$AtkKxH)Y)D7>dsmoWf=*JkC*DaR*!~0-u=mC?#p@( z4)=jJ6g}f|Kjv5$n*}SaudWROwsKfJ1QJ&?7I|iVEI#k;jRhmbmOeK(H?tB4dMT^N z9Vh8duWrv8n?7sW{qxs}Ya%bJPCi!%lVk``w>=#h%DQ>Kz?Lo9tw+z|He`uxvg*~B zy;yF-<P=IU6{Xy`p(6fo+`)s@(1UO$@E}>Ix7RWw0-C%v>J6(`!w=Ii7 z{;?}n*Hw1XQRLDGe@|U@id-8Ajq6!UOCa9vIaQCam)@bZ=?C)+ zW@hjXJ!x%a1gpk!{_SUTmGoIoa{zXs$_@1Qr@vN0N6?+v@bV>GJ8N+_gc@ui@_3il z^3XUrIhmQ8dnzbL3NN>+35ew z6>Y7dbTcXP{3cIlSImVE8h_sK@p4?_SUgIP-@K>Ca(;2~Nl(?>Sm+%iv7M*i1px6d zgpr=BmzU|O7i*rJ{rx~nQgRKPtZ_b)n>LX*ZQ9h+R#j9aL!eHby7FTyjt@4b-l|w0 zQP`11esC`;_*o|D!1+*HuAWLSW=KDiGc%)8)_1M8k{@jM1Q;F@aD!9l4#Fk^S%P5H zxw^`rS*2<8Q@Ld8y1H@^7p;JRfNIWzq>tNo?D!mg&*|jJf#`cWdU^!PKz_TUi;I-U zbfox=eRDgh{7PPNlZsZhXK45OAE~DI8_U^7mz&wI9=q%pK~rCIbD1)LUwL(gSpYq< z*^whpK78O_^CTU^A9Tgull^4ut+91<3_~S{Wa`}aD(6eKlc05P-o2X}M#~?b^A~Vq z%Q$sOM)B@qL+_{H{+W)Aot;?SPO5|P%Mht>6yTJO1@oUE&34_liZr#pxW1*O1#4z& zbv-9?59i7FOgs335gZm31+JdxBo+-1!Vg`|%|osFW+Owu9ZEo*$}$g0atuL_LC-N> z!k?yii@NU7c2A5uw69d+onQ;60=?LBwLXw#QjK%i+V;mH zm3H{-FLIuDifJCQou3>aOl2@7_+GqNFS7=dn2MF#KhDts`*6^do$FFPV$GKj7aYPi z?ck&&)52zAy^TgB2Vor}6snn-Clwwelb_@DDM-Y=7XyPjtBJwEAgqeEd6^$KLxDS?hW3`-(Z|HLvq$Zc!-7Bd)`*%uElZf1EpDI&=BKTJ1fi zRqT5-=3jg;RL+U1Wz1d>X>ir?M{G?Gj zTu4%Hm)_v$;s9cvNX<(?Ves<-=-=s>Cg+$fyndcb&jJJx0L{hSA1%k7#mL<7?E%zrS0ReXJTmABBr9uq^0J zdD=KS&Cu?Mb1)(0MabLN9qXXpgMHshVd0+d-aWPGvj4ku|O&UxY3Nti6mIpfjGT<0G zK7+VTUK5;OA3l7V!{=JEWGWE{LXd`lpzv81<2#?{-nZ@bbwx(Nez}FCC7%rZwIv+H z-o-A;B>w$!aXX~rC6J5}Iha^k`x7&yjlg{%mSRFcvwLXh0!+7LczyW8wLLvmF!{*I z!$S{%&rp)9sH7wnsyhG*v4)ZgWn))ZZ)BhjIETD;0oD2L-MbgmZ@L^mdGeK0Wll!M zIYUVu#5nX_DQIUvw$oq8_%an{)iCU%GI6z~&_FzQ!&&j%vZ<8ZJ4Htg8qyPk^Xz)I zOON=a=Wj$dbmI7EHjyr&&Kiimw9vIHoP6!9EZ;xteF=Ov*qqacubTVlQ8m6hSr0@N z)mV9+Z^MsY>dFGE94e0)j=d)-?FnP72N_mZz98J=!%oP7Pmk^27-pTu%OQVg-v% zR^D&MZN%QM*+t4d39~cNiWZ9KY8Wd3g3PYkGTpOW`?-S{-2 z*Rs}~qNpgF*tbgywb7;7D%l%_9=ihO6=kh0&R-5@;cvVoxit+WSaTEC~Gg(WIrdwW_8@_kK%i$vD8(Dxj08+b;gI z&J8a4!+Y(II7HUkbv!+@9OyW|s>{vy`WqLrK))g2phQvF@f#RKZed{rd~YSWn7x!N zcl5ZvJu{Qp;k)h;&-_mFWkzA2q)K!AeEA*dY^|s3PR6i?WKhq&WY9FVtLXw?$;%Q* zA(rhA;r#)bNrJq6c(g%UF@O439_wR&tH--^m<_)dn1>7}uB?pul#hRl=Xx*AD7`yx ztx7S=OBS=#)X=RmxMcF^N|(ckSw*DuGP@%qABjPA8^M&CLeKj-}NN z>6-AAuxFMmoJZx>vCnPrl;36ry`Se#$(qo674viy@Q3DaeI($!J8cbpLDL7VmaeKC zb<+lxDgBwjfgx)MB(cD9*~X0AAQ^HjRCC z(Y?L(2TQPXK6|Khb+Ace%bUZ;c!(WNkoz^9u_-Fc5vbmi_zZ*HPx{8Il```^TD{36-X^ z8G}dIkwp=MD^a~(Ub9PQ&mImm!fvCT>K0Eum~mcWMAU!$+-ZN+P_p`>kgD9NFNWS{ z&$50Ws~6etH9cZUPfssZ%EL(EHh8r(?^P)Jw&0%DNZ+efH+s6;=A!rLE2*kz8<;&X zJ}-Ag+=cV>M$6;JPmDYsYrfoC0h3aYHP{Rwy>bz5ORDQ(x9&SNRE33}nQzq@)Y7j6 zo7@rKSjH3t4DVcWvZzk6ULo&@di& z%U0KBu2oClktX;Phxa&^3pkpkJFDat?^T(6ES_89c5j{94c?(w2P=|7D^TT;ukGzE z)p2d(x^>J1QYv4ZJxNyW2sYb4&XJ?irHAuaPu^#GhUA(YFuQJBj0h`bCJ<|f#1#~{ z@KWsSJ=aUYgQf{=;P|2OTzfO?4OcZkqpGyLazae*S!Ga9MMF_SK+PyBJ^qxRjNk!0x{{Lz>6R z60~B_^+ckTudJ_UMC>HHJwQN1Z+Qu7sf(F{!$#;0Tsn$q5VPqS88bJ`=c%=?XgU00 ztG>dL>f@E+oO~}g9-RKD)hgPeGEcK$Jzo{BiMtXObK}dzZ?sy~=w-)1pHY90G0tzM zOIx>*LSlu>$%{azG=6{KF1D}mpCj%$DLFYYyfO#K678|6sjI%ufFdINUtlS0hv>Jv zrxTYxL?2s;HWtc7jKuSUT|&kD{ayPRK1%CC2!^w8k!f)xKOP!NG0M-+M^wc=r&|1V zWEv9|EQlzWl1@Cl1{MerV6~d zZ!BY>m|Sa`^x3I?YvH8v5t@8Lv`z9tEloqB?fXw*0E~b0sk=JUwf!Yu`zP&^^_M$krPKVKe%SxAeeGG^{ITIl`k+y^)A-o+m1lo<_cR3Hbt z93TFSHbiejQb&CJG88bf)TyubX}gCQ{MN2rTlDnl)bILoXZJ{jIT}+=T3*&b=i`Ss zhStyL-+Lq0BGNAN5r0X~*fod{BO{qgAtxcor}FGKee08!w4W~cCk=7Q9d2zGhR86R zNm5dhUe%?e5{+*d6iXgOpFVx!LkLiafr=OW?4+$Lz%+kx334Rzd?vk-cEz0!h6}5!tBHv7dOa5x7Y7%Y&fL;d zZJOB0NJGh9$CA1W0;zA=+Y4x7o%x1GM&1lh+dmjqK2sq&cGS2O=nhG8lPm6{^V)W4 zWfa~Av=TM~y|(#=Ake7J9`w*=MLg3 zL`neGLs7Z{UE`e%!1k8#!oKqoZV;S?Wo|8{yi7p-7@%whZ;X zq5dkf7;Zn^{P4?}+7BsE- z`Z{=tF`C?S1=yKwT|wk1fKSuZ=V`Kh#qeEwMn*0H_aem;9$^)#;kYYTLT{+L_To~2 zEc*VdY&91%7Em5`_|rR-~ItOx$Uk zPMsZNl=AejfHoDJrQC^+#ChEI<&||~zkY?G!GyRjE+HWjg&P1xk6C3))aRQ|f3<0Q za-1MgCL)WTBOS~uR;&OeBerQ1Kc=L8A2gG(K!g;e5i+iYQm*8>?_p9hlw)*jnB7Tp4qU={wCV(^M5v=2su(3muZzni zfGb#P$wrz{marnES`R#a%gk*AC=`YNt0{KtO;TVmXSGJip(k&`bAV{WRU%w%gu4)nPN3aFGjK z^jo>ble(O5eI@>sJalF8m#js0Inn7VE#E-HU92Y&XC%E3(gF9mDd(c%Vwz*DCgtVj z6s3|Dz^NA+oUd@xmys+rE~+mrE#=_lZ94wAcZzIUCSMmK zd^*Z{iy{t`8AQGA)c{BZ&HtMHw{M>q;u@P*b5MU*Aufrt_alu*64Ku8MUnm*Ouf8Zv2*tPx0Z=;$oc~70Q-4C@HM1tpQ(BZbO|1 zR%qt;?>|R;axzp;q6!Eqxk>0{Fav~WN*IgWCr?6iaz=yjGd5d|0u)h^jgM_y1I7tjWIq6*wxzz9F=w)3e{MayGz*Zlnj)D^lKTpJrVB(Lk**mW*g!w*vyy~TokFi6Z zVo>5w9VK?W>UaPwC?gHvJz5td8iR+eD-l})X+c_zXMkZaxl50F0M`bbk-ojL!~iiJIuiAx+ri=E z;8nT(v;r2ruh=DayYQ7IF*{}In7>$Pchegze;NKmEo`(|`0T6N1TMTHr|_Iar)FL8z-mNVcM%!rD}A!uH`%LKKN+^h-cf5B6mSfL*81xILOOxL!^SK z28J3r@5%3+z`bowoOro`m;LUy){c(X!)ujS4g`lslyz08uFm~+Ev{57&5+4SXueHx zrS08M94!a@9h9eCZ)t3Lk(#9#v9Pq#z+c^^vy>Tya9E8siixj{$?QNWp4HWz3Nr%` zZ=Qc5{$<_gtEGLUJYsj}c-DQ_3r7I+L*{W%ys zB3`DXq?Bp&>v6-bzYowe6P5Z!@IcAar>Ai5!+oLI&i?J;r7yXV4geRAm0#YD-fQHP zYb!NVXL}iQ(3_)lzTC7WEP)TpnSw9oKbl^#)b)>(HGNer~8P({45taAzEVxG$j08s^I_{eUF zcUR=hAqzl|2NC!}i9^IgC3BeJ@D~3~@1PrEp)u z`r)FQG*p%d;Wl4(*+Y>uvgKz$e_iA?Dgu_s*51A*OjG}GDbiL=U0ry|3SYHtP@PfS zY_WgbVjy=7SCktG@LLoO&F1YwxdzHb;9J0c@s>rULuix->t5 zTJIU`0q*>~?D_PO=kTHRhn^5@7QkB#Rt96Brt;RBcZ)N5(1tSrbRV0Xq<`DCV(k3J z^2!^ox#W~ zx3*~qi8pp~N4$9M1E340f6g~_{N#MY9%R!zfGpd0cl1ejsiUKlyux||vK3I%8Ej_4 z%q+dAs3<1K!nb4=fw+V8wBy&lbRKX629R))fxE9?!;Li;crb+ZE&KW=cL_3GhuJK4 zAr+^f8#jdP?CfUmGKy(|vhw}N82fy6oS_(>SHMow{rkCR{4_uX*w~2S*j`EcJ;)kv zOEm2%d!7r&e^Q}(^6tUE2CFTi8SpUgX!jJ~VZT(cdzzY>@gufCO>r$d>Ysw9g>#Gr zzlj+q^Oh}xJv}sxjErHUA1uX==!y+KNOs66%oDxzdM_hv_yg)MmbI8Z0^ZG5d*9b8oZgnm+^_P3-d~ zQ_92ibZt--&>$3tR}b-M#?%i^IGCKJf%NcZ<|$`i525xu_wn(dEAW3*Z}=HFOi`~8 zVE_D4Tc=~kx_3*Yr=@jg6lOhqXmUVrA4*Rgg_)U|G`|m}rCKePOh|R{1SQ%Rra*c2O~3 z#kPq3l#g z@`%~kw+SLPaC^n-klWNgv|SRFt-{(kDFqSFMsrJi z`D&>c@EjZ}f~pyX0h~XFx=vS&qZ>r95Kp_D63v|AXinoo_FkH?!c~{0C@1(K43R~% zhrB$pG&H~u#(!*lJQ!ux-F?Rgx7o95G!`N?qVYp}h50YCGxz4rn>P0LA0FIz-4tvo z(R3yCM;l)pGAyNAIvV9{$>-D;d_3x47|F9QR|;HhusEZ1TqPIGm#^Bak8rg$UR?7f zgLh-oDD(fAet3`H*|%d}k57p5K;s6Juw}!Hz*?7d{oZ%!JQQUrZ*Z(jUObZey%RE1 zdsg`S`=h)|LAi_&A*Z4ejsgXy!;r8QN86d+^zFC?RE4~m{Pl6tMt^}%01B{SLQnQ? zKxCJvwd3BsoVamve%@Wlwt^$FaYD2!UjLrBcC20Q*q~F^PmUJTV8g&rO)bx_G3qML zVBA?ENKcIMKnb9{QBhGmiyuRywG6$EF~mNveM3=ERSiLEl!znpn#S|$SANZmgSc_1 z`tV`@*A*8LOAv%q58uno%=}~(lJVa2>g%p9QOJWA)bF~;Q(^sgXvF?=!5@kNbPi_4 zbzqBlE+k~m-`er0V(@T2YluJaD^VIb@ikZGRD~7^j$2kywmRM@&*ifk3Lhee2*uwo z9kFBV8@1c|j;xkJb6Q0N9fhOtW6#g=wZ|Ct)F3mQ!mmTg=#pOl7d~7#H1tl0TGNd@ z4r|XKkjvM6U)A50KJi73-wG#fTq?&O)^vxsMBGt2|T)O*h&-Ku*<+c>G)GSt~upst5Bzo zDjvb<#zG86VbYz;NhdG^b>f6HP|y2rGxq!pqW+VdB$fisVF~mnDu+Ms8P9sJ zg$1ktCTJdau^(G-fD1bVK1NUwEzs-Iis@Cw&)YrmkO1Xq|a1z z&h#5HL2-n?Ar=*|uCDIP>?}wYjfKhmL!D(pfJ z7CU{j<+{0NdeI+v?C!=I)!P%tiRj^gVX;9W%=7}#Fok$~S+4sGwH;Shj^SR2FZCNTaks$G>cF->Pt_!Um zKvF39q2RgvdlnGF$h-O*w){h%OIC>bjnRNjI}hR4z53=(GVKZ~1{z#Kp<`e|Xw9xf z$>}z%EFNmhUrrlLA#5@@TvW`F0*a2$EwDUGh5Rej8K_R4buCV*ViWXQI@u? zDfhKA{Vg?d6k)8PYZC#w{W4|D(NeWburJ<>*_7x1=o_4i>9(+XXbBz%T&!&KMdDU+`WYrUTHUs$6!>!9$o}5HL}=H7Udp$CqbOG03;C`;PQp3!yvFA>}_?X_G5;#;48M@$|nR+Ycj(D!~nEira;QrPgkBma? zSk^#rQwR>gU%z`+tn>Z3T!;zV)S%*~#S;3J8h-px23F(yTsbRvOAyM5bLY;H*`E=4 zQ0IF3`aN*|7)KBDqGg8PPCQ=X?*)2M`_$w!{2SU0T{43KrdZu?29?JF{ zBoPd_uha}!3C5?$V}Q%g&yPbuAPRfhAg0Mwrbhoqvw%;=&#_@|o9N}bzVV{#+K_3Z z$syuH(9t?jdnJp8+?Pd(0f-e9KfqxB6M zRql}&T%|DMl@`(zPdqnE`Nyhn+&lO2;~J<2F9A|UT&EJBT_>mYgen7O%P{e^p$5OM zr@#N+dpVG^WIr2-8DOx~gsW1{G22fH?FN}57H3FMq&)Krw{MGGyxCy#42WNG-w#NG z<|h3ivaG^f4Qd7mG`0R}Z!yOO+D~@>$G129w7o8gqfM~@o_^#!=THTxyj)N5$RX^dTxERD+NM-ppSzj<7F4*1pFLCZRt@n>#mrvU+?G0h9?eC! z7Ca78PuVHuBud}7$S?W9e&0J4U5s?s?buirDjG0D12Km}jy?ajdx7*CU?ZWP0Xmkk z)BObmNn@~4=t0!9Ecf^DP_jDP&rAGZ5H`Mv81LNq>~y1g1jY~f@kR{5q94dQ6h>sE z=(P5<&M?2@L7CqMi`+iU!$ii!5M_srvvWgO6#yZtWt-v*Ls6^L)Yjf>oEFMh?)&Cc zyW{iW_FLc!fihU4T!>OXHwxGdNJ=Owl|c6N9Zq{gz}TaQf1oc3*$wE<+O)l?03)l* z{M-Ax3#xK9oC&Q2qr!4nP_TGxZM+dAENNq+LS!om=2(d}(bl=4$1I;yRj(YRy%ZHy zMV9;Yd)!4b{^z{+Pn>9?mD`7h9wjyCv^#K!i8`*woYmQ367I z4TKG3nDg}wRd$4Ue$4>CYl`gbq8dc`TuPeecK7Q}Vnp4ELdxsSqf%>GTtS6lRnnpP zha|S_1~~#@wXPJ81WM%gRWnMcimz^tBHN~cD)Os1@k1EEh?uo$%N7~GrIB+s*5Q?x z=gNw?PhVjUBp@F-Z)C!AW9gVq@`9}j0Bg|O#Ou4mzO%Cvd1vSelO%+}#DVZmYU-BP z`)G;U>b`OErACdphc)dO24jm}GZgv+vaHGC@Nfn&qhhkMY&axDib<$o1hAbqH^t34 zNX8iw?`>Q$ZBu?MSzyJbJ$$%bL^aFNH!uFmmFJV?`|mg3md^XO(d@thiA|flwRpaI zgnfQ+5HLoVw&(R0+?}4vkETo}YbYY~x!-vE(7mH1Y(Jgx{q%MtqiQ1OfDe=4j;rej zJ{&w-!1@|bfRm3e9EPNJFis;>)#JyCBz-|)MMAmO$=JiC-ty(MKV*n;Q-?okdJg`8 zmZ$gC#)@aaP>NS~H(Lh^Lrp_8x{tqYGqg^j7|xo484OtXWk%8wymnBwM@B|g0zDeT zE+Cs{k(|WF2=(u$E?raRg4NNG;lP8MclKVZXX_&bG|bvq@S_eGndo=_SK$qy4s^cJ zt%`@+TN;}n8Y3dz>^nun@X#$sa%1okNUrE+&Q@yX;>6S_wJOIs&dIBrs7D)Xrpd-0NAr<7)TY6kW=pqd~3y zppn9eG!o*zyyGA4Yfsd#6?X;+CP+pTuE|bl$KlPPT+2Dw$ zS~q4xQ-1gUeH|e4VEqLB6AhqrUBLi3@6#b=+yZ8t3{*C(iH;qW$^L6F0SFrG{?v5+ zl$Xd)<2MQCZm5bnKH2rGe)2-;EF;Ugw^BKxF{<%fUgkuy8tPHmnuOkT3`$jARoa;3wUBq08rUB_&%R zzGy|T5h&QS77_#NL;m1W+--9aYihz-`>MNxcYHEe%t>#a2H1$g5c87SZf?2NO%oUl zOxS#S4NMGk;gdk~D}N``fXFf}1t`u#Fl~$oC$6C(LY9?5#zIO`(CwQxZAx2DMSDe5 z5mi+*NP;476_4QhD^TeGzk}TTwIfIS%=1^T$o?vn$V$D>)y|@^sR5oV~`V{Rt}#LA0XY$-m$x} z+#SC(90P{Y2AzQ->OP^6L=hhNUo%9QKTVzzG|4ac#tR759*7f=A-1*y?&tOHi15bA zQEP71LG5zKZAJzfXAqh4m{~#J=k@l&KHWWYUkGR?I^>!0N07%V!262{H950tp-4$!Pc2c^MrV~p#>{7%ji^=`-}nb_Dq zedp6zPr8o;RV5{&`@ry37?C}aGvar^1AvEPLt+?|dvH#TtQHjy;m5o9f_H(?LMkY< z2Q!#y?e6KRx@A1n-@jUw3WYj;JDEXPTwIh>RUM6ZmnkCj4^TVk)IT0SDU7ziwcHDp zuHXuhmZS?1_K{B#sd$CAiZ6~Zsb*$1&z{jEosuRNlIZH590&l>px2?TAFpB8JmxXZ zC9Zdthr)au;~gdk4iJYqQpbQv>A@rb&cy3vO;HUE4YY~paF2C#Xd!1K6;#}-$Y_WL zy+%5;A^yNo@LBm!i&Y3d1gLq4#`k6*ROkC!A?AjBbsE62?_LWB59Hd!cy;; zqj^wta&mIgK))~#W0a7uhMGEt-=rv9@58VTgWz>|GMk8d|xhw!Qv-f&wCgtMZ? zjE&`h2KMF6=~&mvx36DcXs@{c z{gi`o-ojW*hWVL_it_gw^ZD%gc%c}9>)4lPBHdqo8(sv{`G*kpQIcT|U^hUQ6TfGk zJ$q&Y&V+bsA^7BB@0TBxZ-1l@a{1u8Td=SW3KF6s1Ui8!ZtHGDQ_Mz)1$~nKH8$pk zFw}R;t1~z?b(IJtz^D~!y1K0U8-ru3B5B3M)lFdQhM^1m<$q+F`}T3+$&t>8G>+)x zbaAED?7rDDx+AF!OQUH4S5eU7?iu`P4RbW~tgt{ik|+lBDAR9E{_u7pdSo%HJt641 zF?EmB(7RKfP$q+Vf>x8@cSP5NZUM{ZW0C_G4>~KRk`@EXZOmTRs(5pHuuI#-iI9bu9JH6t*9Ra>{N?5n$|i?0F; zry%?sVari_6a_AozpQ^1;7{ZU3Nf1h5h;Kg*}H%Ls{KdKz+Rq|QK+v75sboc5g%Jy zA}-BiK9uT+TRo5h%*qDFslr!%SgBMwT%aNB{loX1!731R(dW&u&=dgKpG8Tijd7}{ zAE>46$15VrSR_1*RZjorDo9Ea0S1M@6S{8yeL{X>??o-ad!Vl&W+Z66%Gg4 z@4pr(N(|3>1M>JlMrddP&L3 zj=WPZaB4kA#>LHZgM5d8wntvP7zT|9&e|A8>quwa^5pnsBXX~{?Whb*gTB8G{0*m& z(0LpQ;)h8*)qo-;dG|&IY}iJI0MR=Wf#$$K`rd|{@dL_`T?54cQcsi5(}lo5wEtMM zCLt-Q*TbiRXi0nx;IAHy&w9OY6rv5&&K2YM#BOeGWX~qLk2>}8;~&=e;nL%1?Y`zJ zDlB}FJWOC3mFRAZ>+3HFgdpkx8+8vX@&gNIk-{u~*Egi^!76bePNr-#-qQ zb0Yc1_pE(-W{}J^;k!ye^o}$C{X>!mVkW7Va1lE?I+Ud6X=0iEoN}Au7*Gb83zdwKx7V`op z0nCt-Nu5emf2gSy9)Gg3vcijirPIXi>%Ug(-2(d%t3hA~1O+kx2qV@SAYMf7L!5vx zBLXL{(x8L{(3@tNXI5fC4+_mHG~o=-&ej5QBZ8#DLe(|KNd)``s^1O#zz|>oWIx13 z0sSSZ%69BH`8HhBA<^u7t=;;=1ytZj288Za-q8FXhJWM43^J3vd+)Q|U9#w40Z7#% zY(+v3=i%+|?Y#-b7-0_UfjAPG5ldj`BnN~$?_)4t33VOEiWLz+8#^ijMFCmVm!6#< zR|3gAWBuK{Z@hnG`c>Mir-wE=`?6jI28%)rJd@k$(;*ixHr!69mIW?p0C|L(_Rbjf z7LFz6UorUSHr`vSp_v`)O!pXj)ybWNFBR4li2|-76LoM)fg*|nL+K1}1sD0S`6Q=& zmIb7=l9wo`3WRM61yPm>9T%noc!=j4BE=Xm_dYZOYhiHtS;Iddlxl)I{f@(_rWf%2YdxLcXu)^4{~rEiXX4D3s^Ek2QU{C6i8Yj zho@|XVPd~kB&TMFy?v@$a(G?OxHmtrc4Bi2wGtg^G}L`nfP>39zUF^@b2B#z!)GW@ z)toO^%TY(VDqQxRsTZ#8$6fM&Qz)KYxtxJho%U`PT=Fp=at)7{~O4(jBp{L~np| zk0&V)>>_LgH*6fCm~>i%R)YX3+F(1A02NhR*srO`2hhk$Agkedd=)ud=A#VpP87r! zbmZfjsP5w3bcMo2Z!xs1;2&=`Vq#|WJzi&Wufwb0(^F-)WAho7jjdY&d zXz!@h6OUdw4g~yTPwrVZXY_-yCaJpI7w6BC*DVWBhGp-U$OlN)-6%Hnk*)yK z195ckuB34}&PE}iGuDMc@x=A+-8+c8v`DNwb?W2dO$G&#mQps;idecq zY9oes0M!ryG@wi!)>y8bVS;KIucaEj9f}+2TPYt<)}w#~Bp?r6_lS8ZW@3RWMGY#a zWuJB=vtQ(hGcZW=E&_ClMl06~gdW<5z2j2M;vo&)16Pe^_2;ag5rc(SXVH@)chsSy ztdyf-GLR_C32tRE7>*ea8%#`ew1-AStdf#q!oyX@;@f!lLWF zDr*^?ks(dWe;f|NP_Q7HL&_u}EzN>kZ7Gsase| zyA6CPQ97ss<(*pO$htaAiGLHZ&OgCRPaE8!VfB#6c&}U`DU*y{lcas{VC!*?vykGG z32|6i9_Vkh&mE8sqRV+et(BnN`cb$9)9w22$Qogy&zqM8905D$sNMUQu~a|0H9=8-uP zl#c(SGcDi*c|={~3GO@0|Bei>!tDh|23&kASqa*I&6*sij@Bm>xLAsk^8vdK1594y zWL$!W4jZw0f>wWayp_!bL@<#(fp#W)l~6~BLF|oJQ*XWa^O}a{p)8DEfUrd~hNi_n zxqP$}{7G-M4WK#nti^ItqcbX|VHHq+ieN`j1?g3g#!O!vmCw~TFd&5^nOK7{z&d)a z_jDwUIDxQ)Q$bCHXuxyfaSvE1AzaWMQxAA}`*u)?l|&rr@&I0iL#7XIBplK0<@#Y$ zw9(Lz>p~5TVM-2u{zw??u>_uQw6O^y!hIYB^vBwEb`t15#*yPm_lK`Suuru!(omXx zRJ#gTfXp&OOS$0banKcXt^Jqhap319QBh$HFfa8ZO$TrkFw!YqCZFdYh11>z<|DrjI+ zr@y||M*jvzpfe>a<`KFzGDQ3@Jb1FxKg&5s8(xXfn?Ns&CZ-0HcRfa5QCdAT&!Z*7 z(TYbeMH{H+Vm+uZ@kxWFCu}@I$z(hE4tTw6_~DDkMs`KsM|Hq7fK^-P(EE^ci1rO5 zB=rDqH~~vNNb)fn2>$?Fffyge#280R>Ck<~=Y+F7Gwu_LPSAAj7ayQ`_ARwIi=|ej zlkazs{su+Hy-sa*3Q0OZ`rt{zNFj=TG8BajaH}NzY6x>&Ot}n`xH=5iE>?h|13xW8 zGCR(dJ-VEhBKK9enPJ4%i9A)DC?Ee(njlk= znqStrqAdk=jIT#W0qYF6)JTN(KCq|TaInHOb=0&KgF-p(!Cwh4_ur@|=7PA5w+0j3 z1{M&=R+h50dHS4yJ0VsWs)@@?hUOe~cMn`eWMnega*pzc4=PLXu)G7^3cDiW9`gSE zKQiUN0Y;6%;FT1z-iY8$1y5SrC(4kOSs@(Sc|(O2+5y-%ij~jwE}sX=4@&Mz@f5Ne z6FYkZcoEzqcMQwltM?@%^M~?Ty8New(F0t-Q6L`D5JVC(izrSBxr5BHf7YKb z5O_*(5%dKm;7Do5h@&uhm_$^DiB_10cn@Y3=GxV=TtA6ekZW7RKss%NDAE`16n&O* z2|)0XBVs5|(D~LNXUU!UVFC`H42Pi5QRwOaTX62pkT|eEucxuOxzIqL87L?4Mjprn zAe16JPxNtmVA;m9Nv?pU1usBn8Isrw zf)@G$5x^j$RDq?E$AA{_^FGMS>u~Q7w_a$gX6}rXe%rB0;0me-NEu@=r8fC}7Es^o zBy}Ooqthlg)^8at4Z*(GWMFZ9+1oKQj9;7wH3nWak;0ni+RzXw$r<&FG!bxPghWk9 z)g=^?8@NfxA>xxRA8mcY7B5+%+Ca9l`EY-id5Px+jA=1i&cKhij3rQOu>K8f#K<4S zeCgGV)@+#4APEnlmb_bBQ`!9obBv;Ij($!;*@(tCqVXG|ArrDGdbFJmeGV~79k4Hj zc$)Z*5Xgm~&S zKZHVDK7mi7#mEuD;CpRx1lGg=jyHTKVc`>mjgy4P+;-&1T^576wfb+SU0nZXx<1>Y z_#7q$PlpL+RF4d!qNqWSM`#uFTq7s(-icCZ!RH)RJn;g6uw%DApVXWH1V|;&B!Zfy zm98T7GsF&L6dmtSl)P39@R{e?EhAH9XhC)+YY1EW|Kf!wnB46evG$rhtwvv=rYBhI z(!yw9-l={glCz=Nu1CM?AZ^iv>p8{5AdyG(=;i-szYw+*ZO);A~Fwmw05RriK9I2e+_J z*(KceHvT6uc18yV$a*Ed6HLc~0L~JX)1fL32}XYdj-P>F8vLFFTD)uJeE*~MXmTw8 zpq|0O<+p$J9fuaKFueCpF$DT?!cD>7X^yKpP>TG4h&5W`v%-6ytg7alR5>F2r54^GYBBS*4ddTI8gXM*Y4sCrNHhge#=A( zBw8@0lFdnBsYz0VS{GeaM{{07oHbnFVGqED1aJP>krje;bg!5$jE>QmCDWE2>;GAU zbos41S>eGoC*0&2)2mY9#l31lxr5s^SD!a-s5&7 zv){iTBQ6xM-mF61PN)%*c1%raj;Y(dt*%d8M{cbMullb;1}~x3(3l0olB)+R(0&vi><929zo>lhML&Y9FDa=tUkTgbE-%@T^hLS&5^CL5A@!=rF@@1=JGw z2bW#SFB!BPK^ag75+ULSvy4hyb`CrM)Q|Aan4ETFdS}Q(d2#y+=0U;epYis4@y}`^ z-6Q=Hep+(Pno~I?P?=%Mu}1lvRiTSz#J0Ck7n9gWEa|d2J&X@Ga5O` zQm;cDUiY7}Uk<}Bnf(i30VSZK{98?@R!^Uu854JWb2Ewn%0O3m7ERL78=weSP^aoB z@h#KRd48K1E|8`fPmMedV!GiqVnL!B6ok^5Nr)Zv$&G06O7`{SU{-^G`e>DNu}3~X ztSKd$_{R8Nm?k443ptEz$EYyhk_($XtjE0#{1x*ON41;Xqp6IKpg5%*@YGXs&;?*a(B!d zerNI!CSbau8-P*7CANI~)uEH>ZEiY-n!qPWV`S^<%8qs$@7HTi1<_Im>?N#Y(1S*U zXLwb*2=N6VSYa#3Tbm}=Gce!~l3JfwBYH5Vxk(UG!|z1=<#s6Nkp#)GCKyjCdrAQi+eiP0RMr{AJUbn z^gNmu0zG470J6Tww%wCrp|MG~SKH{!3dGdc08%33qXWtWlp;3$@$t3l1t`Tx35xrn zHHc@?l)3ld!St`3>>7WBJQSQitX<%TR7D;}|A3=N*MtQT?70}Y4I8!o7j>1GNL~`p zOJ?zfOK3|3DDX)b$GV>vTUGv>Ts!Q+r~tyKzScuja z=|gOSAB7eMq&j^DHvppP1MUF-B@OaTP{eHg{pE5CurQo!vU?WKeiV~0#E1NxScDSINi5~x<9BMB`&c$#%g+er7K!Q&<=b#N` z7ui|~UWGUcz^mJ4X>nl&X{Nz)f?y}4Ku47a>^>L92u$?n*uDvHH}#@w1H(f^E+9<^ zw-1{a9f*L?%`{B~fb9O?2JP$W>-!+Y35}2E-FAUL7~hph*8i;?o8Oz7SBM#Y2@C@!CmA{D|9a z0WBRS0WF|vm{5M7vhmA)WA!j}=2PEA5GGK}TFUNiZf+(c&{?lqLSq+oQBUYF#G+8e z=wY$Hc)MA&m*am6b+xjuXi>vMLg;`}WPkK#7Eg@YEwMH2F#mvjy|;>BHA!dxFVLgp_(6+7gL)oy z?V*t~P$9rEAsn`jz)IbRTI8G912`W4YrM8RcKGPB_VbXA0xBK@x_d_L@id{-1DEDR zQ4GPu^T8u`ZXKoNxDSyQK={U{r_q~k@$vA-kRj=o$lV6NKBA0BOdcU2O5vzL)#=UiL5fcbF)#Lv^sAay>-dxoNDpfik&HZ?Pwp5{E?)Z9-%lK^ zA)ZI}7na^dL&kMoWq>tuFx|$UCBT1_%Kx(su>WiallYOeR28{UsTZhM5ZFj*iU)=2 zIyZ1BU>-TH4nrOo9tWNLxvORlNPf!W^#+u37LV})|;f>&*5nmHx~to(nOLb}t9QI8Z7t;7W*P>AfMiPED@ zH(|k0p5G=i?uNxp^ppll#$ljTXc?FLa%?ULrBLXiw(Dt|V5rV}D@uaWSA*xVt`Hzd zB~mutf_a(GnTV4B0O>_yntSf$V>i z`T)ETB`*o#nB&=VI8MH8TUQ}2a;Dlg)e|kEWNnFnXc)gC{7J$#> z4en0b8iiOu>}9|x!4G#qT}g*&FY_VVHKDPdL>muo$88C14AJA1!`2U|Z<#1kwRpxK zjPgAz!YCv%@2O(qN8Z9mf=T={hz?-&o}Qiy>OBAc%c#eY)WO>HFD3)phG6J_YsrdF zqHLHhz%&Ma7_kr`nSnw!U=jQZof6r4JtGKxctl$%Ip*@a(M!IU=F4;^9Dna3G&^ z{K;6j1CfxD|NS$l-|=sl1nkHI#s5W>2Z2xia5yH4$-fcTrQ-enzrW`H=CfH6J$=O8 VciT)*B?bR%*Way|tz&cUe*lYt`-}hp literal 67363 zcmeFZcRZGV`#*l!d+&Xj*(=H3Br7B#$Q4P$-NAd|ddO z3uCii;J>83)lIyw-m&+-YvpN&(zWt-ce&&3;%JTbwe$3HyyJFW_=2#QAlkv(+uch> zM8x%fzCien=WUTGtDkM~LkQe8O}$VkGArai7^R9OjwlQi>av=$kze-aiT{1`y}<3H zcKb1h`O021!NC^6?MDfhgr7EMJar$=n7MN=i-&LJ+3)6C8M8cejU=HGT#g~+Dop5* z0=aBV?$8@54ywW)4z#kCo0gn!9p>cDdhwNN?}u$?#y`Y^GPc!c0c6E zDvjeGJRn~4mRZ{iaHuz5QZKn^E$x{4MAg0=PCAkpil`KocJnj z7Gybkm%@_K_)9Voa7A5Ee!0=}+jK*(QI_>)DLFX_@FN!$HrWVN!q71rOq3zm9y#3} z%=Z=8q!Po8%hl23O1E#H`?|W?xhwZ`ch|t&{K3+aH8m}*O38bS7(sl~vP^7tC;)$u zQea+Eohl-*=TvVtwdI@n*8a=Niq*mQIegsk>Y1(TX&3nO zPmYyY${iIM8L4t5-vl+p;_UA)twxR;t_-h47$&Nyc*~f)b~#SFZ!>s$3)#(2%9zRM z7gT<^mtZO2_oII8?OFNzGx)Z!WJ$Vq<;vg7pWKK%>Z1(t?7!P=&dzO}J*!B8!5g{iFO{RG zO#W%h7lls|;qUKX8|LoqO^q9l@$uuwckA9Nr0fC=RPb2qkzx4+)-0TF_uo6!ySL1V zX1)F4Cs$fpicb|>rcyM9hQ<5+`*&$&CC=!syA*R6nwfziRHKMus8?NGecCdG4+WP;NnCMAWRqZbWF16J5dO3nO{{pjH8F2QIlayrz$6;O&QSEv?G z2X$JK%gf7WW@UB14m{Ggut*FI#ei?woM{xRDg;pi)|Ykjw(HC) z-?70xDVW?aFf${}dKFNC{`L1!Hd8t zrlzLOhaahi9cy|AQ=d?P0+tLDbsW@=#_#Xzdk0%KJ8NDLT;0?}&%nTdLd)Hm5Ln*} zxJ*uotsH~K&?M)NY&KoG=B%o!3SZDUk|SGVH~gq{N&RgXPm0&@z(B_{-K=WI_dF

    O7WXr+JFD{_xASAhwr?U$V{Q8BPjXAU5uU>4!M%LIu5F1V~i?Eo9 z%kO4p;>*hTHm6_WUAuP8gGJ;Cmcz^Gchl1ZZ5BzXsg%@obVd33D485#nk(uww)Xag zwY8M#>FFp`Qa>ktS8gur;e7?z4g4_u<73m;=+Rxcg(!5|gY)9z5vgKGS(^~xLJ?Re zq}*8j>e*~5nN=|6@NRrOEIT{9DM{d*j$dy7j~}8@(a~e?-l1~z@LJ{);eoI*G5*#g zUPZ;TSA?b`LqlC(-)7bL@7gO*i75}{1}iILKz)9{uIA?UqC!;@ieAhHvLiK719nHc zy1E4|Ell5)Rid0t))MSa$-5go(B!_(nm zuK7jF!op&x=dD>h7uy$0I9*OIfxY9~s?it$gpEY+QW2$J#sgwY@*d z@|{plnwy)U8ma5*l0aj6zfO(4I4}@XJs3_<2rIOqF&mS2wy=OEWm6zV{p%t0Y;1U= zyIrEOQ|vTEDw0NBzAV}$50Il>K#SZve$J8ojm^!T&Tza)zIk|uy1KfE3MFl7cq2>E z7$`Rn5)-YVE0va&8E`2{Fp@x9OUcVi61ve4vMeRVOgiNv`DS#~#@(GfpiRM6`;xD( zulZ`p!~>NEYmsy3@Ze0bhh-9U)zpX~McTz7f+akCKfKejXNmzSP8BrBhSNYBgWgo} zMfSpl$jTdy)*BO*d{o$>N+{tBA}E6WNo<#bf`YpG$DQhV1qIcttk}P8Y{1IZ)YVbf z_Fohb5Ktr6AS|^=iox-4brtf6g7 zr<^y8PFt4hWY5XT>FwxH(j07swlzIH9fw^YmG&p#$q)~|wJSSRDMz&@Tm8FoxVX5Y zl9Ew#Eq85PTm((tcIaV@a-0+1| z8d}=t8ne6}D4WiqPUw3M4i3pekC}+0l2iSSjg3vn3XJ|@2Omx-X=>sKXplf>Y_0D2 zVTbkw{Csh<6<7)#b~V z2b6l9QeRAJn~9U*hN}$T_w=Ov-+jU=%-z-&+pUqQ#dj-p?(b6KKSh2gHD}|9tFJFD zEXY)=|9Ri-&q7T>P(k^|Iz5=7z=?^8g+6=sEZLQPkX1GZy4shoU#(Y1a;z941U=OS zqddL5uGiBE&m}#5zpig+7zTw4RUn^6MMbst{ksNiq2^{{rzQS6m2LZNg}f{7_|wXv!WEo1 z;K!d%69cM7NI$;nCWiC39IbUha*CzhR^oeI4a({lzEmdNhKj(gi}(XFj=R{3f&c0#lf zo}>kSLz(E91O!8CQbH?no_tZz*hmK_d+K%Iy&gkmFM?(NiqD@dbaZtGW#X(q2%?sy zFYZJLF_k9ok3QuO*RQOiV|s3CZjO!m@bP1({mV|b#$i2EI$GK&o#0^tm4;q5IXmPs zNRq;B=THVDf*Fc>_39NM7x%*-Rt3d$v3?QB!z*FaF1R5viPm!c7FBfjnop&7qDYN} zh4}a=m}~vK$Upx1Bzkw+QZ&D?5R-<62Gvzk(PnWc6KyLjc9fG$6*11LQvaG1TbT>N zj+!XwTbAmgg2KXGE|Q!VFVYDK2>}dw;LrS2KIHxT_iNw2srdNRi()+gGUen`7xJOm zHK2_ZfvM2XQ7G7Z@`&*8a1(%Cyiwymdg~m9L51E!pO$yUV4@D%dM0N!;uLk~v_ z;0G$)>Z$jE`m*#V47z4dtkg`>o-q&xO9u!1nZ`Sp0t4HYi0mp@JD{#YD||CDVm<#l zFl@Of!U0p193Q_cq}g%j`_F3vxZ&)A$VNuRu+vI+_aqzXmtR}searji|MayVa%>#< zrkja|%4@s7Q6YdD&2Piqz>kD}_WQm9G_US0-{q+q8z`0!HZsT5p1fa=7_<%3D^bh*9nmFE{2NorrdM2OJy=ltxx(apu17s%t6{=$=iQ~x##DCr(K$g!n{%5b~Jlwuz|T*ie~;) zkhxGe=8*jGVR&{nGl2f^RsSY)VP*2f#6(Qw>_n`-{=^V5W+@*sh)$fNXvf`L9rdK2 z_77u$3cTp3aXEaJ&Vu4)i2ASh26ae{5 ztV+gDasX%}osd3RE$J<`B~TaunzXdE5sTD3_Mz#Wgv~c!1KYyF!UEvJ&fRT$y|GN4 z-a s2jV82pM3A9|3Jmemfk5goKtgCZZA&)U~~wISdh63sS->NkTy+#nKN1qsf(G z(6(7-#bNG2L9ENm%Tq0PMF9QiOCz@f({nn=WnQ@7LzFRLV0c*jn^=#02x&AH6mj@R z%411weA-tBCBsabslx*xYpExeioKgJWoUH#=4&8&YehElwmQVsA6+NAdvoNYU%is) z%(0Wb-^&p3hQ(H3#yH++lP@t+B0A-SR4l{W)>duG=gq7Yt>N20B)w;E69>CWq2fiz zAjns|`lqq8v%voMIim2+kjIZ1ynTGsNp2<5eMMQc_>urODXpsNZ*ZM4tnG@wX)bc> z^@Bfu0$k=_%YO-D8trj5Hl}_4{CNbcxZ|`@(HMSM3`ttgtEO^~CF1}+oi%D2nn*kH zxa$qEEGiyoFPV`$^^+}*|GTrQh&H~p?>;`3!^OkH$w;dwi1EUGEIZ(ljmEDxb2TAj zhgCDV3GF-r`|BT^aAiOuoaFeHmX_#(%d;jwY z6e+V5TFSpn$xM=lD6F|znwXdvKT9U_YQqy@Q~nq(wH}5DATw0P4Pv(|UcS6K^)4mx z^PqQH$g(=~o14%vzox#Lb2D%C6Z>*uU}S`pDgq!%r=`9-F)UoqHx)Skr&Nv&Y+i>7 zf7Uo*i+ChrnG%44K>bvPHjr-rP+3l%7;R7QQ>%%i%$1>IE_qGh4TcfFT(Q8+eTBS* z2eqFs17y@1z2aJ^xtVHjXJ_T)M0lgoEfSXF*DnbGDYn-SVh`x!aSFUk)mr;aTt{=z z6X)UlV6xplip3KLjEbtjF9mdwmi`%Fb59R8e3QP3NerwowFA`Rd zKM01I=+~R94Of1*Nl{%=(2`cB$H&HAJh#Qp1t4J%)PSjXF_XeZq66Edc+vV1{JdnZ(a21I6Wwwm;`?u}wBT_}Y#3x@(>U~Rvq5@2`bH$UO zFvjkkm_gkmx_u*s28m?TC(3XTM0Gl!ITy*Fn*BocVI471QaSqM&AE|n6xmiqLKmls z0N@kUuBb*HcR*kM+lL+h0&LGzHPp%Jf1=Ck>M~p)xU+?Y*Ic!L7(ty>adQ&}hKvDc zzPGoxIB6TWi1=fGg{ngzbTljKQE91f9z zc2i^1PYR8cAW(CVP$G8~P(lRYXub+kdf_8ZQ?rmL%MK@GcZf78Vv>0fFwt z?&xj~*;I-U$t+#obB%R%1K%ffzZ?QugeoaFTJ-cO4s3$Kc9lJ-2jiib6N>irW;k~> z1##oz;!;_84dO*7oa(JcPkycpzuVZeYV!hpA?$p^qhb}5Rto8aUz>$8`92)GjlCf~ zvv?eKuj9wOux6z%UeIE*XNmK~B!JFft=dt0(z7ueaPOYS)~5>+7cLY4{o6mHq;QZM zwE^@B=m9uoiN4+=P76GDH#bsv{QqE9mObm?Y_bc49cm&C1~$_R#!XLxz3-b0#038QGrda;JCH>TV;ZlmYO;u z`yoKPfdTxX;bA)#l^wv3=A!@!UO4waI|)mbc0eIS8rV?GJX;m&*YEodckVF4r-a8$?*^#m!MGDX{%yO>P|K*aGp)-LLjkUHQZlUgU?P(``Z|3N|%3B!@G0{q2 zo|QkA9m=k8P~l~9XKwr^Ts&KRfvV5NwcyYPA7q*hya<^H9rD_DPCNRsPl848IVj+K zO$vchNsb?pcE9AmV%d}G0s`qJiV*0luy+XUaC9{AW;YVY?%F5A3sl5n4ah6G6|9i!`cO9vvMm zYHMQwSnA;7qBGE$62}OF+{@_)AV-6wLqt^q-FqV-Fbkp9$H(`-tghNX_3auGFaO9- zd=0uplq;{nOZ>!hc%rhhOu+EiRWz9!yLa!KLnAP8#^6<#vl~&Mevpu06%fEk8qN8| z$FeHYguJ$$C2{%3{>&ZFUP6$E2Kd$VBAGM*a0&2p1SHtmEkcd+=#A;2bZ`mt0}*E!X7H^7Ny4ko zbNCztKru{CKLe<&@!6PY5^)#{_$5e71mdTbwl+vA1ra@Avpe#vWbikjdOy(M{Q2|e zlEMpm+IXbeo}LC-iGscidKK#D#ti(P3ghzX_YL{^N=;W}hN8<8yz_fjcaf%CR8+LK zy-l`WAi&3`tgPJmL~+$<1vS)MG=8l96+iyqfM2@3J}AMOJt#Q&HR%$w7S96&CLPQN zv%!G?c`imfV)Da>g_?fWZdfP`lt}xr`1e;E!gcla1&G>q3d9h3JNKVoF1P;qR*t~S z?`;PbY3b>U$eUwS9Or)a92Vjg5$PujK2-hi;e(~MH74lUd;yU$37Al)<~V_-gSI+0 zh7sM(p4DDLEsdAFEJaL0Vg-76%iV1a5W%|W?8;OdtE)pmGIjY>M*uS7I`dYzfZ5VJBHo$o%h|`OeD5&vBzc`!5aHw9SNrzNB0N50=6F^?g%gl)~BZ z?o_QEQSSYpmr+VKHk>ak+TzaT`l*nI%pZL|0Pkj}6ORo)un#Eh&TC?9fF&mL00B%Z zje#l^fuM3uFI&@z-+&+WSax;yxBKzoPO+lTdG;RAQ}FP_WMty{`ZR!plzdSc^AVo<^5OM_tvI9Nj_5M9a*=*;$EkY&=IYQ>WE8g=M~O) z>El|V4lLhhj!22mtdbUwj1`gHb{3=AmQIhh`@he%?3CX+A#`sNvqw_A5fLDl-vJQ@fh zA&N}?m;UT%{8Up#(p|eS^3K{5cp3xfmT%tZfHwjgTJq+xjcDk^-yg=FxvfS{mJ!g)Z-%crKIcv2}rvo~9O z354kHy#CGey?K?@yvd!t5I^no{?o3!Whv+c%Xz2kdHL_x-MDZzAzk5G7=J~I0RtQP@Kot*3wGO$Y`_=6E(OyzV6NQYq8f-6kiqn z_U+py&lSSlfNy-QKe~vl4k{}udSK}X5akcBRM++di0_dhP8x6z;UU1rpmf_sOR@rr z^9eO?$TKeQg;xX@Z25CyK?JZb1PwwNfRoH8;27H&iCB*IFQvKZ_Tc|S?k9jM6RMIZ zD@vydkSxS%Bu7=3( zc~9P3`|xQO4UnkK%*-NAdIrJyLqu5xg~Yad2T}M|7x0zDp!k8n3vyFJLW0WKLcQ}O z2#ODXjyuW~I}aJZdhvjO17LyeXzUT*in+lB*%0DpfbR?ufRehqyUS(tAI6|;xflEz zexN$S$rNIcrw1eg6w2>pZ_?xR*gsqLE-C6q2Nszn2&+}CKM7F_AIh%!eSLh}{m(DQ zY&n0*4B?wyP)v3{Iad+%9}l-5Yu`U;neU~0{R8Lt4m1bG0u>X^7-B?2$?b}w+}~3Z z_5)%85YM9OdV^Y}BnB^c?x}LasALZ5lvAs*p>mIhc~6;BjllC~tR0%Xk1-SL3VQ8d z5@1~rOg)!N+~qeSW`WVv+De?byd;beqE zQlePWB-@}B^JZ&7B*}-EJjG!&^_BE?|`#42Z4_z;@9ebl>M3o{=XxTpRDS z^4g`s5m#QX1hGWf86tM-2)GO}eVffy?i7960ULg3B%GwPULhSRdt&0^DjfRi$fHL} z%#ekkeL-9TK>}BKQ}nthgSjvryb3Izi-=VrW^$zk6Fq$gpeD#GhzN}LjFD=Qx5Ofz zot2f=9e+t})_3Bpq+y;!8gd>k_)F=tt^;GGHkJc#y$)YK zW(SN&8N!cL211j;4Bg+LH^N_m7u&Jo8JVt!!L^0b1BuU{75!Zt0aGjfIb({lVA0&0ubrrei5u`T)n6DH8;7m_ zPQDNbvf+ZiLUFKLeT4Qac;N6(w5*jY*s*Xi^G469jSTE1@GOBDJL1EMVra&d_q^b| zO^g*1MTYsJUV%u35OCq!6oKDng0zTl4Alta@ml#Sv9G+A^1oo=k>b-)N-qUI=HpYsaUyDr2^#yyrlgA>K2QU##y-$YXtUFbolum5Fhb(8O0IJ; z(JM2NpPu0=U|j+q9~c}YcwAj?R>^MX=`nBniaE2M(J)2NB>t|{%hv`qXq{rbcU!*w z@))fX4n7c~_;z@6!t{C9H7ojZj8Z6 ze_3*=4E4pI6|r+RHsZC5YX-k+CLtaxsLtS#gA%RD8_uWxof%;Nr!M&G-EvGwF-T%O|{ktpHpqa?@2WeeHH|w=-XU zZ&>D5rM+ynDH%Hwb%7RZRHOR5p~I7Vt+xJM*_Z9>{bdK+PMjd|m{38W18^UBaNz%g zt{&Im)^h_hH#=JmROSYk=`a>qUtY?KT7QM->(}X^lYx^f$h9xPor~XHIQ@b*sT#{8&3_F*FhcXp63AC=ZEeK7cKw!! zJ+uq*)eVdSEE=6(t1By!I#WC{`h{GW_Vp>>-S>ar_d7c|0EEuFkz6~#u)gsI_sRs- z6Jinxeh<`zFR15~K5g9;Oqh?h&IvQT9T_Qvj6>GNJAD9KX>LZO$%KHQ<32{pDi>2* zE8e@xsEsJpz+sSUhCH@zf%xiG;`rjSva;BzJO~v;>X>PK^;h8H=Kug$oCbcsidL*( zRw6-{ZK2eJnWk1GMOIy#?-nDx;Af~UO-Fd|b@^4Eui)~VoLPbj+iG#=!)dcasR2sM zDtOq1S36r->iqd|WRrkQ<9C5V7O{`YllH>BJ(5jf-v8_wkKC_!s!b>RGn_%AkwkPz zBLoo?L>t0e$4hh`-#(NjA3+(s|9kjWUsBL7PVlxRBqSEtP8ZqS`&sTr%wDJ1s>Q5Z>M5Foun$GTPhQ zL;SQZy4yR&AnyZf?1#R;6eQ2Vk|mu6i@c+2acrF8FQM^hd~d{9n*c0_At$eId;j z#HO8Ywo`KWF`1c}$t0x{-z46B`>@#RSdh4jRsmbOg3vRZ6>2{;en2}wvtndzw97vd za@#idLkndD?FQIYnTMIXaf1fBJ4tVF0W-+YLS?d)3ln0N&rp z(ZTZF;Dft6AFG0B!0@9;@>$Kf8+CkkiPaw)PF5#G)9i2-c1IPFP{hLExjbx?grp=w ztNfN?&tYR6wrvNJ0dQlx|0DEWi|O_2=Z+2;E90~}T4hGU@guR(DZT(Hr?NztGE2+L z5fOmul{={9({)Em=#Y_-k%)Ugdo*#-OdNv)1DZ`DSK>5^LZRz|RxIiIDFVFiv?fO) zA|i11k*paAdK|3hDXgqS>Gcf^LgV5Htr~^A5<%)J_~?Y=QD=t9cWprTQ{0^Xj%8$1 zaB_3F%c#e5QxXhbo=-y!0B|7AMYJ*ws{@T=`S%PEv#t__y}xz=*yx9UCfgHloqW4~ zxK|a-GD$cD>KM>FEC_076dCL*AgB_kI-}=|YvWuL02acTTS3RmY~2nLOI~?L%%>;w zXDqNuhaXB5B9FG)6*v9YiDf=E{gm;sGo(5L6Pm+ypwi1`>5W@siCXsMdni+4ZC~Gp zYB4Sb6aPo6{yJB#6qT0?@Qv|Dl5``{Gl-Ua``{(l&&8@zXl;m$er)|rNe z24ixCxZgc#<$PinegoL28XY=>7=fR>W?8!!ymF6;%lDMEO zf(IEI8X6(#U4a`Lp@b#Cb_`4jSx&{@4;4G}jtBF2|GWl~gFZn6jwzhJMR;c<-e|im z3pEJZVKTCC|Nj~7z=4wlzbDEOUoE|Kqv~OkTe84!2sR?I(A8Cep@I0wsT>G$Lf417 zkt8c1GGT-In>GFVb%~WD7MJK1DQ@^w+r5iU&dv`No=GjOL@~K_KoaA5hFPylC;^wF z()p}9b2Bqa-`VGpexs3lWVQ1|kjt7;EG=0x2SZ4Q)*V}ps~rgB{U-)x-FY2*?|U;Iov?WfFXmIlTlu z1D(n`mUmDl9;mc0xcqh=9uxqI;8=r>sHc@U%##W%6T&%gxQ%KE^@Q{N9UL^L9ulLA z^W20EDxWRY$NgpUqH=P~@ZYcrr+*azv#6ihcG( ztsw*@5PY_icAo)~t@N0VZflH$tb~va+(mfyAio1H%OY zhTtW@E2g_~W45zkT47+kJB$ z5u5dL#)X zW^2E`xj*n>^vTAf08Gun2Y$;Y=F^W(kVC>K{}?BKZ$BTx5>M%bCuAEz)Pam0V2a|+ zDKM*e9ufdD26WW5AFt+18c%VBj47dy{G!-cP9I2VaPk-YS)r;nsL|-6o*U?BhR4aX zCXrw4{bo6v|@*&v>p+WZ0 zH)V&Y#|~uq!z*#Jj~pQ)1l;!`B$kn-MmpSVvscr~qZ_CSBYMb1L>^rP+>>+nb7$be zT=ea{Kw1cV`u$liiNvQzK}@?K(BkVIfP#0CYpQW|0yJp%6#(V$-BwPj9MGu^Myr4Snyk*hBdku zXd2~1s(^C=H;(faV@+bE?+%bSn%bP6b?+`XCRSF;Q+i#q zol8qg#WzqBpX?qg-10aB&o)w{NcsBp40OoVu}8`Lsj;CcUv=W}qI*V4{qnge&WWT@ ziXKT1L<(J6hHW=!KONT=iJbF&uY0kezW&0u1BL_*5SgXFE?*_cjKP67Vu$htZ*=wQ zRmh7)by_0fZbSZ4Ai&_h0acAqrfive;Xq?9D3z!RFclInc8zzq_))!2|I#W|a>FGL z`rfMW)IqEIMgbQqNAfB-xvWW26V!Lswy&o zFkQPs{QPEnL6^nK-e9DWl8W8_VE+=yuLArwF}-eRSm>8}zw#dHI@Qf6+E>IrQg>u{ z6_dOx-rZY&n(^cD=zX5eqemGT*Y?<*>Y+yUM4C51z+Uaj6*9QV)u5xmuX_4R43ss5 z9Qn4W;$BXx2#fFi`BNO2w^U+$Qy?b=#z5lmZmYglV#KVlrSw$Y?$T1>Qs@(hrPK?> zFC7>6qGo+50po#!6@%UITG#P-$V@h*2C`Sw)`>85QK8KxFzAcff zBSWQ2*8)?_u%Pp(2zzkIhd3u_lowLEGq0v3(gdK8oV2mnr-3Chh^6!(G9qZv(=Mdb z^|HV(Jk)Qrnh4VVN6Ux%#7-J*PVO!D=Iz@8I8|Vm!l}C36MwxG6G_~FyN&oRX1NKg zhk{GokWz(ji4(C-VMel90J;$!+)^~cWlM8~%SXa+ODFE&Q(WUilS*SqMZn-mulf8l zjm9+ggwU~#J+ULaWtt99`DUL>B`+=PK>i=bPole#%MXN;n3PndYBE~K_$5&w2S@sH zQ$zr2lCjc)s8TCRsjl_su4X@>yyeOP&-C24NhZ+P)c@)AhF`5ZhsW0_9*xqGDUQyN zp_--mrMXhkRT71g)#33>v;jFXazK){7t1lG3^>Ze>1h;T@NcQjWX zu&=SVLd{T};L_9AuUR3HmbB44#FEwg5CwLJhq6@l*Q3_f*5pbSr;*(F2-rbmVf&fO zkd{==P84yWho0O(ND3oCv&XsTf1r2g=K11Yoa-6RxrFJ8v$%H@6guYuRT#7@JF z`EGT$(?#-cY&(f9X~UYLOh@3m?t=+c`i&`T3|*CfodZP)$<~h{N=f@X+tQQD z$+85JQypMBVuTOI^&^QKjyLqLFx&`G${G|roBi~X0h8AEe! z7vZ*xUc7j2_LAV~3S>Y~)uh@Tj5O&X*Msgnl^;ex@=kqKpwQ-NnMFb4y#u$_U*p;; z-`B2Qk&mQ0r`G|`3K*!&KXrqgGDJ-c8b`;FI&z)CM@EQ-c8W}no`-Fu(XmkAGWCnx zLz}cmkCuKcb{iD2O=UG0Vl-7(qhs=*!|>83)L^4$9FS@b23*rJ|Caz1EDl^*xKM9c zyBuQfG9);T|`(IkwZb8fcYW_@IsBZ!s1?9 zUG!`QN#=d3cBWokz#egEHRX?<9<>3yKblpJ&#$ksCWIye?(?t^ z;}#K8csMrH)KCBq6&uz4Bjt&iyy}nWM34k4qq%FCG2&F;Wh-v={+X_Wlato-8VeZu z0ov>$35xaN+E`H-zW&d)CB6@uR~vPR`#2dtNaR%fPxufhC=41wXbI^vkmj@_6_4{7HvhdqDwo8BL!6gHr2lHbNZf>+g zy0IOJBEIV!d-8qp^V`T|0Sq31H<9WoR(!P)(?LiXGg*Cpvqv0 zzCLK%Ui_MMM+27SO}_#1lJ`(l+|x7xp8e+^>r6G?xn;Oo{~4MOzUX99EDJ<~bcUcM zAt|u9Y#6|!^C6Uaau}cC@UWv|UiY%J^n^_ePCnFo2xdVJeY}v+q!}Lv69dEn$oBTF zjH}x~w8qB9W&i@RU{hZW@)&`P8;N6XUS5Ak2MT5^RLx)R=?g#d;$CTZD7q*sE#2(Y zb+_L4?@P%RRs_3)`|ObTO3K+2jvDMh2a!l?2m*V~jz`ZPTrJTnc=3Yt?5D^Xr3WvD zem_^aaTNmfnRQ&5`3Tod3Jwr1496L+vuriA?2^17MgVuC3P&zZd22E-?#rHqg!5s# z4uB_Lh1XTBI?8IworA?jg$}W7l~7DN{SjB{E9Bds+nC@GU%n~Tiz)gzc2*P49wdbc z^pOVfr(&-Dt!`p^a~27oqnz%H=I@*n-IVy+2#1}6`!4i)GDYKsE2 z5oMIGoiAi^Oe*sFszJp-LfgS-s%-hE zNzJqmD>go2=s#OMJb4^{>xsWC>fPv zxKLNukHw0=XZtZ;zuas_@TOqn+c%Koh(R6X{iVk}46Y55(9g(-hO?8Fc7Nut4(kDJ z=-)KSrPknA0XyC@ED+X+WM!^#mJ}0XC;kp?`MLc7W{e`9=#w9yfayNJV)%Xb1G=I( zk=Gdq(bEnOr9kIc{?2AjVsgi;RlZ)YXHQ-^XG(AY)Hb@j)+%ijHXaX z3_IunEKE1Te4aiU-7hgPso51}4g^_3~ff71zitZE?8} zX%}yCg#@rDMVW8sH3jR-7|6pAEr@Pu=>s+?K$Jf+Hhs*sz4nn@Q?xl}ODzB%w9`u3 z*QN75zp$u_C?|`2ur*|oz?p&sQP)29xo|0&J_iZHY0E+M2yxo0wAeU_iS4x=KLll& zW?0KZ;_;spsR6`EDv@fxRUD5G9MwWitw$fJP2r&+dmIkarV%1DdWOKQLCS}||AGil z^ik74bwfq#i_VXd+TdjAv>n!@w*H=QMjq1(pS~<#H;jxTR=TEw>5g?C2rdW?#a^4m z=7KHk-0db6#DYE;z1DHDkw&qK0I(pN20xlzMx*?rMnZjTq||wR;U#Y4M+M9@;0}Y#=+~z%ARIldw-(QTIV()$XAnu-w578y|8zwz^Yg1F1$uxtzt>3cseJyrg zIgj(QH_iy*cfqet+b8Rj#drg}FU;~<9P)$#EPu@e<$qkcgG2{b0Iv9?x&l-97Q2PH zxtf>PdAPt=Iox~L-xx*od+?DQtLI08-pqrH!-5FD#*XW{7MaH0e&B3gbZ%nhzCnYt@V(X#u0>jNISvQ ziIn$RGRJj}Pc>MfC=Csb2!dJLUA$#>8aiz0l%9ZZnVKWR!$j*M+IG!;7sj0G;X**v zQ_a-$arN*dzz>+SV@*28bzAJ3e7V-;NErHY<&3XG(gadpM=u&62HLsS_I!SuX!ZG^4Cp9-y4~mn}Z9@{(gDf zH$+Vw71~o0GRc^rr_Q|)@?T|K;(rf5U?X1E<%O)AEtDY@W?=WqMFV&3H8uCTYwk6c z!Un3USa2$6cQ6@}uy{XbxxfgYE?M6<4C*VS7cX4s^`Ur36|%d#3%S=z*RG}Oe5$lCh4^39tp z4R_{+rBLI79q=H03?9FGmt6fhX)8#Qo|v8PYQyIT1o#v8u9=y=`l|dk7QH1x1fx35eoz#rreIPP zh}*U15uJ7FYJg=RwIH%MP@4u=|1p6j(ckrGvoqwNLU<}N^aZ?8lUnugidhC*hy8TA8yfkVG9gnqyap1hslEb5$fBkrGnVbdVK8{By zYNC2L@cEGQe?e4`t^Gd%iqsEjl2jQkl+$jFMEHSTWYbu3U{GKzHi`}Z4Bys^VA1s&ZiUI}QKRB>K(uSwXw4d8p zS(L8nVw8W8Ljvq>mXvMzHLs-`7Dz+%$A5=DA0{4wGkf^)UcOQ=-AFG7~W7!U7t4ubFnKmgcqKLWzJ#*K;){g7l1xgwuM3zgEj2 z>!MyY2|6ti=tdCu0kTk`C}DV(KeLrsj`!ouDCb>zzSpoI|&DIQp`fDsKnw`tHRPM+Iq&f!Q9AY!H;UetdpMVHuL15TWI|FSoF4-VLG(3}43( ztvytC`}wH(GMuCZDZMG%POUPhOZ>GQ>H0#nM1U1R=`d-QVyWokA$N2%m%BVSGs85- zcY_R5beuc}Ot!#M4=LuR`@h9M-`~{*2Wz?gr130j{-|xf`|ZW~2WNk7ot6LiGvM)m z<1DIRTZ+>6lqjA!-apy6g~V@Q9-j4tz`0)F>_dndc#EOfXo`oxOOs2fx%Dy(F~B@E z@K`^B&y&Cko(zl|jcpDYW9_%DL6iuf#!{YNG`qrytT6^SETH^Qc~Y%_{tW8~{f%$> zHUtbnk0k&)3r;$O9k>G%wNjXP;HYQ9{R$3lC%0g}Q#ayN@FlyL+ep%-BbSpY)9Quk zb6oogj$)Z{u6n=mhT>w|o5VOUs-?c-GNE|b7<|+S+~SZ3*!2<;fkup%ggf`KKuI_p zy8gQGP;B0BnFQt^z-gO4GJoYw(D*sPc>ugcU#5{T(g6|>fsuylN-25!}=$tq&o9(SyjXQ3;z(vVe?lY4+< z`TxVb+AwPRfrjaR&`n$NmO)-Pca`%id0+U5dJjA;H^C4Ks>hk?SaUc{4?H9%XyKmfSqZy0Ld;FMS zn6MH))B#Q20n_S|cRoLerxRHM=^A=;-000~(jokO>Qn`#t5py6X<+Z*hjb0q`$aQZ z6LkEap)d9u;!Eo!=70M5)=t~o$^2FK;rU@8(V2CFdGiFQH?s(GxW=*Z*+I4;>ml(-guGM^z(Yw z3BD_NjQY^M*g-?-g26I)+yS6~u~g?MDS1Gsf=?RQ+y|u>CYnK!T<8eJg6w?8Nzl`_ z&?OiHeQsaAWXO&NK_8ONU~xg)PK4RHVi9W)#sGgo;vYl|Hh}xcf_&J?yehE8X0%Za zMnfp%2y}H5-reoZKL2R=oQ12gzJ9gS_v`%XTEJ(Z{}|l7DbzCaD80wDSt?bDf(Y|M zmq+%dFJ;-`%>;`a~N3bUYr-4*2&K3DRY74)`$m%1IKcY@fM&G`L zN$?^t+n~T9Ddcq_Teg6`0C{-IYDiL4FFSe5e3ZK5B>gu!6@g-6re|i>G24VtfnVF_ zE``2yq;POotMaAPP`jPCqoY_#vqXz4aK0h6 z1R|$Y(6JPJ1_W3GR2H|-jS!{H*i;x};77c2t;o>H9`5f^y>#i)KtAwW$MG>Ktr5PD znlIOp4_gU1`upJ{sy`2V47ebkqSc#jay+!B1KPQGzq3wJo!F-r6S5* z?fy*00H0ZKr~Sltz;*lek?@l&#B~jwYq<+s!1-kZLK(q$u=ypq0fdmP`$_ivW9ey(zqv-R z(U3XX*ysj(AHFRswam1P$l>^h5dG=?U|O>Z`07vq=z5;dZ{sD;QuA#1rww1BZjsYU zx>Iik_y`Fx@te9RbuaPOy%YZ2FE8L3ldh|wg(2Vqr<}S^22+oWt2?|om zQ+1A4d*0GGtG9}Yj$2%YtiiF4tc(nNbjmn@IxxhRZ(?1Pm5m24kqIg&jH>sXo*a36 zpOv14aTZhvn8ILa5FOlcaOjZTZVgBLMo`oQVWRj42*uHMsJ;X}qSBSS5uS+G*g-Nf zHAN2!Tk59^0?`o79bN6d6ST`@)pg-<;FB8j4mH)x-k5v4@bd8x=f*mm^0~~lp(7YV zhNx1PVy*g(I23xESK$LCSelP_^Li*VnENX)N8J!_zwL7M5*!9iiC7qa0AWTPKCi~m zgX5|Cg*4M%ELvnP7jo&*Y(X(fXtc`<&Ga>0oWWC4NV!Bxy>_A7gF=lMgL!<;SenHm z(kblZCGQyy>dqj2T@-ZkG{b_hW$Rg%n~Jk@`BHzftOh;f+abjZ`Hvt%g~$zj{QO$e zbrtj_?~(aS=#In)`RiK|@!r6S^xc;q58*ki!vSBbxm-gj2$33?i9)pjPj>DE$R{@@)$aw;& zOy?hI8UAKhaifa&o*|ym>l#|t`h1I$0n?*pj&B{qoTwCArzZ@10k@>IRMXe&qQTUs z`u~r$w}8rWZPWfA8U*Q5I+c(x=>`FjQV^BK29Xw}OHx8WFbGLelyEC4jVQWBFhE5q z0Rbfh1f>4Qt^1w%ulc_Bn>B0AT6@--c!v$obKlo>p2v9{zZ3Q>IPcoU`?j=~EgzkR zwn-AqqD$ZUpK=1uny{{r-OFg4zIg`oS*&_vwygTr_Mrl8RA1Vo}1!k%0iR1Bvl$ zOwBOZmr(wRuj<9Nb&3WWmMM|XEX9h%`Q(ZFMW_DQ+U5Dge$MN+ zom>qZ9v<#_aMHw@%X6me@UeK`GYX(hAQKMjhtR4wOvXf~3#`NIiV26*8|lTx(g!Up z2-~4b2YrAyCdr{a$2;zomYP0fwEt`Nim_=dl{rS%)3f`Jt7ovs4_R)jFsnYR_w5qc zQW!r*wET_Fc>~4i=#=2@dla`jwQ{elJobG#^uN(bWEQ%Af}9wZe22af!Fx=BBW_U^ zzAhpL+PD%CzJO}+3fzRx>^G%K%^AlhC!egW)aHyiR9zM^$H*IIR;apz*Y)GS5EIDg zXgbu24v=l&8@RkYDpps2GxjO9HFwvV5&}*r7yb$0S9v3xB9T?Me-B_T(w8ElZAL`L zfba8C!XcKgyH(6k#V7gr%$eyPrvy61nE#)@@tI``{szL)+5hEPvhV!cL+&$!y1gi%ku9d@ z$=k%k)7-c6cVGV#o^wW%OV(RZM_dX0m*&Xe_w$=3ge%f;O>i!Zlt5fC0@20eT1ke1 z$!(U6VNX*-AXonJcfjyV442!BkdHoS-8z&aA895{Y9-&5v|oDAi9$+j3@$PvZik<0 zCfZ8?mVW#olyNu$5-nT@$BtUcSSH(>hxW=D03L*!8^M=QIM@fO?#2Sl) zf_S`Uq|ly7(Dm9%q2YwUR~1U4OzJ3C=?hv9U4 zntm#h(2wT^y-9g7$$xEW6mT<6m8CDqB+FmNO8(^Ngmp-8M*07Go%N)wdNs1GAy^tUw?fa3bP+f3DLf~fcZR9-kAbt_cppWDV!XDyd)c(-!C#ts+W>rHTY~o- zszL)1VPuk*juHFdbH&$>WMNVF=FFkBqL6i!1U!0)H&7kq{v5!+6D=hVWJ_HB*pX0y}TG1M6iyHsO>m zRii8SKkJYz7soFflBSE{ia}PXS3?-2~=?pMxRrg3~nR4d&j@1 ziM4c2^#=lol65~HmPCAd4C4fbJ|9ZG_s0wN}k@xk)KE2r(M zPKw8i8MJ-zQc(?#7LK<|a-FcxQM*Ea$A@g|9x`d0zqbU|5$VtAUeAtOD75foBI`kc zkBjpG>#aLK^7SZgAEOOV4c;Oy4iAH1FYj2`Yq-@wda$qfID-l1V5Z+>BYfh*F&b4x z=X`45W+SqDgRNY4?4fPZ97ycN%v^kovMKHF_T(lRYQtqf>9&0M@F5X+2+ZO0_&7$$ zWxyXgwjF#<^&<0fD^mF`cYxBwM%#Zo=+I`nBM0bkeTP|3dlk|%yqJrtuP=2RvT->M zoLoVHUe6gJo8{DujEx{@;4!t3Eqo&Ut|}^`8R2FGK_kq4apGbq*z?7!yhGLkF8@T= z3FeYJ$$I0^?JVdu#ExpTbS!l46=*%FzI=FPDQjI3QD`D!jGPMbKUN98OHmoQepS}u zE2;dl8eu38js4Ku8z*(>et%J6W)r5N%szeX?S_PfC&= z;DP@QocCZfrBSfBn|!_)Y}p?-|^M$r;}Qd&Ys{?Q$fC zh_wDV+|jEGqsuH-F$y|!XR!5A(Nod=)5>XE9-9bjIgrL z_!7}NJUVQ zkq0%R7C8c;ipQu*F=fYnLXE=lGT=msCF`I1R{4P1L`JeG@5uRg%20xD14aXt0U)q8 zK3&#*BoE$50;mNg=ui7;@|9O4HH3a`$$__Sfu+@5y7Sekod^^>L0(!*HQWP(QHwy$zLKA`ft{jAJy#NojeYX*4$S!1Y8?&a5_3_(aN6~Ca_H24-1Ty6k(Bw zxJBW9PL!?I<5sK3ZB0^4lHRyKx)4Z!;eAsC4GC!qt&SZwqUAK{(HDLy`vS|Q+gErU zuL*2er9WnU|2KLTsi{4F3zHi!FuW@lc^r_7cyiQMW~-^2&xZ|9*;wx+@_o_@c6zz; zw^SPqtsCM->lj4Kgc+@(ui!YwKU%!|%k`UcWNmA?7w#zP;c$Vhix=(KzS%Qu!3}L( zsxvP?q62OOO!aXXd|pl0tKWX;O&aeuD180wsu^w|^f2r-S$8`r(iy&uw#XC@x}BJr zWslrZA|CB3iQ?A%9J$&4C65eO@@pXOeLCNF8IKljPsjDORfY4DyslNloTP@ixxeHZ zHzmgz+YpfLYswoS%br+VTn2M;ILJ~RsAVzQL?8wR*1L} zmmh27mejigEpU}M7%b!QPv#7QD2ob)NP#$XVq}Pl;@vw-2zGeV4wJD=m6-%}(~uV1 z>W{3N7Xxf_&G2|Lr;F!aS6A1kBk^99VPot^2DeMLxjRgrw6)C?q;3T}h%uXejG6Yv zqvNXC#n#e{Cpnq^&a1J$8AU;xcY>q$da7)95rr?N%(v}=;0|nZtr;u05x#I*>?xm< z2rxOcA>X66-)`7n{~bW_SOunQ*af*(G>#X%h9B(C}&sF0KaNO7TVLG%t653kr2+Kb6ezT&pin*SgM!oZ~ZiR>loBOntq; zpW(1NByAk_tTLVCQjPD3b_9VNAa=d=1X*6AbFA?A6_oLw)f z(eZ2Qhz?2KOMNYFGcfWSup^HnvE~ya?lGK!4jcQ9xQZvSCTOI7Y-kFfLc=(BF+jgc zfkRs}S|J$Y4$|Po67vH~SGva_^;_7_&PP{ma%}x$2-=M@Oaw?kc$37UG;NtIj=*$)TN{F8G zuZ%O@MiSo^c5{fGnUS%pDz8*tj~Uth^rzuc-|BU9Huuq6ksR9~uW zD|?A+9`SD}D&gP8TZvOR2U6;NkE;iXkefg3;9C)r0n7meN`y;drh@uoJyJN{j8L`< z`J^J+$I9B;)cXM5{r8zW9x8yrq%GKm&;0sj=o@BAFIExU(RW_Am!!&OKYh3txzTS~ zFP}bT&O8ZtO^d@ror|a|3LQg=4Bz2>F1v_+Q2E$h*)t(+s7how1jQ$^C+iZ05WMS!@`+0eyI*a066x>t%_HQ+{1$7uuAxT6io_47?aVK2thA*L8 z6F#jQRlq~7C^&K@o*h7qFK?rSHwTLL?BchjHmP@C+W*3P3coX&Mz-FUI`)%;XgdjC zN#oUHimNsPYa>itmSS15sZpOEK*vQy74BbHa~r<<5CSb@q&5fHlQ>@w5{}d694|sy zE@fadD8gVAbn1HJuGQBbO=+pIU^Z%zn{HEI*UA1fE{{$Dv-%%0M56%@FK>89VejE9 z+O^T5T`hNw3u9~4O==^w4Gea@OOfHZoqqj#%=@V=k(ePaEIaJJQHFSWZfE*mY{X0f zqClx2T+Cth0W$7MYb`f!xQ%{}MFy5d=E+$5=sudk&x)kQ{xBv}YikBzStz+5n9m%! zU$pPdHTJz@QIW?91KrhyH4us-AxdQRxoj2kro;sf9W!(E_zvv6HV>dJ%Q$y0~+&3IbSa+}vljt;T zK#mUwAH-d{bGumRjX2eSK;+pS$101uADR-$QtRaFfj5soT_9grFWV-Xm5_R{`-bxE z&Qk>MTFB4j!_hXwxZ(=ehdL%X2Oi;s+>ZaRrV$R#Mq$ocL-PK&>1JCqSnIvUu9V)1 zzxO5iYHYsx^Mm0UC1N`%wV)pfCb9n!9+4vOw&Hf*PM$c=GV-4PQ$&v51}GfPG|fjC8IFim%=@pM@jvh|IL_JPhCJwG4pa$@^d-?yB8H}54knu z*9L-)(|%M&j6lS7%5>Maw&SFnlF|ke9HmX# zOse5vFsKeLfcHUGXp*G|UmhV;w#o*w6dGr+)~)3VtkNc^{o0CZ6lFWybBrtVcI&$) z>y{_eN1L_jZN*;l2ngB6SRKV%Lx+>(KcNwhvm<{yEEpUlmEVf|hp#viVbY8KMO}{c zH7h{wK3^j&uNf!vo(=e-Zq&-#o7cUAzo+Uulq$$ecSjDc&hJ19&+gf|DZ=YX%?gaC zg#;<&X?*2hEl=N7md&3idU`jui(r4Zwj^M%QUf)anUwAddUN_7XN3qdsyqnsisCey-8#PqD2AF;) z<}b~EZH@JfrJK;jFMZgeOe{Vo$#u$}>jPdT7~cqk&}p{)(b;p}U8iqV4 zYl*S6*EPR_oe$*EHTWcC^a7&&{`ieUa~D^yFRZtQ4pl}4)ODqXDf@gQkyiR?)Cqs8 zfdL(X)+dH_L9=^;*vg~>|0g3|ghiF>XO)HeW(ghzAz6J6T3<~kPwYNpap2;x#TuDI zE()_K`akxquCA_hu?}BK!5dG96=WvWl;HNbvf41yM48<&8iuG|$LPLiZci|2JaY6X zGVt;_OXn){1!rzu17`KXdxo^<9ObQ|=2i1St6@6^+F~NCZL=4(j>2<>%bWlZPG+8Eq7d?Z{iz!?Vq3}KYeNJb6VWY`^cio+q!-&~8!8-`!bt5l z8ZfS)jb>6?B$iqb#(*v!a=3l)keVJo93A^Ql0;gco8{=7EHzM zn6bJWSYve|1jofYzMI#tvtFdR#%**yU0#HvB-x7;5-kQX6YeL6{d}Hkss23%dztLF zM=dPj?sY)22fcgw`xU?Q^0Onv`Ft4o;a#W~Hg~0Qp>zB z9`;y`t4UU9ZgxjeJf&~&st#h1sT6KsUr6RBH6*Vu4{g6aH=pd8-s5#<@7}gM)nP@P zM;yyUKcA3SS5JV20{Ro3qnx=+))9(3A*sa51OmZ=q-t|HM-6n&tSniTwzoGksns}x zqmgH6{&zCW*hIscacjls=x8&h!DC*7T=k1o#BdByic6`H`O`;KeeWsB%>15w{wiWN zgELeMQ+sHtpdYdxVmz{w41m&C2x3B2tkgN4*XF<|cq8Xt)vuDucPni%b$zo#0)x3X z`y$*USHeXmik`oC(E?W)tD1?A%GESqXf-RP54R5nq(*6oi;5fVi7o7*fV*g^6wlb8AfX4y^rx=s~B8+>Xr5j z?2etA_iHiQ*OI^b?;%TC>;z1FLz@bUR*bu*VOHAli1g-E!`(0E^|p;_hU0`t1iX&m zDq)h_^r6&OR>LUWK-LyvC&Z;(%_L|*y@XvFov56y-^TV!nxy`yI&SO|EG6So02-*{Cb2)=4^oJn1m*L|3&PmL$FYzV<9yU0zB{j(&aUcKMLOC(Ye% z4rNx9=jBq}rSD4oHFxoGX@Rj!nk)$9c=lmqxMQ=A(|LoHlKb<5!fWX!kJQbdEs1%& zI9MEtWHWLIKb`;UxHtFei(I}PUjkDo^of_A#itP_H?%rUP<6n@;QeuWCx6ckS8Ry+ zHT)+oSfnthOZVdVO(-WbLv7epz@%|Ol%aHxoSfOP5wq5N_wK<95D5&~>#;axXVVvW zEbxvKpfU(5nn)tA29_oMq$<~B-yOlXPyc=a1^2#{=nF&bEVb@pwJN;yV+~ZEH2Ln* z(UoD&oA!(RJ~XD)RuWbE>Sa>y>n)2f)Fbn2=`cb7_`d;@fJ9UGlDTzq=MJ0v3pkxk|x*=YAN+C#k76qMX3VaS0td;pQo+`z5J1 z6K&F>BCwfU$Pr=_snny>Nh`mgfLi(dq)~NAOh7$;SIn^C@_=$-{>bjYH*v;|8=qy$ z-k7%erT0xjts@~Qs(5`g!BnZ6L)@GVZLE>n%nU0_P@I6ZOk+^d-I(X9HXCW=HqC4i zHxqgqHOvUIS!A(C^4iPWyKY_|y#NUZ;K1DK>LXSM+FI<-pRbTR)%eJ#_-f*Q3+BK6 zQaAq=%*e#_+*RD{2QPlSN=Msw5;y|8$Ghz=j^&qrbgdo}AD}4aWl~>};}2YPXdM;2 z;0(11Rzios`i{Hy;qaX=*A#jTBo|b&(qaq%O2{^QKMFlCK6?LP@4O zKQX2R^|C#+d??Wh&L3iCejffk<{7cy*cCHL(|60nzxA-#85t=>><7mz{aAz`bCxpv z_>yxucUsBVMLtnU+a91Po=YqL+=#gzY}ARGvB#EOa+B`w7j&fYLi`1vO=BzF+;3|WX07o&3eq!m0p-k~_HkhJx)ZxukY|&O) ziB-WGr&Jhtc1G{K{A_*PPEAd3xV_~w|EAm>n-)wa6%2D6d#Va^S8g!QY`FyKM^TfTGH6xo)Z1XRziBe#89U-H?&o@!#XJMq;lW@T2&QKq zZs?Ggm6dfF-I?h7J0Sg>>>$rgOB!P_#%#h%0zwBF+BiJPd6#%wpsD|%R*L|{i!qPk zv(`7R6}XPzX4+c3zTcJ4I;S**`O-kc-%V8EqZj&D?hf=F*pxZE)P=j1t~YP z(u00gkr{JE4rtc6ecTbm$8W=OZg0*QQ4mA$)-y0F^_ z{V{Y0NERE&+GqL~mNBs$j1MtmdxIlYtNHH3u?Q=RmB1iF$`tI!!BvSF8{rfu%3|WH z>CzVXc3=%UJ18vzKJvA01LQDJ-1T+5hCgk+-K0zL!-wPNI@a&8H3hY?`X}i}(o&KN zCx)^ztQZQCy()tm*?D)EnbDH!f4wbn`_?0m&kxNy{!!qKPh6`$NV93j0IpB+5{xwo zm(_xC?6NTaFoGkRoGcR62ncfJr*e3TvBx6^bzqU_J`R`kaMit_{{q#5sf3V=@;fDhLf zc<`YTAthQ5)%b38f_yHdE&7aB1GNQiC5%Jx4d3Px!7dKepTxC{HEXz*#fK^)N@mnA z77(JHD)||9C1wxVm8|la?Z71+86hd0$RtqP8ST%0^K2P>F3T zn~91Lt;X296j}cPdf%ntv>9aZlCj}N$Km5PtF2{oY@Rvf$bVpZh^a7PJBVJ=D{dhJ z!~=VT{92gL{5{ndyN`l5enC}WVd)NC8P8U67WqoypXRZGD{E{4PuiU*SH=#78X+}% zvi=0wbQyEX$7V_0`{xr=V@hmls7axTiJmk=EP;+(Zo4cS4Kf~}FT`sFi!WX@Ob2h3 z81r@&`w+%q?ThTVotp=}dXBkc;7G*gva#L^9w#D{#rN4u;m~MDR@)Z!B?F=4`I$C> zHUij-*A}< z^($gH3#RX#3y``sTWyQXzi1qw5q}!&cwR-}kB8Vw2+SMQL?W(J2XBGH-;tApd-zdt_R89uF{Rh?`DcE$N+ z(9JMe@1s@I#Rs_cx(EV_gSll-;DmPNn@NFKX!CdU5XmQzfc9%A+$ePAb5hO zb~X*o2m+ve?(sY)#x^2;;89*H{aOw~1ddf{X=(e}k<|Lf&_nT|(`##Xs4m=O?s{y7 ztSu>ODrXDlY1BO}kj{hygH*`zeGm{gkg4`2@L#^Wq-0K)K0H%peLr!RyJ1zWvo3?{ zb6(BE%N<&E1(qxdJ8Qe@^E%Hoc&eNz81@_FR;&_G<{e|V?`#ne`6MjI*|$DV=D*%; zd~@~4%5wN{Z)1Ic_|hnGV?7b*YbYstUVuRLjT^DVLatqeDGEv*I&&V@d+PJ3B1&VPJp^Jo0&j?;b_~)k?PkEghDvt2W7=$ePSz`q1yC zG!tvLLJraH30mOh_GTW!)nZ*5#fANWu;2-o$8%4Vw5f7IB6o_15d_KW~ms z+%VIoe~8IGCrbM|BGec&HO#6&h=7S&yADCP+7r&>!7aN(V0v zs}6s?Bk|wfs;=I=r_bNBr#tVqJMA$?N8w`|6uOpc;XE@O`|mitLZLSQrHM?Y6x7@r z@|_O(q8Q!lFw_V#uMWbtKx_hq>PJ|(=oI{~WmdJ@F%B^-$ug8Sfl4kxjkN=05;ht5o=&le?fvgoSOMup11lH?t|JY3m7Nl%-&2~6#ym-z| zbKJ6CLaoAKsdV(1j-ZH{e0tPkvYP95VWR%m>)pa_z)+yQ7`;@(HSas_bwmKL7;Qn9 zJ4iiH0=N;`HpFs~2JxBWg|4p+av1G}S>*6HlKP{!WH#g`sKsQhuZ;H8t7{oqaE~9R zid1+x^uIze3Iz3!NLHe!qt5DxJpcIu4FLpxc{8aa^b<1AfNuOzo3S|!h~g*PZVRUd zQ-qKR0*spicpG~}=ZZ|@Ebn3tyB8%Q1`1lMfsS9=8ys6)1=&JAEE%{RmrA|>asq4U zU3um!XHudXk40q7&Acm@HI2C`mF_yTC6KpjzmT&*u|$7yaWM`67t>4oKgBqC!ApMN z^F;d7JJmXT8WKfr_v==_pBq9n@d;q>JMe8v1-dXEag$^Tp1DaF@}ZZz5(v1`Qf9!1 z+NwN9!$XJ>{r}4P=SP(2~#9!H%8Co54FGR?E5R7HtrIuQ2GWI?q{n`c}-L)+Qtk8 z<|_sQTlj_2B^P8_vsSNDU7(7_#5v{ep^{6q1rH}T#%-b2t8KbmB`O@F>1YkV9w#QnCh?h4pinS7x3n?&eNM>;GS=zfpa&klu-p$+a3@oVGFYX;rXe zic)Aa^S%}NE-~^=zZm#Vh!>NBR|e-?OijnB3y!XkS+UK~kk)@ph~KRBrp4qO<>cKX z#;GFLcr{MPF&;ethfV~nEI6jjouoLp+yuA*=BToBeRZW{6*|ld%$7i*i%Olv z&>5BrZvCadO}|ZT`mx*oRJVjKSyxhc|3zu4z0D4u_pZ@eZ=9)kSGzd5+kZ4@ilx1X zpyr{E!gdB|lUU9^dVtMLq@o~xp3%qKo6dPWy~m=wfKk7ftQVGb>%L^h(U`Lw2I2GL zB-Xn$$dU=dAq>P4XRNMSODt;-`}Etphu}M6l@WWM;rz#eLcApnCmuK;Gd(aA{a_;x z4-c616ePJxjW@O$io*Dy&4+0vz1O+NyvVLCx4HFLzTC#A<+iIL@@bjnWLEle=G zYk{-_k8Mj#jZ>?`pqZVHc68|6H}-Vv3n-?#x)IX@F9ExP!v_~5G)3&5;%u@1YnQi5 zN6BHP{v*U>fSA%Zw158eoY37w;NUYedlB3;1h$ z?99weX+~?22hD2;}BS``_PK!k`F>CVD3~tmsIwc7v9JmWhD-0|T>Rbn|I8 zeQBikK76qBSTPs!zeam-kUYjg%kA;i(EQ0P-Z4q~9W0ec22D0j+DXH$fqiGME8r$R zcG5j(vi}U7hJ=UnIC=o28|4%funEhE=!?h5qvuHCtQ5K83a1*1S}y!cuOJoIYQB5> zHvfy&e}uPBxwx?F*l%xXXGr--$x07023nba>;O6Yn59_7Q@O8>Out{*3^lp5nzr49M>&hwaB4yYKXz#wg{+II8wUKuotcPn0T>m(E z5n9w@-bI3`R&!eN@PSb;rR10-bBcrH;)IIDj5p9g)_Vbags&N)_(u7mwMqOM*~WKM z1YizR(OY;8zo{X*E<*+uGn^TdDGb$ewaN8Q(6D5`cb8qvQsJtg-#YSO=^QDznAym3 zMc!PDJhd{&+e*xP}1!QiUNolm6NwL{*@+?@3--!ZlZ zXFgpKy~5W7RR>uQHX@7mM}Z$ z0$2{4+Bjw5^`hz7v|A5t!H;0Kra(``Gn;N$S@TQFFg{n0cXwJpt$5R5sEE#ryl=co zY)z5gf{9U%!46h)_06(fZAMd9a}F;Ae5+o85Ht=&4>V%bwZ|HeJ_RJ%r{y~b8-Nii8ay}A0v?E+oh^@`S?D9*?<)wzdM7#XO+PW?soQf zde!yHW$c9~vr=?=H53Q7M5vY=R0uu8g~jLJ7|CfpX}pzeqWlVAn!OzCFluLRPENu$ zkW1j^A?t!bjcw4XH?l-H-W#VDqyjPb`ZM9(T=_py3wRr_Uug(qT~X+)#L~$&fgoNa zIf-2jrZ#-bsu6^yd1~>Pb6|@%;1>xs2{LF;aOk2)hdU>G`bj%fL-pnN9n&A{S3kz= zll-${3ro2Xy-3K}ql_R}-^$3I%B7JTB7u()CV_96K!9kyeoD+=kZ;7C9tRBmjgD6n zm$FpS{vyqBqzu`KpEImlWJ|tHYZO6ZXWK_B$r6~PuSa`-3t9So3-{vliF8_U(}N>X0WAY00BkJ7Fu97pYf|-@LO!zqDBO# zD*0T?3}Kg9^c#O3)1ls z5UkDzj-Iy%P_zT&BtRk{R49YF8HqYbk~0{!)VbOjYUn9(db!^Mh_MDH<-5M1Ij-4w zvLh4qWm>>@V8(w3~m=|B;9%Bu0Bti#p=-{kJFWAV(i@fDW!*a_>d*P!R z*h50HN7qlBN5rxh-M((@Si+Y8kqbt?+WB`!iKp{h0GjxwM?w|{52BQ?M+pORI^%Mt zY{1w)aQWh`h7+~K>DP;@OdN>zGE^J^PP;HXZYww`1{39z_CO zt!Z}zyy7Zj`ZRbrA;y!WE`-cf@?7t$=lZ~&61wU5aVacH#5JyCuhgq9@v};dG#2e+ za6Bmc$WoBW{LtQxDWeIeQhp7^^NDB05P3Pe<9y;{fflSu57*0$_S@i#eh(K6f*!uJ zfA4WeHP?@QOf0(DbE{Xqot`~rQeRsfA~30L*f!F7IG>$Dn=tg;O4oV*0M4RlT0_Nj zdn}g55k(}UA6>_)o$&Z)_O2&^AN%Xb_vWcbDBx^9toa05 zv82T0>-x3KOyjQ#MP6jB!p!>jm{EY-zqHJi@_t52t>j>=W)ZVd#Nva$WjD0R6m2#9 zbH|Hna9u06wxF`F%lJN7td#G-9U%d{H{bo7yZieDo)lx)|5_S`!?ZR1qWJ*@i{%A z7NYmVCV9YjQ(x6Npx{RBQ&ya@STegx7ppNst|x4vWx9VgI7vTEiuNYSf{!uVpcVjY7~B>0Bfdn}80R@3w1OnjIwq zoFwd>Q3-zb%z&6ok}Smovo4Hmx~Uehd5cMA3!(e{{C2qZ=LhE|d4Zr6cmH82JFME7 zrXUuB#XDd$nWNgOQvbtb4a85b2@{ zzYzZrR`;Pep#{P7SJvb7E9TP~d!>DsbGxGK`nIZu#vQZP6ko9n^P+D&m3M@)K#BIq zI3q~o4uvH>eEvT(rWfMR_3;EM?kfPE3xoxp`3c#_bLKr~_k8kV!=xOm6TW^uWj!hw z!K?A-#QGVX79kG6&=b`eNg{WPzW_ZE%ItW4)fh}~@;c7{gYgEf5B_RG=H624!MIrY z#s)C_8(iE8Bx|srkO3oj_Anjv=fw!QtGoBmOA)`E7!5&pp{?Fz zZ%5X2wTh(DjXMkT!ZX{;-K0^|N$T1w?Fj)|ASETG|3(QH>9)yN?z?NtU7X4W&u z+ju%$V~_G07(67cd>mz6Uh3^!|Lm7m6hPbq0I0kV+9P4}3>?Lrwf(8&Hp5#PF z^wfW#7Q`woLZPP)a~NdO&!B%AWx>eVZ0z*&I^XbH-I%(QyL#)ra(>>rsuN)^jNe*a zZBKZlaa9C=jj!iaaEr&!7E#H?7XM{i)vIX<&6t!v4#O4)P;giZ-E!R@(`rbPv6Vrc zrzQ59A!pw7N_#s-DF^}+V157!&;l65s@L~1{aJ+hem`&Y+*kB_WWhP7Zk%d6nY0@b z35YI4jzMQ;3$JX1Ouz3Wzpk*G!+_I5Nlt&sN?{AWoqj!={MZ{NO^e%3@git-2rMG{KRzH>5di0P~ z)1(w59jFnsz5GeRL!4Q8OR0gpZs9Q_o$})U0?FGY-oV#`pFrZzaR8G@YY>yWexH; z_=cTsom=TKqf&r}suR?#np;E|LRk_TKPbVBW#Q{)Y+h1SS~~Lk~vHI8GLBDel!@@BOXD# z{XkLjDtb`X&mXOifC(7WIaDfxs|$U55wL_o25AN@teFY8E41jQNdh-J&qjUJH5t zz<>4$@CfOzCN8RKirH%kc1GLbkb>TfIpaV6O`$eJ9a1@I*!L&nULJCwno-CQ3k2}H zvz_^If=elWNDlUF!tnXAf(fHr`Q=r1A$%l;=LQaB{bI*HflV{q(A!TwT@U)tjis9q0Crdi`X_7M_}1CQrG@z1Ti8r! zHD6&E*NWzmjAZw#D{U~~1Bt{q?*4gj)89^^*S}i?VovPdZF3&HuKhpfkA?pFKNIY1 zwjKYz*}h`STZ(k1emF!n%E*0mxHbSM0L6^UvcMqv5D7wIE_!FB44M0nn*l^8`pQR- zghfQOzjp4U^bvAsn!_uhVQXu9rX`DAoSK7H(_Pj+^?|^F3!OVY8?SwCd#ShG5g)~< z3Q4fz9G8y0%58&{XoH1p{Tzj}0_(k9s_C;^vIJUjIa0K_H>ukXpA!Tv0ZlbwJ0tK< z_tN%}{H51O4cnb)64iumzgZo+U|Uv$;s;IgWa{O6)pC4;GO^V>;CNZzjNfNKL`J$av;IdP|{!)Enl5+a4Dr>vV|Ngrc;g z4>RW3gpsC}oPz}bLMX6w0+KBxNeDi_`uH&xY$XTij_z5>7zOKW{=JR(YYECJrT1Y$L1prJs{^ltl<5+b-*B+i1bO6{(@MIplW4Ve@sojeh}G}C z@^b%n!ORp_@%WYY1(sbSB*SG%%wvvAsf=;HA>I&E8=K2mN2Azy(knm%nIl@m&%s2h zdVbsjVdRZCf-f&o^ZX9nLgPkRLU5+(V)2s@!G&8JaEbw3hNx0@N4)Uide9c-*CS$~ z!@W6rCo^mRywG}%kPl_P4qMQLz?$j4st9bc>j<^HYw)~OU$20F)3v+n@4dH)UlM^A zR;8`bBJQ(yISpz0S$$@MK%lFf(Ml@?Tj*V~iS^ipDKLhf@KFHmM4TF^HHL2Vt%wtn zA^=8)KkKlj0QOqCsG9iefq>VQ}smTHqlNIjn!gjLSV|3dj}^rd64K@u^j-0eqetG2*&nzPw^MN znM})J#1eQ&hDgyuV=`9^2de_WFoA$M7V!Q+e%1Q85rN5nw1}osV!s7GSu+GcLPJ}Y zN6obu4wbgQPnfY@GWokRQ7I%|mx+H(dpNn!?iU*kzn`iAJ}tLx)mS^F#j7a>Nj_wB z;l5366sm(|Lq)MB6T|BECPk_Xi(l+aM8#HGM2Dy`APMfF5KPi<6=w!_%~eQ#^JQO< zlC)j@5FhC5?Y&vPR-fu=YRA}5(Bzj-qMHn4taL%x7t6mEL#X^%yX2tvufTp`NVJJt>`Y`(uHn#W$- zDz;vvcvWuY#aY+%!sqS-kEvP*O;i|!IYUU4aF`gaiH#55%SQ(qKbrkElAc~B@p}BS z4*Jix#|LhP)}}YfS}yHj9h+n_I>sc|G3!p>@W0|89>eZ~w&z%0j=iv8l;hwHm5ZVB z?0Z8}X5#$LDqF<-=C?{o%ohO+*n|>rNG)=L1qX-`+;spwSRdU1kBm5HFsMxs7+e08 z-+z7^yL-5Kcpy_ZfEJys#P2BvYdh8y#$(iSE8GTY9#~bd-vY)8tj3u8y>ydk6VRg& zw5X=!C(nov^?p9Di);yDROz2cxarAZz#StYo7J){DE+!88-3%k_6lc-H3hX_Zx0%? zlh4pKAA?yHU{b>tJ4sVXN`aL;3f@Dvd*1HTAv$6=Uam9}RFHp{<(8WA{(p7vO)Zin zVoftF7)|RzSm-v5Yq}q_rY2||92seV+ovYtN?9CA7?QGE+CZ#L%C4)kbz_+Q@#B8% znrsP4UT14m2j!}b}T2$F1SHDJI#blOz5D?6ApA<#!l*=O z)H~E|b$li_R}`&md46APrDVO38SE!{z6N4%JLsi>EW)>^>emA`P1iftm(;N(c(ZW0 ztaW8De3VQm$cY`jC}mz54mPcLb=p(oZg)((>+ z$aoTj&Jh|Knpl7DceHoQUq{Xw`s9@CIwMUcML6O9>l&iL1#EGVR1eum37-N(Np~#9 zj&8hZbN19og5?Vwc7(5%yZ=@zC!>pirVtx?MYq|QC=9f+}HX20}3j&@} zVq0gu6d7GEIkMbl-z~~|`5|l27;B*8%}1~9@sF{GXnZR#wJbS$0G1eON`a+ycPL+4 zwBGntHgDdH)hqS@%9UAxFMDWmJ?o`CY!FbtImsT3C$FBie@v~(MhxABDbcN9Y><d?yt)`( z1O0;Sfl?`+sVm!*GhR;Uk?wc%YdFqBB?*VMG>!nlEw8pjIUPi14tHtloIKFdpqt1j ztFWHtuonFfA(J>a;gy*y_GZfvII36YIcf|$*o%%1Cp=3Sf?_Kk?HEto+#-4wgm{Sq zwCm&kU^mz`E*#c8%;LN6f(zN!ip?_DX(^i``j14ZCwvrHsSr|D)mBLg&*Bz;VyR6# z&M;m_S-bMIjjVp~p;xhL7;bB%W)cv;Al?kv^6}IXlg$=2PiibM5e~HXsIopi_1e<7noI|5*Cm@P$B&rVPN>OI^qDz!BXhSech$W&EuUw8nCEc6ZZ&#PZ`No&@*d zb`Ge{PaaBkl+If9oXsrO(p=$ic`p`Kf2y?Ht@`P<7l%FZIn*7u>#0BH_JKDBH-wIL zm9J^dVsg&gGq<`YAlHB+L3~@79^nhC3_}(g=A;E0>dO(SD2FHEe0_Gbut7CjLeSr zCJ4z;p+gScRzo6He4igYnIVvNYuH-DUYGK-`Df1gGFEpovIZq*uC=3g4`*ay<&duM z723FA&L>hUEqQlEZx$~ez5Ju3XEnJA0X(VkyvgjgAx%JUpu$7Q!E~VvH7&u@15NnP z^dA#-oFwqwJb~_G&1jE?nP}UDZcGiQ**&p2|A`1E;q#676ohH}`CfM#V*TDBy8sR@ zS=$!KJF!S{3Q>=MdHH*Wdd`1{=Qkghn5r!fsjoTJuCFb-i}AW?3PyMIN<&$c4^n^507DNOk$c?pl^D{)jjM%g#=315o6_knm z*3_pLUQudZq|wyK)0dSje{?x|Bh~9(QD*}q_wHlcYWhUQ<(*?dmcJ|i+S;0%kI%dDloD|{hA_xFM92XlCl!8^6Q8on_ipm;eJpffKDp43 zHie6Hm?EMflZ-jBkMq)7)s-@85lYF;q*RAvj(L{T69&mbrfjL|XK5PNn))>I%q1rK z>Jvgk$tkI*8c}|YoRa%_G9#eT3d1zK+{DU5T(_Z@FK_$|z_PS;B{O<@!=OM+bcq)q zC-3BZUAL{@MvQE90Iyx>xxULeF*7qhC54^TP=5S52o!<`4B*RD!y$F-;>Y=jvlO$M z{(Nz5<9a;lkFHX?Tx>VLwOj7k^ec9`&U6|k{(cmS({pn=8XCbyyY{DUum|u{uz9=ZaxIK#`ZMr1ij>Dlo}ngtv;2Fxyk5 z7O~-x*guA4kr4%ldy4w&ngm{1&>g$BX<_wTLA%%VM9>w1m@g6P8p}7f|HZNf?|n6Y z9Cd}-_@=MU#|(WH!qvTTh9l2Lf^*CIfDa&$*Vv+a#vCs>*aMmt6-9gO zz5_%)Fgi*DOYC2dBp>ZKBAnEZ1-5%JUBi^)i*53iE1}p4tTR$}VRmEye`_!ORNeh5 zpYPYr?Pw%&kDk+6z$cM(%a9p=5m5+$Xp*H$k-9M$?+NTL=6A@v7wo1#HRC?m0zWr~ zdo;%%L>83Zb48_mjJ&j_M!EOXC*pL)D^DAtMXXwT^~!YQRCQg!gJt@l;>p*I0sE<# zbUyEtd*vrtSu)+`sGVJKH{`>HpilDV626CY5vjzPz1BUyl z76Y21u=@IyTuzYTAmbkWzt;uoN? zzHtaYK0+N!R;#*8)%Sjj)%AHS$U_;lGP764E1qW$Ba`aftKgyenHfa1HSk2UvaywU z3>yMfUev+dGke~6VQg&ezS+<7sWKLyy^izha8haHY=88ddx;$DuYia5OG-NCr^jRQ zkzvc+o`@V5W$N9p%1XY1lqSSX+dn?O;oP}%89m=_ML`SCD=c(cS)B1WulyX=k+#)a zP%v~c@YNA!!7)sP)$t|XSL!*WpBA|>WYvPqf-a+S-U6h&T|iIEn*lX?qu!7mu^Y4iB6#p{Apw8{4t+tl4rEhYI1v z#$7*v`^@aj3k05f#S`(C^wwTr%kuw0hr6(E;s`?Ewy7$&Olk2txsK$OIA64+q7hD# zOZ=)oy#LS>&0}UH(e3O3sn326%}!67Zp|y*+c=MxfC{A`G+xVzJm#Ni7r;`$5)0yu z14&3`Wz6F()7M|xS3$zFv$I2eciW4JKcVem{`8L@Am>Vfwjs#AAqnVAur-=Kf940N z<8ge)mAx5;_I9ruNYkB40jXMo*|xh(Zw!>2oG(${AE}{HcBbF$+OO}YVdHW0^b7<2 zq{UGl!mg=>MXN<6Vo46p&h$kGW6&v3($F+Rgdgh=Nj1bPeu6;tVN4QQQBiSZ=md8` zN1wNunVEw3c*+ZciJ`5dL%E=gy$KtLT+F47Jjd=|QwylRGW05g`bG72Mqy{)wG)Ec zmmIj++1ayUXU3L}4fT@W&uvJ*_eN1!xw)-v@4ayZnfYOnChqy^X*a9Ghd0K~2QoDG zV~z@3m8QOa)RB|23-JCo@$K(^|Na@@{hB+O=M;&iEYzuShO)$c32kcoQySQX2IkH4e@vQTf|K6+TskgB0a z0hs^t;|XqRv~FsHLqh~CHNUwJzO@i4dQN*hi^RbIJ5$1!FUJT#CW(N zE0Y-d@a%DIA(pD)_V9;hD%45tx;~fd3l9{7mkM)UAG`>G!a5Uq@ky$$1S9E^uDu&wtbLA167^w zqWnqnkr%V(ij?GG-8)LvS1s17ozBxZ``Kg{G-vHD3`#w{jGj`?wO0Y^9U+rrN4PyV zHFm98ubcTOhF`wCKkESYax!Mp0FU?$aw1do^z_cD3t68P4{JZ2B+3_x_Zxy@O3gyU>x*@-^F^PY zf#o6fuC)UN_1mVxy^@i|s2s+_W7H}HWd!NP-%k%X&RyKAVk0oQppMJw#*gHM9L!IA zw%)zXx^8aS&(|pZessX=s~v7mG%e)`Z2BTUo1blmdxW@=B_IT%qnQHQHxk&tIsC?S zrkynQxY1?1&3TfRU(NYp#%J*~#u<)%JCEP@<;otBc!XUy={_vsK$uX)K=oj^yvRMw z@bJC67GD;>1_B4STVvO+9y`0JB!{SEXUsYtVAZkY05`Es^7+unEvdj}v#))J1E>Zaene|OduS>imz zel*;$fx0X*GBYXC6Ts-GL1YDYoE5=Z65UmLA=mEZY^QO+C=?=Zk z`PTRL3d6M2hF+~NuRKMzag0_-3zvT~rId)k7i3NSXjq_I&_Byw_VYb!?bQl!0{NaTj4 z8lLQ=Bw##QluMYD8gk`Ilc|uS4tfHWr}p*q^sumtQKX`qO$Tks_~nMt4KvG6%?!61 z@VvG+-em5piVCR@Ch{S-Y8Cwb2AtYVT}Mqr<|zb?g=#bQ-tN}4$?7&rxN~kwfNYH6 zKYctN7Ch-`X>J|m0#~6S z-nM@IiRawm3D(XPmge7D9){zUH@tf%Ff6W;3LYmlH5CU64lNSH^4vS}vT`8s*fuTg z)N9k3rlWJ8kC$=D`?I-VP{!#x!CbA!+Lu$tJ(Hbyr523J-*8;;*0O)&yFTxc-v=g7 zp1hz%2sh@t5e#?#K2S6H{{XnoTRd)+3d|nd0DaLk`IhaM^>X zIu4+lUbw^_MUj*QUgHfoYa<$=A2sUe7h_};vK6~ks? z-q=^}J&XGmmyS(e+brLGq(*6Fe9w{H`gV@K^C6=Z-mcb`N@J#(b1s({4{VJsP0$*7 zkd|ijwa**u&;I5-;mF9yIqIXH6^bYIx`KtcZ6tVNR&zxE5)lzejJb9f3`yJ1hg*+@ zgon?WJ9qW1Ij5}QLor;xJ{alpetv$tRDJnXYymG3>bA2qWQy`kDcrlUE+;b<2@_qBnG(9Ve2c1+PH=mn7h5-X-PWzWH{E-H@g)5edvEJ(Ex6N*=OY-3T zB0c=E#)J9Rqd)4_2Hv+GgFR2}P6`_g#I6dq6m}HkS?Doq=J>pg*E2Q`P73U(h;sPa zm`j5wz||$c)(o4oCT-P~rT?PF*C!GZ67;%$|4xR37f>lXC#MARZ~n+SIg!}953%RZ z%Pw3vRZB}tT>I#wt@C|PN-X0>nwguYXDFbhr|0qzJr*LP^7>u=K%*<0xn>@#I4Kc~ zX18lw!c!EyX4UER%s>lAeyW|9`gN-v38vHBMjQB=UEK`=x79Zmu9{mu7FHZ|Y{y1+ zf^3Q*uhhvtwR4zi;*Rw;I5d>1ama1>*S<%CA5IKH@n?#P-e?#8tQu*~7kPUBq&nI- z?2#`cn}T`{_FNk^iun2#jT37vhtQ&mdxBTFAu2M8W?$ z1+5^c2SXJH@LU& z&5>D-Y8baAyew)=N;ZHz@CBu$I_m|(vkVoa^ck6QY?Na6C44ja2u--aQ6j@&OW>cr}G!0GZfuyP8sU8jCML}r+ zI7h&0_n`vBfnXGef3qbzhJ>2V&WPj3OVQri z@U4QzTD7;glf5N5c|L52^M8(mvY{ls=KarMIIgC)a#zw`CYb;?&XeKfAW%t+|TkGzTL5&(S2CFNwSP*<?(LV4J;eHVo z7B-3-%Sh>EWjk8DVrTG&8rxXJ_txr6tShf9nEJMMfn}uG1EYpQg%u68+LqhQ)@P;K ztm&TBwr7p3N|nGyI#&RytUco1?G!Snae&dHMOJ?z!K!&-P`0k>(7# zE%V9VlDk+R;7D{PU(xIR;s&t-fzLsUgOQe2t?IWiX7MVd&~Y(X!x| zyFZtX*O;BY{-h-1E8J#gZ|sTL!Uz*c2ME=;sBu^sgi+h4PYdowhG;6kXl%UftaKyu z_~imnq0#5htKM97!Pk<@H>|jHp5uxw_vcIvyp>BH->vBFOD&! zBy!Y8b1=20cR4nt51dcCq|xypO(hZ8>p@!Gs@9a`A9H0S9vU9usxlF{|KI`sgS2|? zi1Es)f%|i5vJm>pf?@Z1(7LgnJ-aE5Krm|kGZN{KjOFwan8cdBd>IBPGJ`vINYY94 zA>;jv7XsI>UswO0>&T8@CYN`4{E?r2WN<;$&O*!H`AI55AUG9>yF!YbG?k`0^5Ty=L`X zRC4&}Wlq(oxw#mOKz4ifgn_^+dH;S#Zy^}4Be}N@y1BKT?@B2+>!%XWFcd4d3`YT? zbf8h?*2sr`{=hG9qpn?>g>-g?PCIt*S!% zD=uIDPiY&_VA#jQRv9<_cKT@#48RZrm7pKC1F8;5U8CzS60KUD^|=czI#RmY8r1@DIb; zr;Q09=WXjp1_u$zi(#IE09Mxd2j`+)=dB~}mm$|`OQ~+(!~iT#J&;aTUoWfdJ7c76 z-7-n0X%R@vneg&P8{KLa%3R`l6{ih`6?N1pD5#IMT!WXrJZg3nR?v;Rch9bhyqT9L z4zRo3S7QD8XSzdMvky2!7PUj1aDR33>2W<7#p#ib|4d#q?O2?~=P+FzRit~JFyk1Vc<+t->%vN&!mOid|63Akt+{!n%V!b3P~cwE?t!0s^#CVdk6n<*WetV| zw;utwgRV;$+gDvcyAS5nuvV-P2e@MIDU3rYgmR{S`mHQ4wJJpw72+V!Jj9AMqQ>9^ z(+KP!MgBR5L?V;a98ezM!y?g-cxc>WZ$FLY-pXR~GNN8gXij!g7<_ueNc_vfK8ce` zXQu2Z&=IvLSr#6gKYj^kJO$_A%VQ~0eRgmVYfx{)27YP(Uz@<>8z=8j6r5|5!MKxY zb8g%xOxM@VBD7-L-=4x7KSWGFyk?j+8r3Vm4Lzyl0( z30~*}!4&!Hmk0Qk4VRR67oXKJr_6eAs|}5f$Lz(4gn9FX_){Pr00r=;wXFuSu|_el zuY$QWShEHVc;@=mJKcWG;4JiCgh5z>jn>0_!Bysi4e_^L$fOuGiF*d)D3h<(Kl}Bk z8t4Xdb90>qVh7)UJ1(6&h`M;u)_c5Dr!Oj=ALpmno;928DO&k|$V3G$cdoO;VrIjM-~2eN7ECkobr~g54@Awp4HpAJ!au*fd@6V-tS|#0(lckzVheaSW zIeTklG2VwK&j0tNa`t;9%eA$)Q>!cLppN<-0bhSMV#@D_D+>WFh?r4Z7h`Q9{y3KC!kJ9i4?1zB2SH z@yGX!#NWIb@~{=B7^1dx4<1wotnEYo0)>cdpDG^j{K5+iKaf6b$)}-b&QVbjtJa=) z)cLrL&5Wvvy})bWh-F6n8Lskr!`Umm9>k&0LYNzq$z*g-Oa$NTxuQvg9tiS}A8-C> zTx;C(IPzvvQdpD0PFGi_S3M&w1p?A;dcIQq}0(o;bJxfbW@ z(vb=8bY;YEhiATFrmyoI$&}QjnvC&dX^;9YKy3in@i~0>>DWcI{(<$@l@m$8c}UY~ zb8}Hsg*|wnMni>>DMOF5Xksj@{DMBYwDDjn@T{4$W}SlS-GM$|a2w~FjTLZ3qdMm0 z<2yzP^2j{9V0&Z=rLW?T@W!WWK1I>?=RtM9zO};Zi#UQ!4$urp0Q1^UgAbke?xh%5 z=^b%gY^BSq3fIoM_VtuuLw6LU!`P(2NH0@{+`&i#*;8K(DQq1A?ZAm5d}J&TqQiJz z^&6@DVRdZ3m zY^*J?uul+cX?Ng&W}D`@<({9-!T#8PYb|VsKj&z~i4$zN+u~no(y@gS{6kMx5jSJe zw)-Fm1e7Z-zKGMFjp>)lZ_ZvW=Ptgr)bW!!L*xFcXwLZ460HFo5p~#bY176V1h{ej z(Blmc=Ru(|HO6o<&?>54tr`7-%fsvujTZuFJ(-*P^Zvm}1*$R7i&!vH+}-oy7?wWB zPYm~?CJA6_y#->4s4KAfL!bt6PMQ?%Kj@I0vu*2Euv_oCJQSN2nr>-HKKMx z86L3m&79xwWij)l(q`wa)>qo;3SP8y6lDHFsqw(~YHPT-xjz8?5<(+#9rplQr8GwS z*oN!Y)ifNU);(wsS$j&OG=A`+Qb~HH3HFjomMwSpxJUKZ##`6;rk${vl(LZ2#Cgm_ zcN8r|tHRNfWO9x8DqY!_;_`BCoIGGS$+!&km>*UNsuJ5<;&XyN*kIIiP{(juu|LbeB9}lF>q*u9`?*SwC+^qm*+}_(O=9J|aH6!_syY2)qj{wJ0bXu5RksauQ^3-vef2T=w9=`t)< zP?HaMj!@5@x_utaiw?gC;gKA{q)!^2JPJmR;H47yGmZYYW=<_;W^$XS{2E^2>z}>u zW`UBR>l;^#p!vxaEMexE-lra9mNngPIi3JMDL{r+v)?VAecEoC%e zubm(i49DJC_Sdqyy6IqL4_=uvkkQuv5jPG4wUz;zx8YwYJwV^ZBJg5X`6W z@~^IN=hQ~;1FkmZ1=Z_hYZBz`X8mPiD{oaUb-ORH7DObrAvHRlQuFRTsvZ^>H~U|5 zFE*BoIMmp3la2+!nv?3^zn_hXT24`(DUoG6A$;pYj;J~(Z{+&x6Rs-UYdFQQjwxjT zU^9O}$Z~?1H3T0liC>tW#oX(t#w}a(EoftGU;VW^wK`CI@p;(ml8La`&6$4wM=d@OOn`$SfPb2|sy_lTdMQ3a25rodY6QrVN9prpyxK1tWZFzU42YwDKx_)j79b6eN z>r_v*X3am`{tf;VC`x$taYot$V1}%7c5(riy0@2dxfCjF5@_Oa>s?lFw^zl-;_bMH zmr8q=YqHsF$UGd;m9;w0#nnepu=L$bbbVzoTcELi@_Mx!n@w;;`*4S?5$# zJWT7v_ickL_F$+S6>^WWILd|mvxa!#`7KQ-l_Z-CHUk4@WGsSWv3GyXqeo1i568SX z-XtE+7HbVghO-=tYn0zaId zH!3yTn8UOJHk(a+54FIpP68W%T2xVj6*h7`w<$0O*bF- zG}>2ng?-l8VxaWgFk>bEpRhZ)tJ^v|xk1>t4BW@13db7=MJnACI_#4>_4V{rwhAcR z9v%w~e0adBcIj`HLuQDMg)euSk=YeppM$m-n@^35L9YxPXy-ebZKb^oQBf)%l_a4+3=PR1`cB5nff}qp^ zWIci&;f^s3K?X5emfcnzU+&)f-A-Zg;?*W5r`IGK*3NYmjWk_g0CO;OLOTbCH(ip( zUN(EM=imTSbh-NbrJ}!jTIkfE{T7OqH*9V(E4j7LUpu=JpPEt3rMo&UC~ZGq&7Q%t zGe!g7M;W6KyIR%0Q6Y9GAZ(uBkTMD)`O$q-4sfz2;d92E$Yj8D6j(K|i~lkuHC5NgXD~kV*%#X>yK2=G#(T0I2YXHn1T9kK7ZjU3O@J&|{#@E^1AUH8 zPF0y>7U#_s%AB(b!vNDdu$EzqGk4505WLSh7@jv(QBh^q=XM6;$+Z`G2S-_HP`tr? zE&+NqGh-X~W1~R!45+Lhkv|T{)I)C}_y>S_KYK5}WUdf9C79fUpEp}c>chl!%}fdc zWv#*`)toDaSUEW2kS7G^3@MM++qMY}55(Tl%`R%Ix2b0GdT{A_{-Nc`Y5?WT4PFl) zU*Gg)+h6mjGS)0znPtY&_xWkK{NIms8=B@QV(i_#y~8hDm;v^n!F8IA5R^qRnA^bY zuim>iWwSFGhtxdf#rSZ2=P9l@_ab`kADoSu498$2wD&yfx&yWwKwaX~AVA^_cM**Q zg#eL}`|HSt8fMDg!AT!^bS&5FI~UDvvf_QaX0T}@NC0fHos)w0A|N4xCD2-dGtA{j zA;x;Y_n$F=M!%S=SD!C8op-r{ySQ7a%R_--yK0P=>+eB^od)v&hqH5!{oPh*r4F&z zuM0*RAQqQ-X}V(7=T>J}!Ol2`Wf*4Z8h=KXj*d**ktKq4UA0L72Y^|ahBgP34}_{{ zLpembbb3v@8*7ar3!$npDL8#67aWUMF3EZbDvJ@(d&16%HNj<6%}j9_Tz2#a?{`_=&7F12LAgXQz1$|u(qtFz9B$TbU>t!CEHl~h65P)GQ>^XS@Nb!x`6aGEy9%LgkaKp}D|w>WS%#kKyilnGxKx9@aUS9$^?X*NU)}*q^1F zU|Km=>gne8>eEwkbj*@ei!uy=&2#*{jxelQ%3~d3hfS~(v)h}hs*a~yBE`np@2Y>O zj!v!&zY23NJYkeSVKwh#|1IpuNE^{Bv9V>#g8^eZ({hem)=GqxKz988Ens4% z_Si2`G`jMP%b@DJuL>46J~44;O1Lb$rbZaOcUy-J&rM5U7=9dvKjJ$eJUZv>hJSTa z?RsYJdYsWIhhm{W7@>3&+@k#mf5+|37TdO+KvCu%Tk^QhLLdZ~2CaH<`lt^qw_1%` z8%`X6!1y1Ra&)XBcBy^A)E)O7u3odQBt5nq!xtHnNkPWjuHg82{9>clC}aqvgX%Fg zjeb7ht*;-fx5E{r2HYBte!g5q&JAHq%dY9-WRT4q5)_S4f}T%~G!zbD&Cal?Wv!I*E;sIyow49tA$ULFx={?chqF#RB+w|@1;!Uo~(a;r|A7yD-m65(V zsa|I0-ucFtCtF$7>x$?8&Y6GyOVb>`j?Cy| zXqa@UzOET@`gA$6*^uMCLuTQ^^}Q#G`+Mry@7_rq>UO!UJzn04$qscy!;gK<#|W? z6=3dU&X^GnPz>yDZ_19x*}N|@@kEai&bk>UFv;ZE2BVPj55p@FfgstlA-*;QUk5@Y<{l-rJ&{r)&Zm5F}L8>pFJ-NrB@MU!jl zp(_t{rl@oV(W?OK*znMM=>Qs=X2ZRMkiFRpJfdhZyt}iTx+*ysG-3+c1EId&%iyoR zL1o}RI@WLXLW@JsgMoru1-A~y55bx+M@dPTVj*;N81NYh&zQjjS88UM?tknNgijOa z8dW>I#z=50iFj%E2LWPFf`@a(s#QXbU0+*Yu9XvUzhc?{MOxymS<4Pd0?rN)o!6z8UV0{E=Re@NZ4Q30cK&M(?>Z0`E= zWI{A*$~PH=9OH819}RVf0l6!|Y!*G*o6f zIC#6=HM>xivHo=|lb2s=a_p1ML$e_qMB~Mb-}h2tt4%jxd{TW9Up-g1B4+E zTNET~;I9NgEkSaClK-$r@ArVQo*jcY$S7f(<6F*wCRG~Z0Ez7UQ0wTgHyi(WfS{!> zn%=QAU}!300&nExh$gNlTY!CafF=gb&^|_d6EG!9RdqVL6)f_j#MA$HECLL^9)}AP zW%Fv7ZK1HkhhAclMi;Q1qDEBDp5!~g!5*lPa2qY*zjHvoA@#$!>eqj5QdmC~p7!z0 z&fE?PdG-DuC+qGm-7z42HZ81(AP^ZYpp2eCg6*XNB@9uV5wxH22-f-MooA?t25jIO z*fY?bJbQK&0z9N4L>8mG&aXgJ!}nzEu_1P)f34Po@6>+0?A8wOhAJf{JILMrT~^o{@rL8z^dZ@a#U{ z!LvrUaE4e6m6gA{>zK2%j896#hq+PXdx+71X_&fMF>1pSN{T|W;!Z3*r2h;1q<1A`tiw-3j?o zKapfiFMUxd~j=z5MrdBYZX!OTa%M9xvqQr4iS#?X(eWC})#>+VE zrJ{`LIPEBqXIk1zw6vrt=K*eG-%#!N9>+V5m2c4h#a4`0pCS=SrL+xJA?~Yi$P`x* zECvS5`p&K?IOY^-GepH0$m+t02sU-i+wus&Q~)H9bPCP)E`Kev+_FXf&4|f0+u+Mj zt`}`bM@(N|pM8!}vi2AC7dVR}3}iobce}rN0vwx}TkuabUpBK~ zzo+hdY6O0>QM(L{C_LyyyB~z6#M#h@{>)E7x<@6ZrK4wqnmu85l+yAO*RdMhhB{ko z=%XlQ(lz^|vdmNHN27CJ+{7pkkDydrQsBgo3q_z?rLZ_8?scuHv;*b{Ge@M>(eWWi zxq0)5L2mo*6A>9%a*S(g9}zQH5j*_*rnJJ_g}y8qaPXts65=b&C<$> z{r2s-slnhxgS9l5#2A883IhL$!ztBs{LT{liOhMpiowXZtaTr7U_6XF$y&-QSf0e( z&E5ez3jZ+CUio8Q8s-hP(pvy}nC~JIE;x(xRj%{}o3&u;`GAsPjSvUZHcM%#)|75QiW&)^L4;t6V7S*w z>fnVhcbVhMClrp3i;aK8j`SjM1yH8gh?ko)@a3KJtIEoVslk_>LNs1=eS3U*|BBwK z^Wip!K6iE1_q;!@$!#hp(%)!s@WcK6-_{(k;s}==#k^cm;1o)G&GGu$D4ZjGA-X04 zKVBZioOPZX3okL-saD~tx+foX`~#;=Ut}GK!|6HnQfp%+FYO#Tz<$UYTZc4SdgBwqY-^Nvk^-Y2m4^Q~ftgrczkfSHBew43Vzjq;R3(#n% z023h|rAyK6jy;@>&H`c&OJ}p#;<$g!Xh_706)W1nMEx_KN1_;@C%nc_faSr3hN9Vs zwPcAP6oUv8S5@p-BE(j&E{nfz4e16%-?LENF#BDStn`_6f2#mkM$B@XMn0WEGd{2? z6%F03p- z{v?)a-spM}{0iL)dU~9gdlN=|UNHTv*}s3$^d;L<%#6>0F2jXS_E)Sofp_X_fGBqC zs17aZE#&rf*=uU>*N~11TOc4{LRfS%$PH4A$(`QVnC7`uHE_aXU_ew+MVQkaxWgnNnU=o3|#i;mN7Ik(!*!l^Wt(SmJI#ux;n2{<8Ha| zxGY{Q;81>27x3LAuCu1O`FSXQc==IZ0VGWaRd+eSc{(RaLaom??kVIAlyUq1Ih4&Z zy~N-hmFBdV5`c~-xbY1P3__~fm!eyVq;N{TKzrlfCmZ@j^%gMB2uFZ1?CLsXZz{ti zWfw!F>1>pelDaqD7JT73^^iKe4xA^}KUN6BrE9CC{EY8y*pG`qN!{ z{5TyyqHF6wZEXhq4?Wk#$+pI(8IK%lCKN)a&>}26JM>mwgwF`jM!!8OS{PeeV!3!2 zoSZ_@xc4z_4zow6fxAb^roVrGM%AfHLGMS(jjyf{hG#`mdg#?*G)zD*Q$p7*#etyE z#oLm2i;JRe?9m5w;G6`(loI}S{eVp~xMz__gFQ1IJlf60&vr}B!COg@8prBY3K;i$ zes!fN&U104ul~HOJ9sObB7q~#&D)??(eA|sA}lT*f$9LBF?oxUg?}kAJ^zldvmndF zrcalZlMC54b3P~&g;+zm4{7E=k7NxQG7^5M5f9D^Uqrn{FQQD5AKucuti#UE>Ce~6 z!OpUMFdftjtr5r7FbvUp1+n=AA-@Yog_V!t)!dL~D^l7*r0D$Uix(q6L~_Aa*F5wD zTI@l#%wLTHZq$F7ugN#+HB{xuV7zEiMs=O~k0Szi=I;c1)U(~k&Q}@2tgME{_W3VO zEs6D0BWaF-ED-qasKx|iuMl2@+K;+S&(7ai4y2d<=E?ws-HE zW&U|xheN}|qb}aP1#C{&9gZJGej0|nBqVC4nn}BY7tEkIZ()ZB0)KD+M5=o&+UdD; z^oDDYxdc#3^$vv+!?!bi@zxOBQzZUhSh_=6$^O{ane`0~5pd+iMm1qSz>K_ocl5P8 z)cFXXVf=u>7cEUmX=$yD)52eb;8TQ02gEU2!aytTei^C?MeEwNmcT29;N!A=zV9R% zT3&wL!U?Va+q%8px!Lvc&^$nQYSsb@^&9w{D-G-w#9#(+QOcWI$ z14VOUZFdns55OHb2uzZ*O{$MiTA13hv6Oe}RI|fY8Mp20m2s1YCf$ALDl5zvnv#)0 zB%Gpas|Iyz;Up-5i&Z<*VhtvGAIG~#B<%%X1TqNWgr!ODVg=-F%>gs;XzX_rBM=is z?GbnYks+bmNzeRd)3)EdH7sC^!H(Gz5g{Ryv4iN;M3TuGz$c1=f)8mFNyX$Wp;4e@ zfPu|f>a+a-`H;{a0xufu$`|V z^X^;LpMK`=`2Wc;?wEa|8X8Mo`AP=$>eIkOn}^duVPKmUBLICV(8;OOanUg+Ib~RU zmvIt%eQRxTPQz9a2h~@Kn>zBxkAuXhfWvz7vszmSj>J(6crHOf6N2-NC7JIBW-ssX z&w13dB_*Zt$*ch<8rH&UYin`3QqeI$Uf24p9Thap1^u3|7u;gU8_2fTMWr4>$Ai7M zqm{XNN^T6v(0JP9{PyxvC2jLi*UJ*TFO<%bvkv`n9<0myZHRAx?jzGr(umJe!Ug&L z<@F9M#J^@6I$iVmT6`*B)s6CJKBUh>H%KO3Lj* z46wd%AT2P<{r&SN84gi!tl3a|fq5WN-cFC3LLw7y+yLGcM5}BYQpi!R6=Tj`FxEm_ zcXAw!wSbNgU+a!g5Yhp_^N3IHn%2|Z4RpngkOkTybeDlUM3BGS{P{E-1>Q-Ds7L({ zR&CAxL9^t;xp<$SYt!9fm$v15crP3t#k5`=EJxyI&j1a9FWCO@ z+hca(>Jvu_wSlvShK9)Z>Hq*9il(AaZ9OpqEE0Ye`iEhgMCnHCAodm;Z#D<8l)Q{E zY)ekv_vLUI?qAS3HIY`A*Xx(+ z$}mX_4L-V^)x^CA39i&tfbifx#E#H}Qq2A!Dinpi`(U3v!=~M}?D(`ntZ$lIcyNFs zIN>K_w1E*Nn;+`7K1?^HA#+rJV_HEG4K$E?+qJgR4c%1CStY8AObiWmFardZFIdhXShJ`BiJ{(S}~eo+t_Aw^|L|lz`A; zWqX(lCyPEDf;hmIYZ#SbVe(ME6=0MwlNmT`m6sjt1&lyiPDp2a`t&Iy5M)XRVnGUf zsnH%I86rj|(9(gbi33MHgl_`pXjIR&Z;3h^T|!sjtS9$J?AVydr#_B(dvsr&n6Wer z5&Na~efa8VBhbgNYlzzSG=7x4K~@bmEu;-nGaA4x(2Xdy&73xuk0dqrp z6!Y~|3r1wsIn59I;Lf9f|37O99o1?s&BfHi{q6AxJwEPN(-_pmjlr3hqC7o3q|SBS z>;c-wolPto@t4?2Sgks!1#zN~OAAR`*bHz-23K^XPLuQ41QrJp2-SXw)d*dffcjtA z@gEqe;3P(mjCu|$2_A7$5x^4R`&kr(LpddT1+Gu%(!%H*m6V>#+9e04y?N3X;f+9U zYY`LzhN4{a{?V}`q%$EKkb^#L){ZD>R+&)&dBALNXOY8_I8XTf(3fNX{X-e?-^f3} zIh(6{KR&OCjhPY*sSkGbg$vVJQz(l0Z}*V+gLk@H@KR8tmm&F% z7;1E6Ir*FmiH`8i7GMx+8gO@FNL%`H%;oh3Sf>O z*hbXyT(D1JIg#Sw;v~p`CTXOV81S&I15C%G;cRS!slRxS76fKLvb+lNbIC(fNlU)ec2Mn-&C zwdh5n#(pY%Ytt-J5I*-WTdY0)J&F(n7BSdGbo(}bt8pp_)XabKx7lRt*meX;qWZvD zS9){ZSzJU65GmlHamw@HSjth~AFNJ?#eJuwo{BcV{0MxTNi35@cg zue;GG1gGwcP+f~70=S`MkZsS9HwK1E9#yKpabZT z>Q#bW2L)VJ%VgQ=j4gNDK72TaGsC2J1ZwL!c{3*JUi1wa&FPp2yZu&D9EjG$uzT1> z%5a-OTM7ptV`-aYqT+%k0)0!pzWk-Ok?($F_Juw|;oWbCQ!=MK~LOf!#@J2Z4gFq(--tMR{GBV2RfrmnCe9!?*6&k9T zP%le>hj%6YMny^7EI3R~6lKsK%D^?i19J)8H&n>3J~2H3RS|Ad(z7rVl?N9w+JUev z?7^HUDl5PKY>mpAcp#i&g70c}SCJd`Kb$!)5ebu zw)2d_da-u%=GQ4g0Vu~%Vus_#Q>r@Am)H`sKidl@{sfcH+kN&gh^D?VDP*d^oJn~D zgh4?w*>JJ69y~&xiR-`ra6j-jD0}_#cv9chPkA-!KmM;9UyTa>H;(C3kuuf{4kj%vjKkph#^toC2TDoQD$w4kIAvDzq* z3>Plh;Niyj<+N0V@;q2*wuZq9o%)QZiVn$*SRe~EYz`0q+NUw{}b5 zp870GiPD-FJ;W%ciD4w>A+Df#xyq~!5q`hSba^*L0OS%jp%jcf?{Cs{(gEJuA(+N=p;pr>^iagI|FO zrzMa3$Hw_+;szf>?C!gF{YSLfirdNS5dj!PmjQx%pt>}7ULj5@VE9cO9dcxn-g>3c z{I}n?|2MHdHvc}r0)$D}sY0-kkf3<`w@(yu6mfd~+0ST&Q99JQflg+e*rXMc@{8hA z42P}7$RT0n*Er1PyvB|p0Tt~e2fO|eH1{M;0&R{oG7zfupV6UMXuEE&1Cs~u1iHEz z2xZydQecrJ^kHv>B0svQVo+1zZ>8pG9F=QO6yl!8sk&IymZI6vFqZ4};HptpI?Da1*(P}($m)6 z9f`JilDqZn>|{v3$7&$06p7$x-fhWRmv;4A%UO_5Xk5w)s3vO{tfPSWx#i{0r1z2S zWsagEbKCv>B~7kHr?7L`P>x6>g{5_x^eWa30WKY7*~Qk`4AP0I$0YRjd#H7g%CnKH ziSUAU6igL348!65I8+bowkW0ZK)ag^r^5cmdsC3}#q{cJPQB%*^au@JsJYuP&Ab>c z-x#!0A_++bq9sbr=K2C?taJ9s9&33j#bm}?t~vwEDW!Qtj68KXx%)`2M)LzCk__&( zBdaW44)k_+L}?SAyYBa6U2hKcLZdV7qpH(hzK8d#(b9|&JR%@@QKlFBFGYV38UhX* zZj5FbTmU0B*`~JedTi9csdJ!39{2nV_;MNQybmr;TQw>C5# zV{q<=vm3Q^-QB-u3kL5O()aXMhB#~w(v^BbBXO6MmX&b@3_aUHhW1OdZa2n1A8KtW ztEh0mTA+-I8Gb1KzvB-}V7`66WxY3)jMDo08SuZ5AOx2zjfBLT#N*xf^{0sP)lGBu z>M=lqS7!Rb8v$Gj$tAVgSuFE3v#qTpxS`NjjW8>miHiK}%o?bpPw0K(tRT#S!x%t- zopfOvEaW7eVME}yp??F7{%Cx-2lbeLR##T0*%ll&30Yb1dq%b_5EC5qBmd98e8a_6 z-b)62U`jzDN6c%llGo=t^zK3Eh7i8l8KMHU@p5F&B6$=(FWTP`agqrMRWjS$j z(nuD_TbXZSOa6L&*dV0fa#wgi9~TPkmjch8KJamZp9jvP{s*XXrx#E`>Nqgzz>qso zxOJ}6G|ZWLXnQIZY6uQgjv$@l!o?sz$;Jd2f~hsN(rSomF;@shgfzUIpg=jX$szbp z0@H?GqxinH5mI#dFhKw2$C8^E>iaKWfv<|@R{>doh5mUQb>Q?U(8LGS<$z?=i;q%8 z7=3MUtUnrP^`$GuYV~X4n70p_b^SVnauDTb8|+ndGKPN)EyGPmZmTvpZ-|FeMZgtA zc1-yLUdx6lqIVehhjJ^3ek1n-P&^h1QnaOY>V<mO1EU7K?L2D`2qN3;Lw=Cb=H;h5Pyu7+Hm~bmf0bH*C8YR%g zwsP+q|NkkyqG~{1L4n8yg5c1)Uwho*ZiZS8o`}rUpxncbtO)re#}~NEz{td;9Dm~x z&BuRP7+%y{6zK!Ub^d@2A}waB?r)RSEkc1(D5*PNPVUbqLk2?Lnpel~UuIpdhy9oC zDV!IBNK7MnhYSHA(?Mb#L#K(QmMa88H182H0tzzCFAg=V!}#dXe^>c72IJ;Kg!Ia{ zY#9Sby#A1rykJ8Hahekef#*>Sa7?=ja0tsbGpFS)lE5ji1N}=2M`JHsa3IwXH8be< z_}pyutu@?>^@gG7GL=8TR{R0=2!TTMti!#GOq*b`0bJMI_RlE}bP2$f%0}&5+gO4& z{z%HhgW5&qHQ2w(c*tA45;ah-$WkYVCxBfETCW6@A<5Ek6U@Mw$=4Dt5P*{nZ{F;% z1}IpvAYi5Up;Ra?4s6U3(c_-Icm-=0@Ak)j68J7*XoiBr4)8{+?SB~_q8~08RMF9Y z1nd3H>$~F87$B$U_)^O6_d7@G>A|^)Si=(&BSjOz=##we|9i_4@!z)+5_IRZXCXP0 z9v8}(KEzO%4bBPSm*5Kw;SYkD81UW!TnyiTrFZOvIEqK<({W0z??KU+0N$i>{iQ2c zZajLlz0|b@W2AHlGm-Z)=e%7JxO)*9&5u>$Z~L>+IjbF#3rudE(%bIt z5rEGq=FAz+_;k)ZP(Lu!?mPTsP85znWOM#&P=L5f&mG*vATs;E)4)F9j?F{k0J_kH zgJA*1gEdLG%2fV{@}yFcbdf(g$baR!;)eYw?F@MZ)fh5PghfRsX~k(b=+8P&?o42C za^lfEV_<{!&!3M2QO^b|ISA5$P63z+7y8TDU|ULKS_k#ILJ}4m=Vhq}p%7tX(D&-B zIbBfeWzdQMwL8A2xfU;!zGp-f*p?h6km1O=R1?#ezTZ&Cf<{3WUVP}&l&1()B^>>8 zi-%sQJf$CuvB~ zSPDz+{_QjK@bGA(5x2{h%}jLE=VcXQr|uF*Lny?I(B}>)CUH_CHXvq1>2DX#O}=9mTK}iTrObUIJtStAm597(5g? zn9v+2N#qPnuNs<~l->j^|Jr?52=f{}JJzeWZzm%!0RM|me{lk<45_6IJ0zD-Kb7|w ziUbUgJqgT335*2l|HMK<{%gB^xa*oX)m)Sv2wxeI){{APvwoh8+=Dd^maL6}vVq)S zbP2O%)I_-IWk>W!u{i;2@LBCQdN)#2yU?rSXxCgBFT=0P`KwXN&^Ww$heC&7} z#mkx_)XyOo5^cW+k#ykF*m!>V6<|EcZH<|vItjkiFAI>`Ve9crF2;~-kr4BqnctYg znls6QF@?2Dy!+o)>&MamX|+a|3Mk5vYl$xV_UR&n#42*F+SOt+Lvh(rz3~hH*UXOYz3atp;%x$

    lFq>dn)+Aty}{>=aVziHAV9A7VdY?ppx^N>TjNinQUlN*XGOvcs*8y?vo+#vMnC?BqFXPuul>t_9IMdpP6E0rYB4 z4A&PC&jyxz-~Q$hW(%TBn6g%=I6xcZ_zt*)-iDbQH03PX+&Jc+75?vwzU3=_3BUN; z1Y0<)cU?O`8l3yLpB->(=D;=Q2g(-&PE4~iIQTF?L?Iw&a-*!NFy^gUd~fPSrm_rb zMyidMEHO#w!Ec`ekB6Getn)jvXTUUaV7Ty{fd&8(d%Qe6EP>NLyH=s*AQ2a`It#J7 z#6!XgOtWPuTM~PYhOdEs=kR!U_+9~n!5y;BK-WC9Xxc){Hk3Lga1mCuRGb?5qe0wC~xvz=>0d>kEu)D&uH z$V*{m*c-*@=+OD5bq3HR986YYu5JBr64tvH zr5eOcBqKmWQGhma`0ya3VAu)OK~XV&_A*PHid!FAJ^eP0_eQZ;>CFSP)IAJ4Ct!Ex zd9-8GrkLSi*%1Djzb-^FmuIh98ikS>^(qr7syM9%u^@@DrzQY|VZo=thDSC0NS?ZG zZA*FxQ%@y4DR9cBNigR_f3fxNx1jh6kRlf$lY->71317#BR&TYLSNJT8a21P?zPb4 zWnCr}a5;p2N(86s2Dbz+>Oh7~@`CLTy#%0d(7fpHpoxUO8+z&!7;j0(hwAYjP+)~H zU)+GC`}P%*Wa$0Rn-{i9IUPWsiYsK%;}R1T5{hC;-*Wm3kE_Q5P)7ocgGO!d?5uN6 zmS>=KrPpD#tT28RiCJymz6mj`VItl0@@ixNiUG8rl;M)=!$sJEuN^$x%*)z!?}n;k zNQyj6n^;{mt{db#F!OgZkPsVNciUzv(pdcc#}cHIUIW776uN2~^{;ES^sk>)?rw=r z>sBq;lP(EREVfTi<^$@iM@EQ!PhF;R<~m+h$X>c_-u|Mn6Hs|RotGTl26}BM*B@Lq z2om6)cw<4l1P{SX4mks31Y?zB84F?wfP}r>CD|kt4fAIR(*}vEdMX)k-xKiH(9oa; z4x-%jB3`1EktK;SS!j{xV4%~HP4UY(`xp!hM($TsB-W37l%S|m*E;CVqgi05Dsa~b zK*@r&*?w%ezwq|T|3QKLsxbuyfn8!){0tP7pSnHAR;;_V*--8bOS>VA$5!xn-&QpI|N96ZI_r0VBa>iKT3R5pkEH{W{z;2K+8X>SB3P`kQ3iU_xvJ9wUOwUjVaAy?k+Sjv>iTVOJI941}x$2dq4)$h9 z^rkSnt?*k5(5KDBFYP)9_xRsGL*Es@B(a+wD1ParGTt`*;WdQs=?~xF$I|`(|C;|V cpUs3&T~oI{$L`Q32L4&M+Qi_tp53wk1{5ICa{vGU diff --git a/doc/pub/week3/ipynb/Results/VMCQdotImportance/VMCQdotImportance.dat b/doc/pub/week3/ipynb/Results/VMCQdotImportance/VMCQdotImportance.dat index 9f3de34e..0df0e912 100644 --- a/doc/pub/week3/ipynb/Results/VMCQdotImportance/VMCQdotImportance.dat +++ b/doc/pub/week3/ipynb/Results/VMCQdotImportance/VMCQdotImportance.dat @@ -1,100 +1,100 @@ -0.925000 0.210000 3.061645 0.107021 0.001035 -0.925000 0.220000 3.058649 0.095687 0.000978 -0.925000 0.230000 3.045241 0.085738 0.000926 -0.925000 0.240000 3.044561 0.079655 0.000892 -0.925000 0.250000 3.043030 0.069900 0.000836 -0.925000 0.260000 3.032069 0.062869 0.000793 -0.925000 0.270000 3.040834 0.057511 0.000758 -0.925000 0.280000 3.030282 0.050848 0.000713 -0.925000 0.290000 3.024130 0.045793 0.000677 -0.925000 0.300000 3.022216 0.039638 0.000630 -0.950000 0.210000 3.062836 0.082598 0.000909 -0.950000 0.220000 3.040902 0.078805 0.000888 -0.950000 0.230000 3.040724 0.068447 0.000827 -0.950000 0.240000 3.030108 0.060575 0.000778 -0.950000 0.250000 3.029133 0.054064 0.000735 -0.950000 0.260000 3.030987 0.048511 0.000696 -0.950000 0.270000 3.023247 0.041794 0.000646 -0.950000 0.280000 3.022838 0.036030 0.000600 -0.950000 0.290000 3.016076 0.032326 0.000569 -0.950000 0.300000 3.011846 0.027217 0.000522 -0.975000 0.210000 3.047571 0.067931 0.000824 -0.975000 0.220000 3.034349 0.062185 0.000789 -0.975000 0.230000 3.038143 0.052993 0.000728 -0.975000 0.240000 3.026716 0.046750 0.000684 -0.975000 0.250000 3.026384 0.039819 0.000631 -0.975000 0.260000 3.022158 0.035761 0.000598 -0.975000 0.270000 3.019291 0.030131 0.000549 -0.975000 0.280000 3.011809 0.027295 0.000522 -0.975000 0.290000 3.014478 0.022265 0.000472 -0.975000 0.300000 3.007148 0.019364 0.000440 -1.000000 0.210000 3.032830 0.053702 0.000733 -1.000000 0.220000 3.026012 0.049204 0.000701 -1.000000 0.230000 3.024729 0.042265 0.000650 -1.000000 0.240000 3.019477 0.036019 0.000600 -1.000000 0.250000 3.013557 0.031134 0.000558 -1.000000 0.260000 3.016547 0.026089 0.000511 -1.000000 0.270000 3.010296 0.023446 0.000484 -1.000000 0.280000 3.011348 0.019393 0.000440 -1.000000 0.290000 3.007964 0.016085 0.000401 -1.000000 0.300000 3.006542 0.013410 0.000366 -1.025000 0.210000 3.015875 0.048567 0.000697 -1.025000 0.220000 3.022085 0.040331 0.000635 -1.025000 0.230000 3.012937 0.036031 0.000600 -1.025000 0.240000 3.013220 0.029626 0.000544 -1.025000 0.250000 3.007402 0.026921 0.000519 -1.025000 0.260000 3.007766 0.022328 0.000473 -1.025000 0.270000 3.008444 0.018945 0.000435 -1.025000 0.280000 3.008165 0.015779 0.000397 -1.025000 0.290000 3.002047 0.014128 0.000376 -1.025000 0.300000 3.005860 0.010919 0.000330 -1.050000 0.210000 3.018151 0.040169 0.000634 -1.050000 0.220000 3.013269 0.036191 0.000602 -1.050000 0.230000 3.011524 0.030838 0.000555 -1.050000 0.240000 3.011315 0.026502 0.000515 -1.050000 0.250000 3.008694 0.023118 0.000481 -1.050000 0.260000 3.005151 0.020988 0.000458 -1.050000 0.270000 3.004104 0.018141 0.000426 -1.050000 0.280000 3.004860 0.015794 0.000397 -1.050000 0.290000 3.001879 0.013924 0.000373 -1.050000 0.300000 3.003963 0.011947 0.000346 -1.075000 0.210000 3.020613 0.035773 0.000598 -1.075000 0.220000 3.016418 0.031667 0.000563 -1.075000 0.230000 3.006556 0.030803 0.000555 -1.075000 0.240000 3.004741 0.027339 0.000523 -1.075000 0.250000 3.008414 0.023462 0.000484 -1.075000 0.260000 3.007435 0.021458 0.000463 -1.075000 0.270000 3.008405 0.018209 0.000427 -1.075000 0.280000 3.002681 0.018384 0.000429 -1.075000 0.290000 3.004197 0.017300 0.000416 -1.075000 0.300000 3.002714 0.016373 0.000405 -1.100000 0.210000 3.012462 0.037694 0.000614 -1.100000 0.220000 3.012049 0.033409 0.000578 -1.100000 0.230000 3.011795 0.029700 0.000545 -1.100000 0.240000 3.008883 0.028701 0.000536 -1.100000 0.250000 3.007997 0.026593 0.000516 -1.100000 0.260000 3.005856 0.025306 0.000503 -1.100000 0.270000 3.006852 0.024454 0.000495 -1.100000 0.280000 3.002819 0.024541 0.000495 -1.100000 0.290000 3.003585 0.021543 0.000464 -1.100000 0.300000 3.006085 0.021700 0.000466 -1.125000 0.210000 3.007512 0.041757 0.000646 -1.125000 0.220000 3.009019 0.038442 0.000620 -1.125000 0.230000 3.011686 0.035953 0.000600 -1.125000 0.240000 3.007760 0.033312 0.000577 -1.125000 0.250000 3.005532 0.033555 0.000579 -1.125000 0.260000 3.008678 0.032294 0.000568 -1.125000 0.270000 3.006104 0.031124 0.000558 -1.125000 0.280000 3.003393 0.033148 0.000576 -1.125000 0.290000 3.011669 0.029903 0.000547 -1.125000 0.300000 3.009304 0.029211 0.000540 -1.150000 0.210000 3.014329 0.044731 0.000669 -1.150000 0.220000 3.010193 0.045456 0.000674 -1.150000 0.230000 3.008927 0.042981 0.000656 -1.150000 0.240000 3.009827 0.042594 0.000653 -1.150000 0.250000 3.008561 0.041949 0.000648 -1.150000 0.260000 3.015962 0.037792 0.000615 -1.150000 0.270000 3.007736 0.042535 0.000652 -1.150000 0.280000 3.002481 0.044111 0.000664 -1.150000 0.290000 3.008977 0.042358 0.000651 -1.150000 0.300000 3.013275 0.040953 0.000640 +0.925000 0.210000 3.065347 0.107931 0.001039 +0.925000 0.220000 3.051361 0.096680 0.000983 +0.925000 0.230000 3.043726 0.088416 0.000940 +0.925000 0.240000 3.038016 0.078138 0.000884 +0.925000 0.250000 3.043825 0.067742 0.000823 +0.925000 0.260000 3.039227 0.064974 0.000806 +0.925000 0.270000 3.038436 0.058158 0.000763 +0.925000 0.280000 3.036031 0.051404 0.000717 +0.925000 0.290000 3.028024 0.046243 0.000680 +0.925000 0.300000 3.020859 0.041177 0.000642 +0.950000 0.210000 3.051491 0.085754 0.000926 +0.950000 0.220000 3.042570 0.076399 0.000874 +0.950000 0.230000 3.041578 0.068775 0.000829 +0.950000 0.240000 3.037049 0.061803 0.000786 +0.950000 0.250000 3.034972 0.053127 0.000729 +0.950000 0.260000 3.025241 0.047721 0.000691 +0.950000 0.270000 3.027513 0.042607 0.000653 +0.950000 0.280000 3.018797 0.036348 0.000603 +0.950000 0.290000 3.019343 0.032807 0.000573 +0.950000 0.300000 3.018917 0.027934 0.000529 +0.975000 0.210000 3.037155 0.068286 0.000826 +0.975000 0.220000 3.034570 0.059955 0.000774 +0.975000 0.230000 3.027574 0.054165 0.000736 +0.975000 0.240000 3.026720 0.046923 0.000685 +0.975000 0.250000 3.022318 0.042402 0.000651 +0.975000 0.260000 3.019953 0.036616 0.000605 +0.975000 0.270000 3.015391 0.031372 0.000560 +0.975000 0.280000 3.013690 0.027134 0.000521 +0.975000 0.290000 3.010919 0.022487 0.000474 +0.975000 0.300000 3.007142 0.019760 0.000445 +1.000000 0.210000 3.034270 0.055686 0.000746 +1.000000 0.220000 3.024975 0.050537 0.000711 +1.000000 0.230000 3.024217 0.040851 0.000639 +1.000000 0.240000 3.020721 0.036629 0.000605 +1.000000 0.250000 3.018120 0.031022 0.000557 +1.000000 0.260000 3.013675 0.027250 0.000522 +1.000000 0.270000 3.013868 0.022829 0.000478 +1.000000 0.280000 3.008110 0.019739 0.000444 +1.000000 0.290000 3.005259 0.016809 0.000410 +1.000000 0.300000 3.006184 0.013803 0.000372 +1.025000 0.210000 3.020664 0.046773 0.000684 +1.025000 0.220000 3.018979 0.040717 0.000638 +1.025000 0.230000 3.015434 0.035377 0.000595 +1.025000 0.240000 3.013742 0.029718 0.000545 +1.025000 0.250000 3.012018 0.025421 0.000504 +1.025000 0.260000 3.009110 0.022154 0.000471 +1.025000 0.270000 3.004666 0.019805 0.000445 +1.025000 0.280000 3.006777 0.015906 0.000399 +1.025000 0.290000 3.003060 0.013748 0.000371 +1.025000 0.300000 3.001433 0.011819 0.000344 +1.050000 0.210000 3.017825 0.040887 0.000639 +1.050000 0.220000 3.021611 0.034357 0.000586 +1.050000 0.230000 3.011484 0.031048 0.000557 +1.050000 0.240000 3.013207 0.026447 0.000514 +1.050000 0.250000 3.004656 0.024784 0.000498 +1.050000 0.260000 3.005312 0.020887 0.000457 +1.050000 0.270000 3.005734 0.017775 0.000422 +1.050000 0.280000 3.003578 0.015776 0.000397 +1.050000 0.290000 3.003936 0.013482 0.000367 +1.050000 0.300000 3.002848 0.012471 0.000353 +1.075000 0.210000 3.014788 0.037230 0.000610 +1.075000 0.220000 3.019306 0.031157 0.000558 +1.075000 0.230000 3.009460 0.030535 0.000553 +1.075000 0.240000 3.005153 0.028039 0.000530 +1.075000 0.250000 3.006335 0.023760 0.000487 +1.075000 0.260000 3.005441 0.021638 0.000465 +1.075000 0.270000 3.003553 0.020079 0.000448 +1.075000 0.280000 3.006033 0.017210 0.000415 +1.075000 0.290000 3.005105 0.016008 0.000400 +1.075000 0.300000 3.002668 0.016002 0.000400 +1.100000 0.210000 3.014694 0.036693 0.000606 +1.100000 0.220000 3.012309 0.033471 0.000579 +1.100000 0.230000 3.004638 0.032138 0.000567 +1.100000 0.240000 3.011098 0.028096 0.000530 +1.100000 0.250000 3.001823 0.027287 0.000522 +1.100000 0.260000 3.002454 0.025723 0.000507 +1.100000 0.270000 3.001740 0.025067 0.000501 +1.100000 0.280000 3.005616 0.023475 0.000485 +1.100000 0.290000 3.004028 0.022683 0.000476 +1.100000 0.300000 3.006213 0.021588 0.000465 +1.125000 0.210000 3.012874 0.040828 0.000639 +1.125000 0.220000 3.007951 0.038219 0.000618 +1.125000 0.230000 3.009985 0.037254 0.000610 +1.125000 0.240000 3.002980 0.035547 0.000596 +1.125000 0.250000 3.006576 0.032233 0.000568 +1.125000 0.260000 3.009164 0.031510 0.000561 +1.125000 0.270000 3.007655 0.030656 0.000554 +1.125000 0.280000 3.007490 0.029816 0.000546 +1.125000 0.290000 3.010005 0.030949 0.000556 +1.125000 0.300000 3.005460 0.031496 0.000561 +1.150000 0.210000 3.011349 0.046919 0.000685 +1.150000 0.220000 3.012253 0.043691 0.000661 +1.150000 0.230000 3.009383 0.043050 0.000656 +1.150000 0.240000 3.009803 0.041062 0.000641 +1.150000 0.250000 3.009222 0.041305 0.000643 +1.150000 0.260000 3.009068 0.040053 0.000633 +1.150000 0.270000 3.008336 0.043477 0.000659 +1.150000 0.280000 3.015256 0.038475 0.000620 +1.150000 0.290000 3.008284 0.041364 0.000643 +1.150000 0.300000 3.008807 0.042602 0.000653 diff --git a/doc/pub/week3/ipynb/ipynb-week3-src.tar.gz b/doc/pub/week3/ipynb/ipynb-week3-src.tar.gz index 5f3003029862ecdef0c5316cebd24b8450064319..56b3cbdec3c26e7cb474a36cd448089f8fba8beb 100644 GIT binary patch literal 191 zcmV;w06_mAiwFSug}h||1MSaC3c@fD2H>uHia9|^Owz0cyKo_hc!89rHr6IJNzvZk zK0sHBn<7HK&Cf8yFmuS(n_ZUpyN?!w5K1Y9F?q_SM60=;U`zp1#yCbR&M_cN7$Fg$ zFCK}5+RQcwWB3pSzYP=m!@<~|>p-|015p#8TzsA( zjYAqI{A)~Uz^^tjZxmee=EB9#oArUE4{xE-;{Zyxg|Zh5_UJHUAP(vb^P&NyvXcUF;;E21)uA zxIIH|&m^~5p_0EEu);QmC!7`dM$8{rhC$XbK$tz}lwD9sN+twY|An}lU`^NfOE{(; zT_jN$@Lz;9z?G1O>@^dlZR3UhnV>-mQW%W*9U`d<>Sz)YXb;z%Rab7fiTNENw%AN- zlCc$jxgb~U%0iNnrHp?~?58Wva+e?l#1m!no5ZI;T+F-IHVWN4nP|prD!cbj-LUGU z04{Ai6#^10>&gPbojQ|TQFdKX6K!fwO5$YcmS$K+kwY(5Ky<06Vw!N?gB-IP;fjC$ zsav*3V=?qh8-|-b-~qzK^ni z*Y1Ha^w(jOh+5KNtZR-K=Hil-Kbz;uht6kTc;PN9rd$f>UtR`WKna5ntk$qpTl2O_ zEoBv2_6Hvnc!}fCF>M%MSMtto@b7_s@`C8VGB_ZEt2c+Y3Pn;*06nI~#3OIlG zKhAZbc=pfpTt$u9y`(F(xzzQ^IXwl&K+j&3sX;1Wx;u53X=}GpQNx6YCYvbevj@9$ z;3sHc=mvj$k>aA-$v2HrhLj(N;T!zO0jCpsOUv z1!fAHV(ld@8;*5D1z43FQ3q(F7e|n~vGRRu!%kZV=g-RIjdpRJzqkq`H0DXk2EUIJ z&8;dh#f_XPY?_WXo6n^8^LOqa6|7}jo9d~1wB~Q|yk?c|A3m$try4pZBzaa-jWJR#y4+!w zqk&(l+F#c-y;XRid1sZ~=dtNHnhr8FHZ2WYY*}%Jz4+mk@RlWtA%T|r-RKMwiChLE zAo72KPy>-=t~Nm)1M z$p!30cEJHDZq~3d0P@eEGCn=zp~wcv5Vr8LI?sscte2;>(F!KF>mC*NsJ(D+?wKPf#SCz|779=RNV5fz8ko{d&fYs zt|-nb3VpT7+Ao_zJ9T9ZIwZ;g=@uqN{5gGMn;+ha(g-@J`fM9oc}bF7N|)jiF{FPm z@`-mv5UivMt(Z1P&4P`;zEy7qi4}`oD}o>`!9Ea_wTFWy@!T_QeG6X_)mAvltw=4u zCe3Id?Q8Ee2}2K>ap@+p=3^_YrFuKI3)PDo8e50zBGYJyBAH0Ed)5c33x6Nuvp}W> z6W=9``k?j~H=rc?C0sDyIE=(#J;HyHn*5eT{31y!>v_1ww|$`8<^+uEd0`qj;bsh* zFLC0M0JpSaN;6lAdz!G#Kw3Mn_d|5$YPUfo33&LCNLUGsNN3o zsK2hbpaHJFdXvY^nv4qsn$v&mol0AoRoRkHY`7~5bfteHQ++g4UPdv_z24Z%7)!&s zCZYztCr_eIz+#SD8qn4{2ZMVT@R*W=0dK;ic^^Y~Xqya~OR-RRQqbY$Nn-RolxM=2 z@e1k$VoKF2IVO4jcJ@rVOfSa14TLA}WY06$q$fwEi4+-6QuI|jD_eiY#smm1nW0P*5KNhNxbDn2K4zRDPpLA^;AX1*;W6lmcS13L_r< zWY@qg$#qy=&c%SKJm4ZAm545g=g9&{!pn3e9wQ@}_{SBL8Ah#Pm1#p*akeJ3%#CJ3bW9bFG-S}rTdPkzfU3fGe9lC!$4Oj@DAp$rH@i&bt zTZWr6k8VQ-o_x9|pYF-0d-Ca?e7bB(;*&$`aqz>(J@$~@)XeE>x<&iu!yeYx_D*t- zx(KQ?h8_IPWgo~vTi>drof-`s<7wb@8oUSnvng3GVBxP&%+$rvn zI+2@(-h@FSE?<8Vw$;ZI8>G^0Ga_-z!rLrqT$9Bn-GIdRvG9B~xS1utjitQFh2C>L@6`;^HQm`ucdkRZ-%vdxk$B}-Z~4VyVF*G#4cD?Bhx%pl8O}sNvRMYkH7R=Oi+_~xO+OYNlsrVh7BpQEk$;Xb`ByCfvca$;N z_EwzPo6LMV`+{V~DfCt|KDHAXW0yJnFCaij%crxh(jr?^63KjQe(N>JbkBjgXSvgN zvFng}33;_=3Tjqox=uN-12B8jsf8KA2P}VqPDh7)o0fjy0ar3t)RM0`O1k5LTT-yH zwr*z6`E(!L(WkECHppizQD4}rj1~1|*Xo-cP~P}6ntCieL3;ODE--7VO^Q1AdKGqb zg;{0-R7Xbw_hUItvpy+>sMO4#{W?MU(rQS-bdW^Yjd_~-$hQ1T7>cl^@QOy)Aq3SQd( zOzCmflcXFOhJeC;`2VEj_oU>jSXCcNzSW#jjmD631*+Vyb-JjZD_St)Ps3t|01Rex z%{HdHR6Oz=c-D5=w-Ibzef^M6hK7GW1EpjZ=)7J99l=nX4q5V{y6F(4cgJ+N7YJazVr zYMqIr&1RDVqgj_cf{szp{{8d{LZvM`rV^M^?iWlm)~IX7Tf0W@K9yIen|FU%!cp1s z%+Z0?KWwQfol zHgdJmeIQ1teK5z3K&4D=Zd*M<%V}Pk13cA@rKUN*RfnZoBK6s;g%w?ThzMsnjHc5EQ@ z>zNlWF0(92YlQnem*x-XP>9NC+VjtAd;Tp83M+-ob(MhUwG!}lYdwPFDHprN`7|bX zT)%py%-((zQF5W_ZTnv%rdI8oDtKBWAWV0;Z25ZBeN8gsd`UiiPcM%2&JQPS~I#89Ct3kS%QDwqyA>$_|cn9Pgkz5F{pU6qBg#iiJP&MdY( z6@}+Oe0i4u6NfWTJieq0k3^(lU~_3bXs-zE&N(*Q&A-o>@||hQ3lT?q<%F>_K1R;n zUqo>nM)KX9~UCp8twy5i72kzB2 zE!`26ZU@TaKP3vg*@g=*jA>6X!=>Fk5nYq0oCXGuOlhDu(_|liBoM}wcpMec7n9Qto4aDz?wUsoM;#b2+fsG;+dgs()N zh%{H2B+Gv#o=al7Y*qCZuzh$$yqN9?Tj^&P$;(ZgguZ)6OBVQ@Xy1(+HyCYqz8iED z)wTnTomU&VH+kbgeId3wZ28H>TZZJF-+7w(QrbywcGxj(^#(evr+1#q*2qvOMqIq^ zcy%4-?fR;2JaR_8ribK4ok0;8uX9Uz()}wUF${m*_-oDV%L9!&oLX!cSc21E2i|@? zTt&2~mZ^N5OqHwCI<9ids>fmR)o|4#!MVg(Uhxr(wMban?zQCs2fG^`jc@ zaQf=dRX+K|PC`G$gF+GpJL`cIYXv1(`L3&XQ#bbE^~=hZLoVi>As&484$zs#&7_2 z9ZRH?;W~wo8uqf1T{ms!^4HntP!&*!5`%7pFa+X@$PF&{W2%?)cVxzTyv8$y_ED*$ zn42*sSM(IP*;M^Md%p~m*FHNjJW3Faf2J#VB1dbi1^OtwE}~GW%ToH(<|d9)6zmBv zJb&Z(r|oZw&sQhk{XgE4b5D~KGAIEylQDcLf4x{ukJ~m7z3;E!QAT2h!*4ZRAZXCE z$ss_~J+w%2P;A+&tSvi|yqoQ>?@**{(cwDAHt5B&$no&;%^MEKj4TNwzg@7SC*TwC z`2|N95t>sg6yb(b;F>fgSzP?_&5s`aq?Rzs@q2><`jJLzXGe!arn0OGO(aA84njsUcxz;ZHMU%daw$Q&n;SSp1k zcfIMFfT9ASGO{9nVhVW~%Sb7MGbO3b1M&|HAaG%bp}Aq;B`>YQJyK&##D;{i%bapI zpy{xO7lE^AVNFGD2UbrkD8F6se~1naR4X`#4zx6a$8^NlflCTb0Ao5{q;wJC|C#`= zC=(I(n-mSeDMR{^vyi5j30DAAVH%^jw9t_=sYYg!np__!Wz5?c7};p_WCokSxipcO zaW$!sc0ut3_J)6@KvAYq4IDwq5a=rGFdv!WSkIBpBs>6 zG9XgL@~v(Xaxw-Ze_nRw6tp=hCp;Gb%#V^2oS`R10U;jr^d#X6sRS15>1|R9k}8bV z_mqHU8kciYFkntg!5m2;aukX4CgCAc_>*(x9fic;>7*S4Mu;D)rkmh4KUTEzwrrk;(pz=cp(^h}p}T9U zt}AO_WvhB$qHWe!@%u1vUCqKTXGJjjgf}Uhg)-ihyLPDm?kW(x7i}s546^FPDDdhd z&aP)RuI@6fXBKaM2cyeWs<dhUb{y81h@B+Aa@;m{OOrr>q$e}O~u=La%np9r5* z5>RNNT#9oWiTJn*Yhey0L$Q=Ai7CSeqb7j{^PZcYNH$c0&#BcAlRI_}X8vNvjYU%X zNBMP|Vi$vnWu9<;VAl@!NDL3y5mWu$GC!PbKlOt+fEfX%FKs7kn#NfFAK^iD=5idK zMVc_@@JEElJ~}*!e{lE}$I-|W(YQ=S<9YhV=z?P?8(OL7>BC5HjE~Q4JJh%R)qmL( z^9p+>|5lgf+@BeI++B=Xg)h6J?sn_QWESS|;vSBhO@9#0hIYxdPRsjoFTu02Xzx=^ z4K_ugjahGZT}dZXDfyud8=8|;NZp;5!@lYGZ`u%Nrmi|qe;evp8*!BI_N3IX;$5}c z_nBLNr0-jzO??!Q_P*`P5RYArjcHHn6r}A-cF(OETC3gsequ!yNPT_mtHkI!a@(k! ztPX7}_jPD!8}~SG`l{x@dVfR17&XnIn_E-gra$;cLyl>Qigh2pg&z;R`~F`Qc$N4U zcvSQ63T19&lV3L^m(UymDu1fc^H{#kULL;3>et?>Bh#B=98g{0<{HV3H!uL_ifq zgvy{a!RqGky+uF$L^{BT!g~n=yMOMFeR;RIx%R*4`O~c%d6`iamc`R-PQo%?+d&nY%&bjb zSF>-6PsdP>`~hGhAOHhfAgh2xNOKy@2}7814=o21jD+>GaW8+Gx-2YQ9Tr(y-F=L! z8sNE)arRU+0Mq(;eSh1n1YCC?G#?n#8u3U0kj74&B<7{{oLS%Mv~cT&Am{Bu3sVTU zdTDA?uG8F9Beb5b$M`YL(s~A zd5yD8yobu~Ll5DKbH5u=c8(2=cA=pi5k+on6cij13vT&i7&EX>rtHs^Mhf4 zt8OtoVCuJH!+%K>DMA8;gc9vc(i&DU9w|)RA?I2I3`N2--3x$1RJ*}Nb7Fs6fPPu` zF=!d#3X}q#3WJ8xAX(ph{f2`je1ye_GZ}1~sq26;q?DyL3qFI)IjI@KeaR}BOhwzfPs#}`OmOSr7Tgh(yWLKCQ4v6C3bdQ8j&~cOvk6XvsDo$$0Yg1Wi z_+{2r>)f<8v2JVZOP#LMf6b^p8C3&qWq4N)%6}>DKwF~=5^$)XR^q#@yykba-cA`5 zh(pJ7+901YxEHHP@V>=e7eczOz>@<9k|{*sfb^TL$|OZQacRo*6*g$QleltRZ<|PD z*{&CC8iZP^QX#3v^efVH)Un@_Mmj|qM~Xr9?@c>9$4>-God^`a_)wh+l=6vZ>9e6RnDQ5@(rPO2h9P z(6r6E>!#uOwat5)PxYGV+V_=Cth!#m@>iU(PyGaI<+wvnhv@YL`dxaBq5K0^1yD=h zI_IW*@@j6?`amb1Io(g%cHA%1EJRZo41b-Ey-V2$w3YCD5gFEUMiAB-ZncOjd90EX z+i1ySm7EDAp$mqIRLY^vW)MmNSkY{d+kCnOW*4|6@PSicccW^$LXTQmq~+ioTwJUM z`$@R#M#JsI1osjMJA-*4fxGA!^H9kc1aXS_^Lv(kM%eWjv9~bTF9Lv*J$xJQOMk8K zG4EoaX1`Kd`8hO!7^}X;H!~}YhqeV4STw!w=o~P(T3yeT3F<}{9R@eqNSq@BSRl%e zUvw0O+pf53I_~lDYw5_r2`R?ucoj9e$j{NeO2V${97$jp$>v9m!`CVh7eUE2gFp!s ze9|NB%>mK~=Kl|A6Pe2}SOPy!b1MdSI!?vW0!9d^l=?Z&9Ja$h??x2xNc)SabU&W< z2kuY*Kn!002Z*>oE0cshCIdD&Fqgqd1u1{ER!vjeFc7`xSLo;*ylA!hY^Rsblup}I zX>LGgGQk1UBv2>x8TO}rQ;lW5Pl#vinOfG-K zY4%}xJIT-NO`M8fkk1HoN0y%}OlgtGM@LGx7 zI?#$@+R0U&hA=CB)%kr^%r?_ad9#YUKcn5I1*|&04Y|2@Cd{tDJzwbkF zq^el2i;IXY+j#5QbisRE2Q$o(!03MviQKKq%{qeStbxm__~Ulk#NtGYqCR(YY;3nE z=QxJtXibzdLejb&D8B=&BSPy$83&FVlamBzT4k=gZ6q0x~?L`VW%@#zd95vA52I{CH><8 zX4R$J(>o20kmD%b>UllHnm~UZMA{@%-s_52K;#bTiZ%^0=}T`^0{g&H+LxCJzT^H6 z6<`D=v@`pJ*+5#9ASpo4yPz6&|31V*kjVE2!rR%Wo?y?CQ{&)pQbV zGhv-cd=PNChc>wU$dy z+dvS2@A(ybv{iYsGyC+R7f`9%OH~@F2jE~O4zZNjU>hR-eaGHF<0Pa3)Qk5uJCAQ? zcPz!NkmBn|?zG4)a(mA+QYcH{l@a6!kgTY4F(3Wh+w|@hypTZLuX*BSaCvOyY%&^O zC@)Zh(w4+zE<6~i1sMq`ipflWTt(kjcX2{Cs$%}sZB|b6I8o@MCdMdR-7SmqHolpB zKjy)XuWZx^WD~M8G8dSF*CY~WK{^%8P8OXRg;A4Ft8y0lv%D@Iv$lBb*C<*qis>RO z#MJa3U{%^ZNEF2o_Bz zFuu@w+jRzoQi+5VkWRy{ItV%x4pJw3xfHq$3R2^P5CtJM(5AsD6v>v@wM6XcewlC{ zq3AM+^?J~34V41rjhL=RS2t43c#R_ft*lu0k}E+3N;>W?#V^jbaN+}--T=!Z2Y^lw zjdllPi8u`HH^=h%5CkND=z~=r{~v+zg>hTzm;gtfAUL-X{BgDq3eka0=@e3mIT$)d z3Q2?I!#>FBb@$x1d%HSWm2sBg@QcukeR>5jO4AcQ1#o&A;Pj0VoFCw8Jve(>CZ>Sq zXeOdFVEsGso*xPpdt!TVcV3^q%Z_bB8}hec(eC3P8teE!Yk6aTRt%vMUpv0Dr{t{U z`-#Vx62r7;KA5vZ8ic?`|5Ck{GCUWI$(%w7-;C)%>XAtywI^ks22JKDC9Apa*$<}P zAgdD6{95QvlKsRDs^2mBh$|1JX*4UE=|j_m!6L6W(+e)NE?S2{TZNX()AV7PwHq0( zUd^U^|B#g}7r1;jqo^oDoAs@as=KyWadGP>*PZID^WiD>DuPhAU;U%thf{Vpl0TuQ zZ%kp^J1dNkWQWKNnLlpxsI60GH1}J~+SWA!FHW0q=ui()}AeL{6N%zvC zEs{flrUu#~n}cA>yLN4_YkRxd{Q7<*B}Lk$)=J{MfL<(`8qMRI;mmLtxg?DIa>njG zIi4KPf3U-dG=k<*6JZ7A!jN4_=4Zb>_~?V5G$)J-tasRG{=9tb%@32a?|zm!;fhLS z1et%#NlrCWL}*4GCzBa@HG00@jx%9K*JJ$b4#j3#jx)*g(SFQF#d^D1Y%a&ICodk; z;GV7!stJb(=7r1&cQjXmWYSO}Wfc3zSmYxwNs7@`@o!l1(X6~+Qf-!@YD+A2mhp&;$~DP2 zwKk80Kc+as6ae~;=sXfB+cB6^%>x9|RQCRr5Xr#CkxWQxR7JL^*ohVy;)((7Nbr4v zkD)p@HNmnXFl~i2D4>s|qEh=ZWt*W!HheCaW+_&R3Mg9W~J_B7DjW6;~9(5pev+ab`4F9kgx zh`k(uJ%?Q>?4|1q`${d#`@%kTq>=YDR>C0Joj~tQQBT#@dzsYRy$gx+V=>cbc|-7| z$8vk$a?_0`7CrXWANc4G-W%u7Dpr4;ijoNpsT?O*LJy`R>Fwfhm9hXHLsdD22`Hbk zV?v$&RU-X&vqIMZuMvM-BZETI(I_QKQ$%bBQpQs9;`03jE>i*}%47$DWje5!xpxGT z71D)N5XiQn$@po4cFF_8h!0;yxrH5YwiAv_*JrO@Gcv==7sw(CuDA`PYmk4Sw{YIa zEAl(quGso?y;5^iNDErON2-03fJ?)HALE{`xUPHpY0YUi-Y*kUc?_5TX}0t^;Xh$K4=1P6*uH5J&amW(MLWJ`rwByuD4Bp{VsO^rykC zPoVq^0jIn9Rl=S&aEncS71)23rT+xE-*_w0L7=>8= zN)4T}*dcQkJ8;gTzOFfob>GIIB|OSE+Z4QTCKuda{~LJoI;P+sp0}V1apuAlBWykm zo7iw*X{oA1_|McmJr+ls&)^?Kr&AsO%+rW@j;EN$XTeY7ptpAf?O-o_<$vN3xV`c6_z)ZQ{6FY4GlY{-QWKNENEQJwlMxRolmAE! zf2s-Jj}`^m1WnN%0yOol=|T0%UbV99%Gz%8?>iDnS<-Tyjgb^ZFBUZ#a=sbPkl&b+ z9iim=8@hNhd@_9gi4sbL=3s>)+;CuAleQ$=o1Y#{y7~#0P~bRjQ82!|z4Ybf`sT%J zVF{BUq~>J3B^DHwgewY;k@YS4CHrB2e_Z8UXNML3v|Z6`%2h6y%}y(p75igdHM`ZX z>mM&6SYSn?iZC=mdm~%I99YRoE+`moz1j6$Z$_}JJ9I_uht2)|H^gGIvh{+))<18n zcT|Y7Et{?v@T@KCqO1NY`rWI|{cymTBU81cMH~urGZ=gmR+3W{3z|iRcT~~TG7`Ati&f-o6~=%f!f_o+ zQ>gtgYOxd?1(LZ5o}eVz63-aMuTz$A86~3zhhBx`+)+^6VR!{7=|a*qe&-7R*cV+} z{q48*)L|yttSxq7cenU%vKDo|e+U^9Q|GBHm`$4*I-#9SSHB;i(K)93<8hXJs9H3; z`??t5%z*Z@vCI{En=6OK-z5!JPlC&1aLr;X6;nh?JVT6Er6WiOoQ7(B8HE~w ztAtE{c0Fggmwl72k$xSez*sTy<57($5O!IVhNX&93q4C+EQ+%hCZ!mcfB7o03wjo(> zbOn@}tEc0&p}D#$l2iGk<5GY|I+3Hq>F02&n7Wa|sEL+F9+V(3vm(G-$m#`s`SkhU zU%;+sDLrByZ!RPVN)AusbUcj~*E`;1PEUNeQ2ukHLSgxjz-f{ee^{WnDaL`*(`zTv z0xx=%xWr#2F7eN(HusUnaMKV~e1a8(5W7I<^W`;B>_i+mT4{ zkS7j=ahGDW#)7r#B3liVE2!+!ycqN788rRc?qX?->S=dzCgOA82CN!!7a;9 zKkur2894iC(0+ebNJMhM$N%W=lG~;LFRSQ&e)RNwfPpuOlzfser`W%G*Md7d>$^;o z1(c_OZ1DYqpK_f=Cg9r#B5$-fXBo`QI(^*_Fep98+60U^npIA{sJC;FP z!JZ|t6Z@4|Pkugn>9emg2qhW!dn{C6F8ZE)vzWX*(?O7t+Bg=AwFuHGBiJe#e@QH^ z#Ovt~yZhOk-SlpTkNshJd%2p;HHGQJjHb)o{rk=B_3Z89ybnPOE1X(EaG{cuwV)`2 zVS!y`aE067W*nx;ljiBo@J3GClpK;}S!QV^1ZBB55FfydN0M5;p_&8uW2h@~fNVZFssg$i{vb7POTSA-&LKg|&=4OcglbMk|R%Cmll*(Wq}$>}7aLF-4*S6vDO7HH^u1Z%9MQr6Fs_}wMl*|!As zr?j}dTFqOcNz-+1zw4|bU_=9FV6t+fWGal2sqi$J3Qv=%C>2~0BXLOn(_~7g(-}0u zv=udtlqvswGUbjkf0+QWf4o`kS6yI@l`$q`#$e>DsiG4f7#^twuN68;e?z)YCDN1w{$^8-d-{~) z2BsX~u{zhlq8Pt-fkMITxG5(LO*#FDaN;4$jGuMn+QBuG4LkvIQdq4!Iv>LeZcO$o ztWV}xY8Q?N2|zQgUse$ZDVp66K+A8-I8Q<2II)ac|I|Pj{{cdz3{sO(QYQm9IXIWWNChc>rB+K* z+b|Hm^DA^z4p#NDBu}R^Ogp7RFP+ldC`Mc>ZoiDV!d$UD$bBorq`q=;)y7+0vZXnFSY*`YT}Vh|-9)-5OwA6GB!e4d|u zxDW<0NrY4!&6miKluE=?N-~Cj<^{UOm-S|raD|&0{Ip%}7Iu~hX7F~#a9(e!(yeAU z^Y1SqIKc`*Q^X(y^+A@1WyDC15~YdMSqS^X`7l&sXKk_dOM$y4s0zEcRkH~nc@SHV zQe(R)^D1ssE5K}UTXyR@sJeCDg;l$A(P`tV$6>c^cB}R9VSQGBH(`Q*q%y*?m94Go z{8_wL`@)0# z1IZa24GY_rds__tN0nfIc-d4{;~m}m`3N>ARV!U*AxsxacfYo7s^W{L-t4-AlS6>J zUGBPF9S$!;rx$j}x;SafZRu=RE@Fz#wyVdP5tz&pDLKCEhVpNp&K+S%1C$u04%L@( zG{ZC_G7~5ZNA3g>6ei$*$?7*{Y{H!((xkmR zt%Kp0{xW`@1MM*6iH9L3G*C~57*hm}E$XxD8;T0pgA9oj3f=dXHINh0!XK;9FCeEt z5aT>yc&O(Lni8F5Zvpqrr6ybps0^@TZ}n+vyunH-1KuHcZ^b4OH5~X$zamkV5&`~S zN_6n`oYjq@q0 z^6H+?`XL7c~wQODuJ~z38&eRM>z$+kL|$%9u#*Vsb)Vs01*Mlo4m&&1sqh_EeQ|iKcDgpdO?(b zK~;E6j}=${|1$t%@E1O<{@{~QQWTR4Rulp^5e5WV|X;3!QZ1dDH` zlbN)gy3-ueX{tkK;v8s+vRO-%L&;A3@4FyKnxG+(YVBSmN?Ptd?!E^+fsrf1$ggLt z_YU|D`2H2YVMJ(7tx$v;PJwGuW@L5t$CI1>^*gnMQI6Loe$jsTbnKU(=4Wrtg(V=V zkeZYEiho$Dm?T^=ngE$E$>+&$o7?G(>&bSCFXcWh7TI(rz)p5kn53KAbzWRezsx@z zL(s#DMHK-o!Ca9QfrMJg$xLu+l&^X|<<^xnlM<^5nC!1Je{sQtEO&eVVVRZreY(%@ zs~`DfTdW@(m^bH22Nk%cU<_8TvVZh3QU)>27IcXixBl`HyJ;ucBE8#Xt^k>Vw8#j+3qh4kd}eoR>_H3;rUiKwL#U}1?UT+r z(Dv79-L|x9Y>lnhHqFejw<0UEVxOn`Z0WyUxQVa*^L)$q*X=m+(!=MHD#b(ei>;eq zS$}4`+v;(*#nREFx^-J*HK4rcwP~3Z+f81idw)Bf&ZOj%`E^#ju4-vPO=7U5rirr6 z2psu-nWM~rIH3WthJwYmsf0=eWU)E>{DqMv{`LV$DTOBAs>lt7P*Kf%P5wkNdO-xN zXmZJfatRGL0P5iwf&($khf--3_JJB?T7MPzbImj8W^{=N;FP2fdS4GwhC>vIedOXP z^}=2NlgJnt(+rN81P_}LLI-B3gkCq^$9Njx{~iIaP;3GAn^+rwQ^u8Rnf6idBB@Zg z%8f`M@pX_)s!o`!xbsBb20Agi%EUU%!X&1PXol6KlDJq=T*-alUolXWX^l)pP=B%> zbY4GU(h0*ofwiFC9YADyhWL+9uMTcCq zsx#&MCN2rXbVL(JICV<7UMmbHf^n@#C}?w35ynteZK3~{A{Yfk_^60ikyOY9lxm=e zk5Mw?(rx%4moZFpPi6z=IGJsa%zr_mKwdYI41q>pjTGq94cg1W2ysvkT-a*2AEyUf zP41u`+GMBe;Uex+fy;kVRDl@}E%T#8!>vU0@>3+AQKxrl8X3d)I=I>Z9a7BZJbiytjx`*ge zgGF1biO+Vy6pMONT)tJS+EoM`5=_WAxS*oKe;=v~4ogNwE|FcLsrcG=_94&K&Sk!> zZKH~8SZC4|Z%5iTJ75#RuK_S%6wR|3MecW&!B&j0 ziJVucJH0r#2AH8W0D@KxxkPvto2Z}3CJMi`isLp>)izO_wzCc+3Wj3Q^zg1rd~uIu zN62cF!P1P6;?l_d#17dj)1}fuf2BwID;Oj};IH&)e-@tjD>LM;^na=Ts=woMe8{f7 zdM+YG&55&CNivE_L)Jtj$VvTztI{EBQZwm?xHl0DA5B)?L_!_2XEB_c z$aXulC_C>kc8he~9sg6yb(b;F@eovbg#6#Y6x3NG)NMgRlr_m1-i@qPsUghenB0w z$x!?`ioN4he_@UCuy=48``|1OdwUN12(Hg*=(Wv)UL~QAvsYM0)rbDuP@qT~6L5fw z(*!k0A%uMzb31B8!AHw-*Q%p@e)N|&<#t=G>ur1S=~KB0hQ(?%(9^u!R9}i+^`#8f z#ca1%-MVfc+gm>tjr(0STa`XjgmZ!=SJJgfwYNjCe@)pXgOV-ht%tu_-urkYbuc0ujLV$w(q` z*hnImf5jU}oO$6w4j3Fg34T)I%uopfG+rt3F8BKs48SSl%0s534KZ@%_rs>#NSWA~ zR6R3n9)}(OuxlFV+33a->oE(Rn0N<(b~6{0o6yz%NF_y?_S*y|CFA}fT+a-r5VlY1 z?U9VkAfrLQ2I??rEQ!`fB>@_{xysW7N0GUhe+F@J_s;q>INkTUDp&VuNf@RRnmEC! zOTrDHFz5*Kpupy$%}GTVgFV}RO+^fvKgPif4~jT2Ir8T7L1y(u@k^4=IKUWwmd2OzZRF0Ezmb`Y<*c|I@bXu^Srzsmo966Z`u!lM?XzE+*PUeUj%jgaj<{k3;p?z zn~2-L5@5H)lTlI=lbK)@128!`lVJuZf4x}AZW~7sz4I&jNFrdltM^V|AV?4e@xeeG z9s)Q%5ELad;^GYHIQjd$*_7!~b2OA?U)WT$rk2<5RhLGJTOq~I6WLoCD`Wi&J5p$; zC}=B`SH#MRVl8eazdm^A$twjRN#T2ejr%{|4E^%MV)Eij2f>E4aY`(1L?A1Te^6FZ zWU;swZ>PWPKFsFIO%F4C6sP5WwVus2hv{*~)8+2NcC){oy<5B*%Al7kf?B}{Ah<(~T|a$XEw{_ce?jy3=2+EtEbDo3WnDK(j%4+jxZI;#>i8+dn*{3pzb!jS)zNZj0+-R~57^`KI`p4tCSHtT4a?|`+ zeB7>SHaCW+uMejN00qz@3y z0Qp&z^han$AT8K>Vyvs(<|4n5+VG z9Yw6e$%i)if3nF-o#fsgnMuH+hz%TE@U_*;9Hhv~GkjYa$EI`+PxCmQ#!^(~nE(Zl zK7>mFy-Wo?{z2@59l7Yfe?+(*Sk9931UmEKH`Od}TTtJfq zv}OD682uro%*L#~UR2;Fb2u^3I3jBa5Nvujy*4euEB5Kxd=5=HkS>WchN#cbB^62x zW&Y2hYNgR~zpAJ~KiuFQs(zQd0Otyqj>M7AQLSuEn_IBDwCZcQf7txp+;{aACNP(P zP0C=BY98W;5PFTGqlmBqJi|)Yy2qwec#W%I$eGYefjI+EAQS4-^-X3!=J1IX(ZMB? zoJJZoIgQKWrAS03!)62$I1aDX5S5}vOGuIU%#PRQeV2m(%}lD2NXn%xuj>i}g$;;~ zL((pBW^BjIkcV<*f4`Ge&9b#|@N}=<25;jN&LUcMEn{r*jh24TB}LLXa1=?IZp%Z3 zv15k$McxN|IWnW(*vu4BzLMnJSuwEj81F`@0r!WCL%p^2)g{63{L-HB<}OG6(<$jwpFoh+xE%c-#*X( zjCnV&`{-)z9k2vpw?vLVEfWono&k;;1oGQp5&w}Z5$shh4 z7w_9Sd(P0cok|awBIe$ikJtCzm%NFRON3HW(~6p})%9iUX1R;QVz8{mHVeu9{W&(G zijCo#y2KUOl;2cJuw#<~M%bJ+HA4JrV9HsZ0L%hH)^*_{sX+7SaOr9oIO} ze5b0n^P?x}7`t1EduojFlS56;-kEYP0+Gi`&$uq|Ots(6JgG*Sq*&_`I0g+&#M{~k zLyy*Fm1}4zma8pE-pJok{Jw_pdx1&owEYE%nFZz<5%iOvT;3-$-RrEqc- zTZ!34mQ#jQQ&O&lm1c9`ck2MCi2`Ikq>Raxvl+*;*uC(Ed_>dt6+27Ll!ae;|6(16 z+0rWo4HzA(h8&AAeX-42NlJ`^kVqi3nPAp!M<`f`5VwMSUyO10sBrAJCYmM|K)73G zEIiwNKYcp5Gc*$;S1vq2Q3cy%&zB|uo;T8OlLzM%2LER48>2@A0mcA3PSReAf)-|Z z2F=QF(-=rf8`yq!0>v=iZFODxElvv^PyU}u;7gG8oFXdJWXPOmNUgXklqZf3W zP^2<`Y$-aIQ5?bJ=$^Catcv;AO2lL9NG03v#~oUKjwavq_shc4{QY-(gNCeThT!o@ zoo4=t#9KqNlCK@HPTk3*;E_Pbi-}rPl}=8he- zmX0b8)UXIL4&vqMD-#{$#N=N76=0&_=r-IRrqqBj^=oW!$lA~I6zWyH+T~*;ZOCPC zCK0Df`gXnSPCwdZJVeH6bT%+&&5SB+ZZvFBgL=Uk__G+`K@7m4pdf(!6?zjd^&^Fe zFogmOgUc8@r0Nkg1I+whO0^EcOCDec|clYsBs&RCUgej9+sU zX+#LzSIp=a4I=!IxVp`*Gr1U2-r2V>=l{(9ql20HrQ0Q8T8^GCq@L4}T=IdAW841z8Nd6Epd=MjnK zXX?D&WAqQ`V6xoZrMmE81pIu_z!3$w(=pYbtY9)fg$3e&Tz7T2qC8G(ohoj>33S(f zxLPbT9K=hR-Jp;`4C*G!@PXvrQQKYee={FCQP7J-TBuT zzDmLzReAVH)O~IthpvCOt zhL6y33wM}`0W89ka#=TAbN2z$P&l^&tU4-A0YsX%OoUERfdAL=4DBy}qL-Fk*!IM! z(94d$e>=F;4dNgQE79f(uZ@&ot&u z`X3#1OPGm{bBLid#|xv<(L@UV%p)pFKdKA=W&O+-P4svrEm8*BN4z|E&)_jely#)p zk7d069j{86c(~wy?zgM2Y*ESH;0Qag>#Ce8=MeEyWr*Nde+qY7x#B0r3*Bx4v}|Xh zVa)-Ph7wn}an||0aUI8bgvadbG0yCj?Y+Y_4%(KJ?%8OkEJ@S;~KIhkJ~RWI7a ztf6`%^iZ^@GXf@+Pch2cm0)|V;(dhd;?+T2$?(8J*=dA=Xos2_#vlsZ(if>wydXVd z#NcOJ6u1yqaSvfLUE#0g>7$zgsvJMVtw2%I-Fx-p+>E%U-cR?>aU;ODOzVVcX&r3$ zlj44c?d7+i87|XA>&=bgNts3b^G|qXZhWA&U<5M_o;P|hjF=D-0*#qk!69N}OZMN@7p{IHHvr~%HvUJHo_7c`(ibN+dhPO}?D~i956P4)P{%f8M&{7S$gA`X7 zCkq~Nh!b@Mu5z#VI}1V4_UJ4^kI_hq~wis z0yT%-{qE84YSjPG%OqcLvExEh?BtR*L4;)4W6A(NM7bAnd3w2@qXX+(lU_PGwjhd{ z5Ciw3%%HX%sHmU%D7DH0i0x`3rpdZbYeK@^xY*txLM_=9av8ev6q%%}x$!Mq9dH{+ z14jIf&&A)E3Uxz*%=u*GOTri^+U5L{z_IUsBrh<2$y7W0X$Gf^|Z($1_pb<+$?ZW>&s z3rA#c2qDczk+@6y6i(OAL~DPVR-51Qlz#HhHT%rN#_O}hcv3Vp!wdp%Dw%R&t_*Kl zm1(?|ptP9l2;qdfMItl*em~|U{PdLB-4P(hJ+ZBwEN>`I2IO&y^-|{+2slX zQ2!I1joI`vdu;Fw`}|25fb!&|5_2$K=*IX@XZe2l z{+Xv=fQU9obrg{#(MZIBm>gvG<;Tg0<~4}_v)>4!17`M8=L!L$L6@e16ugWs%3kSz zVv_|*I0A5!yG$=I$rwUfH~10B_;; z%l8%!ZJcY;vltBq4)QV;Cmm?+;iM_!rUUC#q5%K?C?n4j$Y9$?qap-|V#^kFB9lT- zwpu-N9L2lt%WPqHhD)rH887pRVvG^H`US6*K}~kUuJ|}7bjRiwf#voHF4L* z2>~FJYNx5r14TYMkEANNH|l#dxkpkE@RLl~z#U|VS4{>4(r^oSWy_R!yTsdD3IXjb zPP#0%dtLmL@}LT5XXQmb{RxEBvDRH3$iE`6w``CJC*}^iUivQ?Vq6d710C+^N%iCF zQlu=>gIVWld_oV1;JrasV%!oD@uo5V&;Z8Oq-bn!%3_LX#l7v!wASK8X6l7MLe?m1 zQPdd`4g)uQ(L&!HLW@OdX{&6Av*8%FQ zbXN#>fZ-!T2a?NmXdYv~(n(A9fgAFinpz@}iU>V=pcN>;2Lem!G+%Ls8{4CSUxl6J9TWwrdhH7c|8O^4>| zR}K}RRvY_MLj0sI;iY_6`?^<^Mm2W0ng?(7m%_Qg^ZPS*3imZ^xuCuDe?u7B6%B-& zEk&3EoF-A)6&_GdEqx<aHCA>33d7Dn2dkje4o7n*118&o?hj_AW& zIun-Z<+vGFw4bbWJB*$c4JR40$JwBiK!rdNA7qOVMXRElVEA!&p8v%cK#ayUY0H*L zD4_3s=jZ$I$io~2EfutDmW2wM0Mkbv42*w>Sr;QDL;#ehmY3-4C~jCBELQCXMU;#X zAiU*u`0f$7yLImJlwDqBWmN8UKOMK4%yjzD=ED^qOah)YH8xj=^X?TN*O+Z1%j`4^ zmjDJbrpZha-zx{M(nvN+I&f01@WP*ys)TP>E#Ruka~i1u;Z2^}a~Qggd==9wPmFeR zziek>D_`Z=GaqaVv{=3VXCqqqdDkYf5~8J+fc9CXoTvkEDWR~53D zsNvcmD)%={gMseZWEFSE6zG#SoClw_Z03Hy{$k*4JQi(j+TT3tltIhs_$$MCUV6Nr z`xYtTOhXHL-QS#_W2T4AUcT=Qk-y9jJ0JJetN};>ecso6U2S~GKP!bt&?sTZl1-cG z1GjnhDUyK*$81dx*ig)qLReA?(EG$#WKh%!1cD;6R5>HqMQccM)Jlbl1p53&LIjaz z)-aMniX)#^KBu>3mM^-KSEP9I1 zEdmA)kI8N*w5$U_#8n9|pEe~?;Y*9MA|)`$Lcn!0tXENK*qla3{++=lu{9L_U`W6& zA7Rx{L}-D5&E?ZBWc)gviJXR>8;fgSJ)45+R@955 z6pkbQ2J7lq8$I+d{jgp~JNDp^b&?;#*B$_QZ;D0WYN8zEq8t>7!*(R^O&~HzH9QL) z5$SApfHx`XQRN($z;VtzBtpRPW zNl?^%ojIgPu!27m$z02GnF3-T)2$fOEhR2~sSsyBlKo$DP;oEZ0~7DL!KG-ET_(Vo zE2fOVrb1}M0`gpcF$85BPgUPeefR6fO0c>`?eA$ZKhYGOQeEB8yJoyZ=iS}A5nCw&ZHw_X%{ zcJf#HZ!N84*kl}cZo?UVUh43!Dk6cr`pn|7+v zt*WH1%{D275ddei4)3W;vA5a_9^`_AcM9x{1|OX-2N+S{M%R48VDC{;#kyiFbXelV z!A$i7ub-Ql$f#WSzikQCmih#d8z^Z3Rk3f7Jrq5Lv{p@*D;E&)m+1zD%Li?$!RP|I zfi!@Uf~GuQ#}#Z3jf*^BrFU|nKV(cO*-*Ia_vplj)Xy`!K$Qx(10>5?xBYNXKePfr zWX5K@rZJ03hl5I__+h0`8n*=yji04k}Y3zf|ydC~|~XIy_D6pCST)lL(fA zXp}x40wh%g^WVRy(%<^am$e)2AEUuM)o!Lg4}FzHN4YFASC;F>9oppZ&<@$0edqIx z>JuL~R$P_1i%~Hyg{HYFF)*@L$7+C(wB@qep0@3|YX=)_TY-u)yi^+s20@V!ix`|u zc=JUbLZKoIvgYaJ)sw+gcm$3Ba^;v{EKut#80cppj4=r01%pMJBG)e0o^p4V>8R=S zaORy?-SRz}QY2Nn)dxCx{1ko&b)@AaojmjSRMJn2Fz7HSzw1S0H0T_sQQhoTusc`# z?h#tZxcKsg=gzGVqZLh(J3KSJ+`w7St|2IBHam$ruUigL{-0@!S*LaYL+^JvXtEUg zwhvubf^PPs`-OjDWB-#Ufx7D92V~xn7KAWs5sLa*+n+n5 zgUy9tm;!vAI6ku%E1Aasp&Jr`~#CQ^>g304^34B&>cbjmHqy)o4@sN8Vh7N<{h$2ix)SPd!4_JZI*!R@6jBfPfl;`=o(G^;5RV%D`(+3qH&n?%9-7f z3G`O<<_qqMI`Z8&WjP*1oE$RtoGqJO5;oCvD6RB^%|R0zGZ^lfTCAB9{UlO1|!h<$^JBVcnN#N z>iF{C%>U-Y@ss(#wv+|!HHUAJr|**Hxay1mu)Y3UO@Y=rFCEFjeva0OB|$XOP&tnb z9$t0PeWk6VV5J;TnsM<1rG+e|p7m&aC5v1;flQ+Sy><{0QW9_GzQB!Wu>fRGQ9@TG z#15)}?!`!oJA%f84X);{06Ro0;g(BB{&)%}nQf9jiqduw0x%0^we4@#2_mjzk!Y=no)gp@CUvL>+TRwh0;dsDklaqu60=rNW8 zS4+W;n#%$W1*B#LYf!ewY@%d$4!c*TB;4VSOH>R~Lp%?P5mSWkH-7S`k5JDs5wxHw zkm83aUS=fM697T-9`O&yFT5SKc_?Tstv<0IuXM(w6g^~7Vp>L}|D@qB&B%%~Pnk%?;PJ2pxbkQBeny*NQSm_j>%}$t zVFA~s@AL~VsQn)`B^ik%SJWCoPu@>CHeRh5tCo4la3cU}_4Yb%3JOu&({)Td&1Ug% zJb}O~@Y_l~1XSsXkY`C1g2zIu0Lz!7oI$gbfx?2vfMTg5Zvo1L_&eeBZQnp$V~3-V zLzt1yND-vdkj^CuNfpjx^I=)?M%hJTEEhyY2w*oryJRGwco;#!FAF=eq5LO>J{2ZY z2h+aaNU|kxH6}w&K|hT;mbRka_%PGG>mmY@!6Q` zAT>bmXCX{RSJ1|u?Jfa>*)Xpgu{)-t818a{-zHmg6s)VQI z6u`8nwa`jxfU&ptTQ8bAc0l(=p`#C4<%)`XMbZgL$ztxER^EbXi^{w{6$PkoktNa{ z7-;~VvAfiJZFpm1S&SpxahwupLWM9u_$FBV)of|bo&HWVaByJmp|1zT?BqMc%pNdr zKF|Jm-l}KydwS~)9V?&XEZ%bSA$+ym0PHXc0v=`kT_g+;n{@EiLrPh#ew-&i9l0s})xW2qGepmp@UdJ<6b7g? zGR8gsD)ABMED^ivI1Znyzmk+159eZd-L?1p^?vm0#|+#SIynPPX+ueRyO-nd834Xv zxt-f@l}HQ__1wl}U5|~NP7hI>Jq~Xi-+=w!(ugiUDLI?v*bhR3iH<{ zc%t!(%)C*j6n}*D?6qHQ~p=PY# zJp}_*-1xg5o~Y-~251|B!PLIEEQQJ=yK;P!yltM6pyM@4|7!57+`RyzmSn=A$q))VNKP$>or2+_{1Eq`gJK zWjxMXyWjNGyDtDQgmRb*xF!6~VkX(?$2Ym55iXOStk{r@yIF=l| z!Wf-cZYhsF;#jRc5jQbEgclpgEi|(|3>G(8(XDS*v|pGd%g^>{NJYxVVPubvt5e#4 z`lJrNP4E^h(4I`8_m38=Kv?5GW3h#@aa>5-t~?=2%Mv093U;_{G%2r8JFs9i_vR$X z{w_>ZtToc20`$5^f@ws1a#f6LNY%*38Fd$x**|1Wmld28xy)+-^HY>!k`-_Ig);`r zyL`QgKr+hKdMr7+!e0@nWlJtketYQ_R0S^#2gX_8ForMxvyZb_?WVL@d&-s8WwK|W zqqrn@GN1jO$kvWNyN*)8f9hE%?pS-Zg+7I(MQZp zW(m|Fb^R!OO3^|e3>xg&o=RhJSz}T@%VkAwfl5!-A$=mjLGULC17L1cv99y5vFXO#C`^6 zf12dpK1c6}qvkIs^6&EjLds?QAM}XGf6yZZH6y2|8zYiaT_jmXVmn=b{2zBdmNPi( z%QZRWD1%6c$mK1{0b->7ULxQU*wPkb`=YNNK7wf~X_pk&s%jL5%OgPJzsVLp-Oeu; zjR3WiiJ&q!PtT(XJLV5t&}7tv&6j2pcBc%+{!l>b`=US#AKwb2k7}#Ffr7w=Vrk2vD;pCibJF^c}cAoMf<2_+YsRq99ecShuvk zJ{O|n^v~sp={vI&?#l0Kcwb?G+7cUg#s+}hE^;GnMICw0O7+Ehr^Z8mT3JDcy`W=BDyTU!&^4p>vBYTttvtpF>P^8O5_PrthhOIO3On^GU5`?z;Blxo zELH$f0BBxG%IN78#LPcDtHpOC$2V7GJAHBQ*CPFY1KSNNd|C{LZTf&L;RONolFWTT zPKGLbaj?i;XQ*`l9qpMW?u5iZPy9TFb{&{%XE#HkMPgmAZ8J!my z?^LT~gV58HgA@>Hbh{@ag}z@0O^>f!iKP&(00?nZno@|Uz+EU4a4{`VGxhT(d}&eP zS)r`xWd7(d2iku}CCS36(aDnp#+P)u(UCt|EJo;PbX%&MW(4ngG?qMJTx{!OEr@fc z?|?0OR+S#^hPF_KYdw_U3k8km%|*Fz6~tMnegZ7ovP*)@d^PmIaR@s+^R3oj{#cU@ zfcMK^gHNg)b=kjDY#voPP*x1|h5hA8SOnN4;`yys_lDvJ`vjKrqEH}@bQKn0-QT}tgR>F{ z)s6A%BiUXT8y=v|oT&EY&1=M2JKPAFNld3X?_h#iuM;KT;f{r72_ww82t6S;v%eCz zmsS=y+m81Wcc4)dKSI$#xwu*X&tkBkDeF4-Z83P#49j2*Z1$E7*#Qy7#zNp@>Gyx! zrjXf{-bEX>w+8Ujjya#^G{Bpu?x65@tbTZO>syPC0F`bp!!D!#GuuL3&lR&m(4gvr zha6%r#Y@BU{k)haj5Yd3LfpY{whgAdb#)LB;Acb0rh*Z(Q}#pG=9G}>0hIq?VaJR- z?SI^w#JOZuKs>81cyYS~swt&a+#L+&Q58>p%#u-pIwUOoz8us`^3%!L|3mKjrB2SR zFy_ql%*X2#O4LC5?!aN4r9&w(n(tl)9KG0S7U(y+dj+E)G2Wej{7$CL` z60ze}xh>oe@dhcWQV5OE5$UwhHe2cO3&fu@_&NLtwnE}990w!r5Az?NmXHY8$3PFj zpn#esBH!0nhxi_K=$2|$stFpwq0Qk&Ho$`>pn+Nv*Fy%H#)74|08Eu>?GKVJ(~5Ge zA@A(RQ3InQqrupW6|w)ara{eU?#xN&SY?2|FwD@URaNP!w>js0tYM~Y2IMDM5rHefLj=iIIOC4{MKTX?DOEPv(c-|ifiVnn_=wEj-)qHX zC0owGp~ZzW9ObX%F_m5t83zKb6I-$|nFICy{M*;alqd%^UJ3L32zuJQ8K&&G3^kTa zLMGmEuf};h&&e+nWha#I5>{FZfSo_ATfTnXjX&Ou6Asq% zr5^GBYk&1YhV@x(z`=UXO4!m<;7e<3YhN41(xDaJv(MVq?X5r0)k}cf!2V)L`E7dR z5$20U+J)NBl!qY$KLRGzfg(AUe`N`by1_LVCyMVmlW>tP0MG4c1%HXy(3xYtK+`E7 zgW1-3-$43k2iPtMN|$Kqj{8`PUzu-e24mnd_&A|o`WzuQBDox8T@`l#j(C>=HyFOh z2EVYY8P2&H*|?OsMv1)nX(j6ADUl6MA2+JjHm?`eFV4LcXPAqGu$pQGqFlynb}?zqo6P{C-wWgWR+Ix7&n>!T@36{BIU-)cpS` z2;W&8N&cB)fhgt2N=~dOE|!&l6J%w|BaN+W4A~XM#{+&u1O3Q-RlO7=hIA~~*6%ws zX$@#;0loN<#NEW*JJ!E(L9`GdV?ovsz|w-+k=xU!#1w;futX%I7KiKYnwRH!!K*{f z>grbMk{=9cvWH^>f5-qN#tA|Si7)oIny+&fykn^{XV{KSbaR9{INTy<NypiY6Uh!$hU1@U0Y`IS|C;eIU^> zmxVHngM-%s2!PC-fc*I_u>>NnUHu=Zlj5C7;riq|RDYV4EHk9Hyp@F|HL#{72!l%_ zw1}o>yv9M)T!DRdqBwo>jvarBNPjXE_Y7NsSt*3#b%Z0wDMxGfQ_f@hHnek{=yV^C zMo%~}r!GEt1R@{s>(KG8MdjUWJABDNjZQk4uCojYlLAgbO@oH=NFke{MD))|;B^R& zBi=#+3S72v@lE@GaQ9KKVWmdlLA4Sl#MbgG@X!pjnky1uK^FE-J)Ev&If{f2_Bz?Ej7?I`u0f?bZ&rV?Pk_e1HO&j$G z4@5z?cQK8IK+`PNz6HBxym5)6MZLKt%XBKrC;-eBxFM*XEH4z1F^e<$j~jrc{cU`g z(_{q`Gc3SgGXCS$Q6J5pRa&+>K_2Vps>!ECm`kg>QlypgwK@&k?yI+i-Xvn@pdML2 z!pO_3dzcz>SQ-Qw zxnFGg>|b6^XCit9@fRZf#Z`1)6POujdM|t&-pZawGz^`&zeT@p2+S=mJTQ`*89cHi zOZ3}n`uUl7c#f$XlLm*tPxaNx%J=;I&I!Hs_Obv-gV4W9>;ZW$GLXs+!=TcpL2Dt=_)WPV@ zOAc|bmvIF1-+z^`H8nLg#^+Dk;iV|Zy6V1ewM3is+JYV3ysQP#3vtt8eKs)ESIEA` z4YnZmpqR8KNkKeJY)@!NxK*Mgs2kK=EZ^+x?I)zx7u)P$+M{s+)u%SLK4@@f6zLkx zLps;*nUUc-G)S7pRl(>?X`BIr(=Pii|TvUGnSFo7-Ae7NCKLOg%PdCSBdNdd;X$je{Im zOu%nnn%NuI8EJ?-X~;G4cY4SK4iPd@2>U*3Es#B$ax(Dj=dEiDF3pj#qHYC3S5FBma#N%t~yU# z`bgtK%kp&&L{F=kw%laqYPZF$T#*I>wuX!E6|xUKU)A`t6jw9_)SK(vbRR2#XKsb;G;9lshgvR_`-bw=JI;Woh$(FH#+2O6vn^+RWi9 zNP^P3ZUkLck^2pnV=;G-Tq4&6OQmd)i&eup3Cx>I3(N8-H|urqC7`S-1DuS?kkxzB z?GpczjbZzwiM^rV>xeplvqFd8JENp6!>-07dE0@dWxJ0*E%P_>s4$9lgH+2A@Mhqx zeG6zXKH2pHpH|Q7JDjONSpP@t8vLJB>pyCc`0F~}H~8HEBB+6%GGt@|2o%n%RJHn< zLCLV)S=!Zmt0&1ol_c4YnBjWI&G8O=Ru>s8FLo11%^1y?rK@K|QW4Nb5o9JIZYz}| zGiGnVMIo@zE zxv50o6mMD_&=D2~jF=^&ADx+dz5d%uH)DZFR4Y&796P(;z@Z=J(|#$Y8FA8{?2mM; zzh(QXrR&%K^i8o(QE$ZtWOco$VnO~SbrI*&ZCDnJ>7^j3`eT;- z0uQdpvG6KMkh}({_o#(LzQjn1Eqwe#pa>*554g+{`VsvVX+&bSHK0O&zqt#mTEUK! zlZ0k=bZA*4G|vw!&fV-2S+U3hQaLbf| z9&yW#^kk$^KEzk*-%viCurCSioH38`md^6~b()fa1jwqcw-<1vZGd^FZ_W_n`jb1k zBGdxo_*jp!Oh85?0nC~7;QfjSPIUqP@R>^LiqPb-@&r2ge1EuY>PLqaRUXBbGt-4V z|IiYm(*b?soh;Xg;7`qP1x9wa6&q7<-XkiexEoIf8Jq%*9x&Q2A>j3g@IbZEr@|po z^pICYf7M{~d500KSdOaPKBoY+JSUE#J1p6Bn+BZ45hfAQvMhqKx= zhPAQfuby)o;S}J<} z6u=NWZ7-jbi&=WUAabaN2#@NHy_JH{X%!B2%gMopUpq775jyDCjP&MMz&5kFvl{4R z?4Pb};UI7vV}H`V+v_%yPaVz6Wk0H22|~7QamUMz{f(Lo@!%iBay0&kk}VnE4_>Cf!0Vo}cP`m&$3Es-=$x9DDZ$BiYa0=8Pm$EBeKeQ(=bYOI306LR# zWftRjG$faRgT_IOGYA%njCsY>fp@~9_sbTy4LbFV6)UjY3Ui zth>8qU{HIMA6O+Xczii`*BShs$hH#Q0n43zs3u>Io{>@tF1b$obMfBOM)l=fZ!q2H z@pCs?gw=QIo|8T%H~No{g6mmhJWYkTDeJQJ4859YWXc9}8!Ui3U@`edSN@nF!9n(i zF?6c8YI(j=h*9Bg{j{_WVXA*UX#7owV&LrT?&ch*QWcmj9>K)}N39AyyOL~u75sz4 z+rF$2(=hPm`0(W>Z1B$=sdv@j`Irve7jxvxkro`UiSo11al}Jgm%4zrwSqRBb-8U( zrDNsQ(x1danIWeQOh|8%Pw|= zP9ey-{yMo(SUGrX)T}JHzAM`Ir^z~fR7Twc;T}%4S5xgH$H#J7edOpWplRb_g%Q#q z5rCPX#1WvL1Yye49+q1J&R(%z@t{0M40z&;lmRv*n6h0m8-W04@ zj2D|HKpkk(ocbD^J-f^CmW1gCl?ceQf_Ryx+9@d6AA>}b+0)1?ua2P}O^sH(ZUDIkHF zAa4>LJp^^!K*iD?Cn8~};x^=qZ$EcT{LJ_EQL6ur=+2*_mJ49grri}N0B&i zIoRI2TC^Rj41HU3S>d#ExO>TFlkNoNwrU7qQ8(6)r6yg=C=FGc;QUK*6JUWQ=Nk` zBcG|i75A(O5*_klJ^C*d%xU4Y=V@#MRVTe0wl@d4w7%tt+b#Sh^207^^KaZhR66Ao^eJzQV{`dU!uC^El7fEf6wQdDnllCeB(E@MFLvT5N*YDKcQfxeTcduRXX%7hNs9T^C zjVnYdEnhvHcQ7re$Xw;`2f|*r!Dk0`2Au%+0?$z>nka zM>c>~(ubEEKfP<|oY^v;4kxUnrhg*ep9PFpp?x32ZD?UVX1f+KIaawekw)>i!E8-N z-#c_%F{Z#Tc0MT1D?^&{=U{qT7puDMt`SMj|G0H^`7UTX0({MWb+-oMGTMF}?0 zg6f>p z$Gzv{7`N?RnO$=BVs|H)DFhZtN|;FIfOwlE+n@wf!|sn>Cc?MZ#X%Y3#WJpT`E`6n z8y}Zmz+zLa`P#GPh0$qBnS9eoWQRUWBHv4}%@w^M3d1P=k1N7#+ppruQGNG&4#Y`m zjrG&(xTpf^aHVt^#Z`WwWb7x4R>R8-52T|*0nVO0dNTE|i}l7$ zlhH8$irHS0t*1+#%xg+Uj8OaHVe({H^(*$>SU`M+rr8h)UfkrBk9bdQ79RSm?sJcr&S85|gJE;j zrxP@nD9XC4^d@s8y_BAl_x88vE!tEEK!(RU0{JTANIK8}7Y$?nj6dJb0Ucc!fIY4z zHP}RRW$#-f3MjK+P9pfKC55~+orewhmMuB&c`Yf_!+yT*w`qXkcUa%bGc#$w6dpFY z=GRAo5Xt3%&@<{ChvJO(pT#N)j8roT*yHM?IkpWMWbaq4l*jUm z$j_Va7?pc9A;g$26(#&6s1wUiWlPqXzze69Bu<@T7Q##XbHp4XxviG=_4mZ`MlNw# z-Sr-}UsaAs9fxLm&2t&EyTX_N;ATV2g!_$~8iOfp$k1*Y9t>6d#!$kiqhsjhhECpw zfep)WS)&~@rsA}Z*vrgpj}@dM+)bT$%SvEbi1D%tAIs{x{45kM)}6%BxRUKZHV1C0 z3^bB02Xhdp`}d_VytqdF4tyXVoU$H?S1`RAhD{zdIC{#71lsvtcd{l!Zg*;*iJ?tCJf-iJ_1k#9lVmM?5M zybE5G3tuH+G1K;g{@?UpF}hIG#`kQQma4-rI6Myy)t|BbDIyAL*BlUlLF{|%5?Zcz zq5Ml&_OnTe#Farsp6iQXwK?UzZ=`yf{I&U$vInZrry@sG$T&Pg`%D3r9-`s?0I z;#s0*2r1EgdnLR!)4W*UJUXH>Q6&T}YFCr?lJ*`TvYANOlxWd@f&v36@-y!ryXZR` zZj!z$iR}+4!f{B-vrn(B4PGvkWGCt1d7(CblTwoez#o%&=UIMI!Gx*6GX)qPY>#V8 zwvmV}FG_Sdiak3g-v!3Wr;lkeNqnY}>u>zct@7&wOg#Qyy;p#G!j8Q&h5_GX#NB(9 zVUV()Yli%5zsdT`!bcrLluplaD+%6*+2$Oxx?od6{BOfUuuZXfqU7L0M|z{GSJj zBwbT^W!Q)UbS)p($Q9^EnSn0JI5fP3fSCe4fD*YZC}Q}rWEz@K5>kEIrL1lpOzppz zG-5xN!CeIZAnapDGU5at`wY|o|M1|Tj&LvfT8;~e6GJ%r5uA`=-2S!L)}S%4eUD!i z>gh+drL%uL(E_Wh7nZv5sF*MI zXp;9A<)MUo#6lZ!@rP8tgPKw0hyEr4ASGJdJRihIOYlLb-08icZVN`blCw0$^n_00 zhl7gN(;BJKj1Eknd^@b295cT|iBpsE_PH!frcYFlFt2|iZe@BF zQj0vUoPqtz>Z|S*qj~#d!tmNy<;j`@`;IPYX=4Y!Y;;8&XE>n_Mlh06J!L#iJ>X|GgUPdb?P)Q@z8WDcB2!Z8Vox4-zW{&>C~eU_#q? zqiq;q6`s*0$#O`S=JBOl9bnBmF%`DAQ@wLy@>uPz4(b7qicV~^=70z%-EfU9@acgX z{{d1BS>itU8u9R;@I)j8?jPYIMCP9g6$fs_^W4IEJfm6iBS37+vdwg@h5LSg!OF=` z9=!)ng#rpo-ai13S%?b|Kmd^s{k+=|o+6q8MTvi!P4|@O%;ZLGGC3NXqMSNDDW}S_ zBubLyR?AdFg~|qE7b{)><|yB`aTtB{GMPhY}00 zO$Q$Uqfv&Z#wG(qspVwr|HQrzDnn`&XId1KsuO=dju0Wvt0Y1Jh2{^pVb+5Kr&kr( zP$L`62^r-*%+n#Pwq;nQkeBvlpcRZC_0p!G#&w~gQg`-4Q}q})LK(K5xq#YM3FEG3 z(zC-{f}2N#3egLvAron#Ri-0ekUk-Q{3o5P6KC!0Yg_cpd-DnL!={ro6O)EO&z=$qN}uL{{PrJr|!(6Zd=E!*mhE}ZQHi( zRIE3)ZQH5XHY&DlnVl@g(ea?bcaCyp}nYT3biZ_ZXA;1puiL3*44^A4vKsKZ>8j^8YEl|82WC zu|Q~|s?G^H1-HP&hy0yx2r=F#oW({eD}}7(%lG5DFcxF5)P7ir|;1BhiME3@JsZj4W3bvZb&Zra-Sqr&p2`6)^h1Jhmj!iEJ z8I{+IMsxN>;OR?eX*FEA#fd1?B!%7*TO#)`0?Q?eSTT=e6R=1p}>zTCXj5dD9Qj)8RLN8+>C{%1T5kPAb90ka-GI0plBq)elASn&( zNhZUV_H6~j#Z=mInr44cU5-+U`eQ^l2DG_iHJ*6cxs?^iHr9x11@l7#$j&&5_#luD ze9&OA5-5jcQW4_HUBmk9p*FPNAdf-GIw{?l*~uy=vSlF!11Tdc;YB*D1zg1av8|kG zZ7w~}r#IMCDyS^}3DwvB(S!9BmKv`369J5}B&LC{Yue($st5r&6tr&SBo9;yUz589 zHB*u68Rz@>P=4C7jW9;1S?x3N%i@Uz^lZ~y;PwSN&cRj-G^j-_Jn)y-H?wbF&T#EW zwo)eR;s*>=v22~YLGvUQnU|IJln zPsEjN&Y3ZuM_m-<93xZL)UC2hiL`nm_FlX24q(&P*N1F!O8jmooeCeV8PLy0BUMXv z+&eGGNOp^)@=YeNk2I^VIU9RFtt>UT04AScMKPg3NYP{5?V~hlnBLdd3OZP=l;HQkgW0By2YdWY?&dsrH_>zS4M3Dl=^$|~K%84~pNuwsX^c*I}R1;cO| zk8ZmOO6xs50rpVmu~$w52VwU#50b;q2TI-$ry0iHYSr66Pg0DKGOAQ8?JV(^p0)Ot zSS6A){s;I)4dEZ7b`a3JP61NgJ0}K8+fPg0CNP;pL1OxQT{o;E@@=~W2pi@N-QfJ9 zfuKaB6&RV~&ILXT3aqrxYKTtF{Cew;tK_#HQp0b{6`#sBqkexYYQUH;g_d2pqfNYc zTpz1aAUTC^fuajc7Nm52Q(hL2LBmAyuVftu3-u=0e0hva#dFZ5 zSOn+5g`?sn)adEXGxI7yD~4TtZmqqlScIpsj4wo_xsC-Og({}jEr7}I2o@zB=3pG@ zjWtvMCLVJ=Py`XxyML)o`u&xNJQZ9IdL1JjFH(AILK{J$8RvA33KetnlL;ZFS3jm@joM_|59%ZgKTskTwXtDmC-cmT?ssxfh326VLlZH zJAW+m?UA|^>%vhj=p_`;ceRI{l4U&Ua=l!_Od`t+=Fb-V9+CR^>wBOa@v{JAnJrSX z%L+@3=!@;+l}^n%ljs22j3tv68F%`xgx6h$^ zyNGFmYT=hZ zg1pz{dj-Plvyxl^i`zUoypig$h3u7x;!vxguHYp3+k?FzFvW19u4@?U|A9it%9$1ZduIFm1N-w0uWav# zaC2<7+?nxk@gSuzKnq#P4Ko`FDoVB%0OFXKauOO&d>qjzbi~gw0c;&rSqF~9Wl_zV zj!jxgsgQOS1&L{y7F{}A4c>{~TKT4v1;yGw!n^5o#_l^gKJjr}@KE^iM!rtFbja3? z30M&~7Qp-ou0^D9kuVP`HXx&b9;a5`uLnf8MdRx9A=Th~IDw*H9C@V4=~+H+scv`s2id6lc|$Fr~12X8tzd1`;q2^;akE6^x;CTFv>D3!+yWu9fY(jxe$Zjer$0`!`i^o;|b4yTrB2xI#$C23H@#cqqWRZ4wvDho5)YcO= ztBMsR>@n40ofef%>rJ=!ubXIqoJb_=Q!cyk!H4E0W)*y-IcjVobE1?4VB?B`gb)p? zof1riK+4=^19G|GN)l-RC`N@O%C+j#T{!3>o()x)EJ$j>&z*=< zkjnb-o=X;kE!S<5Pj1?61p6?*5Ip#d*VjSd*ED4@kpg-V+$mjXyBj#bfJiVKh<1+x zW-K=lQw-M>fpCOwzdB_-PCD4AVI*XL!HAHx5tPd?FZfAKu$&Cjd7-}IK(4iZRuN9d zMea~zKZwwMaShJJq3G0<8+%90=4SEMb=!(k=9r_ZUM4XJ7E$()#yZI|HnO0d$P1OQ zQgC&NaCF{pA;1A9A>0ta_p5NTO+#MJ7)!!Xgh=B0cw;X+{=YwM?Zo;w(Y0Hvf_KHJ!hu94zf>yT3lMhJ z)j~0dkka}J6nXd5mJ5D%l4n${@03m=Bz1(};Gz#y;Md9*`&I~mb0r@5O%cc`c)MAk zj*d`}G$XI1zXIuf3VYT&)zd=LACwQ8RNoA%qH8IQseLo5n*wcX-%=JdI!E=Uk{8q^ z|Mb@h9wi{^H7vjPjeL*_l8p>)!MzXp9SA;r-P%Cpz-PYpTeuzHjsZaKi2%^9+n>as zA3W+GXD3rbTNu+s+iJ+ffwun+=Ar}~s!Q8%{D+lV$4;vx%i&!q>R%wL!*ZD~i*7MX z3fWhwYu{BVd*G7wwCwgv6sZzmE|<;0VtrO;7KqA~)|2Udx?-p-Gs6Y1gFxmpr3n2nXA= z8QDh=JYQoJGYlCD#$IW(m`@cX>7b=Petp`l+jT$GHgo7gY2(t-b!yBf_gqLg`40u_ zFN(^}yQ2AiwArywjo9LBWgw_OI(k{qV_c`uU;i;aV$iI?O32>OZa35LR}M&43s7KM z`C1oh?a!nZbyRzYBSRkn+?%DjOu4l1vdteec-+2GT#rBR+Op7hE_NmVlSd=h22~45 z7V@9xy7;h-npA_K@n=dX;eN^xSfF5Pl9bvh0xb@fQjKM$I@beF0kINnBdW3ow5bRxRH($Ei>Yq^ zsz8PonJE*GZ^^pPl03+om&`ii&Iht1=JlLO6cR#09{l}4d7Ke2E;9|tZU}ag+RY56 zs25FKF6_7>n>7zZa~fVWYVXaKRz%_>!Pyi<;z1G- zm==weLMp&NCs2e6IPfJfG9YnL2{_rMg{EW+YYOyH-3vZ4OZgm>1znQ`(L}I~wGz}2 z=ajEjx?dPy=a6d1+zAuN+*D4yrxHRoBSv&hR5+!&)C0!*=kSMlr>z#cw?%(p0F53vfra7fo40PU;)R5o?=GQWq0fu#U_7QD?aXgGAoH?K4|BK9xXelh4hxe>P4~f^RhJje7&GdNcRiMHhJ3v^ zNxKE~{3X3=u>Q)G&GtdfUh{}9###GvVq98TbhqXVs^@h#aDDe|`RwSa6=;>)^w53? z0_BrIHt1KS{<=BaeJ5vy_y)S1(%|_|n@Xwse-!(F6#IV^`~Mfk4wUE*mFNflc|cku z`aw|wKv|g>Qyo3P(7+j4IT%?}9d$r|0~(DT$aQ`YYU{2!MaG$UmHRQaeD${LW+Tnn z&Nl1Km+#Y)?DvaZF6SSsRb5YOmGGS5t<}+qe><|FnR%H(Q4j>YdjCQ~pn~+!?n0A57(lJ4kWG;XvX@Jnl$;~*N{KBfUJ3wb9H=qSfMLw?y0RoHT zy_gno&Ol{rTC43q(UZXZx;i>wy13a`xLL1QUzSQtjKCb}nLslBYUDsjuiMxOPRKx1 z(41&~LE+Kif&OSaEe-i-Gf;$}EKK!|Ecp;=Yg|B8U;98&Hnvgz-~9)pH}*hmbmZ`I z-$2YRbxjbX5tOju6BCr6gCdy808twEnTKt-DU>nmSubohdRDg6rtgewAcQzi-kn*C+Cz0i9`u=Ite z&iwkX{EPL3fAc#E1&^bP3bK7(&76 zEmQ{-a{n9rEBnh9=p!}@@CAF=a|gokt*^h-I|h6LF=J%(lB$>X_4s9d`ms%A_;VvD z?}?6X2gFNF4eOVl7>L(9HF@;;9bkQMv14Gg|8Nca(J%q{1W->54o(e1*}04@g|Uwk zH*pqCidPww;3l}5N$Cf>hGRK<{C(GgMdL8At8#M)cPov09zpX5IIL~Q*&iEe-_?XK z5H5l3T6hyjkjj`tUl*T-NO(52okM5#t4RIc-FO4i#>s5M-2-!u#`M!=vLCQ1iflC2Ws-(%TzEPwR&W11W<0EE2OuWeWB*)kV%NgR*Z z^4L`p^N-c<5N2(-3;4fj7-pNw+rAvb9{Tg>Oi_qRMG$R%tFz4RAr(W!)6xFy>c>O{mN z2;o>d$SMqR0(3*Wz{a4w6mQypp7co-GbMkALJ@+xD(zpUjszy}Q z4Y5paSd(ipOY262hG&L$>MO34$#J}4x30E3vcyF3rtS)Z0vyy0$5cj|TdPGm1%}fJe75)2s19?xW2aVhF;I6)`UuOZ$H=yJ{V1 z7k7lIMEyPz#Jj0;q?en~D313Na%!m(Ca#j{VGX98t#9QD9@!YkzXa24C=R<7awe?s zt)CrR0b^a0=4c(F@_<&Uq;sk#_MO}&KIq$;5vD_tqJ<-GUDwb?AtpWloJ*B;lj8i{ zD}P_#NgES_U9dt8hho3PH#|?}5<{0aI>-E4qsSi4Cz5}G4U;EY1a9YZhprMr81+$r z?&D^ADa7OpDX~kD^wKryFcdEBk?+a!_E^MyK-M@;G7U{0sE>#ao8o?ymM;qw(KOl{ z*@uz!2q|+G85dV$;@Fh0}$}TBaE~9*_jdNfIbUfiQvruw~n2{21`ePV6Z$XhVe_>&;o3&rR5twt>YV zz!zIuikvYGVhDsR5l5B#+xlKWMZTzdR z)b~{DWyFh{0*z*GA9%-BM)zjyA)+y0NEkK>^kdiH+8G$*q5}6Jzadw$8;D((1+kP9 z``}+rGXKlwgU+U?mvl$yT##%00;>F!Q%rYN$gTvy3*Y_)UjkyJx$c&4Pj_- zM%CW99G&%_LzO3wG%~?f%@wXO%{#^eAsODCLzI%p#t{NOQH}HTfTx)@G~;9m3H^cl zgE`yxh$AE+f1K(u|V z&h)B&dAZOx6x?4Lw55iIJ=;>D$Mdkr_DtPGF*rJ}+P)wym8~FMlilqK#XCUrp6tNG z#ac6r+&%r*L3Qr3=b#7`v;y9BTS~X|i^cO!J#< z5P#?~SSl@Xvmf-Ie3igag6%yjkj0mbkbi$>)GI|Q{qRS~qWPyeu5__7OGj&1^&yLK zod;SmmUtwUAhj1&2+jQv%DRSE=s)Ovm%&_4^;*)(%qf{&AzcCWbUVUYKyb|J+u&6C zH$6oYOxRPp>S7&conI|)Sy7qiw=gL(2W7HVA!8wz6bQm6yx75qVWg^FM^oxi9AdxB zaCX))HXEuxZa45voV@WBUF+^=B>lHm<5Qkgm?9J8BWe_1XZ!2?IfHr7B-eiaTHEPA zh&a1?CvletLDE9uOEU3U06rS?x6rDB)$q~FtwuHPRi9k^!!b?dt#UQgM}X zB>k`V;2rVCfvA?fe*#tV^zb{5AT$KP0m_aC$_(%NpXj!Kel{#SR?Khts}?-j_+;>> zQ-^S-4B1``qIiqQVyfBlI*~m!A&VUwV7o5jls9qt6hF8qs}cYv0KxD*pFEox%U1NY zHES{inJ5s+^y^L7k%k7b@~Rc zOq(M9l!$Z20U1FAphmu+Y0i>@shN)q$_&=Ra}4n)M`KY+*!B;@@q+ud=e{qv8NbiE4t%LaVUWVBTyzIRW-`d#(`H3SVG?d37)? zZcsp`0mH45OM>S{UIe+<<+2tB>3Buw~&=4O-=h3-D*)Uipl1NZw5J z==`+nz}))UBrU-ap4>@&MP9=9_Tx?AT72YHY=2RXSYP70mdtEDw%jV{K-+|8cQto3 z7fe47RnR99fYokhX1#MkIo$#qZhZL={E-~Q{|QtXj$s9igGZE}ub~D6n}}g!)@&l` z#P{!PlA=wWYMOUNeQT&m1xN!=+Dn_eB;_?T)3G=&g+K=f06tcNA3f-_iNMZC3=T3a zym%FQbwAO|Qlof9g>TMzfsyXhYQqvsFwG5b1L1rRfco@x$i1x4y+QuXGUZkbk+-hr zKZcb<;K+Ka_4Xi4Nrz5SSR@p*;ZtyzsPTs&D*w7emq~FyWLMdxnFZoV%Vz{P63Ttg z0QwlxB&Qsf-U#mLf>5gcuaa9ydSLv`d;ZxHlUCc3qv~-GjOS&?P{PPX&nmo?$Gj&2 zeZ{&ypaWCP<+*$R&wS`QOeyyUf1Bf(>=V0y^WXP}A1|uW`|knoVL6&sI0-qMrOmcp zVlgU9=`>WlRZK1+-%hR5=#!t2mquDGIyJ7(bN|jx_CXNbZ@bz<({R?&W2N}a-9>z| z@-R^-J|z_vtP3@-MG!$M`8jDl6e3lA&STRrfM#HX$;#$@)I(j1PXbF_CQz#Eztzuj zD`&gV{UDCQ{=oJoFiI)cDeOM`=@NWMl8$JnHkMf=0xx!8wFcKj*{~>;?19lOMaIuf z8*V=R7qvoyt{AbKSZxfCbB^orz)Pd|25et6#?=BXBwtI!dfC#Qvu zfCo2AW4)bXx2hFInrPqhJbFrdVIRC1EPLh>nF!ZR!J)5XjKh5&!@FW@9|>bVVu?5^cUr5*?tuaT}qO( zEWs6`6}7XzB(s#gOC|jUfl)90&Pa_OfUK>rRDF%JT&<{7lQOS-s>|g%iA6386z#z} z5^sRSbl?0*%ZW8}*>zSbQJgbtj}5nYiRZruny=VdtN0i7Fx;rVc9)u4SjO8jv+c^a z?OM&@WFL-wqE~CFNte|yGvhq24Lehn6DQ70%47Y?-9rOhPFHBYy8TkY?*vc{K#f+3 z(A*zpB(U}$>#yZq9l=w^m|LzX!Yd1hy0A93?9w??W!BfCexU%*hd~9>eTkLh=)1K|~sR)1j1(ZDMT@$6Kqo zBRR+j8np-xSmuHO=s0qZZv5MG1)+2|DM$@9sjsIM4K#S9o7YGZ8l~@b%ON6`I|*hD zG>euI`+f#G`f(vbYs6P5&hR|jQ-=JBp;XlyLxFVkpwDhlfHs@?zvxrMA?AmdR1=8VC zEGJ87TcgNyyYWB37ZMw9`}(3KIf7Q=f%IIfYiCM_w+F}2FQy7Sv3D!bllX+@OiaJ0 zK!(9Rece#sAYT&c z*I;M>z|Rj^O+fb!cc}`RQT#~*hp@{MNtKC@topA4gC{3Wbc~`vcV0Dj7%mn5rlOrp z;{8KdHNHpK03FwNFog)5z7QT;R*)EJDzW7;mR)w^c#K?g;T>xp0AlhiZK{V42_Eg* zBX|M1nY8uHUwtesv6B;i?a@z?A_T@Eqw@=T&97w8mWeM89w?t- zBgUE{n*^N1FL$?A0E)i!#`x4B$;5HXrB}#oWfBUp4p|2sGswTZLG-$=86Fgd1I~^^ zd%F;ggj#7cDK9|c;L$M=| zM0!UC!hr~_SMkL83a=Krnuj}Zwt0{b;ah{=iLoVVlK)fl2N*h#dMCl zXl=OFP-vLHSS@)@-LCjf_KvcuJAMHQH1TvvB`8r{2eh;jtiuTA1_ zX3S(*z40VOHO)7VSARoArEFt7{)knZsILx?a3?VfWjV*NeM_S4R2 zr%VJ{RF#~KMrSsrWCO$PL^Sz_sOzj*E|!{TfUt|WX=#ZEJrTuUff_$(7$Mz&uxl9e zWJnhh7$sx6o7qCCDJ$5+FrO5Z9mQxon+!WL8eh|69!j}S_8|zSJo;{0F z>+Hb_Fy*D-IlWlbzMG=^5L?&9-?;T2X=gNa#C1XUf$j(rS3TV2M}eOWbMr_9F`cDy zibJ{%ssnz4@fQ$j8zz>XPM2~Z<48rTyw7ewK3N35&1FpI8@Y&V`fv`HAA!gHyd9=< zA-v;rZ_BjL?xtrrul$R}%a?5b*W+3Yn=u9#a9eCo!ZHtiBFcwATUr&V%kPULx^y_Y zyOT#_uI3XZJSi&f`&XD!OG;X%0pkngS(B%vXJkp!scXr(G0>RNdr_}8?JKc~`N}0> z=F6_uY{i#2X?-O$K2=TY4aA-bvBS`^ituMF#Vbp$@yVsmQEyw~`x_Lhl0PM;Zhz0`-z_@;GQuV53)joeLZy_N-d5wPx z_(=k{uT5WwNm1yJ-k*JgtlS@Sj^0%T)eIWguYXQx#^r#ms|hJFOg7%_7~1Y7HcP_)ggASgOIiTQZ6`omb=dL#PNB21AOz z2wD!;n!JM-haF6%-oWoPcT=u*rtpuRO^v(*+TtjznodP zOS#Um_5HONqomAJe6@Lwe0ggr;ZUi6*kI$n{stiE*q5a2Q?n{}z+set@nTfp_ zAnrHPS%0hW=9x%gCWUy%=Eh2UM3?G3WbXwASdHLQgd$v)LDu(qoB4n*Qah~p1(!ul z7FvsP2wUmN?32EXLXXt-axR}sIEya!*xR-d^dJFsj>MhIDJrey6fZ$a0NOXY2!Sqa zwO0@UBJNH;mn>n@7{M{Ztc55O(0ySs}H4CQIIYYTY{I=OOaqf0} zOEUTnM3jXQ3@_3lG{ru$qh-~PQfct?u`R;pwR-JL3%3`d>un{NQ(1nLn@8BzCI@!9 zF!F`#^Q|V31=l)w&F-yifNb$ciRp4CsrYMANqWd-LYt($!tQ|Kr8MOj(|q1ch^131 z$6w2X(}LM-bB31yViwx`eCk|qQo%DztmMkcSaX=Obu~pS*x0>%x`$rLfpe>3XMwv4 zJ!DQ5Ui24zE96x`lg(T-Mu;6(3=cDf1c#2fv^8Bk($|$CRESIxKr*fT0FN^H%sU1D zOgmP`pnNPflLoogOAuM8Z_kNtyb5~tn5eOCn~UY}mXFElh?w#fz&;v8oj0}7g3PII67y~KJ2xu{#6PA1?eSx#mC$wpGGi?h<^B=QrK@_5Z)fY zBS!c-@6U4M=QD0Tz`m?#R_djjaz_oFd@YHU7Y>JphWA8GBHOs4v{YKlNqzH9Q-hIY z`9PYh`X-Z*iG3%9JEWEc~4V{&#Il4 zFwe$gMC})@2~v~W#K!bn9v++~kbW5(c@4&E59=r3K9RILN>Xio|10BWaKT|!3QK{^ zHmbAk7{v@hhdRhJGh+2rZi4JPJ^uUqQ(m4HzlNfseW{GH3Lrw{@k-=Mq)*$jpVP7% zhTe*Rbdy#L@cTY|$V@!6ddQ)D8QA$8sh zxUzE}VXY=y7e?$}F=1(T%j(%emfbTleIMQIQtDrxfh3*SnsGIeU0%?J(aJpkn%Ror zJi4KOE2#^eP<*^(=m*1pc@&*4`-zCO_X#_K9(-I6Fz8?nvY_-zyJ4|`3S^~@PVhN4 z7c=q3DGD_Qx(oFWbU#_-Ve8TK3BYC5_i^wUW=cUplEU9Q2|mJM+J=JAYGKuFLYQb9 zL>SKXf+H2ygfiNIE*-%3UJ1LM$altX0?qmgxEwoKySAC(cLQO)=#03nKHBaqRQK&& zb2Tpo$n5L6w>M9xe$ZyBM>5{u;ulc}z-E?|CNV>;;2upv1(&fN==FRzc#{hZb4_wM z{1KEJVj-(y8uEVjSE}=DkaK-+PiQHL!VI7N1qtltUrgtIsrXBKo_)2iM`eRbK&*vl z+c7VJknhb*p1EatIw6SPcizb(%J^}2(Xplzz&JSp%()D25=L%kSXI^ps&N;Us2ky0sa8Q*CWJ3& zlm)=^@^2x~y;xh=ydQcIMvpRofa!@r(OcSv*F%A-!g+abIKTFxSSBVb)$`vtG?9>` zKG&HMDYEj7fvgVxaEP=U)Kd3#X-(2~KyEglKZS-+sT0bW!B7EeZ-6oJhK!$pQkQc_ zNVL6zhxhMMCz&t}eGxzyzFaQx4D3osHEck>G@N-;Xx$d4jr+1Kq`#dL2C;zacak8~ z1+p?&it}Sq6=u@$U@3u{pd~E^T{-XG${;#HfH#`DN#c4p#|}DAQ~PYEJ!q0SU?SIg z-xQxAjDZpX*!Sg)>c)~40hTSk=dcXal?cQdS$#xu=;UYOWJK-pWqFubA7t%*+5|cc zTaoZm$m5HRWEb7ZOvk?!vC-5NN{d*qH}61oAt~LY#AtQyFajj?x|%rdb+Vf-hVb4j zq0FYrhg?yuHGVHrh}{V^qr>nJ;4aA}5qm~iKhv@aDu*Y8^2T|@poOV!fg0p>kyU-@ zUIx1M`8(v7fC73qQe}f{>^&zKWu&Vq4dJj$j*b*k6p!DUE+qn8h}U*hjZh3x>b5m4 zN>^xS+19T`d>Wz!irZ42&|R%E>R3}ofY~&z{qL4c zCn}gL#u2z*cc7M6l%k20vze%upv+;#<%hDlamv}6xN(_w1l#Q8#DQJ|VvI|JB z!yw}twp&(_ZZ+sltboNvfXTYA)fwV;By*W@N^94zph)8D9%wV0^|^+A?(#(@3Wo+? z&x#cVK~>Li(!^K>d8Ekgdrk*yS<=qC(F;v%fW!KnY;GtY;de%7UfS->g9Fp4{$&Np zm8>EIF(MqhK)qa+=z0}pi}L=G9R`!lFJ_Jay7AXaZo+9C_vxQZ@ki&P2I+s|_6AxE zA0_39)Kv$E;PWL>UgabfGb+MrnC-cqg!8OLsdcFY%K~sPLMQ^mLz^gmb{y?cpC%gE zW}%7qI?AhszY9S^(2p!sWh~OPG6}+OVER_(Sj^#20k!5C@_6@g^JURXG9z#W4Bo?T z)bC6PqyaT!lgi?SfUmmqNiA+*)4dlIILTCf!4oljt$f_k&>k~&H}uzZsNA5CE`mIH z%e#4=Rmc#s#Ui0fl8rsLP06hDDG?aR8J=1J2_D)nYzeKO7+puG10zmIIBvv zHAkoSWpvdyjW&fEr+R5PTtmBGh6YyZmqe(fZ(SkQnB!Ya08)RIe0Y)%@uL@7>ZiXj z=(Y{6OHP^)StfS0P`B^Nb4dwyj|kE(K?{(k19 zEV(`X6<@(_2~nhai6mRgH`UOU168yLaqaQtLf}aoL`iV{~-a>sN7V?BH1}WgN z*lxNw28OHuou6xw`pAD7phZi)cb4tmLF~pfQ~m6k2T=bsF_r8!gLc`n{}`eoMip#Y zK3a;s$>{c-OZ4FvFDve#Ia~Usgf~2E0cni z@c0cK2FN{KfWY)(f@Yw<(pz-&W-ZetzlH{dgt!@fP{KsPrsHz$f&<>BL^Aocq~bqoc;(SP)bD1!=BbR=;798~>%fU>ws|+PsxV0e6v5 zWq@i{cyD|mn;eMJt;m-0_nN|xD(JTDY&F?#@?F$5uHkIv@vVy&aQJk_Cy@+Y?tvJ$ zS&A4m0eX@wlj830t@dKWX;X7tsK*w|y1VroidkX+MUmv?)z zc*AO3-VOXni(V_g*P^@)D(bfaJjuywY0*-nxRZkBSs?Kqpp<%S^;+8BT7uEwvyxgu zFXvE=8j#2AQO$f;eQTu!5#Ei;tInmUZi4cZ15Mpa^9}@pLB6!Y%M50SdX9H0$pB>+ zpLrX|iRx}a^qF@$pKZaWvYkDg5#kK_tRbpncT7X>z>F27>N+3$q3BM+pcGH)gN%;h zEL{FtHahOngVx{)oCtJg*I&@gsgUYXuWtWpzV3Z1<}%0Ma#?JSGSJe>1l-BuqsuzO z^gQgy+Unqku96YP{J$Rcf%!@L#{rjRPO_4G`MBq;qMK+O!Oahbx7*5#-BioV43Fbw zotUI^(=j%AV(uiI4UbXr;}S~yhaNkJ?6#t-S!rQmQk)(J59*&K0sS4Ged zcBPa%4}4AstZUf=^vM=!VE~9k@=LO~!V#4M6N&FNwYPTgr`Q>Ak{hg`R@l=4l>6gk zSQOtk-Op+)mEpBVcVY4s6fq;}wv4O-wU_^K44T-|Qmqe_Bu++{m3WWGaW;D|Jhp$TdZw0)U4qeGMiRvaG3P zQgGI41I_KWwMhioB3RN5w@ptfD(buXwB6NGon9rH`OLL=cXVp!BnTe4>|IKn#{e5w zipJjo;o?UgXSZWMd5K?n=<62je9D2u=VRDf8q0#J!CGItm&n85AfBpzE+l6I5pgrO zDP~JHyUn|}D|O_MfP}$Bq-N$hZ68YGxjF?Z&FGmRHScJ5)WA}CVUBWeK8|%|Vm-VG z((Qf>_6M88Nun+tO#0)de$><__Q+-fQfJnbRnGo;@?hd&di!NzXP!yl{zZzzr11W< z1fdd=(XNQ=uTo@rUX@1Fa$^hRtUWUSS1Df$-wOEH`LDKg0I$(6vC|_zf_t5hy{YH7 z%&*PAa{qK@z*kQ$WOf>+Ea)e?jRWA*3}OLBSgyIhw%X7Xzl0&6FgQeI6gZx3Fv_}7w$xPKA3ybf8^a-P?PGHQ?- z$5CHpnueTF0Bp%Ut$w?uPTzG6X{LK&6^=kGJEf!JXU@`%DT21j-OJ%`3V+gjf91;A ziv4gv9eZY~mFcGbe68uwM|l{D(34r^xGDR?B4tqZtMQXd%|{v8d!G*P`ywY-ZT*|9 z_cLVp{Uq5C1{bXRFQUk-xfjhvO|iI*6p4z1(2^xG6QG9eT1l+-%n$CRzfQT+U`}_M zJce2x&CV!h_XIO<$BVcsj_ur0DMu^Ik(Xj%o~Z?K$2`c9jzM-l{9 zKKUH84RAsfz$XvKoGbdB(1Frc*>{G{|IqNVE(Q4(E*Wucej7!QMPNbVl4xbffl^w3jvcT_VX{`2~)LOeKFh5-+`!Wrfdv&EgBU}Nlf2FyE118H9? ze9eKA9*QWAjopz#Nv5G4T+xlSJpD*!#iKLks&fS_dm|)X=NU5Wt?j;>6kdr5$?=wN z7a%*d5|^w0rvo^NQkx^2R@JC}HrrP3{iIxI1tVWh>NJLt)2GqJBBB-X{rCG9qS7K_ zfZE>|u&ELaQ?_AN#7`c41p58kV@oCbiD-{TO`D=sD35ugj31{14kXd&Hf8`OrzC^Y zl|y1xJDdO~cDKPaSv&p?Y$tag6!V=XE&w^DUX1)NmBJY6$NlkALDFi6LBQFij!ixL zT;2L^A;OA9dvj_XSEY+5fBtZg-$ZefX23N} zM6j&5sHuZPetnNp17ZTex!rMsaup z+p}hFMtzR$kRcVHeHD;Bm)AC_=SB-Dx9aXe0)P{xo^|c<`xL!>`mddgr#N4uBcv;oCgM zKhX_Bl7)zuCnKgQWyK255L<6XAwkH!M{KB+*VUx&iTWQx^Mk5(tDhyq2UtM<=`3}2 z82C{`B3L{6Q!E(o_Ojgo$ zfI(dZqND-SG&RsJ0XT$=t&$#;fT#V+IY!%!_%x`fx*3@R=O#jh{9fA!>gs*O!uk zl4v58Sd(RZ?HeM6VX(E%a9TE{r%qo`PWOzI3KV?*sQ7;p_w*2Qrq)XvY7908q=Y5TXT;6CnLmH0_ zX0PqJfBcFa(mV2jNsaaN&YiSCZOp(|#TJ`x8s>-XL~(nCT&eWLziXYR(ZGMiL7PUP zd?D1`!?WIc_cxko^;A)H@%+TEB#9Z)BO5IjiQWBxQq)aPwh*BGt43%bHCY?|`ncK^ z^d(psFuG2C;wSO1mMy^odK4#`QYCvN`4l&1s{vXYW&{48Pu45O!0xw<*WXmM@!WsQ z7?_kfPWW|&=YmWqTBo@FH~w&>+sy1EJ?6>ngu&=dry$J6EdsyCJ!}fC^9+S z>`*mYi3`#NV9fw%LPu{_Iem;Z*xUL>d*-W;9Gk0LXi>6B8KsWw(e1s&Tx01L^dg3( z_=^|!gZ$~~^dMO^@^-kz(U@RnRj8|YSg>a4$ml`d7%)@q~eYVd}^<(>GYx5ySU&#f?D*rN5d)*K?`Qzwze z3X5EX?s~3m+}S!CF+WIXjGbP0HmL8czjp2N&;x7B+c&zFc1MN$d z4hD8S76dS?Z1&b)0*`5f1U{z~FL6#d5X&y`puuRDk?`jPFRoN`6kda<_FoR>Z+=Hv z-g&03*>ww%z zhflZ)2xjJMXfdI=tiK4$Al{pM(%E(%MZ<)qn!Nh-AN+we$gSX>+f$oyc>Vvh7i@2Y z^uGfXrEMBP#PXP(;GYFND}-jyS*$&A5T`5+WMS>p-A#_~JwfcpTxX1tqKLx(LyAkRl?a z`8pqojmTPrzJ=Q|;9bYjm;NJPiCSudJ~+(5nve;75m5Zi$Uo73IM>!czbXi*i~zuD zQ0anaUu#X>?>F~4lcf?0bk11EF~gCye1d3`q!{V})g*M89Xo{Ow=^IOrf~9npg-<7 zP%@VpAxw(4S2l6mORg&opQ~0>1vT;DG_dvfdi^iR4 z+8aI~rWK9WfG^g~@9`ZEZixA6oZ1RBop;WqOt6r4R+uXwIpo4(sFKY>{81g)`e`-a z;FojO6cMA;k(^v@j@y6EFxa zRf>+;F7#a^v;m@py1w<#d05RYo+Pir*a zM)YoCC)5>6eIQ)1&D(p;*_KadNNZ;a#N)6EkE?YTyLG}pR*ge4A*S8CC|0$7F}tO> z`KmeAaRt-FQeJT7xjTaICy*F1bknXk2y9}&Y{5C{B1576^3~ak*82`L=)D{cT#DUl zC8BmFL?iZJ@|r5Uyg~rQTYn2#978a-ubG8~07P9mVadEvU}fB5YIj0{m<6!`YNVj8 zKTXpK68+>p)$DnLIEO*tU>Xqr-T{5o;sV0HbGJozYw*7;_K;utb}5w|TW1-KEDA}K z%_MUm)@0~olni8Y5}@-g+|d#6N%EHih{!H;fuFol4SfHruyc&c#0%SfuF1A-+jcz} zlbdY2o?H{3$+kV&Zn8DmwkFry`Mla$(K1^rha-QyE zWI)Q83`Z5)%w36RG1}oW9#FLX>Kt0?yOL0#juuy8a!@-H=SmG3p}VEKUzlE9<}N^f zS3}_#MaEU-*NXP`Q_6st>dI$-?A+X~p3`b?O@az7brL{EHHkMD(}3&S#P_BMp-Y2I zlZMA|;|+w+o;(VL;G*ZR`=6&X18D~!7ty+?Hq<(wZ~Ueru|J*e;{jjX&s>drd<1CA z?-gsr!Eek(G-2=~#(+AcQdfCr!Z_Z#xRRc9@h&cY>weQ#si54X=Cp;9Tvc@$gV(bG zXG%MH+Vik_653KHJJNImF&nbp$+ZX-1vWcqD(NLtOk@e6_Hi4?`cqoHcgnnxLz__; z!+FM_7k%@{Y%_YjcR@KHOZ?|Z(e9c3f`%LB`czwJRD(tGa&%D2H%Lqv%FmGXCZb1{ z!yUxn2FVPa0``mEW{pMbE4ZoNX<-O<%V4t$#AsS-QL1TkBIdIXsTif^-HnUBCx(nR zg)+7HgDJq(lKMZO8_mcMUd~#tXnL9*OYO{N4p6jCgb@AJr5WMMrkl&AcdNL3_#%c@ zT)E?{luWj#FgnS+-h0qJ!xHpcG}6?x^^2Do|5pr>cQw!McARbq)}uX+Uz3uT8jLDl zPpxy%2Cv)un~!xNqv``atK7{9yHP3Q$F0PV$*!+AZtPfKj?rs(m_Rf(Ag2?m*tb}c zux|X;vUGQ8*kd5ThQy&3E?g_N)XIKy=Zc#3t?19(zPQJNw3n$NwHbooX+CLyQ7GH| z6?2EPG!ef4n|S!&7BBg8~$W7JPLZVR7PPLH_e+7p;D z`us%OlpmQux%maPW!*%5qrJX!u2xt&V z>u}!vOjfachffr6b18+g^~WOSWL7n#32?W|bVtHCPSI8uedv3RwO!~7`k>+bW~v-F z{6`|JAqcr)YMJh{M6**e{eF3Gd+U9BqhYehWGp%txa#SKvO5i02dH|lqfuVtm}O<7 z?6&*}-*D)WHMSt;aN29h0wPeJBydg@Fea%#xu(Inh}=R?Bki1-qTWt&FTx0m@iJ|c z6jsOv&=OP~FNuPTpgkPX=JUPwXRS9i#ED)$)0y$TgSS|*6uB6xCyejE`a}zph%r_3 zg9^*QyGy<+@)!A9aYUOT1x|9W7q&G*ko=>~iQm93LHg_l@i*azeH`p6>+~vnGc#lQ zQeIu`p(T&+7~WrwDJ@8@A-%iT;+2Ytz}}W#(SoQQ2`tm*5~H~Lwl)yeB=0#J#u zIfGZBm~JkAKgs-<twIV8t*Ngua+ih&rs@i>8$SCZ@kBcvzbcs zQE#wQfI4!a5|N8|i3{69dqpbibwa@W2l-E5X`^U_yVVfXa&ZpRsF^)udhTQ{rxC^9LRe%dPURyK9{<2 zS-}fUzOrHMNg%5UcW^NG^i4vX7hV!OMikJMnr?$(Y3|S;;!bIXgO49e#J-{x-}G9~ zXr5MXA5S7hA-7!f(`kSODYwROvl`&YV5^lYHfAgWhizaNtBfHk>*7VMK%2n$vDvCr z$2ZQKa)8}-cJ)N4oUo7#njX!1trwzc1;OB|>0p%!w7<&KQl(5l=}jg`Sfjhy+P=_={iE2C#b_R{F;{Mi)5Lx8x!z7oM}|eO-b!X zchZlI*IK9IQ9LD~G|#w`Z+tr+D3I8oX#zq(U%Bb9j8Y)azlGcC-v%t7w9e0KlfIVN zfjI=vl!X9tg3oD=T8#vM`woK`J(R;6w}QrU$N_Q=klybm$khl2qESQx~tUk8qK zUE$j|h$Q*YP<%#@CUv~-WeygNVVMcftykxMn3^<*hBcrZpd20CX>sJjG0Rb;9h+h` zeG&}I(7fQ&kA%STAF0-LfwA2IcKIz67Ur`*C_Gbe+S8@=-UW^h^)y}=n}fIVd=6hO zw{4y{a);x9LE`n^34^HFf7z9#MnjS4QWa9XVVF1VvTODI<2PI})?fw)x)75%Ko|mlp^>?~1{ssE06H%uV8xeG2g$dV6H9 zZCN%MLW5akAh~=xUS?HRrrNFcaf&W=@nQa=h%n+jhl};DYi{nSVcT0VykM$3 z9{{wyfbEaK`0z}UXpMM=h=6{<?(BP{KHQ_T#I2+;_+Ui)9ovZX;Oe zm!%eBx(jAtg>t^(n!Xua;OIx>;R}PG&IeGh7nVoh$N<1a$$ManT+k`#YISLJ-n-$pbw9#Zao%9wDM;XmfpW{WD!orx5FYvN;dQrQB3 zLenXI)iwr1DEgj@oy>jox8QK2r_T=W!aW?;#jKz*cTL2Z$ondKx zy$t8o81r1k6HB#rKsP2CMqLo3(mVsa&ZKRsN(b5O!mb=j33umQdtdPjhWooGTTYDx z$=MX7PLf&9#G9IFeBj~C&yW;ynU)7>e7zLQ78=^@b}!U6OoS-to-2+J7p&r-)~DTP z{Y}^wSP~b)URMd>aJcDjV@SDkpOmFOwznCp9?B$}mwqb*$u60a0GV2rW_*C`%V#&U zf%K{7#V!lM{{q=%?+ei}*Y}W9jFbh{A{n7h2ZH;qop08keRSNV&05^8@pJ2=j=*58 zc2kE@dx@a?Y^D*vMOWKt2VFFo&?o5&(87L~$*R3tRkL6&kK8{8X*j2G{{ly6JzW*axxPqffM&geB0k)|m- zwdxE9g)ju81%r)JM^8eX+oCtc{i=pXUr0eRb7!7}3_b7T%Q$dUEkxxKj6!CN$}w^k zMVX=iopW%#UW{7q&r$nT%p1qMv_3YhHs`u+$%k-K2r23P)c#gsM_SPtUX|}`oEr8- zt#680Gqan+Z|hADx+OoFlREoYbS6tVcmw=B(eZv;~Y(I(8PS(@^#x>NstQMsU z(sExMYo%z&DJNdleojHilbX;ctovRmaIirI>r6doW06wfxv65Yr-|D>p@uz%(H7l> zF&1fu1*4z#;mEIwYii~vg#%QrAnlVG6+y5Sb5eO8>QGEO^Vs47=iBhQnn0Z(-9~to zZz|3uDiBLetiRCf@_2NDe)acpLSX;vC#1~}stIHg&AY2>uM3+c7U<~r`iT{fm8Kio zFMkv`2TxBt61KL~mz+@V)GtO-4u6!yuQG>e2-YLt-Y*d1FOEhJJ&;TrED4`XAM7le z1ko&bUAEl}=3#7OETthYrUXPN(>*W2TIfW8mCqFK73oBv2vuY42}kSa*FpEf>i5+d z>xI*WuIhvP$v_WDQKT7|9)!l;`!?1Or-Mja#|pvx9#qdN4!td*i<=)N1Ktm3&$Ns5 zt_ZCW#2bpnN;GG!Qqmk8l`<2IWrm824g*FHg50a-1qC+MVU5fVumiD6AlCE9L&R6} zOM>_j#&r=WN&T0gXYi_^RFFgsc*)$s)zFk-pm6C||3VU8GDbnAxFg?>n<%jM61)8i zgd4%7pDW$!%p@c292SAg#5owm~VUD(T?RCGhK%!xmX4lV;%7QSdUubP~; zYNrYuOXGXdj4=}!S0Auo4(9ww1!Bbhx(pNi6*?aU^Dq1Yh!dBL0o+9sd{ICD5LSPf zwkoI~1WXjdn2Xd*!$ifCPE;>1TqnPiQ&t}S;)YokHEz-eva-OEK`A%J&L zhV_@kfR2k=%Uu&^R;zdhjvmGCEerH50{nTMX(DAQ)91m0`Wdt1CTEObmru*W6u z88TH3lBZc8Rh%|-*+ag=5(oZj+mz>(+O43og*l2)Ewo0Ft&31GRkfpfFvPgT{CA(% zK0PHOk(a9?+m@@w@aDBDcA%BNm8mXx1xzCqXYP>5frz=< zM0x62t5_;@rGuSiT}a=aO2IhDF&tG0+*h)Jr1_6RoYInPq-EbFB(%$2#@#fnB` z39@r?Rv;-mg~pMGMIcx|B}_2gzLcb$5lB}ebwwJ7o`03mH$)wCDti;=wFwk)6*?V65Y*zSk`I-_0RaCS@Gr_%j%Va3S zKBT`@IyBNuW#O1X*rM=5%TsF)BSk!^@?=$Gg+Sh(&7z*f878FR5J&?#)z3cZ|Moc?4U>5GX4OT+cbhiqbOM=7&6#C&QA?miUn z5eV^_e++p7o=<8M4SX%sUY!dwp`HI29R31T=`T8{qW@o??O?d&Zo6ls5ovWYjLcXd zHBhRdA6dnn9de4!$#Gn=#+E5fR0Y4Kmewo+9<;>v=!TTIz>HKAqQ^}EF(tlim>5;x zPTkd}K}xu;k#|E|>m+R$f*6{f&o6#VNXM0;&!d^V*h~kW5EXvTZ5J(9-rCiq>$s8N zW@w}rq$`lx;xW`E{Md*c1}LWC*hc4}2mS#W6(#thR-#kkjEBk^PC^56QvB%E zC4)oRy$t2^6TYkIs5K-l>Wx9MSI?FnnuiF#A}}AwyHCJ-RXKNP)2~u4&iLXL0cleP zl^91!Z|A(Sg2o#SW+zl76(LjmW)CM-c_sH-&Aa(%IVgbzXCCMHyYG zO%4X3Q5qI#2@DZIGHitz`M1}gB6jl){XZYhmy7s6J9Xu~e6T#n*&zrrLwDkpw6T!j zs+c&Tr&qP%waO#KecO;oc2ZQ$fNQD}4Jj$i#r&Wox*A^Wg$4RX30W*!(jUl}rI2XB zwVGCexQ+RZ;21F1^FjTNh4m@uID(`5n}0NUG5iWdW-wc0{y6=Bz+-u~w!N-N=3M&T z&R_~bZYAjBOXAuV=U6CCO}t6T?3yX^9CB<-nmv%ko#DRwh}(%vqP~^32rN9QQ&l^G zHXSaeod3n(xc0v1Uce}r-A>8y)qj@*thXm0X^>0e{8^~AjmtuF&2H!ZN}y|(>GG7} zmP#())>U8Z9Gduf8i^;sHP?t~ojwurlh^{E9N#wynvC#hx1F0|{&y&8sjwi+nl>@+ zKK!qul;OPek# zIKihei&GgeTc<7*{Rc;Gg_G8UcDu&gnIRpZykHzs8!J=7gFzfOt9)I=>Gy|feKjbQ zXNdAC+*rR$588SqPwW5d24k;~WOH%fx9ATTu`Hl#2 zF6Z}THumB!;&V=84IFUfwLo1*Wn#NJs?srq8S)jii*sLRB3M8J!2ZkeIO=39!gP~H zx6V@|Et8-3AmPi$Z()BxLt1s!)nfTM&gIT8%$jsG;N>87Hw34lN=zzS{+p^Ss=1bb zcbtnEE0RbfgmqSprwh|w7t)+YqZD1q@xhI3qhPE0++oVR5;%y&?bu;nIcVRsS4!3@ zR(jE9?GxzcUoY0uC^lRLrwC_(^c&VD)Y@XVy>x)gXEWIMJLedxW$}e~1YE4vyxmya zAA7|&AK$4=YYY;M;)f*)3Y+1JR)=$)P_NiER}9~xuD1P9rFl9eAFZ`2G48P{$`53e zUj{mk_s^W6+`vcuTisviPoStXVv_S3n<-f}K7`6&>}sQr*@=E7Vey@4(92mu8^wdV z*YTDB1;seFw!TCvg;JfRTfC$aA$qA%(FlU28ebS0Vxt6LsVnhxsn{`1SMh-2>0VL+ zZB0f7wwJt2)WGR{6@k@|EMzJr+KF?{2<&2;f9%5NHLww7VoSwM+^&^aVF8}gCt5BJ zJx*((F`n9bD}Ud+)hz>=D*>GlecOJd(LIUMR65c}*r*tTC)R=a-yp8}Nf$D|ycj1E z)mF}BTa;S?x%Rlb*l1?a-zvH#`~;Hf6A7zo#~XXpn8>6KE`61Dz=fjs;P8wEv&wpM zRI}AtI}ouG+9Eo?Qz9V+H=$nYyln`tgE;g4NKG!PAw{15N37?wU+;`H<6`-nWc>Yf z_w;EnacAyA^xd;nbJo!CgFv(ujVzIH zvoT%06}EO156hAx1myr5B5V%UqIez-=DZjh;BZr)yLPH&*re<&MAp}17^9}{2uyeP z7S71s(l?6hb33j7xU=A8K65I1hwpRx^AGc+YMqctTZ$v zNs>8m_Er;S1dPiZG~7x(*ZXO91DUr{EDt(vTWpD;9PC2$V6U-%xM*E*h-80#>lz_tjv2zs zb0TKbp3ML!-9xbH{3_-~2$b%J_H^$c(Q! z!xr$NS@!b#_q14vGN>GH01T|`BDrp|*tzMmd=h9J_;)*xW$G`Ljv+Ilm$oq~LYyrO zboINvi|z}-5o+F!e$6nP)Vc@h77L4(OyDP)t#y@q^k4Sj4sw>%U=*_mph2 zI-=nE(6o5Jyxp8s(tw?=;Ur%{YHGo&B;UUX1-SOplogx->?!P$x$S!I2|*cPxu~eC zei!@Q$|Ua|x7S!VK&lF3AMyOhUo6!pnWUd`-O{w@*fJJ0C?2=RvkkD0ffN(oK70_* z>%&*S;2`auK|XAn7dY!mz*P=?Xt&+C``-% z1ZqVYHZqpG_kwK*ep}CT-9#Ag0!DkcAjSvGO_z`6S3J2@fq!;fd^iBHZ(Fgy;;FfM zIl|aiU2H~;2Oj)ZVeDwOp3eKWJtLQ(bb9a*=F`~r2gN82x4yLj{y8>}M-n`a;N5_& z?_FaLxBiPnD}^awxof{{??kN0?%cd$i8mzfp=y1xm(wC&O@L|jyMA4rt8o%4h`hyY zMzj4pS5~jq3%qel$ir<(%L{n|YV3ZpG3;yVQFZV-BJ%+^6;s)Wq=Fbv&(K)9aQ$tY zpIQ)3u-Pv52aP%d-2d%>N6Y=QZtBe@j{a89Lo(NB7~Z3+NDFF+`&WM%=L#Ds+SuA6 z!1wl8yZQF<6xz1j9`Acqpi~KlycNArqA3uXE+n2d2An6-P#O$cbjd#ailK9Jx^KE1 z_4Ww=e!1SJqZYO#s5hglpjPr|&Zgd?bMt7}TPWqS8TdFyf)4&udUG@46ck`_ z1Kaz62mCjB{{01Ig`eJ&jVRuPV1uxAqXc;Ve4JKKkm&1A%HG4@JM^Rd7?njhzO5dY zjPxAe(K(za5kdBHy7bN`(WtQ{wD#*;%L%k1GCQt;VSh6*_h- z2bRHT9C-mc9-W5l#&fk`ZIS3YdplYm9Av{!K_IHf$QS(ZceruHj0)~B+_3R)c!E%o zZ{>CPAuI8wMkNf!jrLu~HVDpYP>Fd)P&i08|I}M2TpP-S?Wq!Bw7wdv@;Cf!Z%KO0 zf2Ssos0>Ug>?GsEqcggjGK6St@%V)^DWvECGIv8?RuZP0XVxX?66c;+<`g6B`)apS zA0W3s5BM>Q%A`;K6?JfXylFdB8?#vJZ$nixcX80vH~0>W1@EWXVj8!TU+wWZ^o7Hk z9rN@4g0p0@KN0gZOy{Vf(z8f^3y5V8gBkc}q!MRWfUsa;{O)+G(9= zn6lHzUMQ;^*)>SSPeGOVi=!G!`doWbvjctZFYn!uX*%x9l%CR{a!#?mCNB5)VeJi~ z*fX_DisyggRPfeU3(~wFOGp=QWRJb=S16d5Xp=Q!GEi!0t*M;+%VQUaI90KBc~oiY zl}yzAb<#rSib9i1!t6dek;K}Hoy?riZYOa-oFgKFeX5o&B~z^zmCno47CZ7zd;=sE zi9S&~@yJvAuSASo1mZ+39ae4Ga$n8iYayRP1pHXVddPxNodRb~Cw_|}XJ6ofIoSsG zXQh4FI>p$2<{oo$+e4Z#JwpppvM*Gw-{)#EJBn~S&r{le1y5#aDaVM|=TWR*}HhG2c=86ZtSuNJe^Xvt*} z!Qr(`Rl8aEY0nP`x@3AKyL)cQO>_}Ml-koFF>k@HzETrdC!r(A(BsqGSZ3qB@o(OJ zSFTu956}qB+rxU$xf8%uOAilO=qo<>I2UMJQ?w_`3|`1BTaP|jQDFB_&j+O!FscMq z#M`@%#pI$zI#hDdCg=sL^nj_MmHc%Dd z>DBlRk1g?LxskHxuAFRU@QOOftt$*Rn zrHpOlCKqnI(hp7fJfH)TMS5FVuqLMcTM+v!NblY0o8a4(p12fZ!FfLllSYJv(?WFk z(ITm!U-+6xw&L^^O3J|Vtzn;X$J5Ed^;zVW1KNyL{hw3AKEwJ&cz=ma?ahH@&3cQl zNmYiiqr$VkVpE&;o#72xCJwS9RNpK-&P+Ez*V z1`rZ55Htps5coS%#4eS)Q1q!QN{gew?shY>e$%ba2J| zloZV}*EO2=wUcKz%NF0M>6>3s*`hDx1H8#plNR^{`|@|H-+c3Q&`_iLkjZ}zJ9$7f z#mA*2);5n@gTTO{m0Kw=%W{_lL2gT%ny(QD7wn7slD76=Psle})s9b?TP_Iu+hjDW z#M)TVwN4%gdk(H;xW@4qaSGF^M~*(16x#x3y#VeIJXfW$b3E+Q45Fm zx{QrLA+`C_t{|7Z8S^ACe>T`>YnYvV)QwoB+S!L_-bV1QfJ#`tH>6Xfvl<_Z{Tn2B z^$rESk%pE?n$pX8?AxRCBfaYOQ>oB*k?|O1mX=N*XlU?n?5ympJgl5w z)b%l6X#D>_ZMpD;)`n8!kPs8+=H%j#l#=9QW9MR*V*O%cNptb?aq>xWu=7a^lM4Q? zB?j;;islZMZdRmhtlT{RmpMYUsArYxj@x^4^i1O6^qKwU=t`6Qd2-0@-k!L&+IKQ# z-@atmKAEl083LEj+(?cY+a8&R>j)V_>qAQL6~2xPf=_$3FQ6Y&_pVL26J&3P>!seJS+e=g!idh z+87RIhgY#*PI)w(a3l=VtbB0Nu?gvx*Bh6bmoeBcxyo6j7z};Sv+9s zgi8a&$r;*jNnI+#Ko86p6GY`Yt6+cn>iFlcc)F2h6yohVynmH$-AAQ_fgv;S5gISe zIR~tby=YeIcz>^@1l$6*YSqoJ-HqIWdPXDCUh-wkt7coeW?+YR%EtD2x^V-4=zAnt zL&0d4Ouu@-h4*b;mW`E@__M+6ZA&SZP4K*$qQBV-BC6Am1D%bY)Rpc+O42P%q|Gms zwsL}HjER*ivwBXVIapy8>hf*}-Ho!sq2bLIe?wG)-<2(EMWJwiS6zS&dzd^znYC&pw}0?3f@2ZOE2dqWr|F zv|vN6$tFAV=XBQ~};=I7wFjDSxn5`6U=V_Df7j zPwr!1%QRk`?d+c#5^-C~FDZooZ^u8Hr-)sbrFwP{|eO$x(Dl)Q@<7f-lC4MCV_ z=E?3)X$XD~uzp{?;g5*-TB!tnkLzgZKt|cyOewa~Jd{=Em2-|yeL`lJu~uvXQoyH`^pdTbPW zLoop;I|o;?QV$hC@6u(v4f!{(UpToXj(PpuJkWaM4y)}c|4=Xv}a>JyXu>Fa_ACB**=fz?`Ipkc4MQ7M?+|Ax%5eF0R z^6h4xm2BRFp0~#f4&jXjY#fzw^VV`j98^*N?G^DzoDwbl zdE!{cLab;&9vd5Z-7ZcN!nhgPZ>vS}8lo|7cl-f&p+SwmD304?A1UT+{iYduvjV{u z!4c(je^Qui0TId~qIL!0?gma*-Kqfhv&xV76n@6I(xUnJ!wyyP4IHd8%#ZN5#Xoxp zHoYN+M?^@^G%}|V|HBw^jhw|%8}`cyHNVDa2!+6OaJN$aSf`v=Y)oUefT`jf9Nsb$?Rb^@ zRx>z&Nc*Y+)gtD#nyed%VdH$i>==UcRM@UtG+`I|ON6Z3`5bY?igJkGg>FnADifBxHn@r!UZ>jQUTBD*vU=JF|J{R|{q* zYSE@9)=5yx!k3^;Z0XikyBzj!j~Sqm2{;|V2**NwrK%n$N2ne1XaVi7c z3h;QlkC%LZTzzzV<@A;m!BD?92CYmtoiUJdO9oqp%C5*5z%CVca5I-UIm%pTic|I4 zB9Td=dX#%alK)+%{oa0&)v}%ByOyZxsflDFB5Bys)3dq_KX(yGtRgX?uTK=%pZF{! zJh{FJ@b$fmc)q|z+0&>Z&e?YucRL5z9CK^%&hir2C7zc?X*c`CVOYCV5)`TU%3_Lm z|CKF+s32V4Z4{W->5hwnASdP2AzNhkQ7i`)NQ4;kSHHbExOJ zvfsp*xqfPrJ2XUI-;9do1Te*u;{0QmZ)vZ}!PahoxW`1Yr#n zvvTu`)(AsOe={xI#=93jWg8#q*jqajA}#|<f3>r%OZ!Lo7@+t} zG0XO6o9uL2N~yD$hK`L!3RBCcl%-r zo+)rp5d=@-bteu|M}rD`>i)LN=Q@PC*y)Y@$zvf<-J%oF|BT;qR|`2!Xyn#2=Y)Dq z?HwJX(W0?XB%v|*;WKtJ?VBA2p=EYM@?d|B|+ST2}PJ8S8rYwx%3z?{HKHWpAOo6fBdI4_Z^hHM}s;*oADkEdOVg7 zaIdOHxin{@{M5>8FU(U*BO%&lA{|w>ZMM`TbY20Ab;kvZ9y)OP@Q@C{Rz~g6BrY~a zrtMaU!#yk*9ZWNFQk@sp=xRQtn`&)rpZPHscu1<`z7<06$$DAvuk2Qo2B%&%beJvh zNT9k7J{3_aLTY=*w8x0yGQ+FXjMCsNS|iZW0B0Pa^c&_nh6~{dRV?Sj0_h+NN+?la zN)v$DCrBbvqwLLbPzn}>2SiPe2_1g`Wuj>q4>1jH=Vy4Mti_r8b3w+M(+CG=q{<;= zuYM>6r&n~+Og=a#-pvomq(2_pQl@t zK3+C1cYH8`z+FT5PMdjL-DTQM76Ol^(Kdi$oZLfenur+cUjiN0&rKC-&5JkMTewm6e{P)=?c5_Ts2>5tHxW{ z;X6Nf#nEN<#VN3KpW7750xh-kV*#uu2A~UO0rj3ynINK-P0`m(h0(PGkwxh#;wl4u zTttz^XcI%bA_BD{KK}Mu4P&l{XBV?%9RFN>+<2>#9$0lIsvB)J$-cLT>VdrW8apWE z5k&&?C5GVPAx=_Dq0OcqhgSok=|Bk*<0MdRnCU{4r!1e`+^_T|Vlb2T;Q~I0{PPb_ zhgz5Wm$KVr&wplE zWjA^{7yG;*RR2l!kmmS5EK11PCACXk;h8D6b)#8$Y>e;HvgFJ2lK?U+?Pcx8$L)zt z?6!{HS%?B;rpr$|_5i+!@iJK0#nsOA=#AwxGRP+0RK1HLHtTF`JufbAf zYzV=bg^BGs(yX?^HotvvpF2w5L0nwE&?*zo{i}p6bk=3+ z@4n?0rT7WNWpK_7gPWK|PCZw{vHdiWc#sRZvM`%i4lAz%u0yT$(tY&_x9?X!b^`6Q z5K1zgEF=;+UQ~0@te^@janhx3Bk>(*m^OQH(-K7K^jManlGh7t1L~|5zH9(wzsU6d zcaLi(IZOUOSAapb7Iv6}M5@)~k=*psW(aZ1+yo1GvXU6JW%^EVoYKP2_9dF243E1k z9jDkGh9vu1l}(sU_t;AQ)b;Z0Ht}tRrPtxLtgeZzmKv-d4|h#gXR-EKS7{q5zYvB0 zfyH`wK!}z4ZXurAhf@B9J8pqqJa(5Z5Ml8JjI~O6Hy}hw+DXPFXh4MPlm-z?zWM2p z$5kyXJTm9-Cg#ZVA5VY0IZIE@O?MT2hUJyENhG z#|f}+QchBn@lKDaEIvul<7IK#=oTxP3r?qfuPrDm$Sr85Jtw0Xj>>vviwc6?T=VkH z;G#XN5McJQm794LsRpnlIl>>KyND^})qri=OTEKB)8*sFWeei|erT%On@FEk3*y}s zqUeb!wnJ5@X`A<$V}b4wxhFevCUCJ4alM{Qn3s#unUogr4$e=_$ zJ7jCYLpAur70;)jpHs_Gzp89@lkinCZF;1h(6BcCumFFj;{y?%d0pf*4iYuy#7B01gXQMZHMheq$zN&# z2yo}>EM&t>0jpyYAlB9ssE7+%m0)YbbTBAxu8n#bWgm1rZ za47jjBYg7A`AfE~KdA7RZtgI5R7o6Px)jAtrGUz$d}-sA5%7_){n^;HisAsdtzG^--zCmWf@fv6D70sHsJl?P5K zL}!vy>QeN2bYS}{APh|Zq&}>U*Bl;aaQ1Kp@;>!RprJBdxUyV3h;fm z3reR2g#&|fEOp;m-4Ie^}kfM;T~I|Q1hN(kj+0RAC#ibbF1`0yWS8K6OP~yX|^+w z^6Hmp|9s=nY8`O&_-XiW8Mo|)_?J*s=|N)i^|C+KPmKkB2HE;;G`YmA1K=jJ6@9Wk zbhjewvbMPF*)rL4B4V14vj@s;%m`6I$@MvExMRJ#JFBXJat{h_6FVc>X@$qGSCsNx z`@w0$j&SzbXZmQ*G>_p-rh|}sZru)E(}&dtqOmil)}~cEx$Tdrn`_$0t2qq*Xn>;T z!o-|{;|x0T6t-t?$PHsr0JMd9iN!YN+&BC{m(#^HLN8GGFupP4;3p{`EYtpknR1|t zDB+MOwb#10uN{PP?jdVy3cM&=Tn6EN^zF7r_q5!@E$dqnNZ(`TxsG)B`if^%Uri0cJI2;CV-WH1`Y!L_H@@z6Vdwh9YpQdj%r`vZ3sTnb%3OA9l0JM>UvdB3q ztU3h>o87ba%x2Wv@(1Pi(bo19D)Mq`vX<($?$=G)y$>wi(92rAdU9o~)zPupE17!R zv9(*~PiB9AQc@+(KinYRxppXx$1=k)A%Uo}9Kyhbp~z*geE)Io7X**EvI_7eaqXuG zWw)DhXB-iwM1UBM2(|HM0A#q(z3zl^^tcx|XVu%9+#3Hf!0M!Pi0SOPM$_tmjQv+b zUv7usZ88FF=|V?-i!E*xZr2)VqdmLs4PS3fkH;3okzX)^kjv$U(WrxI=D)3(>!)>Y z(G2_2Z0!1uHI(5B+>0Fgr2GV>8z(IoRs$sHM$4xgNgO|nt$M@IfOa%YQ68I&kr0;w zMU%=9jip-7sd@xWl_94&LzB`*2(N+9WsD&71}KW5AR5>0NPEQ8jNnMH+QocCr95P$ z%pIEK2C8HK<@t~$pg?i#^DIRI;2}vtIGb7$R4}~i873DLm^TYgyoM-t^^Ehf@T-xq zqn|JdN5-hslJfyzKvGsSX55DR6j)i@8xwB5${ph7FP~8l2}{#AH8`jl{T;6Pl#Cv! zYM_A>Xm>EAGa40&Gbwq)+$s%);01FIBSEAPHz8yWJ${2Eo(^gvh*mK3go$RQ3$zv)02+zeegBF2P+nUEF&{&Z z3!*alu0$y0s@$2vJ4^scc5q}cKaau{I3;D|=Y{AJ21MrIN+J))ILfV)z@|!}JBZ&o zR8r|AM*|u@FO}yvYp2&%Tk9K0U(I;QProzn zVRY1#6V7lhhWH7CL6aPsEoAo=tM_g}naOU+kfjP_DY(i-q7h*4Z_mf#q=wFYFnu7I)GV`~|8SHO~{3>EZBX3dts%v#Wa2+r3 zio%1=*1d_X-f<*O@YW2D@|9%UrAM6k860`1tnPLc8fMaEb*pj!?}jT_Z_nEAYx8Ep z42Jnzbk?8UedZUf>{?-^z(1k(4gU5n$Tffg+9{~M@EoRJ3k$bDQv59=+g6c?X7!f0 z2FCk>{xpEPNrzrayNB1_=v03n*&BPJ3;KD~OoMd)*&(N>B?vCg1f5oW;PSqGW`(4Ll?MA> znN=b=OKdC}{u&fAc}6uK6^^t1+)_YYGZii-Iz+v>A&-`|V=KG35?wzXU#=+s_jwxm zy}2hbz#5jJfL9!Ip)C6cehkxyT9wzfEZb0k82d#cnJGQ^Qo}{D2pCWz7lU@C38#%pKig(Yx^axREKZH3%K? zoK%M|?k!ptEA4tRJgZvTNnL02MUus@aW9>6cgB9Bm;95RbHG%+Nc^ERi~!NDI$F-( zxK?0o2g2w1@S9Ck``Itxe1nF8IX&UH9a_#J#LT@}Ku`8FRb*mW366Z@q~qRt}0<jxavln? zLT!2apd8nAV_G9UBS~J{$8MXVTzyr2yJfQ+NJay!kj8{R%?6=>z7}MevxeyTjQoo6 zeZ4nguA3Qc153DDsZQ=8o4)YF!k8U~>IwAIU?r(oBM^RsS}`x~E`LXm7+ zPz!heEW|dBXK5p=FPp2ONb~rutpEI_+`YE}$nPA9xth$?Y(=SF%66F0ufP<(f zd4n&PZ3Wd|=Q$tMsm-$e-nA5|W^ld! z!_L0D{1D*gyi;6m0(kL;`2O*fEBptq0j?-xz>QJn{a|gs`YB14$Fr-@?YyI~Oe^X_ zfk{muUki(P%Y1lB%shAMh&QY)f-WADCw(%qruC#sYyl!g8C0l9Vrsi6UzPxcnj_85 zz3JNrWX`aWG9Y0*P$$0X>z{|(Bsr~ws*9`E?s6?vVyDHc3y_~-WC*N(?tz6~87=n= zXB`^|X6Z4|ug85FtQ!yS4IK1lDspb~zwh~0rtzKX!lc@qH&ye8mLnXowtRdYiaKgE z3j{}>ujh#bfmpA)wlfRsnj{M!q+>_NkOV@Hcv|+r6+0}Vsq?}_*m&<8o-jgCmPI&L zOSusH%Gs$PHL9tiPXG-|wCy*??NGrbi8k2R8#Wgop150P>uV0g|Ffm)UqE}`W3@_)4}t*`(w~~ z6^)S`#YYax!NisBL=FC*^HrB~S!P7+ebczO!0lPR(qYuiD1>t?I$2B0l)Y-9|FFbM zj|a?8IU`TIiC9j?z1q?M*88#Qs zBcStnfsJ!QdDmMSe;vE-r?(#$AER7iQYTD7vF9;CX3>zdLdM$yd?)9c5Tdu0=w;im z7mKSXrmdK!$hvI#hHRTUa?_`)7f0WZ`62k~?#D{x7Qiwcjcmg90#d@{FuECXTn>bF z_Wg3{H_#J3&Ytnl9GSZ<6Q%bKk-?YXr2gQ8W!gdO;J8O4$JPgvA~zpdEKHe=w&bmx zT4P!CE1bR28L~wKOz<=!Zge_nubj8&4bWFt>-8w3RMD>8oUj_ra2%BD(OW`TDUP_L z7p5eL-=>@NB^F|?%$lp<*(t=)9t+vVDYjfuoO7Dsw^)&;prl;d2qo9xjq!-2-H1$y z9PCJn3N7KEx?)p-;Msst3`1iJ>P2##fww{}d3MUtEh1w9?LDWZc9fW!bts=y9MDO9 z0-~iO!b#4_C)tCzNUT@zCpmB&q-l`Hl$fn*pu=Sx6OSG`<%MbmmtcZe$ODEg&9HOy zmn3Sas9yIHpn8n()G6k3eG5uV2V-`WLOfX=#h6F-gGB6V&gKeks8D1cSj2xuoeOfd z0_>}x3VGcDp@WVi(8zl>`3cff5@%$Kox3XB;OfMqNL8uN<`J!6{)kq&9X%ST6cq?J zL}E%^LgZ$bT%#@x;^bytd3!on43t1bj7D^WSYqJHD@E`(uM6g#uLYNE=@5vo(QS=e z%LR|BcLhIo$=q9$K4*A|9`jd=>`BGH>aKv*Vv%0uQ=)hw%9~#+^iw?HeA}ijt$D?Y`NzWG;q3`KRL%mmRu?&zY81tV^pv)S)HYP+RLDnpGNmOyQH2Nr~ ziuh(`fb7-3#@k{`uGwXP)x}g4H%+x-eg1e{vrVOI;`&Ds6kW6wW@p+AdJi(abg~v` zPA`5DNb&K3n7Zldt%~BAS}|wuLf17aH4fF-&Nxzlx;iaD=TsLlFe$E@%ona6((p_ zuvNrdz-xW6Pagw7-8S&H;WnSQaLV5;^Yu}u!P4XMjl$+ZK*vjE3i+OEuYTOL=43W9 zJOTMUUF^9n=60A6EYAh>ReQ=&m66N^j`W|Mv=4H;EL>kko?b>CJ~YGDtQ*-{$6_Ri`@PJL^e(`JS|HbEYQzS#Zn_0ed%NX>xL<9Obm z-{jPE10P?ti8I6_16GIL(y1ah5G$Va`1AvB62q)G)KdH(Isqe0~_K%Ux z8Z=j-kJ9^g_HM?$H(#%QsNLWeR%*7jNlSyFkt7cQ;ShQTKjt+|B?{9X_KYZ+L7U`c zBS#oWXNpWa!~Ey7-~}YL4B;e?_J$g{4 zE&&&b#Z8Z$v{B|U2CjIa=fvUrX~%rU0&&zj0y<+|$u?QZE?$`?y^@1@eWfJi+ph1izhqL`$od7n>F+(u||gF2rf?-P(GfJp+-1>5(mhdrg4bz7ls3 zcApxEPXXGgUGW^zABWMcY+3Q5jjK>cW9$Oy8%oDtLdO|YIOC~MH^_P5W{x9AU-pnA z+$FDN0DG?^COz;cu|qp#$`{I-VA$;=4%&0P>PMdeQ~nUdxd^gBnM*lkEyf9HeX& z?=+8V<%+z*LzVV^Xcr3E9h+7BFt$@m-(WWV?)pc6K(@21TI9{Aom)qj2iOOOy@A6;h;j1E5#W(CP>7cyClzPCHImH36Z@(OVZll*>WPWU2beuwt3H0mc8{=IYVlJVIR~Kb~fQS zSB1l224-@PH0Xz?f9<Vr9AAC+FpU0x1OROzuo+xE(w{ z95-if(ng-1d&X1cnXm1b{!g9x|9y}X!>76x|IoP0BkZ0b4FykH@uV{?a~jDXP|=$_ zL55Qx#}zcp`Rf8`);Wwh+3PqED(Yyo3Y}~tIKA&Fd^~eTlVbANMVC7%|CPmN{STfh=`H!3WRA~<`>6hQb?iZdudesq7%pCx5!by-`XShA$uZt_aVQ(mwdqJGrD;b`SJIYCy6&2e%5IIS ziymBUp+i+EDm-9?K^+1|NM}x(LsMU*2lH#!k%0 z_ENIW`p2Z^do0;U^D?=tK2lE}2cIISPdk8hbc9JAXO_&5w zPFE^2=knmfVLz6L{b4fwO`bJ2I5p?OBFP8>K2P=kG1n;?3WSs>ID(Uxs~+|IQi%xBp~4IWJvi0zAd(Z(Gd4y^t|6D6f#~<@dVv!)`HMRVc}_MC z^Dg=)DdL*BGO81YD+bq!iclCDf~67wVkwfqf0C&{vmRJmO!en+p(}t$a#5gF?U6I< z)x*+EJ$B8p@TXk9Gvt#XAeoebQE;AX30;TnjwcbrbMaaf1CV=hG+$w1()~*`ibqtT z3$1|=6_(?ZxdSm4NGH9$OiiQKL!%nFg2vOqB^CxL+Gr7zjas@2fkVQuv^oIj44NXB ziy?~78(6OI)t|{lV(Zh-$#_TY7!&`~5set@BjGXK6<3a->%;l3uyl9J^srg9=b5GJ z<}qss$=MKpa!g-Sa)IJzFPGssVE!irOtXva0{XL?|8B>aT1I0kA_G3 z4tr#w&gkhm&-}a(=7Lm+VX-fOYoxl(KwI_LQmyR z8l!Dhnr8-MO}YP>r{4eDJmJvxEy~m1uH=3$Sn0WK$tMLH%e09n-cDHO{Cx2v zlFBWuNZ49rU5bGXl0E#r)wzjM)`g<-=S}LRIiBk9ABaKSqJr6iIYn!9Hs(WlE;bAIfuNG?tv=Z0c0iB&OX#s~z|unKEQC61ox_TYcFbYWpk#nz3# zYdMr@STs8oa>dw>^JdlA?=jTTk2z3KbR)hr{4fG@M53Tmm(+$XMe){IRDV$@OD9cz zZs6zDikc|3oJHr&9va?hOe;pAr^zOu!Eu`so9+Rb%RwkeNBv+{GfLN3vUTP7(@OAe z>B<8*UMsS+6*!`=d3_<3AD75`y*bqVS+n&{DJYh=XFs{;(`Dw$EwZ2d{jwwcy=?U$ zktB@I4@9BQTACh*R9>1`A4!ufWcR*oU;WyyKEsTXgr;qsvYGT~`PUxy$Qpj(fT;pN znt)TWgM#Yt1IJr1Vo-%~W~)s}F%OMsjd}so%MPS2{(K#4(vq|t7$a#Po~@9POZBOMILtz}0xN*|ay=A1fa&4<;X zNN%S%l9{eIiVbK|7@$f{gyXjwXf3lst);D+e=KP<6D|>!&}m!ltgEB*LD^lps%!1& z-@k{fy9ewD6o(WCTNELfDuv&k4PyXEtT_~4!n&GGUA&%&8~z?KA`D}>p~^8hX7rHi zjAYxXgVA)<6T($ZG#UsI}@bjg}rU;8)Fw`cSVDOtN=@cYlQ0)kW z_u7uRMEUXhu9(6h7dK;}B=9xW-*LS2*IQlm zngS^b3RKmf16L$|g9533+3u)aqgr4QwuuC<$LN(uq@rx!d z1aBjkzxS7az}p*jf?<-M^pTUTlu$uA+5TU6@&CiQ3f!8j<)m<k+r<+W<iX&!w0VaSxFUzZ&m*KQB!Ze6K_kr!2ulO+8p*%f zB|fCGM}M&D-l@GIMw&VJ4m#}FQ!Cx3txL<#7j_JK{YLJ1%wZgf-N$Z}1*L+hz52qE zrYh9Eyz%U)TC_~Wy-Y^QJ`e7ELoXne&;${JVJZmr7G5JUtc^6{R(u)tlCBt;+cLfn z2l0?oMEg6YK1=`aMCgVOP>j8;mZ{-Xv<1`;(QejW8(g)0ria-IiIK}*_sKTXHfz+3 z=U+1q6q3j&lrjTCtFyV)HCK-Y$8k;A%LK>Ce?uJeUy$7Fjy;^(Ab|Pm3b)0>s0Ww` zZB7sAr~N~&|MmkiRUQ*L$ubQj3x9Opkj0FNL_8MVOEjaKP)1_|z_TQg;z$*_u+8#nWioynuoCD;6~Af0O2Ujn$;8**>xZLKnMj^l#w6n}G!zk*x1f{Cl!@XI z1O-EJuy@5{W;>Qkv{bQ|8yEUq=YYHLr*53t6a+@bG-42fSfvk!p`Mc35ZRbix#Xga zqqZ;^neJZ~j9;)kc9a`7We)xo4((X#E6E0I|Y%=SUGB)GXhQnkq{*129%3VZp}JT4x!;kq#Cm;7;I02<>+D-u#6 zNZ~TW_+0gc9EE#t#*HR^AMX9$e1L{i$c2q@cL7LmX5>PD77w~ZgH#u5>5VnX+*!G- z@aefK>b5FGbL>`U>!(C&XXu*|1N=D3F$>-)#Rcf!ARgU;ypu_>wS5>5A@PA{`ddc< zf||R+(D%>9t=&P8+S9(?-fwdH_`VKSj$qPfx)?S-)_7F3K>vn6sO7cX(o) zEa{Ecz|{Z6KmPB*fBrveLJYPKv^*)hCBJL+=aO}`kj3dwi|A$z*;JV+#m}1-5GnjZ z!UU`IcC=*T^yu++`v3`4mnhixXUt0+>VK!*F_f?llUJBaK|s(b z1jfQye<=KR{@utUFq_}Ydkmoz*r^CNs{xoWlmatOI*2LyK=#Y{*VdUimyu;#{-ARI zY^@|~k&`uPFHP}rX0E56z8wGDKK{SS&kSi#OM%K{5-uL2Vp}2}J$sDzf1)0=yn42Z z7)-Er^WIFygS_U?isr!R3JId97ldgEYLFSsw1*dz+}X?~AB)M@6^E`({nY;elU#>I zd$-^DW=iRAAALO@9Gj*(wFI;-4D%&0;XrPNRcr;$oBJP_L`9fU&_FiAbBCvXs&H%h zZAvY`8Y|hk0=v7bZ+JO>T;Va>e_lYO9mq$C`?t~Dfmn-&0{)8*Oa%taShU5L>5B$O zaVMlxg}~74^ zKJT)IR9Z3qjjgZM*Tx>l`W`xTwPm}-+f|l8scP|MW=eJ(W~ukz$DZ6ML2_prVy{E7 zrJQS-VgE_J#7f4H2mA%FeK}_-3%@|lC5s^MM!=8U65`_^)DlGVGARbICj@iRcxL-V zG5^CbCy8c9KiFv8wF*%x=foNmWO*dg$cXGYpv|%2Z|^ET9D`-f2%;**x;&U&7DZe~ zJU>&684j^B7{G*;0+j%VHw+Ohn=@)VvO%?|xqy%7pe!8w0FVzzU$8^cTBpJ`ln=m~ za4y4c)2DD2x|Y@<1sVmYrN~VX%5uK)S~j3Nsb3kYD2g$q9(M&9)i!BD_F7fQ zpW?>y;6EY|u6kgELzA$XFGvv=a}>D~^h-|u zO7U;eXAK6X{$5z*CLwyJGlPFNIXRIo3L^u4Al;Szd-SB_t`yfCZ9YNIFNCTF&fiW2 zyL-f;LkD0nY@Nwi!!~O{H9B5#rOq#v_@HH5vRF+1q~$wleo2^DHn?v7gk=a$hqGI& zEJ=BxTr)P?Np3+@q-%Jl&@6`!I2NNX_}vSI-9oue4f#?hA73o`QTRc z_uPJ-o?p)1<~D$lqA9yD>mdVV(2_%F#PJd?gL-hj`@Ap}I`D7D-Wvtx+MaEBkqjlm znPSYd!`=GyV)qsHUDXzjyEc^K873srh@3*`}@Sk@G4bo8Zc(IGI`vN3n zhxHQ%QZ*$Xn>p&tR@LaUl6DVi4iYxBIm0UAqskb@5k(74qykEm2u#IbRjQ&VRs2X* zkRwEDlp^&>UFAv6^>P4W*t8X?i2ji?j#0ggp&1;lT0!;Jub49FA;t>PHT-CN^9GMR z+MSZX4W6rs0oiqEZ*Pbn*m^nZ%hul@eX_#%YK@NgD(LU{QwXuGi~!InSa2(t)0TJ> zdx=oWcgs|~VD6@JNP(XDKjFUZd?AD5@tb{cIkoF_d~{8IKV|^;nSN8V7hC@twf60> z{?$cTCTncX>`~GrT@&vz3WL?<0*-7z&^`Y_>e}6)9vwL00J!L{(-IR)0yxS%M&#qaSmUB(EK5;`N!0 zRF2o7FaaZ{IdYH6(TpNA9jiX&W7Xd;RJZ}Z{^x|t3&9xWkLLx4L`uqKS#mWJxOD*c zqe6LEpm+>Db0b7EV`QWP5L9?)!G)9Xfk0&u<+51us2?EiE8H=b(N(5~{^~U|O18R4 zlS(sTxQMGw%TFD-ATa2v96FBJg$e#>wluD-IY4i+I2`8~r#5cb^J3(n$z$Ag8-YI&7vbn1ZO>EmxryX68OK`< zb!4Fl+;b`3=flwM7qVKNY%}(iXjLI@@6G;{A%Bj;rAs=*7Q3TseR8HuvcAs#G9}Rk-EJPeWK`6@%-8T!@Xylc>sHT8Jd@U$ENhqJ{OH$P=IUJ+Ok*s zZ}t56dURGC?$4W7Yn&H)`gSx*HzY3d^>DIBFW@kyh-#_(^h}O3jt3*BM4c$`vJpKf zJYziGA|U`<+wYsoMXZpSyZh-`#6n9YYJ|S%>cRom(?%P$Z%znIEEnI!?Xbk#Uca-KhesQ zVd)<;B5>{+D2h%Ii%=a%9FL(By#s8-tyl2^7xL6|#@Y|ICOk9=jo?|)mdV(Q{~VHg zLg%SU@h}kz(fCN5$ha;i!qqq)fNFUsf+~X$O*Pe2oZ;jG7XADgA}ks2ibElzp)^11UhOQt1G zbXWpYEiZHRXD&?D+ih&=`0(%7zE$fF>YQufk7H%(v6g%&!$!d2nj3%@sn6cU8B2{b z^@Qz(OhHK`otTud*s}3{$K>eLYCP%HD}CUgcgN zgOOEm(3arm1zI=xa5Yn8yCxcFeQNHQPF}|f4Z%UXdU=#XTriCoN~2>Q({-ZYw4%AAkP1#OdJrpneUF*1(E=#De#nEo7)2) zIhvwdZ*06?A0i$S>9n@w8T6?~00|3<=xzVy^YqT_x8{#u0!eOvcklol?av$PjsoiY zlxxoE<4c70Dejy{_U0*~1b5!=rjRxy6#a#<#c66GvU@8FZSNA$J;7`YE`&9UHjK;{ z9XSssgS>NA6?$oI-euodqP~TO`O!Tf0C$AjVe?Z6-H=hmfgA15)t)-v0F0a~Y&BcQu<$94mo(9+x)V(W4KC)LtP$Mx$pOHv)k68m=+ z3{5sc9N1In?z5)+idERxfaarC;_Jod5pj-hQ(2GE2PBbc{(ieX^W6+q?Rlg@z054A zCO84`r%V#pL)^M55wAo)qehh&2j`R7!djDPM8`?4$nRYBy126YREdr~>^sK1>{aZj z;Sgl(f@}5<-Iv&5sBhp*q7SIziB+XPQg64M(7j^=3bY7cr%HS_06>H|xTs7CKyux= zVHf&2j-f%mwFO$g4|Q7zbU+k^{Ys9-hN=7UbIf2_p|J^ji&U@F)hFWZjYWWwKhV9P z!N(YwOVGLPv7I0>)G|C+lE{;tmD@_nPs0m|9}3wpN98qoe%Iq9;s(6+spcr&N2fG# zEC+8XUgYx9w22T0aFcNixZk*s^RR);H#h3#ZzUPKgz5NU1Zk^?;`hi=1C5hsD>Q<4 z$~$ac5R@TNz7*$a?^FvgNesH%kI7MfL6N)F#{+}KREqfh0h-KsukL4e+;rhSk^l8M zevtzn<+R|66)Me*PZGTywtIS5n!I&;1x<2usH?iddNm8cHsN_Ez?K;OzEXs%DvCa% z^%x0GMo(s8ImZ=`akfn6x+YUqFY$sv;iOoEMf7`v;<;nnuWr({+fqR-IyX(2?A1a8 zRCWij0{CB0Rvp@=!zj35(KLAdC0=?b?CUz3DKv<#C^<|L0Z& z^Io4m>zbqN;^M4zuLXALwt`n`6V;@=mp!d_B)az_5gGhJrChE9wW7q1R9*@kH*RFy zHXIk^?3(-ptjnTA=1A+Zu`O4(vcOtfU24QGMEs7rCvH|dVGlACelHl5f^&LjVuEio z+~8k1R(p&HIrBb`0Ga)&ddrM?%M7y22p*NGZ*Uz+Iug@9a8onMsJ}1B< z@=6a>iFqftHA6KH)*8MaNT4z*cT^k=I<2)wt)sQvZv4HLRB{G^~c&4<0g_uyrk1_qjQJx_<+JGeS!t|I@?)3v>|n6l8t~8o+|)m(h<4 zsq;wF!JY-S4$t>iDR()aezgyD?WI;|Hqd%ZyQgVxR3hQy)hE$JQq4pccYoSIMB5W* zvctn33&w2%+zUYLNoz!2Dd-@{WJ>-x%5*|TX{oJVdoZvSYvB2Jlpj@Zx2-q2FIKT6 z`;EKv*R#U^Xd*+}|IbY5f;DTLq8YWOLeySOD)a>kPYjom%f9!6r z4BoT#PgX$2@V{m)%6q$)i^EWm4_U;4I2vwa>^U7D$>Yd(voA{VkXQ#OvpG^kJj?`& zPl8gBnNY&SiSj z@_B^S+M1=hU4%Zj{VrNYe%nX5#r&Vv==Lt}68#kF2~mgKq~A&P(#JAV8zQclRvt_d z2Y_t28IlUf!!T}w%u;0wxNX?wW`PyIM1>Yt*p2hNNOFB!gP}b5@%TDoXirN9t}QBS}vg zGoJvXwI6iAblrEMT5M>G->h}$$+Ad>q=2i?-?y1IZx^<>SL%^6bV86|bh-0(s0r^% z`I!E~ks3_|&(@^@dd_<$HWtag~?KqQU^yk*HcU z6UoJ_`b0G@1U1jwz+UVS+L*F6^b(^0rPdA@j zK1d$~t)J9={}ptm4H`Hz6Vv~VA~~aS|0k4r%*Ej5S+v-`+$jXowEm6Ijn*O6$!3?# zE#N2go0m=jwr;(tS8_g4iiO17<j8HaIR4W zbw*a_%Igeb%{CTP;Ssv6jlm|t>t7r1ha=gOR3)M$;s3hRL(&5Qm^R)$lNA6A_W~Sw zSKfTV3fG2AImsrp>Ndjga_#kv@f1Qy!oiwYkJ`PnNah2IeK97N9yU=sKj$8b$P3I# zZio5Bl2{A%JR$kX2kj zk}e$t_Yvsyh$A)TwQ-)~ zPXtTxr|Hi670L0y>6HRw%6x_%Qu{z~B(+6JW8494z*N_lE{FnlAI##a_#$?&j@j^B z3eP5=clo2#DVly(_lL0V%UxQyNF=O5sNVwRwopex<1c0FJt3(~2V-X_0`w5)s=eNd zeWfN$0tgMiccN6nf+l=MxzNmlPDl}N%khex#LdQaqqr22^A%cB$&Fh)A}^*fVYgLG z_}u`RtFMsl*(t}<0r}YRVfZSCPNtgVreY_;y0g^{#_qvT3)y=*#0H~u0rz71;mdW* zp(TTvw1>tm^zKe|_|B4aALU3;3V-DT^^!!{sBRHvcBSK0>(o6WRJrk4)D_CeCB&~U zk65fO>9bOgT_hy8m;i0vNU~)v^8$%f-)8|kpVUN*Q%09J$ZBzyf?;25lm%o%EfOpl zCC}aA6KN;707P!k>B6KJEW!Kokn1@l8AmpnjjJDtc>_*;5lur>+`gm*g{5R~qra^A ze^C|zD>Y7!^rZ=b$$g*Vxgn&pFps9FHIpZUYjdBWPY8e7+r|EOR2%qi00m5Q_>Ukk zGXd)y*a5W3TZPke47J)WGordrO1T%p$z@_;^sNb*9ACj~<;9dVu8oO2%=r9}{c*2b zE;M1zuv|d(aDLIWibYos^#3vqHiWjwhlldkLMcpbzlFzDPsgw)fgB$2bOm0 zQH3mWvuL6Cr;>5yS#*l$6tukd(E!Y7$~CS_*BZyqX%5B2osM_T-nup)EjUY%}KYKW$3F%*&sr|yBwiJDUgk$6Wr(ayUmMY!D zb}u#GZ2{N91@X3(mBAY+U@6Uo_w&Odj}_6MR42M3_ZIqx#fj}k)?*&@JF6vAUl#bH zKisjfkQ|CA6E3H=zQ44To z%Qnk3Q^-0al;ZMgRdw_<&NY{c973UC7)F*y4*}kdd3VeDq6k?F`+bI4wpECpvhd8C9Z(qjL4%d_BhU1^A3Rv7mZo1#yf-VpE~9?MVUrge;IU z=31-J@hPjdm${sY;i>X^`q7`RHrF&50pj+zbz;A9P*jrvKj<;{8I`iK>3@=AFA zV8g3-`?HXI3I-45(DJ!4L!FQxSlSGFYpG2SA(H5F*!`$T}j76zua< zlkJqljbOdl>XCye(`m=z;&OwykQ%7;4eCV@DyvV8;Th$wuHjTZl@?5iPrNmaAPfLL zu;Drdof9frhf~93D9S}sx!@qOtu4&;S@Vqncp1AL>`UugqE7Ic6-0~HQ{DXIfYETy zKQ;v*1pvJ>bN&9`X29hu*TBs6Rr)l5o|u1orLS2m7>1}yqEyi_F-X051m0?QD7YP7Iv&Y0K|Ns&~i3!Nuv}f-M>H0oN{!Xa#!$7k~nrvYOCJ`ZF2EKb5{+7=v`%?zG>QzsVv42Lb(D10;D=TUmdQ zM3{`~q=o>u_&996@qC#l9f0*TAp4mN*WZDBJW|+Hl)zI@hg9bApK!OhV3J=jGrzi4 z+BL|Jkz8&aN7vsackLQI0h(c+?bidMqZR+Q>TCpz5rA|n-?QkyaCUpK7*A14NjZeK3 zhqQZe)A~&&)U|n`={wVzQgA;~Dx3hs&j6^kES4_Ae4CU1Lz*615%sx^*QnUZ z?u{7=s@5oo)R~%8Pl=ce7@iU^Gt-+cuDgtA!^uA_Oo$MUxFmF7sNE08$fEF`Gdz3> zKL$INVsc#Gkxn5E#HJ|gUZ%$9YxGC8oLD^9r+fbl-f!4sYJE1lXD+hi@LahHxEn7>$>#RL!1jn4XR{mL z`<2_D4fEHgU40-7pfzox4pO-qz8Ffwxv(2Csj@eFdNRwVZ>RxtEOkD`;Cu9X&3jT-x^tLGErp?J;$`9_w1XCT0T$T@e)SW3gD)|9ETB<(Q)NlV5`H_eM*<^i25`^oq)^~tZa+*L;xe#F5$q-2 zR1k|O#ylw@)fyf|$A~)2M4iO`A(3M$IB!q=d$fN=NmxaZD)x!#GsVeMa0Pw)96o+( ztX5j=+re#&1!=&yq-C}H_bgPGd>^Lr)DcZazJk-yCPy@mg(2s%^{em^_a?EIHbH3}NmM0_=ME65vM`+UhzN zA*<(sv!UM3*!a)|UYh#e?Edd)+1{Tk1t;e9PS16jpn&eq*|#qen%4Er^U(um0Pi1; zFFUX_2-iO&@PdxDBCaIb`=z0yp!!AV<#^Vk8ksr)x#dDJw937|l1TxbfYkG>ez~fppQx;>AlU~U-f3Tx?oIIV>W~R~P?v>OJ&J~V6|d-a3XJz-`p&TwxPBMz zs5vdrP(W!`vIfPv%>pI6a@jrBfpVTW0K%V%6yJX0Wk&vfM9{oL^yB!Yx1%%zoEUHe|0Qbl?zaw>h{>B34|q7^#Ovd6?W5xCm9zgAk+TBR5eB2sZVl9}cMK^+HLA;v7KAXggzEzsY?_NSh(lAw8OR`o{+uE!wd=x0M zO|&aGl$sNyIN4RoI$o;S<7el$P2{T@N$&8@OUq5AbJW-nI2&zR9OldurXqa#V&W1M1r^#WR>=A(h9AM+PSh4ut1XUV1l1hezKikb%* zf%UqF{R^1*b#Q*=trx}Du&QjRwvMYIbV(iW1f;i(_$qCstLP+q`GB|-moR3-tAt-U zhDmoGD9+T%j>#xuk0DgZj3IrXKkaBNa?$u#mN?8)Dw_P^E5o?+A`%{%ofFOUMZ zG%5;4<9GrgyX`yx3Qz|t;x)a0)o&~t-QD=H?i1H?RH9IS`zoR z$zr<;ZFx87_Z1tJzD+CMG7HV@&0k-s6^-fVT5P`=**Q}zsyb(|*6pV2GRV96JYdB#X>s+i^i8V5p;<0V z81uGzCKYL!6C`cA5YPnC;R{xB#cm?xJ|(7TJGut=m)I#@jsu;1*#Ix!)P=(KH*9&c zQsmZ@6S{mjSe~1%5v?#ji8x~c+lx;v=P%u!tp$-Uuz_eMM^z&1orSEzOVjh^-s}qa z0b8Jk7w$pCd=!R;8h_Jd@{$Wyub+b3(LKVW!P-hWrex=K|0kn-;#YFqI8;T13)y0~#fLY8sExUO)72 z;QiTW4@oe$4J$8?IaHM3aQ8x_jQ{_N+&+wqj$W9HtONB3WB zC|EF2IYy9@aw>&sVWs(DO4v!-jelMb_KO$^;$xWd9rSy}+;4AYf%Zr4R|Kgs(2`NI zI1@|p0143BFxV&+lnKq5tDDd_k7On6E3<3W#bPb9h9DyXO$xx~>h8_vM){MGgnEaU zr<0j>+FJ+27S0Ydqk)XwGJEz_LG;^y}J^mpdZ9Tltszpf0hZUik9 z<%_piDt}C-@Z{$kn19Hg)h@k5W%KyELm(i2!o@tM!b3A5n~}g2xkoMnzx*t)kBmI5 zguu*CkvB?R50oLQzm?kHec|@7sb03>-hIJZ-Q45A&cX&xcdZYYRCPMb@IWwOX4Udg zV7XQ09w&>>$XQ%|F-weKM;S!yc)d5kB`IT#u{O>RcqB5}axIQaMhG5!S;&AdkOjm; z`nF)WE*9c*xO=rDqu8~$%>-FJdUQY5h~lCOBhPJ20-AVl|9r)mU3me$prIJMVNM*d ze!xG$Vu>!eorpDgt(PM3t-bO2ZAY+{oH$t2V(Leunmwi1GTJ<_I>^6R)qm>;!hvuH zO((VVn!gz#?a!Q|@KHV={QR|SX#o&L`6l08wK%Mnm*p3Z<;V~MUfCx^ofj)au6Dxp zo8C3;))geYA3Z z!x_NDOnw9#ovCKAzowkN|5&Sq_~uJk4g+I~B7M;2G`F#a#Ho#a?tu1^a=2vKZ7&8U zl_OO%{muI-O2GAOrFJSM?ze!RHjNLnhwt@ivc{b9ve!wp;Dm*7t^nH;(I_y$rI7gT{kf~jZ z7bSZ7s8CrTa%3RW-=MsRe8RJI&5TuAG zqmh7^XVE`eb}2DOR(`eTUU!&~3sa_;lntTnO6LzalGYgK(b)ymXj9paKdhOXl2)7~ za2Snw+7*lqu)464x_h#WvC~ngZrq^09#$O`YHK&M9JlH1Qzj%UfH2XBzd@RWpHtrl6#tyoLl?WgKFeT5 zF_qaOQ#|_Z@nxmPG2Cdop6Whj{hqQ=J#J#_V_FZLQ$53gb$oO{V7bF{v)pibH%LE<%2qsx~_@M_JjUQMrWaQ9a z4$1I~pk5lW3&<&- z981e63>Y=ZvA^OFZ+)9Vly~Cap;)O}G8k7s$-zy`tTnmNR8RQXk{KEe*gu%%$1ufe zeGTnka69n*>-h3|RL$IW-A)a9?r$2TYcIGH6<8NB-W-Z9L#7q>wD4xYz)g1l@Tkons=Yz{I$ra(JxhHbfP{78S4# zEU*C=cM@A=AwUGSIdOxbEgtXO??l{49ZTApyKM{D^ary)ksJMf2l+rh$os?{0buwy z0noKdeW(Zofw3ovg;uEHQ`$5{fW46vQ2 z!zdimX&m9Nj|^@^m_+rYeU@x|({z9egH5~Rn-90QSqHod77~mYQMc>-@)j%p=)VCH z_#_;;JED~3vD)KFKI7Sk+F5<9gpMvCQ%?Idj231qExX!!=_?Ee+Sxq~*ty6c=x3qu z%6of$mnw*g$<>#vn%E5kGSjJ1s@|}_k~{4re$>PvA8TXxq;P5dUVnrD6Qu_v;uzl; zDg8P9{c;_jz+G*$3K4$C$DW`|QfH?0@%#HT?%7~*IaaW8#TeE!%WD^f{O5MAvF%Jn z5qe!9j1}?zF*e~~EMU;9!H`+fm%9BEEtVmfcn^{nRu@|=M`OTd zVF6|b-_G!$t?EsnwfurV3z~;-5DmJoZLUN)=B8}&MR&eBQ!>V1X+4K-BMBsL;!OQ= z3z$3yu)+QdyZWhdd>!h@ck?m!>HP_!55a5uubL~uFhIH3{!PxL?bjsGzJMULoUqV_ zW;sTI2C(zuDWbU07XB1a=>#KDN`Q@~h*j(~7zruC&?j(i<}(;UJSP5YYG@X~J# zXpzYk!+vBW#t8r+nSuk`JH@v#w-%|?hzf|0d0UM`w|EDVU5d5KuR`|Si{bfWz=W^) z_!u+3I6{b9s5kwz`A)kB-*Qm(dHqqN_^e{MZoa^ullc5_rkrTS~E?K(j+rE7MPld6xI8Ix-&)`JR0w0}2= zYQaOi?Nt4wh6|ED#|(KT@{LUGXTUAkU1voD12aHBvoU(BabS_61xqf&s%0STFTsRH zRTbsTFPE0jLd4OlFb#;Kf37&=nA8z{i@nfJ6{wQcAra7L4+8PgGJKp1Ds9rHG+wc=*_Z`qb9qtUngN8B`0&<{ed+NI5MmG6hMV`=Ihv-riLX{$ zDRGtK91E+MG0m`&%CIEtTaZsHl{{cimSBMGDI@VY)!JekHmtI2YCJ7QD&-ym&Lj&V zN7r<6MXC>SJp>g~P=oAXRE3-dwRH7KN1E^Qwg@PycPL3Kk!r=}^n!Eq@E|h_$IOfF z&CMmG>e{V!`!j@>^-yP|F1E6|<{7(&Yc0JGNK5MBSx8>GE8EAc<4Rn|1L~?Sw@QHS zcRA}^tw8g`G0OsH^@q6kg}k~pZTME&X(+$?Dadu5J?K^}CU9 z%&vu`oLQNSEq9A~;!5UrVtLE%_l7?wX3^OeZ0Py9`8U?K?iqBFOr7l2pG+K0#W{#R z{zBqlFAj1ij!@hsF*B0+l!J?YeriIX#3vQOuaPWwjg5HGBVVt#s2{USwz%7bhUPgM zXtYo)znW4OKEubJF;WDR$o-wzdcHeL9|9*ahr>*$>rzf9L|Mv1+UyLCZz_zjo zO-P|syw$X|BbpBE1ym|Al>(MVosb-hoOXa!bTa0rZ{0DVMT##Xcqyo+QwSC`?ux2yiI4uDREcb4!$TUG6V!JG5-mVuK3 z;gbW*?|Us8v+22H6dc|V{6WUvKi)^&No|I`5+m~W!-DYfzG!Z%hGKvim@eHY=+{OL zOD(0dht7Y4C)1oZ&{{6Acyd(Vh^TJQRNq!E79{MVzj_46cG}Z}Iw4O7nwCxtHn|aJ zOE>Li5e05AQ%qGm`jPq&Mf9mnJ=l;D_&zx>Nkd1AiU!47dheEX;Atdz8&|dsyoE!{ z52Fb#`Y|0|w{2;@3l4~mAE{(*&EiIz7=4iIF3-hbVC8k3`N{3*(U{$IcJS++-p-cn z=iUpeE?RrXqQacr7QR-~9pT9$m!amZjX|Z6&Q;~FY;H=;HWwyr%{zQ(&v7TKi29i& z*XBz;yIaI&?jXseg^rPky=slz`OwX(Vur)lf&*>VfEsF!O+SD?T5lPePo^t!-w?8> zIH4+Ix8h(xOOR5H0E;?1tN>6!foSa+O-O`-OIj@>j~Z3uVY@+ghfE=}xkU_VD+Z61 zfHzN3BVaBss5_B{@@6zcUF+r!hIn^xf(!^&QyT7w{x+M&Ajt>nQMx)6;6!|%lVh(_ zG^2Dq+QJQ;AO_$AS9N17KIu#?FX>AJ_?NW-ZGXzWP_^EB^gE`P*4$Z`NO(0Gu!A`$ z4t9FaWBUY4o{$FK2TAh(hRdmoyGamOU9O7>3kM%c6r~JaM79~~S*f3CTH=anJ=I@+ zViQ$ySmB*!v3!)CUAuhsV9J@Y^Gx!&Q?V6Or6O4d3kS#xjFH_r%C2RBa@|Oh-yO#a z27_cKe*73b0#Lo(V3}>$i_vfjP%j` z-QF%<)!=<#wG)a&zRo}wi<`ZF#8qht!ll7V^R0{2V29Go*EhJ{}OnwUg0{-R6ic#PbVhu5TtXcH-jUdWUn&Z5)n%9sTMWCp>V5AlPb5U?bxJ~h&lCEAU#ORB;BOv+0db|RWYxMgOyQn-i668FdUsD>mnw1x+UTobhMyR|t%1@1@UD zm?yIFQ2>8A6T$3?UP#(Y3v?_3;INc%&!;Gqd;`(h1+Ge*5Jx-2QF=l(DO~+@l z&%t>G!7V7b#N)uDhTmgqNaoRer&om%NptU$A{BatvrY}Jv*D>5%{m%kS_Zb>`IcNu zYO_Tt(Yd|h7jhp-S(2T3UAS=kyx)oN4l`AV&ce?7KK3gL7HvJb46{-KAb4#VP~Ch_ zV!upG%~|RkY;+hvBZgW#uig4Uwpz##P$Q3yho&B%l3_a&vP+Y3=#nS{Gh%`n>0UFW ze2A~qx1oGGK|S9$dCVcvS*Re$e;?_p1<0zYmlv=`*Ma!J$Z#dX>sAVto<^$f&3P{c zZ$|vW!pSI^x2JUtCZ{?9=rkYVlm0}};y3cjwD5oZg6$SsTPrIr225Q}RJKRa5-v(j z50$Z>V0zxEz^Jh@I&6+up;}GK>Lv&dIynGuTdUM2BiI<@>4H);R9n)~Q0S2FCEaBr z*iEV|g9YK%rA(PbNm^XEbJ|hl@=ZHnS$Ngcm=AWr&-8YAdKmzMv(PzDo8rg^5)N_+ zZTA`7&B4Qd;;=rx!Ss?nYGOCQmHjro~=xMcX?z@JfI2^CDoj~?A-?`DeKz<1}{yx z_(^dc9W>Nv2bJc&p-nVt^xS09fPqfa0K#rLumcma=V#G?^7rL)&;cz$X;c5=`tJDA zzjwg{Zw^KtKR%4mIX&b2IXeg4v)niAFsi_p%~fFDYC~1pyC@yH%6q^2-03i3DC)yd z7V9+-yVXAPpI&uzMqv`QUNI=h<*FU;$2v&0KSEQmxz6%$!koMRb^08^WyQHaj}7I? zM0;hNjLq5T0?`!A9r{=1Z;4;%2^O~hP5?H(?6j!N|KY+u{f=KQDu;UJ`^^yO`EtiQ3#V#}2wV$i<2T)W9Q;`|xffIGMnO1k+Qwhgvza}IT~ zP}o6*wGkThdj@(X;O<~V65tIn#6=WsewW+Uy8L)(`+EE&$3uZ8Wg6G?I_`fM0mwVt zhOmBIHhpmPUK*V-nZtM=$Huhu~8A|lvMKkLHjYsk$%n>1^4@nVTO?R%NCa_A`G6+3Rs&lQA>wb4`jLteVw&VrB6d;#RbP93g zpr=LbS@-$avkIutkM*s%0eHxE458?3oh^Ji-(&Lw`XV zc8h*!Bd!#OrlT&Ldnb^{zK4prnWE3;SE~}z+2IBYzJD;KG92XCU<8Bm`18 zt2|OPT>$jz3R6gLk7UMN0`lkYYsilVa4yV z*wn*+mLn@oP}6ksB$PCTrT1t=9*T(Tbl418D3}zLHbrgGh`c7c=!3>5`;`vqWEHcZ zL2_L{W9)m5$(<8~1(gWMQ-V&u|Je{Fs=SNfh#hP-!XJ&V-&`WIZd0;tr_2IPp!Q^H z+>=}zLI{PCQ5+S;=QA@{G?EhvI!%fdlgo#T-t%|xb?H9Z;DCb-TaVMcKfWl z+5g6Lu(B5P^Vi$@$`3lVzM?EI|J6HOC(>EIP`_w?FPHf@>HOl-rL!B+IC@SUgvPq6!A6 zeSIFCy_PWr&Dyt)T;}K`w&NxE;~$gr?EnbP*$_s5(+ThihpE$rL8BdTEH(cld*H!$ zW)kuG4(!lSp%YPNY|H~0=HaUvDpUsQLtj{+KzJ+4TIG`lPZ@6Lt zFtKuqe*drk*}5OG+5^UlyZT$wx}OF}o)~U?npH+YDkE&>C`Xv-I64GIMm01_F2Hrf z(Q=BTuGiny8irRrnDv@MXIo8KTl^$ojx5_ z^c}5!Afcg|ds0X6!z58OMw|$lE5K0Ci6ei2l?H+QyO*BmksOgjO(OQIOo?70WO*lA zywPYMl9vx0NFy*u* z6`qv^T;Vs0B8T+_IJ>_WYa!Xv9wRF-boE6w@>5(P)*1#$Y=WKaRf+aI7Xi)ki;i?+ zY}-+r)y!%LeBOxB(%O(SNZP#N_hxE`&1fsO{Z!bf)<)Ll<2D(}YA#CYwxiV?s_7Qg zz}yE-H{KkVR5kMvX|^O0;1jiM+6KMPvtnV_>#POL+7>ng$@%4kaghZKZ#naBqQVzi zvU9=$cyEp+&b0m}?&`vS1^DZMcAI(W0HgP+8vz`w|6A|7in$NBg@tz8WAoQ*gE#nO zhlEgmv8L|a8A^(|2n|2zSnHJ@Ht0ls%-i^*6f;_CaX_M zkkf@3DJLZ@yE=7z&$?~!saqf#KGU?0{4CMW{^S*FE1>zy-wt!(1?Rl${YY3YNLLT( z3Ea-0{(liVS^K?z2Y+fgv8!6WfxY=D`SNw*h!=}Oi0xi+wmdTu$tcp3KLI|W`C|Oz zWNY~lp3LG-Y?;r888g%1`osage~2Rg9sCJI|NjpDAYgXobl%1O&%qxpXy7B`#anIb zFXxf(`Jm2uSgUw(JqZBlezG2F@eKZ#xDMXU>P0#71z6ux4qA7&rb96@dAAPwzkg48 zITuC_B2Eh1S{;p>4L&ve_9G}b?KCN{`I5apcWbmgOs{Tdr_ML1t#8Y1G;%n)I`#*9 zcXBws)q*9Hm}S0)F$cq-TDar6Llf6hxbpa{<15E$DK0L-rPTm9&E^l~wH0k{sAR=J zRCks5!2`p4(_v$84_9|&zKBI!+(PS7luezk-HXk2rfW}4Zbkwk+y0mzs2}?tZ|q6Njt7T2{vu$8QKY599Tta>$u6s!8K4&$F9jxr zJVf1>URQL)%F4E=@`+Dc+Y+FfS!`?v?odiVbha}*3i|_4$xq<15+F3^Dbjt}V|HQr zt0=JUlxo4?wa9918As(Fwq{YJHoLGEM0k0jxkumgawx=Mf;;ye z4tH4}%|HbEIOx*{Ov%sfuNe!~|J9vvJ?QpK-Npq72f8%rFte6qXqhl76W<7+NE@ev zn~~(EV=`-@hm|TLhMzJkMfV!zK=Hd&OG1XXIO;|*jX_VTNm+;-Tfi1lhhE?O(JIlZ9}eA*J))YDuxRgF^oZqc;=JsiDlSMfrBa)!6c5w zR9Jvp?n9&@vZq_DTgh#;w3^tvhL7>U} zZiB++w>zl9Udw^T!4R6qc|bmro;s8m9EcY%o%L#vbWt=H;d)xu#NQ31*hZ4Bu^Lee7v>^-yerq9p;^xz}10fGB_aS_08GycE3SyQaf$QLJ1G z2EziI4-{t*)Z9nao?v8s@pO~&C#!RF(!A3_8HJ z<6}`AD@I3jYu6$CD10Hh-h8e?!=Jf}OUH)A0ZyLlli&=!y-U1iZI^4)M|n4Vp$~Fg z9nnLa(Dy=B`0`N1kH 5mYt8 z>xNwL$0(7oLD8b^gn;d(!#mBcy#Bc^Y0|9?0v$R6L6GAuso31yU$%1UcOdK$LOq+wJa?W zBqPoOamAXooG!M?$@+#q#Gm#Y7rVv@+ux_ht_bUuADabj-t7RoO;Mu(f-Uhs6zNFU zJwIX0F;dBoI#=NSv-69h70iAdMvG4#oP#ZH1u!&rSC0AJS=E zfQ}74L!Thgd0>S!1J0hkVY6(wypIodJY15{rzvBpBx>r1PF{r#__Dompo&uK0$Ep0 zwt4xmUA>-DZvsh+jxvD=)A~5;I1ph*{eG-2QApe12?IiK_)2WKWVDJV-9KcKl&*dr z0=`yz<%fkdX}}-9?;!m|49De!cPdOkWTwX4hPmCtgRwp3It?GJ;(Y6PN zA$EbmUhpsha^k@4SEWh%Q60k^7ZzuZB|z50#nr=>Wbsh5*}@h(7Lv|W32R)*`sc|P zi>ZN}hIZtzwQ!2eg82Wi_m10{hFzC-oQmyKoK$R9Y}>YN=ZqRA*W^7l2t_T<_Vpno(2Ykgi&ND>+sT z-cHQ>P?50k6zaqjMPLHEiD5MhgB(>AX|>ur`;jsSk5nmn2gxZ#B$|KR>~s*>HLL7g zSVCudM)%&Dfc#lmXW=BYJ4a8g)Vc$(Jho`)j+-2kMx>-@F0^b?_P2;A7`ktWMN`MI zh2d+U2gMecP;_Z*(HFGR97HXFY4j8YRHhlNo5WM-lBH!-Lb>)}C$Q|gD`VMwMAcon z`WQx)^}wlH0&G%>*oX#0cE6lYFUy^JqqhECp3zR#e<=J$gMqOEJXQ?Q*ttXRG=6D( z;p?KxUnJxg{=7@Z|I^T-Ch3?#|G#5!p{D-%ODIJPl1$jeDuRHg-+=a{C9sYuUaZTf&6Wd_-kav&Y_Q>k34Kmei_8?`9cYy4e^m`2$?zD z*;~#f)Ufk`DLVGhqde|-Z1dIx|1nji=IdqHkI&x)16M{Pbx^ut^cVe|+zG0;flpY}$`F1>>NYzr0QPKe!y@BZlz=2WsBI$Y_CB*i zfEPB+#0KPixW1a4C3>(+!Vr;8N-KR$%HLiRsd{DprrQ-Z8R+V)&k1(zBl*lXHgQ(X zsABo{&WKM}mjSC}qn5O(Ya-2ej0L-FC3qiFf2}Q4Kq-tP!t^*%I@*;wr>Saiu*ij! z!Bncg*uHNmo_1J=N@F=fhmajFlsvPjmpS7g z{eBG*RDz%;A~+l#y|M9Fu@*glu;Fc;h<9YL1``EYX<@+yW6`WP9beo{3MG;`lC<9UO#oee5z+Q?Pg<%JS*vMlhyP0D*c}`8M|nob=_E$vHTVI;uZ#Kv+@(nw6AElv=#=jr z6#2#_)W+zY&dd{&>Ag5ZZJ;X_r%sDe3DiG~&7{@HOce=jbC*shgSQ4BdLUbDY~yQW zfHM75))Qs9Gihaq0y%x}Zgd5Li>uejMCtO0b>MUt6`+Sj z^4t`WzL;~A+ND46%DvlXcl!>WS32XaWZe!hex$QsTdg?@v>iQ-saxiFVi(6ir`@p3 zf2t7x6|bOFFvye%TBUzLI2cmmWPh^gKXsyt8$VC>p314QM9u6G{Wq=ke_pI4(?VJ@ z9@n5BGo6^i$xMwANA%^Wc&^_VX>*b6`lc=ZdT6et(Cqt9qmsY3zxUP}l7DKU8k1jX zK4z&<1MFi=cQuX29g3w8ebY4)r<{+LRl55E_uo_cC||>2QsGUW`JV?{N&r{|I(wR( zIT?6il_`xZuKP@*nIBU|{}Xv*mK|*?8Zh=)_pT)WrKL&dM>IaP5(K$m!0gXqyM5V8LV5^rG(Wm1RuZu;4c2_u*itb4J$(Y zY{HSzz6<$1H(?U+4pQGb_MtZd?69Rg_C701Q#NGZ&%q8wNvSf0QKreJ`Lg-eaJnkn z>Rm-#$pS@B-Fmy81$aNWvE}w^s}sz23aniJ!LO%lLckV-B{v`P0fsC1YWXNCb8#KS z!6@Wd%GrxEY4`!${(`^t3w4NeLX`H@?vd-rpLU!B^GWwy#SntU72&|e^b5p$a_{IKhelD3-g_K?27$F zmIR;K-B^fa)|?>VHA8`LKRBFqT_e@^if_u4%}mBi4_U1h1+-90v%@UYYVPn^MNnLx zV3-I>K}iwP6_QRSP2>vcI%D?^V>s8khIO) z(Vw6OzmyX43Q-f#D$zk${=cAys``&R2GQraX0=mZjD79hOg@)J4g*euSsWb9EFE&W zm~;r)IO5^)nsef?D(P@oc&)Z}`r5*n6ldb9Kcrfi9#^Uzv{Vpz9j>scH?5-|UMze}8Pb#a0#XYCx(u;)mp5cn9SNdHOf$X^icrZ_ zhv9}A;7*z6``rG{xdYl6J}vqZo%AGc>WN^zCAw7U{sz#17aQN)yBfPU+*YHVlvTMN zX}^>vs~>vbzbV!45+(aBfV5PVeDepvYV23xnwe-6DPtvfPProRQ?jjjTnc9=ZuI#y zIkD}tjty)#RQ?LcxTwc55yw0f_W>lKkp|Cg@F|S&sXzDw6#>$#GESAdH<(qd==%Rz z89;|C`=IrbbAt`Yq06+`U8yn*qC3^xmGjq^C-b-4YL$foo0@S8ip^>v0n4<}N3p_8 z?Dj)bFI)eWdnaq=6}*sgW@UYkQeh1Be~v3)M&BlY-;*@#px6lvic_*s8;-6&wX!nS!h7j}K}-!1GLugczidmNwyb$^v8fYnt(c|j(b5PhgwEW)c! zheicZoss&_X+fvWMiN+3 z>CULzN_6A-IHTTzbJx0Q(pCG|s)pOXMmAy}! zT&|4Ha)bwOhJy*ulY)aZvGZTvf8DWzNdK2R)>v4^W$Uy4q~?DQ%U{TlZ!ymsCfTws zE(n4D{cVgv{r|(VRP>nsQ+f9&Om%~BH1CA-np8z6qLN8PeRt|i`of>D1tUlfwza*F ze*@*lw=U76na0OHD#oNP8T++2(rcM2+a}U4<+L^9k5+S)cLihT*32S-x>9m_bpM@{ z9ZRX5jWoV9^AbT0$6H%DtHfi-^KT6TUmZ<-GypKwsBv`s#=@8u5?$qgx&~6Ahud=R zM>01iC8^jY&Uw4v5t6HBs#P*{+TeXN=;^ud6qW2woAnboN5`6E80f?!Jtjo}iX z2mqrn6z;4X8P44+%4?Bg^%v_4Cm-p_(jn9{#Cd;R68?o#o3ZM?C{NJqY-;6dOI2rA zm8ghug)Kw)*C*h=F5wW$Dln6R4l4;I6q`}*6qmdjO_I+ZW~Xh^TY7WBHz!70qbUT` zrY8G?Vpt@Q>8oN9V?mY^Z!68SL1~4`G5)%LUz5LWKcI*tBcxD+=){k?D5&p_<^5Mt8HHTP>2GR!rZBeSY3G1|Tp*+%lvJNP+4Ie_{XS%0IyTQ`cz7$J}O<$I>l2n?19{ z@#=dW_tcC{np1#@4NIuJLyaHK18~@W`pYE|)(eXs_0*>?zk%M8lN;(hleR5)5b4+J z{{e|=uS)R}yEj|2r6y(1>x}H2;X0tme7Bh+2rN}cBcYx{{)ru{y*Yzib;A}47M{(OM$$l&q3e6yr$mzRG$QE<7~{MEl_n&pi4x<++%0nZ zZLxV(?dw}-9bs(z^1Jo}3K-vWb{C(Y>*nkEd(H=l&K&PJ0jiPWC)SCCKmj;Z+qC^j zkppIQ`?|(X2Jc>~(7?mtr)pggKIv=qt?|J$T{>4Ch&iQKdb&mBc<`4aEA`PpJ3r7Qkt&84`L&Wxs>+1dUy#}>1QEW$C3Dz`f#vY_J8oi0L1^|iD3v9INUQn+g|C%+NPUPKFpttxhu%p^cXjiG7!#{yFQk< z(=VL*rJK2VT@92IdbA1-!0H`a%IlF!9{&MeRMqJ!Vk*{ol`&EdeVVFV6P_22TiO^L zUe-{7U3x)wm)B%-fhZeE8m9FBV`EV*{#DWdhedL?1MudF=h#XOV6~ONTiuga0Yg+g zlGBETAVy0?#yjr$^Unlcqwh!G_9Dez&Xn6ME2&Od=)%=}9;{_xz&~w&Dk2mCC^d!f zvn77DKtO}9kB~M=yk_ONaTE!1NDKSHKR36n66|3>8o`v4h@RQuCf(m(dWsyiKH=)e z3nWyi033ecU}fMkD+h4M-9g07;=cm(2ng8G_RI?6uh167_+gWp10H{){0L1fm_31- zGy4+Cc%WQpCAvHKvN%SltOm+{^G+1KSm#_(XAc7jv2oJtAf6(vgvQx``xu30Jt<>` z;6L@kc`IGL01760WDpS(Og=uC0T3#OTx`LA0ExQ9g?Q{m6tTSRn_MPw@HZesi&)V; z0_dz%D6}JTU;I5^@WqMG1${jb=hVEN6B>=;MgwP4T_pFsR6Jo`2Sr6=NWa36Vq+H3 z>Hypjm2rEsA!odyxhS{5Lg}lrS$8aYDCA!+n_x8b1@K=ZV=&NjLYdK{IyQ1SQ4MS+ zfZscP#q^u`4^<0C8^9sD@k3*J$`&)k6~bDOQmDA{sU2F4qo|d3BdFxCMLR8MrTl9v z%B8a68`}O*(9lGM2F;q|K)QM?oUsuTi^1X8i#Y-L{db;a0(*Gnv0V+&eObmQp2~Ts zTbO8YG}lI=WdOyd^3UESf|HqP6`Zk8KnO=jvlVO@JX@?*E)#eYIDUzz5L(J*IgK)7 z{&*@7Y~46$ooDoS>qVFWdkG%N=RJ8)5p@c7TYLa(pF7uIYZjNGA96ASyld}NF4q~3 zc4i6gtWw5#5<6LBjC87VYA$8bl$^0sW^PYW=S0w;LIe%540!_m88nBH>EVbCKt*-J znPo%u-bTNPs{)(NG|h6k%5vG-P8DrrX){O!M>$%74fk?djz8H z!eM2jo|o#`r`asZOo0I?_~kb$83Ig%DNtne$!cjUzab9_xXVqjBbb)n=5_olyvQFTi52S^x6O_y!jFFw4Aw^#U7!{m>iJ6rxArAEqz}n5xu4ud7#cE@1 zZZO--V57Ot&~)T!P=>78dLvEGU;_o`e(E*LbGl0Nap_&QM&xlp)>XO3Qa(MBxcsZiEbl(rxIlfiKH(Kb-}kqMBpqbLv+j&D>@ z5Skw}!P(BqDQsgSzyW+Vb^faW%xo1q1NhQ+8VC+j6Vf%e49$0Db5nbCb0}(TP1^U= zHnzNtqjzZ>R}Z+61u~S9(p-{C48)8CZ4o&B=;>&BxEY9)4Mj7Tf)C!z!sgmQ2By}| z4r2A|9f;n!mJRd^CIM!F7wBShDogttq`}Um7IZYC0!oq`Kv@brD4ez=1U&p?0>n|) zv-?y{yZz;nkJ~tn@GbG(^f%y(hJmoQ9%RzDxEct>Q8JesP;$#H{a`w8?f56w><9`<>Q4(+-K2ZnGh$dDLGzuB zG)g{g;jLDa$|?woIce{yagK^Od&)!66r)cYrR6z@e0|fxU%~&qi#{% zDApgB@6CqLjk_xv5f_~sZRJFRIcrzj|92HlL1Jlq8s9?N$SgJe~yU1uV)IW{1 zD!QUJX18VGX*IMR8QXKyjf}u?uhEB8d2B2XI04FB*GA$tC9r7*-3X}0L|V6Y_Z)FR zO1m3;?N*b&*32a>I=s3?C&ZFMJkO?D1Lt5s=$3oXrzNZ+r%Gomq}*k=|C@(whuo>C4E0(kWD4J zmV4@tIL0arY?6l#3%2b|NjZf6jFTI{)EsFmmxy;DdDzF?i=zW5AX*+zPqwa_uIZQg zr$({6f7|$lq*|lVDQsF@#;jV9X*}_w{QDGF04EZwA4PPiqIb&Q%@f@hkLTsfzqCgN z>WIW%22h1Dwq&#KL+bAF*Gfl1AZIu?%`=qSI)s`9nD~ZSVD(j^W?65Ec0c>Av{O;^sMbW<%LDV|KwUYX`gS3*7RhOWbeiJ< zZn1#r^Czk~u*e~Oja`(>vd$+!o(+CX$oPnbOp)kCV!vR0Kc8`J+)d@Be5xyVH0dA8 zCfeis`ahL$>91@rYcf%vF;1`_+&3}LYf%@(opQ{US4v`czJj`EPMNgdq&AbvT4Aaw z{EOgX&FY{X`*@(i|76Tp4VuSdTK+{#i^tDvpI&orSIuYsT{ySTrk#0k} ze3}kv7y4fTSj%A;jK0!d@NWXZcr^GFM;;bfa%dNrSm0AcS7`p!Yr3&#S*YhGkleK8>yY1Q zt%I{zGv<8KCuoDkPfiMbszM&{H)8HiF}*Rg;igoq2eBgQ{3ez@93-4OLIa2WyX(~t z7&`jVDsiQ_^;^{-I>cR(8xskzO5^(Aih|qjoE4rN%(PI#WXXR3$hzq;hWb!^-ctB+ zMUET?4r$a=v7gP;bl);ncDiptiDYJja(SOE`1r(raB29quCmcs(F;r_q2)ZvBq~^p zJ`?Y3`d6^k0}v{Z;`SFu#Q2L~|JZT@hH5V2LV{9&^}w2?)_55w&_4$V2GEY}2qIaZ zWv&!eSe>_Ju2gaWr~dFpc}keY#L4btIy%u1SpX;XR_c+vZPN7O4AOCL;2bI!zv}+1i*O3-P$IMUuDM62uc71ewzm*fgVTH&R5U$07n} zL8Nrn{?BPf0`J$HO=!9;;u;?J0c%{!M9Q~8;U1b``W6rXkh#iZutTVP%7yRfHEdT; zJCLW4h$T>CnPYoRP{J+@ZPzc?HhOgiIn`{JBmuy7stN=a$EHSlNc z$%9FV zg9@bzFaKx%sd6BWf=bt#*yhJfj7TlsEi?wrq&_NOL9mMyqfW%|Tv24(j(ELKZ0A779I zB2weA5?4b@z>*qE^vK}XgQqfwFkKj?@bjXmz0HzdnnO)i~>^L zfb10@6N-iAE)`)HQone!KK1wDOPe;0Xnd|<+#v*rK08K&C}L+shxbgu?EIsrF;b>7vUN&a45&@yZw)J5nEQ8F6agh{ZINK%}`@GrEz$*ytsmMfXbl zO{iN3M~<&;y^d?Ng{mYlKBEfQM!SE~WSyFudHZNr_1utxm&*gVDj~$=M}ZRxS1%-B zC3K6}>KFNWI*!UL$@)p)z@91LvdP2~ETyH4< zQQIr9bsDxDuvd7<3q&f1QYUAd6dVYE(x{{}n(O+%gAU_-llxSmYw5{$o1<_cLtL4? z^7Bv9&E;A{^N$dp>1?Tph6(r;odn;9 z^uR9Eu1ew+6`bxR;o8CLKD(M0lD|r)%QYlG(@tf#|9MC$6@5--+L8tT+7Pb?;B?ux zas9D;#SNqCK7H+i5vsSURQ|}+%~~_h_m((7E`uVByDQ~v7%*;n&r$7353S#E!V|OL zT-{wxRx8J1Q7kWXH4yn(W zB{OEmz2?SZuj**Wm61VyF5xx+7YF5(!fT0creuaMnu>T@AItFdAD)y3%ml-BXaD1$W$2}SCL`k{Mu2*485xT zv6j0)betq4F%d{sLfNwYL*dp8S#u8R3=YVqWGV4n(K^TUTH&@&M(=n;HVlf9t9)?n zn3U(Bd71;we5L*v>DlZ%V!d`XZ8Xa?2G-XJ>5{nAAsf)DySI{azo< zTU^24%6T4EhX`5-xKVsHg*76_4HFn&g^r*q+2@?|W1GPmQv-?YE_M$zsP!qT@*cSu z>EDM}22T!Fv*Vrw{INU>Hoen+bcf~IISKkf0voQb?M#u^jB(WsgVO|^3G&KoPxY(s z(M+ZNie-#zdQ}p>+;?h?_&TemDPJXrOE(%~KMh{mC2)kkWoq~cBDvKm5!N5lQ=4qJ z0SSj(lpUjQ{=l2)a{>~qgk)Jihw4dPE%)k+-Ndx7a*z zfBlMWE*hrC6u>#hIL)Otpluqs{oGj?B*WnZ8}BlSm^_$V0W;N$@M0QXl>kC-g>HN+ zdnf}c=ro69&pP%L!^7U(T7V4AKecgUdsTEb_DJXQ42%XT~Z8sKb00T@U(5l{DR- zt{v~UC^?4S8ceA?_5012?yL=9?JJ}GDdM9=)#lpX6hkDdQ~pDm3AJuGY`fBJpW0ON zf?~yjrkm9|zaCNO|FAnHgre5m-a=~ku1OmW1_vGt_|0L#Ht{y=E7xqnV8L%1GFvvu zhNyp|y@GEyOnIn~{Wo234hRy3N;v*Ixo?$m#f7ZfeqB#0`eC6kjBNPmEi`i**s?f^ zayDokxg6bJo3DP$^^3}>;m`(KnEoZ3bSy%mr|q9-KO#U~W&^6u*GfwjY{S3rXj&E2Nn5z||g38+~Bcu5K>`qk_jNCfVcOVn29yyS} zHf(R5%r;EGB1wHm+V^iczX7sNLo;oKd~staxZ2$I!M0=g&=Knpe_ioLkpRx^U+_Gg z$2O);sOB9E&%wz&cdV9+Ly=k5MvK&LZc(mX})E>VhSk53~GlY@4a0IP189$x_!04p?y@^b-5&LnU<_MUD9$?9%&TXIP97a;A0}&}%t|^OI=JWv zz*fF zb=rdN)g#_B%bdVnzy-l_nXRP($jOZgfGBc<*NUk)y__p5j*#}5fTEjjF&)ijIgI>C zw2+Qo-8mq74R1O`nR;gAq2!&|dT1*0qTNq{G0K8)s-(!*Wd#QQ6gCD1jJR?dddlEB z`5yH6iYPmVX&WS(Elc>ghk}`@jHiI9eIKg-$GtY79~u3HinrvT%(UUE(j8S2;PmQe z)Z}HO_qWlT%Grc9>CsVF)@?q)fm%URxX{&uc3#J~Oto@P`FC?kO9;sjG{Lv?7$B2K zK$x=3u93k;SpOZosUrV=vG4f(_s8U>u!XFTRDH~f`}ARapkc;Y_wXARB1!Z8@nMTB zS6-d(QRzK;qF0Mm{tFUw@vC(zfZ%Y`kc^>LQ)}onA z;9#y?aUIR?xjSZd7&B7>9#agd-KwwN1H~sHGNq4mRo2Sx$d&9%!^5v2{n)(>$Rf*i zl~D-W*8Xm$J*E zP5wr$5$;P)?SfALJrl;~QomTL>0QI=n+r}{1C~R`#?wgkdQT_dsH#F=!9@l8nsfn^ z!&Tk(1#9EOc2!_m_*mH-2hRf7d@e6uz+|v*p_zGsHG3z-G!BE^Tm!H004ox~>+2>` zLd_4>V2Xq{ySS@PWm;*c#BZSC5y+4|)z>J`T@hKSglZH}i#+EN>M{h<10Ex8*sh1y z$c{NJPM*D9&)^DPSrMK%Van7tw3Lz4j}a ze0tvSSI*(Z4smu7I4cx;EA-4|c*TT9*a&B|fm3peZ(aVZxsY+#2?@&~J;5T24L-BYt#=^5Z6_)Hf9UIvWgjl|YIa2tDmWf1pRln8P|xNa%LU{72EDl6Xxm;3(?n2eLI5|1zb-NYY4Qv4oJ9x8 z;f;~*xhMhDo;GGcwZDl>_Xp5NbPSEzy9?4eW||1VZA^{QvA}qK%oSTL0O-Ap#S@$z zC_^dlBASv~Zb_k8-BL{hrfL%+DU51j#H$qX;pDEmFSD6%CmZwsp$EQ+)OZu`xAYtI z>QRJ-;Y{V6SHHQ#?djQDnC(5=5gCNAf2lEx&?Rv!2E@_j5Ct@+ANj0 zOtQiU!^9pmtVUOt=jl&qWEOO7JJQ~__b|I%bFG8@&UMsO@P==Db;wXBWy`Pto?xXv z&KQo&E-r<%+B*9+iId14-auZa$@^Ruh(f@3=E4iDB!uUD9+d9E+s_!o=XsiCGP&-*4!8!O^p#d>EG|rg=@{S{z(DoK9wBOnC?wr z89e4#rP6A4#-Bd&LJSbzqAYNTp?$bp^H7khT+tDwQ;r8+I^lkT8%w&r{7+U^f&jp& zv~9I9g_pPpOX)xR+|i6KDJT#VAEn}ZFGA_=0aDdxB_m zBEeW#1ii_3Q|0%Rqp73e>iI*;_A@!B~0+)pcMs_INP= zKqNM(4J15BoPnHT3!k?8Qf5|05HOogkOG?}BN2~wr?-d5&pv1K-AUq`q#mH#vx~|> z7#@W~`{KC>ac|g~!KNubaAW_`mRl1H|7g_4!`@2o4*I49nC%j+#mBuo8rCk+)-pho z1SXek)BZSEJA3pyPV=y;f&Vx{YVBBmxt*-atI=2E^cs%A38H6ja?{}oKWv`cdny}b zuB9KfBQ#&&@}8S3g-|09KnGa766M*3-Q*3r@m@Ye?p=F5V9Wj^++Z$xVwB)Vh8VfP z&>+4Tit(8GAP}{RW_Uvdy?$<1#_F$FsI%1U%)Nf96$@6h?XU53Yy8c8lhK-F|I;6{ zHi#*8h&{2H?mU7lm40{JxSOPNOn|ZLZL6_=+qzeHo`s-41_xdn(g^6ox5!CNj$j(@ zRE%^IwcD0pHb31>7Wo3rOFPfi0-pJ|z{y>7sw@^{1&rJAUa~ZB%633bV>&)G%!}7R zy`o8gp7B*U(uDRj$}Q%39#uo+9RWcPyFryrcDNtYoE6DPDFj8wYGs~{A#tx$7UXhE zd_C?nl&Kwu{R=F-xfQSuS(lk57(CUEtt^MQq=Z~=;9R%ps7C{5NxoV}637?%GiXqQ z8MuIS;JnMpQ;XNOJDd^G66OsQ+t{I2-BfKA&%}IHVJY`qS~p|EJ=KQW2zDI^fu)p$ zrcs`p-pNHX)4wm`AaWwmDw4YNt32J8+*$J_R1zHM$5rq^VFIu{V2>F-W{4~n#!N`< z;~9kZ%wupO5x(ckou*ACd>Tul@)eymaA(j?WYXH*D%kuwc1(|I#p5}ZUFluAc~q~O z3TX(pfsD)!nm6p?!8IT6YH)EcRH$09Bj^1!DKLs~DTuKS70<{T7ir^Op+;AG9@{0J zh20)KTl*&ezyNxGsk)K9|GxeD=h3_MSG~BCXDX}xmgP$Y32zBWjy?=F;&T8;-JbWQ ziJO@VSF1HY%}Bj}u6pGX!PCL*RBnHR&DPL)#JUmQ=`oPlyRn`hT((_pmfmcR4WJZ!BDkjcUwIHsP0 zP4~%eHHZcl3YZGWx9JY;8@G-joUmT_&ux!D*!caDR#?JoHupQ13gBnegE-04 zoxhIg>~&cR;`3nqZJNXt=x3C*<)FfD-k3S?HPG+Ha)w@L>jsb7n7?^UwnlzGtwRD{ zlMN_0M@3yv$c@=;=!fjFt;%LQ<(^29k`>ho-CB9~OC4+r7nX-Vp3}vDc|oaUNpex> z+NzyTCD8jVMJsraa0}b|dk`7JMxig%#0&)8E^*f@Ae16qQD87a;-rBTb>4GmR4Q{D zEdCzGOVdn7piW;R|7)4f85gR|rLJdm`wlRuVle|L#s@_af>BYQSgC=%()bx3ca$u9Z?tDIixorhSL$hCirbE65#%i zV&6Q>`xX6gGJFC>lm1BjM%4_RnNijqrg6iIXlhlT8tGqT_c+F4j^ZrWE}~z-LO5X4 z94gYXN%#GI0<*_lIcwNSw>?cMMC32cpg7L7?zV&mx(ELCj&M+{R09~q(Qy}!{#~`Y zTD%^DLUtoIj$XR_4 zI%)6lfG7-kS&SlJ+fSv$UYz&Sq-vu=2!E!GzZ{D>R&fPP550B}PQ0Zin=oj(9SfEQv~cwe-XBwr$(Lbsreq_O_P}({C!R<^@^^Fom{F!CrJxD?}+Mp`@ zfjS~xM_Y;Neukv@lI7Sd2Z9^W{P390i6y(e$@B{wRyZO&^Y@ELo+tqi=DJF+>0gF% z8~hQ&d-Q$2Dg{@N-Ak_kC8n-B+TI4$HhUYk1KcS$i!|Vy+CRl|3i83H#7?(T!t`RA zsuAz8NsDoM9Tr58#QJ$1+ih%Xg}RPyZ11e7-Ep12U3 zqlvN%Wj0)QlBy;Kg{K{#n}y|k8mm<`Iip3h zAJc|`Mnt?c-a44spv^Y{X0|>d_KLH82XoA{Ji;71`ZHodv^IY@5V$;9n$}RgwCubmY;8I;eGF zV;)SBZM4yVjO*cccxeXaL12s3nd9qk_sFRt(Eq6pO=FbxPjNN?6yW_k=a)zR+QkOp zs|CTRhx;-(+V+bEG;%)}H5isNKgNA!2%!tFLs~_CQa#-ZXAjtT%e!ahe#tJ;-w& zwi17_y*s6LOqsj_^a|gnABRm3l3e-KhUJ>*jsQv=_$VS@l^X|<`;>2b&~nDy`RqFO z@OZtjcl;hywxw#(GRG@9^ue!YuH0F82IQObA``cz=C1Php+3El6emR=lZET+Tcwbeu+YW8E!s-IYoT;lS;#lFV&rQ z8QA&F7`%;I<_GS*aS(VWL?yzzDI>J9@!MYUfWhZBq$+FJmM$%uAZYpnedf6CvxSPV>(1fp+_T5;qyg@f2HJ0#jrIOj1B z<$fEcIO;e6JpB1@qQ@{=MWddx8z1atNuPpDV);GyA3)ihP9Lr~STJ~S>?sr_RL`|J zH40h>ljN}wEBu02fE=#r9t7p9!Cf-Txq)2(dCI5YbtHulFP-T~6e@I<7giMh^drKxp4~>2)Xl-P2sCk0<2&B z+Cs~i%gt9=>)j+QXlHN?wex#L?WYm~JF55soZq2;Vfp61u^)!OnlOrOJ-mSs|ho~=>K3AEPQy>-Ld`%?I~bM>!j@YbeW`Wd?8k> z;CZ}An-}+2HLn$Aa{6f39G@m+)*-d_1cos{oN|OGW1DsG`6OS{=sX+%lQp_KCHBE$ zAitNaq24&vIR$Qw$;mSf6DX>*Eo}e>Nlo?`oWR3+OMJ)$wUgx>a?nmPvE!ZW$++TZnnkkKWLp0} zk#GKMjjlg^zwl3hFGwt^mNe6|C`I^?iJ^t(6T%Ng>8uo?oI!9+ABG`q{x~uK{-V7T zNCj=+Ks+a1y^BtjZ#J5X-TPRApMg>W_8u}d2uRjRK8_C{Y%XHLWXk=-{#>$dTlQI_ z{pui)Dgi2o7+Pz7-F4wP@K#3oc%4I`XE)c9Ydj)&*QV0ixz3#@ZI?);?=E{3d>eeF zftPv*2HcGiIj2&b{iWR!J9sqgZj84wQ;5x&l1j}+DG}^l9f+{zGL1yw-3FroB;L1E z><>ecUszCTP;`uQufQw{iN9t#?JV1kf&W3NY+(U<23-k^5coD_okzD9fW(@z^pZvj z_LOQ&XN_m5Lu#mg#sd}g*(zy4PlN7K&MwO%*I;V1isO$R0Q-Au;$PKonPl#c?m0p= zXwbbIqv1aSWEXNoEqF?7_PA02z-mb#3TWCEG_JNcl!$K5SG2a~qFH)fkQ<&oSQ}L9 zS$h}+Bo3w-G4r}_9Y`_+6giBJb7beM&MIW5B(=$i9zW?HCkk1K(Y}n-SVLoScJ5YS zV1LbR=^3*@1A2iTJLRS_g|1dKHrHU4c?}tlAWju3UCjJm(sZb7ngW*^*pb9tPs5P?P*Ei& zIGPJtkw#1>e8UQNN)aM~Qly{o{dtoqPE|wnDq=3M1697CI&{9SImZ`5nKvB&ZklAz zHLal(Go901H}A=rTkD7cuR#EVF)s3;T>ow?_)JHc~&Nw9t zJ+!=XJ8|?^(*2YC{52&R1*OWmNo}M$P0-7bFROemV+n8l$hB=iQ-vxyU42TB@le(h z&UV=2K)G76jn(adhita>wM~KB)BPnRCE{bVZp6#UAOZ>isX+DWF5$?yMq>MKJdur})v~S$OTL~j3T)jO_u%4XnEJFt-&;Beb+6vK(+BqIh{25M3 z-QeGfrZU8iW*5wN1S$C{-6{kSicZ-A<${8y&{ye6pQcB}&J~pxt!MTvGMrWfyz|rX z#}>$$voR%73|nYpl$WLMQykhv61=gNl;RwSB5g<;?{_Nzw%u_}ch5X!(}Lt>9(hmV zPe!Cb(KB?$r>5Y2H`)IFTVwN@sAMk^dWVuHl`Rn7NYsc_bqbE_TIIj-CnVDb4NCW< zdRiSJskzB7EBZ&HPaHEUm4BA0tzMFG_cY^Qw9zVWGK&cIyJgzAR$UJFB{Dj1uFVtf zkEcc_%e9jM;xES7>(2%nPKLI~@wzhf1u*a;W7xU9GCgVEerzmU|1kepwxJsu76p}NwPrf zU;Gfi50#mtW>^XRoEHcip!KFXUm+=eZeS{4VT;=UMw){-D(b+z;vf}~>2M;6*%0T> zD&i(eb(jrF8jBu3z zYb)$X_(p+0BbJ7KVeD@L4B92TJe@>vp1n)e2n8;`PYObThW4!rduxnsaj(}3<-Rrn z#Mo)<^i(JdCsYj$qJb(d+`s}7o>Wby{P9lfG6%{eVO;KpL>L}vUcEpHrG$&K-d39N z?}udH<>>5bBLYg(h8-OqmuSvnD)!X?LxrPcB?mfF!YhyH<{|Xo&)wyDvsrPXy)7_! zQ<-~d&8S8NzZ**x=J~_Cgn5+loeD9HI(>=4Qv7Cw+EZt|n}>I`ly@ShKTupoxZh^$;stR2QY-R)etG)DISdMM|n;RRuQoCqJnH@C@n* z6!+v-@O@buk#0#6|EsXG2#SO0x-dGpySux)2M7+qEw}}@1cD6i?(Q(SySoN=cMmRu z^W|Or%fFsQSKm5aeV5(U)#u248QYM;;9k|DUG9wG0g1j7Cp0L22@s=xq@rH@?ZV?n zx8x$muVc!1kC~?MU^zA8s|-;+pYF>!qqr)eL{sPE2#yMRoMPVtSVQCv+-JE-3W>PaqOnooK zvc&P$BshTOb+zj_t8RSdL%r)tmSMK>k$M$7{`5RhvRrD*s(Y zYv%TWXm=B#_{I}a#9Xn><|y&_)YRrQc0|?Op>}E42B_&+Ely(u&mUl zItj}Bjr25)al1IyG@UK2M@CxHi4}pM-k|8+;9@?+&vFRc+P$;XjW<*qf;)KHj8H{) z#Dt}*ZYjl&qmtrKGb5Y~RMoom1OQ$41m0pj>Z1jJnz;_Eiy};%yaBwE%>;4+N|oC| z?WD|RcNQK|e6BC|4sw08onVLVfQ($76tS_LiwT-@EWNY;!F{$PD=M6&gI8 zgcb!I+DMk_)?XHd2zpF*M{NkA%J1sr486c_T&#pB@F2Kj4+-}1bA5ht-Jj~`jOYv> z6cTnX4GEvp#8GkjJuP;Fw975DRa;SN?P+c{uzMLw zNA-+>OJyd1;l3QIoF0vQMe_x1SJG>x;S0kK+Ss9=m-Wi5IsZ59+%IGL_owQ!8jVLI z+Qilq$o{zSv%}jEuwI}Mv));V&Hx{ZuS7~mnO>Y&uWFe(E?lba&5=OX;MO|xf<)6( zzM&mugZISSP`Aw~%lsWI?9aLthsUR}B{LixZV=v3agwTc*v`+YRb;vn6?M{xP=~I%= zN2E%m^*$X80L+~m9urXXso{9=Rtlg$26oV}&a^fqCOTdxTII3|WRR6Z0HK#>CnOO| zWDYrA*COnJ(fLb(pa-HX0Z-Ed1-m$l?|X7v4GP^3={8FH*AD&1gmuWLq?E>!=4d0W z122j!gpV@Ul&7tVQM#qkU{wI--MC}lj}y4;ArX#r5i~GEACNGM87;SXw-vi>AR=@n z#{Nt8$~3@th9jWLR{F3g z@2G|F6EJq@R_wQqLZE_ga&tQ_M3=dS!@a%3Fj0JZd_S9hZL2$P%>{4R^=BM88;W{) ze~NGix)CgRU;yQrwB$8EscA8VNzJ)71E~9Mzz2~hv%Dui=+Mp=Q$}MV?2gQG+9dft zblljh<*}X6Sajeoy4gq$rcU(R%imi*1g-Xk{GmG}>fYVlJi?%NFldN&>>xuwb$iz1`QA`5U?pZnrbN ziIm%pOAI@kD0`!k0ZY$`n^whJ7iq{if}R7D&(utOI1echtG@YO8y1P(GEZD3Hr%uP z9X9c+qfL`WrPO0E7YN<|pufu+N5j+W&c{=&<=J@;ukGaa+|kF1Vs)UvN;_tll8Q}+ zoGjFguLVl4`mNQeO%)3{XG9e0;#Ok$n)^%MB3~pRjW_M7=tT4p7)E6!M6w^L4WR-m z(v*@^tq-VE;b?==6zTg&KshFMf%^}^^h+O=w}5<+WA}mP>r)ZtoAMUK%6&u;oHX*QIkcCyJdQ6pFeE+ zDftEZ%CMECXF_NlyzeEL~e{-XDbCgQAioR5VdM~C&ac?2dUPYnMUq$^RcU8Bm z2Y{ES>E+StxZL(GD%gB4vg&5H7uk`i{y_{qu76118|PnzC$M~EFqA4gDh0FZo|DTV zb6vGImf7*iV7(46pA&NX_4f?06yRydAV zieNT3MnDt48F_K=UjCA^6(;`s(8s~09RM62hCJ4oY(`{I)ych3V}14YDUPwKymM<6 z{p;;?6Apdzfbk@khVg?+PaKMCq;xu0B6AoY!;N}xXjKyMa0&&Q1fjOr&L6lB zR;#KuJ0U-QFMw4sRx&o9{$^L2#>DkZ+2HbA^EzvI=;U!ho?ZXIIh9;=3T`K%vI9!R zJDRK&m2Z_T2YS(52$&4Cvh@4_{Soju$Cww4BG5bWR@yq4No0S?Pwt_0uY?K=i$?B6 znM^XG-Uk1T+QRlYZ!WAQ{;E_8IhH-knq*|Dup%b$Rzcos{-jzD-DgkLhOuUU!q`(3 zr5G-lAKAZFm3ClC5Hq}#cV}cwr34h#=_7KlQzPZxcI$)Zh%jRe%oyKOy~J6=k7%~T z1~k^%c1QYMN~CUKe$Ptm$OvP7KUxz#F{*F&g^f10vi(c6dFpPX*dSsXO<3w{8`0J9 zEBWQOB8zmEn)Gep9(WA>H)G=h$eDGWF3~x)+}x_B(T?Fm`{&<;l1o{jz%%fruA z*zpXa1~Oo*Vj9cj^@pjf%tdUzbH}U8O-Sf7{4ytgho-8PaD=U;eJka;WQ&FmwOA$qiK!_u>5}0G3Ql zY&0OPtoE)vt;HseX|j+A1`mtKezyOW4GL{m9W!J48sne0%kW(R9k1$KA2FZCqpH?5 z%t2V!5mjr?9Q@Hz z@bY$pALhS|pCWV1@86Qe$vxn+?y_<6mZJ*GC!NK%Jcfrg>+Q9+1FMW9O zYm%Cp`AH!vYSz$Z$;^szaOK~m^PJVgsFjt@ruj%L#4+Td!xAI7GCOPiI5Jdb{dmK@0rD_A!w^LE0WrY>Mf8=3 z*GWmi4*=^T#w^@L|AZ2!tpbDUYduOO`p!VuWGH+nmr`-&GH5qNj7B)#B&L9YbWI3I zrag6W6^djnAbn#UoIDjO>yBX@89d22v`Ddubet-@nF$TF3jA>`oXRL7xf*#<9DNPv zbxHNTit*jt3O_I|Cr zgz-N3pVTvczCnG`s!+Xi#9w2<%+@mloWuU<{M3kuz(Yu)I&xPN69J}t>5ob+Ty7*1 zb3_gDN@#D`xj1JCD%3pw-jVFaW+$f!8~k7FWn85S#Lj-m)@rTf=r@v2i0qIkh-@a7 zwfMU@%#1fF{^=x@hgJ7*P*syc)I;f=sg1Pv0bf#f7&TS~bOU=yD`|FU@1aKVW>huA z1tGA11HZ~fpnbK95>wq_qSP^u&LL+B3=c=2`6B_ZS~x)Jq{D!&9=QCqHWEUl_I@0) zJcAt3uLVHd$3eXXi-*1A2nT#~RwczFqh|kxQxkD}(E;8`43&rO{g*DPhMjnR^R(aB z^U=g)uSTjgGXHGMD_qgnaT<>|a9E$C62U*v1+1BP4Lo$xm7?zT54<%O)Wrq9sU^`N z_F2_qA*0>IV+H38ini;{hn5y-N)^uTwO*lzg~;UDo091;8~p)U1^(9chUkt_iMVb2 zXlJGbpO?^&uO1HB`97CD)$a8OSNB9sooR!wd$qS+A zK-nan=s<<45qnscSPw^3iz2zxbQyJTs6~Xuw*5+>q*mUIc-WSwPR7p0(01MF6DfjM zZ?LRh4&7Ac-~8hyzeqQwOHgOgyS<*8uBWx0g5&44mikEShtTQTg;163x|tRn`SH&I zsU82kB>n?Nw1o{o6`GPAllWp@u75WLkmp(aCv=qN6Lx_k2a`XllSaUuLWvq-DtnUc zQ#cOJhqm%SmfpA&B9nLM(p+f%GqZ0~&sx#D1zykEAIhQu`0iJVf@?*Y>rK`GDB#n3%=Y^#bHmvtBJ9tO}tq-Pk9fnT9LPAlK7#UyWlMx3dZ;?9o>#bwA^ z4nvt9^tnP86Nf*F1LP(_9v$iC10l4t8;21vz!rZF+Lr?mu!G&(WNC!B{TgF~6K#Wv zoNb&)HlzqKoN(J8_3|OnrR689pbm{mqHHuhgSl=AlLU3~&!~c?;?>M1e4yQbwzMcA z#cAA+I>g#@F!1oj@}5`8V(vZg{NjU|)%_n9G~V?Y6;s=dbu5D{h*z(Ee4yB|EyWdVRDwYSwHmyHp$3*v~&3fireR77Ar3)b)(FN{+6XHuIx+!^`O3E^w1#ba*@ zhI=7@{}XFt_vdBS9k{|!_5fA4ua$5Mj94 z($-otIquF(FF9s(VZKIGYg(pNkoOaHew;IEWj^&PSrA=4EL$^u+XA9hI+~J2HM&JI-b7 z_Ftvs;49;5vggm~uzon;{CyE`n98%XQO985u@aYBBjn`cz<&J1 zudVvL)>JvlnIaccp1Sl5*D?dpO;8e=8O^Ws2oD}fZL!ufITQ7sat76>^Edwag4-SZ z5toq!r3HfGaccWtA%@0|#&CFA5EoEOB+{(Qh!~~ym&6wl9?GPb^+}>Z`uAkE9ht7H zKb!+6f$I+cM*WK?dNRI~MiD*~SnFjvA~yvhx5|j#VB;lph8aplE-bJJ3DNun)W&>) zdI&$0{j`vx^?in=`jiN%+0pX4>y~2XQw-Hb%hscoaxLISEL?`?rG zE4`<7Ts5c3)%n;)ex#4%)p^`VGiHZt^RYRGlqPRLu}!SJF6Yc{NR#dO4*i}&#Fg9B z{xdiHeo;#p?>v7oePl%m2sURfez*3S`y8Ohaofvc^W}FI-MEAgsS(wKnD7NOm@f&K zjZSnqf?EZZy=59-7*vSEb5SU_E;e&3ydkI*N+^c}iEzz(uqOBelY{DuNRMYe7GJap z>o?PwdXEV76MEQLZVhj*_G8BS@CZp3Ff5K^f=fe*f$djdV+mS*lW5)vN1Q_WCLu%V z2FUqHc+bq53y=OvURuA=-3YJ+)i457-J}?kN48m|d=%b`G8D_4ajl>})Ky@~t{d*~ z7BxQMPI+1IEdtMiwk_Qy9HV2;hgQA0^_7p`aGzJN5ig0wy!butZ^4Bi@Kyw(LsV#L zq$JnSX2*QZQ0RIbox_Bmk>(7bh2VBy!qduGOC<%}4|Tk7_pgLV`&%dT4ipftkEq2S zRvRsK;O6A-)Pak^{$yW$_iyL`k|f7{EMph;zT;hDBd$*^-wd?rGiRT=w?+eSjm+_R z%uC8I2NO`(K0VYR>|-pFX-Vv=c8bqQtqexD7Yg`T|5#=Ln*{ zcvscc*Q@uGU3%5856kXkX@x-1s-_(KA^G!i_cle=3<4rgtGm5&P>tll%ho`rh) zNOo@DT>ZzzIPm@X)C1dC+{`$YA2a?q3BL+6i!Dx=c=Ez>Ox*oOe*X<@#*YSJsqIBi zc#0S--MJXB;fAfc1nG6P(pwob&)>Q5GUDy;?zy%Re@``%wfFeTdW{?dP*Enu6!s0| zq7anS5JMu_jzpD87~5p4+Lm6ULj$OgZA06@1&W&a)hh0VKzJ?&`P$sn8?Bwm=r$=^ zh|mu8=tO%2E?xIgEyzw;j zwTCP&H}w1c^7Q<=3=LI2!dz*SH9W_A8R~yqjYp5$slC;l<$@=0CG6pIm4;HlCk(Uv z^=uA} z_SE%dl|Ag4=oxqR)KnhtneaqdW9v!!Ofs5qJp62m{}%$^-THcVe;*cq$^p6J$ek~d zPFClSojwzZyw|Uj1%+sZ5y%6T=z@65Hes98&GM{FadR^v8%vsaaP=E0N_C^;1*#|M zEK3&&71E_At+WETmG;z0tjs!(Ue|3-hd*^Z4{Uw4;Wt_)mGe~V@5N#F@8*8tBwkKz zAVds_oHcKJ)A}Awi_S|spt5hG$T8|9QZt=dxiRbt%6mPz*?F+Nt^4(8$xkr=^R??~ zQ)7eT4Tf6@_>ny+tL?5p+@)?UEa-Fn_AG=68et<}*g^$9WgG0?3|T!9ESY#6o-)>T z7mbH=9ijAJVv}9v2zz?Ey}i!&WrIYzcOus_y0t4$Xd2|r{1k(EXv>3YzVNprOF%U`gFeIf~aM$em+VXz8{r8^C5)Z|wklUYv7 zf3AoH_vFi!InHs#E;{TmUyi8wRa9DPaodqT%4n^#Chkn&voJ1_6=%@lVK#N+YK zM}t}8cwb(9msZ&<4^Q{~UgA&wg z+X!tc501?hVVT#XI5!ae``018tubL3AV9(NUHfH7CvtUm!PcwQuUwKY%GMVjIW5YU z1VF3z_3O)AwbLdj>K48k!**q^vYxZ|#toQ|hu@NB9Qfp@vDd>vbYQVg-NEmuEC4i8 zNv$K64rV^9z+mgb_pxt&;$u1m@LXUI=5~AdzFeYK$UW*d^=6Y+Ae8fw&DDPo$*rW- z7_}Msz4~*+6XFZG-rTT+n?B=guq$Y;0?fLL21wYD-t=2WK(JY1?ZZbnEhZ*?| zx{CO>gP29%@mblUm_MLgpJCRGV~Bz8R@Nkug1IpxwF(YX^A4PBsCI6Mt4eKM6sW;Q z+0%Or22sC`bB8x{qtMY~y!i&(&&LE7F0JN0yBPki64lRljji4j)54KNv9cO3qk6qc z-$)2XY!i2|$<*3ALcK=Rm=B<R7<`=O$_BM7N!Jm9aG7T#q#yx>W^JGX%)Zumwc=pBzawGqX38i#il1 z0<@Z8-}aZ>H^CfWgX`>b6@~Uei506Y64oCtk>h_wbS7qR7KsStJvlSjQcixHgsX(q zvDM1Iy1I40b>@ks(az1Eo+ALofiad#iH3X}3qJF67NhP2{XTaQR25huZd0l&+4)l) z(X3+m6R`_EZyE$*)oazen@InK9_x& zirx698?#N#uU#!tj~>gSXcCgjE}TFW6I4%oM3C~pc<$R4AAOqbxC71$c>TRCjqP zd*Tjli(1<@71@C-iy@G86V)K%KZ)D{9kC(n-IueMEQ9g?3hoC)Z>XtScEg%dDxMx3gViBMt+Hq+@ii0TL}G zV|k5T1m9M&ibXh;z>~hIg~+_N`ouIgG6(Lt+f-$4|6av^-noXvt0TyI)R~SRBESE- zg|j>SmSjh$+-`&VS=~KhS^6Qw8s}0r*FS7GaDei>KXhIHoj6H$-qw579b(y4R6H#I z0!=d?yeb`}$`JvTWzy-9@+BSb-VpGYDOK$7_<6KSZKy zs7I070|<<$Mi=w+?AxwebBu-$59_g{emZ3OFtK@yTFx4I)DN7@M`s-$fF=K+)cRLK zUiGzQp9(fV@7pfhn+{8l>ba+W*3Vk6&Y$BcigNw($NbHLp5Q`GCNSY|@oSaIKC$;s z2(SQKY`@77dCkWWWwrw#)pDwv%vq|B)-Ywj4eVnq=l$?Vv0ka_?tsa;0JG#%0@Qx( zc951!-8nTz${a09c|0Mv0EKdLHc6R7?+&X10)O7DH|(Zj06nF9^Tq%b`mnNNOY}1# zSz25Dj)mp}h@pj=Nh&hhg%+Wyyw1b!F527uH9!j{eB$QS+OFU>VWOY>S&>(cyQ%s0 zz+JzA>It7r5brwx5`rQbk{Z$s1L(#=A`^VQOsh8#RzFsTVUeg#Wvcbiz~<;a%I6%* zf0u83PBFM@aYT+`m8%fR|C&YUJjH@iv<4&UvQV(q+a;OiTA>Ni@TW>kj(EyW9#V?4 zMZDOV9|U+T!hV0FQn7zgg3`%iF@kXdrZ8HK?K@c>Av&c9a=GppSv9sxuAy90$=bi5 z{I!KyJ7A)kp*14%Zx-NzvghJjhHsq6lB6=70weheH=Xh!_=(?bRX?CZU2xURz`Ko> z`p*(W8*}|K)R}bXC2g}&bKD{3cO#(dHL8^G&6E%n7<4k5w?%%ZBo?NpSd@9c03qV$UNL_8BE$@j>S?p`csVl@5x37J6&P;B|`3kwU0 zz`@1A$;rvb!;@+UgeCmHX-n+CR5qAz()^s996XZj0-Q3^Uu5{CIC-S_d1VARzVNbh zNl5c?i;@ffzY;@4Hbn~uD>rL$4t8GdL=yl#kY>@)TH77J_vZLH_Y=r=`M%k8!rRiu zw|TTMSv)_f)Y8V1T`}3!-bRW3S7x-HoY`6e!)#RIO95*R5(3+o&bU#e@DqzK#;WL4 z?bjud7HMZ(8f*k%=n3^r6pjg$cZSpaV(L zb&L~#hm(K-yU2WTnmfmy0`v%Dp`_9Shj-#))nN-zT6vy9@ss~|$@mZ*>i z(}-E1{S8*O);^8)nT34KLwc;Z-vkdq^27V~I3)XTdppCwWeN|tVWUR#*J%)u!WewbcU%Vx1o7+0QQ}5l`EKmo7cf& zi!fx|ecZ5#jBJiR7;L?f>`3#Bcw*oofi!>VG5)Jp9R2q3Ghlb|&%&RDh7;eO*$jIDmIx z4d==28z_^Ao8f&u+QMxkA|8Y5;?2K{U%%H%@1)J2bo@r^5*pj z8>rnZIlc-idMvc{m=+RFpDW)ArS$FuOOe z%cKkYm2&lX&e|^LNu!U1yw@sb&uDUiYuvw`mO($GbGon8LuqZhuWfQ^;W~WI77mC& z-fJ~wZ@JRy(iZ-68RDMmc|RyryGTpDXl6X9XY|mmUpZ$yX=WBNPgardt6^W@paMT( zLLA|STl)yA(+(m|&5cvkaobLBMLw@>_~CMiV)G#w8Qr=`tEvoK`{DijDe`ib$4}&E|V&~@M MK%}9OR*^ycANEpfl>h($ diff --git a/doc/pub/week3/pdf/week3.pdf b/doc/pub/week3/pdf/week3.pdf index fde66f21c507c32f1f2f6d1b01cd07702fa58fd5..a373dbbdbb53bef29ab4662d50be0dcc9e8bf4c4 100644 GIT binary patch delta 68663 zcmZUZ({?5dltg3Owr$%sJGO0pv2EM7ZKIQPY}?lSGq-bBPf%yqUZ?0CyZHsXK@lB< zl`Va69E=)pjicwX$?>q=A9N@XlGSW@5Dm6DDasJ3XHh19c~OUGH7=^tGWrJvJ*g=d z0O$sKBNuKnrS0tQ^g$MOZ0ugU)#JUh?-}6bhq`*aEe<|JMfOZd(vmret>d5Kjubf# zWg&@?bzplDc(-UCHJqr-$5dzOmodVZ?w2!5SP(HzZVK z;EVw<#r-pN&6jFKF#3r=Zgx#QKr!CWw|ey51+<%n1nKWc&cD>HcIwkzJo~FE3G$`Z zk%8o;B0qClH*fI{~~#MQ{Gv5sh-09bHVSnr5}TuOg4#F%ZI zAeIAFkqOwCQbA!US>kwN0!y?@zE=MXh$H|q#Py{D7~u<~@p=gHeFZ8)=e6WIz^b9S zkdYtj%pvoC;Ch&Szkp6gO^&y17BVT(3*`o#FTUOHs$0()SlJn{UDl#?te{UE&~O!)-a=UWP+PDV0lVp@)?+tgWMsW- za0W7O^4|bKCT8Sl(8Zk6Wptr3LrK` z@p(S)WiaGD(P4yT8%SwKrxjg!u0_B|)U{>+0;%||iXU!ioG<$k@C4OCLjsbH?Z57P zQyye_IjZ>+3TMsfA&3ucn8@O|M`<&S_a-LC^idQNU$etsH~q5_Xe7Z>^+Zt-@a1>5 zW~iidd41Cr(~}Mga06I0$8jP>Rb0>=EQA9<(E5XHBxzcx(U+`QH-V z4`evHdI8(!ISa^CESXr$qegk(`gLEMSK0@1;zRoUO9+w3xC1wBBBD$o73CQX@Yez^ z%$<*j5tyLo`HrIna#RpiqzWGkj)<~C)FAX=$k#bO`YHrvaK@B+B%45eURGyH4#83qs()yx-IY=x^-77? zB_!C%L`dD0RHh4UH5pr|7;_@xBAwY`BoW5In+l>+g@y8oA=FZe`%wVx3tyl?&pZ=Z zCkOo~S7!OTzs!B&b^u_TE5-&-iI_bseW$~f>Bl9|+hlJ4N-JDs`ZBuBsjbTsJ0ASy?s!%(rnEp!w;S53E9Umm`kAw_D1h;JW z#G8*Z3_|oT5{^6G?0GsAE@E@Fq;dx+JMZ{diBugEOm@Adw3XncvBs?#t%;y!7m{}m zCbqx_sqkPosjw1UMpV;bdj2ELH$f#3DQfN`8fT}X@F^JLNx7L>+q9bEKf_i!_I@Z6 z2%CmiqfRWKCrm)cyd#3v?Eco*4i5`cG7?nLn0iE?hR{JrXO#mbh zC2j}OL#nDTDhWg#h_a=>za8EXd+kj8bL{ZEz^O-`M-B!nojF~Bq= zXrUAs>(oWoEhu>;3tX+fHy}#W4K*OMICmfXiVUT5fe%0mI_#RIFKoxeX%GXyC$+p5 z5LOr8JDa}b8#c}`D`9?PIzyFDxE^V{?#n*B0v*Rc>#bbkq21Sl^iO6oOFJ-YKp{e@ z2ATiW?v_tF;Vid~%a(UXe>`9dz61>2%zG+(t;#eJZITY$TvoFU0Tg8<*E-NSe0#(@ z#?C0|eGL#wMZtFgCP#zkDI&7jSg6r{x2p?k^CE!iv%=Df8hSjWfKdlOLI{kxw4A1$ zu+-3@aspXh`-6a{H%^I$rv?nVfPB~zEP)brE#+f6QzPjQxidjl;l&~9Gr*2Tvu3$o zJuRf7H7orUm`bs>*$Ac{ZWwSV=*b)cr-7;RRtWGbd5)vTPb~LM&E39@FQg)2Hl4m1 z1>~2Usdk9Hj#^}Ht?;6Dcg)$Rflui77a*UFa#bdM_!MJL6RRL{!W^bQ#uM)J2b6XCa4S6D6`r+Qe=q_a z$$5!K+M(PGetk*(FE{uCzr)|%oaUe@S{D}W?S`QmettotSxEwfseC}<+UCa z>~Q-!NIh@+timL-{>?T~o-h0Gv~|8LT0e`5aIoXKfxkzT&8g};KbeNX9ZKh*)VU-v zD0zfurnQorb#9K$eG9kILjcwd=R&}Fvb5>3`7;9OvMle$ZCw-E>ULcV_WToSgL;nO z3eZKp4E$E2LJ8@4{MDQdd@T+J0H-I|H6`y6P=auACKuTM$542BF4+=y|1ngi02+Ca zBP7&>9N`9;LOE)=eQg_JWx0z4Wi~V6gHzMN*T)Vf3eh?K+rv;ZN=^MLOW4>lNbkb=W`)*%e1yyjEL)5BdX&M3-Fj^4!jSiIGcK2xhKWC-(3 zn9}PrW>P}$u95MR42QtU*w3yZ^Id#*Vr@iL@q^2SuyIEe3n{&Vvuf{)SkFA2ZsHA5ZZiZzKLrJ zzVnWDidryZJtHw4BSIU+s&oyu6WGFqnO9(=7s{OZnkHDG&j{mJvYDezxxJja=8t6z5hf;W4=IP)&hFZ>=-Qbf5~#)}>zV zz6Sl#1N{_@$xhD)1JeeC66DqCU=`RaTb)LU)Bza{3K_kb*^(DGO7EvDNHLBI;Jncc zb@1arn6D7MeLcFvTy){(@7Cb*?1O<+6xnA10y*{^r!8t=yFC3~ny5Uh=K#072LF^Q z=wiR*L$fW3Vb=j^C|RguW*&4^_zSs2jGGk*E34j87R0&%6?eY?VJojo0(48}xbK65 zU%+09y7mNDSGYG`7E-SK@9!`~0NsSm@HA(JjQxU$pg?D#z-lBNu_gYm&nrcDeBs4DAf%&S%#D)6 z^eLYJ7B1FL>Xhs=u%gPUsTX*~B=-;R?_#IaV%C9vul_K|)>sn6l`Z==eFrh2goS|q z4UO@i)7D4c;z~gW^{>lC5ucjOL7CYrIMuEi)BD>9TDK+{Jvm=FpWRnv*F?Y4vN9M8 zuyCq4SWC5(jVPP@%*viE080q=dA0wEUA6y9xaqSNRD~VzwRsoFEmkdB{x|>J&J53_ z0n_9I3FtSMA_Eh*c!-2i%;Wwh)gbjRR5q)MuiLs^zcfdG#J!(cuBe9JL=~d;GjX+m z>B{F^RqsP|)nTN!UmvSD&S$jhBtvOSYd_9yO5_gy-sR(*m0$h}AYVb+dX}(_D{{{f zrJb>~+zDmSU$N*}K7Yi|x20tYY4tN2RLh1bEY8L|?_vyp8bRAYaMComCaX_4r2Y7z z(3%||=v#$B%nECsk}JJgt%aQND1>1#l42on&^}UO!3>eA`;xi1e@05IKB@3Y&wOvQ zG|dRoGC|MRvYNpXun1wpEB@OA>dKZGaiY2iGGiZtP05l1UtlcW!q-e$Z)(#_Wp>wT znP&cae?5TDEOR1tSCasX%;R1w-c2<3!oLI}oXWGPGqag2?%)LU44Kk6augGAuFWps z1$$lgVg(g=9-lIn#y@)tJ$4@7d10aNUU|2EKm!B0uvC8pV4JdmU-rV7*Hna+PVFv@ zhZNB1?Zdd<8{vvo#(B7JwQe`Zb2+PRQH+o7LS~h!3Y)^B^_y?~IWz0DTJfv75T9Aj z`?Amo(i}WqFYB{EKDwnxnv|KD%)X1mG|u8`eBn+Q{e4~xZ{3OUkAjk68YQduv(r3# z%UCxzN?)BaWGFHvC|1wMXg{wMo&zcTFxa$4!I6X(DE4d<^`>iQq}SYh z)BN=tAbl!W6I5sFA5RwLej-@+9f=OMm3dL~0^h{ov@~GV`a1HNBFcps>Aqk54bPyG zNCu^#1ZCskOfIyi0$l&ub}8mS0?Zo>&dkc^!crYx!PdimNXVL&U=o;f@U2YD?guHn{e74o!6`=NZy$eJC7*e^e$`*h^i?);h&e(+rK{o; zEG%%ZVZ2exFjYD8g5*I+VYFFP^LJNlXhE5WS6;k!?NX|Y-9rC0n?+<0#WR?52ip%| zZOyvSOs9^2F-w$R6^MfiWV@zhXky`Z%OaAOM}BwYQ#)X)3Xm;;8oD^TNJuS#%|C4Gz+?4WxD%Nc($k!a)9UFMu3!S7wA(S?Iwb=dV{xgz~Qf;J&A3o^1&{?%Ih$Pk~gr_0s1lKoN7F zY<3%pc21?aN20V)m=0t6l(wvzB^#ZGjx=o<=bFCK#CdTM)ckn;y?*p}lGH4s_b;t# z5vwc{-gTrIEUJcdTkjH^4&;r}Dd|2{-T2^@9R~lKcp!dg2c0}?*ZeLLt;-Vczl5Y` zK>MooooqD7Jd#+hfZIfRT1ZW7k-Z68?|`hAa*L!T0bXSCySa$71+3qKJgv)Jg5m5F z$LQaGHx*U}mfNxu(s7dbNl9ziFx*m9Rsc^u1d)Or2FS!#qh1C`ZECf7;gAJ?43nm+ zXzlC9xvhJKh1IdXIyeu4=ezRlLK{DPz*6OlSq4rnv@9d)TDGffoU84gaPqM6NdtfK z!N2>fN2i<@ytt)*JP1=$Iu{YBkE!a3d@TVsIKI-9$-&WjGm31m0X;|T#Ct4pW0qHt z{vV#=uNkFO3tkFtmaXu6!J4@mL5rnJPI~L^yaY)p*M524aZ6lTl7ab_{e@)YfMY6N zWO*l*lssiGz8pciTPAABb&QcFDm6+}KFnx!l|AFh`<;AygjZv&-bnKy?5BS~zm=U7 z$Z7Jg#!Y_cKi4UVDx4g)}xLzilqbwRNM+mjXLOXp{(s@zlI0Mb__H8T*=~{=I zmO(+B>-+03pUu5-w{bYnTJq9b08M46m_YmUd6rjQf}g2M2ZjW#zS&AsRl4{mAs81|N{U?e#a@$b$;RJ=*n}piuF#Hj zRpFhbk5=q#?YB>=Udc&kxuFxWGUZ90=(OslJp`R7Rpw}lBq+x{gpFZ0u zHBGDNEJle|Lo{|$S{aB`G3TOT;-s6*Bih`fu}XUTpj?L;;qOjpR%^N>Fxo?*9s%25|nLf5!N| z=?_|Rx2UWPMZ%2VHZQZ|u-~xaxgJ|uSJ;>wK%rwjDNIuH{d)c+0Fo(*;YvEbp&%p+ zB8m&&?FJSbB#8*RjU##edU-mVgvJz>Xv!EJJogfk9@$exTL_3sAxi;ol!H2C;i3;- z-9Hb_lk*}OQaMhgr&nKE2mB4S-&)nylh?v=U#Mth*V}De*|xTdet!Sg?tw}zvT{^4 zeJO)}d9Pkc$#&(sL?Eh%lT84~`2kYn`NK^qodeOB5K@|^rgv_hXp@uwsHE(f2n4yErEZJL8w^{ul2Hw?&VNmCdXC?O|UKmk{M zG_HKJQqMa-vB(h2N8flRBZ1)nn1>eQXc^sY%zU`Atq|a^SC}ZO8ApC->R(iarhes5 zI$`yyt@gh>y!4Ak03=?8pL)_agD0F)SDfRGM4H&eJgc+2zWI}oeK33?dY!a~6K)e^hI@NVB!t~c#F-L4GgFp*%ZZyNJm-@2pt**T7HGTZs*Y*kK4 z3GnzlW@NI)XAVN|ya*k$hQdiy=Q?*@yQW-n5@4yt!aKAK#fu0@2h_(YC5d>G28=UA zZ8}a;-PUs}0G_vX>Wa7cX1snsIEcpO>(QdgQ!0jTtoGX0y$3=wY#-{mZLsera7zM18JZce3H4_Gr@eN(4Mbp!=jylzo#R*o4JRnzK;)f)4N zg~UVkD8D4DR%(Z8bodpZipC^MtzCH)MJulth=*bi07(@G&#-fz0?6 zvU-uLX;XCw5f&^nBt7DjgT60wUT?yJu(|8ZgJCX(R#)$+IohAmd;KMQ&b)X!EdIIR zQ9tmoaJ@eh8A|+oFlS;E`C2?#Gaca9C4BUW66aoNv2CCb@RSJ>k8Qca`wh{sv+Csw zc$x0G>0?ZHTiWj&w;;@#b9!FrEq^KM!x_s{R4AY?EjTDRG(Q}|FNTsX3R#y9oS95n zT3C!K7bb$T*Sufr>jFiC;=*hb!R%UI0qa_q@A8>z=b{V}@g#yqU*GeTjiA!qJ4enF z+Mm|t?Bvh7*qi*jz*f{ju61x(rPKxjKx}CcT}6Bhw(c&=Yar`sLQgpKsEE^&5VFm* z_pYc?->$XUYQKu_CP^wi|Cfkap0gmQ^n0fgU?h)y1Q z+LMVkUjG*v+~qCe?2!(>PHu^%AP8z}k2XkCvVSdkd2#u&5M{ZzrTuF;k@}D*ECa3m3y94+6CxiiZdxy;_Fd zz>2enA#Oipl%2uU_Huxr6;Z;8Chx>TF(@1?WMMzOEQ*SRpu%OA!gP@ZIL>>=l0N5Q z_LcF=8iNO8+a@wI((8eQwqy@s@9&xRBw$8a+)e>%D1RUrJJd2fBFwzU7L!^}xHb3~ zlNqdwfB#92H_I8>I}sRZtOTN#fu9bM@-WM^D9BLi642{-iU|nnn9J^aV!@|}9S5g~ z5ezs_Po_pq`=Fnb%^-^f5QaZ8W4S?@BA$FrD9d3hO6Tl{!eU{-HCVkDNno1uW%-Bi zXmF0dw1xMo29|oSbW~AI?fnMdb9~l*E*1EsS zEL?K5)m!_qOcO~07f&O_T^ZdN%0hz;@K`=AlWva@Krj6>dd^k^bU3y1Hoi=N8@y{e z_$7r8Q739gx*pQ^2t-J%6KzKFi8>`wT!J=@iK5A+PBu1rUuMz*>!2eVH59@|-~$;G ze0ZM=hrxnaL*&UatujB4tQ$PLu@Pf?OuZngW+tIwfZcEfQ#}yK<_E>y1k{8;oI|a< zFg9iS!WoX*4^Vgj0-k}OA7cY&_=E(Wf!`Go-=Sz#Xp=mbEqV24l4^xA#5-UU*4F04 ztN22$4D)P!aA*Ii{h9YEbt@#>ZTWQp&qBZ`(Ghml`QsO+!P@HBBoRO(xeP?f< zy}jmqbCYAW(uFfq9*bQ$eO%Q{S(g#L;F=S&fL4o(ztd_0$S(NGlgc(9faqioPz;br zHcxO9*U8->RllrY0%;k%iTl7S=o9tEq5+0$l1F@|bk6pVSx0hMyQN`-f!)<*Ttotj zmV*E;?P{8@lkDiV;=RT~sIRuRx8?Rf*Lcj9o+2vGg_+>)Gw=vKscVNQ)ZQiPcA-q9 zU^YEyES>5E#1C=T#NIlkqu{S7`B+&ey3*!rRD{gR8QIf%N^r>@Ojio8Y8kUs`Zb^D zvRKKjw`oodPKn=qlmbVM_nMFH%feUQ{jKR|czBtFortyDKp<3atQcf8NEzp7b-}(( zMxA2$Ey*Aln|RtUvF1pmV*_|cUb2y6v6K;&C`kwaw)?U24*UbK;(1s1wx)ZU+NB|* zK}P15U2}6BKt+gEQnwlf7$5ABjJP&Q9g7hNWj$0;cT1YFjIkVqrq|)p%wjQbB-YC6 z0HyU?LJQ=ummIgw3CUd|lcA;gFPH|i>MA-d-5|~`)NM8o`VA7eVA@;)$NI9JQbc`W zq2<`z`;FaXc=1^xA@2rvgpz?UX7;8ouFhsgcK@3kjICifxrmsE{x|UP!7$31*;}|; z60tJ<=idKM2k7WH9FC#;zt-;+htN~H^t(1QYO~p)6o})3S|!Q@i=S+`noc4gyK(gQ z?dnP;KS>qY*=2$FHHIBIp3HEbKIF2p(KEpQ`Ff8j+hv@a7x+|}7(y=ZWSHBXVbf{g!W%9L@9b` zs@v97e?FP|A>Y#7wryJTpPr%RZ_UZtn`f8Z#OjytPJayJAubB){+uxijJ@zyoqdHr z)(d{BRQ|C1#UX1C(Pq^h-epS7^+Pt;Z1<*yU-WKyn|(1d^6bto3znf7vb*Zh))Wkj z&TzX%hx46#g+!y23v=okP ztI^uY@%sg(XShRRMBTS_BJA2h%R!X{&#FEEY&Q2x*5X1<$C8B^XLGp++)IPV4jT8* zTI*k|iz`|ld#l7dF^2&28BSRK*~;!nCt&iY87MFb6353KqF_SgJRxg<9xJqeS#EeX zB@8Z)3>x(0PyGO+>Yd#qWePVcAC%OJIaY|B-|RUJ_=)QQM)%C~9XF`5OBHSTCGd>} zjF1JtzC>(#5x~b67q+FKTJik8GypzJTlDuw9ozPt?jKIN8`lPT z_Z&3uzRyFWVP>d)y>564VS_fXvQ1S zFhgI4mZwwW*@tGb@I$PEqDNcvwhdMQ)p!rR%G|3V&5IS10jCKgBIPN?VvS%13alTG zQaz&Yj(Jd>R>Yjm#}I|c_h<$GkP((bw*}v1v+tIh>oI2$5pLf5tWESOd|zt=K4%6<+whfVF`_gc1NrbSVD19XWKLRN$JP z;2z;j?|N}WlFlg$2(e{<>^HJ8SK8uiZ8SxBNl0ZFIqqKtwsdNH(y#>Oh>SgzI91yk zmmuv11-Be=^$zRiRofz!(h zeDXM?P<$>58Ta;rGbZ32r&tR8+dBeA$)`ryjb^tM37h7aj6?eOmW_c*#eM+vj(UgI z&AHy-XTV*k3uy_V0Uv^&6-6Iz z>mL_K4#taEjYJEj2Hdsj8O)gWaGzUbxEpoXyeHP8E)eBf8IKHoA~2W!(+2^W^|$b@ zdDt)v6>eOa^BeCSkJc5~S1OU(gQzrIs@T;q;FshGH6c+Ek1ZSk*Sxnf=TJ1SmY@A= zdPhk0m-LGgcVh7zfv9u{;_0I=NYABjwL81vs5cl<9&|@n?oX2ELlTP@l4MGezz_ba z+-U?~P39aX+S)n$lBhG!Yzp4yy%wtrLzJSUGUMMGWfhpQF|_<9>@DICJUN+KI3DMV z*#Ju%`=aojYCdlO9H#)dH#T`1UMG2O7%qnazKXHIRPjY;N9%_KKZt@6g)42N99AZs z%!G7iq+b6686{b5-jQ0OEM=IB7uVn;o|y6aMnYPkSQ4a!+P5>Vltk;6TO>YYtR~Nj zVzmJGK0Wt7{(59_K&EF_Di=J&bGrHxSXwxO8%_ssrqwNAyY^BKHM=n+QX-x0mNBm_ zMutXQR|m9~6-p>u?euBDz{NV8zOk~-4y+)n-yE8+5C8*7C22Rv;>YAdHFP~EI^bp zV?SU}s$v^J%(E67qIV>Nh|(H(6$VAx!>IYT-pvex-8b_VvM;rBrILTCdjfS>TxNiA zlo<=V!m*<<;F2A-ti)SS&LHiZ>k^@)|A-cOx#f;!TBzzCj9e;V52&zM@C~DLY``xE z_MYFkPF@vw0mYjPx-5sQXH`v=C<^8rpYSWws?7$Nwmu{Xt5mZ{|H8(o5Hv{REAW(* z6HN8aP%SC->24Nv%~N@?O(_@5VH)RID-192aFqKt(IiAF4VUc&cmkL*U|kb-xSyTQ z&MR>mKZFlH#%<|N1=2*DWtf<%*B*_%BFzj5Wyqw5+RCNuQVXib3UjNRrZf))-l}9S zTmXPjso3f2wuHS)_HOIV5*#t!f8xi{0+(H8Aa+}~T@zXp0%TT&DOo#fo~BtjX3`onZUiKp9sb ztgcH6(_|fLLh6cxFo7b35VFjcJoCZNNpgT7)bM{PaznXLC;Z+oH6!arM7+>O_E4vi z+$pP97Q|m1fFPP}s7c)PjGTL5~ys(``IZc_OO72j91VgW!bCNbmMBst1 z^$&;SZ5Yu0a9cANjqxTOqr?cTZx(snFqXQ6Q17wOt?2BKWe*qH4J|ii&gpIn@iG7{ zKmcC{5i*K}0P=vMXyIXw@X=kkN_zH23%IeyTE$j|*=})+1CX(Xu{w-AHq`&Oz5%hA zdk8F4GBhyD9W)PlY8dNVX~*DO9ciD~eVT*f)Az&JRS0R$RP!8`Qn&rI(JE73Vit}A zE$zmt5reYAlGjsuQ&COzN;HE|MIXQ*x?6(tJ0%BYX&I1?yyJZT@py^%8st#M6QY({ z);lv%HpI!^iyAniBv7wxmv1LQgZ<={P=Bg|i%P?OI3=Jq>TX*gNb_oACXk*;V>fKT zI*=-`dfyEWavMivK|xwxMl?UiUUItvA50P_R4mKATIE@4mGuAcoEDvb2ydC1? z*Ci=$lsr-yKNcCosA-{Gb(3H~{@bPuULlA?g2-BI>-{^Wf875I%lGi=U@PhR$x zW%^>sYF5x%x$JFlTgOuD^lP?Ht+s<~;v(>w(P|_NM^nraYiiqsJH<%TvfpE++kYWKHJ%zb z^P;Mi4rUI&R$bCNWW+8|Q!1gx9e%)N&0uKB$!TqnB#jikT6kOq<$Q)an`P;FycUFak6durJnGgWe|bAw_3K{bp}?-`&1%BxsimoTI*97cNmo`gg2c{ssyC!xUp3DoE)K z+{OE#nR6W4F7V-yda_`OS}0Bul-moa$_LU7L5N?M_%J~dq8y3uqe5_iW>&{g*v~B` zn0mNcV|m+37C}e`_5)zqb}{l}J8KexB3+1m#7F&S;{}nsxSg18xKI`D5JPjh)X?r; z(OpNZg5ur*3+tSllpY2AI!HmJq1c{78<@YTzHdFMr96}7pQ_#mmClyeC-=NcyqhVx z-Fh`mgrY2OV06ogaOW>|&J@C=$ZTWjfu(ADX6XzQ>+|oBjjC^4VvIeIw)bNGK_ePlY|2G8} zNAkTK8VEQ0|BZ<4KbvufW5|B_|BVPRo!%=Sk05Y7-1Px}M-(48%7*WO+I zyzTz^b69GQmA{r2kZVL*hT+yPrCk@UE0xx1qfJ!N{d%eQx2vm~^*a$w1u0t8+D?9& zN^_AKWlAcjV`ff%I$tcG?%zxXjy#)fdaa$6_ch11nzaBzjahT<-|LTVO@|IDy2dDK z&dDM&-7I5a`2Ddk?z-D;t~rbCwrY)iCsqsdHiP-hyxv^KJHU1qrg2*@EWUlVf$ZF6 zTb}Bw_I%gE&cEs^n;*yF%f8dO={DE{DQ=YT)U=2s<7xdQ4tM2H5)GHbE+~?kfPtU* z+m$cMW@bQCtdm|$_c4Z8d(wq}@2x0ep#(o2wcYQ}s!Cd>G#B$9g_8gk$!et`S@(=m zx@K5y_NyFY>MZRkBv88%g?iRzDC1cs*l8+?bD`LQzEremET^ zd9wJsk1mIlfU3?0`TjjE@eYl`>uNYAxW$D;Q!!lbjj<;_AOaD&x%>u;dBWKomAGWTSXJ&6w(9AwWJqEEkv@S z3vQPf*VmeTDC&#%;YxASqH!Fq(ni#4Rf9=r)}cghn-%e8=`vHZ7?^F?Goj7=NZyB`GAq2^ltde}%iKJ~#9D`msmxF+y zOokSsuA|~vd6RF>%(XAmZ2v+3Vy)kFzUpJF;A<=lqsQ_bN@I{3p#2?W@@>$EkG@E> zT5q9^g~wL=Y?D7zNY)VToih&z;Cf{-?773Nbbj^-(s1d7qC<*>2Ii>Yrt|}Zapce> z{HTg4<G}r(77&YK7arK64|ff2*tSIMv*iwe2_SwYm_#r-uBN4=js*b zO^)qvo-bcKEVjJt6&k+U_PTe({y%vAk%)-uo9vtlAiG2s>X_#)inHD3dH`&0kK>bf z$Fqb%l@$GfM{T?ju@4V{^{X4!5A0jr0DhY4ri33)$dMeYlGjaeOe4qn= z0ZQL*!t4QNJde{gGh=M-g*R$mz~%EPLB=KC;h_>RxkmQ<8qH`Tf-}Fh3G`#4jFG~c z4=G%E=kU@a#zMJB)`}T0RIzj!fPV2ENaF3to?>1^ua(T?=omHD&&xbS_bdb_{KZ~RJ0 zkg$pfG4BvR+f$5+kIT#X^ymD1VYx4#i~uomO#2r_aZi>>NpY2eOkAwLYi1dDC-z{K zRZPi7NeowTHwB)GEC~4YkRZ!xN3n1Nu4TdbWM4-cUkLQ>E%PcXr*}*A8~Dq@ng}-D zO2B-9XZ&%IA7n>zZMlPg7zSFgyegD80{=#Th`Lo`w6PAJ=O2@e%3Gjla&iQrt1`S0 z&OAh?IAL!sRFP9%4o?M*IT#?4Aq$_8Ddi=e22D3At>vE>8US#S-x3yL^@j#KN=8}` z4z9w49bvL{2m*zcG&g{NfQbP@I03;*c@e=o1A{Eq!_!RTVlpy%e>}n(OCpA#!a&@_ z#UyXPCPVuf22Z+Z(|_7mK-`~G=Z+U|km~Hz0of1MN7FkZUlcznmhGRV{CY&4BYCrM zqv)b40+Pc+GX|u5kDLX8;i@{7OpEAa>7BufVcrzO^45=ke2XGzU;!#>epC3rAo3jK zFpA13qg>B~;$hJy7lX51qDJ0PP{sQK-kggr)Dk!5kDRSGX;EBP-a_YB_PBfpg#*A9 z{0*RTa^$YYR(S^kOCzhmR2?pL1t4pfC2_W~cxiBs7yz0Q?QDX_?rBWR^9ll6#&l+c zzf;15lp*}dz9q-V5@d3S@;DS_O_W)#{_x5x2`t`+-8By5rU5+Y7NBS-qO)7)sXWm4 zOBeMLb5sqmg>TyHU#k7{vPV3~&I;4)>RCR{Z3n(E{a|``Oy)JsjLvT?Au#xNZgKwx zvT0M*%mFSFS_2ACkBeDqijK`|*r4iZU#vm2$MC-~aT&m5RI9?sOE7jMcmK8&vdOeT5R$m^F zme`uZ3yf*RcSYL{2PK=a{jBawyX~9b4}G^dtAKjV=ZzKDtD4PF&CPDx$}r+{i-u%O zz@GcCxU1p^LtkiFfyaeoW|nFZ{%((2_NMgvD0&Xdn}w9b*-;DmQdbva?mvoZt!K*y zIB_}wG^*J`xM z7l2G3Od7WEdFd>rFPPorD`Rk0w8O1SCF$q^J`U4Jsk!p7FF%9#dabVSF3jTI^Ju5u zi}0P>Ecxq;3Zu*HEj(yq@3&hmZs4#DzUb1O(jNo9zu<(_yk-BN_qbXA<2_+O{C}?oe)$H4lGwG{_t|pD z1>MoJ#-9nJ#ukAf@`PwQtcTd~xl;rkf@QzHUrgC9S@zR@ecEVP zHkmgMD&_^UzX&5k8Rn{nEe$gx#Cv6B+1x`Y0sLzI)a8gh+0Kp zc@=EF>1LVvL6kvJOlA?LZH#Go8hKXIG5CDVj8o%)+*Q-p#;?&zbKI3bIw=cYm*Kbf zz}uMb<9ZhVoW8-6$xwsEB^9LaVwAW&&3D$%e;9Uok)g@8DZ(tK(UwboDtlai2EDr0 zZ?=U>rqLDBFv%6#)@CvkUaNf#=)P-0T`F1$0e`MF6 zT~=xU*JW$(i`IvfnlCN}bkVafPOX!#n@Mke9xrs3MHNJ8t5N#9=-Kt4&O{S5Aec^%JbYGQOFBx3aD8+6M`PG2c z!d1Om3=>1yTAccl)^O=mDr0s|`!WigQ{HlbnASe!5B(lunrQ?GjKu)5dUGG_85AV? z7ZSM1<>Z_u;Lk!&SG9jbHlDo)ok^}xwsR1W{PBPQKCNp z!Q1eGyauO1rf3w2ORMSu?-;Bv-TK$8Fu4LFYAOo^NNi^d(#W`bi#4fyzVSawuUHPC zAJ9e0K3%8n-cZM!B~&ty2-i6WFB9A%<8|}ig?@ToX~?5qAx(FTNytR2KNPH{_B z%H^$KKZ{Q5^&&-Zg+;eb4x&3_kt)`J<@FN~U_%-QRFQFS9ifCFt4i}BQ6Uk=us)cN zYLY3e@&fa(ihgISh^aL&giRTqT@ym395Is$>FqXBuYz_7a#d%T-IX7@yz6fM$}H22 z6{j6dV7P<5kgF7Pd(=v_N!M749~E?WpzwS_9y+Qe-)p82Xmd%2(B3J8;_`#W`^K+xGd7BX~M1J zGC#P)R{5m-EAXbF5tz_10ygq?^T1Iwba^(RaZhw! zSU;8ujG7%FbVeQ%zw4wL6U^wU==hdLUpA%BHFptyQY#{$|9LhL{8wHV?>o#mVUQeF|0EaSDJ{8 zUht`yC)6kM9dA0xC7J*Vz_=;+#~-e#Q0B<6CR^c&Uux@CW@ZBl7TiTw;$DhXvJib& zYg9}Cm>aF4*t4PBRpRtV@+)a4oHUR_mPq?JYC|0`da^~TO%OL{Cz=r*?evWofdcS_ z%;WS;_Y9^FrH4%?6>Xuy8fz??obO8Fh*~L!=w3p+q%cyXZ4Us;x9h3rL{nZ?{pyd+ ze9u9)nYdb)x#-GBvwXB3zfWU5$W*M}{G!jDsQ!(nr)wj_7o*px=ZBNHQP=G9HiUOF zG3|MVn!OR&c$XkSfxo=1MiWi7l2(sSM`Wv={{}j1Bz*^ex8%IPn^Kx*tmrRtjkz=fiefM z{HYl6lHADO#dM2v5<2ABzix8(7L@05Xwu{U^>}(QzvF46Z>os>rOcF6UFT6nk#tcf zigSPEogV;GqrClZM~bUSKcAhz^v9Mw3yt~u}sSSCCNWi z^Id-Rl+~Kfyn?zIKfQX3JD^pJAuFV>l{js(8gxeb(Ry|6EA}3gJNr&}8fBgU7c-=W z2x6)}LSjrWtW6!Sl~7Dj7xh#wa3bAUR~a zEAZZdZ{)duVcu(bc7`}pA9C9+@WpVRbsJxe)irYT3uL|4A&4^_hJmc zF?viIajF)GOUX4tEZ(ITHEL)1P(!~@!s!I#t?dMlGt?mZvY)&=P6jjee`OIYl(IS4 zX6CwfZ&_FlM_>iD-GNiO*R|`xqN96O`dt9pzh|pi{jY`5I5|p^K8+W46N?hF=pbx0 zYJ1Z6JrcF(;4MS?PXgfCA;I7Ts!}+}Wmvb%OvCK8dOCccy&t!&>Zr=K8?q`5Jfsqn zROJN6hC15e$$Ymww58@!CeOWHw)%GqeSFpu=c`e~5-gER%gT@C>*nLA?r8YZccg$< zcWmpmW9T1CO?>o1WIgsAXUDoz;yfjTSSj;2lBVW=PPwgdmo?9_ZvT99?Ax4HJ<6dM zgKJzwTgEvQ(aRAfxljIwt#^phWsA0MlRItOwr$(CcG~8bwz1Q;ZQHhO+nN8l_qO&* zuNZ}>M$EbTSbe;4@<}lbQj|qTs$cajQnx5u1Qiz^fdkc6IUVMwcPx5D%az z7JdNj!2Bv8FJTrQdMkt?o8FK> zzT&Pa>A}qR!ZpY>`nEB~uyND}kr+EdgP1wirm}jXN#}oL9}Aueo~^)Q7z+A{>~C3n zmh%bED^X@wZr%9qtmfC}_wYK0044i=*PV9M`0#VEjF#phx%j5ABwxFx?2bI3>(hfj z$)`ix{&cbuc~)J4;}Osq*Sh@h{oWas+w(3|5y8-f6pC&X;=Tq1bGwpM;{e^eW7M6i zp`$HYasJZ!-s0DxUwtlgp!Rj0>bzg_D8}_^*|T1waXO$tuu<>+ya?JIb69&a`C+7D zXI;>AgE&kgrhG4KnWT)`p0^s(x-bu>ra5LBI`>G#c3#mMNnX_&floYS)JfxWdV81U*sIw=lYJds++1Druxss&<_gw=^&=Ra zZ3pW>2Apim|G2))ZUmDhFKDm%8K=>4Mgi4Q>7G(0djPmA;OY{x+9PO4;W=SH?Wz(9 z8mK$W)jD9>g&l-`+1cAp_PA#Q&?LlYi8vwF;!x^S+ysXbI|JV_;vM45)*@^Cf75_( zW&3g{`|pAFXmsMb-l}y|@1Tz_r^dM$Yb*h4d>Cj!=8Ta27E}})4Z{8bM8HO5*%K7& z^?DP6s{m5_DTq_7bHSB5ZoU04HWC~J&nT!>aF&{cSN>9LX;Sx<`!&CgMgs-(yN!hk zrUrjJL_%9Zf?|5o!*WKeCf<{|0V3{9$RqO7SfFkUF4wC}f-({ePKI>a5|!ElphI=L zXtVAB#A;)Se(W7Fa$9mkfRUeW(YahGIby6x1^_A+ypY|rC5Z2+X8oqKjo@^#3$?Wnlnyli6?lgsmeu*(J%U)9V9d#sIM@ z(?hL*BaRSL<5Pl+5lO<}a*b0RwTYZA0VEXJVYke@xy5>TFv0!C5<*0cQpchTDN=oi z{{fT&2n|$r)u`-Mm5zqaEZa0_v-6 zg2GC#jCfufl+i|877L54My1v8lB}$-hhe0e)z*J;B^QoU6E51W`E@F0hbpEr%q!5| zxpyC8JZspy5AdVea(8B0mrI?EE}?U>=quzX8POeIi?F);#|_e(P$teSO~W}}?o03gjdE5RKZitKuNtG)J_QgRUsp~z(Vy0f({`2|vy zs<{2>JTbzr4%LH7(7WlVsgn|1N)swp1sb zboL2rE`C!doxXp{YcA&nvo`!Nsnq(V(i1*$Hr096@Xy2J|DvDg%HS%10BG90^Ma*y zPU>oiBboU{>$b8IWMAmxh#}P4K-VxVA*4kic`y_9 zRS$Pr=CIQ_G8rOYmViW?yvv&H`>Hfo@;J>!25ydiL$sqUSzryd0ah1cF%6$<8cuwg zK#Bo{!||KdZ)^2z<0>@#6$bZGaos9+NQJR_1l06J z=5f634tGZkjxW%AMP*M%jkU~S;Amin!WaufN`Ns*#tPo0sC8Cd>A>T3Q|vXtwi>ar zp4^quQSn&hC&tfDz$c~xzl-q8u5e#_R16yN+}&WwK!c;=Vr{BiYA*IKB+p^=<>&Eo zi#FZ;iR<@Yu3j4ZTqkxte|$O3;*Z~mef8SB!stm<7v&_`5rvR?B=cYXJ>axUtX=`% zu}<<~*}5k=xeA}JG!=-T$CH>5UGpe9eRJ%C55>RkMdDnlfX@a8NeJcf?r&|n+0?tT zE@{rtBo*Qsb_6YqV!V54$t2c)kJBnsy6Q-}X171#TiXQhoCfxlm7B~oa+EL zT~M)poD|I30Jvk(2{cJ4iUA^T?&{CLpgI6LHHX-Ov z$YE3X1inp_l8)fs?UoUFcZf*6L+IA_v4KBvy%Xzd{>qPrn$L;{ zqghg&BV3JMdo>}DJ6(nV}pfZAZ*q?ePt-7>u*v2-JRzZer}F+2y_;N z_Ft~P00d)xCy!yk8=XN81_y_EvZNsoH_Nlg5;VXeM&9+d;CarIa2rZ4czLZgMTzC9 zpCod}=2f^?Yg>RFtJ1bj7Q0K2v3HC7EiTIZakv?Fadmc%bv*WZnWPh6c!Y~lcZHQ- z{9!WaVGvN8{BV8${Pt;C^@jut#;NKe_fKq-1N6KiKb-$1W|k&WHOk{O+A%1b-!H*| zzC|)JP)fr)xP~Ks|7eZ7eA8)PU$Pf=^XDL%_o>*Oz7$wZ+dN9%7u&9NT%;SmA@bE* zP7=trX6&vxNo_qQKgnhF(<;dvl7~|-yP4pmTup)^-Y4G5g{`V)wAyx4Nd)6^xD3|` z1F&*8L=p%lSz1h}OWMq<8||1DT^s#q8{BidtxOoCt4=ci)wD&4JbS|&qpa=obNxo8 z0lww{5#+&BYZE+A@E+~@hjCuk$}+9FsFj#a^S0e4bMDbjs&v}qf9-yLWAZnmLnwEr z_L|HgvAJH4(|rO8G^%pCq{GGv*;VKE1(5R*pSeu|iN!)Ha{UqBCzp8ZR&0*=FVS4I z?lx068uK51pC4Cmm0hK6X=ZEQyrW(bX*6D5D4W`6-vpWPcx;C+9BJURZR?})W6krY_Jane&beK8sysgHd|z0Khc>4;RL- z9t)`>g-&n7FR><_A&iUs9H4g>OO3hB6*Wqd3u~#Cs^t{67%ch(m3R{(rmMV2Y-Kkx znBJ0RZTuAyhS*HYK7G4i&4)`V?ak_C)e91=6VF$%bEIXjl@J;`T#|H=(X@UU%v!|y zr(d?xY#=PXhH7kPndh@WMEr=%CHZ+1Rzu4C=6=&TlDokpAHiKz$I9FFD)Q)n>GwRO z@f!P$lFhh64}4eO)e>hNSwg(6Z!adc)Rr5B%8Z@Ea#qL}Hp zw$ZmSq7I(#bbFi=&JWy#FaX_o`|pp(!wB}IdW_;#%07;sjfTNam_a@N1(wgYXq}3o zFsvNg^}cetxA|!`0?j&0Xf7_D+5w5WrndFIYpT!JuXoh4FMlmPTRM9U2D%!wzD+<` z>V4xH&D58yd#_dtdgugHn{VlVeQ4Du1?YeONW?+L2RfMW0_!zb>SVnP;t*l{Tgy6? ze2YZRpEe$bMRId&4=oqypAqg0m{wb66MMWexFq9PKXe;+b!*n`w_kq?*apDytF>I- z{G)xUsJeEuTVbQ`3n;j*uoieRDtB7zp{`*!yX06$Z}a7Ze&x_QH&`)K@$Kt(y5_OV z*k0KcE$^2DLlLzCr*&xcNNuYkQ$6|y1NlnAZnFamA9iLW5*vv~8DOdZ3P+|9(jTxu zgw((05}MFQW~ZRWxF_!=g9PBwjNdPS)hW*_9CZbg*>=?IB^%V^k6E_e9c`962JBwo(lI04dK-NjB%)v7O* z=hR+05n{2g=00-t@Mfx$(92-0bPd((^))O)hW{*U5+bNFg0N-=w?&g8A0a(8J4;aZ z;g0v|_LdvN9#Kt^dJzz&OB zA}Wg|%EDYie7qN01XG7OZre3hum89A-}aJYU10gVBf)8GQX=E@fmm3d`K*J@R&?6y zUdi=Fi!lFFmeA{~X3HlVO5LJN1n8L*8xoKMaqVPMG3f&v;Y~6}q5A-HJrl17UvfXjpouy!4~BV%sh@_aIIc zxPJf@hd(utX|6(Tn4FQA72;oSPIT8_xv4t>1s{)D*sC`})lQ@?Pmu)`N2xRo0xiT{ zlGS0D(?)mUt6rAnLpSld5jGcZz}u?VZu>2xCIax-j;pF{v973;PzX^_5XsPneOx4& ztt8&%FjD9f2*1`6{d#=zEe_^H-E(UL6Ao_{z&PVd_=2JyPboeD{42O7EafQw|zg`I~mzsPd1j)T7jUM_-XLyU*P zs|CE%ixm^f-ed~{ym=s-`>h2h*kPN`S-U})-TppBr3GVgqPR^JojdpCLk-H`AG@5; zM-)@*t2ZUx!-73~;@6%bZ_N_XAn`HuintW6TR&4PJy) z-co|@@~R$gg0E)aj_^1nmQ;*L`1SX?3DdfO&^?v-;X-2t={scD*&MAaC4<0|ae$;d zDuiS%(lNWKutGe(e7nKFL9w~7uqb6}CSD2Wfya3v7QyL0EG0JX)20PT$lV96VyvkT z+G4D&2o)(D;%nT#^S*hm2X5R5r1yJsC>oBEY2&Z>pxyD8BP0R5hIq<^1gm*bWIavj(d#TVW&o z#ktTeb!luTGqRYG_t4<5;VWBhX`c>01caMP*_H~cKK`)!DiQNcz0;y&fdHgo*+f_R z*MbY1^;a)YQ;We8Gy9Wm;EgJ7+x7lR_`k(Xq{3oOMHdVHN=_7ngM-(Vb6cS z=@_bdOh@3w$?8AOa~)A#%kb+te*#`l`o>(kRgnXTHsdR>ic(bH@7&t{{;?#RYBqM6 zF`pD^XTTBh%o5%R(wh~eI|5+HQ;nt?J8KaTy38Dy(Ko*c%V~hLO$%uRZm<{s0&O%= z3H3ww_sXk2u?;Mm^cN2-_E(|MhUT3rcJqArRDI5l1~||1zZhuTmLno+w+#rp+nI%& zqA!ftztQE=Fj7{Q%Ft*M;dIK;3&vTL#eb8b_Gg8y0E_1Vb0v04p8*)Y3afp%W}Cf( z`){@J!+h$eINY93xL}D5a_bUX9`Vfd*jtSpR6b_cGRv=2s1-G4j3;(gN>BnAip-T~ z{`83SjN$g0JbJvYmN6C>;5@oaDU6lGAVbi|>kf4wym>qGBsu+?s`H;Q8vEHWm$;>p z1K);4JW&k#A+u!tmkA(&Fnu2bb*wX6tlZ2jPRJ)cbp?I$u0@!0?G#Ce;HmuXWqsNg zfM(<=+Ts56Y(3|gS@aEqe(cvY>%Q5H42_X}QDn__H$rV(=sr{ugQrG?hUS`;e~>GON@4Ws z>VJ9GE3}eQAOpbq2un~9clGTV{C;o2%VV7yi%d7yG*BV4!{|mJy`6BQvGLI(xge@c#+glJXL*$euC@ML$3K z=>l(04aKp%jqCDMUw*e(clMg;GgMUFXS=SniJzOB6PQnpXaxYGSlO~tA4%z7Q@k@V zJd;XsUh66+I-lrwkKo|_E>i6)zU<;k9r!B0qeq4dt|9Srn2rCtY^7Pm8TI&P$NoC% zANKiW;$8NV?eBi=M;BFuTNe&3rOE2P5NnrOw^v9|LM&Ew@+Ztvmx!KPsRhF==EM>@| zDX~rzunXSwSH7B5ThhW}&gWRX1v@fpI&kmXdLBhh*asSq2$G2HILGO5rip9|z*=Jr9&=RhKbnLOJX+ z#0l$32H+2}{QyQ=FAKWtl8va$Z6m zl+lJr*{G{JkwZZN1j!n`G%Ru4jZyXi4u+}jtgpJMTF3Zr5}lqzquuUZ8*Rfovaz%h zXsF;*fW5l~s-xB^UR_$l5(=e%D{Qin=zi&97;33Q`P-U=FFaITB|#}n;M@cTHC(L<)GzBH-M|5OH5G{G$qri?uzlbWu}#41-q zt=+YH>3dmjBTLz$L{K3>EofLEt0a^P#?XNi_m$4NB2@bIYA{iu%tYTlKz(9Ik0 zoP$qLQN?2A(=o`QKr&IX<)lbbM6xA3L(+AhPk=s<3zNa@Hh5hYVG z5+#tm&rS+Pn~r!?6uns*o0G$OFTB7BiDv8FG@ZUS%;xVQKkD4~Zf%kkNNiRE3G~xq zqSyUelv)}4t}5SdkBQl$QIkI<-s}(Ht<+1EIY!c`VcF#-eZJ$Ei+WMh5UF$InBSi# z@2u4w@Bip>RXwV6^js}^H>%BZbcQP@e6`Xxje}p3k3>tGW5@r1XI@9V0q69^?vpXL zKzRRwJpFs6nIi*dWYw`I*#%Tegm>BH&M3AVpN}0QnTtuUAiNW-A3`h=f-VZ!yYNRm zRXr!fAOtnt((e!Dkawq&y+8k`72*=sM(`XkTx0XRis1B(wtRRs%wQc&dm$3#w5BtK zWh4(q02+ZBfb$@F4;1~Rb86TP+cOK#Qp&#paT0##%9Ac8RIr2TNW#vpYz4mnL~E{8 z92TtH1L6AwJRiY zuD?4vsr+qV84vYRNWN@tNqo+cXlS%L1W%i0{&iO}&+4YYcT&$O!z2T^49IrrH+aDx z4+4&TQtFP<3)x2NwoW;U7{C$rHNg3-@GnvVa!nN3NFFU#ELmDY3wVo29?eda$Eq~{ z4il5m2YgDbdn`JnHfyd(plF#q5B6%hRto8FnDbUPKbWMsXR8|BPZ|J(dULTN>_UO@Y~iC~I<`D?m-t(XEo}&?dXmT2k@R20@X8}h zUAlB62g6cy!QrFp@3Ty-1Tr9m(49u+yGm7tj6kT~JqDmu@Ndj8l{R<_6LP4OacJM< z+^!~o#x`v~fHDp?%0D}W*8KxdJ%D3y?HLt|#Ne`aKXMjk>01GBXhAWV-|SU1$nmhx z1PV)?OPPshH^ZV|ELGowa{iWxi)Fs20%VXE3c;r`+8CBl}xZwT8O6L;YuKm zT3%K&;M3vkoOO6vrNONM^z?k(&>f}=i7Th;?V1HM6&1}CDTXsA=+!p3dn(nU%ZzCD zSXX}R?7ATockjPf_{3q=VvyE$RFr=Yp4jDmID9X<+lOG%5hE^wi8@^Enh^6XOQOcI z0?-rwdbU>Dd5CrAL1+I^){c-YrzD(I>nUNGv5sl82WsXFhwByjY<=?XbzxA77G!{3X zjde;w3S@)~Yy1z8R{}huVocAqltMY-0qBKLY>uWct~24K38r!4B(@gf)sO*;y&x2t zKv=^~#SKsD+u?&|YsM`{;VN(pjKtDIA&lfyu>MO+)Oa+G+L0)#=g0NuZhfoO~Eu*0Do+S zx2`;HhVIKIGl#mH{4-@^2Wv7zAV?-+i%$Wn*F4Bq3qSdacoU}t1zz%hz`1#gcnZ3+ zfh34~zO|02$>>5H!7l~h@unRR7mtd)rp&)4h9NAqd>5>djBr0#gL(0&Qc%(Cch7M+ zf*2&8jn|PM=v9MMY2|CY)kM@k0AN4n>|Q<0434-sm^_-+$==$4g&hHHs~eK??<;#T zUjx4?tKYUSR}I>1n1pg5T@tZqjJ}ax_7JjYus^*d*aKGn3$rlO#L0G19SEbY(MNn8 zAoDt(LXAP3J=KB_b~;PfdX3x3L@%|}bNE59h$cQzMTD;jd9Y_f$}AYLfHYX)Z>k7> zIMX+s!CDv+s@_F^WTxjIDHjYNYDq~D7)JbTnA>IMR(nz8TSdR;l5^wK(GmeuxqL4VAXQb)S zHa0hB<@^}nr-p()Y_PgH0AR{6TnoKm5-Q>C2VGZ$LTH$*hrdEuGnqKoHX@?_)WyuzemC$dn8ccp=Sss zTfl_bp64x}S>DbP3d~JQW?xNizS3sRv}?L>APSPpv5@opL1(cn0pl>d8$41scs@o3 z56*zfAje9T*Xpo0q>MsPLgyWMn?K9ti44dEc_hpV(!1fT|ns8&#hXila_;M5!> zhjYLBFI(^}jmeFxtg2~!KI=x)W_v>n2rZnz^6Rvd#TNf?fXosXqcND{47u$x;2U)fxD&9%5 z1Vo0YKhg)Sk6pP`Go1NFD-9c!r~pJxyD|z%YvUVUSl6s=(W8ML52Q18CeOIjSWa1k=Jt>(7>&#&CCo#` z=_jEk8HXf#%b|{IJLNVVu@yqkdiYXDwN2Yf9FGnh;b0zh%7MExOTDd;bUR+nv?~py zqVNt>z%3^cZxfzZJU>0hHFkI+3Y@I;AM#?!ux(r1 zdKq0--_2z>bG4w*Gc<8BgjSsnZy?L9-nBRG~5Va0~U3MZ&rC*(xJ@D%p zV4NS@dfitwj|1eCG^_MRO1Jd%-i!0}BRkuBB29oi1jHkG-`MBETn31- zUxHxoW|AHEnsxkw2>&$NcEIz;1jAUGhmX$7saScjWqF$WE^=x!Y{crE%P;Z8(VmM3 zi;*-(f$V}lI@u^ywxGgQIFtP(93>0~(6a%>+DrRS_&5(U(u7W_cT}|4$~Ll0Dmjz{ zm^3j9enobKcbTPK6osYvxzsczc$iBKnN~uJpag&rndf4E#r;o@ggf|0?oJ||Hy0QQzHJO9ZPKp=CP zF)=0s$)VrfRxbNp4+PcDktyt{aUdtMT*%jNU>HQcZ(Cup4;54H zMz1d&FeIV)FJ+4{^=!d!wpoY#JDSS$$>eVZ#e^`rj%-9i94_<=PFE*=`F|4*3rhkL zD#(BBAOGVsI@U4x&xZ*MxGkM4bg9((p;)eFu+H3W;eV=WzuaEovxrEvs6U=c%zoKK zKs3{7pxV42f7s|5LIzI+g8UNnhlR5P#r}GTUg;Gu;P-YUvh2f*NIB>~mg|E&zJuEU zAqQjH_@j+A5CTn4(Vx3tn-pe2s>zw1BITDNPBJbA&?HR?bNsi6bZV#@~id^8QZf77(n^eCv|VK zU|x9#Fum|`|D72%_E3laMJ|lC9AuW%bfQ^KKFZcPpl!@$-Kf(6&kWBR5mUD&gou`D zI20aj=HLmZy2MgNRv#YpXI`N%G&+@};v`%aX%ZH;D*Xl@>7PNR;ZmLz!g@2jvhsjY z(LX~AlE_+Cn?ajYJ9U|H&WK_M5#E)Kc{+SDz_2`;cWzn5vEdYZI9REu0TslI_81exZWfju!djW|DXJ}5lXn~g znk>j&ZVzh7NzMY8zc94|3`v7E2b1(#lHDzDjI4q^CJqgU;FJujyKyG#u@&jyfV|m# zjwRWw>G5gn8vNlzmqYKuMoZ%L{iFA^2b9#L!Ox-k;C=FffiItZl9_YUEr>ZIWnx^D z3HYj5p#M>QG^eD>aMaU5=WC$;zL5h12IicMEh!XjUut=S;vBegM5T7;vqu*ysH)&cjiaB3#E7t{G28$ zE(d+^w36@CU(MA23F&=o`+bcGycp-H)CbYyTk4U{WZjcuVtwgciDzhRt|xpjFa<7IeN#aIxVWvq3uehO#NMF z&adWAuH32FCr_6>4YBsgJQhp;`+hcP%AI2%#tTpMOLx-nD;p0WGCfAM7f@BL#p5>d#@K4;+6ie9Z}&Zv-_ZN!DMa9$V% zyp8{CXmBscU{#W2jl1!pgd&mK@Z>;A>G2MRX?-xt*IcYnWABUH1ML%Hb*5fE0Us)( z?L1tv8Ym0=J@p_cxumTlVUFQwAoc^VXURamZF`bJs*hE9h0T@T|1R;2&4d4aF>@>YT}ypQ1pYVJ@0=#c@r7)$J9L~`Wh zJ5w<|i@GflT$On~>RU=4{b%7eB15<(UGTg}A0SAwn&Hq0f85p4kxv+Hc39sT>5m~K z>xu-XU$f{s5@GsZR|mrKHGDFJJ%IK&;MDt-tC~d!wr#nX-;za{nPk#tP>)EHZssd;f(`WdFc7wVP7d^2*Kxzy>tQk~_%T(TRE1oc6DR zebxQ;nqw*dRk{zmjC;AzJw^F`#&mER0sVszuhsOA45)er_l{#`%-$6=6Vm;_1_Mej+Id>;FAWd*Pj0C43+%y9#nkd zsg&Jm381NndN?d_8a%FD9rk&-dGcQC7zHv9x4OnG!??7v9`ErT^!OW}psGE>#7usa zl`g9s+jRfO>u)e(s$Xrcddl%4cKmFn)cG6?xniB32M8t(RO?z(NV`YErwrjB zKJ<*LHrXrO?%ncn!nM&Db~@*`Sp`;^9+MNf5TA{lfUAi_=y%}J-qA-}Mt?dC#qevR z=cug4(e72C!8B#f;=+fKnQ)W6_t8n!fP#YxXk)CKJLi(^)FVYTMht*ZxR23!`>SNY ztt{*!D8r_l0dSdohucR@P?FVwhJqks4kayXCK`whpNyv=C7nJ2UcOwi10xYK1+>Ns zlZbPl`wd`Hs2b+3#fI(&!|%OCT%70e>D$p61J=2SK&WaOxiAr!hNi!ni0H!eW%~m9 zsEn`{B45qmI9xKG!Fn^NBfu(U&xQzLORmoSq;iNc0m&D(!-pb6x&guAIQ%}5xWGz+ zpot0VS;`r`vhUPjlxg%r=CNO|jqUOBMijf*IbU84kAFiLHM*`p9EbYns$5edEx{lu&m%PQ2c5v%3Ob4I6S#rxNtUvvafT>?T-x7`*XxQ zlYu@Kyl(*V%=TPR|KNe2+JXhr%l?uV2&K+_Hb-JIp5#zjvv}1~(%Y1LHD4=J@YcF* zELx0L7=~!!$(A_nu@N@vXnce?^K?5eYC+!=02V0@wXhH2Lx{S1CN}>ORRjcyZp6N) z?@+k{q&_tPv4JfZ&^p-^}L;U4jLH2nl#6G-`z5rrT`3e#gt$I8HR{{{7H8R#mS z98ODx6)7;_Ph2GV4*o%`Fe-a@HvUB;lEf5Y{sQbdstB$yd))?#?-=+{nvO)5WF+Y} zK&P{LTF5$Yfe>%Df^TMv8>eh#xr>_NUsTlatc*Pdfw{vz+T`WGzj|~6?WLKM4crdo zSx`l;xs#;9(CtTABsR6%4m$((JO1iTVUApBk^V3SUg6$e=j3%=-`~exm%v&|)t8e_ zhxHXHJ$1hx=|F-!F1i?Oq`Y()G~0u_02u!X90{!%NqDRnISu`;I|}xHmQc|3!e^zE zO<*m51u`toIsF`fR00#}{ldxp9ALLvDuOTszwey7ZFe^u8ctO^V5kh^SoObO7)6rX zqDeBG|GstylSUk2#H2VaXj3shJVs-W5?d-0OtvWa?$v8n*V6Fxy4}jjFW23Q0je-6 z8$M0XC*VB5j!Y*-N@n|?_7fx5aA&A=&fA)eJfcd7I92+yrAlLyX~JcdxewH!po|5; z*Ui$ZrWv)8jUL!3c(W}}wvF0f=#j~?rzo<0QeBvHU0xVyApH|7!cOFQ80bLVW>mP) zj`tk>b@r(dv*P@5ycirFkN+$40g!r7#)2Ze-xJ+pz#|OOQU!VdS&~x52!fD$!~;Di zmUD^fPT1y{HaVL9zEqAIHgg>{7^*m1+3qZ=K`C)EH!Y4_CS&%nite$xool2T!gmby zd6t({ISSyw9y@!3i{)4eteRt9A|0tyHp9d8W?Qn59$mbz|IOX09fPEu+j@$ zLz6NrP*wC5Nrk!(NBX|+`R%#L@>c{%%O%W$T#FP(+m$QwYD~7tIY3Z~GeX4{q+qFs zh@KBTo0p z=xAUx0VX$6_f0Q)KVU3`gQF9(YrULtdYQYwP&@%9MgC{5@CHVgydRyNJZlBggpElT zH<)f)*?Zm?vAOI|^N<^wR=Eh>5dD@b2c^QOgwY|hz3v5<_|+BP0)?Rpc?m0EZ9Y?g zhau*w&(l(oyf(2E2EgH|Dl2fazk`?6FbgWbtki%0E`REXfXMNK$_>+&B8lB$TOw}v zY^98r$P`GKPS5T4}l1eLLhIqWiU&<{7C? z!IPF3()(=Or^)xveHqvOBKr0R8~{s4W6!|=o3lJ9+sFu%f@>)O zDG%KH9E7qCz}35&XjB)-udN`yeZ253yWiW7RLqxhv@7-Jx*OjUrW=a8K+>B8y0+C4~J;TjeRcKuT+)4Tv@;p^u}`HJSiEHR?yIA%Z>y179Es z^X%to^S3tM50I(5*2KJ)@`zgHNRt!-BdPj3 z1hp6(2DECZNCvPg3s6oe_vO!%?Wi1vY(i53oW^+p|0-_t3{gO3_-tm(HBy*D8gUXDpDXR z66f)L-JSsqklcPvY$RhS^jM@OL|R@FO@QEuQE0sQDN_N;L+K+VNj=rBVK5R2)>;I* zy?>~%=n5n?^f;#GA0DbBB#JcS5kiBK{-Yt2KLJWDM3+oZZpjky&S68y(N1Ib5HwSH z@p*hFs1jh^jxLB~s*nr~u|yB1kCGr_Z&|v9mY6Q-v~w`&&>oR%`QwmCd*qJ^DS((M z(K5TIt8_(k;qEGZ4Pjrh9k8lA4dLvmOXvGxj5m)W{odYmC|B;DteB-JE2UZVXXy8_ zz638e9ktfUbDNY^8J36bD`Wnjh7Jt-2f?vR`t-;D3Xhpku=NIW7|_wKy84x;?W3o6 zm%jK2Tz9qzB`zkdJehRZ#h=?hv;n?_`g_3pIpz!{%^oJWQo#|&2gRWMD^`|$fe}L3 zk$u_Q@>XlAziA9Vl{o_5D_uf-xhs!W`7=uhwLRm%0-Y6?nac(#9i5#?x0Rb8Zp=xG z7ug*+tBaMr-?xu6A3wR~0^8dLJzZam9uJF8R$ZD?H3GkGFE7{UKH3^l0ss8`JGS2!WuFeK8~aPg9M+y4SZucT8uE*W3kHt4U1>d4mFH&<$NSpju296@S}Ry=+bSzN zg}+J1*B+O8c{CFU%UxI})g#7md!zTG{VMa87^lc+{;yn-MGtiW5*Hh&i_`NM=Ayuf zVMU0_x zMs4+1`}>2K%}ROR9JKNwCtj`P$@``oyH`K_PN|MHzilcU$5teGtcoKIH^(XF4R#SAEYpA@CUgeyu13k$VBGLQ>Uv;p3Wn`Wf5LU9 zD7K}-U$_Me7?b7s1LgTcw}d;`Us=U{U>BVXp3A_NjP&8@zx?YhxTONv5f45~+TwB&P96V@nhZJtX-QC^YDV&1f9^BpC-GjTkyA#|kcz^&ex&3tC+daO& z-(bLD&Si72z4ks;WJC(ew1OtKMnExJkRvT49Rn9YMpntz#t_8FKr3WxZ31ATV_;x` zBO?>G2O2tB*n&h19f4c`c1Lr7ys_hZpgn+ze}RD$jtn3U1Oe^ejV1siH-IeA(NM+B z4#)_gH2e!F*g81U8W}pgn}HxR3lNa%Jw({n&duJ!%-r!$4rW@~KbihS3(*0j42`X9 zT^y_|0EQqFfE1l99YD_3<(;$uP}+h3MnH2zYg2%&DL@6N0Z>&IRZ<3sE6J-WC{xkB zeHwxW1K)H@9lIn2mUL;pDh8%SQrCA z4!}P_Vz&P>+Pt^&J?Ncx{Ex8rMmYY-Y5gyEfCCWtUuDb<9sY`yQBaTp*ce)X9DyK1 zkny{tqoJdd1Hj-f?)?{NLh&zwK!C85z5SmWvi~;O|EJ8qr3=}9I2n3i~SOfp4clfhs7NEa4SwT5TF;Qg|TABC31JTOb zzIO*i=jiJAm-nB1f+8|p01gH=03#<0fZ=^eML{OQwl+5JsvY3|v`@t1y-$v|_HOk5 zGu2igTNjYW|FWhQAQRI+T{m&Ef1_6gS$uT@N{alS?>hzeH)jTP1TX-AUjaZ@V{`gH zrT&_fKQ!YX`n?5S9(J~N08>M22cVaQDe(OP=iy-J3``ng97(gc1e(_Er9c1^t+OOoBnV6DgQd8RPQI$#1>@j1~37d!qLmwe>%Po1Lgle zXY7A!i8)zY%Ng1LDgV2n|LbLFV`1&~-+uq&q7M8cmGb{1*up`~!WC$uVBu(N{;#h7 zi?v2keM~`eMkPHRR5eK>-T|uzjQ4A+*trxMi#dJvAxftu@wmD-~eFzR~YcU z2mhn@z43q40_bIgL_{QIe`)?_T>f$r1sU6#Sb)p`Oss4GLwkEeH#mm(8DL^%1$Z#N zkFp8S^{*iT(9?lz9p6I$c216708?9gxIY`o#tEPo{X_kQ*ckxyVt*qh0KLTDhy_3| z^*3UBSM@hy2hhv@jW_`Ga{oab?{O;sL7eZNhW|lq?>0lnzm4yKe@1_!cWK7|L9FjK zV_WO@X8xODVfn+@*!-Q2k>Opx$v+??fFAe{_`V*~e?Vpcz1ctDdph&Kle4}fH#>76 z=pP>MoW(!jdkZZ80pC|<^$+;2*ZLpueK9tFL&kTZ|H#bvF4XoP@Lj0g-%{S|*a7V= zZ2z$`#&_*s{{i2%f7|~9z6*8u2YgT9_z(Cl)af7aU8wUv;JZ+lzai7RP}hIJccE^7 z!T%mrg+F)nUsn*r-?RIFFR#C_vZKAN6;R#63aOrv{`htoy$O15|Uw^bDR8HNRC<^Qvddqs_A&Cl(WvkJt`lZV*`;>JOQyoiX z=V=zR%%-=-f3^|=RL4$)IorD)Bbg@OP_C1Rb;?@TbD>-c=NX&O?X6K=myvNh@Rp}L zz#QKm(W4^_dj(gh=M3_KFvp~z?RvV9wP=#_RP^hs7LQDzBdUAw@obbSK?tg@zSZ{_ z>B|t6l7uXA_WeSLbi|GWq0<5rOo1ioGQX&Gt=H=Ef6cw2g=h2BoIDH6PUi{y`=P`2 z)$ulzqdYt)DR@pfI*mU2VI5AZ>O;s?jB~Et!oOta+t)-V1Hcvo^n|ex%0Lg`g4@M_9wzESpyB99#4(I%sC%~|x(Q}@q40pIkWg0v9Q(5gDWkcFP?fdj#fHdqe&RT0gETb*MXuHQrwfK1oH|b6^VOfp=V+?5uE1 zeB?Zj98}alg5-o?aeAv6N+_(__onL1WnP2_sPg&%Y?$LX%RM6Zi6JB9{q+gSdD(Q1 zk)F|N>?e#1!zoenYeU(j)0V@b&Max%ehIdT zrsg@9%;CK;;cwid(ERM}*#{1X7G$ltI^^YK!2?*2_IHm-AFYz>KD`8rUU2e>L1E|QwDk>Id`Umd ze~~Q;ZcoCreU$f6bf%jmhoehuniIpP3E#>q?x5?1tgRw3M%} z7kp7)w$oY)V6qTm0(BHgv%e4vG@jw72!P%j6itZPyB}?BU_4_~A~4oQ$Kbe% znN)Ck;&UDAH9KP{{AXaNjO>#}%XPfuVH+^pZ5)0KNEFb{mVpQC&f1-*7 zMfo{@?S$6RjG4f@tCOTS< z&Rl$BBFo~=E5T|!y7zxkY;2KEBhlVFn3ik3R=LOo7wOu7ez z^XF?Ac=B7gGLkc}lhnKMKHASEf7{4t$N(=1wHKM&7c$|d1IL%Z9iFWh;!odWSfDOW zeje*xyYM9yLc1q%7pZPEb90x6NH;>WQHpm`V}%jwwgAE4HbwY5`c{k&I#4kgWRZ=O zg!Q%{@4N(`sHWfeFCmh_ql#37gl(ASk$?AQtsMh&*irPsI^G&it*_BVe~@ISt`oL! zF!Hl!I+k`SKJectG!`y3oyNzLGzyrC>3t}dPwFcB5*86UFISaYpxt;D^J!l-uTP5N z(EcVbD7KVwwVZiRyoLum!0G5_*l;Xni|M?LN|?G%nRnDiSyUN!pfgwV^=9Ge(n)S& zge0oQvy@y4FO~F1)<&cKfBuxo{;!NYDk}e!U+St=-UR(5sh!!?kw?PAy`KsM0H3bf zA<=)Q{QSwvq4im^aAXA>{+<%QVpb(B?8rodK;F460S}vL_ob`Yt9IU>J`+y@V00oc zyn})y!Bg&i*o)j3aK+%9>9mLg{x-(4>ilCtE%(qloe*!s(6Y?5e@oj;<-+qA>8P*q zxZifTy?~{VT+Rfd?a-eMK2eE0V7;TsUoZL8G%i~7#8(VcM3CHDg%GN?req?gUP&M$ z!dXvVru$k&*4t(H12ei1%({{->Gz;6r|74WM%PU&OG*4x8V189!Y`#fI6*cYiF^2v zU8t3Y*%>8#vtXXRzWkXU#M*&yZJ+M!$_|rk>UW zW*9-z6v;=)Y6PwBFd6&G@F!uZ-eWi`MQ}j9#p@a9GTKGItr<#W< zZTQEEFOres{8xrar#+ZhZod{aI26JL_*rbUzC$fQ7P1vja``21tk4oF+Xh#5;jWZH zF8u%`334^pe~p}A(z^#PAWE!WJdVxP>>9Bvmj%NP*+T!WHPFx{i~Yv2`4T>B)r?oD zt@Em@&R^Hd*a41s=jK|6fJCgF$8gFa*d5M}f3| z)L)p~Ec(TUOTp7{bAGkBoIe>`w@c0XMW@+MdJ^H(FYvS`kv z(0kkOByg{W%T5BdkfYe0Lp}&|#RaSVPTyzJpJm^>H!fW^ma;pvH?eLmTz>bomUBgE$ z=80qOf4{sUa?EKRUmQ&rg-xqkQW9X=h<^LH>l|jSq;JbT9{yv~Wq6zRyj7Awhp2S! z=1R|{?hRrzb=YinB%W(GYXs@zoC%9zcZ_6MF|^FGY_D3N7VqzIATvc?O0;7SKSwLM zF?F{xR`#`KZssXNmHEr*Z`*@Sy_CG13$mm}e^UkL>h?VcBqE7QHeLaHrZY{lUVmy$ z1#XR8LrI?Bo8@&~YH{dFnnu%+TMyOy8F8e-zscVeiaUi7Ze(5Y`-$e{QyQ~x`&e7_ zg@{X9o19IfIWKS3UJ~gNn7>`ZThS8MJ&*g~|5Way%ewiYhzRu)FF8SFkP=SgSJ$PK ze<&H-bWFj{gF5}o!YC~L4ob$EiD|y2u5ZVuO%T1MipDV|8m{`TxaoT!2qjW zq|`%Bggp;w7AX`8d{b_57SA3DofI1DRg%qNFTsr>tOu@@#VK~H>};YrJqS4+VzlzA z2e#>~h;YFz7PvFyd$7{m$>~{1DANC29LkvI>)mIUb#6$@gF9jwGh~+w{&~+?&qe8+D2a;9hlcQ#Mro4r_yh37xy=o)HzyBa z<`ChFPL+{N+6w1@mLCZ~Hkcd`*|!&WjS~cSPC9XyO6EF-@jAYC0BnR2>Soo~C=Fvc z_vkP8CoX5HI>d!oQ(qwfVRVM7f5qpl6da}G95pypCw@i;p#x+!OsdBT@{9rAyj$f0V|8RI{a~ z?(q6BboQ*r-&=87lqWL}{X5x~)f&x0e7dWqF1Od%Az)p4xaPk3$*c-OB+a<3$`F3j z@z}e(%T%rNJr8R<94gm~!ct7%EJP~1kVJ5vFt7x3*7n+R!aofg)V;@!H2U&7?YrFj zo0?z>xiA1lBxJrf>y3c9e;SF?_;Nna_XK>2gKd4S&~ex{1UErFLLg!r-Muk+4~pc+ zi;+fj^lB(wNG+)~%1*NZ<}dL8y*Js@aojIY@Z*WQuer}7XPL4T!{KCuI$}ZO7gEMq zpJ+dUb^7Hj?S1L-?x*tdG+QQJOtY7jzN#Pr?+%W=PIG0HK*G8de}^lUd{P*cSS^(N zVTqrL%Z+gU>SR$~mK=0zKCp&i3>U9r~BcchGQW%dA&ZZ`LEet zfkP-ae)vHhMbK0TKn-X5ME42x1C}zNa6gEG^o!Fj#4UzSf9_~+;ndX)CPj<9^a`Tf zFdG5yowoLECl+u5XSC**3kr_me)^H>`k7puF13Ddeem1zQ+9 zgHtbqC1g&Jmxmc`oS-f02u#B{QsSl~^duKgFO=c|X3(^XcuThrJvDVj(6bNqX!#p@ zHE*v^s|QY^_OYnye#1A-E`S;POx%Cq zaC3rl_} z{jhKNe@xS;V0J6=I!$MWHJN2pem3LwsUGG5aieb zEJYt26g}KNJ*#}`DYs~K_D8;BpBtqrg&XjS|Fdab5&ZTKOx=4$8;N3@buih;Wm5ZAi_J&RbDm!mLKY4s5~F^5i`(>Pm^9p+30%`)5~<{MKc6f1t^0 zsb%X7p8pO*IF*|_GyM}g?E33utcfHj^U`bF?Vz^bX>a;tSS2|dIIH(er{RmnW)9=G zT+*?g-WGGW3bVK)R3S^|3D*)4RCsMOEckLPa1V@vQY#AkR+k>rF{cZMi-PoDpBO_5 zH7UNcA?-{cezvSjCdL@uV*82}f3MhxdL01{qkL@#;6fO)+n-!mFLrDeWQO~aBB4oM zgge)?mW_K}QAg{ugZgp*I%}^z+xZ7L`jN6eg|!Fpt=dnGHnuLagzMJo+46G|dX z>KE9jG2VS>7RB29Yy=K9QrrZ=#%-5NVQh@4JsazvQL`R=nSHpN&Cz{Oe+>4zN^H`_ zhWk8gtR;2?WF$3KCDjnSVhkiwO1~oz%EgZAyQ?hRGVk^qOPwgNS%qhQ^m8P#Zmmf= z@)3!fWp`Mi5ggLvA?V|kzZJTLyO(LQF!U$Xr4Z4-!bT%p{+t ze!t?>B$PJPZ^MTTpO31)N@j9SLYYAPi`W^vMDf1nWrJ+3XMyk?!$ z?+$@_!Kpt|! zY7up1EZ%43sPM&)XR$i~4 z{S*J!{n;_U00^*JYJRjxZqZqX%(IP&^QiR7p=0!vE45z@eCHB4uZW7zw@H_@bXqnCp{VI0)oqrv$aAbs7A&J@md&o(&z8RR7cR08ezz=Qu#I6lkwnrI ztf`d>poj!yzJkWqz)QhC6JHMNCZ0=u{J9K_ezsB@#+mya}DDY-dUB z;GeqTYhsi~HZa3@8QkN#Sfq6MI-Ld(^t~Bz+MgD8f7Wnu`?v1>Y-8Xl%T8h_U zF4yJJ!%p!rJ$n@9n`M8@jDluawj3{&5w4iNaRhUK924p~+MHSa8rt z6lqOR8f=|B=0jzrCe~c5#rZ0IxM$O;%YZkLyh$A>%mT%O9 zogxW`UyHqqOOS5^kw3nw9QY;Qf=*xAiVie7Y|`x|tQQstf7GETl=pavzg4p2QYJQP zc%H2HTfA{o3(@1BF6bhDr89H|PqvLF<_X&v4ONDn%90s#KGrOjt;l2l47ah|?nFu8 zfBN_Xs_#7bRA&%J?u+>65a%AASMwjisT$GoTu2tPvUzdku(V1~C7;A8X_NV-&`~iO zK=BgXtdxF48i~ciCwefI%YlOH2fYqS=k7Q$h1GmJ+xUs9-bM)OO3~ z-E_r)>^#- zd3%~`&2xJFo1VtmSbC>KA;;5c6CY9e5PxH&r+eM`lU9MajWd5Rae+==OHCRS#{~o@ zTjLhvURuPK2}7=Px)z2B``>;G`&691*cDAE&bK8)E=Z2Wd(Ul(6M$0PI!TKPe?+Dq ze8HcL3l*aJ7hfsJmTWRH#3aJKp~}ldBXkav^C`?VV-<@6mcinY@LIL+ar-4$u^r1u zaJ&iak zze~`S(-v)3-7zVvq-ihU=%meIf0!fOpnj;s-4@$tV^+$WudddWAYehcX)fV9l8+ic z1JuhDk{OobN!7x#*b7Fw%TC^*JLIrw=!XW(qX-V9K120gJVh&mwSZk~eZ?94RB6^D zfR@FSKTOjz{e1K7g~h`0Rg+bVohzf4^i~pdv%i*PHtH0Ll{*z28e-;lD$RVWwpjSI;=Ju z{;0a8G>ME`nor|HDD^8I=f0-lhSDEhRxL2HksL2*_842Fmzw9tN41V1f!UVt0dgO( z!UnW{Qt|J2TSQ8~Vh6%te>LD%AbhU~rH<3)&da*@#VeF;#|Xmig6wlT7ynR>x+`38 z93g-#snzHG^G)gE?qL@Bl^L#2$Z{n($dk+-YgltW0u#akcEV@mS6?@(Uv^P?bntV| z)vxh;oaaJyKey7pIZSKL^+sX#rCdR!bmW)n#Hh6FVofKvJH?-(f1j{7qdL)u+_Leir-w`3Lj0)lbD-wglKY~RhLAJZ0UNCKCRPW(K2Oz zFo8B8Z)FnrvQrv=e@MPzzbTU&qMqM@H)E_AuIz1UL|DZ3pkk!b+9Sp@ z+|c6_-fGoEd#RSvfjpt4C!wwQqe*!|INRw)VIi$T&WVI=0l$|$0r$0fyi9L|4;(`XygyA>#@nzq-u z&B77>{p)lre-Ik$TM45lg&J zsMK?Acj}ziNS5z&T5a`bs%638^$}WIT9E%{y`4fdPY{&-p-1&pM~6i9VXVL@^E|Rm z47ND;SGjU;bEo1*Cb)JDOA6z%MTe=7JmaAK?3a+Of3gNkG*~3Es)^q;xD->0^>ip{ zw_*bR6Y#3d?W5z75C(6TBRccASxUS7Gh%jwwlIhh4~GUGV)xXw`#P<9MpxDaWh-_X zIw0m~{lpSpMN8Y?X(Y{UQeuL1vhdh^#&U2)wXWmb zh6^AMv7tbhnFL^y6srAA!u~I?(rpx!dfy%be+DJ*b&8PMNDa%3$3DADTGSvcG|lit zW4P?6?hlPkKRE=niLQHK>dT*LG94yURNR_S={ZdevO-v2fBS{MLnKTL0Jl^J(_8%V zqrNim+UN{r{k5!7W!KN635U2n!Eu^ ze{<8^p<+k%>wVHM&z|^Un7!#4Pt5~GGuJYOD4A8`&b$;Bj!lt0Gxl=78NZXf@Z;03 z2nd22i4lu--n<7RSsuiF5ACeBrj28p$MfuW`dEEj^@RRPjCEDd#hWV0eAy)5=I>zb zB4r>Mu3=o;ZUy(;+xm|F&P#of4o~{ z;eIl#s@q~mlB1{S<|&tjer6Ab*uq12Y#AX}5C{a*5aed(Iv)z_o=nBQh>Dc%xMXX; z5P+tS4+old_*y3|LFRu_NvM*wNG=akuLCMEZBuKq1Jc9ZKVs$N-z#`w>hA?I7CQFR zu>1Z8EZ+e>jqDV|7vb z#xbBj@%ynWSQRG6=BvFB2AQjSW5t_=nM%}$@;jD!4kYPz@S2K)1+e~HQKD#sUN@MF7%Q`_te_`Kd~4o_IaA?ypZ-h3EG$gXpYjKhTn$DX*rbgqhi;SJDXw z$?zplkJK`VLnSu2_7&=u#};#9TGZ(%eM?rhNrmP3!ZlPxzUa3!fAt3MJRvVzHVifm zCmGorJov3gg3s~M&e=b;lV*5o?)mqW0&Rp)_ko#(NLYMMBR>NMYP>2 z2bppXbMnQC?P8OlAT>DUNJQ?c$X@Cioc^#vAGvCfWlc-2$1ZdP`#D4&@p96Ya%qXK z0P`n`f8W?rzH%OHBI%7$Zisp0r9fMtz9BexIHW4Xbu{c(f7v()LWyB7hEQZzPEKf& zr6lw3(^Sq&AFk#{7kU`eUFbcQN6@D1E{g9|u6={{?tIw^A!6OP0Zi(b`CdJ>w>HgX z5p+vBndH{YS&;sg2~KEPeG53#M;CeY!UOifTr8d?=e-^Gl7Zut$paxd*=y(~-_+qd z_jQM^tL6@>f3-Q56m+Budz**gvN|piAY9ox^-!c}gBLru=&;*C0@#ZmZiJGx*9zxD zueytf4c`_+U2~55!VGFnow(rMQvDcan_rqKQ;f}a`hSvg)1Q&9K0fNP6J1zRk3>43 z#=OAfrHV`B4-Ge0CDWCQrd2-|E96>ArY;nwo$6QFe-;wv@WH9>wPaG1FvL5A8|?nd z_OV4>cWTp7hf6Z{FU$7ak9Sg1wivZkO~3qTCDl@L0jaRpFIEl(!W}(>R8dSpn1!U` zigw>pH*8>*8%k&u-$jZWC5NEA43BMEf6<7cG5#tz()UE!ppB#N>#GzjUDYN9n-%5I1dk|yt zt}Tr-uDT(x9_9kjRJ-o8J8UAFAQ#OZ=-v_`mkBl=l$E;>>JCMuD6N_7yY*W@#}P~( zv%;5Z1uk`)?Zed`wvFCK;2&zy>DY-NUczWEe;e7+i6^G*jX&rt*rlw)>_I%Fq5#)N zYk0LLp|R*TNZmSGAC_iNL{eMz-DL-4X7U@BvD|Ew8*Kfw7BmRuRpM*%g`ro+ ze`izma9+19H)1&d;Pjg4lnwT<`yhut6PwHSG~G*$^|hMuDUmGPmUYI%+iV00VT{yI z6ha*gi-}3eo+4N^ntR$E2fxn+)l%>ziBr(7u#3!3-g80&uiZc~_vilQNy*Uc@{hx6 z3(#HjcWKVMWamYFIGZemkV;a8l+vjxe{IpHHo^}U{#>FgG|)&l;W#a>en(eaO~Ib1 zE@J-nB#buci78Ql?L)kAgY~+>cnBDPKT#jB5Lq7gU+FZW6E z0(iT~Y<-!IY*s>wfR>13pfORl-^xYx;6vCi2rlzL@r9`K!Boyw_ckkh_cC=?e~E!r z=}gy8=tYv7nTZRtGSXHQi7V1SYA}Wv&!1%xJAEvEVUH=u9rxa(#dC;sn#oCzX`Qa@ zgXwhGbXV1<7?s1IipiZQwf1f^#y73?@I{%XNRVGKpnZ5{AClRFpZQk10I5xY4A;<( z!J6-FzMqz!3mxhba>9K%Kq(%QV6LPS|?xYQRrZ**ThC4 zA%Sd;(JspG`AwfnS{KpHGUnO0FgGgY*bN-prS)Li>U%ldNob=v-?M}8iRuLV17w*c zo@d%URU--fi|{802VPS@*%VZ+dM3A|7lUc7|h(yE&jlSBmW~W3P-XREC0X zU~Uj)pZEyCC)9_N2ndl1@xfv3$Um|Ow3DOi(kjjyt$EWJN_=+hku`d$`<}!tPQ!SB zq#vX-QGpNhEX(uwi1~=Yf2r^-zV(&*h1WVOkWL<-$a4FK&oyBTW6m{Q`0`Fo&Gocn zx~mWI$B76x2SYbiwJ}&Ex59BE;=}|{iix|eCPY!|i6Nga$nwMB%x!7H3)BW8l}a7G zPoE<@%dyF(H4NRY9R@m%mT(C+`Eqkczf&x4m!V8Tfd-{oD-mV-f7KQpj07kFToJFi z^svpviXGW=A%s{J<+bxOrrLeMikf8j(f1ox#NCpE(4Mtp$%U}ro>i~{0@n?c6A}~j z;c=r)BGdTuQ{*IkDaL_bk@-XpQQIF8_e`t86v8LW7%kVNb$C~)!+)*>M>Ko-J$@%= zLw}ri&(@MYhI`I7fB&?XC=T{D8g7r%=w-Y};;F{-aD=%dMXm`=K$nJJ0#$@zgyuw0 zp?3^-P@Lx2+3QTDAxC}&KUl(^ezgBg_to2ETi|=+Jj-;bag1vY^V>GnLy`-^vHb_G zUj37UsKe}X+zm&x2z&_D%4k`+vkX=jGKA302**g0=!1FYr9mw z+!`%{WO@$lA;Up>;LnF5m+LW5>|;;^k!iA=9JoHu)Z2VqQcmdJiMwF)Z_)~xYpZpM zUU|DQBL+E)e`eGHc#TY$Pdb)kwwD9ztq9D)c2gOzqEo%%Rggjv*pmsJZKocVWK6;` zJ8B#X1#deXsweH+6v&|s!J(%CC_0r)+7uhT0@QP%Vj4zY!wrMlzTDQvRO_OSik6wA z$A>h;u&r&p%3Iq;*)*rh&aWYg(j8d9 zg_z~o1g0FSQ4w>&&17<;U+Ha>@v2ajHl^;Hxlud{nW zs=jd+iACq2*Z0;K&LgkE|6WR6;;eoqHwiod{V>Ao+&+|XFs%nbS;WMO7W$+>As}6T zki8|*N+ZDv;0zw zo(WBsxwL#!w|L9kuxMP-gs6S&V3$!sZX!V>{x(OPjix_CwWgGJZpL|kyyN)f3i;h zh1~x~brUgC!dcO0wf%ZylPstxWT`;*xn*SKmE{F*W?DaoA1h8B$_CymLds*VZXz?#yogT*^H(pER-7E3ohk!>TWR%#^1-&Z)1MCrNES>kY$oRy-}D&i7^vRbsgqe@r)9`Se~UfKo?f8tn`8x192RyZFb6mQ`|VsXRr_%D~v3OO5c-tCoFPj_Fvr+!M99&gI!hf4+kKOjb&A zk}1x>PRBI*5v!h@^DeJb@Jz3 zrhCvL&MP=c59yvY_z)eMdH4Vv2Lr$_!N@=k0ja8ay45Vorb|s$awY*uz3ePeyT;9<{@@rjb|f-IW|ML*qXP#>V?@3DO~=12 z6i!=)t^B&rVyu}ymGtQvpO--OiPn_Mki|k# zp564vPgTKpMJV6rTpLL=y7b8Il>)_Kno+P^?48{8Na->NUafl4DAVG>N)A1p-M|jq zgx%;JL|)FQ(MZo-(V9fnOSr6Cg15UxXtUcml+*SbW%zcJe~r!$O~O)_v=KmRz)c(` z=4UbH*BUdA-xK#mxvIB{Wt^C*u@yC10ChKFyTOg=G*=`hl*=ZXf!Zk*UG;M54Dk{g zT9P%v6&*IKL?0+VvJVMCeJ(}tc(z&@8OYO;kSy=_K%lEY24m8I7r$t{gm#!dOt`E zbwszD=I`Z^6tuCMe9m~DuI0fu-l>xaswUBag(1(Le;w5go+$Jp1DnR$8k)rVU_+#E zKj-=+gDuh>3B8A)i||=vfKVYi_-Y69jN~mV>>hD$tg>l-Ws5hxR20M7uM3W=R;<-t z-s1K9iOiF*ad!f!>0;s$r~OAb1gJ5Xuhi2mpJC}rKpWBw+`DJTqq9F!anNy?@I??0 zY13?(e=Y8DJBl#`oRkynYKz0RFsduVd4vdDTJ^V$ZbSR{gFSgKdIeo^i5IVQsLC|K zdWfUN$MZ(Amft4Y6f5q6v-jyTwWO%$U>z0kN31FZoq4b(T05raXnd24%&l*es;rpY z`KqgC#1kjsPd1n718{RH12;dP1IrW}>Vk>S< zRo2`RH?FMU7Eh$tg13>EKw%ETt;I+U}tWr(ZUtR|f@7+fRhidV!P3qz!1 ze?BBkW{z-lfJZ0NdB=&2DZof=Gf#`E@ZQR(f#bv%MPhAmlxtXG}Cj-(#56 zVAuLB$K+KG6jH7r6g^P_zIDq>U^0Y(&&UY(I4TmIpTh-9U%@4mdH50ime?RhE#r%} z3nLiP$3nz;%LqLKy0u!4g!ZqQ=DoP4e`I@s*t5I*ek{)9Z|>)(u$wh4YW0vqV(LxQ zF1uXH(S-e*l4=XgTRCQk24hRSgm@{y(TtIrVu{SfwA{s*MA;<|gpp>_5ALoVCDjb8 z;4J3Ga6dJR*I_PyL87KK6>HTzm*B7+Jc~?pIAjH#n!eJ@L)S#{-z}$~c`FEpe=_QB z9Wz>xfX=*m+-G`Q?2+J^cgYgzX*6^5HR9 zcVBpC9rW+dXbP2%VVj-h4Rj#*1V8zUJQkz;H~|KDPk8ZkfV` zk;4`y5NXc5N63ZV+YPEiM+ET|saYek`fugFcBn^GB8&rKoksklY~O%N^WJQkf%)Z# z+`D>rT>w248Ef>)a!cd+R0ZI!f+-F|;$+7W;PM-1_dc`XhV?Q4c=`CMe_`JtmBorn zT?BrH^Hi_LRCJw}6#Hm@+?SfUNo@ov<@VF!=<;dZX5wk0dbFKMC`82$wqh=8a%DHq zrOW#>&T7d8g4NmulP;5V`A*Q06#I2B!I}br*k`{{-Fq7qebtdMO4WsF2}<2hwnXDl ztN7cT^i-kR`+P#EFxicVf0MsqnqG@7Ds7s@2j05;OVMW`fc++)hFxGkf~16nU~b(y zBr7j}ija7gvy)F`34H7sNPk#A~KkbCU%haE@MiAD`(eq2@wyGr?88Ku~9 zArC;fcVkJP5);l$e{fJESQFfhlnE_yx?Sba&<=)^=OYYr5TxLTwH?`%z@2lZ1BQbA zWP&QDVro=?-A@}8-fS7cFW;$d14+E<8QG0)yl6_4zH)1Z#;l4Jez)};2M#&zlS-nB zLqjhsHb;$J)seF#O83V#sBE2)!2LW?M6nxU*Z7 zes(Q>T1rJq*}~=*K#-{J>G|s^_K~;}gG0P7iIDuOe;f}??OV`&Q=)Na-70>y=G}RW z%2_m0nVC;p)c4LW)*wy9q_4=Z+42GSmX74dQ(4|A(YPcHmfM|IsdmoZY*em$R@9Xi z>V%%6x@rItp%2@?>s@)PM$(7!OX%vD5B;$!mT0Ts>7j>{lGknTj-1eK1^H!!mc`n-gTGC7mGahKw&5ig$wm`ALX-Yce~(Wi3K4d~?S?=In%@tDP9yB7mRf)4 zmS}h2IFEqp&W!hmNevi@#e>W0-PAS{rI#*MfZR|@3Q-?PGaSYC^LK!IGJI0Yc9v0I zJ3=a2n8JSdotw)F)q2K28e~d{c0ARlYS!KZOVZ11Lv%PgqG0}RS4yX`{EP=Ry)bk| ze+JSQb1#ClQCiMPjTLp*6!)2L)+ut|JtG}_ILzWT?^>nZiw(WMM7d@d;myG`in~KG zOE>KL@6UDPF|B_pt@$uuuEk4ZB=Wnc;+&GK^yy>&TGJD9`XL4ZEYSI`z-AeNeK8=y zZ<$*?y@T1ZDh+Kttu?k(I_*@TF;VO+fAYKno)k`ceEj)90aijvcMdMOE=tumLV6Xf zN&N95&@doyvZnBAPM|oF>P--&FmF&D6M5U{`=Y<2c(^+F5e{{tc z*EyJQn+kGhLY4Sh!TO9Mmv-yx5G4M^w;Xl6lx-ReU-__(S6kuST~DUa#xIxBf)au`LZj6Rxq$~oo027NUM7zq*`@odP)YkhAYA&G$M zFo|CuTmvFjYLET+%sxT~L1L>IDMg_s7y`#e*#a<&Xt_&=!z$o{lvUwym&skg20QsX zjauMkrgj-$9)gV(B7%_he|Ft9S)g{6;PcZUj*fT8{zNQot+ugc30;bBAG=7fyD=ud z_^IraDA_SG`whZvn^Gj(1i_?K1kKEOfmvPjhwfBbzqf8ce*TCVAnzxXO3 zvnw6qVNCm|W^X`;p$71X`f~GdSV9xMsk86}*y|nSJ6XcTxe@K*{b96_1LSgsc#e0R z=WfsRR*3)C`lQOR6_iZl=yt(s0=NMBGw1k$x zmbBPzCRCd?X~8oDSkqS_Qc9gQW=woU!Pd|Dpb=lW@%1Nrf8=l{A1j!6ZxM_%Iq$RW zeh{geY{940j3aotb4#u{51yaAsZ8wqx72 z?POw2Y}>Xm!4=!K?TKyMwrx!O<$j;~ey;A_XLaq`wQH?a-F^IgKUv5?MsyW#Z_Nox ziqsEZr`Rt?=mQ9!)mJuuaPfre;t$enT zp6B6XnGf=$4vzM9fm%Slk6hP1t-TWTvXfaOr5J}rJ>YQmrfeu zrgwWDJuXf0ok=*qe4B=EaJj3AGqpDgoIK6i5kCaOyoTv=G?U{488e2!%GQ2KX>&~i z2IANrTCoE#3iej(OeYaYIhS$~V_gTVJdKlj(6&>o9H+!wU%tVcD5X|qeYUo7E&y~g zG9VAQQ2v^!RAfOJd@xhg8%pA??ZN>DcV|yd)R$*AEKR-~5}o4Jejj~FB{`+g_uL2f z(bW4{_iTSkPSJvgZI8!iWCR|QZx{YD`$)3x?WR`G!ZL#A`%Fb%X+>;8Ny=%LHF+PA zxQ5v-=%3489-fDN7MjD960G=qF96!>neiIs{IJw=%|}i5Mc+x?bdArL%?5#mtM;{G|NzjjRDT5d$2YM z)u8u%7g9mj@R#=n>K8J^&FoU*)L8i)PEzO9eX^V$LD-*s;vUD|rW2R_CDh9Emf0LM zZ3~5UuLn%%z)PKd$rW|H+?YM+rRpR#c>L=i0|n!QH|}Kw4XM@aS{-X zFlVm~%5<;rt}I?=cI1*=JyxP$7o}9JXqC=)l)x;qmcJ;&`gj8JnZK!NR$WONX2B(+ zm2=5(j>KS=L==daq}PptzU5VKip!!OK*v0gEu_YHy(R|Y!oQ4JmI3xPU!zoJnE5{J z#@Gze9xkPs`|o$P=^hl7{Wat10?TRie|qqanMcGW;G$f?mV!H_Ky95T7j(-F398Hl zfr^Z^<{CTf4gHd6PV||#y?oGFqaF}?BCuD0rk)7Mm=Gw z8VdfI2D2?xrc(M|{&ervYJR=1#dQI8xa?Zw@#ro;yQc{xd#2Q5;8di4*h3E4fs1Z1 z!X!9O()Z%w;#p%xUcnfIE#*&Oi#?G#YMq{Y#y@U+GFR!~X8~M>B3$LPoBl>4Wc=d{ zxd2JoCP(@vX+JX~cF50u1N~%ij6R)&9-RY&L4F)U;NUNfqJfHq9O{(Vr0&h)ct5+KD+Nsb1O40&5&9=^X&*>n^El^Za>=o-%ZXD?$^(qn^A z7@^MFbca~_BZu2zn|!}9KTwa&tdk5laSZa|@5R6#e|dz<;kfFgquph{TZW3j8+a~# zJAo?5G=tkfRQaD+M+BzWi^wWA5~QWND^-QTCL!qjrUihdsWDULjK^q?t6Gm@MN_qO z98=1j$ujIC!(r2HXmAVv)sp0t4ewJdQTpwP3m!bk)I7CIuDe_4RZN&?zoF!_JQ=Vf zywD^$^#=|Rm*zvjzF^-O`Rt-3n_1~$nY)<$v!Cq!aH=Fm>s5UmeB-4c)*iaOt)LZ| zSWLVTb2MNn1cmtyyeq8JBKW}q{*kTyMdB@%C2SIeai;=c;Ft|>{4J+sU7 zFM|qYwh805XsNL8ihQua)db7au=o6Z71`YmbQ);jmu^9SX{7R@&r#sNqO}1XlLN;* zAb(_7{T0td7d;b%cw~JD+IBhp{J7;GkY_2_1HJ*+H12FRA;ohN4&vkM%@DH6=;j09 z7h2H9DdR@f%QKEmu>vW1H(~=S3c5|n^NEK4$ayISe4!ivIjCK&PNoyfo9%1pu3+Kp z=5m#xGq5GVCfgNf;RU~Ld%W7@!g;xMm#Mfzs*VOJ?M>@s<*f^)8SwB;^nv*S1huiI|j4JF3gm zpF8auy3vx18ITIu3{~*OI6yZOuQzBWtmOgF86NA9jWiiLRCaxm{)Vp5Bq~PXS=dyY zZtc#nhwbrT*M%@0H74mB&Sp=n9MAz#R#cffgZwiLkS$5hIr@MUq6e~>xtKk%=|hpC zrXEO(hfp6-5P!hlQLzn?F7c%@01jlk^FpVT5bS1!^g2^eDp4lza7`Vi=6Cc)f=&WZ z%na68Tt(sJoagv7=FGMVILEZfR_u^DfxY%n+Pcu|wZ>>e+M<`p-8+waO*6z6scKwT z)I}m~q8}R_o|x6>Tg_f=bY@n!4kV^^K5CMJMxvN2PLs!0e z(lHPG85^eWJ-~=zONK3ovliAr459=;sdhR$&GnYf@(KVS>sIXT$XQeCI#qw*(vMkI z54@SCck5zKz9Vrx&B>`>lcp+o9jsGD_h9hUQQ`J*SQurOz5RSjT$W6$<=ps z<)Th)-RkRP{?2T`qb35v5m?E+1Ln98E!z%Vr_6m>k`{bbNd~Ide|k3e83zFHlH*95 zRqv^wSCrbiLq4jPRLzxz!ZLuFTtsQzY_Hi~#%N5{y~Txx)D*U~w_-zLK4?TJ!$v=o z=Un}>CG&hXP9OasUGO{4HnCb&I4xM2+ z%3I?g(vZTx^O@LMXTF*KJwO5GGF4eS7W8UE+;Jn;`X=ik6Fl5&XsxUNR7*oP00X*c z8$V-5K~HMd(fr9{V7&{1=9ic)(|_hZY_w?iR~zkxp0@E#YEuO#Ec^qtbzDe$aAgfSAK7?MaeEx6e9GYdcpl9e|`s4C(64U7oMQK z^cRtq1S&X+$up_H`!V$9w=qKsZ;Iyy8Nqx7Q^h+uVtRaL%T?aC%2p)f%8mw{6RD2% zM>x!bFA}tkg1~Scx}rRQ20N=84(&n4g_UG}Qv~RiM^i9g$ixCiLBzsnNi;=fHlo(thZt_oII;{g(?-<(w1(Z zBHkCy*^}*WR-$IY>j@Qbv{4tjd~r@&3f*dTu;sW`oHjsAAIkv-<8)4MY|@Yn>S(di zXC$VEXNg-B5;sG_5b2ORu##bK8*nzoGmeLxM|*7NthiF2MPOVB{O;jYY)o;qoJA^oX0)&|v}axufAY&%P+`p&5b_4|j=Z zE&EZS!eKBR;#P}olfVhTZ)TnKQ3*DPe7b1wbP{%te<`(Kl8g(`MJXsNP2pc6!z?Uw zEXhqRfy*pn^Bv=8z!+!aDR@frUz8_Gs0S@EeGuNKAZLKLP`+Z%yEX3@t#=88G_?4Z z)aWF)Sz}~mP#!J(Ng_V<8eQOKGC5q3TVA*o4_r}05Z>|@s)if|1XTD5W7N<6ada90ib|GzME6BW0(Vaelst2!sZh>&fuM!d z?xrM-wU3K-k*f923P!Qph4uOPw<=on?sJ9kC!0m{8;hX)Ji!P{+d<>z-zf%QB^AWW z2bU2y*$+6)v&@X_v7I-EU*412;loZ9%JU?vGM#{&wobg5Sx^BTitniEx_>ovNIEW@dY*d!8W0PO%v`0~`GQO&1hA zDek|Q!A|?^?4)!W6BtpMIV$`o_;#O7Uf59=62Pk1$89XtM?IN4Q??_|(ZQ!sEcIN? zVio{r32|zh2k^ooxhp#OpeW&i7;pMPX`fmjo-H1ef{)Jv1wmTM;dHRa=sdsRKoO5W z?;j2#a^t)cJ4`kxIHp^=BXlThk{Kn%X7T5ib?_Bd;;;!s6?(^#=HFuF@)~f5DO}yP zP;+jy7qKbnY}t0&v(}rm;qMHf#}GGu%HaUHIGd)`dx(|PR*7jrqG`fko?dytNWwfE zgeTMI2}KQL<|)>5eW(S6r!6vt8Zh%1wyI&Rp32Sl_8FQ5GSH?si9pUkx(+`(!$D^b z7v;XzuRa!w^hi3V>axS%9z3A&iz0%#l=Z@;JwA*+H*wSyvCy*@nh|kW>vl!iXE6X; z{5eG8ygOyb%##*2a22{UE7X!Dp+>hNLkjL-mQd#1L~Q<{RTS+c`b(Y(urxasC-kzZ{iK%oF@AMN)y?2 z2hm+Lt4T`7(Zn|U1Ms$LFe`A619AXGof91fLvrZDkykv}cswYyB{Qs;|4=j*o8GZ( z9}X&Zp6hogO0}I-fetxbQ0bNSWmgTKH*_sqsm|Om)rX z;hMYdmWIz})We@>c3RLS#&w!G-Q*1la5yj@JL#?ifv}grcft-O!(-WQZ9Fqf6+YL0 zNI6+D>$kwLE~#;MplE>PzpCUmmo@Q0eFwpW)3oJfR`}<80@)aRp?#{{;HdGpWagGP z=_MJBalJnD7qXF(gbeOlV9A#<-Y(EItbd+dR5{Nk8;P36G3tgkRb<+VY$te_n7*u9SaG;j3rmR$`zE5IFUmRQWxcv8GqGw z`fgd$N=g~v^48{jU_BY$a#M!;r-T+X zHB^e&Gv%Q!9P>$RZ*$jt%$8=z?h5Z$f5uJR^lSk+f>jf^I`rqMX_^o>ip0TO@?_r? zfwrRuB8i%RI|ohJ!OeEptmk4dFB8goWv8N6VF+?4#)6UX2V)#E_A7oCg@KBg4(9_o zOS;t!lmL(MGm&Y#gm7>?Q++s9c%y9*wR8yOcQG&E&~7m!vH9DCY+djpK@?f+z!^D) zULzvwMFlFFbE1F7T#haWf19^92M3J`!gaDflaQ^7wJ@Pz*2C;}9&`ydmSFn4h!~<5uAC9Gziu z)orCki1pBRN9$vx(`K($bYUkD`b`K_#`x=M5a}Lldkp5Hi2sPS)~9G>wC!gdAO@i} z_!{vhc66&WA?$Kaz=!=)@v=(vx66HdK7bqRPIk!EzXIKnDT6)~8upW5;hCBs-o=^y z764u=ooBeMzY+%3k*@GHhaiOWCQ;>TcyD!9$3bd1xFL-V+14ElA-fHzR0~K@73+qw za&1O%$(?@>&#-2*vTDBiA+Xlj@!gJ7tr=PQT%XbZlX*(zx5%i8E>oWO`+zC_n-X9GZ# z7Unhj`}kKSY$8NrOMsgwi6wp7Tc82TUAudYUwfNvDzkuLNpd}`=>~Fb{0rH3DWaOa z9e*npTxiTdb0GPMa9MThz9iyA7SUL7YCJ@6dH3N&nZ<%qbsvnHMEmVYRu7bN=2sr9 zU%@_Kkj@Pp9LdLdKPNj(tJ)!@`5C~p8mAvWA}e|I#X-|daEIw}4wF$tl}O^`*RX*lomZoN#0rrG?w6Z_b$74d-RbQR=-Vh7^GwDmpvD_$klD!&Fj2{ zWL&@CQWR%9A>s^Qr-$D_tGa81Iwpy&GFPUMta`QlP+RJJxorGT%owkL+#eTHaxDwf zV@`GwL(E2oQ~kD3zUp{dc$q^=Z)6csxr(KwZn^pGuQ2_GI+ip4wH<(1wmg1c`;O^T z=bJ0O+zMJOo9E)vNaMVMS(CQ*=0UQlLd5PfzF1BxXR=6 zZ;KY?^xjE}79A@+0EQm5suG{3^Gkz{MB7}QE8f_uYo8VS+-GL>G{m10UK|R{JKoqA zNzM)-=*p@?5B-PHCIfJ8^ygP}6|Ou}n$wKal?>ItmbIs$n;0s>ss`S=XdLt zPg;A3*<14ojSgMklk*IL<+KTa97VL_#KeMKR(O87Me){3D3;5PQRvnBHoOLd|F>l; z#LPn@aM*;%LvKh5Ptii@Hg-yjCWnmp_(yn+v`_h^jHmDW*c&iMc$Y7A`9y=#khfD~ z-6AaI))*JGUUZc1px|ZYjj+y7nnhaPnKa))?r)S0mv!3a9NesMmjppzcOzReT|*hz7vbRFp&`{d2AUoF%&gd9)WM(781xl-tWCfDYG{|} zk{PbBz0}rETn89X=mf_APXMjk$1GHS;^RYN~S8~VxFn6_5GC}CQuODe&!^aOB;i)R9d %4?@ zm>)os$2E_}n-_C=&6T|JPZj?Fhitq_!80(MNQSs6#|`jUC{)!<^)UQy&e%kw37_{q zJK4?+UayUimJ-`e`+?w7p%5dpZrojv#>TZHdT7pB888<*@1A_$PaW@-8Z0Pb>cMjo z-l9`mKsQK`tad{|lSEcTwvw`mks{ps@7hd$!$pdfcG75vNb z!%LXBuLR)UhZsL1+8V8B^rz{Rmy@8T zc+f^s!M2}}pp3r@+N^palp)O=DsckXxJY(DX&&GNL1*_};}it;%gPH8=iv3ZyErcX&{zv7=e7v5Swu3lbsp+I+XCE%L) z$4CI6zW~g*_*Y8pnFgFP*CmQqc09sTwq})*SU`yZ(+c(A=Kb036-@+LAzk$>48U;i zuhvB59j4`a4-E_+lSbtol6l$(50(tp$bo~*`hqXwx!yTAjfzS{pV$L+(TJs}NT%l0 z>_9&FKxU!4LiUN^>z@I4cMJMQE%=tZ3^Bl5@)FfrJ?dl8-tFjbRjsX(^-9;sl{cSt z+6F78*1ytqQeQo6(e+j_;ghr6u4Q=GRFkunM`kX=##Nf$Fqik!qAUk!HDNT!7%7u-{a?;IH{XC# ztaSQ6dsQSu23QR;R6~799H{Fg;+lccbyQ^AhgWg6sYEbH4e7)vratxff6-YMtvpUg zH(TpYgacxDd@y&EfR;n6J4oloE4qvabIkN|GD(CYSz*cYRMISK3lL9j@A$m~MQ~)U zMac&dmN;vllz6t}yOIqMY;X#f{Z0Yg&M;!a(^4_=NVJf@zhGUfSlzq;ED(kDE|geeQFAg>+?42(AYLAl^Xkg$qZ&A#sB9P?Fy8P07;h!L%ZvaYH*{Lmwf zEyH5M{#{`Y{u~-k(!C9{r9X=%(W?w(=O(yeXCy1U;cI`ipPVR;@)g zT7Q@y*NkUP8Cl$a=7G$-j--O&!=%yt?OjaI#87G^u`7Jr{VOSOFZ-MxiQUi10Vx7G z0;y1~pO4sk-1K1AOmDfIcHLs$N{*-gmqd<)a~ce_$Rw4YlIe6VGgt#)L9d!xa4zAL}J76pOGY}I1<+@nv zoLsmZLQB67vVX@G$(RVoD8Yz12l=-`hAW=mg+_FdBp;B{ zM{F@=LcylSe--e}y$W98@~mo>?B-_}mB3TkR+(KtgM|O0KDh2cC+U$bA}qq2tFDdu zsAb+^SiypS<5Ox~N#$Prhtj=nqPR6v*t)Ig1{qcbE?`i$tv6GR)B+UwDQ(1;$sG7)LwYx(b7|P!nMOw?N!gtGO z5+z%0O%JhSAHwF}K~*PUHwv9+Lg>6zMK+Mh@=IAX&=V?APy#Nx9f}hcqjx)J`=TOK zgU0D!Dc4K>XVP)n+Y_l&aCGh*I53sF4T&5G3KIP^H){q!b?$Mq@cYxhOBD#Dp0rE^ zeTkW$wkSC>mPf`rnl2{iq=e+z*bj#E-TdL)is)OyDN2p~AM|ffP$e*)XPrIr57H4T zuFDRg3Bh}8ds_BkrgF zvR(&RXCR-o7A2{qLk(J2K2}8`(GO9UP=l60(8^m%D>Vc@8>8l1c^~A>N&i}tIAZ&a zUJC)Bky=LFcKPdcX}Tiy@N5RDr;OET0%EvNsoHy)6&itX=)`yw^IhoJNHi@zka+e= zl$gQl=qYGy8$NlbXR zJymdN?~B0{En|iYMPJDD*>+FYwct0D9#u2I(LA@!v$R(n!{Js^BJ~AcRUd&eXSc(j z7A@8QWFy|DpCeg>FFBrj07mt743h)j<_1tXN? zT9D{kP8Y5E!m0u+t$eaE`$geWspQ72#=_Kj0grk&QYzGJ@&pxDSe%g`~O z9&8@NlB5?&KIUBQe)!%v@J^O)@D!O57vx0^cBc?qAtF?_|zZ09rfl!i8>aF3m^t{yB8_vA*WHsf5KkIHyZnSCb>lbo+NU$PADkhL#(%K>-u`N$WE^kp03(U}^RVG`8ZJxAemr)Q5B+z5g9Kbv-R+9FhgMrn{GT!4-V1;P z3i&=CWGaYjc2fl=&GIX?Kc59~E+7rG+qoD0{`d(TQLn^G)<>ZjC=9kBd z)hkLVpnF)3VJ0JFqm93<0aJ!lY5U`yXy9wu^Rb13u0anZFw<52L zX29TN&KVfgqSOd9`)2?^jnXsWMBU^}Xsp_hyx1r@?0TI|B2ZMmq)F~D3nTZlipXR+ zFCV5kQRruCNa1;hF5Dt(cQ-BoHtyzH zQuFr$1o~B&(LB(Xz}|%nuY*ZWauDO8rnF80teu)L0~6~d01Kq*XvdIt3ZF<&QpCr~zXttv zUWG5U7_;7;*{U%B+#a*uKnnU2qj%rCx`+TZH}7o$m=mY-mvCE)(fzc$sSIR*ZPy?e zspzSjkr=Myoj0kus!g6qR@1_a!e{8@0gy~GaKG|YRi>NE8Y6s%e#4TWSfJw$I{O%c zzu+}zstKVDM6?L@)t@Wd0w_Npjf0ezQ}W#lWHagxZi^@Y*=i2_baRXj>4o5+wLr{> zU+Kgp;FceTOa;))b#lS-WVo6C?!q?-8@6ctsRO&u&z?~qTKsD;SB}~o9Ld&6&hFIeXdTcR zW?Ly_$~+c;rHLa7I#aV0`Fp;F%+P_!CohU7TVdLuny>t}A)8vnhqF@J*vu$3mZT)G>%aOL!)3Q#~)V0B0 z-Kb<{ZIMe2g+1OqT{Bek3d!*J#lSM9+Bg?-Pd7fS@wY}r2IwR?Rn@ zM$MM!(1s;mrK-4U>)KnZJn~OA#scamNt&h8ZA+eeCk-|vp^BaVh!v!}GzCcLta!Uj zEZ}*(bC6mJ?iz+;L4RwsOk|K$&3)eQvL%mUOlW~EqQQSirXphm=6nt>Yut)k?t5~E z+AXw*HJcN_6AEo3RL@ld5m9L@=d1wKdo|KzM5V!AG?OWE>oyfr>l1N5d4ro*zJqUvnQAY!rl{zpi}Cv@$OJ$a5kLD zb^5a?FZ}X5xiUFeqQxW*4gD(%l6cgouK>5Zcc?5_2MVM_GtSO6v+jw_UvK06eyZ!j z@TZysAs+Vw3pf*S!3L^T=>UKPW_$kfy>7?qjNb^inJl zk2Mev|0J&BX+?6;4RpAE0@j~CiS_kjP`>x3o;Twl@DQ6 zqww}Qk&VK?u_ig5?9Zyp7S8G2msWCUY9BcWDhM;%4-^Wm#T*a#+8l(L<7a`|Vig3O zt_Z@+^?x4hW#AGl5EiDEzH4AqP7s#=AX2C;XXGG5Fd!`d1*5kNF@fNbfUx`*jMnm^ z1acn+!t!4*YRlIK2pJa$E7SiiIMG0rxqo=t|F_7M0|jV+u>Mbgy%hAq8ie&f0rVD5 zR4^AS5Z3<*^!k92a)Gk^u(#Bg`ID@eNCxF%xJpvvm4b0wxj0#Z+np(pIg4!~J0g(<0!p@e8Obvn7 z;)?^31e&_11cI76O$@=XSKxFC{1 zKseY^JGmeRS}1rS_JLE0P{B}JaQPurK!G`09E2cDK~pPzeoUvL5K2GdT&aEvKe;MM zK)`~5GP7}|8dyW%;xIEY!7z$hIyt)#{bFMO|BNpp_Mi8li2lPb*U`4$Xl?eLshvIe z#Z^YWEsBC=lh@+Xz9F~p$kLUESW{TUf3S+Zk#2dia`Qy5gkq{4ll5pY1I&T6kR+;f zaqqZACT@|5p02>KK!I8^Y9bjbW;VX7VLI;hww%74(JfnoA2TsYg|{)OA-=;vTg;0x zY;J1FDrBue%$g7IF@ujWJ;sk_JX6-t$}1WQR#~JjSDr^nqX3_t^)CVsMi*7jj|nPH zP8w$6Iyf6OqSt95=eIbmM-}BBb*+I2Kmh?@kc|A%}!+ zRKSO`!4UEss)?CS(?e)2wvD1fbD)*mgK}KsvDIn;v*HlkiwJq4YS2e<{*+_pWEdo& z;FWo@hyi(`(o}hl!OVh0e}Ev-ls)F5Dg*zB3w*jH35@e2cUubNn7zIu5)v=QA59sG zWr+Uj$(iCO{5&AU$~r>CY#6$KTJlgr4)L5G^XRHcd5{Si7};5t*Q*`5h(L-(6@R@m z>YnxmyirfYhSMhiBl4&bQ9N6oNZ`H)_?4Ub^aY;IQjSTe=eqAQ=8R0o_^emXuNc<} zwaGW0P)-aTx;9PoBlpF|GFhU(PM#_x;pa z0SNpcOK6-0h!-UI!9b42l4`>q8h-z!Qnu1RF$fLRD~6$nvWP z*THP1rs6RmS65qxB=;KU>08R6Z`E?uZe2!0^tX1mu~i)dqh)reBSzI3H4JnW+WE7p zq538Z^d;e(;#Uxu74t4TJI^dH61QLsI7X?n@%z=cD9dD(NjFi;FkPF1sb4Q2O?NN8 zM7SX7`gYi7PWKev-#;UsOI1XW{AerDn`FerNrL6$q!&Xar|w%+Kg&6Nd5LHV9$Y-t zC_;&-#qIl~FL|@oHJ`rDXAUbqAktx;kPtLxh5)?yQ=8@z(YIIWmsAXG`UO3y$WCXPjb&oh6kQ@rKmjpi`Y{NL6Ktm!BE9%LLbCfFR7@>J(F6`={t?EP}PsojdJHfGJboON4ST-JoTynnfs+^ zwZjz8Vghw#inoA_&R9iX$a6+pj$L<^Ms?}XO;;8z>|{V5B{>qxjH8L$l%u`0Nv;DA z7tG&+XILKJ4^g+8p0F{?2?*Mq+Ky90W7`~@xwQnvI5K-#d-J_YH*xUN34tHHn$Dlk z;HnQgf~khpPSpNGuST;G8tWq+ zpfz!C%`q5 zJ|86)m#qnW`O_AU5U^r*9e>JWAsLqULF9&E!%H3@vhJmF3pV3`ARVOou9fd;ktF=$ z=GFZXquJRq;PlhwuOY=8*I2H@jM-)mWVgD8M-Vgt7wvLm|3u1$vJqd852bE+K><+Gs+pJN9DU9#NZ7;%YifVtdS&xd2$6;bLKl(*if+Ef)!f8z_j7 z6RdiFiC3QS!`ad%@4`omq7)U65GZw$jDTc3RpC=DEsOD07@P%#9Y7_Zh0JEt&q>9D zRrm2spha}?kQm6m6+WO5w*G0+TsB<|)S&|b@gqPmIGZj&Ac`ltW_PZRK{F+|-myw< zE}ZOXQw3OIhoQ>exi?EmVB^m-76V_;A_})l<1Ry2KV?Z!Rv(jC@f!cSfX>t|gfqZ@ zweD7P>c5IW3OCNG4`@lOjK<@weO(*^-S0 z6V4zblUR-^#vh78#P*QiM4=dAMD$62Ky`z95tA|UKY*<;VPc?%VcMGhIZ>y&3+1Se z-zk<|x%Bc-fN8!Q9+^k@Ee`_oBIT@diKTXlsKZ6bAv>nnLngmWn41kA1*g(kE0qd{@N-tGew2~#sOId>eWeOui zI6ENB4LMi~Q%~-z;wIfCEqt^Jv#(sw4+Gc}G2B_I+GqDyE#0_vG+hEX>C z=$JKEcM|j_iHE-`H7VLT)(oLi;1^yYJ|2rz3iSA+=7?)qe)B|c%uj^qDU|cvOSD0o z*VR$em8Q5dqMfc^IAY|&%L!!NMbM(8twco&3H<;-KMs7oqSpjvInZ!4QEbI2wf2cp6C-l4W;QvlN(Dw%3HLiXz|D{Q#h*!47D#|i245vVi}kv2t0 z(|_2V?xIdi!cW+Z2V89(FsE2ucp_@Sp@074xryqGxBR_@R_vN`wabyF9s;|mcjUUB zU%PXKrHo%EuaOHwM;;6jUWgbCtT;@#`c*9WV*IYX5u(J+*?J~83wo1*^e=^GE2>hbM) z)0%p){OWnNf2Hf0Jb5MQ0gTsH9Jx5AeCIGesCG}+J_y_kJlMa!d?Qrh%ZKApo4j$4 z$&$Q39gQWL+vCKK`H(aqVfXCXXqs@Kr(Z|NAfjsSdHo#u0TRMqIKj^>0%Q6oJqf#R z(pTPZ;!Ehd^sTQhdVe3S{#JkMJci2=lC;N`zU=sXXhcq5$7juP13E%E{ep)s=7dwL z4{h?f6B^vo4pn*%d*2hVexMsQyg_Y=>ajcgKBALdShYR;U(Gegm1iK@=Z)>HInk*d z*vUAVF!rMsfl(sO-sdEy4H9W&>gxk0>Gx%#;|Hln9!gUc4^OGC8$DS$O^_Frv-(DV z_#zN94874tKGmu{0c~eP!-mdy7#Vi>`iBdz?d=*d=H?4aOEw>TJ^h)wXk-nDK`AxYDUCl1+oi?quhdi0p)D~YbM*G}FX*-_>i_O7zpRGgK5AobO&!B-b31*W zZ*yaL`Z>K!0s5k2v|ozjv2mRXT?v$DE}lH2rrDjpzFrSL5$xRrYD7&C1TtQkCpFh5 z@C4EQ9z%%O&OFND4eHe8{r+AG?r{s}(^drPEPkrrZ0B~$gA{Zb&BIXjB1*9N5|fyW z^u5;Wl5u-uR#Lu%0Ni`s$FFeLYmNPni68TI(NeAgh--#P1)4G?+`X*BKMrYG0F;CcIe z_p{j$I}A_sdMPxPN6lou+o~O0<3K&$cb_WV0hCQLoA4~mrb*$?0up=8o5qU-3DhDb zkf3fE$DT|=i9<^-M5$>_z0)pLlg-i4!(_6$-8V?PLUwy+1BjG2{EHxuoKOlYdBQUC zATI70d4w2Ae6kO_TP03M zfNZ1`Fsu?nVEmbJ;JI!py#7Lt=dlJpSN4=10V72EX7{d ze$_^>T00>gBY_Kk&E2375^6t?npLdK&7dxnzc!=h5fEJEiWk9n9nyw%3Q7CQf+8QLLYQ&%pYklWSkOU0Ao910YV; z=cnd!hfkm~rE<(j^XgvkjR^F8qJxsMR<5AY&Pfm~&P!@>9z~LAU0wN{mP(Va z4(GP9e5wDn)96K+lK3w}ov=#JTQ%v%_NGaLiDz>fa*r%fQ>Aa4q99h1TM>-RLTm$L z!>pz(aopS=^7iD=EvxNBpVL4cz(nE!C!wA|?0NTC_8&FQ?W8r8mOFg=@zAT|xcVNL z!xu4|kt`1gACZl%Am@4g9DAq!iwQ=u#QeO4_*{Y|}TCr<;Y6LTsk*xCsj=X#V zl(B3hu`&XZ6K5Am4a*OfB`Vn~91-$ik#&(0V@dK23)w21Oy*qRLZZ*401;pjAc^d2 zQ7%V^iPmGh)P}7%0BgzxS*u(q_E{%>y%MR-_4Vl0eD8A2WasI1@08CNo#{3i*31vM zRE~7~+BmiPg#J}O7m~VkRq=hRio_l*`(h&9p~Gs(w)`c8>1a!1b1LY!PbwWjMZNlh47bV&%fUH35(oGIXC8fuKk16BYi*!8jKjS-8uN<9 zbk?LiYpMUqu!9)= zch#$OCqg|BLJx6L=|4VI%AAbgR_{DD5nbkoGNNX+`1;6fx0p^4ZLYc%FT(?J=DMJarS2JVTkp8{Zsevsr9VJ0Rw>wR7t*F z2maN{dR^R7^U)he1JDGN?X8h>Te`Sjr!E++`3EJP(h!F$BLHDL?{QrRAFtokcK`vd z90qmk)(tpB>fG1^|G37}+J%Ov74&aT3Igqi{_ml%nNH2l>_h-ppz@`p*z?@_i;GvH znln(f5mfcLgVxL9Ip-++_dF4~`Z_{eJ$Vb0$mmjN;)Z?@U?Wcr9+Tk5I8TO5D1Kw>CDq(}=ARB8$kEEH*x5?Vlsfbc*Tmu#U#QaC@8Rk3J5{~BkH0Or7T?pUUuK^Iq%#1cJKdxXYQw&Gv_yF=2vv>gRUxX zn&UlF#TstMj}}+9kU5%Mkbb_gkgemuwy6-j?N83aw;KcyC>hWkC6U4buGQisjO^az zw)PeIqpeM%`+J}Z7al8sa<_LvfQ{93yk+`W)1itn2~u86*_5e2K!pdg?*B_R<^_Rm)ve9N$8nW`J zk4i

    927{nxvwbRo8Kt1DPzR@st;z!n>XxJ1CmxuH6z;KUhrOk^JcUVe~H!PtWQR z^IZ}apdc-UvO@C2fLB|ZZY_|8@EZL9;6FukUMK!fk@7(-E(ZNqw4|T22dL1EBLNS1 zy`caHNqX+Q*wzULtVxQ;Sp8-5#P+%*{h~KOo{k^_5`icL3Sot?ut3t;M8MwvNna5G zHzW{$@nj8i^M7zM>X4W$V+nDQiBV7_3Qd39BW*}+zv)4mIHYuW{`(&5(YD?It&395 z8L%m{Yq81)q9@bmy-I!j7=dy@6u7F65IT_?M`)!I{1d8 z>ILfK1OP2NcChu7u4rY8xHyD1 z##}4;3i_5i(rUBi!}j(#f$i`s*P%UKo_Jri)fk~=fAo`(zBbSmwsB<^NZJrgny5w9 zyWV}VJl!Qx-$P%T82@&;gnrzA<%7ug!EdR0pS}&wnwru$vh3-c;fuDm?UmZ3s1d4M zy?ZDtKdQF5Q1y9?BL0xp>iwk+-UPcPP5tBoc+{Cwmq)YQ?7Y?$`YBTFz|UrHiDdPY z;T%Gc?4)x`oNmB|oj>~(^8OVO8ZJ}5RM(YC@@#;AYL>sR?c-12A8EMMz?*`6wdH@0 zpIq9|ZFYZRbG9^Jv$|y5NCjDc1y5y9LtYZL>1a7<*SZl zSw;<_oF^it(&W=mRm6pXEA+9ikG}|ZV7^AeP_uXsm<30($CGQ@7QJu^YohGQLFSet z)DrHCHpzn~)GD5=^@C|m8kM1+=Juc%ytMiQ)ylJ{9lvUUil(s~t7xA2_e%S!i^Gj9 z_Z6G^3UrRYOqFK%^+OyCO<|ZkAVZ$jg0{Rv8)acC<}g>jG3TwZ;CnUhG7_(cS!t59 zU$8``GcH2WVHXQ4RQBGY6AQ|`)86X8zV5)vKBPOu%tWhKmS#{tqZ$3YiNiRg6ORJU z^)RuS4~?;(@Z@Gn$J(4i%HdRT?J|bDqVvVk(7xTUBK6VosI<3T?>+--&5CGyz8o!J z*1I$s7#a^Br!niX!hBdEQ>%N<=kAhR60at55?0^Ocf~W#6?4XQV6I~^Do?_<^Ts{c z`)!1wMCVp&9W9`+VO*!i#lHk+JamHPd`BFqUfq|!9G|4(@sc84kv*c3k{lKB4p#r7 z(-nU!^9;Ul+y%B{%GV6^`u?_Stc+$E9ZSTGGSkJ82H5Z{j$mmhx>3@5jkrz`c*cZX zy^vGuW5;-gS^3C;wVUe&eBFL8o1rU-%oe}4c+w{`?Iw5f`so3(&JjIFK5%&F%=xnp zXB{==Fbdr5-MjtI^iE4A@#BW=NUO$$K?U)f8SzIlhbcBG5IMWFSBjI@=ZlBy*p+2H zPlR2X~2i-idc_GKzcN~|Vo6l3`+9uaDK2>b0#e2HzDG(|-Dr=m{LTO2*Y$fK^ zpBQ8`cz5aP%#HM7FeWjp8+1BTW~K7T857uO0Z|IuO$FDhc>I<)ec zfVNaXxPxlAqk^$=J*P0J_rn+gC()hmFaIewmpm4<8{!CrWXAS^f-(qZ#QWY7g!k_$ zT&`B#ZCud69qpqEN#3Rnq0g_6bOOziO8j=!R0Ri#j5QAf<>NtnAF^V7cUfGeYFZ0c z&0m2dr?nCte&K)N=U3#QqjD6~GtJKB+Ql$6(^76H;o!^mcHmAZwv)r}9&FmJehI0b zqj3|Gyp)xXeQXhwp39MIe$P#g30IiOn8{X4IbkdnV)rX-Ztl^*c=89SZ2IFzIY|i~ zlUqD=m{*5HIY);36nOcTQ|mSrRTHhGwDz%WtA!kJs`hTcoApO-Z)mapIxg&6eqI+= z$nLSGBffPteqObeGYg;}zO)10bu}k#j98D(!jof74gB_2Tlmyg;%o>iCFn0E-sS{R zi}F2M(^>H}QzOLN{>1h>I5$y?PE_&GewN2?HLozYlfEd(*P#a{>42 zgq?sxE?n1l*WS0L6F3Xmun4bp|9GSMwP}Xn9!m#kvBQ0BoN>v`{etp3j#L|xxdC*S zQm#lPMSEwyv@(%*JxHW#X_vmb6;g_UC3?q3`#H=jnC82FzI!6L$6)!v;81pU&c%Q- z+Jb%m5X~u*@(AoIs-(V#cs+Y`AabBscdg(b+qz}X7}`VTYT B$!7on delta 69018 zcmV)RK(oKI_8Fr28L&?k12ix=lL1#Le;QqL;zsh_ze43atf(_%&6hN~)IRL(t{rbx zZWAAOdDx^}vJpmEKv)v~`1k3a83_pn12(mnR9-+c^mO<1cQ*>WTQBg=j{^Jsuffsj znFu^eNh~Gv1|yGhPNGnGp^OOQ(i;rDFaE`J-s^Mf=S7vwZc=!Tq+ce}`6Qd&fA)SG zd^$bj!iz~9vJjC3Bvuhn0L&g0fRIx!C7yzTR&N{!apzY zBI)c+Y1X5~4AwU_)zdR6TLJ{q3S`!2f>5rE63z`Ah;RuP0T>5vH2_M%g^Q?2)G)|a z=zrhq(=hTMzjvUdF^OWf#2HWrPDOaoz*G(_oX9w8F$SV$k@DYa2@64De-?Qm0lqYV zCUNv}aCCQ6OP{fra0zA;NWz5hZl*_Heha)I{P+p%i^s})(4bRKDnglp$BFl!qo1u& zx0$JN$yfqOx|Ei1UQNkx$vLN5VjoPa8x1`KZ7x<0stqHw_=Y9vtGpK8IOltQoX zf?FXQ0i)Y(SuSmPomfOfTYG^EiGHeK9-T;9vy0eh%om0EvUB+lHlU1xtegIe~A@4tNt3IlgtEFi>J zHUW(CLT65Z_%W@D95O1P&L^2gkW6m#BCEzz$2BSVTA+YC77!|IQhw+3ArZ0te5lC> zq0@AzBs}DoA_R{`K8^j$X6@9;d9+U zDA7^8t_vWENDh7z#HK8G0L8iR)<-0k5UhK~C5JYd5SW5M-8r*CG!2~)tQb7Fb7s4! zT0|8rC|@J0Dh z;6Gu^_mU+8Ukkz4R%H1+9VQ_sMh@|9mKzo)ipOrbwSzN*YBT~b2&sHFI7bk~mOyWv z8Mzgkx2Xt1?eeVe=$p)4q7?jP=)1&9jdH%f&Le>S0dQLPT=AkEvO4dOMY->!LE zcaDzeTrtFis|JZPV3>NdPoX2Ra&kq9kgzE9T0na=2PUyb2>`RK|27|Eq z^(HCp&$^b?d)dm^&y_6%Q5j2rKhBCM|4SHA20_hodaP} zq{;B9HPnOe46iv&XFUdc&6a7bno%W=1T9~rf7ch1`-5?2=ZE$8FrQh_F^=hK`dW6H zpvkiO7OMhaP{V@G^(`vHFR+vM(@A;*Y1d9IjeHT8k#A=v`95Dv@+qFZwtUTSVO5mR zP7HifHotby&x`av%NM1cm|FEyU*A{MvUREts_8JWIv6KN^4TuuQ4&~4%* zfl3I75(*R=5i0H2;X80BCPB~BDH;Sme}kcdjh3C7Cx8+dFiZS^Crz-kV+pDj!2m~V zurP!SRu@wEpk1W(jw#EKr+k&2{qG;>i^rUIF8<3nMW4b)^j-WellyvSY#&D1?VjfHtei$ZIQvcp)#&U?%!*yX;ssD8O`P0YugR9HWp9fbTE-tN7g|0^JhrU#2e`hI< zw=2?!AiWZ5KlH)Q&hp^#Wm+yKRe9X4XuGO9yEy;v<;Saw58s@v(=#pTGZg2uEPi-5 zc=vx{@P9wP|9O~K7uuRJjvpVwPuhl=jaD#Xb%ES0ousp~WO9~Q&)OizrnHGcwM*?J zJ&0HR{sQS&6*P?e=)eY0p-j&9xk}Te!E?<({ z^lB;V<%RGfP#;`n!$xkeDVMC2i&X!av(<{&pT&xP&$C&_Ay1mp$%^LXe=3%gM2dEU z>)}<5<=jRM!;gp3aQGM3u=U!LrU?Fv=ojnyD=^0$9C$@l^GWq8$suK+fP|KDq)T?+ zO7%aDDx<%gavkt_E3+Y zSl~}{JCus+9X(QG)Jy?cJqCjZGt_|xJ=6gRJ=AGKR7IwTR`954exMpXGtycmkx&BAaAcS>_G}7Ys z$t?8%q;-J9PKyIrBL|keURx5aG1uK9F_Xl_v;hG#>zWwn3eBjGe?+VH3uX<-$HCDb z7W=9J3T19&b98cLlc*ja0XLKXRw{q(T-|eXQKc2@hi~?afC!`hKam4ic``0T)>PLvJ+t{8jF}-idLM?F`+OEC5arS^CZqL zCTG*%TS>!i)Jj2WO#hX0T4nPB7I_{+$vvrtmpo@^AsTa>$27)SF1j#_MB^AS;paGs zb4?7qgE?j7^MQE%fW{g_y=p1%hX2LGJJRawcVAg zdScZX!Ra=V>;u$ERwJDAPl7GT_OC5Fa<16%+HB6KyT+)`rkD=9R5FUb%nzkvqvkY-Snr1k)rw*XK99wR;HW3GIx*0CvIr_kR@Q~um(tTvp-%x~I963qaPnX&2Weh}0m ziz$0JBr@`X*Hy4qWMLUr)WaZpiMGdk+atMHUZo2ey|BnHA2?Ep(5yA48@l1^zPYrJ ze;5i!mHg|Z*|mQS#~_C=nP0-gb3`HQgO~iKhL0pb>WPf+%|2^0``NR`F5GLD*oc*|#!yiOX&3bmd;o#|RIM|B~7Xc9167NJP!^1p(S~(T<#kK&g zJFxeh)YN8`hk}2tHe*AVfVsAzePd#RXhE_&(;>^$1IJveqO}E1>jE5;q06)lxXJ*$ z7vQDuX=Okgn@-HOHn>58o6Q=L_9>m_0NwKeOE^6}u*_Ow$Ftj{UNr_x>S41vnL8J& zQaa3Fa>LU3YVBl$jeSo5OW@vY^7^g(uiOJ`&;;;l#YBH&61YE4EW0jj_Ki#ogR8arH3shvLLUEEZ<=&xg|*-#wWMj&rK%R2y~AB-CL90`*3x4 zLOfKWx)UAJhEI=63ax!e?ql2yzbb+TGrY=%jQZhJq1 zF7P*MYO-)fPzaNxnhmQ`TlHPNW-7j}89_|;zJB&mh z`{|qBWce#1IIl9$4@G*8$O$Ag4il6gzK&CrVbbRDzmeaWiDgQ}-Ry*%65Mrw~2r;=Tw^kBal?^KAv9pKBe-f8`i)t_ETY9lu4 zV2NO~#D_;|KP(YEt|c1ZwIx1G9rx}U?J7fjab(#_z-}|$lCB;E{4SQSD!}%2515MS zdAfh=1j;mJGp9UFw=7>hX4$#vt5kMhL6Tt6lt)b`K)nzHaTX>;gmTeisIhqq(VJh*;S7z{RJj5y-W{<@6rR`s<^Z)-3E&3I=W}rf=O`<*0K#r-v%m- zqVn)5f1ie52r*|e6bC@d5j+!jGV3w}^}2s7W$-@5;ySvXI4ucu-1T;DsTb`Oc6ySZ@g_+?eP)Q%}Ot? zq+Y~nk-*hCEw0nwDp=m-U+WI}_0C=bq2{k`4TPp~icTq-?~otE8ETj7$M{$OKH&cQ za3bgYkwjxTw4oXmHXqPp#AY}({n*EEte5{so!!*gb$mv>t?N}SbhHfahCj&MxHj@EYD1Yr*Npssa6u$dca3+(f97`}kaP72*riqhw zVkb>C$-&71k|CQeMJgm^CI7xyDT0(7aj}%7J(va|;^8eH-U7fht_{<8ab&9hz_JY! z*uHqAv{&zW`{L;7_~`TuBG2$a;JUUko*B@yfNdMD;{gjf#`wy(96UN6IhHfX2!FW} ztyz+aMjBs>#x;paigVikar|e&10(L1h?~ZUzX-C7-Urh$=^qrsc3`>6uTD~Nn&UJV z%{!ciI1iH;N1|haQ#>a*p%Oqk`5;P?MK%<_<*TIfQ6}DRNJ@5*%oA+jXmNw3NVaLL zA6z7@hl*re@;QFhCTK9w1VLq}$$!3a*u#`VwH~QPf2$g2U$Gtbg22eqLuL1!Ul&-(@GJ_yx?QuPr_v!E%iE{k>VBGW&ssD(> zJS>88l7$S$2Xz5qYYz|r8#?=U02j;ogrsk1t`klpvUUNjG&iykaHzpr=K;5!)MxKs zeb2%2H9bH|9!`prwR-B}B9Es$VFlHK1t^0<{!LZ4ASRY@? z!FM9@q)H(Bl;%v1F;(i{Iaw%z#t3=9bpj1nt636V^`gi3_>P<{<7qC;XqJpMw}gNt% zO%_QMW}}xl%V{|(PegN)snRnkj)z5Kbwg-5Dz_k3s!*Ly$)Z}U(gK(C9Ph)~{o%eE zReqGVx*&h5X_VY;aeo9TZMC z8cE;K?GF-7XOmhllzG5o>d|&u`v!B>793N3s77svwa|AxpQ|4VY_KeMdm+E6Gwkc8 z!`dhnMJ3C87DkPv0<|nP4YjRL4~blXKR6YwN4k}uv}$G5E2I5S6*#!eDItgP;K^*H z+_NDYp?_tO=_zuLXBB#1=da1!Qp5kx(s>r1V^VKUX}kW-_b%c6aR9gYv~)NgvP2F&waK zxl{(^yL<$5g;4Q|5b#`|@{9mHg`P0%3-iEM>6#B7Mq<_@F@LF=Pk7y#c!)Oa=s zY*1S!R4=(EiYv)kwf^PGh9R9nQ znR!!G^TR(+pB==Jj0b4{X*Vbh|9>b=-7FlU;mod zMc#s==KsbLi|^y<>D<)Q!tBV7ADk~9KxP)_|@R`wnTE7xU zJ8`}(7Z>@jdAa<=B)Y?Ymv^s2oJuWsQUth@cV!9V(7iGH>P~c-(n~*lV)cN&Z_ueORiv6O(_nz*pukc2RG{TSC@NTZ~7UPO#pB@(&`osbCrDSg&S?$!bcMOcqI| zdPLr7Ee=g@8CS&Be4XCS)$# z1h)-)C-L_p#)BN^t{4$a<*Hjt*Y`WuV+UH>*lJM zv=_U$=2na1O&&ZZ`MfRivd9}V*@cIgzAC!Jeo=44yI9(B2ceTlrE7OR$;-yv>pxsX zO6;mbdmkU1r&FGHn*&{3kY9cl&SeFhq-*f+j!KO=n4knY3qqMlQHM|fRL zxOac~eBdqf`Ly&o<*B>TaBYW!xTh$Ai=+<_x58XE*9sb`P}h-3mdj@Dht&K=Os)x08u4`P^+>m8+ABv)n&i zT@-)g3-^eYqH#}e+(DNsAFIyd?Fz@_LryzFJqC6JqhvkQ6Ztx#xu}cz<;QO~BK59@ zqgj}7`_UOtp->R0)|&i{c?GN=nmoSvc~Z4M%obJM=JT=n;(gnBt?qjE)Lc|o-P-ff z3Fa~e7l)7AgNrOmCG1(MNDApT1)GN>!G?dHS3GMNf%={2b z+yULA6OhUv1y8J@Mj2cR|JZ;@0d&|vAj5ECVTS!qsb>f8}%FZ_&WdDGSv&AIYR@^MS%xoiT)ckae>jhlnA7GCe@KES2aHLxXcW4eEc4JGjNM z->^F;i8xEJq1l_0J%zg{-1jZ%DEEaL*rxk(yc$Bhr6ZV*ed{0;i zSbD2U2kZ15NC3~S-iyn-iWf1DVz!+V0DGqHQ9RK?K;5(A5iDfZ)%#Z=T4}^&U+@13 zsZ2x(Qp)=@Hj=QS)T&HMy{&)B0)&!?vGqy*Wq<-1;<`uqDyVddEP@2oTzr7iFAqmt zI_@_#udqp)>__tn!aRz`oi*P}9U~6bl8hp`#-N}1JpoC9O0RzPIQJ9JfL&^nEnaG~q{Dw+`;7c!YPU9T zLN?3M4E1QL0mGwE@_x@|m?1J|?KS-*#jn@*PXMm+lZb;$I{Iu&V4 zE5GeDn1ooIby|x!KuScZUjG_Z2e^_}v|hA&9oS1FSS4K?Yz;8tIt3#3X08_jXoQU5 zXGmRgkXZo8#~~p96=0uWC2plodXqLw$V_h(hg@nj719-lu6TuCq7qh3rOjcgIt|8a+|60P;5klG}>fM=hXv`Y>&nQj3zgIRAjBS5Sj(4ihr*GY}t)gix zZ~O=~uQrZUv&FJ?KW_rsn57*dBo&}=9i4THfADg?oUea%en;`mGN?gq5C|DiZ_^Ad zPQ0<`9agn23sFjIRKC46?{QywkCk=#;p7A$vdIq%SU_(b=eEY{t-C79(!n<|3kn2K z(WG%B)!g0N6~ceb+om;M;dounCpMVVmv%XMdzf-GkRvJd@Q3wMO!un|jAs4kT6dZj z&IMfC+ojJRrO#Nm$;bG-Koqal^@|_^|c7|t-a~6dfSoj*(k&5}pXks8#jW2OerW99^$xWo@>6^m9O|_tLVyy<0V@9+n~*d&V#)~ zp0x7_7*FAfzPWonqZbeIdxDviiIu1)*-sX{Ct-j4SYslgVA6AUC8;zN0hnaASnFq| zYHpl%T_&0MR6%xd8}s^Xvjpu0vpF>O)x2QCYbeP`6Mcd*P7_wM*YZnU`-y2{**=YPE(1l?muJvAE6X+Frn(i644(prXC1~R$ z-O^Q;ycQ zyNXtSxT5Lz>zk`DzY(%>#A&XpoA(tXlp1`a6|0yK#AsV-We69lx|vr$)PHPN&GnBr z-+uXx)ceMvf4@{NANP(j7RM=FY2u8qVO%#xE5bF$7)6X^am-(@M}pN~$6@=)w2T-g z^5v#2#$xdDX_Xp_=3mz%Zt5le+WPjRe@*Mh@oF7AyrYVKHyf{;G~l*Db3R>+7uV>Y zIxW-3$JH`ScKbBxzPyjWX_0ohh|leGaW`v5eh(ETf6ne=E3t1IY4)^CC$q*6G5 z68z`8e@Nn2@WlQ#*dw&6myhe|eEMq>pVs#YKxO-~)NP9@VhztHT9swJTbwgVn34II zV~}%BsPP0dVnq`5n>0Z6)&Vn(#%j{Z>gE=m-W(yu69EM{i5SVCG_FX@uEuTFQ5b`_ zIZ&R@5$5sYc8hmtw9RDMy}WH!)1R-EtT6!cfARA*)FpKrxAFHmyqnFuoESgNcpX1X z+aZkHNCam@n4FKUhk+%6ib@d8RK%B;@nx=?SZbnVHt#XBrX-O9UzmezsUf^p2YJ1v z1qM?)aS|~`5O0T7cw+t2sS zeg}w2(xA4jLiW2M}z1X&~88(Q=^d;`m zuYx_gZsyG%xk)1yk_C8SDL%5Y*OuO{=W zAAY3OEk1hw2r%e5be*FsfjdKUR(*H%w-|lo04II=OZ-I${LbcYemMK$VK;Vdf2$(O`9-nZC$W;NKQ%O-tWm=0T@ET2u4 z7~nJ!P}l(sP=Zj&4={jJNyI(|?B9es0U34Tq$OmSCE7aAMDBW$5P8r0yg!uznJB$r zz+e?Qy4(S%RNz3b?<;6F=X8^$1X3L9+Jz6rsQD9OVKPDDL%wVoh4d1H-x2xDL#Z7+`;RM1Kbc+1|hjLH{g&o z3`GyVS7rDZUVIYx3Sum|AdU_L4(wNl#8`3*C-_@|>m-hP2%N%7=r+POf1zd)?i{kr zV$VPMFehZJKFn!iB%NZMyTkE4^SL0bgaR`ZoL>wSeV`$kteamRL!{xup2<38cL=x; z$t#5Lv!^CL`Uu7MU*D$}A3|^yVxI8a1vY8YRnxXU%=3@aH05}`oX766ep*b|ZEPZ{ zD~C(#l04f7lj=XstTQm=@50WT}k>L^S(S1idaXL{L5`k%>F^MJKM1 zBJnM+|5+et#0lsb^?LoeAPyEWA772xLLBU>@?B zyauK|52Yj$dPq$niOe`hs}T}B>h^ODX(Hlq9wO+^Ul}l)DP#CDgDXI0RpK z2nTeK-Z=Gf=!vP?3GuT$_IE|M&b?blEIC3n<~kp9s$cglpT7dwPDO9Jn!%g!L%2EMCO}O##vVriQB^4a3){qKeU`aIJEodMV zbY@UNgZC8r8~{vl|An~I?hDv=u#yU>>LFMmNYjVGQjA#iD1voHMva)a_R(Fn>*_HRPCSc%d2zJqP3R+L--Ix|^7_>83On0yN9 z&GInxj^?~l5>3q|PR6_`7Xf#vHj3^m)mWBPLw8kLB zGcSt#kQBQK2Kuvdzg6b*7^zZd`HJI9<|B_dzXx8$+)a#!(CERHdkG4G)$O-i^O!G7sWe6%Ez4m}ov ze{EqATNtDwmT3HTBj}dP|S3g zvt_N?F*#m~VK|K4pEhZvIU?9PV|NZdi;ywQDmJF)Hxc@n#pvFLf5!-xS4|f_Pv^~|MNr)CyK%^cCPJq3vE{0S zckkku#H(z?8SbD@jAn#EFte%O9J(E6IN@$*K+#+DS22pv0rYPd@psJpBG3x(DBck* zN|J#u9pFm(#5jx+VmLLN!c>s&4?q4U%1dZq;}Mnn(>R_6+IUsC8d-EQ@!eP5J7$OzqIV3348dYUOhJZH zcK7$v86-k`F$h|PY}{thzAr+%O%(roxp0nTa0h)PT>;5AB_v-L$oIH|qlMzD`12r`< zlL1#Kf8AQ!lH;}!eV?!3qg1xA#2rX#s~m4-Q|kxk;z=bbuODcMqhVGzQ47+VR9raHn_{;tajoU-SZoiQe`>d$|8V=wtG8TamRQA>{RI3>?_zR7RXpW=F7v5v42O+%avN!e6LO-M z+o(P7`#jI5Wf3_iX0$GaFmyr~K^c)^bmrF=_Mw`{kN2#!^4~*zD_Kf9;^g`Rs0AW8RnkN7G`Oi$_SBSs3>S$$px@ zD*TKi_FgudPyXiVaPat_(^>5Y;CZoIpEgD9hdfIA>Mf;1>scsP+H4^uVT^hk)(I(}G0n-+(F@jHg-QARM9CPJ8{ep89;ad57UnM|fe~5;T zBqQ3$!7;|z6gZ~nR1$RNFd9Vz5k&)ij6o0EXt0Qa|??-zMCCL36}W2YpLuhkVi@1oMqb+>?WQ zBh*kstkvC~Da0@Y;aq&);n@F&e~s9G$wu} zuI*ADLIK12=85|@5?g}=>2@9QoMS_CIT5*wK9Gp2Ute_@Lq<{0pH3|j6Ft|!QyP2X z{y0=}!VHEXMOhVRJC%;yL8y-T3}LQYY@QRJ;TQ#9>0R;aNEM+DCIlVHe@$ykp*rv_ zsHDdIXE|4Wycv4Al0;}W5OBi7qa8U?8)qY&$En^B&UB^)(K#O+Zk+1hBvSL6L~6b` z?zwXZss0ZsJmh$8+;I#Gu=!mo5HSH#fNbx0lI{R`dtU{HRvb{-babuRr-+s^gql8T zu9LJwL6>2`>(m-8!O~M}e@J5ZfTkrGzVj403g1^&G0|RtKLSgXLpl;4DNhq>`~8Zb zq=z}vvvLEf0R+t^PRI)(UigZs}h&nYKOapm!r$rQF{U*0J+q3S@&}r6Yh$` z6%g*awDOO+;a#D2Uj%gZ$ZPIBiu(GF&uUb6dw&@k6^)zV)#S7pfc;H@x^C|u`MR%I zqIyjA0+`F{vUjS#C7c*RSjA5KCUHKjle35jb|GyYD$*d_e~%vi=b|iJ!$weS#VI13 zeTGC)RIx~LW+>2Wj~3cS1VwZoY$#3STkt0Q=HNUbaqr59ge*QYNIQ_@=8v~GKizbw zWKt6jIEq{%%gb!Jz4`u!JX_(Ri&fm3?4cdHg)tCNT~yv=-`)H*^vELGC=HR&47W%g z{3`JsJ8#D=e^2#w;*YBl1*eN4I2EBer5FOD{$;(7XkBCl08NlI{ zODhA0_OFCUpk_I|bpfq18pc)08pqI{e7&Y=uBR<^xxL5IIccs1IDksqCdftHfZ;Me!cCm0om~*?hq!s-e+2Y0W}ZBND{C0WFh-c=5#5aq z2$gen*?^L8;SDH+xz>P*g;cA^Jc6Zo5|&>iApltgcM#BwUjqSo5dzw4P<3K~8v5gn za3B%L?90GFffFFWTmggJUWo%8;b3rz^VSjvCM+yJO^;zLL=cw)6bsJw)+Ne)J<5iE zafzf@f0c_a-RVBvxi;sy2o^;*cUvHR(5teGye7NIbav^Ec`?1H%jrc;WEVvgfC)z- zM%iDOT~K0UDUO0!$Sbo8eSz%4+w8)o^;mv9q+o^lrmuSco^*bL$TuVlLDM5eI&@&f z6^e8{eQu@{3I7r!MZSRea-`~5k-A;URnxXpeLp+b9nP0<=ebETr* zYzi3**oppjv?kUQ!Yoe4K$Ru`4Z#)jhW{~yMZ$ds%%b+ef+AS4j4u-+pc}e4l+fV6VgDCmHTp z^gdclypN_xY}SrioTHY^;2lh{Ta7v~uJx4g1BRl6j=U~f)^&jCxJy}t?ni}fe<*VD zW2@4RT9pjW$gCKCu7df<;&pjER{O9{6Ze6_+y1hyg5Y$v>NXrH^=`k}_})<4M|017 zr$+P!sC*mDrFJ?yhF+#`%elwCrxpNuZqghXod=WlWc{a8;c;-W{uF>-8sB0<<4ch}pX!f6;xX+!c|#5wjt$M6t^iy|Dt83O)#xG7c4c|d zy(d{!+qM<$VpWJMy@Nkg-Fu5sbA=JwztO4^djn~*H${Eg?fTd?cqyRRUqdk2^s_Q{Ri$ITU3+5ZW979F_RHP6q7VfEq`y@$Q6C}ui&GE zUCna7XHo>%wrGm(LyDp*U|}3^}AZ@<<$6TyF#9C8nt1ow?uV z9x-`#o#olzFLM9)FP9fTyc2mwDX~(r?D8t3oD;1~rlcl}%j|NI{XF@{{lj#|>10#w ziuJt2wU(1@asRMdu79tmzg+(G!#gfAORQq57D94{4Int90`fS`6gR{Oe0vXh@1}-9 z*mNeSne1*#ccCXAaxSXvuDQD?tL1M~DJR7af0>??&Hc@K^`+TS%KnaiJEl2NYHz#u z{sGf}04lpP*7|+O^SoJuN1|#ls|b}gluM7R&T~nG5#cktvVXeYHmYo=bn>bCEl{sB zMg_e$&ApG)nOiU~K5hM%Zq;EM2%Qrpbhz(;n}n7`OBFsdbI%0MY=eU-Vk`|b;+o-H z#m-&vNl}%}t@UQtTr8IGFE6Wd?bO{Zi(R>BzL~q2S~b^?%iT>Yt6Wxo!KSLp?L%#b z&3fTtuHIy`E`R;T%XRlqbLRa6Q$Z~EYAwq3=6<;@cAJX8o#SLKmU?v3w-rcmJ@DG_E;~xM=}s0aka|+ zeeo}!ef|BsAgzd{ybVq2!_0YySdAU9QWK2>%_tF8G=B^K8i@!?as)Y*B!>;^RX;|w zl<+uzN`+JQ+p`0#Ed@=n1j`Al^RH)$;OMA5MBvncF@BuRq?&w=oDbA#UP;eX(QVHG8e`bb=pA~e*N=ct&RC#j3rq4J2jJVz+PAg2Vb8Vp=Z z5F@>?{VpcT5Gum3eIJWB?u**-fSU;cMHJ2o z1vTRbW0p%p6nfPdLEFhXJ!ILwd zI3CGmuXA&o0hJQ!eC`_epIw&+3@v~CDj!zGyo0`R5T;P|;Oszw z#IkoAu?;px64U{a!`HM~`q7>CODtnJF}!O$(CuvQcb zIpgdrgki!o89Z!@VHhUy0LHh#7~{Y&_R26!jRnJa8Voc0Ff2?wUL(;y3>y!|BqTvH zj5)#a-(bu$7!&#&XGQe%Va$NfMPmPN(aIQ(mli|Z`3e85{RfW!Q>?`?fo2FbW`CSv zZ*L*b2%t@TYtV88^FA8pxurcJgN=}QApsRPqe|Cxa>g_{o5Bh5*VvCv z++qCSfiWe*qS{lUx}!w-WL|8`H_;BjaOB~JUejx$E?-uUz|=vMMifi_k}ezR z>h$%Qx&&J!Gj)M6(&9^w$<&G0Wa{i!&eWwOL273_#qlcU_;Wj>Nb8LD8(CL(z)^g! zT+;J1e4o@*-bCpsM}OCG0j;_FrI5Y&RWWMz-W6jEQDwy5yJ9#^^Cr-${gDqh-0ySS z=5kRs9jk2L5MusqF@M$kZ3r*S?(XfYd9f<0=HtQ*_uKl++hafLx!$08c*H6SU&MYL zxE)YmFk9O(kp1Xi4y&~dnUf_>Ofoa9HbPA# z{9Fc%i)n7gT>sVn=Q7WC*S~>PRrhjn{dpIAaf1`;=zlL(|0Hs7YIAJ>(cw)VWK ztrdl1D?QfKmd3@hQKmM)GKHd%V2k0Y4J+IT8yMpy;QgzZ+CYNyqfRwNv zSGfG zGcqzWlL1#Mf8B4}$Ps_{U%|e~h_%Q4-t9F&dquCfLvgsGen@e-2il?&#mKQJh~DTuNq* zD~z^GNL`#SieF|w+d3IGgqo&uEQ$nyJ_(z2o@sAWCf}F3923k-rj<|MS(Abx zuasbi*iofsrPntKPx$u)ug<%uD9M2vX^Xvg~*!#kPIMzJx1mDW8UoJ=m~G$~i& zn{z1*a}xEhn6}XXs^x-WRC-|07IVvdNBYmFb8Sd}K?5i4>f~?dC%>I^QVT0UT3r~R zZ-p%`Z%=;twJa9!V8v00B>?BZ$frSU zr5%A-a>q*l3J7N+t5OaD{v&0oqLfSth`|s@S0i)EoL2k7}IKCqKc;Yld=TNw`if7izf&Ixb;Y6vkyZ2n3>11{%9!7<>v4(@$P zHTaO+g~F%M%dmiiFCh#}z(SOu1u^E1QZrfd6pYqb9w=ks0G&-3yr#SnY~BmX8}sM` z-pC={=yWrkrVs_$y2q_7$uY*7l>?Jf7TH6 zARcnp(R&*Sa_*8y3>ZK)<#td-_v7FnNyOoq`&|<{cbb`Un*9rabu2#MUKS8fbbhGn z&;)DyQB|1S{+|#I32|kKw!tTf3jnLJjDvgGQc@;ZO2-Uzu7Y;aLX~pke-`R{3nex(P<8b#b4`|R81UnQH?)ldv*0cup%wCo zji+Jlx*?RV9oV>@Y~y1(hpnuZ(@b1t@oX+s2kD-jLu7icoewt7?cef0ltj+9jRc zTgr2jD)1A^gP;Ogf7urgkEF7ldtFq;F>-nms&*=>>KLkNXcVu6YVWfDIna{J zuY>9|axX^piMA@q@a*6fkD&x!fNy$Q#}cZZZ2qW>4WD7ga^8*@nOJH*3e+B6ts=&b@i}F>dqKpp}Y`5xof2$Anx7;dLa#<*-AT-b!>u)VI zete|a=MG=+h2rhXXEpl?z>pJ#6NM1agZIJ;O=c^BlMR8=BsneN5U4_&Yg1pBk`3n_ z&dH9j75A}YmM?E5N>=LFN!al|K;^w|J{7RA18}FLd3hsme_yMS7tM za?&tj)lx&9f1@XbexNJ49-RTGz~Eu4o;cdf&JG3OG;!)+k@AxR5(zoBT zYV_)EdAV&?OQ=WB+9%8Ew!V2J595Fv^mZ^;5b}9NS2ovC#u0O!G%RBPRAFtT`R@Z+ zpmbRP{L?2oKdI7$Xx|NP>xa*jM;OpJ@0{j}oVj>SoPz5^4c-gx09Z&$2Rh0c&)}eAF`r*T9u=ihixD*3-R)! zKd#_+*hqL4^2T^;WV9MKiIe~CN}vEKgfq2yJSbRd?b)Ac}fXpLaElIre; z7pmh0ZK1&eaSn7#^?3>pH)5X$4VIE__Wh|Bv(@$WDXgp4^Pg{EC4Rrg)v7JU@wIdfH>JAF_*jI)J;phfFx9w>Q{IhBwwC6nQrn6vjC`^N|SUs0s=+2SLvAO zW{>Yd=Ipifj{tBC-0>8#l!LqZNxchedEWD8!*0K8iXVtA+SB~>GH%x9$+EBiTFZdW zF#xgJY?_O1YyrB^v+Cv!4=tnmu+b!ePE@XyDCao&@gn5j5siavJfNaYl z31FAAJJnXk1RsMhHdr}6f9OqmLtS9%FGYhOkS3Eozm6*o1Q8NKTj?{Zq`&oy;wV06 z^xY9M#xdnGGPhNXiHOk!-d&p2EpUrwgRya4Z!z%eQUqJUWtWg!VBNL}=j?Z@yA3;? zJAn6xi1jwpfH8%=NC4&l_Ov)S%y2HPXSv=!^9z| z4^V+;I13rRvv?R+e~!|s9oSIH>8dOI8z!AqSX|-}Nc3DH!# zr#6;h7RxZ(4tcvu%pR@8x}!w}X+dUOy`x3%MUe*8V$+w}`L@|RQt4Rf0)m+}%R~+{ zTVth8O-^&@prjBwV*LvtRdUex@a-uUBc#3H-vWt#X!qvWEUnAM1O4Y5&h~r!N?- zYP0yQc(Zv}UJ6!h+rDgWs^z8Rf1>Eh&BMBG?q0yFu*K`8MBA+uJaHf7{;=OOcx~Jy07hf6|4a+a{83vd0t* zj!+SWRjyVw9@TPB2{3dB7z7J72qJnB8DA%;%$ zw7u;;90Q*N?}#;#rE-8ZI|T&^Yk_k88UZ2g#DNM|JhZW+>N)}|Dp7n7J(7;6xWg3a zct9~>pYyZAI(7Un!ykyw%PqWlj}9|?T@SK0l^yzkFFo*eO2w2B0S6`FBIn@7tP40X65MVw z$%|eVKUMvVKV@n{?&BOeaH!0%bkf0b?FBCBK~013f*aa)U5#=WBm){-KUUp-&I#BV zw8R1Qq&g7*a3Yl11OI*1O*^l{n%Ey36nR||pc{%T6 zP)UIJL~%I=Nfv;SjgGTqGdkx~d+SS!mCG((uq)KoT>6QyH__;BytZRhdAW7Kel5D_6qsv*&U zzStE`e-m_Nqg3n|^AcKcB>o@HDZG?T_^+C-+8}6!Ln-3HMGB7r%;H-RQ!ZeXh7!$U zz&MDoBhlRE(o%4M#9H(9(o)GSaq@IliWsOSX{kgzQ~PX7d3zDS;HGT$0lxJLwy5Bn z5JTId+jV^fD&2J9y>1}H9y(Wb*SGccW8lO$e|d!n8@!=C=6%h%env_NC1k?>Zf46; zS#V7@nFC?OYVS#>CJuuE@`jPoKZ6SDb$#8|kf-~GxK|KG*zR|ykN|=hE?m0uhYX~R z+2I-@)#;?UfD)`(LZp+-L0#$)tm`b0CR8m5fr}?p2W+)Ds*V!DCRD%4`Ymz*<6-}9 ze-w0s{}4P0y6FtRf=QymVLnGnf?05%aw?@6LLA+VJ|>u><_D+*!SBSX%I*|<04mTn zvBQk~H4z6-`3(Z6D`wd-91`S-RmE`kO>@lFF}8&kpfEuOiM7W1=ku zp$JdJc&^H3wm-x040NgEikC!ccV_uVeGZ;a#=etWS%w@*yOQg|Ig2@|&*@>pBLre$#*qATI@DUR@!pp_{j-nZ zHep%}#30&?gom4eTp>jWlu9h5e_%vMVX+>e`*?7`G-w4v-irBkXX6efl;PFvpeRa<}ZS0EHi*j~Q=IY=KK_DTM!pbN`eQ|atZ^Cu{H8o+>L z&aDr^59C!0m))fDwC8I+Tn4YH#DvVRr&*JN5yfm)bUqpezRuPCU^l>qf3fVe?(Mug zz%#3kpX}&WN2799lAt1aV(QYuq2yjcmdD-ybKCo(4;u~?JOyP9MKpFeR1)i<;Xe(e z4)r9K#y{}h9t4@Mph_YDeiE)`kXBL!F3F{HW{_6GSSKcQ{g40>oO)(rG@~e-28`*9N%LU@OsV+v@$&!)=#S6wDC(%S1(AB0PPnxLkNT z8g)d(5cC}Cd84aAIl69!mngYii2YafTPg&E7U5d(+*%9QjxhNZKLOwh4wN(V#TGFs zwr~M)nxChN`LByIpu*M}uCU%0;DOgn?U5w(yoRlZk*KPm^*s0v-!UYEGn_to{na8ZpdG z3#C(y;HL#j9FB8lBMy?}QJ{P#=Pa9Q0iWa8{Z&Yl-cp*2z8OHxp*;O#_VnQW{?rpW zK5<1H4z(TZ?)B2je^{(D`=Z+5dZ6iUi%N|LuJN&rz|Tq!HNBXFo8pJjyqJTKFIFQ_gy+@V0jgoCmLYKHDI1*`3Z_( z*$*&oI0b4@0bpn>w%t|zzWkQGPNd*jtpm;}fvEAT=nw{7{CIWo$HhLYlIR=2Rv~l) zceS|LT>SPse_gDg6JZi7`XBtz4McYk7UAh$FaC4!@9;%onqCZR2}LM-RuPf@{~Kh( z2C*4kg7(#du?zW}#(T^ial(u~xT8yDPnjN9zCQAdqS(uD3C)}nFpOFnjgeT%X@BVw#@KFv# z*^qY=iyy;z9kOH)SnB@(SaaP+5l*!}NO#>PQNOC==1`KKe)eTR8&B}GYN;qYIag*&2yP|yf4O}uE->gy^SC5Y?pv&vz=N(X*@uQ*UaaL~Zw4bu_ zA^)W)?d|;E$1GX>>-NvE^^5_|5Y^f;&=ytM7_uL37>`nvN-F1!1HED-l9VHzx_Lj| z!!}aJPb;e9+>W!RIqv(h`4jP`Xx4S!x|>bj+S`?zo&U0bqAJcyvq;;(c?AYp9BWHe zlto))J4mI#E6O} zME}GBWB4I|z?#zW?*a@^i7?@CST}*l!1f$*s{QTXyZzG%nLtE~ekmN-4Azn9l)?7_ zlSxP_km3Rc5^3ouJM%Q6EZW8lIG7w535k9`R6s%sRvA=Q zG=XIj!Z|YIgc2l_`XZJU*q0%##F79Q66xf4Gs~1@DhgmtXt)6$YU%$L;9nrd?J+4y zE!oGgToo23q$=T#@FBpSAxqhWzq5zzH`AVe_@JI&g_xlb2nYQIrNkNaq;!Uh%QX8j zuoXvt1Y+@Jn&nrRcBfW+f_IW4riKIlHWUOXQz(UlBn(s{oB`i%otLgF8|#bi?^qpO zOvuV?S3NkNu0lH#j_|nk8M%o|JVMN4Z6FImkQHRnV<{4X!Lc#yu07_wZNao&S|=g; zlwo`dYKmYHurBS<$T8ZTwc#;s%xp`08=Yi-m%oPHlh*nE3=V;u&Pl{mh>XPHr>AXR z8*oARh(usqRwju&*^6yvp4cQ~?>yvXUT3@FKl#SqXt&)H7FT7SY#^tU4d8?hdcf0z zaf-NViXLXnMd}#jAX^H?;BokA`B0ovh?cWC-~rvn*@RuljK$glI*h>ceVoHpioh9v zy4fE8RI%7*%ynDUAw5o3Gs#j)=B*aue>w#Mxa7*4f(&jY*6FF@@n7o7LaZ`huV@Ou z)m+pIlBB6d0!wez(N<6K!muzG(@7)bGlBpI?ii{K&N%F{wb8%1ac9_iwqs)p3pxfz z$CO^l8K>a?shp|l40h#GA&JH8AORnLN`WJCflGg}2s8sZfCGD)tPO`CqSVznDdb21 z?m8iNgvhOQt^(uS=#YK83XB`@uEf<97{_1{+SyO%UK~R*t+Ud_Cb(AdeO>MClg$1# zZPqT?G*zGwDgEU?F0(|nF>mV6>EhPq`!Wia%ap%HvAi#1kl_fM&1vk0ChY5fF6_fa zo%bGYu3RBEWp5(4PDw8fg_(i|784cs?U^ z0o5$njW@@t`z<+R3Ic&v{x)aw7z2ACpciirBmw|O4*dZWV>h7V^XT}l?t29gG1q{G zf7P4U#LyY2b8HC|d1G(cqTV2X%x&&QV|h=fMqwXWqX0vU`-v8rw)sPC(x-jm$a{og zZdP|~R*ZWE-JB_cG^F6rdKQEWJVu zZ(R5i*5!CZ|M#FCp}>cVVM2CIMZ1u(PYF$Y4WS8rN@yQLjML6Te5f&Fd;&EV7}pSk z#4Aefx2Vp(4#S%eJ6_A~0(L@`x`b3Jp<bY#59OJOt>MOh8t0Zt^;KfbrS8H;H=0RlW(JDu&uvS-GB}Y7qZ9dV z!&6w`?3}>WD+K-`u<5gbO}$l|kk_GTjO((=XxbIhkx^$>{?yEZZQqxrTLj?YCVMB+cpdR_{`Z)xuQ~_*X+s`2q zl-W0;KCCpgZ_>GcEn~R^#;e`XxR$0jX(E&z8+KgNN1l@B(BaVvQAPa?LuNj0Hl!ws z&E}l4eQ%xyqvHO&=cP6f=1BYGOGseSa{#2N;qIJ6a;8;53F3OTyT!YLM15kir}djJ8_#4}F+8)}k3HM9uPrZ0np zMDt@@pdl`QG2)c^^B$L8Vsw?CevO8>>G?qZzeq!KSK#Jle;+2db#;8$hLF5M*kCt+ zEts+IwP=3@+M0fHW6KpV4u~F>s*_-pxKDP>`(!n|*+0>Tk%&=qT-<*savo1V1_h}` zg8b9Lis8if1k}9Nm$Q!`=2D-01@Ra{Lgo#Spfh;F` z1D7D%u`t?`@E+SkNf)s{aP7_ziYXJK5tuRzyoY|wke7ss-m%}yA z2#E9=!m_K#qzV4y3Cc#e#1NdXHGEDIH`HZ*#1uK@8d~t=N36p zU)QUXYSjwW$Lgi}e^x!m3rsoATFe{q#yFC&38%$N2Zvj$r2%VA3=%{J?&xyXK&JZF zV)4)s=i-UpAMsO3v$d>T24|&%XNY z%QO1^hofJvu1{Z_{$)D*WqvkYF01n||5?3#d$^c4_3{fCe=yDl@+<>5X)wB+n1b{; zASMK9DeP}TtG=97>Je13EIoK?e8fntZjRjkI-M?>v&&iQ(dYHMi^H?`>&1NCK3_J| zyl8s9nKWv4UeDC&+21a}zqLB4=j!EjdGeptq5%=VuNzDnZLDe^531Sfa=LnNR8{{o_wRe`oSb4(+LvNE6G;^Yi0fNZTSqU`fbF1yHA*q);T)MvTa!B~a2(z?MJ_ z1<55qN|{rAqXeRGUayWWrt?bJn>B}1xO%k|=H~Su*UgI~gsBp33J?=@fTSRDB00#V z&}}k^Ln8CH&q%VjnI$JC-aMm}P~1GD{7~9FqhuPre|gTC+}PX2I10Cm^YOS{j2dWe z7lWeqZZQ(9rMnkY!W%1KtvX!Q^P>s`hl$@D2=%(UZnksJR@Sp&JL_4uPuBYo59^Eh z*oSTi$s{S-GOX7!q6(B?U5Zj8WfozX2Z%O=M0+C9$`oM@G(g4wACa<4tX*8{^9OdC zA(C}if1K;SvjbGm72So05YFE#vo4J*v+hP)f8%l&A5>{=WNFbqdIZg(32_{yL%-uu z5;Xb!N&+gvdcL?x{BpXukoD?R&2K!Q@UDJ^=_m>6*ZGAqq=L%HPzS4U20}th=^jwr z^4SA5(Mn0QmBc|t#MWavlKnq2#J~VF&l@{TfAXl&qs^Et>UUKm>+84Jccb;XXO3q@ zDzTi-*3D`*DOzhyHPP8^rF&ZbMky)+DF+DU-{tO1QIt*?fJud%+bZ-o1dP z>FxzL4*if!6YO@T2{f*>1ydCK2RgpcG2NJa=t#!;i0}ExkMvRa1U~BVrRT6a@^l?G zf6_^OuVjTZ&PiOJMR@46Ym$DemDq)~k)+YF2y1l0eW(aZ5sgobj~mlo7<&Qkgs~Uk zy*r>zV!~cL)W&xcR;SPDX0MS1ih7$s9E%7P<2Hd(If2ss=y{LoSqO!6$EgVG9BMPi zGOY2q_m$~jA=hbNhJ{?*nje#xy-d4{e@vaq)+1ksSY5LANcN!>A4#lqFEhn7j##NY zGo?NHo3uxNGlX>k?RP4Jf-F3c@P@DkO|f@nDi|Lm`Hy~o>ym8myIij)yGwT?Nk;k} z%hE`e9Hq={Pt9JH%XCd(b9}3J2{D>s;jH(@ztY6v)hbjf4!jb^Us$T z-@O$wbHr(`v&)-|2|HQGcGVHt?v*}tbu2da@Mf09_LI-2FpLY$n~TK7z)KTEZFkC?Iqcf9Fq0x3gAsmicxZ*W*Vj;4HX@nuh%Z))jaY zWFkcsSdGu&I;21*`54#7zON-QPG-^pQd-;TajA4tI>>z-)@x#g9EFRrBjXUo^l%88 zLP-E5$S0BJO-iShD1Ly-`xzqWR1(I-C^RQoR8faXqo?{@FF3^q)K~L?^P!(he@K3q zK_$^D7A#Lydp9brL|$JlxXC|O^@tG1JSjed zjG*i{n$7T-Sb`kZRglPpGkD$(5h3zq}@qgWY6~^k=$^iq*H4` ziKs2zZ&wpa$l?Yt?(CXynqlOA)fa#1O26>+2@_DCjoPA0ReaC~I!tDYe^BLK6PTaV zz)Vj~E&51{J`JmoQy4gxo^N{jOHHqQwWe2}-}Jsq?dXUeBIanvD_-t+d((aJ$JQR! z=7${6JXvU-pbG%9FGJgb7bTLpdAQ{#z%Ab|mA@^xeYKn|PRZHg)pNE;*7^=kagehC zO0i#>PudFbmYGxBNH8L$f0#5?BVX@%8R8Kh_k2j~3GU{=&5+K3acA~~f}6>?I-z5w z9B4b9UY_K+IH`C8xMkBFAI1!-o(cU8xbX=i)QOi;b%K}baff(p2GlD~zEpx8S17_9 z7bp0;{EX@%*$6^1AXZL?fQOCX77}u?uKryN6ZY#GNA9a?Xa~nee;0t0aA=$kO6R_C zmV0(udyU5OOSAu3efrD8=jU`HF?<+L9-U({1xDzz@Tr9+w+LtEw<|O`pr3c1xk8f? ze=@&L!a4zoUn10nWtZr~TcUt)yDg0VL0^?m|3TLf1;rR(U7wdaJTi*p1MH_y5@L*6k zdto$ofqj*LDY(E|QHG;EC(CX*l%2SXkK<~Sx&{*xN}3)?+XOf5Ge=jv-As!23eLL) z$%}QoiL07+S6vP2#h3m{p@{RNhjnq?&2+mXgk!5k|Z_)0h{6Yg#{%<GGShXdk;}Ub_&Icj0S&)s#C3tXl%1r37pM#wY_bu+B9sW56%G@U2$wcu4?& zmW0dbZTq2Me;^bR+U%BF1)3M*lG6&jguOojBp#xca5N7 zP>-;elrCRa8_xGI(4#y=&p0d zHjy&_v5lD0Os|SMh-|8>b>!7CZ|-W;(o?r29pk}rI394UyPQfCUz8Xp&KX8k>x4ED zbJPp>e;c9Xi8Q|~mdZd*fr460=K9qAnBe=jz(e6F+Xcq!#4tY>$YsXrAErT2z( zNiVQOP(GiuA^8Cr?;4Mp#*}}>#`IY1j0is^QG{!Eh$3SyVIX+czl09k;LwDeJsW@V zuMjV~!JA}6sr|0$sPWmH@xSJX{`>hNrmGT|fU;4<#wq@JjmOlFPgVSEpr3BAi@>t1 zN$IG{@Nm#`bIi4?YWNyCvzRpbP%q(+af|N8HZZS;O;QaP!;4|Ckr({vpDuiL+y93z z6Sx?hY6+M}y8#muBO<_{{{p73N^6tBZW97EHjxn&0Wp(N6)At^TT64>HW0q&SMW$p zLj>V0W?mEp`Fp z;3~kuFVArG_viCxFU~j)2th^&8k}DS1YrulL0>=^LrUsE3WX>W!TBoqGyHXRJBt_z zvvm=t^JErr%EEsD6=iWI8;X85(9cH#4A1*3tVVP}=s5rRHIrUbtcJ;`A!H zU!<-(`S&i4W`CXk21|Ds;0#f%9RtN8OLI&1;*9aYAS0>lG7j{Lkw8+8w5i6uOA26I z>F_Rhf75J6RrugO;yk}wC9Yju#}(;=rKozZ;~CZAeWQP;xLzk!^ZlE%nWkYi^JTWK zC>E=v;#G(yuN9-rSiw4s7H$AHfkZ|zZ3i$Uj0z%xxZ%P11yEtnv>FjCg9g!0z=jm{ zjG{Rs;mBwP6H6ldXOxJ89-{_Td&<5Y;G7^>rzIB{2Q#Fh-Ni1|Z1$c|WH@tEJXETY zjR6XAYzKdp+UK4%xC|DxQhZW2bm!_%UA7>Gf%DZJ6v>|;nwz%J# z5hNfU-C6-eEx>c{PGRtnil9eN`)EmYv?SVEB3KOB3`NR_md&)aB)VGi&Ddgnd&V9u zDMXB{1+XyVu`h#|A_Iy#%%D2^VO52_W+GcYYt4TI4{rWuF$8GIdH8XrSqVgpmC&Rt zH0iphxK2_JQ;`KyYJ!L=B*0onHhs&@c>MbLn435eMD4k3B8a4t_JB&L;*24--RhkAqJ;@ zhbd~h(7^W!4g3kAf$tR>_*0RJ?1n1Z2UY3`=bvLj)d=eEJ(_su(mUsx6#h=*{@*tW ziYK3}MhSG)R6`{;uE3M9IbDg33kiSe?h+eDMt4eVzzgKl)i}sWh0Q=IWTW#qwGDq6 z&a;(GO#fb_)i1^M40z6~FUyi!uly_-x5MJ~dQoSzT*j;Ht{U|g1SDZz zB#Siqu*#Nqb2}1p;QVIMBQKSR6Xp2+-BM@ERd$uFv$Dz;y}pibS5^eZck>W7GG^?fF84m z(%Rux5v6yB_4N6%7&SlMh&Zx0ou*FEcP3#caMb;R@ss^^tdwMwQdUn$B@b(vxv zq`attShmVmNovOxcPqPZ&t2fF?rMNwk-NVSn<6uRyb-fK+Z!M>qPEavgP<4{DDVCE zAL0l=c|X~4_rTJ}H=Qg_ztMjkoUu!dT^0}rmIbDXh|}po9wSS?|89zOqf}7#Oi!uN zNRku20HK;ADWCoVgi491dW_}Nz1@H~wpcD*tMLqkK{PJ2PF0h+Fbj?Hd50Cq{^kUN zSUb0$H;$rCWYH`Vs=S{i^(=W2uM5|_TthnCp1RH~{elY)*jh#GdI^7DuvG}#ml}}P zn)(iAs*H00gyl)D7>?wd&VVgs1DzoySN1h0Jffsr7pTQA&xZpd8B z@3R+yFgEU0Rs*m+>p6eS!@CQDUW;j|s=L2~ui&f>y-x!kfvQ(Ma#uN3AWa%>zPHeO z>9{2`SQ@a>)bWm2ZFGodasbbLmD?STXkQDro}mtF*=NTRX}xjOABNa{-0YSD1>%~G z@^p?cgNQvhobZU{Qxlxr*`qb~>4|RZsbd}uJ&la}V;!r$)yF+K)#mo>47A8`3i~5G zQ=8;bz#(P$+^b1E;w{+8?xja7g>U{1q>Guha0~9FDXLQ$!dnC0okEpMmef)g+v`gkzht#q5ClK~`~Wyva+YMtS4Wxq{MYf(=Wke+V2m{9 zBsu<&V3ZN~4c;Y~QY3{+1eb_Vo*b`|ceAfo7xR?j*=Aei>yv+Co-#sbWxl#tF4kwC z!B?tgZ|0iJHXlFEfv(u5-z|aCJbyIQY?iN2?Xv&m>$Bpw#oE3ue!a}o`TOIyuyscO zMiEiU3Q#RJ>(Y>Y{)VzdBQ1z9f@er;(JX`olHx=VhLm;-|5=uoD-f7cHd}AzM9r@3 zm+CyPEJMychK+v|gb*ZjhuKdVWg|imiV*{;gLRA2?)jV9zu5k6zm=kPpJCo zswTD1C;8ewtn!cE>*j57eUYzAFp&MaaGzDNU6pamVuCcIR<_LtLr!OTM<_Vos1d4h)Y^VfpnUVi1im5e>y>mfO{$I=7@4E02~aBo%*d*|`mMB9N9;)f*xV`%xsY zutb?9V!~s?5f>y$J*wBS-Ef9DmfhWa3WX@v4Z%-YmPJfZKkaB}7O?>w|865^gWd5i z$_U#O6Nxg-k`$Z=gY(sEe~4%cYDi6Y67VdhEJaGPuCBpR)|PbyU(8c1C7kHBR zr^6v3@tww~eKg0CUF`*H(mm7*X&8 z7+bPkIO3Qe2tXP8qzq)-W3_Lz03$)XY5<p>I;Sy*>=x@*jaa8DyH;{vIe zKnzkgh}u!TF9i5lSO>BQfUIPXcjKG=kX3(Zq{3B|1Da(6oY(2PI9o2x7C$eG2Ft>Q zmoG0Hn$3FYaP8H3u^u=RMmbWdD`gZz`BE~*P-d=Oe_aEtYt)MNz%Bz<;c(##hjow7 z?E*S$K7Y9^s|HPPs`Fy&z^c(cH~%=D8kAgCc?Bg;1Lq3+@ZTJ;^46j8Ii5jHV+wzk z7cbn2jn!J5K(65G@oFue8MhxUwS2i|y8JX<=ke)dGno!GAUF>h9z%eA4X z?Dx8=s>OFIR*O~9{$%KiErbMzkQjgReTgBX%TUaos?yVrNrAZPSj4(Jgop|~o=Hea zLiip}AhoXwC=$(MQ-+wAO_gch)>URr*;bk6b#7lC&lPtOvD|F!PhR0^NEYtX7M?W) zgiXIOs3wS09tzx_2~@jGA~=a~8N>zA+|z8~B-m-_3gy!Qi73?1#l4Hj{u`#D3&<$ilt8BmBI~4Ocw!yMq9G~ zJ8r_`mO|YNK9v&4G}_UvBdRc@No$SQF*RI23BzgZO0~8a?G1^Z^O8``t6Tb@ubk$#P5s6^dkzW@30SBmv)5llF7@P7NtFj+jN7-c=JpR2^QQF_g}m}V9!vE>TBf%aInX`=6-aiP1yRa@Z$ zDt6Cbe*cXDO#ilIg)3y-gdp0p<`BVfiD0N9Gdj|R#ZqTqLG!eVBjFd#vc z@puzfPUyix0@~eevG9L20|PPP#?pVe*qe%9_!RuY`}*}hQ*aWlgvBrPF!;s67c~rD z*f@M)Q{fA{i8I_0zOWJaLb$H)*9j3d3SWq@`uh=eTl6vsyU;P^ltLL4%hS@uAa-e4 z?PZHz=pt+A68cr(r53ti!?+!X5Ed~AWJqwL6f%+tsplNA^Y?$ip1f`bOqdqYgHMZg zQ5yJxjZ&|#zK)(QT<1ae{ji67bA(Fo2cgP?BGl8J&BLK#R>zYcED%;a>gZ@##HsdJRQHMLM;}eHQ zDwbjJ>W);eZQpIAiN^p6XxdqNj&p{AWf$`BcdC_K`%qxaIZ>r1fm z?gh}D=8=K#0r0jXk7mh!lPA4L`pz->c+zh zgPpjkm+obF5pbV4ya?7j-Qh(b=Jer3u&i%*VdkS;vA@pnA`p1`@FG}t*x>~+1rd9m zT|Cb&o@W=I#O%V{I2fW{ie?ZYrz}wjHhMF$>GzC0I!CT8}FIzmZ=?(dWZii29dP5!t zqu*+JBOe%}-vDVqmcQThru|>a9hjH`B*@IAL1i7@)_Zuc1QO7nv6a^IlfiBi0yr>} z5knKR{g@#O0y#315knKRGo*0|12Ql)kr5QLyR9t;0yHs~G2jFg5-~G33NK7$ZfA68 zG9WTFFg7=n5VaNqGdDMvp{WBXf46m1+gtWNjJtc$;O#8xso)2LdIfs3Xt_WNB|FW&{F$0&s&Y0E#A{cSlD6e;W%64+14X z5@-i>d{>$RjNJk9K#-A|y91CFKx6b5P_lOdF&Y~=y{mzC=9YFq+IJUGdk1$%OLGg* zpBU_njDI5i@fKkM$QYSe+q*hhTLO&iOaU@X@=O2)d)IfNC4k1>4qyzlFtRZN*qZ^= zfLZ``RdE$nfTW6|x{@j_f75$lRc8kWd&mFdBC4vUF3A886IM_Y2LLq~0FvseYJWb} zfOhZv%^3g+YVZ0#dEO2GxXX*H39D%Sfj`R`?$*xNZ-I)R-26%hz9v$O&JVej;3&n)f! zlF17zNK1&TsxivFH=Z4%y#0H1?3h4qpuepD#1j^i`vmyN!UbUE;Q+9_H>tRtsi?iJ z?K^8Hgg@mIvwW`;$llSN`G30F+Ron9&hvkzW|nrQW`C+~f9mYOtZrxd#Th6q_J6kT zB80zX=0FgD1pxd40J@o2F#k#QSEu|Dv;Gmkm%!W8!QKI2W@O_8^tLnuzCRE=os3+7 z0Fa|I(A)E$ivLCktlR)oOB2w0lfNGngukLo+nLz|c>X1RXYy~=|7}0bUx$?T{e+s@ z+u67SOo3(yf6NN@p!a5=`TysP{ZB3lXB!&@BU>QNe;4$Bt&D6fZQTFc?te@)fq$sd z{6Cy6og^&XfTl{8AQOv!RrOzTX^_!-(+k^~+W_BppL1mM-mvdO$MVn20x+_2 zaQ%<&y%$Za?SM{B0Iq+z0pDxzKYZT{|A#GrSy4q@e@8)z{(su#FC%d~6MIujJ97XV zCl|oT(b32qf#tmi*f==>o~-Y!YzlPyt4RRNOm_C5cNc(zGsqiYX77mbXCt|I0LK8NBQondQTu_ z|J{5_f2QtVLxttt^_C8oeKzf8#%682|*j ze*sMpmVVls@CI3>G>4S=h!;$iLsRlFomAooXvxGwEu~L&65xsDZj%883;kRDGN=me z<)l98`6T<>6>CujVcWc}wsr0(WlbBmp^ z2w5df%#q;uT?Cnl3^WivB{a?!T$&+wPp4l8(k65=*LLZA*@-r$2TJ^Q=G^m(E&3Nk)A>VewQ$Q60}3F z3gzo=j`0yWluB-^Z9hjO_GL#Sf59lmfKSz$&^J;m{P**IUyF5T!Ih|jZ$52sb0V+_ zQ1Lx{q@`OAQ4oRu&{xA!N^RY_GudDv_aZt#o8J%M!WsLp*eiCM95zz%y)h{zKZgkv z?G>xRy)?3LuGxv;F&W?P1`j3gMU&tEts(2>BXMIS4SGR+IG1etVkGp5e-*v^y>N$k zTE0u^EWsNa;o2=a{dr&SE^s)!Fnh(#DL*$G5x{w{`|FV6!8)ZeG2o1pentm{aN&Zj z@n^dGRPbCw<6VV++Jf3ZpHtq4rD%+Jj{ZSQhK&7O z`Qp&duQ>LvQmAXaRrecge^H}bb!gO^+L}kg-_O6@N(=Ah!ie&^O?#_4KtX*TCwpkK z^#@GuAhi^~#4eE~&VI}h$yEps20#?HDDIp4R=p(5EFbLU_aDu=`&kC3V-c0<92e^Qqrhhans9o5Ur zd4G(Tt@O4+*leV@;LpkwISgb%%_juV*eM`<@>{fs1~TWFYQ0BkqPA>vXwQAwD~Ev3+~@}2U2jdtHkVjpDDsn+Nt++A z3v#Br7Pc$Fe*~|Tnu``%juR8fn}y6I^ua0=zxI?fL_~$pDOBeb>NcOmq3){Z_sdZ4 zJ6`37#Fw!ySFrC$*7D&6IUigN8;!M@uDRN8uS1lB{^rB) z_QRcpe;h?r3Z{@9`+;1D$tqMqt6eRD`YFd|39;fw{t`H1!c;zL#L)G%rQ^AcDngl2 zF8Ydc-!9eUeO!mZ*s(-lS5@pO>Oy*)V;@VK-8OKoqzTjLS&SBl8Or!RgxGc^?+`-u zU{o39WR?odlndoAD2kIDjk6Rw4idQo7(cbqe>Tvaz)Mb_w9>~tL0y21pH1i|A6JBC z9!4&QE;WR`4CMw2$5LR?<>w_aV)@hJ_j{rmL&f8$-2jL)o>%X;UUxsdn2@mCa^QTTBg9R ze`3esbeqb5J558yym{^dv-|}vxW9Yzxey*4iyoJl=*!!p_DGn%uN6{NZ;V(M;ddCl zFQxaV?!VXUXPb@qgZ1=re?lNrud*zD)s5O=qfv_i^F!Wh9;B9vnZOJsgIl)h`gz!w z$pq}v@ssQL{TR9Ko6)Ryrw~%V#Zq<&e?~tZf%B9ztSr>Kt`6VS*%!Q0^ftYoZLDtM zQk8|pqyIC;qNAIZ`3j}|5?W0v&EOM?y#t%?TepSk@jqN=-F} z%k}yjV*ZZPe!eK`!EJQ_`w%J@jpK1zH2YxHj0%-%a;e0}l_t^OK8qKq zCkcCq04dbrY1L!0IBz2BoW{kxnsF0Xy{`!~@v2CmPs0aV&XC9rig!7xVb?sjkF?^D zD2u1lp9aY%Z){ZgA!hQ10Z(vF7snu6W|~Wbf8gBQ@-aRG<61!& za~DjU_bxa*YCWq_n8u4LO{{Iq{H}(*`4dd@q{^a!Scb-r2e*d&2SjHsv#(+gcYQ^ zp(1;p8ee^*x&Rr3e}^cWe&spRqEaFgE@-1y(8eDXZI1xXSDyvRbQ36gbfDv&nb8nt}*Mi2~8Vx4zsr@~(POK{v zrm8Z8NO*F~H+p0J6TvAY$R-KQ+$+z84l=}LM6@wIV#S|^f9umA@m@kdnroR%nIW?- z;^v?rC+)Em$I@DrPgFH=M$-+cd48E0QAe@AbFqf980DeulEWgA)C+bvG)PFWCYKrWkQ@!cnmAT(ree# zEQt4vtWM;Af7j5Yq500A)vNMJgYr;eLaTF$jfm(nKO@wug;ah4m$^7)>#M)|Qm393 zc}!vOSn|H!^O#sA56c6%WXg$gCB6R7b)L4dqJl{f?bE&$hYYk$H()d>d`^m*D;q#3 z5{x`XS5o{CRHWBs(zJD!U6g)TpJ-TnW9pC7xUVb^^DMxMY zU()AE^~xzySvi^(riq$k8C;-*qnpIG>S6!Pen^yvuAtqJTbe%uQ^EPItA^3D2XAXd z*&nwGe*lIRm@Hlg8~bsATu8d5(aB?;I&i?rOYGr*WDZx{FJtFrJ!NjR$~X2PLuLZ6 zb8PM`@vO12#@AlKI>${%r9`!;4k-D?y3#rtj4EOM^(dR`?UCW5^HBI?vC@%?`@OLV z;y2DS@V2?BqA9xdx#g2WuI6JOqMDUwNQTi`e|~t=jcCfduJQeFDxg5)O`N03gL(|) z``=co2kOxSIZ6EkHo?pmWQW*otovpZA$J8bstYx)W1Pw*`xo_uh zf5f;>z3Qx;!LyE>wbQ#a8aqTm+f_L72(xmC9R*me87w}EwcgE5+1M3z08?|j2yMWO zr9w?!YTbEyr?Y*iminCs9x+eytfs%%^l^N@wSK*}q^rw+om{M?>>DQ&PJY10Yi-?R z<*B1ERZRFLp4xSfUyPMGCXZ%a{!#wXU~thWS9R80&dUXqntk-q%aF(OX9 z?6P@o=j^D+4*o$*^3FjHz!lyAkaQn6 z8Hc(U9047%!3NO_33dZ61&Ri-?UdJal@Ou7hOWHRu0Ro5-zq%I zNDpM)0Y0gbp&0HNY8M_D>nhJpf~^_hBg^FH8-a%uPq|3)=Vs|Qvn%+&(5u?0_Wn{H zV`U0`TKTRoo*N2tzD1!;Eey0aF*Qwlr8 zXtw7m>QL$DS5sy9x^jcl!;FrPU~^wOz`j4=PfOLKMQtICJ`(W5f39*93l04o6f&m) zFVujv8bDed^j((J$E1J~pEIW_o>Pu0qX|THh}9@%^K5zi+`DTjeMO|?I=^%q<{?P@ zWhWg6#Q}C5vna{{~fXKx1=$DKm#;j2Cs5)PWE5#S>u9y6AuCX#B`m?;zFP((!W?_hq+kR9US&Cj_lp1F~K5IFAf{aGYRKF%Pr9?d031;fj8M zW<^dtZ_(nY+!^ccTyPq2QfmcehRWdoF zj3kw{Obd>vUQlklJ4uN+VAx1ru?|BY3&|LV!%5Wzf01*1JKzFUrWFDePsmZA2>zuE z5RNk_Rx(T_=tpl$AK~;}Um%-#S9?gaj1kQMg{9+X>hCs9BWx`HWZ8!b#BZWe2I;l7 z_Qhe}qr87K+yqa%XA)G{g;4DuUfuRpCdqn!;Wb&RVKF?;)2MZEF{)nj4Xf7HvaoP} z?(XzAfA($;tA(-zd|>JBke%k=_1$NXP0^h`4_Mg6gpoM=EFatdS#%v)N6}A&Q*cR= zAt7~2Zt)W!OEo<_L#jZQ9H?}S$1a4aDnS#+950C8>(3H}qzbz+9>D82g#eIFkj_Ne z08145RT%P(ryMRW0T1@>v&M)4$~aB2N%qf|e{rn-Kw9qhw|mHNw82bz?7hZz%4tEp z54umF6lLmEoKD}FgScga@lEiK>1>Zy;~Sd5mF)7U9+hY`azM*XZ_`WI9kdFX;Up}h zyLtwzO*5tVz}?bn5wrewr|=H;=!v*QRI_IV1T(guXm@jQ0JPcB0w(3pj4KJ`!{!;! zf3#@J6H&34xy*ILb=)@H+^Qasx}Ta7kd({?#GdJXW!C&7yJQ@uYnk6hEn?G#I$nVP z^0Ap^D34i9ojufVm7E{uwt}hGSMrj+u>^ViO2!QikD`1vU`9_OoJ;duDoad}Z5WYg z-1RErwz17XZkRu@W}QdIH~EnYC68Zve@hv>ktcv+9ufUR-1N1mO$c&HEWYwYyPg+r z7fv40i?`JE>zCq?Op)hnkvfqZcoNDo@}n$C7H%fCA8@#hR6IBFQ!rIO7)oUIYD$nk zW|X=|@-+nRP-Mea@Sl{Ao5bBieBu7-)w_?rr>UMUISIig@jjt4VO;mIbs&rMe|1Az z&HyEvk32(Lqbs3Y!Iw(-*3a}dfJ{5gvH_aB)Yg*_wJOW8rat(uGW1MvMglGPn?un# zk3YMKxi++dZ#C0oTS!mJ*pe|%iYdnk4f<>978H!zljwCN>lSUXFukZMu6if6X#*AC7W zzco2ECGJd2HvFeOppJ$ps)m*ABu%lo4oW>j1e-~(w`B%DrVBd#PV8Psf5Fm}6_P7D zU0eFNi&HD7-7a*Ji4p&-Y5b+U7r%)tW#44It@2k2?cMc9L<7Vrya`H8z>CLjUd%5E zGftAG+G{-RD#NgXt?`dg&lly*1M%Mv3sY1@KYr7j2`L^GJXyj@vfGM~c0;jRWEZ5# zTJ?}lgj!uHYJ04d7ko6nfA1&&l!=^ni068w#sl;27oRuN)Ph(%gDTAb4KF+0)%h>f9KM6} z75#+JW_&{`35ZUmxJpG(noTrZb?48dLQS{e&V(csOLV?hcT#mJ+O%^ zVVe7e!Mk8dyvko9a$ZVEqPl9QC7dHj%JqW2-LoJw_ z6yJRcp4V1}hPu<7j+$kT#rp{%^gSa08M>9w?S4xG9#W;ke~6&~9Vf{#dg%(~JdHb- zri$#_XEwf*m=wyz+4AaM-A0@L#}9O>WV^mJBBq*H5~=~1^&brNJ_)Z&x;maAF!Mn_ zl&z?A;@K=^FN#NOCyxWE{6)tfIO)O;{j~r-HDbpZ#|HOmyKdoQ1iWHPyLaI&p&lDu zsJiEicF03be;eOEh4!y&bI+-1b1R=NpkET$PVN==aT$FBK2qXxMDmL9Mx?VUu902` zBnm)>Piqj?hkTr#ktw^(}DeUx7~m0I@jSnfT-@GuDTy zFj!m}JyY5FRZ~kTfaH<)HHAoxhk&eY0{8UaKz*aFf2bx;e@h2kJ+ei>T9BPQIYby0 zD>LjJ_R1H@AZ;3UMCKzGU5njpz5G|bTOxjq-nwQ#V-G;Ej`i6HX=Au8)E+@RuZ^(t z4Znawyv}H7>bUC7pA5r|;U5=W&x7%hwzx+-Aj-m|V?nl}li#YLOMzAS6vqzl@&O zM60&s+=%54K14ZIa-)P?FvzH|E?qudrC@%)8lJJbS-wUml2)?Mkaa)CJN)*Yi#m0udKP^fIG_v^Akm?tBGgkcYZTn1uNbX~pfW6R z|EMuDA=JSwv2|HKGr&<89R(LnSocoEkSum0D?-yG9}^w7#n9@H&pFoLBV?q5aP!mI zbJB9VbNW9yF#1JQ#J@f@>VA7vQD!8NLgTB%LDaqe?Bl$ zMVmBf7ecM>n?AxSMoG%VG)ZFT$P?J?LLV2k=!LYI068h@YcO3@RC=(C7 zvK{ch*yD?xx%HZVKxL4rpEdlg)NPW-`_dFTisUn9HVNR)J&syF>GIt}BH(CnIG$lF;&@+*GWDf4aib51Jw- z?i+lj{fQjR{aJ~=#`@$f074OpH-d!BdL>ALXP~#dS)IYrJ~)R8J96iG}i)rV>6KMYt` zwf2u{#Ryz36S@oETxAsfi!?pw>ea`Mu*$7iK1We;h4%X3IYSFi)wQUz50vFb;*Oml zGsn)YibiD^ZtrCpZZaR*b&RG}LD5F1kQ8%mPJ$5k77b$ULs+}&f2Jy-E4EM2Dq*&c zsWpo>_>B|l3nU*oai%cx2fiX47rWrZ{A9<{**x?q@1Rb0-!KbGGc2D>?C{F_H4@z*{K_BCL|}lq+r+ZXV^=lPY}f255e=Y8PWw+*@yy_d$q<1XjTenFlXZ8du*Hqa!K4@5b^RCn*# zA`wmZI@vfCpCJz7Nls~d>&uPmc-ki?yOtT$CUbVfX46|tIQR=r>JE)Xd$Lo3%J25h zs6qxcU#VjJN)lidV+ExSd2CNJ>ojql4UiyYI5!EtZuJBKf6B4FDJ>`C6V0)Tt9LD( z!Cxxu#xH(glBj;%{6Ymy%!Dj!`iZMh%y@A+WF6OB)C$Ch8`FM|^p#4I?0d^-TnRF} zp72c~?zN2Jsnc=`9W#FK29-g>j|>tXm1*#w6Nb~dWnO8g4Uemq>alAezehT(=iibr z3FcrYP(v zk?Dr_c2oj2{ilU|7@2rV_fuBGB7x;8@a^t6m z(+D|YzJze4+w-hfN5^OS-DvORPle#w5xrd|$C1E#f3ji7kku^ZmKCv6{h}$omiUg1 zRw^>T@fbi}%h4uGlF~2R_tS38ACsxY==xs$7hS6H2*hLfi9;ca17aCy~vnjn%l?2ji#7jke1RS4{ z;e65Je{iG&6MgF_UXLsFUjb)q;Gr7Ffi)tGass*BX!id52}cY)|^t;glKnG zQ^eIaQuH9~%9y`pbphSDj0vZQCF7-A?}*%`f5cp~1)K|-LQjr^Cq?qWhwUne?gUPV zBOWb=wpo@Jyi?0WbnSU|!*GU5rFgzsPIka#qSb)0Q)397rsAI*O!E(_&L^nfTbyCX ztU3DHNsy?De`P%7^{Z_sLVs<_5H;FD}eT`623 zJK|4q9OK$;CY#KMpB9lyX5hl0%}XkvL0+y7_sF;pQ!MtYVz{!m9IPs_K{Z@DY42Qm zG^2HSB-jtn@^ZCk&Pi0Lnx8s8Vp~uSe_~)Qx*DBDi)j~{>k!j~jl~c;v5FigEWR3! zI^q~H2dC6S`|bL9xe9T8za=_0cQ}lmgGE!{MnL&FNW)briz@Dtp=6$UWTYqHX5Ka8 zu~E!Mi?q_x_%vfh&U7^iJ?(=LVUK3tv$5h%z{d`q$RFgsuTGZCGaf1V=s{Rjf5TZ& zCMY#5i(Dda(K~PZ(VLqFjhyRNe0_k2`|V;KL+04vulBL>8g`f=e;KUvYd=8M z{k6#iKO;F}T`CcZc4}yxlxn$+jeb;9*t5~lWvd)Nxaw1Kb|YXKv({VIw-AZ7d=Yu> zjj}IL0yM<2dc+dIe;HQn;JJAsSFw4P{^-$l=jdN`&&TdpbY}5o%=fxA>=`V+94@fAT;+PI?C+N$gBr zYQLRyC-07xFEQ<7<7--c(vu+w%sMx3tFQpJD-L^E5c1^*>=|*EXEF%`*=!Ym;Ji?_b#!EirxT{Ya1yn&&O+GBE-^l9ij!w1f!dA~?X+Bmz z6!_h32SLb6p@|K^f zbse-(k65`f433gv>u}H7uhNK~c2N_Yu-M_DQwtPrO(2ZNfAr0n`jWx^I>%Kdimt&f z@m?1;5L1T1@bHcM-6|C0K6H+p60VVE-4xvaGPYJQCC5BepQk)3O-GaMw295=IvoZp ztZpC+m*O_R1vN&ye;QYXKKQ6|$i^Cf*UDEfG0r4AFN6ySYm5F23?7r?=l;~JiimRq zs*J=~K#wb3f0+CAgvlXDW2dBqRb=k;DH$t4)WokwaxDw%!0@wvQS` zBl}~)L`0H6qdFU1Xs?M7==g;4*7vTxNnyt(MU{Vx_&0CPHh_O{NSD;=cQ#UwUn0$b zlear=c^AS`sjrkiauZCtOWN#y>@LL$x4SvLKtCSZe~>t&mnhbO0LMCK5fx+*u0ekQ z=79pbB^a;D%=kALPGQ2>FbGXWFUNS!_0#yxTooVhPHH`&>Srz?tw#|AE+?3JK#lz+=|d{6Y0nlS_TB9J&{5f<>Tnh_~rl@wwf; zoYHlrOVc!lCsqfVTDhp6DojWgDx0{vbwJr#e*}74I77c+^z8ZEe)CS#&Ad;$R3LYW z@h-{A2OF~m-bcbC4N@C{6WE(F1YS@*M<~_#PXNi8_ zR5&dd%d4oc^4Ow+2s+PGuS5KXKtv0GIUbgCN@~5b#@aouZ9?X40%M+o5YO_n7GDB- ze~rS~L(?I-8XG;Fx>L!~beckwVr^bgiC6t3kD^cQQXRVU*S)t51uCeXD7V%u3?IE_ zhLHGE<0;$pDbeBth^_3N^VzP$#wP?d7__dYobPA%S~gdK=y9GDwn=qVxD`srIx0wu z^+9qY{vo^ald7h{KKaN^*u(Z|OIMjle+nF=9=!95+`_g3!Q;sIMOR8-9Sq6sFcl;& zl4xWy6%g&TlY*ndaird#CGz7E!Zky#K}e0g&n843PgAL41N=Fq1hNP zw~LfujXRQ7`_w)w^2SH&ciYClXoXf(rc6}H4}S442bDEe&&_U3u_xTUajBfUe;2I- zj|2UnV5mI5Jk>EzP4#Kir!Gg?>_u18>Kz|tC+9a|FNfqOjw^jpbjIAi!;Zo@;!f3MRNp*u@!}6s=)VIXD-IZ5Wl|TG6H)4zjBkj;j||j&H#=%s6fdi)k>sEcpPORazYijH6b-_ zjGeG0C{#vm^{DK8-9o@~QNe^#v*quXtPFpZkKW0^w=jMdeNCf(9G{5}Nlnue%1Dobt&>oAAK}jtrIoNvX}&gM-Xnx? zgL!&-e1l}PRODOdh_}czNHxL*NUzpQ;q16~PY<0YfBGIIqa8%(v^lmEnRiDNB{SzuQ*t^5vZyX{ z%I2q5h0LWV!OGV{=0eMX`Ii3Q4?Z*{AL2%qmdqZMp*4@nVDTTPn|DTSXI|dm&CV+k z*UD3Gt)qEccOX9xK@ovN_x&0xw}aOA>*Oe=z+0ol^jEmte@8veth?vV>*{KbMxfW} z>|T}S5{CbIRpAZkqm-#vSf)mEN?I_2o6Cgt0xE zyVNc_6fJbT*W^yy$n7>Ofl}VF@yhvj3&LaYg;(HL!8c82%%TEgb7J)HaFq*IAKu|R zX!oNZ0fVw0e?1c!C|MrR62BB9Z`p4(UfC|*#M#))8M4|ed;4u1%ME9oGx+USmRh4m z_!JSZT=gAYxJ!6)DmUq}1ktlIvsHf|!3=opnug^JaQhwWafBv`DNn1F}F9q|56HY9Khh-RR z&oJE;ngKV~J4}h=1htnE&lh>{W3yhgiMPB~A7B|u%%Kl( zp;+S&F7VhYX?5%7PL^K%Jz>k8WmWjlo)|ejJDyN5#-&KUQqr{ukzsCR)NdgfOWt1$ zrWC&vf0LreF9zF|SmZo%Kf%ltT#98Ef!S?3%IWICX-O0e^`qJtZY;%r1OLul&#L5m zgFWCT4tuwZNfG?pDmdn?Y@y{L#q`&gsGIVIZE92O2s>Gm`@?o%kEm$O!wubiV#hM6 za=%|WL~BaXsU&>!>VAiCDL(0a-tk3qQ(ilKe>Ugi$3A#HTRvUmE;3;g4$&;hI<#?( zkX;_uINlXIaA_H0JL3Qex&ACPd){x^b6>mC-63?o23G70?afR>J?e(QkU{z58uX|H z4Rr15IlDvAzo}2Ohd(VvHQ|k#T!eUd+lejh;CUEXR#ra8XXiBZ&+G-4q&~V{q(@m~ zf2DWeo?NwtnSI%+gTpT~me>mZ?pijNLtKBVOH+k(Uea$7B9fEku#BW$R^UF=Sb9+qulijy_bt`d!c!(`c1Q1Xk)J#)tE z$Qy@o;kP?icnn{`bNHI5N()03?=E^{e`h2d{;^T-SEHV=ex|JhI$)5F_Lvs|mK)Xh zv&UEITr(J0iEqW!zs&MqC{PS`M{FkeHN6WRgL9oq@wnMEy$@wp944CfTu9X*(Wel6 zZxvaUbgD;ip>bxTD7?rmPQFrQ#=Yfx=_o7n-)NOKrVTY?M}GUL;v}UhH<>6}f3*yU zZC|&C?psetTM62jQ$qE&lXerx8PS?emTh!$!8lE*jVkw@!p~OxWMWDTIn%VL+(w-oFB~o3dJ{u(bF&rW#nVliSjMMdeQD&sRMdtYkI|A@iYVVymqSg6R#mf0T}iK}A9& zqkOF|$@|P6m1s!p zw*29Pa{q6MI=&b1JRqYq=p)zNhTiyt)5DFP2Rg?3o zTIzi8Uj~gMgRGOm{iu@UzBAv417#0Sgs)?E5pLZ<;p7&6rSQ{-tFSt5$uOCGl~;Vd zugeOMNQSmj0betOX^O~{R|L8qW3}IY==%;cQJx$1PUkCl3LjT#e`?B$ZrWj5q6Xsk z7qV5A1>>z5D!iIw-@v7uJ1gaw9;WJhO9gBtCe&#_e9LO(*;;>-Z-T`-Ll^wTL%OUd z$RrlD79O*0{%Ta87v*(inE66X;&GppRq?#oa_ZA z?rL;$O6K4rmW&L!pP<_i=f*gaZ5|clNZXU4Of0mC?Sk{*PfvHn+Fo1-&4ZW`Gjg|8rRn8-;iA>v`*@}az!|nOM z#Z<4z)_z^rHl|~`i*Gc+xEuY@x_R4>1jtLt#NVV9?d9qUrpkb*LmXEyml8`8RdJ~E zOn+rUf~DQPfHEpwYv<$@U^o@C*Hvc0OLoBW%&;5-e^I#c>O!K(R;4ExuIYvA{Gzsc zIcbS==PS~n`z{}2A0W+Wh-EFXy)k5IGSIwyAhn<$8_Ec@R?|ECPzA4($P>3q7b&WXm zQlleWf3mD{N~R`(S5b!_((R4%9PMDF=lPw@?h{(``qYzhJl?SeLEC{!!o3rFVT}CU zdVs3P(>)zg%w2)WBOGSnW9RP0XqYCvpb&`&jsda~@+>Q0c4CeCw}M{Zfb(-nnEFIV z8r#%V5;CmcL371Qb221>&=LM`MDtE5V1>Zgf0l1A|A2+XVJ*6u?$hPD5)(c--hD$@ zJ#5#}(l^*HctyCYokT_Or%+nDjQGO(kFdu`L646}=6;P=d>9Lx&H8Mm zzl-Dg`GOH52UBCdk)pHByp5x|sTwgfe|YkWA2`D^>%Ykg{^k`|f4=o^Qamrfpbict z909>5aU(7rig*f>M1g;6AJ@)G6hwC(l#wqI-^P#^mHn32JTH^R>n?me|~#4?iXFEtL+=pdGPqXb+tswovB5i$EgYUOeQ1^ zw&(#9Gyt~V?xb0|bt8vLskV@~J{8aVXe{2$10C1sn0(5hyZl(1P(3SMqv_w6-6OV| zh`(vfI&q>eoHyGtczocivS9}0VE$s#`aQL(NkIYHJ(3RzthI*uz0Tu zXzQzJDz@8JL)|0ftV)SLNTgVxnFaU1^f|MQ^e{~F%-5~Cb`)mSzZ{43xdkE(X|5ET zpz>a3Ue#U_f&6^~H5v?Gf8w7Upc;Jy`ZHtm*d1<^1;oWR z@?|zzFnoh4cg{@A0kP2&HH76iR6{YV-6gzp1k#bpj7SL(AAs#IFc?`h<362^lca_L#wd#628d`=%mL z^zBT!WHKd4!tVwfq-NJq3R_B#9$G)uWqG*k({Dnri0qiDie(=4Q^aH-QDBcY zZp9zQwzwQ0{kFAif5~ZUoH0w$^!IWer80;O!L(v1!B(IPz|JEx3m=mWTuuc9}g0qE#2s>!g zA}*xN5_Qd-HCiPmK4R4>KviI z?mmLYBojp9T{~=?pKeA5H|CVA&NkU+Zya<5%#gqYNlu`=wb3C?y~o(iZPRjKTLKk! zBn>$vtqJhAf4UAzQjqH8xgJzkqKwQMnTHgb&A{_?}c{PhJ>aN_cJFV^Epr3(=U|UZlAiiRQ(vFkaf9RTm+b_vM!f-kiKJp39Y||y8 z($L=n>f(l8YZWk`zw$x3Ezlbib!n^CIr>!Vn;N-kSV^g_DdE;v6d#u^?}#m=DP9Jk z`Y8j}dLK!Q2?&)(>kndbXMQ}0j$IcU9C_$P(cyDX(2bqxKr~O>Z4N%~Y z3ts})4&xvF;=9Fk2sdQOm(w%w-# zTR$+FY#LvZ?wE=TJ3IvjBNG`;qi~TDo0Xy-Y6`jznGUl~a_w|vcUGlLqpZs)zzmdE_DYzMY#RbZLsk5cgqpdn4lZK zfA^AxNI_sWiUEGymco{8cW)p2^Fmr8#DjHJXZR)v&3x%?YyYA0LH2uP1iLX+vdc!ZD(TJww;`@ZQHhO+njh}Yoa&z zb5(uy{p!_w@2>7&M;*1g_ga$=USGceK=118ej4yajK>KE1!jJ};lEq3=t;zzw7@21 zOS!am+jbC$s(?R84w_%b{YPTa3n%zgr5)}1x$r%5AyoNdChpgqIy>ETL#?~TnVf&E zrdz0;Gk8wYW_`gOWep79n|L7NoscMu?kRUmV1#F7f`UrZU%$n(Q(9_8XJcsN&Q1vq8 z?X*PDL>BJ9@+%t44p2XTzoov9y*-xef%d z)8VRiq-&%_S?*+h|J=PgB48*6Uvc;ze^&35MBD%o=xw5e#arEJ<;RFDIdToYRM>PO z{U|h>g91pJ>;b{tAb{pO&Anpb?j!%CoG-3_V+^PVj3-z9`wCP6ANijE#_E_Y5C;gh z=QtzB{=wq_5hGEgeIg2AsH=k{wNt`|ir?P}K74W=y~&}*1+isLyD?4x&vnk%Sp*HQ zR5}T5YP4Y1qK(Bfrq{5Gt2t?>uZLWB2H@ojmpA!Y>v6DOMAYz5pF8-N3L0i)LvG*t zxTp2H5rIJc>#aGlwp*z-kh8Fs;_Kz9U6Rf4XBZ5F6^N~ zK-wcu0)zo5$w5^SOphwG@)$83JfpE|djD;bj*ILL`ABf6=AH(HgJ%<{ZyEv7;7Wevzvw3FqCD3f+8R zMk=sYAXrduNLxN_Ai<8`;wFrsNw z%zuPu+m@+E2azfRJ}Lz{vvpqk1d(?)P)Ml#3I>NVepBFIJ#r)l$hsO7^F(W2_UQv( zByZ*lJpiUUkx!#Hl}b~(G5s&Qil|NuS!vAZU~wH5zA<`(?yq^(2#EE*Mta@fJPX`d znk2>d3*Kb%}GO@JVZYZok=J@5W>7Zk<^9 zX%>Zu2Pysm4!f-{^?-Zdp=YjzY7k*Ea@MAukIsGPAgx>%raWR9d4fLK1;cigqxDet zs~i5hlkHFbif^6o42l1s%Is^oCfJ+36HAw&97eHWRU5Mp#?$gRtStQmLpc)3W>>S` z^wD#7heZJOLTw)+peb>77xs53H6mRI{MIrgkuh8VXom?Oi5*@h&Kl}QIMQe_M@G`Q z=gafF1YufiYhdRXwBQ3vQxRl}4|XBwy19K|B~TdVX+|sFQE7*YkHZE z68M+boAn=FBh-0%+q3SQ{9493y{(VZS)9u?%UgM0C%LE=@Nh5>&!ZM>*}BCP=f zJYkgk$cK3fX;JR;)-6?8N#{R}mK&2}V>CzCNFFex(iGbeYfL1Sk~f!1aU)fToz@X< zv3Bch)Rj>BnQ!D6zCP4uwm2l`wpi!J|sf-um?6+WC7wL`+b`S>TE^n zCWTaoc5?Ttxfes^6bG`Kyg;h2Umy?M}aNd zX-04F8E_HKkNqXs!=UBg)mEtq3`aYnh~f?WpYu&^cjGH4dh@a{NiBTBXJfeiy@mZm?XSkB7J$pV}}X z*P=0_hNL2m_>+SXORZFncVj!gunm_}qu+WSasl6C8RnSKk)VNkCbYEoNoi}(%!Ll= zyt0$V?DMNh+dua_y${WHCLE{%`U;JE@<7F2M;9ks%BFy-Zd*~|$qo;`%Fr~3L5^{^ z$0Z;Jy1N3e=A^WQ8yFfmvUF@!qeusZmn~Ew{vE2nsSIS}Jl$<{C%Xr3Wcw>gOFBiiX%NQ%R#5zqvb>J& z$Qof4H}&Ol9<-#KrI5=Rz-(-xmxc6Z@xfQ#S<=wq%p?56pga6=2<}oflR;C8mNuV)&plTPMScR531;;5W(2X|b*FalGr*{U(?7yQdVsknaWtO-r!Xev3`gkrgk z%z(}qje6XuCx+$mvr62wMr0BOSX2Xct5`u-$W1lfo1M$)d(P8D00|qGge*;`0Oe*> zuQAXrrq9^zpqBttk{53%PYQ6XPXrKwolqln0}5}BN7loD87J5il*M@NCIuTUKvkZ( zk{HCw^e>(_M;zsI_7b;PM)^hZiNwOnhUm`)thq_*Sc^flOI(4n z5Xm!!+HA@=1r*_LKDijL`D6a60~ zlP*VTWUDXg8BkcC28n_vJNg1(rRGmTe3x-@=tHrD0`GnnfQ5N*-L8Qdpd`ld;uaLq z0%x?@B2&Jj$tz9nZ>O6eA2#pXuHcp=>s|4E42zS6Kl5AAm6iW!QB)fv$8QkIe)TU4 zM6HZss&!Je?v_r~b6<^yU@uB6y5ItcD+!qCUv#2!avL_&83Tij&Ab|DP(NM&ke&dl zBe``lrOEB`0j2;KlFReoF`B-o6@Y9+{zYiR&ys^Ej^I;;4EaWCm0{bQSR$O~h^nka z#e(1IAm}bhcFI%jD4lB!*DdTHyY3tETtt-3ZAlf)O|ThnZU!8R`IjeDG3?JZ5Y;lR znvWINNsj(UTZK0T*w&baL>rbkHkEUkmVzTa?@@9na zE0o}Zy`DaA1#oZC}TwD(H8$ea=i?;f%}JO)!LTZ)fhtm7nX{PrDiW3}3IPQ6(uaQ?2? zoNT|<-^ODjkt6DLQR({Y*g_C5I!DO&7G*kV{pp$z0nJ@NWMxG zWT)>(HFCjc3Wc);8Jc86d>UrU1YELE=`W@L2&W%JBx3_g7BZd6rw`x300nFEFMcNf zBv!3H=iUuEj_)@8DA9LP^wGzFni;0}#ukWXByAM@!CGY2))v+DGC*?sJ?+Nu9~se; zse}&VfN-Kv4`mqd5>SFzbO{RS(i1E>cgP6NyPaf`sMPI1h`y?JwhVsw&k}H~F{J2t zOuZr-fZ$Fiw0oho$r!1H_4$Ecbk=?3xaMhJ0ZSB`X0+U8MS%Mzzu&&{YN9iu5 z&gg#RsSKzc%A+hAk?RG#E)l4niuj-oFBgT`c>QX}>NS-x!P9=sONm4yRJx5U8zHFV{!@K(m+)cmWxcKz>MgD$kFiV;gw&U|1UbQEtm2)-vCvd5Nv?g9JtSizJ8 zzbLDi(3=VoSqn@`oxSVC76_nkj#8oc?3#^3!=06z1GpXb2E-w>V92qO^?ugt3k($X zHjmW71Pm+D56gI2rw4ff7(g1I7=<|xyiG`2nC7vA`%d;OpbjXX+~0;K$)1)_AdZ<) zF?pb#me~0p*t4wu;UHd35cO0F#3}ogpt$3uOab<5Y`HMLG?6#t9c`uy9qAlRGjxfQ zCnd10FhZp6q=>~GJ(ldA-GTZU*Z`A9*!F%v4~!JB>;rb;UZknRLr_4v%YrBrz#@O8 zk3hh9jh}1_urRPci@f8?61v=*+dTs_l%^oY+6jh8xJfp7{V{}pjXFb>w1q2gG?dBY zAT?jUg!9*)=bjU}g{vAfeOvQ^`8NQxt30`1v=NZjfike7{e*}{ddPR0pOqy{xFK{n z)!v3g=dJPmPA8AHw(Q=rNIx|S<`k|@)U_4lsJhY$aI8=Lb1jNt1zt<2ge|ih$-suD z4R4ljYBG!i+_l;U_d@zBbSXiCH3Hb0MZDg`)I2t!#}r4EBI!2*i4B- z=LYv=)vru+-s^PIx%XiEN$`HNf%A>3Lxp7t;9aVsrkX^cLkU2v=o>Jzo}~{Dg$he(ph&<@)1bNC1b7#b|1y$L>}R(tyvjrV~b< zWl=9l8Ewwey*D#4TN?<-xk0Rvf7Btw3sr#Ji|keTQSj1*-c+y+-HG4-_PizPsLIet<5qs+DbP z+18BuD~)YxhyRxowK93l7k>tSf+FW_ou;bcsv>{#F^B}H4q632vk866mNu(6z!;|e zSRv+LV$flqK>~P@?nkS;YX}OO8vOyVwFl@Yw(KM{3kBZ= zE3kCAKH3#AlfTz}vktb_QhKc`;JnQ68vJ?lEE|h{OP9P^F&WAg(URFD3m6@wXCr+Z zrMntdeho_SlU%_RTjJ(p#e$S@2#p-xn7goOk6wmT;55dUgw;DpRrk8wICm8FzNIBp*N`*fHirqVyLs5AS{CwGUBShN3Y5BaHh$B@P}4PC^KByC zmT0IG{I)Wv_h_lsqIS9Sc+tWuem!wk6V}F_nP7=>_VBl_P@{PIeO(`S%#Mr@LH=IU zN*?OcAKdJgNt}}rt4ug>fa#kJUpKIZ2D!rk4;f|t^ydBwtU5bM*x&VNlWw$j%PQ51 zALc!g0NXV+jW#L=0R9^OMHI@!!=11@Zo92#rd_o_<8UC~$uFQK{L;Qs?Pvo`h5XEc zBOpAMj$CLfbPmj9#+^T#;mxG$D(S?;UpS8kugY&{<37>}?0dcmFu6rO2fx4*xuZ!X zic{4;eW_ziTFX{P#=W^sfLr=FgebE#7NOSEV=G~^z$4Gf!S5YO>FZr$m7_l_@L^ge}N(}4j8tbzE33JrR{`6~W+CWZv#~0^`RQl{@C3*=j zr=aFV;hmpoYF?_=o%8`79W@g{a7MrlpFr@#~#gBtb8#a@=teIT>&2|O#3Pk1~Gp2zx~DejGG=|NEyDQg zJzo#c(3I^4Q0BO=S%oNYQQtx>Lh72a_$Kl>W1fX6UFR=h)6<7~D;VGJrqokQkM6tr zIt~HQa75v%_oQ#ZdlFBGDiebCMHR<-hQYDEOq)jV)BAq6EM##}Bx!NTF&;fz;AXiy zDvFwcfb(|!1+pUluM9lED9&~2>XEf42L62QGFqpsP*%di<(MG)<^E3fTm8lxU(uSTn@|;C2n!<06c}| zI)Q$IizjS7-TbXhLnYZQ#eGLXT~}Acwpq_DER%zbPU)hv<+(VH*0C|qdRQ|S`3|i7P4=H& z46kwzPI%#4w`g-$X9Faz%*^OBieH>h8)vTA__?L zq77@6T5oon+kNXrfDE$1bIPePs)H6v(mQT@fYRKSaIWVu #i@h?#14Wd4*G85C z$YpGL_pnU|>-wnBTAW_f)NI7o-*)2+^3|h`X?gmMaSA|7w!>tmm%KYi)WMWUQqK`lI+1T1)Fs}ky*K#JpWo@kAT@Yk zOm+!>bMNOW>kC3!ILPO+X@_Qw%$3A*=kpfeOs1D-BwtoT?TJc|Ju`k)5c6e{vg-D$ zw|w-&K_AbvCB&leY-TUbgd(Np&o>JT0q(l=1J$o5H*C_mrmEfbvp$>9u?l4@Zys~j zh#ZtO#B?Jp_)p*ewa@a!FKlReiA*3U8;pw6wf*}STo65ZW}xtnk6}?1^V=RtKZ%%C zyojhLAytwya&&c2vuz2lTBv3lQHB@cR?#|ff#5DUXV()d$pIhFSlJhO3JNoo2hf64 zZrU6z_=z|F=$xV>fwEFkUXh47FIRAa&tvG^c$tiw{^v|AG5K@zY%R^DOiw5JR;X|Z z!wafTWj7JnW1^1rVUmbfNJ-pMGeqXgqTs4s=sw39@$3#uouw{2e3+54`nkk>XvZ9H zHP2|R$lG8^WcMUZvAn;TU8pN`8i36kNj)1ItY3?zw@x2Ayj^~StZ9W>-WvkUeO92t zGH_mTTbq2QKy40Mw2jRc9Vp8Jdx~j5fhy_vtfue6mQUs^>G$jcDloNXuK!2m*dk2; zeV%84kaiUgQ|7cD-%gY`4*k7+ZC64sOZfOZ%sL@XiLle|dz+xcKbq7c7VtnHLKo;_ zPHW^+hLq(0HMDO9>kW&U>p+T<>)1Z9j;bvg>8k+9w z_qe&!QwnNrt_fqR<1Z(#cGCXT%^l>poeW_O%5j# zi`i^~x5>_6QwdGuVCs~z3xMu#_6E0~#WI0v@hpT9vt5-%c-)t0;BcPVs!IZC=q>#4 zQ^H9M`1E^Z5%X?j^zLL~YRy;1Z;n@72qV_{cLU zH22)ZasRcsGs+Cz#Ii2o;1$q;7dt0YDF~z^?T@7Ne1f9P+Qj+MKY;76Bo(q|^CrHh zoCHMn&^xRd8gs;mb%cnN3iHY|EqyxEOQNs6&)cx?YsX5#F-a5lm`I)%{OZO~KLICP>4k@I+d^4c~{4Tj3 z;bmJ!)zL8+!%$t^VTE@C{Nb4i2 zIuMMIDhy`F4y@Rx0vY`n)EKrInuQ~CGOu4Ozj($t?dqpW8Qd=70*diSVZ`Su8v(mY zYt+T361dK9!lMR6_!s z-jN{sH+%0`YKcVjWQHvRK0njj9yj9TxhWb)nIVpeTY$Fdq2n9=7~}QF3##KQ$xaB$ zdPRz4c#&SkYbDua(^RYhWk0cvS@@*1{v>GNL^l(>V8=|Qd$_l$wZ5JDIW+^&EFlO> z#q2J7IWBsvk#IWhCr3AJB##U6Y!hKA^%}&3-AO12JIO{i$~o|HKT!`MH)Dhj!B#0u z;r$=zCV+EGd3xA)nrJMMCG;`NbE2+5kC8FiKNNiu@ckAFo_Z=%qg4Y1qt)7fhOvfF zghE>i4;a~rg2QIza`ZHXcaU*OP#d|ku=IsINPD>sRHiVAyGFo{NVgfcEkdLQ3JE?r zQrM_924T&0uw}UdwzZP#-SE1Aotlm@Jz%g<6o5<;^?54{50}6YL!GmFbS#)Sz8mQd zm}7OYgsDQQiQm_UBnCR4W1*s*m6o%*mf=-#q5nj0tW@y6+=df!Pv+n?d|br7&d19F z^He!4-Nm|?J%0&A`ayP#iqMIpp?ZfU)ex8J2J|_M2{r=%w)Gp-Av>J*05&V8)WF@% zA^<5O?5PGpGorg3kKn$+vgTO>IGJv+j-uc~ls%*|j*L+D2|Y2BiKuO9>KC48KclJ> zx9$u0OYqWacShBG>Ee#$Wp8~jG;e}d%p7(%GmJiguW0yRUSbU_BzEq8l{Ipp z?>92XsA!JcI)Y7eHhNw$^a@zc``Cvi0sx!-Yqu>Q>8#Y7sy?=;LjHC40E@6C`F9v- zAmWLD_F=kEesJDy!YG*#@aa+er#*P|3BJg({8VxsjwH5s^p^48L)oE7=UFd z=mai1$_89dJ2o!QDgK~N=5j3H%6WSv5J4@;N%-9@eM?`?>r88If#WjB6B5#=r%|Ff z$}$kgAgU+R5EEZpyF5naS2f?^^#{w?kISy*;Pq&@FqLxN36;w{iQm!$sV}bL2)fJa z`DBg2(;{rDQbbl>S!wT$=|DAWG@$h|!j}Oe-*!BN%Y2+UBoW`;`a@&IBcTwtx;n&I zP(R7nV^@U>I-~!Q-V+CWBX0FaN=rNqA#u~KOGWTA4Ze*u)KZXnCmNj0T z`eJ1K&lK}7L>6fe|MKOR`#HRfmy-(0$hV2HO}cCr&^1NJh#mpqR{=2w5kO>l%9tWb zLrR9+ZFsRyO6X_nnCZJMYo?*N;{*!QSV4vs-zNWoD%)+%EI%0}j3g_s;36K@6R*h{ z3Rx<2=)bDh(a!@$ga@SZjMbQ;l}-rqe#-7ls}cA8nLOw zF6x5REJaWU_O#14A#PZ@H2_sDn$%B*%XA5N=;yIc!zBZBNRQk+DfAJzKqhh29*RE` zmQ!$UUKzo>_AhsPV5wNl)N=NhjHe$^Aa;l;UskXT=%#725BQ-2z=&6DlYlke6VG>( z6^y|Hweqz0=G!>_w3=ZTksOj?g1Y3RSj!`XGX)K`W7uYzAvTGLbb#J8S`jPuqKG0X zYg8%s%zz8Zrm4km6`_451;meR@4))S*#44bUX<)lax`aSlG#eN;WH@BGN>tj6t=N) zH(2hG2he+u{u!7omxI48EFF!)=!i33!I0i(><$eV;lmE^_$TYP9Jh zGFq+btBE{DF{vrwJH`@=Gs*hs8(UiREz!3w6*PRq`9f^8#Es6&KQ1 zMvJgm8`NAE2A`l-tq0RSQxBt~iC4&-!LKxEQMK>=fksoJ6aZ)ql;~By+&Pj~jh^v3 zpuSIbe!mZm@Pb&s#sU(0xITmh=Pg_lV$EhmAZPp7m8wngNKTdyBG^2Q5vL6eRsjtzTLpH2~CCWgy5|bS7SI`TRkJu0ae?-H(=}}$nd)eEs zc#15sK1;1+M8GyB8CK!o6!A!Kl3fS9U7n#Kx6(TkgE#jSqqT;+8ViY7=rb7^a?QE= z1)V-qfS}v#)*^mNmRK^~DE8;`l*GN_C9f0I;&OrKAu*F#14<~`$M$`2jG5mJn_f&u z_-h&7G8c)R{W8_wmE76S0o|j`iPkGM3J%yw zHZuvPu1B1s<&cTAPfH6Xzg{QKsuY2KEww;jafUL9z%w2lbG74w(W^F$zrAV_L&9R; zAIZ(m2cWTFU*x9rO;N%27y@6WrakKOwZxFG1>4~pjAr$aUL0NrqNs+OhgJRzTh@(E zw1A`%!z&}l-1XZn^TNrYVL^%Ga+B=sIJ=l6;9@WC+BqCO(RcXZDu)NV)7n3HyzQ-0 zfh7-zMG(xFILPAPbkybcG?0OsYgQy96?^UMC*Z_SAn?t2+<#Bh^ubn?E(xnI*_NS_ zX{%S}d*3#I6LX8^MiHNP_(d%Ef);=s%Vu$hFcvCC^LuoO-f^x<;Pwb}E8#8Q-WG4)gN3AXppy@) z6mXv63LKu5{g#|@C<=hM0V{R1 zQc#RnKU(joBke_C_W6XlRLU;m^ke9f}f z&-I8L5qyDCrHHKZ`>(WjCG}rNuzwxUnP*_q7~jDn2{JmNOSve5#sK z&Bx$uoH$p=^qGv+WrLl$f4Fm{wb5JBVUNr`+6T~iWs1%AgnC^X93h!@eBCc9E6oE zjc6GRt*s^$I9(BhmE*sh_BwDW76>cXe>2QG;BR&iHm3h7X(>U5Vbb&=AyC^uSwIMh z(^?RIAiFBaQ+OIA#t-D*1tI55)5HIP?iiq|+-WVO5U8pCVBl>>3ZOn3X}VND8RrVn z8|$dC|ZLCDI&#hC=GP6@cu z(RRjdOY~c-OCQ_eHbuBjt6Z)~yy1^E7V8~Oy9cFhtTfGcaQ$ri!D@ zlWnC|RYUD(#rZqB76ZZA%-V^P!rB^%K~S5>eXyj?jO7z5O;tH2?YUf2-YmK^Db3?m zOHER4M?rot&5(kJs6GewRms2BB&{b7b)>U69vLpIUY1L1fEIcCw z6S|p1pAW=;X7LMzZSFxVDvg!JN|7{Bi#0};j#OAVicE9)AUsZsSCyAEh(glkX2-;V&{P93h#u2-R=8RwXTkC=p<{q=6zNMjp88Xm)QDbW=iABLje`R1VaH zO#)Ovz%(8aqi8uuS5-L?WT+C8LR4L|f&~U+n|~+Fp(Pa&*CL2UW?gOb0uqBw2_38I zU;)rE8ipW`MS%hB6<*7*w6_H?onpU{6fN$wY*pEI?r0eKN(Hu=TB4Q#7a1Ll3Fw(c z0g-g*Bo=LnQXow3v~q^OCM5vQlC16Tq!!VO1yN1XvJuS%kqDJK7ZH?duT!X56$s2k zc}iMjG&Ri}NDGM7`m}#Ua^R(GNPU?>-QW5H>7isKs0bWbN`GQ4xMV!pta`XE!%hgd zl+RFLOr8^XFbZ5KYcNYlgPYIWA-&K0DNp4U$fYE+y52TUZ4UDbbTAx` z<9$8f^=b^vsUowH-ci}P%)^bx>w`uwhIyd2pr{H&Z=?oM{pf;>o4jw6yO*k$MBR`2 z%Drx1NU`N%V-US{XjXtgSNfd5<;lvlbx#(jr8qM#o1(^?;t3sFxlJN8`j~O()t+W>+53@SaO3oD39bwqs1z9MG%L#-a9d z*-s=HHR%?#^ORIQ5uVfeef=*D)a#@AU)CwBf! z?x@inSq3(^O)CIDlu@}M7(OOH(xwHcKwC$=rdYqiG3s)|j(l4!&YrlNwYyiOR5P9~3~)o3e7at_OZG624xY6xUxg zR~i|KmVh(LUi2l!*s;fW4r8s%i0xD$8{<}fV(L)G>Cv}{9f-1;>DOYGMM^Wgdvdd4 z1N8Ww&>I|KGW^I#jB!cstFt;_NB?b*WKcBB{7c|A9z$$@^s%b-Sedd~EPGIOGIlv_ z7o{)u_C>&i53Nq!ZL1YR0INxV0ji)B&MUg6xtVH%Jzx0Ct5F-$E>q)ZT(!1R=fQ*=rmcyZJWRAAiM z7AgR3Gx93<&}Pma!dBw6_@FZ6uvVQ>B)tU))U!r3w4{OgbRAM?#Xng39g<5)fdb)V z1_PxEf`J=x7O?HY7GnyH%TGIfebhYW7nKHN`xl-7q9mi}6* z%kXM4{~kBRgPn&xRmzc=I2>(OKcG}(=S1ZplMbPszh<86SD{_^5O-Hxon$od&b0wt zE?+FE?FKpNJaVy=b$TNpBfW|+a+*3@l?MpPnjx3ci2DDikwkG2t~ z00|B;Q7f;KE4#(ZT0ysGq+Vr`osvmAOD13MFhAk#pvuC=TM{)Dv(DYi!>9px03N$2 zD0JS(lAS`Jb#vq?6Rd9}Vr?=3(*NEkrEUG6yfWXKF72X?dX}iAGB5-(a^SPFOg7_d zYoM=@uxF)26FZ}%hpIPVhW2aU!nM5`>?s_x=s;;xuqZ7o)z5#M&w*_pZDju{9)pWn zeBqeH#u2-uT#-Xvn{bWtUj+v!P1Pa9QyX!jtdNwUa85c(D+S++7MT7DP5+I4Umvo! zNsMvdWaPC)-g+T#J3ZLue0G^TBU1W1Y@-;1LfPk0qMvkxmqKZ{OjjDmn-6)vlCq0T z(srBUx4d31`w?m1gV74S{T9*+Znb)cO5lpIAz8grhX$V=es#sUX)rTD)O9;T#2ITL zy1JWiWGT8Bq>zt%(l?&n4c{~CbXKy<7q!6X zs|wsaq4}tp$a{i{TP6aaCTece9Lg*ueKEmCHNad?+ChuW?J$^ji=NO#A`Uall_VEx z$Bpfs`lbYfF@Ei`XyKkdP9ua7po%)nrA_zAxUfrY$k%T?wR(VQ;M7Wq(A&B;?+2!@WqeF$Qtt-p*{vO2ozs- zzmdrXdAy5YH~aLHb+O|;6u?SlbDH`4K(Rud(7pMf4lm{JIM(0S68Hd~l%xbZk)&)< z-=iQGA$a}56O6gC+@tN#T40}kznM8ag7zTE49+`ChK(N5mr}v}byZawiYFS0W*}gJcrGcO$8u=XL4WmP z5o>IdAGj=uKD;G_uo1FPtFsR*qUfT3f_)e#CDcS2-%vq#8<9Py;Zx{wk}bZ3u2*!5 zOQf;Ad{`=rl%y8uKozxRUOq`_8Ttvs0O^to&U77&6WkFlL1SXkXWWvsmqdm#C_)hX z2v9F;5#0*lR+z@`4q|^{3#|W|IE?<(!g*X9PC2V~uwK(rY|Vok>#I}Pea=p#X*zIG zGBu4}u@Z793t^8IVq*4CwAY|8xc?yrcJGR*ETNL;2;6?1ycB*TB4oJqnimN0e$Z?) zLh&nUR#okBC%v=0^KFrKrvFz7dqoJC_Wqm2M(QE}T=$#ztSq(sO+4`D!^}lB z9syJa(7DcQz;U6-qQ}`l`D{5}@4NS65tR#tvEl-sqJt)5u0Kqu3nt_W`K^7L=WDyA zzvxt%w0g$iYCFZCvxs|nw(`5zw-0{?CF4Z(-j-@d%4uh~TV%-;;=w8ZKH8eWV%5az z;G`L#s-!~%AgRm85d7LlOk%}0JInGD`PkZ))QjuN`+nd#L zRgxKo=1V%5-5L47f_pfd zsAP_Kpzn)t4D&;CkXS%egTh^>cns_D0=SCWn;1OoR^7nFE;jKn3(qG# zx$yIB3h-obq^wuzS7$A)p?`K3`X%uYod!kEEs^yA-|9aF{WJV*|5E=n{;c-Xl)nI+ zb@ErnVU(3E{cE>7mw%G_?D+aP{&03yn>+um_|~1fSo&A3w|x5K*_2Hed!c_}+Ecmq zB=+M_=tfuvFEQ5sC~abyKJwko>TUe+R>)3b+OTz^7*z~rL}W&D%o5~%HI(G zEY8iT$x1qQ@#EFbnJd#jclOGQ>f9?S(~bF;n$p;MJvC#hKYG+YZTz&@SpjDiblzFs zjH2y3mlkyxRpiREbNuMx#+n02>RtiYv5HBVoePD!=Mb9z3L4Vi{YXbnPJOYy9YEfX zmEI${mFf#;xRdr-So55~kL<%1HlhfAzUYEtdf_4#sLUfC{}?trL2`UU7oN%bM>lf% z_GS*2W5#!NFyqJ~QB#riuma~Ox%wCn@-oqwQJY0psDRsXI%74W2=xrmpMxUG<8Lwi z@JSU}wBpzGE$wHu9a=oD{!;p8V)g5exFhKC^19JSgcxmG+tf3evPSJoIu6>f^wcoV z&+1u7b-lgcKXiWw-T8QGPt@f4mvH)`I9ru7iCm5nuLmML)bk0$=%LQw-+(8$Pb^|+ zQHg7-_%6`r=X_f#8B_~kOIip9`G;MR&^%Bz06`Fz8d=m@VNL9D;rFtUm59oJ^7%z| z^EwdomUR`NB~6K!~zNz;N;q+ElS||M%c=3D5Axs<5A>B1@m4^r5qZH&b4o z$~_;@l=)2*^~zc&Ku4e2h0>5MPb)b0E~pE(KHGPSN#pTahZzNM-Ly<>;wWoktx|o! z6|FN%`>X`$vCH=4&ctOIrYe0aelO5sijZzw2ml%ZHzNanQNb6+1Naws$21@BW@3U4 zZ4e-Gv^)v*6`L{anQa0+U&peLPA}*y#bnV-_91Y_+q+t9FgQG{B=H7BVUs(Q@qK>J zAJ;>tzKNbappXFB$%UH`{JN};7AL>|YRYZR~OecxlOeRL=n-mmqZpvolTi z)trQBrw4}D=XPjx`n}$_C%a2Vdoos+!W!dSrKR7o2N+N^C~#f4#wNkVU)9RpT_{-8 zJ0lC<;4HP)r)dS`5NN<$|M5D!?O??yX~fz;jLgF%7%g;~k?{{?UIzPwO^dVofx>^l z%1uBxIRB3nY83;=aR%XJ{Es1GYzGhe4Z_KsW(Wx})#eWdu?GUo*=7I zj}>-W!vBsxK@O1&@)Omgf+z(6;bKkGr-B%2o1ld_0RD+q(?gj3Zw)Flgz5iAPc{gX zpYi`TeN_6{lzkyc<~C9N{}4-? ziSd7kH7(l~V!Tbp0zw$%r-ZHT=QvQHKZw2UCjkoz!orqT;Q#@EW@2GtW@hGOWKUyq zguwa#O;sEr;((ccNHJU-c1{=uaZ4v>7eY2JuK$l8V_{}t{y%=KM@w6IOA^EHrS9*T zVOzSI{&HGnMFj|m6geppVXz4`;vj}N?iV?^vzY61(3_yA_^56*qftvn}8{ z5~RdBu*62dbLqoc1Inl*^?N9zU=-VogJ^5PEPop~L$n7&0`z4L7-d2Ukg3@JM57MC zKU-|8A!DExQ*&W?90($^A+B_ab>$f#kRz5t3005;$DA4Z0QMiLWE#p;(; zU@bE8F&riY2BBoeAVrfwngXi^v7`M$Axuia7zd_QJM$nE*It&aK z{J~#s)aD5SV16qJj4_XYSk4Qa%s7kvEaijhcDrQ{>h)lpi{izemCCSa)INT4Y{OK( zd6Nho-QDBq?dJG(^U!9Wbbt46?8q+_la{+%dTfe!Aj6ZHKHTMZY@E6L(VU3Civ@b2 z5Z~GBl>aaEAs4N{!XjWksgt@zn-2{X(_#OE4oX=6cVU!CGJMiU{{$cv z*a`s$5I(;0=Vi~G`1Sn!V`Su=eZY~S54oO3DC|$L!SSWN0f$=77}?Gddu-B;6%$Ve9yL{C}mkvK5W^XwczCs!cd*u zJQ4mvGXK0p=0Y8787g-P3%7*xn6gz<8LZZPVrpCzYss-bOK0)a8Ko}T&<1gdz+b@9 zNcBvr7lQVUoxWagU-d@gr#SI|AOh1ecWe4){mMb*fXcE^Qfdw>{(`ZWu>QO<;U$?b zK=wQT^pVaNlIb+Dw@m#pb9Wx`G1afw{Sj3m6AcNY@xVH2%gn|Kyp#xk_I?A+Po5l_ z(tveJNN*lgw15=Sme*uYnH!>n_bXkXRC#^|Kz(&&si;DoX|{y+$QrblUuBXYSEXFZ z;T~Gn?}@-dql` z>3DF%HGyw|_!GgJ8l6+y4MDLuX}U)>Rj&h7C6twlFV08x?I?@CE_kr!Dxg}BSYGnWa3cJo|HW)69 z6qQgy1*Ie!vv!c6R_)YQYOmsL%~E2vp(xr~9cF7&BQzvN?HF&B5To|4y<2M2e%|xF zKfZt8dCqyxz0Y~hx##}8=iGa4b;~VF)#rY`1d?wk!1Fe&g-dcJe!%aFd0P?YS*5`~ z(f#fh`JPg90KMRNu{4eN-Bs59aCF{$Xj3O zF-JsBcsAxUCw)M%0<=!J23;rqD*OQ6xdSz;k`Q+Y^6x;;vbMx`Fe!L`jZwA(kWP=7fFB zpMtkBCru@WL8%oIvnFLpoNDnMgFSg*_IXUDT%Wo{F+b0XQE<1h%4HYLN=5WqY*sLg z-uspP31n4DOqBRK$o}h#!HsxyuBHW%ylYaQ zc~;intao&2`}wb@=_^SGb67V9H>E!&5ofG!zFnC;r&aFGLU8gzfv#^<|I0Gw?AfMg zwom0U;X?)=Cegp=B(}HJC{S4rk40)#(jzTYY%6RY z1xH$c2H75m)$t{Knw_<;n9J}cu5&H=Rf8sujvqK=ht)Tp6K{Kj_Lu&Z=G6$Y-VY-p zvyFBPXJqxA>?BVg#3zo_h*9sn^ziPKc(A`WfSCzX##^5{MsLerssUNVz3A?Jh6Z_Q%=w^Ca+oCczVx z%OIr#TUOqkqNqrpCTS&Y=>rh*BPk?IM59jC>G)sw`TVB7_)S66OYB&7l7Adjga>>} z-?`ng02@)>on9%+pQL2pvkc(4yZ?rBz#ke3C270)g8=Z4sl0J*<{<|e3;@%bwCh-h&dhq>d)A>GO z+Ob{9O=)q0&YA$4z#h%e-P;wkA0STlU-geY%xzaMb-&wZLk zq5gNE|Je%Q&}DzfZnyPy$BdAa)ecyRA+0ofe}MdMJW5AZIWm2?=nAthvSuACn{nr7 zqNdbZDhFYHJ|JDJ8}OYUcIJxo$mOFZCbG}ZmOh+y8)%4e2w=!J{ z16Q#j_TgkE-7)A$ulW5{lX6~K?B9Ifg58hpfwxp>|$}$*3pH<{fLfBw&J=RN$#dXy@oeLd?{C>A%uqCAjnW9kkNc7 zM}{bqF5ItZlP=FqP<~QDT0pxz{nq$2o?V8U-mz4XpUP~Qm73GV;+QOYK_zN1J+wcK zj%@k3a%-~H5+KG55ZT{_1BN79ZGrOtOYrFrQ1hD~H=2K7%P)Gsdbr5z&Rt6%e)?#r z%QIm>>8zaz}JE-YJg=}dkN>TZ#X-bv%o25xwXP*W{=@>gMC zWXH8xw7xmbDa5H%2GtthK^Hs=tyKRWV>rI`uISyuX*VBSFPpC zCGDg>ajamE@E8Z6sfTRiJ8AK{_KDt%=u|hxXBgdBliad?$I=dZxmIW2=g0Qfb)iq$ zc{{I()xXM&ihF?bzY~nldm2O6Ppob@V!k++r?amk)~~63vvT+*P+7dw{A`pnsPX>g z+Ig_tW|lK)$VL}qcRjYAmnDD}dTBClYB@o2kVan+Sh-{~p=T<1?0M@E$4;-^3|FG% z6Roy^T7n5$_3Bz@6`3G1Gbp*d_N!Pi5vK}2XLk3FJOR3TyFB*yb9M6iC-QN22O<#i zshWXwFf0OT2b45>7~%>=Ado=Gdr%u`C;}>dA)5O5_+N;!P${S>P*Ts^&F3PM`!~~s z+T7BTN1#xM+tN}=Y^w zVU3F#s}y$f_)9}9R&y|(J+A4;d19~RN?+3~vi9(|QlG*h@{wU^F7t`9iO}{*z!x}+ z+NImV>?^Dod0=I$ULGSF2AIsb((Qy8#dhXKwTBcj;lc7ht=J1-w3AL8aA;3}h%g%m zWjuAVh(S0;+?dokY~1d|Dyl#v*f=Q_)$+NfB=vJAe6;EPM4fW2JYvq05a`UuC@WFFTSKNl^SZ6t&<3OEv!cmn6>j;?K zf%;#3W_9mT%mvlw(g#(W*n54m-x6kwy?I7tkC~HVY-3?;zswV%$H|6la=V$(CXMRz z8bc^k)1nv_9sva%d5b#AZ`CjvYJmG%Wy!5#WD-y;wjqRKA=bwFKKe19ab=!nJSCiR zfXQG-*Zd3IwaB`tPuP*`fs|9@iGHT<+wqgu8Q%1b z&V3e!iI7C1MRsgO^h?ZwPuDdDnQK5W5nqu%d}s~yJ@i@khDF1)b`HP`atJ3@6N?mb zcnW!@zwlXt4whsKWD8t!={uT&96j`ml)}T_h7mJe&#*D;>Vlzgfd0YzIBn*~4-y|H zedQH97XB|tYn;XjrU}*xXS~8o|AV!)t1R)X@mb)*-9La#NJ$p{q4uKpK#^54CBon_ zzv}F`tfcxuz5$4J(P4}zO!^j>nF2pLX)hwMmXOE%4fz)iy{uEZhOT8|`|hOSs@I-H z)n<(o`R7lSAg|wyEeQzCr#@A>$}s9PaaH$dBf&aiAfRQW4g3#Kf)-~0 diff --git a/doc/src/week3/week3.do.txt b/doc/src/week3/week3.do.txt index 35c1aa53..47100679 100644 --- a/doc/src/week3/week3.do.txt +++ b/doc/src/week3/week3.do.txt @@ -123,7 +123,12 @@ q(y,x) = \frac{G(x,y,\Delta t)|\Psi_T(y)|^2}{G(y,x,\Delta t)|\Psi_T(x)|^2} !split ===== Code example for the interacting case with importance sampling ===== -We are now ready to implement importance sampling. This is done here for the two-electron case with the Coulomb interaction, as in the previous example. We have two variational parameters $\alpha$ and $\beta$. After the set up of files +_Note: this is best seen using the Jupyter-notebook_. + +We are now ready to implement importance sampling. This is done here +for the two-electron case with the Coulomb interaction, as in the +previous example. We have two variational parameters $\alpha$ and +$\beta$. After the set up of files !bc pycod # Common imports @@ -308,9 +313,9 @@ plt.show() !split -===== Importance sampling, program elements ===== -!bblock -The general derivative formula of the Jastrow factor is (the subscript $C$ stands for Correlation) +===== Importance sampling, programming elements ===== + +The general derivative formula of the Jastrow factor (or the ansatz for the correlated part of the wave function) is (the subscript $C$ stands for Correlation) !bt \[ \frac{1}{\Psi_C}\frac{\partial \Psi_C}{\partial x_k} = @@ -329,12 +334,12 @@ with our written in way which can be reused later as the gradient needed for the quantum force and local energy is easy to compute. The function $f(r_{ij})$ will depends on the system under study. In the equations below we will keep this general form. -!eblock + !split ===== Importance sampling, program elements ===== -!bblock + In the Metropolis/Hasting algorithm, the *acceptance ratio* determines the probability for a particle to be accepted at a new position. The ratio of the trial wave functions evaluated at the new and current positions is given by ($OB$ for the onebody part) !bt \[ @@ -351,12 +356,12 @@ The second is needed when we compute the kinetic energy term of the local energy \frac{\mathbf{\mathbf{\nabla}} \Psi}{\Psi} = \frac{\mathbf{\nabla} (\Psi_{OB} \, \Psi_{C})}{\Psi_{OB} \, \Psi_{C}} = \frac{ \Psi_C \mathbf{\nabla} \Psi_{OB} + \Psi_{OB} \mathbf{\nabla} \Psi_{C}}{\Psi_{OB} \Psi_{C}} = \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} \] !et -!eblock + !split ===== Importance sampling ===== -!bblock -The expectation value of the kinetic energy expressed in atomic units for electron $i$ is + +The expectation value of the kinetic energy expressed in scaled units for particle $i$ is !bt \[ \langle \hat{K}_i \rangle = -\frac{1}{2}\frac{\langle\Psi|\mathbf{\nabla}_{i}^2|\Psi \rangle}{\langle\Psi|\Psi \rangle}, @@ -368,23 +373,24 @@ The expectation value of the kinetic energy expressed in atomic units for electr \] !et -!eblock + !split ===== Importance sampling ===== -!bblock + The second derivative which enters the definition of the local energy is !bt \[ \frac{\mathbf{\nabla}^2 \Psi}{\Psi}=\frac{\mathbf{\nabla}^2 \Psi_{OB}}{\Psi_{OB}} + \frac{\mathbf{\nabla}^2 \Psi_C}{ \Psi_C} + 2 \frac{\mathbf{\nabla} \Psi_{OB}}{\Psi_{OB}}\cdot\frac{\mathbf{\nabla} \Psi_C}{ \Psi_C} \] !et -We discuss here how to calculate these quantities in an optimal way, -!eblock +We discuss here how to calculate these quantities in an optimal way. + + !split ===== Importance sampling ===== -!bblock + We have defined the correlated function as !bt \[ @@ -401,12 +407,12 @@ In our particular case we have \Psi_C=\prod_{i< j}g(r_{ij})=\exp{\left\{\sum_{i