diff --git a/doc/pub/week15/html/week15-bs.html b/doc/pub/week15/html/week15-bs.html
index ce009b71..1d750038 100644
--- a/doc/pub/week15/html/week15-bs.html
+++ b/doc/pub/week15/html/week15-bs.html
@@ -309,10 +309,10 @@
Plans for the
- Summary of Variational Autoencoders
-- Generative Adversarial Networks (GANs)
-- Start discussion of diffusion models
-
-
+- Generative Adversarial Networks (GANs), see https://lilianweng.github.io/posts/2017-08-20-gan/ for nice overview
+- Start discussion of diffusion models
+- Video of lecture
+- Whiteboard notes
diff --git a/doc/pub/week15/html/week15-reveal.html b/doc/pub/week15/html/week15-reveal.html
index e3242f36..c496b5a9 100644
--- a/doc/pub/week15/html/week15-reveal.html
+++ b/doc/pub/week15/html/week15-reveal.html
@@ -202,10 +202,10 @@ Plans for the week of April 2
- Summary of Variational Autoencoders
-- Generative Adversarial Networks (GANs)
-- Start discussion of diffusion models
-
-
+- Generative Adversarial Networks (GANs), see https://lilianweng.github.io/posts/2017-08-20-gan/ for nice overview
+- Start discussion of diffusion models
+- Video of lecture
+- Whiteboard notes
diff --git a/doc/pub/week15/html/week15-solarized.html b/doc/pub/week15/html/week15-solarized.html
index 3ac7a0da..8c5fd574 100644
--- a/doc/pub/week15/html/week15-solarized.html
+++ b/doc/pub/week15/html/week15-solarized.html
@@ -244,10 +244,10 @@ Plans for the week of April 2
- Summary of Variational Autoencoders
-- Generative Adversarial Networks (GANs)
-- Start discussion of diffusion models
-
-
+- Generative Adversarial Networks (GANs), see https://lilianweng.github.io/posts/2017-08-20-gan/ for nice overview
+- Start discussion of diffusion models
+- Video of lecture
+- Whiteboard notes
diff --git a/doc/pub/week15/html/week15.html b/doc/pub/week15/html/week15.html
index 56e61571..9bb01f5f 100644
--- a/doc/pub/week15/html/week15.html
+++ b/doc/pub/week15/html/week15.html
@@ -321,10 +321,10 @@ Plans for the week of April 2
- Summary of Variational Autoencoders
-- Generative Adversarial Networks (GANs)
-- Start discussion of diffusion models
-
-
+- Generative Adversarial Networks (GANs), see https://lilianweng.github.io/posts/2017-08-20-gan/ for nice overview
+- Start discussion of diffusion models
+- Video of lecture
+- Whiteboard notes
diff --git a/doc/pub/week15/ipynb/ipynb-week15-src.tar.gz b/doc/pub/week15/ipynb/ipynb-week15-src.tar.gz
index 6e2fa832..831ba04f 100644
Binary files a/doc/pub/week15/ipynb/ipynb-week15-src.tar.gz and b/doc/pub/week15/ipynb/ipynb-week15-src.tar.gz differ
diff --git a/doc/pub/week15/ipynb/week15.ipynb b/doc/pub/week15/ipynb/week15.ipynb
index 20853fc8..46204ccc 100644
--- a/doc/pub/week15/ipynb/week15.ipynb
+++ b/doc/pub/week15/ipynb/week15.ipynb
@@ -2,8 +2,10 @@
"cells": [
{
"cell_type": "markdown",
- "id": "2e110748",
- "metadata": {},
+ "id": "bbc251d3",
+ "metadata": {
+ "editable": true
+ },
"source": [
"\n",
@@ -12,8 +14,10 @@
},
{
"cell_type": "markdown",
- "id": "9e12bd6e",
- "metadata": {},
+ "id": "8154bff2",
+ "metadata": {
+ "editable": true
+ },
"source": [
"# Advanced machine learning and data analysis for the physical sciences\n",
"**Morten Hjorth-Jensen**, Department of Physics and Center for Computing in Science Education, University of Oslo, Norway and Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan, USA\n",
@@ -23,8 +27,10 @@
},
{
"cell_type": "markdown",
- "id": "372a7ed5",
- "metadata": {},
+ "id": "30bdfd80",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Plans for the week of April 29- May 3, 2024\n",
"\n",
@@ -32,17 +38,21 @@
"\n",
"1. Summary of Variational Autoencoders\n",
"\n",
- "2. Generative Adversarial Networks (GANs)\n",
+ "2. Generative Adversarial Networks (GANs), see for nice overview\n",
"\n",
"3. Start discussion of diffusion models\n",
- "\n",
- ""
+ "\n",
+ "4. [Video of lecture](https://youtu.be/Cg8n9aWwHuU)\n",
+ "\n",
+ "5. [Whiteboard notes](https://github.com/CompPhysics/AdvancedMachineLearning/blob/main/doc/HandwrittenNotes/2024/NotesApril30.pdf)"
]
},
{
"cell_type": "markdown",
- "id": "60ea87ab",
- "metadata": {},
+ "id": "b0ea3794",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Readings\n",
"\n",
@@ -55,8 +65,10 @@
},
{
"cell_type": "markdown",
- "id": "72e6ab04",
- "metadata": {},
+ "id": "32939787",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Summary of Variational Autoencoders (VAEs)\n",
"\n",
@@ -69,16 +81,20 @@
},
{
"cell_type": "markdown",
- "id": "87ac135f",
- "metadata": {},
+ "id": "89bf1911",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Boltzmann machines and energy-based models and contrastive optimization"
]
},
{
"cell_type": "markdown",
- "id": "f7d948fc",
- "metadata": {},
+ "id": "f04c1132",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Energy models\n",
"\n",
@@ -87,8 +103,10 @@
},
{
"cell_type": "markdown",
- "id": "0eafbcb2",
- "metadata": {},
+ "id": "306c3a9e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(\\boldsymbol{X})=\\prod_{x_i\\in \\boldsymbol{X}}p(x_i),\n",
@@ -97,16 +115,20 @@
},
{
"cell_type": "markdown",
- "id": "59ce6766",
- "metadata": {},
+ "id": "38d85424",
+ "metadata": {
+ "editable": true
+ },
"source": [
"where we have assumed that the random varaibles $x_i$ are all independent and identically distributed (iid)."
]
},
{
"cell_type": "markdown",
- "id": "1d085906",
- "metadata": {},
+ "id": "72d0e5a4",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Probability model\n",
"\n",
@@ -115,8 +137,10 @@
},
{
"cell_type": "markdown",
- "id": "8ef3a999",
- "metadata": {},
+ "id": "edc35f6e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(x_i,h_j;\\boldsymbol{\\Theta}) = \\frac{f(x_i,h_j;\\boldsymbol{\\Theta})}{Z(\\boldsymbol{\\Theta})},\n",
@@ -125,8 +149,10 @@
},
{
"cell_type": "markdown",
- "id": "d95523ac",
- "metadata": {},
+ "id": "eab97d57",
+ "metadata": {
+ "editable": true
+ },
"source": [
"where $f(x_i,h_j;\\boldsymbol{\\Theta})$ is a function which we assume is larger or\n",
"equal than zero and obeys all properties required for a probability\n",
@@ -137,8 +163,10 @@
},
{
"cell_type": "markdown",
- "id": "446b9219",
- "metadata": {},
+ "id": "e36868b7",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"Z(\\boldsymbol{\\Theta})=\\sum_{x_i\\in \\boldsymbol{X}}\\sum_{h_j\\in \\boldsymbol{H}} f(x_i,h_j;\\boldsymbol{\\Theta}).\n",
@@ -147,8 +175,10 @@
},
{
"cell_type": "markdown",
- "id": "4cce8c03",
- "metadata": {},
+ "id": "05ccd2ab",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Marginal and conditional probabilities\n",
"\n",
@@ -157,8 +187,10 @@
},
{
"cell_type": "markdown",
- "id": "70e792b7",
- "metadata": {},
+ "id": "e5f7b578",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(x_i;\\boldsymbol{\\Theta}) = \\frac{\\sum_{h_j\\in \\boldsymbol{H}}f(x_i,h_j;\\boldsymbol{\\Theta})}{Z(\\boldsymbol{\\Theta})},\n",
@@ -167,16 +199,20 @@
},
{
"cell_type": "markdown",
- "id": "d904edae",
- "metadata": {},
+ "id": "fdc48043",
+ "metadata": {
+ "editable": true
+ },
"source": [
"and"
]
},
{
"cell_type": "markdown",
- "id": "a0ec7c21",
- "metadata": {},
+ "id": "32dd3ff0",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(h_i;\\boldsymbol{\\Theta}) = \\frac{\\sum_{x_i\\in \\boldsymbol{X}}f(x_i,h_j;\\boldsymbol{\\Theta})}{Z(\\boldsymbol{\\Theta})}.\n",
@@ -185,8 +221,10 @@
},
{
"cell_type": "markdown",
- "id": "808da9e3",
- "metadata": {},
+ "id": "5e333dc2",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Partition function\n",
"\n",
@@ -198,8 +236,10 @@
},
{
"cell_type": "markdown",
- "id": "1f727294",
- "metadata": {},
+ "id": "9d4996e0",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"Z(\\boldsymbol{\\Theta})=\\sum_{x_i\\in \\boldsymbol{X}}\\sum_{h_j\\in \\boldsymbol{H}} f(x_i,h_j;\\boldsymbol{\\Theta}),\n",
@@ -208,16 +248,20 @@
},
{
"cell_type": "markdown",
- "id": "9af6f8af",
- "metadata": {},
+ "id": "bfbcdfd5",
+ "metadata": {
+ "editable": true
+ },
"source": [
"changes to"
]
},
{
"cell_type": "markdown",
- "id": "7859ac9d",
- "metadata": {},
+ "id": "2bac65fd",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"Z(\\boldsymbol{\\Theta})=\\sum_{\\boldsymbol{x}}\\sum_{\\boldsymbol{h}} f(\\boldsymbol{x},\\boldsymbol{h};\\boldsymbol{\\Theta}).\n",
@@ -226,8 +270,10 @@
},
{
"cell_type": "markdown",
- "id": "3974d552",
- "metadata": {},
+ "id": "f513d787",
+ "metadata": {
+ "editable": true
+ },
"source": [
"If we have a binary set of variable $x_i$ and $h_j$ and $M$ values of $x_i$ and $N$ values of $h_j$ we have in total $2^M$ and $2^N$ possible $\\boldsymbol{x}$ and $\\boldsymbol{h}$ configurations, respectively.\n",
"\n",
@@ -237,8 +283,10 @@
},
{
"cell_type": "markdown",
- "id": "0e0dd828",
- "metadata": {},
+ "id": "7344a35e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Optimization problem\n",
"\n",
@@ -247,8 +295,10 @@
},
{
"cell_type": "markdown",
- "id": "f85c772f",
- "metadata": {},
+ "id": "135b8bb8",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(\\boldsymbol{X};\\boldsymbol{\\Theta})=\\prod_{x_i\\in \\boldsymbol{X}}p(x_i;\\boldsymbol{\\Theta})=\\prod_{x_i\\in \\boldsymbol{X}}\\left(\\frac{\\sum_{h_j\\in \\boldsymbol{H}}f(x_i,h_j;\\boldsymbol{\\Theta})}{Z(\\boldsymbol{\\Theta})}\\right),\n",
@@ -257,16 +307,20 @@
},
{
"cell_type": "markdown",
- "id": "2dc86863",
- "metadata": {},
+ "id": "aea87bfd",
+ "metadata": {
+ "editable": true
+ },
"source": [
"which we rewrite as"
]
},
{
"cell_type": "markdown",
- "id": "1a2874e9",
- "metadata": {},
+ "id": "cce8712d",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(\\boldsymbol{X};\\boldsymbol{\\Theta})=\\frac{1}{Z(\\boldsymbol{\\Theta})}\\prod_{x_i\\in \\boldsymbol{X}}\\left(\\sum_{h_j\\in \\boldsymbol{H}}f(x_i,h_j;\\boldsymbol{\\Theta})\\right).\n",
@@ -275,8 +329,10 @@
},
{
"cell_type": "markdown",
- "id": "6ad8c91c",
- "metadata": {},
+ "id": "5bcfef5b",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Further simplifications\n",
"\n",
@@ -285,8 +341,10 @@
},
{
"cell_type": "markdown",
- "id": "0574c65a",
- "metadata": {},
+ "id": "665445d0",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(\\boldsymbol{X};\\boldsymbol{\\Theta})=\\frac{1}{Z(\\boldsymbol{\\Theta})}\\prod_{x_i\\in \\boldsymbol{X}}f(x_i;\\boldsymbol{\\Theta}),\n",
@@ -295,8 +353,10 @@
},
{
"cell_type": "markdown",
- "id": "71e7a68f",
- "metadata": {},
+ "id": "bdc994e9",
+ "metadata": {
+ "editable": true
+ },
"source": [
"where we used $p(x_i;\\boldsymbol{\\Theta}) = \\sum_{h_j\\in \\boldsymbol{H}}f(x_i,h_j;\\boldsymbol{\\Theta})$.\n",
"The optimization problem is then"
@@ -304,8 +364,10 @@
},
{
"cell_type": "markdown",
- "id": "4391e56d",
- "metadata": {},
+ "id": "97db2763",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"{\\displaystyle \\mathrm{arg} \\hspace{0.1cm}\\max_{\\boldsymbol{\\boldsymbol{\\Theta}}\\in {\\mathbb{R}}^{p}}} \\hspace{0.1cm}p(\\boldsymbol{X};\\boldsymbol{\\Theta}).\n",
@@ -314,8 +376,10 @@
},
{
"cell_type": "markdown",
- "id": "5190ce80",
- "metadata": {},
+ "id": "6274f6f9",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Optimizing the logarithm instead\n",
"\n",
@@ -326,8 +390,10 @@
},
{
"cell_type": "markdown",
- "id": "7ff51e54",
- "metadata": {},
+ "id": "a8c268f3",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"{\\displaystyle \\mathrm{arg} \\hspace{0.1cm}\\max_{\\boldsymbol{\\boldsymbol{\\Theta}}\\in {\\mathbb{R}}^{p}}} \\hspace{0.1cm}\\log{p(\\boldsymbol{X};\\boldsymbol{\\Theta})},\n",
@@ -336,16 +402,20 @@
},
{
"cell_type": "markdown",
- "id": "2d40eebb",
- "metadata": {},
+ "id": "5fb324c3",
+ "metadata": {
+ "editable": true
+ },
"source": [
"which leads to"
]
},
{
"cell_type": "markdown",
- "id": "822d6a93",
- "metadata": {},
+ "id": "3ab2b400",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{p(\\boldsymbol{X};\\boldsymbol{\\Theta})}=0.\n",
@@ -354,8 +424,10 @@
},
{
"cell_type": "markdown",
- "id": "89492d82",
- "metadata": {},
+ "id": "ad53bab5",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Expression for the gradients\n",
"\n",
@@ -364,8 +436,10 @@
},
{
"cell_type": "markdown",
- "id": "ff456b90",
- "metadata": {},
+ "id": "80022c49",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{p(\\boldsymbol{X};\\boldsymbol{\\Theta})}=\\nabla_{\\boldsymbol{\\Theta}}\\left(\\sum_{x_i\\in \\boldsymbol{X}}\\log{f(x_i;\\boldsymbol{\\Theta})}\\right)-\\nabla_{\\boldsymbol{\\Theta}}\\log{Z(\\boldsymbol{\\Theta})}=0.\n",
@@ -374,8 +448,10 @@
},
{
"cell_type": "markdown",
- "id": "d364a111",
- "metadata": {},
+ "id": "ab06bb70",
+ "metadata": {
+ "editable": true
+ },
"source": [
"The first term is called the positive phase and we assume that we have a model for the function $f$ from which we can sample values. Below we will develop an explicit model for this.\n",
"The second term is called the negative phase and is the one which leads to more difficulties."
@@ -383,8 +459,10 @@
},
{
"cell_type": "markdown",
- "id": "102180ca",
- "metadata": {},
+ "id": "7f086749",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Contrastive optimization\n",
"The evaluation of these two terms leads to what in the literature is called contrastive optimization.\n",
@@ -396,8 +474,10 @@
},
{
"cell_type": "markdown",
- "id": "ae88482f",
- "metadata": {},
+ "id": "65f4974d",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## The derivative of the partition function\n",
"\n",
@@ -406,8 +486,10 @@
},
{
"cell_type": "markdown",
- "id": "33407b19",
- "metadata": {},
+ "id": "01b6074d",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"Z(\\boldsymbol{\\Theta})=\\sum_{x_i\\in \\boldsymbol{X}}\\sum_{h_j\\in \\boldsymbol{H}} f(x_i,h_j;\\boldsymbol{\\Theta}),\n",
@@ -416,16 +498,20 @@
},
{
"cell_type": "markdown",
- "id": "ae502918",
- "metadata": {},
+ "id": "abc68191",
+ "metadata": {
+ "editable": true
+ },
"source": [
"is in general the most problematic term. In principle both $x$ and $h$ can span large degrees of freedom, if not even infinitely many ones, and computing the partition function itself is often not desirable or even feasible. The above derivative of the partition function can however be written in terms of an expectation value which is in turn evaluated using Monte Carlo sampling and the theory of Markov chains, popularly shortened to MCMC (or just MC$^2$)."
]
},
{
"cell_type": "markdown",
- "id": "ba65f40a",
- "metadata": {},
+ "id": "42d55ede",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Explicit expression for the derivative\n",
"We can rewrite"
@@ -433,8 +519,10 @@
},
{
"cell_type": "markdown",
- "id": "3ac7d02a",
- "metadata": {},
+ "id": "2713bc10",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{Z(\\boldsymbol{\\Theta})}=\\frac{\\nabla_{\\boldsymbol{\\Theta}}Z(\\boldsymbol{\\Theta})}{Z(\\boldsymbol{\\Theta})},\n",
@@ -443,16 +531,20 @@
},
{
"cell_type": "markdown",
- "id": "5fe20b8e",
- "metadata": {},
+ "id": "bcbc944d",
+ "metadata": {
+ "editable": true
+ },
"source": [
"which reads in more detail"
]
},
{
"cell_type": "markdown",
- "id": "ba850619",
- "metadata": {},
+ "id": "f470f0b7",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{Z(\\boldsymbol{\\Theta})}=\\frac{\\nabla_{\\boldsymbol{\\Theta}} \\sum_{x_i\\in \\boldsymbol{X}}f(x_i;\\boldsymbol{\\Theta}) }{Z(\\boldsymbol{\\Theta})}.\n",
@@ -461,8 +553,10 @@
},
{
"cell_type": "markdown",
- "id": "771c8ff5",
- "metadata": {},
+ "id": "6cc4dc33",
+ "metadata": {
+ "editable": true
+ },
"source": [
"We can rewrite the function $f$ (we have assumed that is larger or\n",
"equal than zero) as $f=\\exp{\\log{f}}$. We can then reqrite the last\n",
@@ -471,8 +565,10 @@
},
{
"cell_type": "markdown",
- "id": "8a348ff2",
- "metadata": {},
+ "id": "b8d79f98",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{Z(\\boldsymbol{\\Theta})}=\\frac{ \\sum_{x_i\\in \\boldsymbol{X}} \\nabla_{\\boldsymbol{\\Theta}}\\exp{\\log{f(x_i;\\boldsymbol{\\Theta})}} }{Z(\\boldsymbol{\\Theta})}.\n",
@@ -481,8 +577,10 @@
},
{
"cell_type": "markdown",
- "id": "3d8854e8",
- "metadata": {},
+ "id": "133d8b3f",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Final expression\n",
"\n",
@@ -491,8 +589,10 @@
},
{
"cell_type": "markdown",
- "id": "4175d17f",
- "metadata": {},
+ "id": "9fc2ebb7",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{Z(\\boldsymbol{\\Theta})}=\\frac{ \\sum_{x_i\\in \\boldsymbol{X}}f(x_i;\\boldsymbol{\\Theta}) \\nabla_{\\boldsymbol{\\Theta}}\\log{f(x_i;\\boldsymbol{\\Theta})} }{Z(\\boldsymbol{\\Theta})},\n",
@@ -501,16 +601,20 @@
},
{
"cell_type": "markdown",
- "id": "efbbb764",
- "metadata": {},
+ "id": "431a67c4",
+ "metadata": {
+ "editable": true
+ },
"source": [
"which is the expectation value of $\\log{f}$"
]
},
{
"cell_type": "markdown",
- "id": "5655190f",
- "metadata": {},
+ "id": "3df67560",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{Z(\\boldsymbol{\\Theta})}=\\sum_{x_i\\in \\boldsymbol{X}}p(x_i;\\boldsymbol{\\Theta}) \\nabla_{\\boldsymbol{\\Theta}}\\log{f(x_i;\\boldsymbol{\\Theta})},\n",
@@ -519,16 +623,20 @@
},
{
"cell_type": "markdown",
- "id": "bee7cbd0",
- "metadata": {},
+ "id": "0838e65c",
+ "metadata": {
+ "editable": true
+ },
"source": [
"that is"
]
},
{
"cell_type": "markdown",
- "id": "b38e042d",
- "metadata": {},
+ "id": "822bf5ac",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\nabla_{\\boldsymbol{\\Theta}}\\log{Z(\\boldsymbol{\\Theta})}=\\mathbb{E}(\\log{f(x_i;\\boldsymbol{\\Theta})}).\n",
@@ -537,8 +645,10 @@
},
{
"cell_type": "markdown",
- "id": "84b5a5c8",
- "metadata": {},
+ "id": "a93722a2",
+ "metadata": {
+ "editable": true
+ },
"source": [
"This quantity is evaluated using Monte Carlo sampling, with Gibbs\n",
"sampling as the standard sampling rule."
@@ -546,8 +656,10 @@
},
{
"cell_type": "markdown",
- "id": "60912295",
- "metadata": {},
+ "id": "d6d8c42e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Generative model, basic overview (Borrowed from Rashcka et al)\n",
"\n",
@@ -560,8 +672,10 @@
},
{
"cell_type": "markdown",
- "id": "fa29e674",
- "metadata": {},
+ "id": "f17356a3",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Reminder on VAEs\n",
"\n",
@@ -577,8 +691,10 @@
},
{
"cell_type": "markdown",
- "id": "7c5cf97d",
- "metadata": {},
+ "id": "27fb099f",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(\\boldsymbol{x}) = \\int p(\\boldsymbol{x}, \\boldsymbol{h})d\\boldsymbol{h}\n",
@@ -587,16 +703,20 @@
},
{
"cell_type": "markdown",
- "id": "42b0c6a4",
- "metadata": {},
+ "id": "17548236",
+ "metadata": {
+ "editable": true
+ },
"source": [
"or, we could also appeal to the chain rule of probability"
]
},
{
"cell_type": "markdown",
- "id": "93d97d7b",
- "metadata": {},
+ "id": "3f05b416",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"p(\\boldsymbol{x}) = \\frac{p(\\boldsymbol{x}, \\boldsymbol{h})}{p(\\boldsymbol{h}|\\boldsymbol{x})}\n",
@@ -605,16 +725,20 @@
},
{
"cell_type": "markdown",
- "id": "da374052",
- "metadata": {},
+ "id": "2cf43c02",
+ "metadata": {
+ "editable": true
+ },
"source": [
"We suppress here the dependence\ton the optimization parameters $\\boldsymbol{\\Theta}$."
]
},
{
"cell_type": "markdown",
- "id": "e124fca0",
- "metadata": {},
+ "id": "4c9b8c03",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Evidence Lower Bound\n",
"Directly computing and maximizing the likelihood $p(\\boldsymbol{x})$ is\n",
@@ -633,8 +757,10 @@
},
{
"cell_type": "markdown",
- "id": "f0555155",
- "metadata": {},
+ "id": "587e829b",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## ELBO equations\n",
"Formally, the equation of the ELBO is"
@@ -642,8 +768,10 @@
},
{
"cell_type": "markdown",
- "id": "5f61104a",
- "metadata": {},
+ "id": "6cec0936",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\mathbb{E}_{q_{\\boldsymbol{\\phi}}(\\boldsymbol{h}|\\boldsymbol{x})}\\left[\\log\\frac{p(\\boldsymbol{x}, \\boldsymbol{h})}{q_{\\boldsymbol{\\phi}}(\\boldsymbol{h}|\\boldsymbol{x})}\\right]\n",
@@ -652,16 +780,20 @@
},
{
"cell_type": "markdown",
- "id": "4c3f6cec",
- "metadata": {},
+ "id": "008b0d93",
+ "metadata": {
+ "editable": true
+ },
"source": [
"To make the relationship with the evidence explicit, we can mathematically write:"
]
},
{
"cell_type": "markdown",
- "id": "9740dc8e",
- "metadata": {},
+ "id": "03ec09b6",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\log p(\\boldsymbol{x}) \\geq \\mathbb{E}_{q_{\\boldsymbol{\\phi}}(\\boldsymbol{h}|\\boldsymbol{x})}\\left[\\log\\frac{p(\\boldsymbol{x}, \\boldsymbol{h})}{q_{\\boldsymbol{\\phi}}(\\boldsymbol{h}|\\boldsymbol{x})}\\right]\n",
@@ -670,8 +802,10 @@
},
{
"cell_type": "markdown",
- "id": "2a5402dd",
- "metadata": {},
+ "id": "ee878746",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Introducing the encoder function\n",
"\n",
@@ -689,8 +823,10 @@
},
{
"cell_type": "markdown",
- "id": "3aa0f72f",
- "metadata": {},
+ "id": "be988b7e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## The derivation from last week\n",
"\n",
@@ -699,8 +835,10 @@
},
{
"cell_type": "markdown",
- "id": "ee186ef7",
- "metadata": {},
+ "id": "d06829bb",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\begin{align*}\n",
@@ -719,8 +857,10 @@
},
{
"cell_type": "markdown",
- "id": "00908b7d",
- "metadata": {},
+ "id": "f165c01c",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Analysis\n",
"\n",
@@ -735,8 +875,10 @@
},
{
"cell_type": "markdown",
- "id": "d1df666e",
- "metadata": {},
+ "id": "a5a5ba44",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## The VAE\n",
"\n",
@@ -751,8 +893,10 @@
},
{
"cell_type": "markdown",
- "id": "134efdf5",
- "metadata": {},
+ "id": "5a0edb20",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Dissecting the equations\n",
"To make\n",
@@ -761,8 +905,10 @@
},
{
"cell_type": "markdown",
- "id": "71c93e7e",
- "metadata": {},
+ "id": "066fb151",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\begin{align*}\n",
@@ -776,8 +922,10 @@
},
{
"cell_type": "markdown",
- "id": "d50e4e2d",
- "metadata": {},
+ "id": "b1c188ac",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Bottlenecking distribution\n",
"\n",
@@ -792,8 +940,10 @@
},
{
"cell_type": "markdown",
- "id": "290915db",
- "metadata": {},
+ "id": "61b1725e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Decoder and encoder\n",
"The two terms in the last equation each have intuitive descriptions: the first\n",
@@ -810,8 +960,10 @@
},
{
"cell_type": "markdown",
- "id": "6f7a335b",
- "metadata": {},
+ "id": "d134dd70",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Defining feature of VAEs\n",
"\n",
@@ -820,8 +972,10 @@
},
{
"cell_type": "markdown",
- "id": "865be5c3",
- "metadata": {},
+ "id": "c914ac07",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\begin{align*}\n",
@@ -833,8 +987,10 @@
},
{
"cell_type": "markdown",
- "id": "504fe084",
- "metadata": {},
+ "id": "182be149",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Analytical evaluation\n",
"\n",
@@ -843,8 +999,10 @@
},
{
"cell_type": "markdown",
- "id": "60423328",
- "metadata": {},
+ "id": "d26c7329",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\begin{align*}\n",
@@ -855,16 +1013,20 @@
},
{
"cell_type": "markdown",
- "id": "bf6ec7ac",
- "metadata": {},
+ "id": "2a89d0f3",
+ "metadata": {
+ "editable": true
+ },
"source": [
"where latents $\\{\\boldsymbol{h}^{(l)}\\}_{l=1}^L$ are sampled from $q_{\\boldsymbol{\\phi}}(\\boldsymbol{h}|\\boldsymbol{x})$, for every observation $\\boldsymbol{x}$ in the dataset."
]
},
{
"cell_type": "markdown",
- "id": "1432c75e",
- "metadata": {},
+ "id": "7666826e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Reparameterization trick\n",
"\n",
@@ -878,8 +1040,10 @@
},
{
"cell_type": "markdown",
- "id": "5578e8d1",
- "metadata": {},
+ "id": "a6ff50b2",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Actual implementation\n",
"\n",
@@ -893,8 +1057,10 @@
},
{
"cell_type": "markdown",
- "id": "e64959bb",
- "metadata": {},
+ "id": "1300c538",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\begin{align*}\n",
@@ -905,8 +1071,10 @@
},
{
"cell_type": "markdown",
- "id": "2748e807",
- "metadata": {},
+ "id": "ebd27757",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Interpretation\n",
"An arbitrary Gaussian distributions can be interpreted as\n",
@@ -921,8 +1089,10 @@
},
{
"cell_type": "markdown",
- "id": "e75a9ac2",
- "metadata": {},
+ "id": "624b1963",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Deterministic function\n",
"\n",
@@ -931,8 +1101,10 @@
},
{
"cell_type": "markdown",
- "id": "44da9a14",
- "metadata": {},
+ "id": "eaf66572",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\begin{align*}\n",
@@ -943,8 +1115,10 @@
},
{
"cell_type": "markdown",
- "id": "036c51f1",
- "metadata": {},
+ "id": "f4d09b90",
+ "metadata": {
+ "editable": true
+ },
"source": [
"where $\\odot$ represents an element-wise product. Under this\n",
"reparameterized version of $\\boldsymbol{h}$, gradients can then be computed\n",
@@ -957,8 +1131,10 @@
},
{
"cell_type": "markdown",
- "id": "28ad53de",
- "metadata": {},
+ "id": "df030b4e",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## After training\n",
"\n",
@@ -974,8 +1150,10 @@
},
{
"cell_type": "markdown",
- "id": "efdb56d2",
- "metadata": {},
+ "id": "179d5913",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## What is a GAN?\n",
"\n",
@@ -990,8 +1168,10 @@
},
{
"cell_type": "markdown",
- "id": "9edbf5b2",
- "metadata": {},
+ "id": "e954e4d0",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## What is a generator network?\n",
"\n",
@@ -1009,8 +1189,10 @@
},
{
"cell_type": "markdown",
- "id": "4a9f2d71",
- "metadata": {},
+ "id": "9912338d",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## And what is a discriminator network?\n",
"\n",
@@ -1019,8 +1201,10 @@
},
{
"cell_type": "markdown",
- "id": "64218644",
- "metadata": {},
+ "id": "9fadae1d",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Appplications of GANs\n",
"\n",
@@ -1042,8 +1226,10 @@
},
{
"cell_type": "markdown",
- "id": "815730d9",
- "metadata": {},
+ "id": "d205f4c0",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Discriminator versus generator (Borrowed from Rashcka et al)\n",
"\n",
@@ -1056,8 +1242,10 @@
},
{
"cell_type": "markdown",
- "id": "cd7735fd",
- "metadata": {},
+ "id": "8afeef95",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Generative Adversarial Networks\n",
"\n",
@@ -1072,8 +1260,10 @@
},
{
"cell_type": "markdown",
- "id": "ff76bbce",
- "metadata": {},
+ "id": "6e728830",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"x = g(z; \\theta^{(g)}).\n",
@@ -1082,8 +1272,10 @@
},
{
"cell_type": "markdown",
- "id": "2ab9c200",
- "metadata": {},
+ "id": "5318fb35",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Discriminator\n",
"\n",
@@ -1096,8 +1288,10 @@
},
{
"cell_type": "markdown",
- "id": "dc4ca054",
- "metadata": {},
+ "id": "70ed2bca",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"d(x; \\theta^{(d)}).\n",
@@ -1106,8 +1300,10 @@
},
{
"cell_type": "markdown",
- "id": "a7a1c19c",
- "metadata": {},
+ "id": "b2f662ca",
+ "metadata": {
+ "editable": true
+ },
"source": [
"indicating the probability that $x$ is a real training example rather than a\n",
"fake sample the generator has generated."
@@ -1115,8 +1311,10 @@
},
{
"cell_type": "markdown",
- "id": "492c4755",
- "metadata": {},
+ "id": "ca69c67d",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Zero-sum game\n",
"\n",
@@ -1127,8 +1325,10 @@
},
{
"cell_type": "markdown",
- "id": "6784d23c",
- "metadata": {},
+ "id": "4d8a5c1f",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"v(\\theta^{(g)}, \\theta^{(d)}),\n",
@@ -1137,8 +1337,10 @@
},
{
"cell_type": "markdown",
- "id": "41ee9cb1",
- "metadata": {},
+ "id": "eaeafa28",
+ "metadata": {
+ "editable": true
+ },
"source": [
"determines the reward for the discriminator, while the generator gets the\n",
"conjugate reward"
@@ -1146,8 +1348,10 @@
},
{
"cell_type": "markdown",
- "id": "ff393ede",
- "metadata": {},
+ "id": "f35d0439",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"-v(\\theta^{(g)}, \\theta^{(d)})\n",
@@ -1156,8 +1360,10 @@
},
{
"cell_type": "markdown",
- "id": "baef9203",
- "metadata": {},
+ "id": "e9df164f",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Maximizing reward\n",
"\n",
@@ -1177,8 +1383,10 @@
},
{
"cell_type": "markdown",
- "id": "22ed48ac",
- "metadata": {},
+ "id": "ac025bad",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Progression in training\n",
"\n",
@@ -1192,8 +1400,10 @@
},
{
"cell_type": "markdown",
- "id": "6153915a",
- "metadata": {},
+ "id": "1548d332",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"g^* = \\underset{g}{\\mathrm{argmin}}\\hspace{2pt}\n",
@@ -1203,8 +1413,10 @@
},
{
"cell_type": "markdown",
- "id": "b69cf466",
- "metadata": {},
+ "id": "415e7020",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Deafault choice\n",
"The default choice for $v$ is"
@@ -1212,8 +1424,10 @@
},
{
"cell_type": "markdown",
- "id": "e989c0e6",
- "metadata": {},
+ "id": "afa15d31",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"v(\\theta^{(g)}, \\theta^{(d)}) = \\mathbb{E}_{x\\sim p_\\mathrm{data}}\\log d(x)\n",
@@ -1224,8 +1438,10 @@
},
{
"cell_type": "markdown",
- "id": "f1e73429",
- "metadata": {},
+ "id": "db584443",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Design of GANs\n",
"The main motivation for the design of GANs is that the learning process requires\n",
@@ -1235,8 +1451,10 @@
},
{
"cell_type": "markdown",
- "id": "2fc2d44a",
- "metadata": {},
+ "id": "65ecceb4",
+ "metadata": {
+ "editable": true
+ },
"source": [
"$$\n",
"\\underset{d}{\\mathrm{max}}v(\\theta^{(g)}, \\theta^{(d)})\n",
@@ -1245,8 +1463,10 @@
},
{
"cell_type": "markdown",
- "id": "bb108909",
- "metadata": {},
+ "id": "93110eb4",
+ "metadata": {
+ "editable": true
+ },
"source": [
"is convex in $\\theta^{(g)}$ then the procedure is guaranteed to converge and is\n",
"asymptotically consistent\n",
@@ -1258,8 +1478,10 @@
},
{
"cell_type": "markdown",
- "id": "2fc42186",
- "metadata": {},
+ "id": "f5789340",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Steps in building a GAN (Borrowed from Rashcka et al)\n",
"\n",
@@ -1272,8 +1494,10 @@
},
{
"cell_type": "markdown",
- "id": "6e4bf240",
- "metadata": {},
+ "id": "4bbe2c2b",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## More references\n",
"\n",
@@ -1289,8 +1513,10 @@
},
{
"cell_type": "markdown",
- "id": "375542b5",
- "metadata": {},
+ "id": "c0522fb3",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Writing Our First Generative Adversarial Network\n",
"\n",
@@ -1301,8 +1527,10 @@
},
{
"cell_type": "markdown",
- "id": "f451c1ae",
- "metadata": {},
+ "id": "fc2b9ad9",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Implementing the networks (Borrowed from Rashcka et al)\n",
"\n",
@@ -1315,8 +1543,10 @@
},
{
"cell_type": "markdown",
- "id": "420d32a6",
- "metadata": {},
+ "id": "45c07637",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Code elements"
]
@@ -1324,18 +1554,12 @@
{
"cell_type": "code",
"execution_count": 1,
- "id": "78c885cd",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2.2.0\n",
- "GPU Available: False\n"
- ]
- }
- ],
+ "id": "b4dc82a1",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
+ "outputs": [],
"source": [
"%matplotlib inline\n",
"\n",
@@ -1355,8 +1579,10 @@
},
{
"cell_type": "markdown",
- "id": "8c7a259d",
- "metadata": {},
+ "id": "f87b63c1",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Setting up the GAN"
]
@@ -1364,8 +1590,11 @@
{
"cell_type": "code",
"execution_count": 2,
- "id": "801940ac",
- "metadata": {},
+ "id": "139f0467",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
"outputs": [],
"source": [
"## define a function for the generator:\n",
@@ -1410,8 +1639,10 @@
},
{
"cell_type": "markdown",
- "id": "de405acb",
- "metadata": {},
+ "id": "2c1f7b6f",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Printing the model"
]
@@ -1419,22 +1650,12 @@
{
"cell_type": "code",
"execution_count": 3,
- "id": "7c2211d1",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Sequential(\n",
- " (fc_g0): Linear(in_features=20, out_features=100, bias=True)\n",
- " (relu_g0): LeakyReLU(negative_slope=0.01)\n",
- " (fc_g1): Linear(in_features=100, out_features=784, bias=True)\n",
- " (tanh_g): Tanh()\n",
- ")\n"
- ]
- }
- ],
+ "id": "ad486a71",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
+ "outputs": [],
"source": [
"image_size = (28, 28)\n",
"z_size = 20\n",
@@ -1458,23 +1679,12 @@
{
"cell_type": "code",
"execution_count": 4,
- "id": "4aad7e10",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Sequential(\n",
- " (fc_d0): Linear(in_features=784, out_features=100, bias=False)\n",
- " (relu_d0): LeakyReLU(negative_slope=0.01)\n",
- " (dropout): Dropout(p=0.5, inplace=False)\n",
- " (fc_d1): Linear(in_features=100, out_features=1, bias=True)\n",
- " (sigmoid): Sigmoid()\n",
- ")\n"
- ]
- }
- ],
+ "id": "632212e4",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
+ "outputs": [],
"source": [
"disc_model = make_discriminator_network(\n",
" input_size=np.prod(image_size),\n",
@@ -1486,8 +1696,10 @@
},
{
"cell_type": "markdown",
- "id": "606bd08f",
- "metadata": {},
+ "id": "e204ed36",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Defining the training set"
]
@@ -1495,28 +1707,12 @@
{
"cell_type": "code",
"execution_count": 5,
- "id": "a521030b",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/mhjensen/miniforge3/envs/myenv/lib/python3.9/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: 'dlopen(/Users/mhjensen/miniforge3/envs/myenv/lib/python3.9/site-packages/torchvision/image.so, 0x0006): Symbol not found: __ZN3c1017RegisterOperatorsD1Ev\n",
- " Referenced from: <2D1B8D5C-7891-3680-9CF9-F771AE880676> /Users/mhjensen/miniforge3/envs/myenv/lib/python3.9/site-packages/torchvision/image.so\n",
- " Expected in: /Users/mhjensen/miniforge3/envs/myenv/lib/python3.9/site-packages/torch/lib/libtorch_cpu.dylib'If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?\n",
- " warn(\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Min: -1.0 Max: 1.0\n",
- "torch.Size([1, 28, 28])\n"
- ]
- }
- ],
+ "id": "0ca2ac08",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
+ "outputs": [],
"source": [
"import torchvision \n",
"from torchvision import transforms \n",
@@ -1539,8 +1735,10 @@
},
{
"cell_type": "markdown",
- "id": "5e5ce63c",
- "metadata": {},
+ "id": "1791b464",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Defining the training set, part 2"
]
@@ -1548,21 +1746,12 @@
{
"cell_type": "code",
"execution_count": 6,
- "id": "0dfeaf46",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input-z -- shape: torch.Size([32, 20])\n",
- "input-real -- shape: torch.Size([32, 784])\n",
- "Output of G -- shape: torch.Size([32, 784])\n",
- "Disc. (real) -- shape: torch.Size([32, 1])\n",
- "Disc. (fake) -- shape: torch.Size([32, 1])\n"
- ]
- }
- ],
+ "id": "386b381a",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
+ "outputs": [],
"source": [
"def create_noise(batch_size, z_size, mode_z):\n",
" if mode_z == 'uniform':\n",
@@ -1598,8 +1787,10 @@
},
{
"cell_type": "markdown",
- "id": "ad562406",
- "metadata": {},
+ "id": "f28eaf09",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Training the GAN"
]
@@ -1607,18 +1798,12 @@
{
"cell_type": "code",
"execution_count": 7,
- "id": "a09230d1",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Generator Loss: 0.6944\n",
- "Discriminator Losses: Real 0.7758 Fake 0.6924\n"
- ]
- }
- ],
+ "id": "352db36d",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
+ "outputs": [],
"source": [
"loss_fn = nn.BCELoss()\n",
"\n",
@@ -1638,8 +1823,10 @@
},
{
"cell_type": "markdown",
- "id": "f4fde94c",
- "metadata": {},
+ "id": "d02e0c9a",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## More on training"
]
@@ -1647,8 +1834,11 @@
{
"cell_type": "code",
"execution_count": 8,
- "id": "4f2f69bc",
- "metadata": {},
+ "id": "3c157e73",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
"outputs": [],
"source": [
"batch_size = 64\n",
@@ -1726,118 +1916,12 @@
{
"cell_type": "code",
"execution_count": 9,
- "id": "1c71de9b",
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Epoch 001 | Avg Losses >> G/D 0.9169/0.8954 [D-Real: 0.8062 D-Fake: 0.4670]\n",
- "Epoch 002 | Avg Losses >> G/D 1.0160/1.0904 [D-Real: 0.6298 D-Fake: 0.4150]\n",
- "Epoch 003 | Avg Losses >> G/D 0.9259/1.2066 [D-Real: 0.5767 D-Fake: 0.4275]\n",
- "Epoch 004 | Avg Losses >> G/D 0.8778/1.2460 [D-Real: 0.5619 D-Fake: 0.4424]\n",
- "Epoch 005 | Avg Losses >> G/D 1.0375/1.1777 [D-Real: 0.5905 D-Fake: 0.4071]\n",
- "Epoch 006 | Avg Losses >> G/D 0.9422/1.2174 [D-Real: 0.5754 D-Fake: 0.4265]\n",
- "Epoch 007 | Avg Losses >> G/D 0.8936/1.2574 [D-Real: 0.5577 D-Fake: 0.4380]\n",
- "Epoch 008 | Avg Losses >> G/D 0.8840/1.2712 [D-Real: 0.5521 D-Fake: 0.4427]\n",
- "Epoch 009 | Avg Losses >> G/D 0.9981/1.1884 [D-Real: 0.5890 D-Fake: 0.4132]\n",
- "Epoch 010 | Avg Losses >> G/D 1.0122/1.1749 [D-Real: 0.5968 D-Fake: 0.4100]\n",
- "Epoch 011 | Avg Losses >> G/D 0.9869/1.1894 [D-Real: 0.5897 D-Fake: 0.4123]\n",
- "Epoch 012 | Avg Losses >> G/D 0.8997/1.2510 [D-Real: 0.5631 D-Fake: 0.4351]\n",
- "Epoch 013 | Avg Losses >> G/D 0.8892/1.2610 [D-Real: 0.5590 D-Fake: 0.4407]\n",
- "Epoch 014 | Avg Losses >> G/D 0.8136/1.3101 [D-Real: 0.5358 D-Fake: 0.4603]\n",
- "Epoch 015 | Avg Losses >> G/D 0.8842/1.2685 [D-Real: 0.5548 D-Fake: 0.4434]\n",
- "Epoch 016 | Avg Losses >> G/D 0.8571/1.2733 [D-Real: 0.5551 D-Fake: 0.4495]\n",
- "Epoch 017 | Avg Losses >> G/D 0.8477/1.2829 [D-Real: 0.5484 D-Fake: 0.4511]\n",
- "Epoch 018 | Avg Losses >> G/D 0.8547/1.2757 [D-Real: 0.5539 D-Fake: 0.4497]\n",
- "Epoch 019 | Avg Losses >> G/D 0.8674/1.2816 [D-Real: 0.5503 D-Fake: 0.4469]\n",
- "Epoch 020 | Avg Losses >> G/D 0.8361/1.2930 [D-Real: 0.5453 D-Fake: 0.4552]\n",
- "Epoch 021 | Avg Losses >> G/D 0.8203/1.3056 [D-Real: 0.5394 D-Fake: 0.4612]\n",
- "Epoch 022 | Avg Losses >> G/D 0.8113/1.3134 [D-Real: 0.5353 D-Fake: 0.4629]\n",
- "Epoch 023 | Avg Losses >> G/D 0.7900/1.3273 [D-Real: 0.5289 D-Fake: 0.4687]\n",
- "Epoch 024 | Avg Losses >> G/D 0.7649/1.3443 [D-Real: 0.5201 D-Fake: 0.4761]\n",
- "Epoch 025 | Avg Losses >> G/D 0.7903/1.3263 [D-Real: 0.5312 D-Fake: 0.4706]\n",
- "Epoch 026 | Avg Losses >> G/D 0.7929/1.3269 [D-Real: 0.5294 D-Fake: 0.4694]\n",
- "Epoch 027 | Avg Losses >> G/D 0.8207/1.3031 [D-Real: 0.5403 D-Fake: 0.4608]\n",
- "Epoch 028 | Avg Losses >> G/D 0.8320/1.2921 [D-Real: 0.5470 D-Fake: 0.4578]\n",
- "Epoch 029 | Avg Losses >> G/D 0.8349/1.2895 [D-Real: 0.5473 D-Fake: 0.4558]\n",
- "Epoch 030 | Avg Losses >> G/D 0.8149/1.3041 [D-Real: 0.5400 D-Fake: 0.4598]\n",
- "Epoch 031 | Avg Losses >> G/D 0.7898/1.3246 [D-Real: 0.5307 D-Fake: 0.4695]\n",
- "Epoch 032 | Avg Losses >> G/D 0.7815/1.3337 [D-Real: 0.5259 D-Fake: 0.4711]\n",
- "Epoch 033 | Avg Losses >> G/D 0.7767/1.3355 [D-Real: 0.5257 D-Fake: 0.4737]\n",
- "Epoch 034 | Avg Losses >> G/D 0.7713/1.3398 [D-Real: 0.5235 D-Fake: 0.4759]\n",
- "Epoch 035 | Avg Losses >> G/D 0.7910/1.3283 [D-Real: 0.5289 D-Fake: 0.4695]\n",
- "Epoch 036 | Avg Losses >> G/D 0.7704/1.3392 [D-Real: 0.5248 D-Fake: 0.4761]\n",
- "Epoch 037 | Avg Losses >> G/D 0.7568/1.3478 [D-Real: 0.5202 D-Fake: 0.4795]\n",
- "Epoch 038 | Avg Losses >> G/D 0.7568/1.3468 [D-Real: 0.5202 D-Fake: 0.4795]\n",
- "Epoch 039 | Avg Losses >> G/D 0.7662/1.3439 [D-Real: 0.5221 D-Fake: 0.4774]\n",
- "Epoch 040 | Avg Losses >> G/D 0.7622/1.3452 [D-Real: 0.5205 D-Fake: 0.4781]\n",
- "Epoch 041 | Avg Losses >> G/D 0.7661/1.3474 [D-Real: 0.5212 D-Fake: 0.4785]\n",
- "Epoch 042 | Avg Losses >> G/D 0.7590/1.3475 [D-Real: 0.5200 D-Fake: 0.4793]\n",
- "Epoch 043 | Avg Losses >> G/D 0.7678/1.3365 [D-Real: 0.5254 D-Fake: 0.4769]\n",
- "Epoch 044 | Avg Losses >> G/D 0.7648/1.3441 [D-Real: 0.5216 D-Fake: 0.4781]\n",
- "Epoch 045 | Avg Losses >> G/D 0.7657/1.3423 [D-Real: 0.5234 D-Fake: 0.4771]\n",
- "Epoch 046 | Avg Losses >> G/D 0.7510/1.3517 [D-Real: 0.5171 D-Fake: 0.4811]\n",
- "Epoch 047 | Avg Losses >> G/D 0.7572/1.3481 [D-Real: 0.5206 D-Fake: 0.4806]\n",
- "Epoch 048 | Avg Losses >> G/D 0.7379/1.3625 [D-Real: 0.5130 D-Fake: 0.4856]\n",
- "Epoch 049 | Avg Losses >> G/D 0.7403/1.3598 [D-Real: 0.5138 D-Fake: 0.4857]\n",
- "Epoch 050 | Avg Losses >> G/D 0.7661/1.3426 [D-Real: 0.5233 D-Fake: 0.4784]\n",
- "Epoch 051 | Avg Losses >> G/D 0.7614/1.3433 [D-Real: 0.5225 D-Fake: 0.4785]\n",
- "Epoch 052 | Avg Losses >> G/D 0.7506/1.3582 [D-Real: 0.5146 D-Fake: 0.4827]\n",
- "Epoch 053 | Avg Losses >> G/D 0.7430/1.3542 [D-Real: 0.5167 D-Fake: 0.4840]\n",
- "Epoch 054 | Avg Losses >> G/D 0.7521/1.3467 [D-Real: 0.5198 D-Fake: 0.4806]\n",
- "Epoch 055 | Avg Losses >> G/D 0.7447/1.3562 [D-Real: 0.5164 D-Fake: 0.4837]\n",
- "Epoch 056 | Avg Losses >> G/D 0.7504/1.3561 [D-Real: 0.5164 D-Fake: 0.4824]\n",
- "Epoch 057 | Avg Losses >> G/D 0.7604/1.3445 [D-Real: 0.5219 D-Fake: 0.4797]\n",
- "Epoch 058 | Avg Losses >> G/D 0.7549/1.3510 [D-Real: 0.5190 D-Fake: 0.4812]\n",
- "Epoch 059 | Avg Losses >> G/D 0.7474/1.3538 [D-Real: 0.5178 D-Fake: 0.4834]\n",
- "Epoch 060 | Avg Losses >> G/D 0.7614/1.3452 [D-Real: 0.5218 D-Fake: 0.4793]\n",
- "Epoch 061 | Avg Losses >> G/D 0.7549/1.3487 [D-Real: 0.5202 D-Fake: 0.4806]\n",
- "Epoch 062 | Avg Losses >> G/D 0.7641/1.3471 [D-Real: 0.5204 D-Fake: 0.4785]\n",
- "Epoch 063 | Avg Losses >> G/D 0.7610/1.3454 [D-Real: 0.5218 D-Fake: 0.4789]\n",
- "Epoch 064 | Avg Losses >> G/D 0.7643/1.3462 [D-Real: 0.5211 D-Fake: 0.4784]\n",
- "Epoch 065 | Avg Losses >> G/D 0.7704/1.3408 [D-Real: 0.5243 D-Fake: 0.4775]\n",
- "Epoch 066 | Avg Losses >> G/D 0.7719/1.3356 [D-Real: 0.5256 D-Fake: 0.4752]\n",
- "Epoch 067 | Avg Losses >> G/D 0.7720/1.3429 [D-Real: 0.5232 D-Fake: 0.4767]\n",
- "Epoch 068 | Avg Losses >> G/D 0.7591/1.3485 [D-Real: 0.5205 D-Fake: 0.4803]\n",
- "Epoch 069 | Avg Losses >> G/D 0.7603/1.3439 [D-Real: 0.5219 D-Fake: 0.4790]\n",
- "Epoch 070 | Avg Losses >> G/D 0.7570/1.3469 [D-Real: 0.5211 D-Fake: 0.4801]\n",
- "Epoch 071 | Avg Losses >> G/D 0.7606/1.3471 [D-Real: 0.5208 D-Fake: 0.4793]\n",
- "Epoch 072 | Avg Losses >> G/D 0.7669/1.3405 [D-Real: 0.5232 D-Fake: 0.4769]\n",
- "Epoch 073 | Avg Losses >> G/D 0.7632/1.3420 [D-Real: 0.5225 D-Fake: 0.4773]\n",
- "Epoch 074 | Avg Losses >> G/D 0.7676/1.3439 [D-Real: 0.5222 D-Fake: 0.4769]\n",
- "Epoch 075 | Avg Losses >> G/D 0.7617/1.3460 [D-Real: 0.5208 D-Fake: 0.4786]\n",
- "Epoch 076 | Avg Losses >> G/D 0.7716/1.3401 [D-Real: 0.5246 D-Fake: 0.4766]\n",
- "Epoch 077 | Avg Losses >> G/D 0.7707/1.3366 [D-Real: 0.5254 D-Fake: 0.4752]\n",
- "Epoch 078 | Avg Losses >> G/D 0.7714/1.3368 [D-Real: 0.5253 D-Fake: 0.4753]\n",
- "Epoch 079 | Avg Losses >> G/D 0.7715/1.3364 [D-Real: 0.5258 D-Fake: 0.4754]\n",
- "Epoch 080 | Avg Losses >> G/D 0.7768/1.3364 [D-Real: 0.5257 D-Fake: 0.4747]\n",
- "Epoch 081 | Avg Losses >> G/D 0.7791/1.3315 [D-Real: 0.5283 D-Fake: 0.4734]\n",
- "Epoch 082 | Avg Losses >> G/D 0.7772/1.3333 [D-Real: 0.5268 D-Fake: 0.4737]\n",
- "Epoch 083 | Avg Losses >> G/D 0.7769/1.3409 [D-Real: 0.5235 D-Fake: 0.4742]\n",
- "Epoch 084 | Avg Losses >> G/D 0.7694/1.3397 [D-Real: 0.5237 D-Fake: 0.4764]\n",
- "Epoch 085 | Avg Losses >> G/D 0.7730/1.3423 [D-Real: 0.5232 D-Fake: 0.4757]\n",
- "Epoch 086 | Avg Losses >> G/D 0.7706/1.3411 [D-Real: 0.5239 D-Fake: 0.4772]\n",
- "Epoch 087 | Avg Losses >> G/D 0.7557/1.3486 [D-Real: 0.5202 D-Fake: 0.4812]\n",
- "Epoch 088 | Avg Losses >> G/D 0.7545/1.3531 [D-Real: 0.5169 D-Fake: 0.4804]\n",
- "Epoch 089 | Avg Losses >> G/D 0.7639/1.3423 [D-Real: 0.5228 D-Fake: 0.4776]\n",
- "Epoch 090 | Avg Losses >> G/D 0.7589/1.3506 [D-Real: 0.5194 D-Fake: 0.4805]\n",
- "Epoch 091 | Avg Losses >> G/D 0.7683/1.3395 [D-Real: 0.5240 D-Fake: 0.4769]\n",
- "Epoch 092 | Avg Losses >> G/D 0.7710/1.3368 [D-Real: 0.5254 D-Fake: 0.4752]\n",
- "Epoch 093 | Avg Losses >> G/D 0.7585/1.3461 [D-Real: 0.5206 D-Fake: 0.4792]\n",
- "Epoch 094 | Avg Losses >> G/D 0.7725/1.3386 [D-Real: 0.5241 D-Fake: 0.4751]\n",
- "Epoch 095 | Avg Losses >> G/D 0.7635/1.3487 [D-Real: 0.5206 D-Fake: 0.4796]\n",
- "Epoch 096 | Avg Losses >> G/D 0.7696/1.3405 [D-Real: 0.5238 D-Fake: 0.4763]\n",
- "Epoch 097 | Avg Losses >> G/D 0.7582/1.3470 [D-Real: 0.5208 D-Fake: 0.4803]\n",
- "Epoch 098 | Avg Losses >> G/D 0.7640/1.3435 [D-Real: 0.5219 D-Fake: 0.4779]\n",
- "Epoch 099 | Avg Losses >> G/D 0.7636/1.3476 [D-Real: 0.5214 D-Fake: 0.4791]\n",
- "Epoch 100 | Avg Losses >> G/D 0.7547/1.3481 [D-Real: 0.5197 D-Fake: 0.4801]\n"
- ]
- }
- ],
+ "id": "639686f4",
+ "metadata": {
+ "collapsed": false,
+ "editable": true
+ },
+ "outputs": [],
"source": [
"fixed_z = create_noise(batch_size, z_size, mode_z).to(device)\n",
"\n",
@@ -1880,8 +1964,10 @@
},
{
"cell_type": "markdown",
- "id": "89c2ce43",
- "metadata": {},
+ "id": "4a7df60c",
+ "metadata": {
+ "editable": true
+ },
"source": [
"## Visualizing"
]
@@ -1889,20 +1975,12 @@
{
"cell_type": "code",
"execution_count": 10,
- "id": "d2f5e678",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABSUAAAITCAYAAADxdXnYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTdd8G8DtJk3TvBaW0IHsvkVX2eECQBwdDZAkq4HgRVKwLcAEOxEegijJEEVGWbCh7Sylllk2hQAvdu03b5Lx/pDk0NEmTjqQt9+e6cl01+Z1zfilYTr/5DokgCAKIiIiIiIiIiIiIrERq6w0QERERERERERHR44VBSSIiIiIiIiIiIrIqBiWJiIiIiIiIiIjIqhiUJCIiIiIiIiIiIqtiUJKIiIiIiIiIiIisikFJIiIiIiIiIiIisioGJYmIiIiIiIiIiMiqGJQkIiIiIiIiIiIiq7Kz9QaqCo1Gg7i4OLi4uEAikdh6O0REREQWEwQBmZmZqF27NqRSfvZcHfGelIiIiKozS+5HGZQsEhcXh8DAQFtvg4iIiKjc7ty5gzp16th6G1QGvCclIiKimsCc+1EGJYu4uLgA0H7TXF1dbbwbIiIiIstlZGQgMDBQvK+h6of3pERERFSdWXI/yqBkEV15jKurK28AiYiIqFpj2W/1xXtSIiIiqgnMuR9lsyEiIiIiIiIiIiKyKgYliYiIiIiIiIiIyKoYlCQiIiIiIiIiIiKrYlCSiIiIiIiIiIiIrIpBSSIiIiIiIiIiIrIqBiWJiIiIiIiIiIjIqhiUJCIiIiIiIiIiIqtiUJKIiIiIiIiIiIisikFJIiIiIiIiIiIisioGJYmIiIiIiIiIiMiq7Gy9ASKqngRBQEFBATQaja23QkRUI0ilUsjlckgkEltvhYiIqgGNRoPCwkLejxNRhZFKpbCzs4NUap0cRgYlicgiarUaSUlJyMzMREFBga23Q0RUo8jlcri4uMDb2xsymczW2yEioiooPT0dGRkZyMnJYUCSiCqcVCqFo6MjXF1d4ebmVqnXYlCSiMymVqtx584dqFQquLm5wdnZGTKZjFk9RETlJAgC1Go1srKykJaWhtzcXAQGBjIwSUREIkEQ8ODBA6SmpsLR0RHe3t6wt7eHVCrl/TgRlZsgCNBoNMjLy0NWVhbi4uKQm5sLPz+/SvsZw6AkEZktKSkJKpUKdevWhYODg623Q0RU4zg7O8PNzQ2xsbFISkqCn5+frbdERERVRGpqKlJTU+Hv7w8PDw9bb4eIaignJyd4eXkhNTUV9+/fh0KhgKenZ6Vci4NuiMgsgiAgMzMTbm5uDEgSEVUiBwcHuLq6IjMzE4Ig2Ho7RERUBQiCgLS0NLi4uDAgSURW4eHhARcXF6SlpVXaPSmDkkRkloKCAhQUFMDZ2dnWWyEiqvFcXFzEn7tERESFhYViCyUiImtxc3ODSqVCYWFhpZyfQclqThAEnL+bjow8/tJClUvXRJv9zYiIKp/uZy0HGFBlOHsnDTvOx+NWUratt0JEZlKr1QAAOzt2YCMi69H9zNH9DKpoDEpWc1F30jBk0RG8v/6crbdCjwk20SYiqnz8WUuVaemhm5iy+jQOXk209VaIyEL894GIrKmyf+YwKFnNxSbnAACuJ2TZeCdEREREVB0o7LS/AuQXMhOXiIiIbIdByWouO19b15+SzfJtIiIiIiqdQlYUlFQzKElERES2w6BkNZej0tb1p+Xkc0InERERkQWWLFmCevXqwd7eHu3bt8fhw4dNrl+9ejVat24NR0dH1KpVCxMmTEBycrLemvXr16NZs2ZQKpVo1qwZNm7cWJlvoUx0mZIqZkoSERGRDTEoWc3l5GuDkoUaAZmqypmGRERERFTTrF27FtOmTcOHH36IqKgohISEYODAgYiNjTW4/siRIxg7diwmTpyIixcv4u+//0ZERAQmTZokrjl+/DhGjBiBMWPG4OzZsxgzZgyGDx+Of//911pvyywPg5KV07SeiIiIyBwMSlZzOfkPA5FpLOEmIiITVq5cCYlEAolEglu3btl6O0Q2tWDBAkycOBGTJk1C06ZNsXDhQgQGBiIsLMzg+hMnTiA4OBhvvfUW6tWrh27duuG1117DqVOnxDULFy5Ev379EBoaiiZNmiA0NBR9+vTBwoULrfSuzMOekkRERFQVMChZzWUXC0qm5OTbcCdEVJk0Gg02bdqEKVOmoHXr1vDz84NCoYCrqyvq16+PoUOHYt68ebh69aqtt0pEVOXl5+cjMjIS/fv313u+f//+OHbsmMFjunTpgrt372L79u0QBAEPHjzAunXr8PTTT4trjh8/XuKcAwYMMHpOAFCpVMjIyNB7VDYlg5JERERUBTAoWc3pyrcBIDWbQUmimmj79u1o3rw5hg0bhh9//BHnzp1DQkICCgoKkJmZiZiYGGzevBmhoaFo3LgxevbsafIXYCq72bNni5mGRFR9JSUlQa1Ww8/PT+95Pz8/3L9/3+AxXbp0werVqzFixAgoFAr4+/vD3d0dP/zwg7jm/v37Fp0TAObOnQs3NzfxERgYWI53Zh5mShIRPZ5qStVMQUEBGjduDIlEgrVr11badaZOnQqJRIJx48ZV2jUedwxKVnO6QTcAkMpMSaIaZ/78+Rg8eDAuX74MAOjatSvmzZuHXbt24dSpUzhy5AjWr1+P6dOno3HjxgCAgwcP4tNPP7XltomIqoVHP2AQBMHohw7R0dF466238MknnyAyMhI7d+5ETEwMJk+eXOZzAkBoaCjS09PFx507d8r4bszH6dtERKU7cOCAGMB79OHg4IA6depg4MCBWLJkCbKysmy93SopLCzM4PdPKpXCzc0NQUFBGDBgAD7++GNcunTJ7PP+8MMPuHr1Kpo2bYoXXnih0vYfGhoKhUKB3377DREREZV2nceZna03QOWTU/AwKJnCTEmiGmXVqlV4//33AQDe3t5YvXp1ibJAnWeffRbffPMNtmzZgtDQUGtuk4io2vH29oZMJiuRwZiQkFAi01Fn7ty56Nq1K959910AQKtWreDk5ISQkBB8/vnnqFWrFvz9/S06JwAolUoolcpyviPLsHybiKh88vLycO/ePdy7dw87d+7EV199hX/++QetW7e29daqlDNnzhh8XhAEsWVJbGwsdu/ejc8//xyDBw/Gjz/+iICAAKPnzMrKwty5cwEAn3zyCaTSysu1CwwMxLhx4/Dzzz/jo48+wq5duyrtWo8rZkpWcznFJm6n5XDQDVFNce/ePTH7xsnJCYcOHTIakNSRSCR45plnEBkZiYkTJ1pjm0RE1ZJCoUD79u0RHh6u93x4eDi6dOli8JicnJwSv/jIZDIA2l+uAKBz584lzrl7926j57QVlm8TEVlmypQpOH/+vPjYv38/fvzxRzRq1AgAcPv2bQwcOBCZmZk23mnVogtKuru7633/zp49iyNHjuCPP/7AW2+9BR8fHwDA1q1b0a5dO1y/ft3oOcPCwpCUlITAwEAMHz680t/DjBkzAGj/PWe2ZMVjULKayy7WU5KDbohqjgULFiA3NxcA8Pnnn6Np06ZmH2tvb19qGUNOTg4WLlyIXr16iUNzfH190b9/f6xYsQJqtdroscHBwZBIJBg/fjwA4PLly3jllVcQHBwMpVIJPz8/DBs2DCdOnDBrv3fv3kVoaCjatWsHDw8P2Nvbo27duhgxYgT2799v9Lhbt26JJSArV64EAGzYsAGDBg1C7dq1YWdnh549e+odc+LECXz00Ufo2bMn/P39xWFBzZo1w5QpUxAdHW3wWrr+O3PmzBGfM1SKYqg3T2JiIj766CO0bdsW7u7usLe3R3BwMMaMGYMjR46Y/N48+r2OjIzE+PHjUa9ePSiVykrrbVmePQPAvn37MGrUKNSrVw8ODg5wdHREcHAwOnXqhHfeeQf79u0zeFxaWhq++OILdO7cGR4eHpDL5fDx8UGzZs0wbNgwhIWFISEhoaLfLj2mpk+fjl9++QXLly/HpUuX8PbbbyM2Nlb8QCg0NBRjx44V1w8ZMgQbNmxAWFgYbt68iaNHj+Ktt95Cx44dUbt2bQDA//3f/2H37t2YP38+Ll++jPnz52PPnj2YNm2aLd6iUbqgpIpBSSIis/j6+qJFixbio2fPnnjttddw/vx59O7dGwAQHx+PpUuX2ninVYdGo8GFCxcAaKsLin//WrVqha5du2LUqFH4/vvvERMTgwkTJgDQVhgMHTrU4O8jarUaixYtAgCMGjWqUrMkdRo3box27doBAL7//vtKv95jRyBBEAQhPT1dACCkp6fbeisW6fHVPiFo5lYhaOZWYcrvp2y9HarBcnNzhejoaCE3N9fWW6nxNBqN4O3tLQAQnJ2dhYyMjAo9/8mTJ4WAgAABgNFHx44dhfv37xs8PigoSAAgjBs3Tli/fr3g6Oho8BwymUz4888/Te7ll19+ERwcHEzuZeLEiUJBQUGJY2NiYsQ1y5cvF8aMGVPi2B49eojrV6xYYfI6uj0vXry4xLXMORaAEBMTo3fcrl27BFdXV5PHvP7664JarS71ex0WFibY2dmVON4Sxd/Ho3utqD2//fbbpX6fvLy8ShwXHR0t1K5du9Rjf/jhB4vec3VV1p+51fV+xlYWL14sBAUFCQqFQmjXrp1w8OBB8bVx48bp/QwRBEH43//+JzRr1kxwcHAQatWqJYwePVq4e/eu3pq///5baNy4sSCXy4UmTZoI69evt2hP1vgz3Ho2TgiauVV4IexYpV2DiCoW78Wtb//+/eL9x6xZs4yuO3TokLhuwIAB1ttgGZhzL1hRoqOjxWu9+eabpa5Xq9VCnz59xGNWrFhRYs2OHTvE18+dO1cJuzbs22+/FQAI9vb2QlpamtWuWxWU5WePJfcy7ClZzellSrKnJFGNcPHiRSQlJQEAQkJC4OLiUmHnPn/+PHr16oXs7Gz4+vpiypQpCAkJgZeXFxISErB582b89NNPOHnyJIYOHYrDhw9DLpcbPNe5c+ewdu1a1KpVCzNmzECHDh0gCAJ27dqFefPmIS8vD6+++ip69+4tlmQUt3z5ckyaNAkA0KJFC7z22mto27YtHB0dERMTg2XLlmH79u1YtmwZ3Nzc8O233xp9XwsXLsS5c+cQEhKCKVOmoFGjRkhLS9PLXCwsLISHhweeeeYZ9OjRAw0bNoSTkxPi4uJw+vRp/O9//0NSUhLeeOMNNGnSRPzUGwD++9//okOHDliyZAnCwsLE7+Wjive/OXPmDIYMGYL8/HzI5XK8/vrrGDp0KJycnBAVFYV58+YhJiYGixcvhpOTE+bPn2/0/UVEROD3339HYGAg3nnnHbRv3x5qtRqHDx82ekxZlHfPW7duxXfffQdA+4n4lClT0LRpU7i5uSE9PR2XL19GeHg4jh8/XuLaY8aMQVxcHORyOV555RUMHDgQ/v7+0Gg0iIuLw8mTJ7F+/foKfb9EU6dOxdSpUw2+psvALu7NN9/Em2++afKczz//PJ5//vmK2F6l0fWUVHHQDRFRuemy6ACYNazs5MmT+Pnnn3Hw4EHExcVBEAQEBgaiT58+mDZtGho2bGj02AsXLmDTpk04fPgwLl68iMTERMjlctSqVQtdunTBlClT0KlTpwp5X+VVvJ+kOb02pVIpPvroI+zduxeAtgJKVy2k89dffwEAGjZsiJYtW5Y4R0pKClq1aoV79+6Jz8nlckRGRpZYv3//fvTp00dswQIAzZo1Q2RkJOzt7fXWPvfcc5gxYwby8vLwzz//6FVSUDmVOVxaw1TXzIJmH+8QMyUHfHew9AOIyoifzlrP6tWrxU8AP/zwwwo7r0ajEVq1aiUAEFq3bi0kJiYaXLdjxw5BKpUKAIRffvmlxOu67D0AQvv27Q1+Wvj777+LaxYsWFDi9djYWDHDcty4cQYzIQVBED744AMBgCCVSoUrV67ovVY8UxKAMHbsWEGj0Rh9/3fv3hWys7ONvp6WliZ+f7p162ZwzaxZs8zOUHzyySfF7Mtdu3aVeD0lJUVo1qyZ+P4uXLhQYk3x73XLli2F1NTUUq9rSmmfjpd3z7ps1aCgICEzM9PoPpKTk/X++8aNG2ZlQmo0GiElJaWUd1kzMFPy8WWNP8ODVxKEoJlbhf8sPFRp1yCiisV7ceszN1MyNzdXXNeqVSuj6woKCoQpU6aYrAiRy+XC0qVLS92Pqcf7779vdA/mZEr26NGjQrIp33vvPfE8ERERZh2Tn58v2NvbCwAEb2/vEq8HBwcLAIQxY8YYPUd4eLggkUj0vicdOnQQCgsLxTVZWVlCvXr19NYoFAohKirK6Hlr1aolABAmTJhg1nupKSo7U5I9JauAeTsuo/e3B5Bu4aAaQRA4fZuqHEEQkJNfWOMfQrFP1CqaLksSgMEMw+IuXryICxcuGHxkZ2frrd22bRvOnTsHQDvZ29vb2+A5//Of/4hZPitWrDB5/eXLl8PNza3E8y+++KLYY81QNt/333+PnJwc1K5dGz/++CPs7Awn7s+ZMwcBAQHQaDRYtWqV0X24u7tj0aJFJnssBgQEwNHR0ejrbm5u+PTTTwEAR44cQXJystG1pTl58qTYCHvSpEkGhxR5eHiIfYc0Gg2WLFli8pyLFy+Gu7t7mfdUmorYs27qcLt27eDs7Gz0Wp6engaPA4Du3bsbPU4ikcDDw6OUd0JEpXk46MZ4/2AiIjJP8Z7kwcHBRtdNnDhRrLgZOHAgfv/9d/H+6+eff0bz5s1RUFCAV199FVu2bClxfGFhIZycnDB8+HD8+OOPOHDgAE6fPo2dO3fi22+/RVBQEABg3rx5pd7DW4MuU1Imk6F58+ZmHSOXy+Hn5wcASE5O1usreffuXbEK6sknnzR6jr59++Ktt97Se+7UqVN6VVfvv/8+YmJi9NZ89tlnaNOmjdHz6q5Z0ZVKjzuWb1cBm8/cQ1x6HqLupKJnY1+zj8sr0KB4XCQtpwCCIFTa4AMic+QWqNHsk1223kali/50ABwVlfMjtPjUPlOBHUBbCmFsKM3+/fv1Br38888/ALTNmlu1amXyvN27d8dff/2FiIgIqNVqccJscS1btjR6HolEgrZt2yIuLg43b94s8bpuL0OGDClRHlGcnZ0dOnfujHXr1hks+dUZMmSIxWXu2dnZSExMRHZ2thhkLl6qfvbsWb0Sbkvs2bNH/NrUJPSuXbuiadOmuHTpkt4xjwoMDERISEiZ9mKuithzrVq1AACHDh3CjRs38MQTT5h1bd1xgLZkdsGCBZZsnYgsJAYlWb5NVOMIgoDcgsfjAwcHuaxK/O77zTffiF8ba9+xfv168QP2n3/+WWxhpNOhQwe89NJLePrpp7Fv3z689dZbGDhwoN4H923atMHdu3cNfkg9YMAAvPHGGxg8eDDCw8MxZ84cjB071uA9vLWcPXsWgLbU2sHBwezjFAoFAO3f5YKCAvE9HDt2TFzTtm1bk+eYN28e9uzZg4sXL4rPzZo1C//9739x//59LF68WG99jx498M4775g8Z/v27bF582Zcv34dCQkJ8PU1P3ZDxjEoWQWk5WozJFMtnJ6dnV+o99/5ag2y89VwVlb8H6sgCDh/Lx2N/FxgL7fdDzaix0Hx4Nqj2Y7lcerUKQDAlStXzL6By8/PR0pKisGMzSZNmpg8VpcNVzzICgDp6em4fv06AOCnn37CTz/9ZNZeimfTPaq0IKtOUlISFixYgPXr1+PatWsmM16LZ6xaSjdpUKFQlHrT9NRTT+HSpUu4du0a8vPzxRux4sx9f+VREXseO3YsVq1aheTkZLRo0QJDhw7FgAEDEBISggYNGhg9X7169RASEoLDhw/ju+++w65du/Dcc8+hZ8+e6NSpk8kMVyKynEKmy5RkUJKopnlcEgSAyk0SKE1ycjIuXbqEL7/8Ejt27AAAdO7cGSNHjjS4fu7cuQCAYcOGlQhI6tjb22PRokVo1qwZbt26hQMHDqBv377i68aqnHQUCgW+/vprtGnTBrdv38aZM2fQvn37sry9crt//z4ePHgAwLx+ksWlpqYC0CZnFE9euHv3rvh1aQFBe3t7rF69Gh07dkR+vjbOkpeXhwkTJiAhIUHvdwA3NzesWrWq1Enexa957949BiUrCIOSNqYqVCOnaFhNcpZlQcncouPs5VIIAqAq1CA1O79SgpK/HruF2VuiMb5LMGY/Y17qNT2eHOQyRH86wNbbqHQOlRic9/LyEr9OTEw0ubawUP/DidmzZ2POnDkG1yYkJJRpPzk5OQafLy1QpPuH/dFMzoreBwCzSnojIyMxYMAAs8uyc3Nzzd7bo1JSUgBoA7PGStN1/P39AWg//ElNTRVLVoqzRslyRey5T58+WLRoEd59913k5uZi7dq1WLt2LQBt+fzgwYMxZcoUgzena9aswQsvvIDjx48jOjoa0dHR+OyzzyCXy9G5c2eMGjUK48ePN5lZS0TmUdoxKElEZIk5c+YYvce2s7PDyJEjsXjxYoMDIu/du4fIyEgAwPDhw01ep2nTpvD29kZSUhKOHz+uF5R8lEqlwoMHD5CVlQWNRvvzvHiw7ezZs2UKSh44cMDiYx4VFRUlfm1JULKwsBBpaWkAUOKeuPjvRebcG7du3RqfffYZZs6cKT5XPNtSZ8mSJahbt26p5yvefqi039HIfAxK2lhasT6SlvaE1GVKOinsIJdJcT8jD6k5+Qj0rNiMkmxVIf63T5vVtO18PD4Z3AxSqe3T5KlqkkgkNvvEsqYo/g/36dOnK+y8uuBg165d8eOPP5p9nK43ZEXvAwCmTZtmslS4OEMZhDqllabk5+dj+PDhSE5Ohlwux5tvvomhQ4eiUaNG8PDwgFKpBADcvHlTLDmuiL6h5mSkmnMda5belHfPr7/+Ol544QX88ccfCA8Px9GjR5Geno579+7hp59+wtKlS/HBBx/g888/1zsuICAAx44dw969e7FhwwYcPHgQ0dHRKCgowKFDh3Do0CF888032L59Oxo1alTu90n0ONOVb6sYlCSqcR6XBAGgcpMELNGoUSO89957cHV1Nfi6rloJAEaNGoVRo0aZdV5DVULZ2dn43//+hz///BMXL1402sYJKF/VT3lZOnm7+HG6pItH+0bqPkAHzP/A/p133sH27dtx8OBBg6+PGjUKL774olnnKn7N8vSeJ32MHNhY8ZJti8u3VdofQI5KGZyV8qKgpGXDcsyx8tgtMWCamKlCdHwGWgSUHGxBRBWjefPm8PLyQnJyMg4fPozs7Gw4OTmV+7xeXl548OABEhMT0aJFiwrYadn3oZOTk2OVvezbt0/sbbl48WK88sorBtfpykXKS/dJanJyMgoLC01mHupKW2w9xKUi9+zr64tp06Zh2rRp0Gg0OHPmDDZs2IDFixcjLS0NX3zxBZ588kkMHTq0xLF9+vRBnz59xL3s2bMHS5cuxb59+3Djxg2MGDFC79N3IrKc0k77izwzJYlqHiYIVI4pU6Zg6tSpALTZfHFxcdi8eTOWL1+O6Oho9OzZE8eOHUPjxo1LHFtRVUK3bt1C7969SwxoMaY8VT/lVdag5JEjR8Sv+/Xrp/da8WqZ3Nxcs/rJS6VSrFq1Ck2bNi3x/fTx8Sl10GRxxb+flvTIJNM4fdvGimdKlrV820lhBw9HbZp4agVP4E7PLcBPB28AADydtFlK+y+X7YcqEZlHIpFg7NixALT9GFeuXFkh59X1Cbx69Spu375dIecsCx8fHwQEBADQDlepzEnmOsWbXBvr9QPof5JtiLm9OHWB1vz8/FIDaCdPngSgbQJuKhu0slXWnqVSKdq1a4fPP/8ce/fuFZ//66+/St2Tl5cXRowYgb179+KZZ54BoL3JvXbtWqnHEpFxukzJQo0AjabyfwYTEVV3vr6+aNGiBVq0aIE2bdpg0KBB+PHHH7Fx40ZIpVKkpKTgxRdfNJi5WPy51atX4/z582Y9Hq0qGTNmDGJiYiCRSPDyyy9j9+7duHPnDvLy8iAIAgRB0LuWNe6xjdEFJT09PcX7fnMsX74cgHb45MCBA/VeK97jvnjWZGnOnj1rsA1UUlKSRVVpxa9pqN8+lQ2DkjaWViw7sqzl2w4KGTyKAoaWZluWZtnhm8jIK0RjPxdM76ctlztwlf0TiCrb9OnTxU/gPvjgA3EwTHnogjoA8NVXX5X7fOWh28vNmzexbt26Sr9e8d6bxnpTajQaLF261OR5in9Cq1KpjK4r3v9n2bJlRtfp+ic+eowtWGPP7dq1EzMrLS0p0mVPluVYItKnC0oCnMBNRFQeTz/9NCZPngxA23bJUDJB8SohiUQiBjdLexQP5l2+fFnMIgwNDcWyZcvQr18/1KlTR2xDBFRc1U955OTkiL+7WJIluW3bNpw/fx6ANgBbq1YtvdeLBwLNfZ8PHjww2ipKEASMHz9e7GFZmuLXZFCy4lTJoOShQ4cwZMgQ1K5dGxKJBJs2bSr1mIMHD6J9+/awt7dH/fr1LeqXZkvFy61TLAwoVnamZEp2PpYd0aaGv92vEXo30U6XiopN1QumElHFq1OnDhYvXgwAyMjIQEhIiFlNp039A/3cc8+hadOmAICwsDCTgSdAO415y5Yt5m/aAu+++654AzV58uRSMxS3b9+Oc+fOlfl6DRs2FL/+9ddfDa4JDQ0t9dPS4jdHN27cMLquY8eOYh+cX375BeHh4SXWpKen47XXXgOgzSacMmWKyWtXtorY89q1a02WCp06dUr8O1qvXj3x+TNnzuiV+TxKEATs2bMHgPZmPjg42Kz3RESG6aZvA+wrSURUXrNmzRJbLc2ZM0ec9qyjq1YCgN27d5fpGhVV9WMNZ8+eFQfvmBuUTEpKEtsrKRQKvP/++yXWtGzZUvz66tWrZp134sSJJofS3LlzRyzLL43umk5OTqhfv75Zx1DpqmRQMjs7G61bt8aiRYvMWh8TE4NBgwYhJCQEUVFR+OCDD/DWW29h/fr1lbzT8kutgExJR4UMno66TMmK6yn508EbyM5Xo0WAKwY090Ntdwc09nOBRgAOXWOWClFlmzBhAj777DNIJBLcv38fvXr1Qo8ePfDtt98iPDwcp0+fRmRkJHbs2IF58+bhqaeewv/+9z/x+Ed7nchkMqxduxbOzs4QBAGTJk3Cf/7zH6xatQr//vsvTp8+jZ07d2Lu3Lno2rUrWrZsabQpdHnVq1dP/PAoJSUFXbt2xaRJk7Bp0yacPn0aJ0+exIYNG/D++++jQYMGePrppxEbG1vm6w0YMAC+vtoPVj788EO8/vrr2LVrFyIjI7F27Vr07dsXX331Fbp27WryPF26dBG/fvvtt3Ho0CFcu3YN169fx/Xr1/UyMpcuXQqFQgG1Wo2nn34aM2bMwIEDB3Dq1Cn8/PPPaNeunfhp8DvvvGPTPp865d3zzJkzUbt2bYwfPx7Lly/HkSNHEBUVhT179mD27NkYMEDbeF8mk+n19Txz5gzatm2Ljh074rPPPsO2bdsQGRmJEydOYM2aNRgwYIAYIB86dGiJT86JyDJy2cNWFOwrSURUPr6+vuKHtnfu3CnxAXiDBg3QrFkzAMCff/5Zpntac6p+AFSJ5CxL+0k+ePAA//nPfxAfHw8AWLBggV5CgU6HDh3E328iIiJKPe+SJUuwbds2veemTZuG//73v3rPrVmzBmvWrCn1fLprdurUyWTvdbKQUMUBEDZu3GhyzXvvvSc0adJE77nXXntN6NSpk9nXSU9PFwAI6enpZdlmmX2xLVoImrlVfBQUqs0+dunBG0LQzK3C/605LSw7fFMImrlVmLo6skL29SA9V2j80XYhaOZWYd+lB+LzXxbt9+0/oyrkOlR95ObmCtHR0UJubq6tt/LY2bx5s9CwYUMBgFmPrl27CkeOHDF6vrNnz5p9vjlz5pQ4PigoSAAgjBs3zuS+x40bJwAQgoKCjK75888/BVdX11L3IZVKhX379ukdGxMTI76+YsUKk3sRBEHYuXOnYG9vb/QaPXv2FC5cuFDqOYcPH270HDExMXprd+3aVer7e/311wW12vDPfnO/1+ZasWKF0b1WxJ51+zX1sLe3F3799Vej+zL16Natm5CcnFwh34uqrqw/c211P0MVx1p/hg0/1N7n3U3NqdTrEFHF4L249e3fv1+8B5k1a5bJtfHx8eJ9Zv369YXCwkK91//44w/xXO3btxcSEhKMnisvL09YvHix3p91ZGSkePyUKVMMHrdkyRK9+yZDezbnXrBHjx6lrjHl1VdfFY8/ffq00XUajUZYs2aNULduXXH9yy+/bPLcur11797d5LrLly8Ljo6Oet+PBg0aCNnZ2cKDBw8Eb29vvdfc3d2F2NhYo+fLy8sT5HK5AECYPXu26W9ADVOWnz2W3MvUiPDu8ePH0b9/f73nBgwYgGXLlqGgoAByubzEMSqVSq8fWEZGRqXv05BHy6DTcgvg7aw0slpfTr5u+radOISmosqqlxy4gbwCDdrVdUfPxg/7JfRs7IufDt3EwauJ0GgESKXmDX0gorIbMmQIBg0ahM2bN2Pnzp04fvw47t+/j9TUVDg4OMDT0xPNmzdHx44d8cILL4ifxBrTqlUrREdH448//sDGjRsRGRmJxMREaDQaeHl5oXHjxujWrRuGDRuGdu3aVep7GzFiBPr374+lS5di586diI6ORmpqKuRyOfz9/dG8eXP06tULzz//PAIDA8t1rQEDBuDUqVOYN28e9u3bh8TERLi7u6NZs2YYPXo0Jk6caNYn17///js6dOiAdevW4cqVK8jMzBRLVB7Vv39/XL9+HQsXLsT27dtx8+ZNqFQq+Pn5ISQkBJMnT0a3bt3K9b4qWnn2fOjQIYSHhyM8PBzR0dHi31NHR0c0aNAAffr0wZQpU/RKtwHgxRdfRHBwMMLDw3H48GHcvXsXDx48QGFhIXx9fdGuXTuMHDkSI0aMgFRaJYs8iKodpUyK/EINVAUlhzIQEZFl/P39MXHiRCxevBg3b97EH3/8gTFjxoivjxo1Crt27cKvv/6KyMhINGvWDK+99hp69OgBHx8fZGdn48aNGzh8+DA2bNiAlJQUcfAloC0Bb9GiBS5cuICwsDCkpaVh9OjRqFWrFu7cuYPff/8d69atQ9euXXH06FFbfAtEukxJiUQCjUaDCxcuAND2b09NTUVCQgKOHj2Kbdu2ib0nJRIJPv30U3z00Ucmz/3000/j4MGDOHnyJDIzMw1O4C4oKMDo0aP1MkqlUilWrFgBR0dHODo6YsmSJRg+fLj4elpaGsaPH489e/YYHGx56NAhFBQUiHugClSeiKk1wIxMyYYNGwpffPGF3nNHjx4VAAhxcXEGj5k1a5bBLAxrZxZM+jVCL1Pyyv0Ms4/VZS1+vvWisP/yAyFo5lbhPwsPlXtPd1NzhIYfaD89P3otUe+1/EK10PyTnULQzK3CmdjUcl+Lqg9+OktEZD3MlHx8WevPsP1nu4WgmVuFS/H8u0JUHfBe3PosyZQUBEGIjY0VFAqFAEBo0qRJiaqSwsJC4b333hNkMlmp1SFOTk5CTo5+JntUVJTg4eFh9JiWLVsKcXFxNs2UVKvVJTIUTT0kEokwdOhQ4eTJk2ad/+7du+L379HKG53Q0NAS15k2bVqJdSNGjCix7ttvvzV4zvHjxwsAhMaNG5v/zaghKjtTssakGzwazRYEweDzOqGhoUhPTxcfd+7cqfQ9GvJoZqMlfSUfTt+u2EzJVcdvIV+tQef6XujSwFvvNblMim5Fz+2/klDuaxERERGR9emG3bCnJBFRxQgMDMS4ceMAaKdlPzrjQiaTYf78+YiOjsaMGTPQtm1beHh4QCaTwcXFBc2bN8fo0aPx66+/Ij4+vkR/+DZt2uDMmTOYPHkygoKCIJfL4enpiY4dO+Kbb77ByZMnbd53++rVq0Z7Xrq4uCAoKAht27bF2LFj8fPPP+P69evYtGmTOGyxNAEBARg6dCgAYPXq1SVeP3LkCObPn6/3XIMGDfDFF1+UWLt48WL4+/vrPffBBx+I/dN18vLysHHjRgAweygOma9GlG/7+/vj/v37es8lJCTAzs4OXl5eBo9RKpXi5Fdb0g2mkUgAQbAsKJkjTt+WwaNo0I2lw3IMuZuinZw6oLmfwdd7NfHBzov3ceBKIqb1bVTu6xERERGRdSnsGJQkIjKlZ8+eYrKTuZYuXYqlS5eaXNOoUSN88803ZdpT3bp1ERYWZnKNqT2PHz8e48ePN3n8gQMHyrAzrSZNmlj8PbPUu+++iw0bNmDv3r24desWgoODxde6desGtdq8tiReXl7icB1T1q1bh/T0dHh6emLChAll3TYZUSMyJTt37ozw8HC953bv3o0OHToY7CdZlegyG+t4aD8FSbYkKKkq6impkMGjKFNSVahBbn75egNl5GkDpW6Ohr93PRppJ9ievZuG5CyVwTVEREREVHUxKElERNVRp06dMHDgQKjVasydO7dSr6XRaPDll18CAN555x2DPSypfKpkUDIrKwtnzpwRG6TGxMTgzJkz4gCC0NBQvaavkydPxu3btzF9+nRcunQJy5cvx7Jly/DOO+/YYvtmEwQBaUWZkk/4OAMAUstQvu2osIOTQga5TFuqnlLOEu6MXO2eXO0NByX93ezRtJYrBAE4fC2pXNciIiIiIuvTBSVVagYliYioepk/fz5kMhlWrFhh1qDKsvr7779x6dIlBAYGYtq0aZV2ncdZlQxKnjp1Cm3btkXbtm0BANOnT0fbtm3xySefAADi4+P1/uLVq1cP27dvx4EDB9CmTRt89tln+N///ofnnnvOJvs3V5aqEIUabWpzfW9tUNKS8mtdRqSTUgaJRCKWcFsS2DQkI08b7HR1MJ5l2qtoIjf7ShIRERFVP+wpSURE1VXLli2xcuVKfPDBB5UalFSr1Zg1axZ+//33Ej0+qWJUyZ6SpfVuWLlyZYnnevTogdOnT1firiqeLkvSXi5FbXd7AJaVb2cXBSUdFNo/Rg9HBRIyVUgtZ6ZkelGmpJuJoGTPxr5YcuAGDl5NhFojQCY1PFCIiIiIiKoeMVOSQUkiIqqGXnrppUq/xosvvljp13jcVclMyceFLnjo4agQp2dbkuWYU1S+7aSQac/jJC86b0GZ9yQIQqnl2wDQrq47XOztkJZTgLN308p8PSIiIiKyPoWd9v6RmZJERERkKwxK2pAuU9LNQS4GJS0adJOvG3TzMFMSKF/5dm6BWiwpd3UwnkhrJ5Oie0NtCfeByyzhJiIiIqpOlBx0Q0RERDbGoKQNGcqUTMk2f5p1jko36EaXKanQO29Z6Eq35TIJHOQyk2t7FvWVPHKdw26IiIiIqpOH07fVNt4JERERPa4YlLQhXaakh5O8WPl2gcl+mjqCICCnoChTUlkUlHQsKt8uR6ZkRm7RkBt7OSQS030iG/m5AADi0/PKfD0iIiIisj6lbtANp28TERGRjTAoaUO6jEZ3RwW8nJQAtDeGWUUZkKbkFWigi106PVq+XY6ekhl5Rf0kTQy50fFyflhybk4glYiIiIiqBgXLt4mIiMjGGJS0IV2mpLuDHA4KGezl2j+OFDMyHbPzHwYudWXWnhVRvp2jG3JT+mB2MZBaaF4glYiIiIiqBgYliYiIyNYYlLShtGI9JYGHQT5zgpK5RUNuHOQySKUSvfOUJyhpSaakg0ImBkTN2TMRERERVQ2KovJtFYOSREREZCMMStqQrszavagX5MNhN+ZnSjopHw6j8SjWl7KsMnLND0oC+iXcRERERFQ96DIlGZQkIiIiW2FQ0oYezZTUBRXNCfBlq4oyJRXFgpK6QTflmr79cNCNObx0e85iUJKIiIioulDaae8hOeiGiIiIbIVBSRtKLTZ9G3gY4DNneraufFs35EZ7Hu3xOflq5BVN5raUrnzbzcxMyYfZnaoyXY+IiIiIrI89JYmIiMjWGJS0IV1Go5uDNrBXlvJtx2KZki5KO9gV9ZdMK+ME7ofl26UPugEAL2dtH0yWbxMRERFVHwxKEhERka0xKGkjhWoNMvO0gUWPR3pKmhPgyxGDkg+DhxKJBO6O5gc2DREH3bB8m4iIiKjGYlCSiIiIbI1BSRtJz32Yyagrlfa0oHw7p6h8u3imJPAwwJlWxr6S6RYOurEku5OIiIiIqgZl0fRt9pQkIiIiW2FQ0kZ0/SRd7e1gV3RTaFGmZNGgGyelfpm1rq9kShmDkhlFg27M7SnJ8m2i6kUikUAikWD27Nm23kqZVZX3cOvWLXEvK1eutOlearrx48dDIpEgODjY1lshqjGYKUlERES2Zl7jQKpwukxGXbk1ULaekg5GMiXNybY05GH5tpk9JcXybQ66IapIBw4cQK9evUo8L5PJ4OrqCjc3NwQGBqJ9+/bo1q0bhgwZAoVCYeBMREREJemCkqrCsg1HJCIiIiovZkraiG4QjS6ICFhWvv1w+rZ+UFI8RxkH3Vhavu3lzPJtImtSq9VITU3FrVu3cPjwYSxcuBDPP/886tSpg88//xyFhYW23iJVQT179oREIkHPnj1tvRUiqiKUzJQkIqrSZs+eLVblUOkKCgrQuHFjSCQSrF27tkbuYerUqZBIJBg3blyFrKsKGJS0kVQDmZK6rMNMVWGpn1o/zJTUz2gsz6AbjUZAlsqy8u3iJeeCIFh8TSIq3ZQpU3D+/Hnxcfz4cWzfvh3z5s1Dv379IJFIkJiYiI8//hhdu3ZFYmKi0XMJggBBEGxe+lweVeU9BAcHi3sZP368TfdCRGSph5mSDEoSERly4MABMShozoPtfMwTFhZm8PsnlUrh5uaGoKAgDBgwAB9//DEuXbpk9nl/+OEHXL16FU2bNsULL7xg9nGJiYlYsGABnnnmGQQHB8PFxQVKpRK+vr546qmnMHXqVGzbtg0FBaUnfpV1D+YKDQ2FQqHAb7/9hoiIiHKvqwoYlLQRQ5mSrvZyyKTaT0FSs03/hRd7Sj6aKVkUlCzLoJtMVSF0cUUXs8u3tT0l8ws1YkCTiCqWr68vWrRoIT46deqEgQMHYubMmdi9ezfOnz+Ptm3bAgBOnjyJZ599Fvn5zF4mIiLjFBx0Q0RENnDmzBmDzwuCgIyMDMTGxmL37t34/PPP0axZMwwZMgT37t0zec6srCzMnTsXAPDJJ59AKi091JWbm4t33nkHdevWxYwZM7Blyxbcvn0bWVlZyM/PR2JiIk6ePImwsDAMHjwYderUwYIFC4wGJ8uyB0sFBgZi3LhxEAQBH330UbnXVQXsKWkjhjIlpVIJPBzlSMrKR0p2Pvzd7I0eL07fVj6aKakNcqaUoXw7o6h0214uhdJOVspqLQeFDI4KGXLy1UjJzoeLvXkZlkRUcZo3b46jR4+ia9euiIqKwpEjR7BkyRJMmzbN1lsjIqIqioNuiIjMN2XKFEydOtXkmjp16lhpN9WbLijp7u6Ow4cPi89rNBpkZmYiNjYWJ06cwJo1a5CYmIitW7eiXbt2OHr0KBo0aGDwnGFhYUhKSkJgYCCGDx9e6h7u3r2L/v37i5mYrq6uGDZsGPr374+AgAA4OTkhISEBZ8+exZYtW3D8+HEkJCTgvffew9SpUyGXl4x7WLqHspoxYwZ+/vln7N69GxEREXjyySfLtc7WmClpI7qej+6O+n+ZzR12oyvfdpQb7ilZlkxJXT9Jc0u3H70mJ3AT2Y6DgwN+++03sefMN998Y/BTvNImV6elpeGLL75A586d4eHhAblcDh8fHzRr1gzDhg1DWFgYEhISjO4jPz8fS5cuxdNPP42AgACx9KF9+/Z44403cPjw4RKtHh6drBwfH4+ZM2eiefPmcHFxgUQiwYEDB8x6DytXrhRfv3XrFvLz87FgwQJ06NABbm5u8PT0RM+ePbFt2za94zIzM/HVV1+hbdu2cHV1hbu7O/r164e9e/cafa+lTd9+tA9QXl4evv76a7Rr1w4uLi5wcXFBx44dsWjRIpO9QPPz87Flyxa88cYbePLJJ8U/Fy8vLzz11FOYPXs2kpKSDB6r+94ePHgQAHDw4MESpTLGJlqfP38er776Kho2bAhHR0e4uLigefPmePvtt3Hr1i2Lvi8bNmzAoEGDULt2bdjZ2VVab8uy7hnQ9mtduXIlBgwYAH9/fygUCri7u6Nhw4bo06cPvvzyS0RHRxs89urVq3jzzTfRokULODs7Q6FQoHbt2mjTpg1efvllrF27FioVB8JR1cKgJBGR+R6tXDL0cHd3t/U2qzyNRoMLFy4AAFq1aqX3/WvVqhW6du2KUaNG4fvvv0dMTAwmTJgAAEhISMDQoUOhVpdsc6dWq7Fo0SIAwKhRo0rNUIyPj0fv3r3FgOS4ceMQGxuLlStX4sUXX0SPHj3QoUMHDBo0CKGhoTh27BgOHTqEtm3bomnTprC3L5k8ZukeyqNx48Zo164dAOD7778v9zpbY6akjaTnagN4Ho7603J1/51SSlBRHHSj1A9Klqen5MPJ25YFJb2cFLibmovkLAYliWypefPm6NevH3bv3o179+4hIiICXbp0Mfv4S5cuoW/fvoiLi9N7PikpCUlJSbh06RI2bdoEtVqNN954o8TxZ86cwbPPPouYmBi95xMTE5GYmIjTp09j8eLFiImJMRoIO3HiBIYMGWI0yGaJjIwMjBw5Ev/++6/e8wcPHsTBgwfx7bffYvr06YiNjcWgQYNw8eJFvXV79uzB3r17sWrVKrz00kvl2suDBw8wYMAAnD17Vu/5iIgIREREYPfu3di0aZPBG5hXX30Vv/76a4nnU1JScPLkSZw8eRKLFi3CP//8g65du5Zrnzpz587FRx99BI1GP1gRHR2N6OhohIWFYenSpRg7dqzJ8wiCgLFjx+K3336rkH2ZUp49Z2VlYdCgQXqf1gNAeno60tPTcf36dezbtw+nT5/GunXr9Nb8/fffeOmll0q0TIiPj0d8fDzOnj2LFStW4Pz582jRokUFvVui8hMH3bB8m4iIrOTKlSvIyckBALRu3drkWicnJ/zyyy+IjY3F3r17ER0djd9++61EL/fw8HDExsYCQKn37Dk5OejTpw+uXbsGAPjqq6/w7rvvlrrvkJAQHD16FJs3bzb4uiV7qAijR4/G6dOnsX79eixevBhubm7lWmdLzJS0EV3PyEczJcVp1lmmMyqydeXbjwy6eZgpWfbybXMnb+t4OWv7SqZkMwuEyNb69u0rfv1ogKU0Y8aMQVxcHORyOaZOnYotW7YgIiIC//77LzZu3IjQ0FA0atTI4LHR0dEICQkRA5LDhg3D2rVrERERgRMnTuDXX3/FSy+9BCcnJ6PXz8rKwnPPPYe8vDx8+OGHOHDgAE6ePIlly5ahVq1aFr0XQBvMi4yMxNSpUxEeHo5Tp07hl19+Ec/17rvv4sKFC3j22Wdx8+ZNvP/++zhw4AAiIiKwcOFCuLm5QRAETJ061WR2qDmeffZZXLp0CW+99RbCw8MRGRmJP/74A02bNgUAbNmyBT///LPBYwsLC1G/fn3MmDEDa9euxfHjxxEREYF169Zh8uTJUCgUSE5OxrBhw0rs84svvsD58+fRoUMHAECHDh30hiadP38eu3fv1jtmyZIl+OCDD6DRaODj44NvvvkGx48fx5EjRzB79mw4OTlBpVJh/Pjx2L59u8n3vXDhQvz2228ICQnBH3/8gVOnTmHPnj0YM2ZMWb+VBpV3z7Nnzxb/fxk8eDDWrFmDo0ePIjIyEjt37sT8+fMREhJSYvrlgwcPMGHCBOTn58PX1xeffvopdu/ejdOnT+PYsWP4/fff8eqrr8Lb27tC3y9RRVDItB9sqwoYlCQiqgwXLlzA559/jgEDBqBOnTpQKpVwdnZGw4YNMW7cOJw4caLc1zh37hxq1aoFiUQCPz8/o/0aAW3v+VdeeQWNGjWCs7MznJyc0KRJE7z++utikK6yFd9faUFJAJBKpXo9ETds2FBizV9//QUAaNiwIVq2bGnyfF988YWYIfnmm2+aFZDUcXBwwIgRIwy+VtoeildzmfswlsQBAM899xwAbSXWP//8U+51NiWQIAiCkJ6eLgAQ0tPTrXK9Ad8dFIJmbhUOXknQe/7DjeeEoJlbhW93XTZ5fPev9glBM7cKETHJes+nZquEoJlbhaCZWwVVgdqiPa09GSsEzdwqjF/+r0XHzfjrjBA0c6uweP81i46j6iU3N1eIjo4WcnNzbb2Vx8L+/fsFAAIAYdasWWYft2fPHvG4l19+ucTrxs5548YN8bUffvjB6Pk1Go2QkpJS4vm2bdsKAASpVCqsWbPG6PFJSUlCTk6O3nPjxo0Tr+3s7CycOXPG5Hs09X1ZsWKF+LpEIhE2btxYYs25c+cEmUwmABB8fHwEpVIpnDhxosS6bdu2iedasGBBiddjYmLE11esWFHi9VmzZomvy+VyYf/+/SXWJCcnC35+fgIAoVWrVgbf7/Xr1wWNRmPwNd37cXZ2FgAIH330kcE1PXr0EAAIPXr0MHoeQRCEhIQEwdHRUQAg1K5dW4iNjS2x5vTp04KTk5MAQAgICBDy8/P1Xi/+fQEgjB071uT+zaH7OxIUFFQpew4MDBQACM8//7zJfSQn6/+bu2zZMvF9nj9/3uhxubm5Jf7el6asP3OtfT9T3S1evFgIDg4WlEql0K5dO+HQoUNG1xb/WVX80axZM3FN8Z9BxR+W/Dla68/wfnquEDRzq1A/dFulXoeIKgbvxa2vrPfjjx5r6vH+++8bPUfxe0lDjhw5Iri7u4v3SFevXjW4rqCgQJgyZYrJfcjlcmHp0qVG96K7lwQgxMTEWPS9KO69994TzxMREWHWMfn5+YK9vb0AQPD29i7xenBwsABAGDNmjMnzXLlyRVAoFOL3Kzs7u0zvwZDS9mDs/sDUw9B9b3G1atUSAAgTJkyokHXGlOVnjyX3MsyUtJE0Yz0lzSzfzjGSKelqL0fRAG+L+0rqyrct7SnppespyfJtAgBBAPKza/7jkb6IVYWXl5f4dWpqqtnH3b9/X/y6e/fuRtdJJBJ4eHjoPbdr1y5ERUUB0H7iOHLkSJP7c3BwMPr6e++9Z9anpuYYPnw4/vvf/5Z4vmXLlujWrRsAbWn522+/jaeeeqrEukGDBiEoKAiA5Vmnj3rzzTcN9lH09PQUe+WcO3cO6enpJdY88cQTJTL0imvZsiUmTZoEANi0aVO59rlixQqxpObbb79FYGBgiTVt27ZFaGgoAODevXsmr+nu7o5FixaZ3H95VcSedX//Q0JCTF7L09PT4HEeHh4mS7Pt7e1N/r0n21i7di2mTZuGDz/8EFFRUQgJCcHAgQPF8qtHff/992JZfnx8PO7cuQNPT0+88MILeutcXV311sXHxxvsP2Vruunbao0AtaZq/ptGRFRdFRYWwsnJCcOHD8ePP/6IAwcO4PTp09i5cye+/fZb8R5z3rx5WLFihcXn37FjB/r374+0tDQ0bdoUR44cQcOGDQ2unThxIsLCwgAAAwcOxO+//46TJ08iIiICP//8M5o3b46CggK8+uqr2LJlS9nftBl0mZIymQzNmzc36xi5XA4/Pz8AQHJysl5fybt374p9w0sb5PL555+L7XZmz54NR0dHC3dvmCV7qEi6a5X2e4q562yFPSVtJM1IT0lzB93kqLRDER7tKSmVSuDuqEBKdj5ScvLh62r+TXDZy7fL3seSaqCCHODL2rbeReX7IA5QGC9FthVnZ2fx68zMTLOPK14evXLlSixYsMDsY4sPjXn77bfNPs6Q0aNHl+v44kwFR1u1aiUOfzFWhqFbd/v2bdy8ebNcezH1vtq3by9+HRMTgzZt2pg8V2pqKlJSUpCXlycODdI1Vo+OjkZBQYHBiYDm2LNnj3g+XbmHIZMmTRJLafbs2VMiKKMzZMgQuLi4lGkv5qqIPdeqVQuxsbFYu3YtJk2aZPZNqu7/m9TUVPzzzz8YOnRoWd8G2cCCBQswceJEMai/cOFC7Nq1C2FhYZg7d26J9W5ubnq9mDZt2oTU1FTxgwUdiUQCf3//yt18BdANugG0w24cFDITq4mIHm8JCQnigBZDfH194evrK/53mzZtcPfuXYPDbwYMGIA33ngDgwcPRnh4OObMmYOxY8dCJjPv5/Cff/6JsWPHoqCgAE8++SR27Nihl5hQ3Pr167Fq1SoAwM8//yz+m6fToUMHvPTSS3j66aexb98+vPXWWxg4cCDs7ConVKTrr96wYUOLPrBVKLQxB0EQUFBQIH6vjh07Jq5p27at0eOzsrLw999/A9DeM5q6/7eUOXto1qwZ/u///s/ga4IgYNmyZcjOztZ7Xhe4NqZ9+/bYvHkzrl+/joSEBL2/f2VZZysMStpAXoEaeUX9e0pkShb1ZzSVdSgIAnIKtJ8OGLqB9HCUIyU7X+xbaS7d9G1LB914OhXtmUFJIpsrHoh0dXU1+7h69eohJCQEhw8fxnfffYddu3bhueeeQ8+ePdGpUyeTQRpdlmTdunVL/cfTFGdnZ9SvX7/Mxz/KWP9LAHo3iOassyTAa0iTJk2MvlY8+87Ydc6fP4/vvvsOO3bs0MtqfZRGo0FqamqZbzZ0N9tt27Y1Gdj08/NDcHAwbt26ZfIGvVWrVmXahyUqYs/jxo3DZ599hmPHjqFevXp44YUX0KdPH3Tr1g0+Pj5Gz/nMM8/A3d0daWlpGDZsGHr27IkhQ4age/fuaNOmjdm/XJD15efnIzIyEu+//77e8/3799f75cKUZcuWoW/fviV+7mVlZSEoKAhqtRpt2rTBZ599ZvIXJZVKpTedPSMjw4J3UnYMShLVUIKgTRJ4HMgdgUqsxiguLCxMzDY0ZNasWZg9e7b436X1k1YoFPj666/Rpk0b3L59G2fOnNH7oNrUPt544w1oNBr07t0b//zzj15SwqN0H7INGzasREBSx97eHosWLUKzZs1w69YtHDhwQK9PfUW5f/8+Hjx4AMC8fpLF6SrAnJ2d9aoP7t69K35t6v53//79yMvLA6DNFjUVEL169WqJAYY6QUFBJT5wN2cPHTt2RMeOHQ2+9vbbb5cISAYHB2Pt2rVG9/jote7du2f02uausxUGJW0gtais2k4qgbPykUE1RZmTqSZKr/MKNGLlqJOi5B+hp5MCNxKzTZ7DkIw8bfZl2cu3OeiGoL05+CCu9HXVnbxi0v0rWvGp1Y+WmpZmzZo1eOGFF3D8+HFxYvFnn30GuVyOzp07Y9SoURg/fnyJMkTdNcsyjKY4Q58kl4epQGrxKdfmrCteJlKZezF0nWXLlmHy5MkoLCw061q5ubmWb7BISkoKAIglMqb4+/vj1q1b4jGGPFrqXxkqYs8ff/wx7t27hxUrViAhIQGLFy/G4sWLIZFI0Lx5czz77LOYOnVqiWt4eXlh8+bNGDVqFO7du4f9+/dj//79ALQfCvTt2xcTJkzA4MGDK+jdUkVJSkqCWq0u8Wfq5+dnMvCvEx8fjx07duCPP/7Qe75JkyZYuXIlWrZsiYyMDHz//ffo2rUrzp49a7Ssbu7cuZgzZ07Z30wZ2UklkEi08QuVWg2gbBnWRFTFPC5VS0CVrVwyRKVS4cGDB8jKyoJGo01QEoq1gzp79mypQckvvvhCrPr473//iz///BNKpdLo+nv37iEyMhKAtq2RKU2bNoW3tzeSkpJw/PjxEkHJAwcOmDzeHLpEBsCyoGRhYSHS0tIAlLzfS0xMFL82dd/577//il937drV6LqCggK0atVK78PC4iIjI9GuXbsy7cGQr7/+GgsXLtR7zsvLC7t27Sq16qL473rF91DWdbbCnpI2UHzy9qN9tswp387Of/iLqYO85Kfa7mYENg15WL5tWaya5dukRyLR3hzU9IeVPpW1VPF/7Bs3bmzRsQEBATh27Bj27NmDqVOnonnz5pBIJCgoKMChQ4cwZcoUtGjRAlevXjV4fHn7BjKrrKTLly+LAUlfX198/fXXiIyMRHJyMvLz8yEIgljyoSNUQL9Tc/4szbmONf9My7NnuVyOZcuW4cKFC/joo4/QpUsXKBQKCIKACxcu4NNPP0WDBg0MTi0MCQnB9evX8fvvv+PFF19EnTp1AGiz3TZs2IAhQ4bgP//5j9j3kqqWR//eCIJg1t+llStXwt3dvUTf2k6dOuGll15C69atERISgr/++guNGjXCDz/8YPRcoaGhSE9PFx937twp03uxlEQiEftK5hdyAjcRkSmzZs0S77sMPYpnSepkZ2dj7ty5aN26NZycnBAUFITmzZujZcuWaNmypV4WffHEAkOmT58uBiTHjx+PdevWmQxIAsCpU6fEr0eNGlXqtGfdHsz5cK4sLJ28Xfw43Yfzj/ZsLP5Bs6mAYPHp4k2bNjW6Ljo62mhAUi6XG+whbu4eHrV69WrMnDlT7zlHR0ds3brVZCWXoWslJyeXe52tMFPSBnQDaNwf6ScJPAzwpeYUQKMRIJWWvDHOURWVbstlBl8Xsy0tDBKWvXy7KFMyO9/sm3kiqhzh4eHi17phLpbq06cP+vTpA0D7D9eePXuwdOlS7Nu3Dzdu3MCIESP0gp+68pS4uMcgQ9bKVq5cicLCQshkMhw4cMDoTZQlQ41M8fT0RHx8vFk3o7ryG0szcitaRe65WbNm+Oyzz/DZZ58hNzcXR48exR9//IFVq1YhKysLo0aNwo0bN0pkBdvb22P06NFi79CbN29i27ZtWLRoEa5evYpdu3bhww8/xHfffVfOd0sVxdvbGzKZrMTfm4SEhFKzbgVBwPLlyzFmzBixx5UxUqkUTz75pN4vQ49SKpWl/mJZWRR2UqgKNVAxKElUczwuVUtAla1cAoBbt26hd+/eiImJMWt9aZUuunuIFi1aYNmyZXqVNsYkJCSYde1HVdYHqWUNSh45ckT8ul+/fnqvFa/gys3NNdrLvPi9srH+m7p9PfohdlBQEGJjY9G8eXOD/+6bu4fiwsPDMWHCBL1ryWQy/Pnnn+jUqVOpx+uupWOqHN3cdbbCTEkbSCsK/nk4lgz+6XpMqjWCOA37UTkFhofciOdw0p4jNceynpK661k86Kaop2R+oQZZKvPKC4mo4l24cAF79+4FAAQGBqJDhw7lPqeXlxdGjBiBvXv34plnngGgvaEo/gu2roQhNjYWt2/fLvc16aGLFy8C0N4gmfpUt/gn4YaY+2GR7tPfqKgoFBQY/zckISFB/LM2NXXaGiprzw4ODujbty+WL1+Or7/+GoD2pm7r1q2lHlu/fn28+eabiIiIEDMn//rrr1KPI+tRKBRo37693gc5gPaXhC5dupg89uDBg7h+/TomTpxY6nUEQcCZM2fK3d6isijttPeSzJQkqkEel6qlKly5BABjxoxBTEwMJBIJXn75ZezevRt37twRBxUKgqDXtqe0ChTdML8LFy4YHZjyqOLnX716Nc6fP2/W4/PPPy/DOy6dLijp6emJgIAAs49bvnw5AG2m4sCBA/VeK97721RLoeLVO5YMhExNTUVsbCwA40NszN2DzunTp/Hss8+WuG8NCwvDkCFDzN5b8WuZ6oFu7jpbYVDSBlJNZEoq7WRwKeozaWxwTHZRpqSjgX6SQNkzJTNyy9ZT0kEhg2NRc3SWcBPZRm5uLsaOHSve0LzzzjsVPjVPlz0J6JeYFP/Hk5lgFUtXqmLqE+v79+8bLCsuTvcJrrFyFB1d/6C0tDSsX7/e6Lply5aJf9cqoxG6JayxZ2N/90vj6uoqlhlZchxZx/Tp0/HLL79g+fLluHTpEt5++23ExsZi8uTJALRl1WPHji1x3LJly/DUU08ZDG7PmTMHu3btws2bN3HmzBlMnDgRZ86cEc9Z1SjtWL5NRFTRLl++LGb3hYaGYtmyZejXrx/q1KmjlxlvSaXLmjVrxJYhixYtwttvv13qMcUzAiUSCVq0aGHWw5KAoblycnJw/fp1AJZlSW7btg3nz58HoA30PvohX/Egm6nvZ/F1lpSnF8/ufLSXpKV7ALTVNIMGDUJWVpbe87Nnz8Yrr7xi9r4evZapYKO562yFQUkbSMsxnikJAJ6l9GjMKeop6WhkSqJHGXtKlrV8G9Av4SYi64qOjka3bt3EkuoePXpgypQpFp3jzJkzev/oPkoQBOzZsweA9qYmODhYfK1v375iY+4ffvgBf/75p9HzpKSklGsQy+NGNxjj6tWrOHHiRInXc3Jy8OKLL5b6PdXdwN28edPkJ/ETJkwQh/LMmDHDYG+7s2fP4ssvvwSg7UP6aE89ayvvnlNSUrB582aT35fdu3eLX9erV0/8eteuXYiPjzd6XHp6Ok6ePFniOKoaRowYgYULF+LTTz9FmzZtcOjQIWzfvl2cph0fHy9mR+ikp6dj/fr1RrMk09LS8Oqrr6Jp06bo378/7t27h0OHDhmduGlrugnc+WoGJYmIKoqu0gUARo4caXRdaZUuxcnlcvz1119i5dLChQvx7rvvmjymeGZf8XsZWzh79qw44MfcoGRSUpIYqFMoFHj//fdLrGnZsqX4tbG+9wD0hggdOnTIrOsD+kFJY5mS5u4hMTERAwYMENsJ6bzyyiuYNWuW2Xt69FpOTk6oX79+udfZCntK2oAug9FQpiSgDSreTs4xEZTUZUoaCUrqhuVYUL6dX6hBboH2vJYOugG0E7jvpuYiOYtBSaKKlpCQgAsXLoj/nZ2djdTUVJw7dw579+5FeHi4GFDp1KkT1q1bZ1FZAqD9B3fChAl48sknMWTIELRr1w7+/v4oKChATEwMVqxYIZY5Dh06tMSnlL/99hs6duwo9t37+++/MXLkSNSvXx9qtRrXr19HeHg41q1bh/Pnz+sFNcm4MWPG4IcffoBGo8GgQYPw3nvvoUuXLrC3t0dkZCS+++47XLt2DV27dsXRo0eNnqdLly7iZOnp06fjpZdegpubGwDtTa4uCOPj44Ovv/4ar7/+OuLi4tChQwe8//776NKlC9RqNfbs2YOvv/4aWVlZkEgkWLp0qcV/1ypaefeckZGBoUOHIjg4GM8++yyeeuopBAUFwc7ODvHx8diyZQt++eUXAECdOnX0MoPXrFmDIUOGoF+/fujfvz9atGgBT09PZGZm4sKFC1i0aBHu3bsHABZ/UEDWMXXqVEydOtXgaytXrizxnJubm8nM5e+++65aZYxz0A0RUcXTVboApqtdfvzxR4vOK5fL8ffff+PZZ5/Ftm3b8M0330Amk2HevHkG1zdo0ADNmjVDdHQ0/vzzT8yZMwd169a16JoVxdJ+kg8ePMDTTz8tfvi7YMEC8cP64jp06AAHBwfk5uYiIiLC6JTxwYMHY/r06dBoNPj5558xY8YMs3o/6vYtlUqN7tucPWRnZ+Ppp58Ws0V1hgwZgrCwsFL3YUhERAQA7e9/pirkzF1nK1VvR48BXa9HdyOZkl6lTODWZUo6KQ3/8ekyMNMsyJTMLNa/0qUMmZJezto09JRs06WBRGS5sLCwUv+x8vHxwbRp0/Dee++V6x+biIgI8R8uQ7p166Y36VmnadOmOHDgAIYNG4Y7d+5gw4YN2LBhQ5n3QVpPPvkk5syZg1mzZiE1NRWhoaEl1syYMQMtWrQwGZQcOXIk5s6di5s3b2LhwoVYuHCh+FpQUBBu3bol/vfUqVORlpaGjz/+WAxiPkqpVGLp0qUYNGhQud5fRamIPd+6dQsLFiwweo2AgABs3rwZTk5Oes8XFBRg+/bt2L59u9FjX3/9dbz55ptmvhsi61GwfJuIqMIVD579+uuveOqpp0qsCQsLw6ZNmyw+t0KhwPr16zFs2DDs2LED8+fPh52dndE+kB999BFefPFF5OXl4dlnn8WOHTuMlvCqVCosW7YML7/8st7wFgDo2bMnDh48CACIiYmxOMHA3KCkIAhYu3YtZs6cKVYrvPzyy3j99dcNrlcoFOjYsSMOHjwoVqcY8sQTT2DkyJH4448/EBcXh+HDh2Pt2rVwdXU1esz169fFMvyGDRvC2dm5zHuYOnVqid+xpFIp/P39MWPGDIPHeHp64pNPPjH4mkqlwrlz5wAAISEhRt+DuetsiUFJG0jP1QYLPYxkSnqWEpTMLjZ92xBdpmRSpsrsadi60m0XpR1kBiZ6l4bl20TWIZVK4eLiAjc3NwQFBaF9+/YICQnB4MGDS50Ca8qLL76I4OBghIeH4/Dhw7h79y4ePHiAwsJC+Pr6ol27dhg5ciRGjBhhdNpf+/btceXKFfzyyy/YtGkTLly4gNTUVHh5eSEgIADdunXDyJEjmSVpoU8++QQdOnTA999/j4iICGRnZ8PX1xcdO3bE5MmT0a9fP4MZXcU5Ozvj2LFjmDt3Lnbv3o3bt2+b/OT+gw8+wODBg7Fo0SLs27cPcXFxkEqlqFu3Lvr3749p06ZVuT/Hsu45KCgIZ86cQXh4OPbt24ebN2/iwYMHyMrKgru7O5o3b44hQ4bg1VdfLfGJ+sKFC/HMM88gPDwcp06dQnx8PBITEyGTyRAYGIguXbpg0qRJ6Nq1q5W+C0SW0QUlOX2biKjitG3bFi1atMCFCxcQFhaGtLQ0jB49GrVq1cKdO3fw+++/Y926daVWuhijVCqxceNGDB06FLt27cIXX3wBmUyGOXPmlFg7atQo7Nq1C7/++isiIyPRrFkzvPbaa+jRowd8fHyQnZ2NGzdu4PDhw9iwYQNSUlIM9lMuL11QUiKRQKPRiFVgGo0GqampSEhIwNGjR7Ft2zYxm1AikeDTTz/FRx99ZPLcTz/9tBgQzMzMNJoBuWjRIkRERODatWvYuXMnGjVqhJdffhndunWDv78/NBoNEhIScO7cOezatQuHDh0SS85LGyBa2h4MDQPVZW0aExQUZDQoeejQIXFQztNPP230HOausymBBEEQhPT0dAGAkJ6eXunXenbJUSFo5lZhx/k4g69/uS1aCJq5Vfh0y0WDry89eEMImrlVmPZnlMHXc/MLheD3twpBM7cKiZl5Zu0pKjZVCJq5Vegyd69Z6y3dM1V/ubm5QnR0tJCbm2vrrRAR1Xhl/ZlrzfsZqhzW/DMc+dNxIWjmVmFT1N1KvxYRlQ/vxa1v//79AgABgDBr1iyLjo2KihI8PDzE4x99tGzZUoiLizN5/lmzZomvG5Kbmyv069dPXPPpp58aXFdYWCi89957gkwmM7of3cPJyUnIyckpcY4ePXqIa2JiYiz6XqjVasHR0bHUa+seEolEGDp0qHDy5Emzzn/37l3xvf36668m1z548EDo27ev2Xtp3LixEBYWJuTlmY6rlLaH4t8/cx9BQUFGrzd+/Hhxf6aYu86UsvzsseRehoNubEA3gMbNoYyZkkXl2w5Gekray2UIcHcAAMQkZZu1pwzdkBsLJ2/reJUynIeIiIiIqhalnOXbRESVoU2bNjhz5gwmT56MoKAgyOVyeHp6omPHjvjmm29w8uTJEj3aLWVvb49//vkHvXv3BqCtrpk7d26JdTKZDPPnz0d0dDRmzJiBtm3bwsPDAzKZDC4uLmjevDlGjx6NX3/9FfHx8XBwcCjXvh519epVoxU6Li4uCAoKQtu2bTF27Fj8/PPPuH79OjZt2oQnn3zSrPMHBARg6NChAIDVq1ebXOvr6ytWx0ycOBFNmjSBq6sr7Ozs4OHhgUaNGuG5557Dl19+iXPnzuHy5cuYPHmy3tT08u6hvPLy8rBx40YAMNoX25J1tsbybRsQp287GZm+XUopdG7RoBsnI0FJAKjn7YS7qbmISczGk8Gepe4pI083ebtsfyU8nbT/k7J8m4iIiKh6EAfdcPo2EVEJPXv2FIdJlkXdunVL7Qtv6vyzZ8/G7NmzTR7v4OCAvXv3mrWfRo0a4ZtvvjFr7aMOHDhQpuMAoEmTJuX6Pprj3XffxYYNG7B3717cunWr1DZDvXr1Qq9evay2h/J8/x61bt06pKenw9PTExMmTCj3OltjpqSVaTSCOICmtJ6SqaVkSjoqjAcQn/DRNmG9kZRl1r7Sy5spqQukZnHQDREREVF1wEE3RERUE3Tq1AkDBw6EWq02mC1aU/ag0Wjw5ZdfAgDeeecdo/0zzV1XFTAoaWWZqkJoij4kMDZ9u7Ty7ZyiQTeOpWRKAkBMornl29pAp2sZJm8DLN8mIiIiqm4YlCQioppi/vz5kMlkWLFihTi5u6bt4e+//8alS5cQGBiIadOmlXtdVcDybSvTZUk6KmRQ2hkOKnqJpdCGsw5zisq3HZXG//jEoKS5PSWLyrfdypgpWbzkXDBz4jcRERER2Y6SQUkiIqohWrZsiZUrV+L69euIjY1F3bp1a9we1Go1Zs2ahd69e5vs/WnuuqqAQUkrSy3qJ+luIvjnWZR1mFegQW6+usRAG135dmk9JQHgdnIO1BoBMqnpIOHD8u2y/ZXQBVLzCzXIUhXCpYwZl0RERERkHewpSURENclLL71k6y1U6h5efPHFCl1XFbB828p0k7fdjfSTBLTBRt1NoqFsSTFT0kRQMsDdAQo7KfLVGtxLzS11X+L07TIGEx0UMnE/LOEmIiIiqvpYvk1ERES2xKCklaWXMnkbACQSSbFhNwUlXn8YlDSe1SiVSlDPS5stedOMYTcZedrsy7KWbwOlTw0nIiIioqpD10pIxaAkERER2QCDklZmTqYkUDzAZyhTsqh8W2k8UxKwrK9keadvA8UncDMoSURERFTV6TIlGZQkIiIiW2BQ0srM6SkJmJ7AnV00fdtBbrr/Yz2fokxJMyZwZ4rl22VvM+rlrO0rmWJkQA8RERERVR0s3yYiIiJbYlDSynTTtz1KyZT0ddEG+OLT80q8lmtmpmR9CzIlxenbjizfJtMEQbD1FoiIajz+rCVr4KAbIiIisiUGJa1MzJQsJfinK71+NMtRoxGQU1B6T0kAqO9jXlBSEISH5dvlmJrN8u2aTSrV/rjQaPiLCxFRZdP9rNX97CWqDA8zJdU23gkRERE9jnina2XmZkrWEwOK+kNq8grV0CVPmJq+DQD1vJ0BAPfScpFXYPxmM69AgwK19qTl6inpbLzknKo/Ozs7SKVS5OWVzN4lIqKKlZeXB6lUCju7srdVISoNy7eJqh9m0hORNVX2zxwGJa0szcxMyfpFAcWbj2Q56iZvA4CD3HRQ0tNJIV7HVLakrnRbJpXAqZRAp+nraUvOWb5dM0mlUjg6OiIrq/Rp7kREVD5ZWVlwdHRkpiRVKqUdy7eJqgtWLRGRLajV2hhUZd2T8k7Xysydvq0r307LKdDLPMxR6Uq3ZZBKJaVez5wJ3BnFhtxIJKWf05iH5dscdFNTubq6IicnB6mpqbbeChFRjZWamoqcnBy4urraeitUw+mCkqoCBjmIqjq5XA6ZTIbs7NLnBRARVZScnBzIZDLI5WWvqjWFNUFWpsuU9CglU9JBIUNtN3vEpechJikLnk6eAIDsoiE3pZVu69TzdkJUbJrJoKTYT7IcpdsAy7cfB25ubsjNzcX9+/eRnZ0NNzc32NmVL5hNRETa0pjCwkKkp6cjMzMTHh4ecHNzs/W2qIZTMFOSqNqQSCRwcXFBRkYGfHx8eP9NRJVOEARkZGTAxcWl0n7mMChpRQVqDbJU2qBiaT0lAaC+jzPi0vNwIzEb7YO0QUld+XZpQ27EcxRlSt5INF5yqyvfLs+QG0B/+rYgCPyHsoby8/ODQqFAWloa7t69a+vtEBHVKEqlEn5+fvDw8LD1VugxoJBpP+RmT0mi6sHNzQ1paWmIi4tD7dq1+fsWEVUaQRAQFxeHgoKCSv2gnEFJKypQa/Bs2wCk5uSblZVY38cJR64n6U3gzrEwU7K+j7Y3penybe053cqbKVnUUzK/UBt8dSlnkJOqJolEAk9PT3h4eKCwsFDsMUFEROUjk8mYfU5WxUE3RNWLo6Mj6tSpg7t37yI3Nxeurq5wdHSETCbjvx1EVG6CIECtViMnJwcZGRkoKChAnTp14OjoWGnXZFDSihwVdlgwoo3Z6x/2g3yY5fgwU9L88m3tOcwp3y7fXwcHhQyOChly8tVIyc5nULKGk0gkkMvlldZbgoiIiCqXLiipYlCSqNpwcXFBUFAQ0tPTkZaWhuTkZFtviYhqGJlMBhcXF7i5uVVqQBJgULJK02U5GsqUdFKa90cX7PVwYE5qdj48nEqWjT8cdFP+4JKnkwI5+blIzs5HUNG1iYiIiKjqUcjYU5KoOnJ0dISjoyP8/f1RUFDAidxEVGGkUinkcrnVsq8ZlKzCdP0gbyfnQK0RIJNKkF00fdtBbl6mpINChgB3B9xLy8XNpCy0LxqYU5zYU7Kc5dsA4OWsxN3UXCRncdgNERERUVXG8m2i6k0ikUChKH1WARFRVSW19QbIuNruDlDYSZGv1uBeai4AILeofNvcTEngYQl38YzL4nTl2+XtKQkAXk66Cdyqcp+LiIiIiCqPUizfZn9oIiIisj4GJaswmVSCekUl0DeK+kpmWzjoBii9r6Ru0I2rffkTZ4tP4CYiIiKiqkvJTEkiIiKyIQYlq7j6PkUBxaIsR0sH3QClZ0pWbPl2UVCS5dtEREREVZqufFsjAIXsK0lERERWVmWDkkuWLEG9evVgb2+P9u3b4/DhwybXL168GE2bNoWDgwMaN26MVatWWWmnlUsMKBZlSuaImZLmZzWKgU0jmZIPp29XZPk2g5JEREREVZkuKAlw2A0RERFZX5UMSq5duxbTpk3Dhx9+iKioKISEhGDgwIGIjY01uD4sLAyhoaGYPXs2Ll68iDlz5uD111/Hli1brLzzivfoBO4cla6npPmZkvW9teeISc6GRiOUeF3MlKyQ6dtKACzfJiIiIqrqdNO3AZZwExERkfVVyaDkggULMHHiREyaNAlNmzbFwoULERgYiLCwMIPrf/vtN7z22msYMWIE6tevj5EjR2LixImYP3++lXde8R7NctT1lHSwIFMywMMBcpkE+YUaxKXnlnhd11PSzaH8PSUflm9z0A0RERFRVWYnk0Iq0X7NoCQRERFZW5ULSubn5yMyMhL9+/fXe75///44duyYwWNUKhXs7e31nnNwcMDJkydRUFBQaXu1hvpF5dvx6XnIyS8Ue0o6WdBTUiaVIMjLcF9JjUZAZkX2lGT5NhEREVG1oRAncDMoSURERNZV5YKSSUlJUKvV8PPz03vez88P9+/fN3jMgAED8MsvvyAyMhKCIODUqVNYvnw5CgoKkJSUZPAYlUqFjIwMvUdV5O6oECda30zMLjboxrKsxvpGJnBn5RdCV9FdEeXbXs7a8u2kLBWzJYmIiIiqOKWd9oNuBiWJiIjI2qpcUFJHIpHo/bcgCCWe0/n4448xcOBAdOrUCXK5HEOHDsX48eMBADKZ4YzCuXPnws3NTXwEBgZW6P4rUr1iAcVslW7QjfmZkgBQz8iwm4yiITcKOyns5Zad05BarvZo4u+CArWADzdegCCU7GFJRERERFWDLlOS5dtERERkbVUuKOnt7Q2ZTFYiKzIhIaFE9qSOg4MDli9fjpycHNy6dQuxsbEIDg6Gi4sLvL29DR4TGhqK9PR08XHnzp0Kfy8VRZfleDMxG7kFlg+60TtHiaCkNshZEVmSACCVSvDt8NaQyyTYefE+Np25VyHnJSIiIqKKpxt2w+nbREREZG1VLiipUCjQvn17hIeH6z0fHh6OLl26mDxWLpejTp06kMlk+PPPPzF48GBIpYbfolKphKurq96jqhIncCdlIVtVxvJtcYp3lt7z6UWZkhUx5EaneW03TOvbCADwyT8XEZdWcrgOEREREdmekpmSREREZCNVLigJANOnT8cvv/yC5cuX49KlS3j77bcRGxuLyZMnA9BmOY4dO1Zcf/XqVfz++++4du0aTp48iZEjR+LChQv48ssvbfUWKlTx8u3c/DKWbxed415aLnKKzgEAGRU45Ka417rXR9u67sjMK8R7685Bo2EZNxEREVFVw/JtIiIispUqGZQcMWIEFi5ciE8//RRt2rTBoUOHsH37dgQFBQEA4uPjERsbK65Xq9X49ttv0bp1a/Tr1w95eXk4duwYgoODbfQOKtYTPg/Lt3MKypYp6eWkQIC7AwQB+GLbJfF5XU/Jiirf1rGTSfHtC61hL5fiyPUk/P7v7Qo9PxERERGVnxiUVKttvBMiIiJ63FRczW4Fmzp1KqZOnWrwtZUrV+r9d9OmTREVFWWFXdlGXS9HSCVAluphhqOlPSUlEgnmPtsS41acxOp/Y9GxnieGtgkoVr5dsUFJQFsy/sGgpvjkn4v4cvsldGvgLZaRExEREZHtiT0lmSlJREREVlYlMyVJn9JOhjoejnrP2dtZPim7eyMfvNmrAQAgdMN5XE/IQkZe0aCbCuwpWdxLTwUhpKE38go0mP7XWZZxExERUal69+6Nr776qtR133zzDXr37m2FHdVcukxJFYOSREREZGUMSlYT9YtKuAFtP0mpVFKm8/xf30boXN8LOflqvL76NBIy8gBUfPm2jlQqwVfPt4KDXIYzd9Jw5UFmpVyHiIiIao4DBw7g8uXLpa67cuUKDh48aIUd1VxKBiWJiIjIRhiUrCbqez8se7a0n2RxMqkE349qA29nJa48yMTfkXcBVPygm+JquTmIg3buFwVBiYiIiMorLy8PdnZVthtRtcBBN0RERGQrDEpWE/UeyZQsD18Xe/xvVBtIJYC6qJy6MnpK6l3TVQkASMxQmVwnCILedHAiIiIiQzIyMnDs2DHUqlWrzOdYsmQJ6tWrB3t7e7Rv3x6HDx82unb8+PGQSCQlHs2bN9dbt379ejRr1gxKpRLNmjXDxo0by7w/a1AUtQRiUJKIiIisjUHJauIJ74oLSgJAlye88XbfRuJ/V1b5to6Pc1FQMst0UHLD6Xto9skubD4bV6n7ISIioqqlfv364gMA1q1bp/dc8UfdunXh4+ODW7duYejQoWW63tq1azFt2jR8+OGHiIqKQkhICAYOHIjY2FiD67///nvEx8eLjzt37sDT0xMvvPCCuOb48eMYMWIExowZg7Nnz2LMmDEYPnw4/v333zLt0RrEQTdqBiWJiIjIuljvUk0Un1pdEUFJAHi9VwNcjMvAwauJaFXHrULOaYwuUzKhlPLto9eTAAB/n7qDZ1rXrtQ9ERERUdVx69Yt8WuJRIKsrCxkZWUZXCuXy1G7dm0888wzmDt3bpmut2DBAkycOBGTJk0CACxcuBC7du1CWFiYwXO6ubnBze3h/dKmTZuQmpqKCRMmiM8tXLgQ/fr1Q2hoKAAgNDQUBw8exMKFC7FmzZoy7bOysXybiIiIbIVByWrCz1UJR4UMOflqOCkr5o9NKpUg7KV2yFdroCzDNG9L6DIlEzJNZ0o+yNQGLU/GpCCvQA17eeXui4iIiKoGjeZhUEwqlWL8+PFYvnx5pVwrPz8fkZGReP/99/We79+/P44dO2bWOZYtW4a+ffsiKChIfO748eN4++239dYNGDAACxcuNHoelUoFlerh/VFGRoZZ168oSgYliYiIyEZYvl1NSCQScVhMRWVK6s5b2QFJAPB1tQcAJJYWlCzqOakq1CDydmql74uIiIiqnhUrVmDixImVdv6kpCSo1Wr4+fnpPe/n54f79++Xenx8fDx27NghZlnq3L9/3+Jzzp07V8zCdHNzQ2BgoAXvpPzETEmWbxMREZGVMShZjehKuMszfdtWfF3MzJRMf1jeffhaUqXuiYiIiKqmcePGoWvXrpV+HYlEovffgiCUeM6QlStXwt3dHf/973/Lfc7Q0FCkp6eLjzt37pi3+Qqiy5RUFaitel0iIiKi6hfdeow18XfBlrOAt7PC1luxmI8YlMwzenOerSpEpurh5O0j1xMBNLHWFomIiKiKOHTokEXru3fvbtF6b29vyGSyEhmMCQkJJTIdHyUIApYvX44xY8ZAodC/J/P397f4nEqlEkql0qL9VyQOuiEiIiJbYVCyGhnTOQgu9nYY2KKWrbdiMV1QMq9AgyxVIVwMTPvWZVHKZRIUqAVcjMtASnY+PJ2qXxCWiIiIyq5nz55mZSzqqNWWZfkpFAq0b98e4eHhGDZsmPh8eHh4qdO8Dx48iOvXrxssL+/cuTPCw8P1+kru3r0bXbp0sWh/1qQr31axpyQRERFZGYOS1YirvRxjOwfbehtl4qiwg7PSDlmqQiRkqgwGJR8UTeYO9HCEXCbFlQeZOHYjCYNbcQo3ERHR42Ts2LEGg5IajQZ37tzB6dOnkZGRgWeeeQYeHh5lusb06dMxZswYdOjQAZ07d8bSpUsRGxuLyZMnA9CWVd+7dw+rVq3SO27ZsmV46qmn0KJFixLn/L//+z90794d8+fPx9ChQ/HPP/9gz549OHLkSJn2aA2cvk1ERES2wqAkWY2vixJZqkIkZqrwRFF/zOJ0QUlfVyWa13bDlQeZOHKNQUkiIqLHzcqVK02+npKSgkmTJiE6OhrHjx8v0zVGjBiB5ORkfPrpp4iPj0eLFi2wfft2cZp2fHw8YmNj9Y5JT0/H+vXr8f333xs8Z5cuXfDnn3/io48+wscff4wnnngCa9euxVNPPVWmPVoDg5JERERkKwxKktX4uChxMynb6LAbXVDSz9Ue3Rp6Y9mRGBy+lmR203kiIiJ6PHh6euL333/HE088gdDQUPz4449lOs/UqVMxdepUg68ZCoy6ubkhJyfH5Dmff/55PP/882Xajy2wpyQRERHZCqdvk9WIw24y8gy+/iBDG6z0d7XHU/U8IZdJcC8tF7eTTd/8ExER0ePH0dERHTt2xObNm229lWqNmZJERERkKwxKktX4utgDABKzDGdK3hfLt+3hqLBDu7raHlGHryeV67p5BWokGbkmERERVV9ZWVlITU219TaqNaWdDAAH3RAREZH1MShJVqPLlEzMMBwgTBDLt7XrQhp6AwCOXEss8zXVGgEjl55A13n7cCeFGZdEREQ1xZYtW3Do0CE0atTI1lup1pTMlCQiIiIbYU9JshpfXfm20Z6SD8u3AaBbQx98s/sqjt1IRqFaAzuZ5TH0tRF3cOZOGgDg4NVEvNQpqAw7JyIiImt6+eWXjb6WlZWFq1ev4vz58xAEATNmzLDizmoelm8TERGRrTAoSVbjW5QBmWggKCkIgli+7VcUlGwZ4AZXeztk5BXi/L10tC0q5zZXRl4Bvt19RfzvU7dSGJQkIiKqBkqbvg0AdevWxezZszF27NjK31ANJgYlOeiGiIiIrIxBSbIacdBNZslBN+m5BeIn9Lp1MqkEXZ7wxs6L93HkWpLFQclF+64jOTsfjgoZcvLVOHWbPaeIiIiqg/379xt9TaFQoFatWggODrbehmowcfo2MyWJiIjIyhiUJKvRDbpJzdEGIHWfzAMPS7c9HOWwl8vE57s11AYlD19Pwpt9Gpp9rVtJ2VhxNAYA8NXzrfDWmijcTc3F/fQ8+LvZV8TbISIiokrSo0cPW2/hsaG7H+OgGyIiIrI2Drohq3F3kEMukwBAiWnYj5Zu6+iG3UTFpiJbVWj2tb7YfgkFagE9GvlgcKvaaFrLFQBw6nZKmfdPREREVNM87CmptvFOiIiI6HHDoCRZjVQqgbez4WE3D4qCkr6PBCXrejqijocDCtQCTsaYF1A8ej0J4dEPIJNK8PHgpgCADkHa0u9Tt1jCTUREVF08ePAA8+fPx5AhQ9C+fXu0b98eQ4YMwfz58xEfH2/r7dUISmZKEhERkY0wKElWpZvA/eiwm4SioKR/0TAcHYlEImZL7r38oNTzF6o1+GxrNABgTKcgNPB1AQB0CPYEwExJIiKi6mLVqlVo2LAhPvjgA2zbtg1RUVGIiorCtm3b8MEHH6BRo0ZYsWKFrbdZ7RUfdCMIgo13Q0RERI8TBiXJqowNuzFWvg0A/Zv5AwD++DcWx28kmzz/2lN3cPl+Jtwc5Pi/Yj0oOwRrMyWj4zKQZUEZOBEREVnfjh07MGHCBOTm5mL48OHYtGkTzpw5g6ioKPzzzz8YPnw48vLyMGnSJOzYscPW263WlDJtL29BAAo1DEoSERGR9TAoSVblUzTsJiHj0fJt7X8/Wr4NAD0b++DZdgHQCMCba6LErMpHRcdl4KudVwAAb/dtCA8nhfhaLTcHBLg7QCMAZ2LTKuKtEBERUSX54osvIJFI8M8//2DNmjV45pln0KpVK7Ru3RpDhgzBmjVr8M8//wAAvvzySxvvtnorPniQE7iJiIjImhiUJKsSy7ezjJVvlwxKSiQSfPHflmji74KkLBXe+CMKhWr9m+Zzd9Mw6ucTSM8tQOtAd4zuFFTiPLpsSZZwExERVW1nzpxBSEgIBg0aZHTNoEGD0L17d0RFRVlxZzUPg5JERERkKwxKklWJ5dsZxqZvK0scAwAOChmWjG4HZ6UdTt5Kwde7roivRd5Oxeif/0V6bgHa1XXHbxM7Qi4r+Vdb7CvJYTdERERVmr29PWrXrl3qulq1asHevuQHmmQ+mVQCmVQCQNtXkoiIiMhaGJQkqzKUKanWCOLgG0M9JXXq+zjjq+dbAQB+OnQTuy7ex4mbyRiz7F9kqgrRsZ4nVk18Cq72coPH6yZwR8Wmlsi0JCIioqqjR48e+Pfff6HRGP/3Wq1W499//0X37t2tuLOaSVH0YS4zJYmIiMiaGJQkq9JlSiYW6wuZnKWCRgCkEsDb2XCmpM6glrUwsVs9AMCMv85i/IqTyMlXo1sDb/w6oSOclXZGj23k5wIXpR2y89W4fD+zAt4NERERVYZ58+YhOTkZkyZNQnp6eonXMzIy8OqrryI1NRVz5861wQ5rFqVc+yuBikFJIiIisiLjERyiSqAbZJOYpYIgCJBIJGLpto+LUiwfMuX9gU1w9k4aTt3WlmH3auyDsJfaw14uM3mcTCpBuyAPHLyaiFO3UtAiwK2c74aIiIgqw5o1azBkyBCsXLkS69evR//+/REUpO0Xffv2bezevRtZWVkYPXo01q5dq3esRCLBxx9/bIttV1u6TElVodrGOyEiIqLHCYOSZFXeztqJ2AVqAWk5BfBwUoiTt02Vbhcnl0mx6MV2eP2P02jo64xPh7bQa9JuSgddUPJ2KsZ3rVe2N0FERESVavbs2ZBItB9UZmZmYv369QbX/f777yWeY1DScrr7KJZvExERkTUxKElWpbSTwd1RjrScAiRkqoqCkrohN+Y3qvd3s8f6KV0svn7xYTe6TE0iIiKqWlasWGHrLTxWGJQkIiIiW2BQkqzO10VZFJTMQ2N/l2JBSdP9JCtCm0B32Em1JeP30nJRx8Ox0q9JRERElhk3bpytt/BYEQfdcBAgERERWREH3ZDVicNuiiZui0FJF/MzJcvKQSFD86JekpFFPSmJiIioajl06BCuXr1a6rpr167h0KFDVthRzaZkpiQRERHZAIOSZHW+RcHHBDEoWdRT0q3yg5KAtq8kAETcSrHK9YiIiMgyPXv2xPz580td99VXX6FXr15W2FHNxvJtIiIisgUGJcnqfI1lSlrQU7I8ngzWBiVP3WKmJBERUVUlCEKFrKHSKe1kAFi+TURERNbFoCRZna58O6FEULLye0oCQPsg7bCbKw8ykZ5bYJVrEhERUcWLi4uDs7OzrbdR7ekyJVUFDEoSERGR9XDQDVmdGJTMyIOqUI3UHG1g0N9KmZI+LkoEeTnidnIOTt9ORa8mvla5LhERERm3atUqvf++fv16ied0CgsLceXKFezZswedOnWyxvZqNN2gGxUzJYmIiMiKGJQkqxMH3WSpkFDUT1JhJ4Wbg9xqe+jawBu3k2Px16k71SYoeTMxC3/8G4tNZ+6hoa8L/njlKUgkEltvi4iIqEKMHz9e/HdNIpHg6NGjOHr0qNH1giDA3t4en3zyibW2WGOxpyQRERHZAoOSZHW6QTeJGSq90m1rBtjGdwnGH//GYufF+4hJykY9byerXdsS+YUa7I6+jz/+jcWxG8ni80lZyTh1OxVPBnvacHdEREQV55NPPoFEIoEgCPj000/Rpk0bDB061OBahUKB2rVro3///qhVq5aVd1rzMChJREREtsCgJFmdb1HvyExVIW4l5wCwXum2TiM/F/Ru4ot9lxPwy+Gb+GJYS6te3xyxyTkY9fMJ3EvLBQBIJUCvxr7ILVDj2I1kbDh9j0FJIiKqMWbPni1+vXLlSvTt2xezZs2y3YYeIwxKEhERkS0wKElW56K0g9JOClWhBhfupQMAfK0clASAV7vXx77LCfg78i7e7tcI3s7WGbRjDkEQ8P6Gc7iXlgsfFyVGPRmIER3rIsDdAceuJ+HYjWRsPReHWUOawV4us/V2iYiIKtStW7dsvYXHiq6nZL5abeOdEBER0eOE07fJ6iQSiZgtqQtK+rlYPyj5VD1PtA50R36hBquO3bL69U35+9RdHLuRDHu5FOsmd8b0/o0R4O4AAOhU3wu13OyRmVeIfZcTbLxTIiIiqu6UcmZKEhERkfUxU5JswtfFHndScnExLgMA4O9m/SxFiUSC17rXx9TVp7HqxG1M7vkEHBW2/18iISMPn2+LBgBM79cIQV76/S6lUgmGtgnAjwdvYMPpexjUkr20iIioZundu7fZayUSCfbu3VuJu6n5lLrp2wxKEhERkRXZPgJDjyWfolLp3AJtmZCfDcq3AWBAc38EeTnidnIO/oq4g/Fd69lkH8XN2nwRGXmFaBnghpeN7OfZdtqg5IErCUjJzoenk8LKuyQiIqo8Bw4cKHWNbiiONQfl1VTsKUlERES2wPJtsgld+bb43zYo3wYAmVSCSSH1AQC/HIlBodq2N+M7L9zHjgv3IZNKMO+5lrCTGf5ftJGfC1oEuKJQI2DruTgr75KIiKhyxcTEGHzcuHEDBw4cQGhoKBwcHPDuu+/i5s2btt5utcegJBEREdkCMyXJJnweGSrj72aboCQAvNC+DhaGX8Xd1Fxsv3Afz7SubZN9pOcW4JN/LgAAXuteH81ru5lcP6xtHVy4F40Np+9hbOdgK+yQiIjIOoKCgoy+Vq9ePXTv3h29evXCwIED0alTJ5PrqXS6QTcqG384S0RERI8XZkqSTZTMlLTd5Gt7uUwM6i09dAOCINhkH/N2XEJCpgr1vJ3wVp+Gpa5/pnVtyKQSnLmThpuJWVbYIRERUdXRt29ftG/fHvPmzbP1Vqo9hZ0MADMliYiIyLoYlCSbKF6u7aK0g5PStkm7YzoHwV4uxYV7GTh6Pdnq14+8nYI1J+8AAOY92xL2clmpx/i4KBHS0BsAsDHqXqXuj4iIqCoKDAzExYsXbb2Nao/l20RERGQLDEqSTfgUy4z0s2Hpto6nkwIjOgQCAEI3nkNqdr5Vr68LKj7bNgBP1fcy+7hhbQPE4zUa22R4EhER2UJubi4iIiJgb2/7+4jqTsmgJBEREdkAe0qSTRQv1/ZztV3pdnFv92uE/VcSEZuSgzfWnMavEzoaHTRT0Y4VZWcOaOFv0XH9m/nDWWmHu6m5OHU7FR3reVbG9oiIiKwqNjbW6GtZWVm4evUqvv32W9y5cwejRo2y4s5qJl2mpKpQbeOdEBER0eOEQUmyCU8nBSQSQBAAPxtN3n6Uu6MCS8e2x7NLjuHo9WTM23EZHw1uVunXjU/Pxc2kbEglQCcLsiQBwEEhw8AW/vg78i42Rt1lUJKIiGqE4OBgSCQSk2sEQUDjxo3x9ddfW2lXNZdYvs1BN0RERGRFDEqSTdjJpPByUiIpS1Ulyrd1mvi74tsXWmPK6tP45UgMmge4YljbOpV6TV0Py5YBbnBzkFt8/LB2Afg78i62novHrCHNzepHSUREVJV1797daFBSoVCgVq1a6NGjB0aNGsXy7QqglLF8m4iIiKyPQUmyGV+XoqCkDSdvGzKwZS280asBFu2/jvfXn0cDHxe0rONWadc7dj0JANClgXeZju9Uzwv+rva4n5GHEzeT0bOxb0Vuj4iIyOoOHDhg6y08VjjohoiIiGyBg27IZloEuAJApQb8ymp6v0bo3cQXqkINXvvtFJKyVJVyHUEQcPSGNijZ9YmyBSWlUgl6NdEGIg9cSaywvREREdHjgUFJIiIisgUGJclmvhjWEoff64X2QVWvD6JUKsHCkW1Q38cJcel5+OSfC5VynRuJ2XiQoYLCTooOwR5lPk+vxj4AgH2XEyAInMJNREQ1R2FhISIjI7FlyxZs3boVkZGRKCwsrJBzL1myBPXq1YO9vT3at2+Pw4cPm1yvUqnw4YcfIigoCEqlEk888QSWL18uvr5y5UpIJJISj7y8vArZb2VhT0kiIiKyBZZvk83IZVIEejraehtGudrL8b+RbTH4hyMIj36A9JwCuDla3vPRlGNFWZLt63qUqxdk1wbekMskiE3JQUxSNur7OFfUFomIiGxCpVJh1qxZ+PHHH5GZman3mouLCyZPnozZs2eXuafk2rVrMW3aNCxZsgRdu3bFTz/9hIEDByI6Ohp169Y1eMzw4cPx4MEDLFu2DA0aNEBCQkKJAKmrqyuuXLmi91xV73uptNPeg6iYKUlERERWxKAkkQktAtzQ2M8FVx5kYlf0fQzvEFih5z9a1E+yawPLpm4/yklph6fqeeHI9STsv5LIoCQREVVrKpUKffr0wfHjxwEArVq1QnBwMADg9u3bOHv2LL7++mscOXIEe/fuhVJpeX/qBQsWYOLEiZg0aRIAYOHChdi1axfCwsIwd+7cEut37tyJgwcP4ubNm/D01FZ56PZUnEQigb+/v8X7sSWWbxMREZEtsHybqBSDW9UCAGw5G1eh51VrBBy/oZ28XdYhN8X1LCrhPnAlodznIiIisqXvvvsOx44dQ9euXXH27FlERUVh48aN2LhxI06fPo2zZ88iJCQEx48fx8KFCy0+f35+PiIjI9G/f3+95/v3749jx44ZPGbz5s3o0KEDvvrqKwQEBKBRo0Z45513kJubq7cuKysLQUFBqFOnDgYPHoyoqCiTe1GpVMjIyNB7WJuiaPq2qlDDNjBERERkNQxKEpVicOvaAIBjN5KRXIEDby7GpSMjrxAuSju0Cij/sB/dsJt/b6YgW1UxvbaIiIhsYc2aNfDx8cH27dvRokWLEq+3aNECW7duhbe3N1avXm3x+ZOSkqBWq+Hn56f3vJ+fH+7fv2/wmJs3b+LIkSO4cOECNm7ciIULF2LdunV4/fXXxTVNmjTBypUrsXnzZqxZswb29vbo2rUrrl27ZnQvc+fOhZubm/gIDKzYqgxz6DIlAaBAzaAkERERWUeVDUpa2nh89erVaN26NRwdHVGrVi1MmDABycnJVtot1WT1vJ3QIsAVao2AHRcM/6JSFkeva/9+PlXfE3ay8v+vWN/bCXU9HZGv1uDYDf7dJyKi6uv69evo2bMnnJ2NtyNxdnZGz549cePGjTJfRyKR6P23IAglntPRaDSQSCRYvXo1OnbsiEGDBmHBggVYuXKlmC3ZqVMnvPTSS2jdujVCQkLw119/oVGjRvjhhx+M7iE0NBTp6eni486dO2V+P2WlLBaU5LAbIiIispYqGZTUNR7/8MMPERUVhZCQEAwcOBCxsbEG1x85cgRjx47FxIkTcfHiRfz999+IiIgQewQRldeQVtpsya3nKq6EWzfkpssT5S/dBrS/WOmmcO9nCTcREVVjdnZ2yMnJKXVdTk4O7Owsb5Hu7e0NmUxWIisyISGhRPakTq1atRAQEAA3t4fVDU2bNoUgCLh7967BY6RSKZ588kmTmZJKpRKurq56D2tTFPtwlH0liYiIyFqqZFCyeOPxpk2bYuHChQgMDERYWJjB9SdOnEBwcDDeeust1KtXD926dcNrr72GU6dOWXnnVFM9XdRX8t+YFDzIyCv3+VSFakTcSgEAdGtYMUFJAOjZWFvCfeByAntCERFRtdWyZUvs27cPMTExRtfExMRg3759aNWqlcXnVygUaN++PcLDw/WeDw8PR5cuXQwe07VrV8TFxSErK0t87urVq5BKpahTp47BYwRBwJkzZ1CrVi2L92hNUqkEdlJthiiDkkRERGQtVS4oWZbG4126dMHdu3exfft2CIKABw8eYN26dXj66aeNXqcqNBWn6qOOhyPa1XWHIADbz8eX+3ynb6chr0ADHxclGvpW3KTsTvW9oLSTIi49D1cfZJV+ABERURX02muvITc3Fz179sSvv/6K/Px88TWVSoWVK1eiZ8+eyMvLw+TJk8t0jenTp+OXX37B8uXLcenSJbz99tuIjY0VzxcaGoqxY8eK61988UV4eXlhwoQJiI6OxqFDh/Duu+/i5ZdfhoODAwBgzpw52LVrF27evIkzZ85g4sSJOHPmTJn3aE1KTuAmIiIiK6tyQcmyNB7v0qULVq9ejREjRkChUMDf3x/u7u4m+/dUhabiVL0MLirhrogp3A9Lt72M9q4qCweFDJ2f8ALAKdxERFR9jRkzBq+88gru3LmDl19+GY6OjggICECdOnXg5OSEiRMn4s6dO3j11VcxevToMl1jxIgRWLhwIT799FO0adMGhw4dwvbt2xEUFAQAiI+P12sd5OzsjPDwcKSlpaFDhw4YPXo0hgwZgv/973/imrS0NLz66qto2rQp+vfvj3v37uHQoUPo2LFj+b4hVqAbdpOvVtt4J0RERPS4qHJBSR1LGo9HR0fjrbfewieffILIyEjs3LkTMTExJj+VrgpNxal6ebpVLUgkwOnYNNxNLb3PlSlHr2uDkl0rqJ9kcb2KSrjZV5KIiKqzn376CX///Te6desGOzs7xMfHIy4uDnZ2dggJCcHff/9ttLWPuaZOnYpbt25BpVIhMjIS3bt3F19buXIlDhw4oLe+SZMmCA8PR05ODu7cuYNvv/1WzJIEgO+++w63b9+GSqVCQkICdu3ahc6dO5drj9aiC0rmFTBTkoiIiKzD8s7glawsjcfnzp2Lrl274t133wUAtGrVCk5OTggJCcHnn39usI+PUqmEUqms+DdANZafqz06Bnvi35gUbDsXj9d6PFGm82TmFeDs3XQAQJcGXhW5RQDaoOQsXMSpW6nIyCuAq728wq9BRERkDc899xyee+45FBYWIjk5GQDg5eVVpuE2ZNrDTEkGJYmIiMg6qlymZFkaj+fk5EAq1X8rMpkMADjsgyrU4Na6Kdxl7yt5MiYFao2AIC9H1PFwrKitiep6OaK+jxMKNQKOXkuq8PMTERFZm52dHfz8/ODn58eAZCXRTeBmT0kiIiKylioXlAQsbzw+ZMgQbNiwAWFhYbh58yaOHj2Kt956Cx07dkTt2rVt9TaoBhrYwh8yqQTn76XjVlK2Rcdevp+B+Tsv46NNFwAAXSqhdFuHJdxERERkCYWd9gN9BiWJiIjIWqrkR80jRoxAcnIyPv30U8THx6NFixYmG4+PHz8emZmZWLRoEWbMmAF3d3f07t0b8+fPt9VboBrK21mJLk944fC1JGw9F4c3ejc0uT45S4U/I+5g85k4XHmQKT7vorTD8+3rVNo+ezX2xbIjMdh/JdFkP1ZLCIKAL7ZdglQqQejAJhU6oIeIiIhsS8Hp20RERGRlVTIoCWgbj0+dOtXgaytXrizx3Jtvvok333yzkndFBAxpVbsoKBlfalByyurTOBmTAkBbFtWzsQ+eaVMbfZr4wUEhq7Q9PlnPA44KGRIzVTh1OxVPBnuW+5xn7qThlyMxAIBnWtdGiwC3cp+TiIiIqgaljD0liYiIyLqqZPk2UVXWv7kfpBLg8v1M3EkxPoU7OUuFiFvagOQXw1og4sO+WDq2Awa3ql2pAUkAUNrJ0K+ZdjDUm39EIT49t9znXH/6rvj1pqh75T4fERERVR1KOTMliYiIyLoYlCSykLujAu2DPAAAB64mGl13+FoSBAFo4u+C0U8Fwc3RulOw5zzTHA18nXE/Iw/jl0cgI6+gzOdSFaqx5ezD4T5bzsVBreEQKSIioppCN+hGVai28U6IiIjoccGgJFEZ9NQNkrlsfJDMgaIhM7q11ubuqMDKCU/Cx0WJKw8y8dqqyDJnP+y7lID03AL4uSrh5iDHgwwV/o1JruAdExERaWVkZCAzM7P0hVRh2FOSiIiIrI1BSaIy6N1EG2g8diMJeQUlMwo0GgGHriUBAHo19rHq3oqr4+GIFeOfhJNChuM3k/HeurPQlCHDcf1pbbn2sLZ1MKilPwBg85m4Ct0rERGRjru7O/r372/rbTxWdEFJFYOSREREZCUMShKVQRN/F/i72iOvQIMTN0tmDJ67l46U7Hy4KO3QrqjU21ZaBLgh7KX2sJNKsOlMHL7efcWi45OzVGLW53PtAvBM6wAAwPbz8SzxIiKiSuHm5ob69evbehuPFQUH3RAREZGVMShJVAYSiQS9mmgzIA2VcOue69bQG3KZ7f83697IB3OfbQkACDtwA7M3X0ROfqFZx24+G4dCjYBWddzQ0M8FT9XzhL+rPTLyCnHgivGemkRERGXVtm1b3Lhxw9bbeKywfJuIiIiszfbREqJqqpeur+SVRAiCfkm0bgBOTxuWbj/qhQ6BeHdAYwDAymO38J+Fh3H8Rul9IXVTt59rVwcAIJVK8Eyb2gBYwk1U1QmCgAv30vHvzWSDrSaIqqqZM2ciIiIC69ats/VWHhsMShIREZG12dl6A0TVVdcG3pDLJIhNycHNpGw84eMMQFvufO5uGgCgRyPbDLkx5vVeDdC8titCN5xHbEoORv18AmM6BeH9gU3gpCz54+DK/UxcuJcBuUyCIa1ri88/07o2lh66iT2XHiAzrwAu9tadLE5Exmk0AqLupGLH+fvYceE+7qXlAtAGHDoEeaBrA290fsILrQLcYFcFMrmJDHFwcMCkSZMwYsQIDB48GEOGDEHdunVhb29vcH337t2tvMOaR2knA8CgJBEREVkPg5JEZeSktMNT9bxw5HoS9l9OEIOSh68lQRCAprVc4e9m+JcnW+rZ2Be73+6OL7dfxpqTsfjtxG3su5yAb15ojc5PeOmt3VCUJdmrsS88nRTi881ru+IJHyfcSMzG7osP8Fz7OlZ9D0RUUk5+Ib7few2bou7hQYZKfN5BLoOzvR0SM1U4diMZx4oypO2kEjjb28FJYQdnpR0clTL4u9pjer9GaOjnYqu3QQQA6NmzJyQSCQRBwJYtW7B161aT69VqZgKXFwfdEBERkbUxKElUDr2a+GqDklcSMClE25BfNxSmKpVuP8rFXo65z7bE4Fa1MHP9OdxNzcXoX07gzd4N8VafhpBJJVBrBGyM0k7dfradftBRIpFgaJsALAi/in/OxjEoSWRj0XEZeHPNadxIzAYAuCjt0KepL/7TohZ6NPKBvVyKG4nZOHYjCUevJ+H4jWRk5BUiLacAaTkFeueKuJWCP1/thAa+DEyS7YwdOxYSicTW23isOMi1mZLZZvacJiIiIiovBiWJyqFXYx98thU4GZOCLFUhHOQyHLqWBADo2ajqBiV1ujbwxq5p3TF780X8HXkX3++9hn9jkvH9yLa4cj8TCZkquDvK0btJyTL0Z1rXxoLwqzhyLRGJmSr4uCht8A6IHm+CIGDlsVuYu/0y8tUa+LkqMeeZ5ujVxFcsxdRp4OuMBr7OGNs5GGqNgPsZechRFSJLVYicfDWyVIX4395ruBiXgVE//4u1r3ZC/aIMcCJrW7lypa238NjxdtZWRCRn5dt4J0RERPS4YFCSqBzqeTshyMsRt5NzcPR6EnxdlEjJzoeL0g7tgjxsvT2zOCnt8PULrdG1gTc+3HgeJ26mYOD3hxHo6QhAG3zUlXQVF+zthDaB7jhzJw3bzsVhfNd61t46PWZUhWrEJudAVahBoUaAWqNBgVqABEDrQHfYy2WlnqMmSc5S4d1157DvsjY7u29TP3z1fCu9VgvGyKQSBLg7lHi+Y7AnRv18ApfvZ+LFn//F2tc6IcjLSXw9J78Qf/wbiz8j7sDNQY6BLfzxnxb+qOPhWHFvrBJdjEvH5rNxeK37E2Z9n4geJ95FHy4mZqpKWUlERERUMRiUJCoHiUSCXo19sfLYLey/nAA/V20PyZBG3pBXswES/20bgFZ13PDGH1GIjs9ASrY2U+K5dsZLs4e2qY0zd9Lwz1kGJaliaTQCouMzcO5uOs7fS8O5u+m4+iATBWrB4Pr/tqmNhSPbWnmXZScIAt5bdw47L9yHn5s9AtwdEODhgAB3B3g7K5CaU4DETBWSsrSPlOwCFKg1UGsEFGo00GiA1Jx85OSrobCT4qOnm2JMp6Byl7t6OCnw+6SnMGrpCVxLyMKLP/+LP1/tBHdHOVYdv41lR2LEnw0AEHk7FZ9vu4RWddzwnxb+eL5dHfi6WreXbnpuAXZdvA8vJwX6NPUzuq5QrcGba6JwMzEbUbFpWD3pqWr3c/pxVVhYiLNnzyIuLg4SiQS1atVC69atYWfH29iK5ONcFJTMYlCSiIiIrIN3c0Tl1KtJUVDySgL8i34Z71nFpm6bq76PMzZM7YK52y/h1+O30bqOG1rVcTO6/ulWtfDZ1mhExabhekIme9BRhUjMVGHK75E4dTu1xGsuRQNZ7KRS2MkksJNKcDMpG5vOxGFM52C0ryYZyr+fuI2/I7WDpDITsnA9IatM52ng64wfRrVF01quFbY3b2clVr/yFEYuPYGbidl44cfjyMkvREaets9cXU9HTO7xBArUGmw/H4+IWyk4dzcd5+6m49djt7Bneg+42MsrbD+GqDUCDl9LxPrT97Dr4n1xWvDGqV3Qtq7hvwMbo+7hZlHPzZMxKfhi2yXMfqa5wbWZeQVYczIW3Rv5oIl/xX1vyTIqlQqzZs3Cjz/+iMzMTL3XXFxcMHnyZMyePdvoRG6yjG9RpmRKdj7UGgEyKXt6EhERUeWSCIJgOO3kMZORkQE3Nzekp6fD1ZW/gJD58grUaPPpbuQVPJxW+e8HfcSsyerqdnI23B0UcHM0HVx4ddUp7I5+gKdb1sLi0e2stDvjCtUaXH2Qhcb+LvyFqhq6FJ+BSb+ewr20XDjIZWgf5IGWddzQKsANLeu4IcDdoUQ24HvrzuKvU3fRtq47NkzpYvPhGNmqQijtpLAzkoV3KT4DQxcfRX6hBtP7NUK7uh64l5aDe6m5uJuWi9TsfHg4KeDjrIS3sxLeLgp4OimhtJNCJpVAJtUGY+UyKRr6Ohu9Tnk9yMjDiJ+O41ZyDgDgCR8nvNG7AYa0qq13zaQsFXZffIBF+64hLj0PM//TBFP+n737Do+q2vo4/p1J772RhBB6Cb33KlVBuAqCogIW7Niu8qpX5apYEfUKooigCCJNVIoC0qv0ngABQnohvc/Mef/YSSCmkJ4Q1ud58iQzc8qeTBIOv1l7rwFNqmVMRpPG//66wLKDVwp1GHewMic120B7PyfWPtkb/T9+93MMJgZ9sp3wxEyGtPJky1k15f3De9oxvot/oW3DEzOYtvgQwTGpuNtbsfWF/jf9O1iX1JfrmezsbAYPHsy+ffsAaNeuHY0aNQLgypUrHD9+HICePXuydetWrKzqz7rGtfUaGowmmr2+EU2DQ68Pwd2+/nxPhRBCCFFzynMtUy2VkgaDgW+//ZaTJ08SEBDAY489hpNTydVWQtzKrC3M6N3Ena1567q18nG85QNJoNA6cqV5YWhzNp+NYf3JKB4PT6Kdn3O5zpOZY8TaQl+mIEnTtFK3M5o0pi89zJazsfg623BfV38mdPWv8emkomK2nInhuZ+Okp5jJNDdjoUPdaFJGRqtvDi0Bb+fiOJoWBK/n4jirvYNqnxsF+PS+Pnvq9zR2osujVyL3SbbYOSr7aF8uf0Cfi42fD25C009C48/I8fA08uOqJCspSfPDGpa6yFqSbwcrVn+WA8W7AilayNXhgd5Fxv0u9tbMal7Q6zM9by48jgLd4XyUK8AbC2r/hJjzuZgvtx2EQBnWwvu7uDLPZ398HSwYuDH2zkenszqI+Hc+4+gccXfYYQnZuLhYMUXEzvx9c5QPt0SwutrT9HM076guvJoWCKPfn+Y+Lzpq/Fp2by/6Syzx7Wr8uciSvfpp5+yd+9e+vTpw7x58wgKCir0+KlTp3j66afZtWsXc+fO5ZVXXqmlkdYf5mZ6XG0tSUjPIS41W0JJIYQQQlS7SpVXzJo1CzMzM3bs2FFwn6ZpDB48mCeffJJ58+bx6quv0rVrV1JSUio9WCHqqoE3dKce2KLud92uSi29HRnbwReAj/4ILte+f52Lof2sPxnx2S62BcdSXOG2yaSx7lgEgz/ZzuA5O7iSkF7i8T7cdK6gAioiKZNPNofQ6/2/eGLpYbadi2XX+Th+OhjGnD+DefHn40z+9gBrj4aXa8zldSoimc7/3cz0Hw4TnZxVree6VWmaxtc7L/LoD4dIzzHSq4kba5/sVaZAElR49ng/VZn3waZzZOUaq3R8+y4mMPbLPSzYGco9X+3joUUHOX41qdA2ey7EM2LuLj7dEkKOwURoXDpjv9zDtrw3K/K9/esZLsal4+VoxUf3tKuzgWQ+Hycb3hrdhlHtfG5aeTymQwP8XW1ISM9h+cGrVT6WLWdiCgLJt+5qzYH/G8xbo9sQ5OuEp6M1zw5uBsAHm4JJzcot2C8zx8gXf10A4JlBTbGxNOOZQU0Z2tqLHKOJ6UsPE5uaxe8nIrnv6/3Ep2XT0tuBz+7rAMDyg1c5EJpQ5c9HlG758uV4eHiwYcOGIoEkQFBQEL///jvu7u78+OOPtTDC+skjbwp3vKwrKYQQQogaUKlQcvPmzfj6+tK/f/+C+9asWcOuXbto27YtCxYsYOzYsVy4cIEvv/yy0oMVoq4acEMQOaDFrbmeZGU8f0dzLMx07Dofz54L8WXaJywhg+d+OkaOwcS56FSmfPc3k745wInwJEAFVVvPxjDy810899MxLsalExqXzvgF+7gYV3T9vdWHw1mwMxSAj+9tz6cT2tMlwAWDSWPjqWimLP6byd8e5NU1J/n8rwusPhLOrvPxvLb2VKHGHVVt2cEwEtJz2HQ6mjvm7GDp/iuYTPV/1YzMHCOfbTnPykNXSw0Jg6NTeXrZUd7bcA5Ng0ndG7JkajecbcvXGfnRfoF4O1oTnpjJ4r2XKzn669YcCefBRQdIyTIQ4GaLuV7HjpA4xny5h0eWHGLvhXieXX6U+xceIDQ+HQ8HKz78Vzu6NnIhNdvA1CV/M3/7RTRN49fjkaw4dBWdDuZO6IhbPatCMjfT8+SApgAs2HGxXOFwQlo2i/dcIio5s9jHrySk8/zPxwB4uFcjHu4diJV54W7rU3oHEuhuR3xadkEICfDD/svEpmbnVU83BECv1zFnQgeaedoTk5LN2C/38vSyo2QbTAxu6cmqJ3oxpoMvE7up7WeuPUm2oejz0TSN309EMuu3M8zZHMLCXaGs+DuM9SeiCIlJLbK9KLsLFy4wYMAA7O1LfnPC3t6eAQMGcPHixRocWf3mIR24hRBCCFGDKrWmpK+vL0FBQfzxxx8F902cOJGff/6Z06dP07JlSzRNIzAwEFdXV44cOVIlg64O9WUNJlF7Zm88S0JaDh/8q91tuZbhW7+eZvHey7T3c+KXp3qXWgGWlWtk3Ly9nIlKoWNDZ7oEuLBk7xVyjGpdzlHtfIhOzuJwXqMTB2tzpvUJZMPJKEJi0nC3t2LZo91p7qUa6xy+ksjEr/eTYzTxzKCmvDi0RcG5gqNTWXbgCpvPxGBvbU4DZ9XhuIGzDb8eiyQ4JpWnBjbh5WEtq/x7omkafT7YRkRSJr7ONkQkqcClayMXZo9rV2Rqb32haRrPrzjGL8ciAXCxteC+bg15oEcAvs42aJrGgUvXWLDjItuC4wDQ6+CNO1vzcK9GFa4eXH04nBdXHsfBypztLw+oVOinaRqfbT3P3C3nARjV1odPxrcnNiWbz7aeZ+3RcG7MlvU6eLBnI14Y2hxHawtyDCbe/PU0yw+GATC8jTe7L8STlm3g2UFNeeGGn9H6JMdgYsBH24hMzuK/dwcxuUfATffJNhi596t9nAhPxtHanP/eHcSYvOprUAH3uPl7ORuVQqeGzvz0WE8szYt/T3XbuVimLP4bc72OP57vh6eDFf0+3EZiRm6x60deik9n9P92k5rXxGdan0D+b2Srgr/hyZm5DJmzg7jUbJ4b3Izn72heaNxv/HKKnw+VXG1d3DmrW325nnFycqJfv3789ttvpW531113sXPnTpKTk2toZNWvNl/D51ccY+3RCGaOaMnj/atnbVghhBBC1G/luZapVChpbW3NPffcw9KlSwvu8/Pzw8HBgbNnzxbcd88997Bt2zYSEuru9Kf6chEvRG2JT8um34fbyMgxMv/+Toxo61PitvmNSdzsLPn92T74ONlw9VoGczaH8MuxCPL/Kllb6Hm4VyDT+zfG2daShLRsHvj2IGejUnC1s2TptO4421ow+n97iE/LZlgbL+bf37lIk4uS/HE6msd/OIy9lTm7XxlY7uq8m7kQm8qQOTuxNNdz5I07WHnoKh/9EUxGjhFLMz3/uas1D5QhtKlLgqNTWXnoKg/1aoS/q22x2yzafYlZv5/BTK/Dy8GKyLxp63odDGnlRUxqdsH0Z50ORgR580T/prQtpdN7WZhMGqO/3M2piBQm9wjgv3cXnfJZFjkGE6+uOcGaIxEATO/fhH8Pa1Ho5+pCbBqfbT3P7yciaevrxLt3ty12/D/sv8Lbv57GkJdgdm3kwvJHe1Rbc5q64Pt9l/nPutP4Otuw7aUBJQaI+V5be5IfD4QVuu+u9g14Z0wQjjbmvLTyBKuPqL8X65/ti7dT6WvETvnuINuC4+jf3INODV34dEsIjT3s+HNGv2K/73svxPPBpnPc161hQWXkjdafiOKpZUewMNOx8bm+NPV0ICYli+lLD3M0LAm9DsZ38cdMryMt20BqloHY1CxORaRgaaZn+WM9arQrfH25nunTpw9Hjx7l1KlTBAYGFrvNpUuXCAoKolOnTuzatauGR1h9avM1fG/DWb7eGcqjfQN5bVTrGj23EEIIIeqHGmt04+HhQVxcXMHt0NBQIiMjeeyxxwptZ2lpSU5O9U2PFELUPnd7Kx7p25jPt57noz+DuaO1V7EBwE8Hw/j5UDh6HXw+sSM+TjYA+Lva8umEDjzSN5B52y7i4WDFEwOaFGoa5GZvxfJHu/PgooOcCE9m4jf78XK0KlgDbs74DmUOJAHuaOVFS28HzkWnsmj3pSqvXtueVwXYPdAVeytzpvQO5I7WXrz+yym2B8fxn3WnaOvrRHt/5yo9b2mik7N4+LuDeDpa88G/2hZ8/8vCYDTxxI+HCY1L55djEXz3cLciQdz+0ATe3aDelHptZCse6tWILWdj+H7fZfZcSODPMzEAWJnruaezH4/2bUwj97I1VboZvV7HayNbM/Gb/Sw7GMaglp6kZOUSHJ1KcHQqIbGqm/KU3oGMDPIu8vNpMJr47UQkX/x1gdC4dMz0Ot65O6jYoKqppz1fTOzIu2ODcLAyL7G6c3KPAJp52vPUj0cw0+v47L6O9TqQBBXQffHXBSKSMll7NJwJXYt+//KtORLOjwfC0Olg4YNdOBmRzBd/XeC345H8fekaw4O8WX1E/b34YmLHmwaSoCpud1/YyY6QOPZdVG+GPj+keYnf915N3Vn3dJ8SjzeyrTeDW3qy9VwsM9ec5NURrXhi6WFiU7NxtDbni0md6N+88FrCJpPGEz8e5o/TMTz+w2F+e6Z3uX7XBDz++OM89NBDDBgwgFmzZjFx4kQsLdUbR9nZ2Sxfvpw333yTrKwspk+fXsujrT887GX6thBCCCFqTqUqJYcNG8auXbsIDg7G39+fmTNn8uGHH7J27VpGjx5dsF2vXr2Ij48nJCSkSgZdHepLZYEQtSk1K7dgquQH/2pbJIw4GZ7Mv77aS47BxMvDWvDUwKYVOk9KVi4PLTrI0bAkANzsLFn3dG/8XIqv3CvNxpNRPPHjERyszNn96iCcbCwqNKbiTP72ALvOx/P6qFY80rdxwf2apvHM8qP8fiKKZp72/PZMH6wtzEo5UtUwmjTuX7if/aHXADWtes6EDgws4zqoKw9d5eVVJwpu21qaMe/+TgXrqEYlZ3LXF7uJT8vh7g4N+HRCh0Jh3fmYVFYdCcfe0pyJ3RtWW2fXR78/xOa88LMkfi42TOsTyISu/lia6Vl3LJL/bbvApXjVSMnZ1oK5EzpU2RqxOQYTBpOpWjpS10ULd4XyzvqzBLjZsvWF/sUGgueiU7j7yz1k5ZoKTY0+djWJ51ccK3gtAF4Z3pInBpR9KunsDWcL1pht5ePI+mf6lOsNi3+KSMrkjjk7yMgxotOBpkFzL3u+ntylxFA9PdvAv+bv5Vx0Km19nVg5vWeN/J7Xp+uZxx9/nG+++QadTodOp8PLywudTkd0dDSapqFpGo8//jjz58+v7aFWqdp8DdceDef5Fcfp3dSNHx/pUaPnFkIIIUT9UJ5rmUqVa7zwwgtkZWXRrl07OnXqxAcffEBgYCDDhw8v2CY5OZkjR47Qvn37ypxKCHELcLC2KAgaP918nh/2X+H7fZdZvOcS3+25xBM/HibHYGJIKy+eqMRaVY7WFvwwrTt9m7njZGPBV5M7VyiQBBjWxpvmXvakZhtYvOdykceNJo0vt13g7d9OYyxHg5rMHCMHLqnwb8A/OrLrdDpmjQnC3d6S83nTgGvC/O0X2B96DVtLM1r7OJKYkcuU7/7mg03nMOSt51mSHIOpYJzPDGpKn6buZOQYmbbkED8fukq2wcj0pUeIT8uhtY8js8cV7SzdzMuBmSNa8czgZtUWSIKq0HS1s8TB2pwuAS7c370hs8a0Ydmj3Xl+SHNc7SwJT8zk7d/O0HP2Xwz6ZAcvrjzOpfh0XGwteHlYC3a/MqhKm1ZZmutvm0ASVMMiVztLriRk8NuJyCKPp2Tl8sTSI2TlmujX3KOgczZAB39n1j/bhwd6qDc1RrXzYXr/xkWOUZqnBzXFM69hx0tDm1cqkATwdbbhpbxKak2DYW28WPNk71KrfO2szPnmwS642FpwMiKZf686QSXeB74tLViwgJUrV9KnTx/Mzc2JiooiMjISc3Nz+vbty8qVK+tdIFnbPOxVNbJUSgohhBCiJlSqUhLgq6++4v333ycuLo7OnTvz5Zdf0rZt24LHv/jiC5577jnmzZtXp6fX1KfKAiFqU1aukUEfby9YR/CfGrra8tszfaqsIjHXaMKiktNhfzseyTPLj+JoraolHa3V2DJzjMxYcZQ/Tququ0UPd2FQS68yHTO/4Yavsw27XxlY7PTeTaeimL70CHodrHmyNx2qcRr34SvXGL9gP0aTxsf3tueu9j68t/4sS/ZdAdRahzdOp/+nH/Zd5o11p/FwsGLnywMx0+t4dfUJ1hxV6y629nHkTFQKzrYW/PZ0nxLXm6wpJpOGTkex3/fMHCOrjoSzcFcoVxIyAHC1s+TRvo2Z3DMAe6vbJzysTl9uu8BHfwTj72rDtN6BNPawp7GHHT5ONjyZN7XZ19mG357pg6td8eu5JmXk4GRjUaHmR5fj0wm7lkG/f0ytriijSeN/f13A1c6C+7sHlDno3HcxgcnfHsBg0vj38BYFHcqrS329njEYDAVrk7u5uWFuXn9/T2vzNQyOTmXY3J242lly5I07avTcQgghhKgfaqzRTVlkZmaSk5ODvb09ZmbVP22pourrRbwQteHgpWss3nsJkwn0ehUM6XU6HKzNebxfYwLcqmYNwapiNGkMm7uTC7FpvDS0OU8PakZsahaPLjnE8fDrHV1HtvVm3v2dy3TM/G7kE7s1ZPa4tiVu98zyo/x2PJKmnvb8Xk3TuJMzcxn52S4ikjIZ06EBc2+YVr3hZBSvrDpBarYBd3tLfnqsB009HQrtn5ljpP9H24hNzebt0W14qFcjQE1D/+iPYOZtvwioRjaLp3SrshCouhlNGn+diyU5M5cRQd7YSRhZpVKzcunzwTaSM3ML3W9prifHYMLCTMfK6b2qNYyvK37Yf4U3fjlVsHbm4FZle3OjIurL9czOnTvx9vamefPmpW53/vx5oqKi6NevXw2NrPrV5muYkJZN53e2AHD+3RGVftNPCCGEELefGmt0UxY2NjbY2Mji7kLcTroFutIt0LW2h1FmZnodzwxqynM/HWPh7kv0burO08uOEpGUiYutBS/c0Zw31p1my5lYEtNzcCmhqutGO0JUk5t/NsD4p7dHt2HfxXguxKYxd8t5Xh3Rskxjzso1linA1DSN/1tzkoikTPxdbXjn7qBCVWcj2/rQpoEjj/9wmHPRqdy/8AA/P96zUHD8w/7LxKZm4+tsw33d/Avu1+l0/Ht4S3ycbfhi63meGtj0lgkkQb3ud7SuvnDodudgbcEP07qx8VQ0F2PTCI1P50pCOjkGtVTAm3e1uS0CSVANj85GpbDsQBjHryZVayhZXwwYMIApU6bw7bfflrrdhx9+yKJFizAajTU0svrNxdYSM70Oo0kjIS2nTM2lhBBCCCEqqlKhZEZGBvHx8bi5uWFnd/0/sMnJybz//vucPHmSgIAAXnrpJQIDAys9WCGEqC53tmvAZ1vOExqfzrj5e9E0CHS3Y9HDXQl0t2P5wauciUrh1+ORBZWCJbmSkM6l+HTM9Tp6N3UrdVtXO0veubst05ce5uudFxnWxouODV1K3F7TNP696gS/Ho/kv2OCGN/Vv8RtAX4+dJX1J6Mw1+v4/L6OOFgXnTYf4GbHskd7cN/X+wiJSWPSNwdYOb0nDZxtSM3KZX5eJeRzg5thZV40CJ3cI4DJPQJKHYe4PbXzc6adn3PBbYPRxNXETLJyjbTyuXWr+CrirbvaMLilpwSS5VCWyTyyTmfV0ut1uNtbEpOSTXxatoSSQgghhKhWlZqT8c477xAYGMjZs2cL7svJyaFnz558+OGHbNiwgfnz59OzZ09iYkrvhCqEELXJTK/j6UFqrTdNU2ssrnmiF4F5jSzu7eIHwKrD4Tc91s68KsnOAS7FhoD/NDzIm9HtG2DS4MWfj5OYnlPitl/vDGXl4XCyDSZeWXOC1aWM50BoAm/9egaAF4e2KDXsdLWzZOkj3Ql0tyMiKZP7Fx4gNjWLRbsvk5iRS2N3O8Z18r3pcxGiNOZmegLd7W67QBLUtHUJJKteZGQk9vb2tT2MeiW/EZk0uxFCCCFEdatUpeTWrVsJDAykS5cuBfctW7aMc+fOMWjQIF555RU2btzI3Llz+fTTT3n//fcrPWAhhKguo9s34PjVJKwtzHhhaPNCVYFjOvjy3oaznIxI5lx0Ci29Sw5VtgfnTd1uUfapzG+PbsOBSwmExqczedEBfnykR5FmQLvOx/HBpnMAdGzozNGwJF5adRxzMx1jOlwPDDVNY+GuS7y/6RxGk0afpu483u/m3Ys9Haz58ZHu3PvVPi7Fp/PAwgNEJamGRTPuaI65rC0mhKhG33//faHbFy5cKHJfPoPBQHBwMFu2bKFHjx41MbzbhoeDhJJCCCGEqBmVCiXDwsLo2LFjoft++eUX9Ho9ixcvxs/PjzvuuIONGzeyfv16CSWFEHWauZmet8cEFfuYq50lg1t6sel0NKsOhfP6na2L3S7bYGTvRdUh9mbrSd7Ixc6SpdO6M+Hr/ZyKSOHh7w7yw7TuBZ2gr17L4JnlRzFpcG9nPz74Vzte++UUyw+G8fyKY5jpddzZrgFp2Qb+veo4G05GAzCmQwNmj2tb5k7BDZxtWPZod8YvUFO5AVp6O3BnW58yPxchhKiIhx9+uGDNW51Ox549e9izZ0+J22uahrW1Nf/5z39qaoi3BY/8Ssk0CSWFEEIIUb0qFUomJibi4lJ4OuDevXtp27Ytfn5+Bfe1a9eOP/74ozKnEkKIWndPZz82nY7ml2MRvDKiZbFdSQ9dTiQz14iHgxWtyzlFtZmXA0undWfiN/s5GpbE1MV/s2RKNwAe++EwSRm5tPNz4r93B6HX63j37iCMJhM/HwrnuZ+OEZOSzbIDV7gYl46FmY437mzN5B4BhRrblEWAmx0/PtKdCQv2k5Cew8vDWpQ51BRCiIr6z3/+g06nQ9M0Zs2aRYcOHRgzZkyx21paWtKgQQOGDh2Kj4+8aVKV3KVSUgghhBA1pFKhpLe3N5GRkQW3T58+TXx8PJMmTSq0XXn/QyyEEHVR/xYeuNtbEp+Ww/bguGI7N9/Ydbsif/taN3Dk+6ndeGDhAQ5eusZjPxzCxdaSs1EpuNlZ8tUDnQu6buv1OmaPa4fBqLHmaAT//V2tH+ntaM2X93eic0DJa0jeTFNPB35/tg+X4zPo2aT0Zj1CCFEV3nrrrYKvFy9ezJAhQ3jzzTdrb0C3KamUFEIIIURNqdQCYR07dmTPnj0cO3YMgE8//RSdTsedd95ZaLvz58/ToEGDypxKCCFqnYWZnrEd1dqNqw5fLXabHcHXQ8mKau/vzHdTumJracau8/H8ejwSM72OL+/vRANnm0Lbmul1fHRve8Z0UH9jezZ24/dn+1QqkMzn42QjgaQQolZcvnyZDz/8sLaHcVuSNSWFEEIIUVMqFUq++uqrmEwmunTpgpubG4sWLaJ9+/YMGjSoYJvY2FiOHz9O586dKz1YIYSobfd09gdg69lYEv5RRRKZlElwTCp6HfRp6l6p83Rp5Mq3D3XFylz9mX59VCt6NC4+IDTT65g7oQNbX+zP0ke6F3ROFUIIIcor/9+QeKmUFEIIIUQ1q9T07e7du7Nu3To++ugj4uLiGDVqFO+99x56/fWsc9myZTg4ODB8+PBKD1YIIWpbC28H2vk5cSI8mXXHIpnaJxCAiKRM5m+/AKhKRxc7y0qfq2cTN357pg9Xr2UwqKVnqdvqdDqaeNhX+pxCCFGX7N69m3Xr1nH+/HlSU1PRNK3INjqdjq1bt9bC6OonqZQUQgghRE2pVCgJMGrUKEaNGlXi4zNmzGDGjBmVPY0QQtQZ93T240R4Miv+vorBZGL9yWiOX00qeHxIq6JrTVZUcy8Hmns5VNnxhBDiVqBpGtOmTWPJkiUFQWR+E5x8+bdl7fKqlR9KpmYZyMo1FqxjLIQQQghR1So1fVsIIW5Ho9s3wNJMT3BMKu9tOMfxq0nodNA90JVZY9rwSN/A2h6iEELc0r766isWL15M586d2bx5M+PGjQMgODiYjRs38vDDD6PX63n55ZcJDQ2t8HnmzZtHYGAg1tbWdO7cmV27dpW6fXZ2Nq+99hoBAQFYWVnRpEkTFi1aVGib1atX07p1a6ysrGjdujVr166t8Phqg6O1OZZ5S4dItaQQQgghqlOlKyUBcnNzWbt2Lbt27SIyMhKdToePjw99+/Zl7NixWFhYVMVphBCiTnC2tWRS94Z8v+8y3QPdGNnWm2FB3ng6WNf20IQQol5YvHgxdnZ2bNy4ETc3N5YuXQpAs2bNaNasGcOGDWPkyJFMmDCBXr16ERAQUO5zrFixghkzZjBv3jx69+7NggULGDFiBGfOnKFhw4bF7jN+/HhiYmL49ttvadq0KbGxsRgMhoLH9+3bx4QJE/jvf//L2LFjWbt2LePHj2f37t107969Yt+MGqbT6fCwtyIiKZP4tGz8XW1re0hCCCGEqKd0WnGL85TDnj17mDRpEuHh4UXW+dHpdPj7+7Ns2TJ69epVqYFWt5SUFJycnEhOTsbR0bG2hyOEuAUYjCbMzaTgXAhRd9SX6xlHR0d69OjBn3/+CcDUqVNZsmQJOTk5mJldn07crVs3rKysblrhWJzu3bvTqVMn5s+fX3Bfq1atuPvuu5k9e3aR7Tdt2sR9991HaGgorq6uxR5zwoQJpKSksHHjxoL7hg8fjouLC8uXLy/TuOrCazjmyz0cv5rE15M7M7SNd62MQQghhBC3pvJcy1Tqf9MhISGMGDGCq1ev0qlTJz799FPWrl3L2rVrmTt3Lp07dyYsLIwRI0Zw/vz5ypxKCCHqHAkkhRCiephMJtzd3Qtu29qqar3ExMRC2zVr1oyTJ0+W+/g5OTkcPnyYoUOHFrp/6NCh7N27t9h9fv31V7p06cKHH36Ir68vzZs356WXXiIzM7Ngm3379hU55rBhw0o8Zl3lkdeBO046cAshhBCiGlVq+va7775LWloan376Kc8991yRx5999lk+//xzZsyYwbvvvsvixYsrczohhBBCCHEb8PX1JTw8vOB2/vTso0ePcscddxTcHxISgrl5+S9n4+PjMRqNeHkVbkzm5eVFdHR0sfuEhoaye/durK2tWbt2LfHx8Tz55JNcu3atYF3J6Ojoch0T1DqV2dnXw7+UlJRyP5+q5uFgCUB8ak4tj0QIIYQQ9Vmlyny2bt1Kx44diw0k8z377LN07NiRLVu2VOZUQgghhBDiNtGpUyfOnDlTsF7j0KFD0TSNl19+mbNnz5KamspHH33E4cOH6dixY4XP88/O3aV18zaZTOh0On788Ue6devGyJEjmTNnDosXLy5ULVmeYwLMnj0bJyengg9/f/8KP5+qcr1SMquWRyKEEEKI+qxSoWRcXBwtW7a86XYtW7YkPj6+MqcSQgghhBC3idGjR3Pt2jV+//13ANq3b899993HiRMnCAoKwtnZmVdffRVzc3Pefffdch/f3d0dMzOzIhWMsbGxRSod8/n4+ODr64uTk1PBfa1atULTtIKqTm9v73IdE2DmzJkkJycXfFy9erXcz6eqeTjkhZLSfVsIIYQQ1ahSoaSbmxshISE33S4kJKTEBcGFEEIIIYS40cSJE8nMzOSuu+4quG/JkiW89957dO3alaZNmzJy5Ei2bt1Kt27dyn18S0tLOnfuzObNmwvdv3nz5hKbM/bu3ZvIyEjS0tIK7gsJCUGv1+Pn5wdAz549ixzzzz//LLXho5WVFY6OjoU+apt7XqVkfFrdmr6dnm1gzP92M2HBPrJyjbU9HCGEEEJUUqVCyYEDB3LkyBG++eabErf55ptvOHz4MIMGDarMqYQQQgghxG3EysqqUKdtCwsLXn31Vfbv309wcDC//fYbffv2rfDxX3jhBRYuXMiiRYs4e/Yszz//PGFhYUyfPh1QFYwPPvhgwfaTJk3Czc2NKVOmcObMGXbu3MnLL7/M1KlTsbGxAeC5557jzz//5IMPPuDcuXN88MEHbNmyhRkzZlR4nLWhrlZKztkcwvHwZA5cusaczTcvjBBCCCFE3VapRjevv/46v/zyC9OnT2fZsmVMmjSJRo0aodPpuHTpEj/++CO7du3C1taW1157rarGLIQQQgghRKVMmDCBhIQEZs2aRVRUFEFBQWzYsKGgqU5UVBRhYWEF29vb27N582aeeeYZunTpgpubG+PHj+edd94p2KZXr1789NNPvP7667zxxhs0adKEFStW0L179xp/fpVxYyh5szUxa8qpiGS+23Op4PY3u0IZ3NKT7o3danFUQgghhKgMnaZpWmUOsHXrVu6//35iY2OLXdjby8uLH3/8sc5XSqakpODk5ERycnKdmDYjhBBCCFFe9fF6xmAwkJCQUKhD9T81bNiwBkdUverCa5iebaDNm38AcOrtYdhbVaqOodIMRhNj5+3lZEQyd7VvgLW5npWHw/F3tWHjc/1qfXxCCCGEuK481zKV/hd88ODBhIaG8vPPP7Nr1y4iIyMBaNCgAX379mX8+PHY2tpW9jRCCCGEEOI2smXLFt555x32799Pbm5uidvpdLqCLt2iathZmWNraUZGjpH41OxaD/2W7LvCyYhkHK3N+c+drbG20LP3YgJXr2Xy7vqzzB7XtlbHJ4QQQoiKqZIrDFtbWx5++GEefvjhYh9fuXIlUVFRPPvss1VxOiGEEEIIUY/9/vvvjB07FqPRiIuLC40bN8be3r62h3Vb8XCw4kpCBnFp2TRyt6u1cUQkZfLJn8EAzBzZqmBq+Uf3tmPSNwdYfjCMoa29GNjSs9bGKIQQQoiKqZG3PefMmcPBgwcllBRCCCGEEDf19ttvYzKZmDt3Lk899VShhjeiZrjb54WSZWx2cy09h6xcIw2cbapsDJqm8ea6U2TkGOkS4MKELv4Fj/Vq4s6U3o34bs9lXll9gj+f74ezrWWVnVsIIYQQ1a9S3beFEEIIIYSoaqdPn6Znz548++yzEkjWEg97VZEYn3bzUFLTNMYv2MewT3cSk5JVZWP443Q0W87GYmGmY/a4tuj1hdevf2V4S5p42BGbms0b605X2XmFEEIIUTMklBRCCCGEEHWKvb09Xl5etT2M29qNHbhvJi41mwuxaaRmG9h4MqpKzp+ebeDNX1XQOL1/E5p5ORTZxtrCjDnjO2Cm1/Hb8UhCYlKr5NxCCCGEqBkSSgohhBBCiDplyJAhHDlyBJPJVNtDuW2525c9lAy+IQzceCq6Ss5/8NI1YlKy8XGy5qmBTUvcrr2/M10CXAA4GZ5cJecWQgghRM2QUFIIIYQQQtQpH3zwAZmZmbz44osYjcbaHs5tqTyVksHR10PJg5evlXkdytJcSUgHoL2fM9YWpU/hb+XjCMCZqJRKn1cIIYQQNadGGt0IIYQQQghRVt999x0jRozg888/5/fff2fAgAH4+fmh0+mKbKvT6XjjjTdqYZT1W34oWZY1JW+cNq1p8OeZaO7vHlCp84ddywSgoZvtTbdtnRdKnpVQUgghhLilSCgphBBCCCHqlLfeegudToemaVy8eJGLFy+WuK2EktXD3V51si7b9O00ANr5OXEiPJmNJ6silMwAwN+1DKFkg+uVkpqmFRteCyGEEKLuKVcoKd0PhRBCCCFEdfvuu+9qewi3veuVkjmlBn0mk8b5vErJ5wY3Y9qSQ+wLTSAxPQcXO8sKn/9qXijZsAyhZFNPe8z0OpIycolOycLHyabC5xVCCCFEzSlXKKlpWoVPJO9YCiGEEEKIsnjooYdqewi3vfxGNzlGEymZBpxsLYrdLiIpk4wcI5Zmevo396CVjyNno1LYfCaG8V39K3RuTdMKKiXLEkpaW5jR1MOe4JhUzkSmSCgphBBC3CLK1ejGZDJV+EMWKRdCCCGEEOLWYG1hhqO1ql+IS8sqcbv8JjdNPO0xN9MzMsgbgI2noip87vi0HDJzjeh04OtctoCxlY8DIOtKCiGEELcS6b4thBBCCCGEKMI9bwp3bCnrSgbnTd1u4WUPwIi2KpTcfSGe5MzcCp03v0qygZMNluZl++/KjetKCiGEEOLWUGcb3cybN4+PPvqIqKgo2rRpw9y5c+nbt2+x2z788MMsWbKkyP2tW7fm9OnT1T1UIYQQQghRCYMGDUKn07FkyRL8/PwYNGhQmffV6XRs3bq1Gkd3+/KwtyI0Lp34tJwSt8mvlGzurSoVm3o60MzTnvOxaWw9G8O4Tn7lPu/VgiY3ZZ+G3aqgA3fqTbYUQgghRF1RJ0PJFStWMGPGDObNm0fv3r1ZsGABI0aM4MyZMzRs2LDI9p999hnvv/9+wW2DwUD79u259957a3LYQgghhBCiArZv345OpyMjI6PgdlnJuuXVJ7/ZTWkduEPyKiVb5oWSACPa+nB+63k2noquUChZnvUk8+WHkpcT0knPNmBnVSf/myOEEEKIG9TJf63nzJnDtGnTeOSRRwCYO3cuf/zxB/Pnz2f27NlFtndycsLJyang9i+//EJiYiJTpkypsTELIYQQQoiKuXTpEgC+vr6Fbovald/spqRQMtdo4mJcGgDNvW4IJYO8+XzreXaExJGWbcC+nAFhRUJJd3srPB2siE3N5lx0Kp0DXMp1TiGEEELUvDoXSubk5HD48GFeffXVQvcPHTqUvXv3lukY3377LUOGDCEgIKDEbbKzs8nOvn6BlZIi688IIYQQQtSGf16zlXYNJ2rOzSolL8enk2vUsLM0K9SQpqW3A4HudlyKT2fbuVjuat+gXOcNK5i+XfZQEtS6krHBcZyJSpFQUgghhLgF1LlGN/Hx8RiNRry8vArd7+XlRXR09E33j4qKYuPGjQVVliWZPXt2QYWlk5MT/v7+lRq3EEIIIYQQ9Ul+KBmfVnwomd/kprm3Q6Fp9DqdjuGV6MIdllD+Skm4cV1JKTYQQgghbgV1rlIy3z/XB9I0rUxrBi1evBhnZ2fuvvvuUrebOXMmL7zwQsHtlJQUCSaFEEIIIeoYo9FIfHx8oRku/1TcmuOi8vxdVCh4KiIZg9GEuVnheoaQ6PzO2w5F9h0Z5MP87RfZdi6OzBwjNpZmZTpnVq6R6JQsQEJJIYQQor6rc6Gku7s7ZmZmRaoiY2Nji1RP/pOmaSxatIjJkydjaWlZ6rZWVlZYWVlVerxCCCGEEKLqbd68mffee499+/aRm5tb4nY6nQ6DwVCDI7t9dGnkgrOtBQnpORy8dI1eTd0LPV5QKVlMKBnk64ifiw3hiZnsPB/HsDbeZTpneGImAHaWZrjalX49/0+t80LJc1GpGE0aZnppgiSEEELUZXUulLS0tKRz585s3ryZsWPHFty/efNmxowZU+q+O3bs4MKFC0ybNq26hymEEEIIIarJ6tWrmTBhAiaTCXd3dxo1aoSdnV1tD+u2Y2GmZ1hrb1Ycusr6k1FFQsmQGNXkpoV30VBSp9MxqKUn3++7ws6QsoeSV/Ob3LjZlbuzeqC7HdYWejJzjVxJSKexh3259hdCCCFEzapzoSTACy+8wOTJk+nSpQs9e/bk66+/JiwsjOnTpwNq6nVERATff/99of2+/fZbunfvTlBQUG0MWwghhBBCVIG33noLgIULF/Lwww+j19e5ZdBvGyPb+bDi0FX+OB3NrDFBBdWHWblGLiekA8VXSgL0b+7B9/uusCMkrsxLMV3vvG1zky2LMtPraOHtyPGrSZyJSpFQUgghhKjj6uQV3oQJE5g7dy6zZs2iQ4cO7Ny5kw0bNhR0YoyKiiIsLKzQPsnJyaxevVqqJIUQQgghbnEXLlygf//+TJ06VQLJWtariRvOthbEp+Vw4FJCwf0XYtPQNHC1s8Tdvvhp1j0au2FhpiM8MZNL8ellOt/1ULJ860nma+2jAlJZV1IIIYSo++pkpSTAk08+yZNPPlnsY4sXLy5yn5OTExkZGdU8KiGEEEIIUd28vb2xt5cqt7rAwkzP0NZe/HwonA0no+jVRE3hDo7OX0/SvsQKSDsrc7oEuLIvNIGdIXFlqlysfCip1pU8EymhpBBCCFHXyVvPQgghhBCiTrnnnnvYt28fKSkSLNUFI9v6ALDpVDRGkwZcb3JTXOftG/Vv4QHAzvPxZTpX/pqS/hUMJa934E6t0P5CCCGEqDkSSgohhBBCiDrl7bffplGjRowdO5ZLly7V9nBue72buuNkU3gKd36lZAtvx1L37ddMhZL7LiaQbTCWuq2maZWulGyZF0pGp2RxLT2nQscQQgghRM2os9O3hRBCCCHE7cnW1pYtW7bQq1cvWrRoQaNGjfD19S12mrBOp2Pr1q21MMrbR/4U7pWHr0/hDsmvlPQufUp2Kx8HPBysiEvN5tDlRHr/o4P3jRLSc8jIMaLTga9L+RvdANhbmRPgZsuVhAzORqWUej4hhBBC1C4JJYUQQgghRJ0SERHBkCFDCAkJQdM0Lly4wIULF4rdtiwdnUXljWznw8rD4Ww6FcOLd7QgKjkLgGY3mb6t0+no18yD1UfC2RkSV2pImF8l6eNojZW5WYXH2trHkSsJGZyJlFBSCCGEqMsklBRCCCGEEHXKCy+8QHBwMEOGDOHZZ5+lcePG2NnZ1fawbmu9m+RP4c7mxwNXAGjgZI2jtcVN9+3X3J3VR8LZERLHzJGtStyusutJ5mvl48jGU9HSgVsIIYSo4ySUFEKIigjdAefWg3sz8GqjPqydantUQghRL2zZsoVmzZqxceNGzMwqXjEnqo6l+fUp3N/sUut8NvcuvUoyX99mHuh0cC46lZiULLwcrYvdLiyhcutJ5stvdnNGQkkhhBCiTpNQUgghyuvcevj5ITDlFr7fqSE06ABD3gK3JuU/riEH0MDcqgoGKYQQty6TyUT79u0lkKxj8qdwJ2eqf/9u1nk7n6udJW19nTgRnszOkDju7eJf7HaVbXKTr3UDFUpeiE0j22Cs1FRwIYQQQlQfCSWFEKI8zvwKq6aAyQCB/cDCFmJOQ/JVSA5TH1HH4dG/wK4c61jFX4DvR0N6PAT0hCaD1IdXEJRlvbTsVAjeBIZMQAc6vdpPb6GOY+dW4acshBA1rUePHpw7d662hyH+oXcTdxytzUnJMgDQvIyhJED/5h6cCE9mRymh5JX8UNKtcqGkmlauxnk+Jo0gX5nJIIQQQtRFEkoKIURZnV4Lq6aBZoS298LdX4FZ3p/RzCSIOQXrnoLEy7DiAXhwXdmqHq+FwpK7IDVS3Q7drj42/wfsPKH5MOjzfMnVl+c3w28zICW8+MftvWD899CwR9meZ1aKei5Rx9XtDveDtWPZ9hXiZlIiITkc/LqWLXAXt6V3332X3r1788UXX/DMM8/U9nBEHktzPUPbeLPqsPr3pkUZp28D9GvuwRd/XWD3hXiMJg0zfdHf/6paU1Kn09HOz5ndF+J5dc0Jvn2oa4lTxoUQQghReySUFEKIfMnhsP19yEqGgF7qwysI9GZwchWseUwFku3ug7vnqfvz2ThDoz4w6WdYeAeE7YNfn4WxX5UevCSFwZLRKpD0aAmj/wcRh+HiX3B5F6THwtEf4Ngy6DAJ+v8bnBuqfTOuwaaZcOInddupIXi1Bk0DNNBMkHBBhaSLR8GID6DLtKLjyUmHEyvUOpnRJ1RIeqPdn8Id/4V24yVEEuWnaRAfAud+V0sfRBxW97caDaO/UL87xcnNhJBN4N8DHH1qbLiibjh16hRTpkxhxowZrF27liFDhuDr61tip+0HH3ywhkd4+xrV1odVh8PR6aCpp32Z9+vg74yDlTlJGbmcjEimg79zocezco1Ep6iO3pWdvg3wyvCWnPnuIKciUhjzvz0sfKiLVEwKIYQQdYxO0zSttgdRF6SkpODk5ERycjKOjlIRJESlpEbDpZ1gYQPWzqoBjI0z2LiAVdmrKgrkZKigLCNBhYImU95nIzh4g2+nyo3XZIJD38KWtyAnrfBjVk7g21E9H80EHR6A0Z8XDiT/6eJfsPQeNcZBr0O/l4vfLjkCvhsBSVfArSk8vAEcvK4/bsiGsP2wf54KZ0BNx+78sHrOm/8D6XGADno8CYNeA8t/dKfNSVfVm6fXqtsdJ8PIj8HCWr1OB7+GQ4sgM7Hwfo6+4N0O4oOvh5QNe8LIj8C7rbqdm6kCpit7VVWltRM4+KgAyaGB+uzkD7ZuNRdmahqEH4Izv4CtK7S8E9ybl3x+owEy4tXPkslw/efL0k6CsMrKSoGDC+D4TyocL5C3vIBmVAH7PYvBr/P1hzVN/bxuflMth2DjAuMWQrMh1TPOK/vg74XQ6k5ofXfpP6u5KjDBopSKK01TzzfmtPodMWSq/fI/Nx1c9qrlCqgv1zN6vR6dTkf+ZWpJYaSmaeh0OoxGY00Or1rV9dcw12ji/9acxM/FlueGNCvXvtN/OMym09G8cEdznh1ceN+LcWkM/mQHtpZmnH57WImveXmEJWQwZfFBLsalY2NhxucTO3JHa6+b7yiEEEKICivPtYyEknnq+gWguAUYDSrUKO0/q/WdIVsFaDs+gtz04rdx9FPNYHzag0+HvIBLU2spZsRDeoIK2hIvQ8J5tdZicljp5+04WYVlFjYlb5ObBWaWoNcXvj8uBH57VlU2Avh3h2ZD1e2wA5CTen3bTg/CnZ8VPUZx/v4W1r+gvr53MbQZW/jxlChVvXjtIrgEwpQN4Nig5ONdPQh/vQOXdhS+P7+60r9ryftqGuz5DLa+rYJV385qv5MrwZijtnFppL6Pvp3Au/31NSgN2bDvf7DzY8jNUGFS67vVFNzII9f3L425DTj5qQ9nf/U6ZKepdTBzUtVnWzcI+he0uqtiwXVarAq/ji5VQeqN3JpCy1HQYpQKxyOPQsQR9Tn6BBiyij9m44HQ+1n1uTz/OTaZVOVrwkUV6F67CNcuqYC+4/0q3K3PFac5GfD3N7B7LmReU/eZWUJg/7zXYaRaamDlFBXI6y3gjrdVsB51TFX/5v8+6s3V31V0Ktwf8Grpbwjky06DHR9A3Dno+TQ07l90G0M2bHsX9nwO5F0KNewJw95VvyM3ij+vfg+O/6R+hxp0Umu/NuwF/t3UNpd2wIWtcHFb6X+z7pgFvZ+7+XOooPpyPfPWW2+VK5R68803q3E0Nau+vIbFWXYgjP9be5LOAS6sfqJXoce2Bccy5bu/aentwKYZ/arsnMmZuTy97Ai7zsej08H/jWjFI30DqyT0FEIIIURREkpWQH2+ABQ1IDVGBUzZqfDwenBvWtsjqnnnt8DGf6sABsCjFVjZq6nQmUmQlVS2AKsk1s6qKlJvroIxvRmgUyGGZlLTrO9dUvR7H38Btr8Hp9aAmYWq3HP2VxVaZlZwZIkal6U9DH4Tuj5yPXQ0GiDmpKoENLeCzlPLFkjm2/gqHJgP5tbQ9h5VNZWTrj7iz0NatBrHwxvUmMri0k74610VCPZ+TgU1Ze3WfWErrJqqXot8/t1VaNNyVOlhT9JV+PM1OLOu8P323mqau18XFe6lRKrANTVSfZ0WU7ax5bOwVdWN7e+DxgNuHkBdPagC15BNeeEVKgRtdZeq/ry0oww/dzr1c6U3V+fTmamwVDOph72CoNcz0GYcmFuqMCs1GlKj1HNMClPhWlIYJOZ9NmaXfDqPltB5inqOJU1drquyUlQFYNxZ9Xto55H34a5+R0+ugl0fX3/d3ZpC35fUz9c/1yXNTIJfn4Gzv6rbnq0h9iyqA72NWke1+2Ow9b+qkhnUz8S/vi29idSFLfDb84WDwUZ9YdAb0LC7uh1zWi3HEHNK3W4ySFUl56r17Gh3Hwz+DyRegr1fXK9ULpZOhcz5Py+gQlif9ipgN7dRb1blf24xUlVLVhO5nrn11efXMDwxgz4fbMNMr+PIG3fgZGNR8Nj3+y7zn3WnGdrai68f7FKl5801mnjr19P8eED9XfjwnnaML6HZjhBCCCEqR0LJCqjPF4CimuVkqEAy8oi67d4CHtly6zYGMZnUlNzQbaoa6GZTJhMvq8qm4A3qtp2nqgRqN6FogJeVDNEn1VTfyGPqc3yI+g+9rbsKGmzd1Gcnf3BvBm7N1OeSpgCH7oDV01R1paW9WqMuaJwKhnZ8AMeWq2mipWl6B9z5admDwbIyGWH5fXD+z+Ifd/RVFZIujcp/bGOuClnL69olWP+immrd48nSKyyLE7pdhT4eLVUY6RJYetWfIRtSItR6ncnhKtw0GVRgbeUAlg7q6+hTam3MG6f52nurMLfdBFVRe+N5rv4N22fDxa3X7/PrCh0fUOFh/u9fVooa77n16nUw5qqwqEFHVRXaoBO4Ni76s5p4BfbPhyPfX6/6tc2rHs1IuPn3SW8OzgGqOZFrE3ANVAHYyVXXg6/88LRx/7J9L6tTcoT6fTm3Xk1dt/e8HjhaO6qfm+iTKnwtC+eG0P9V9drlN4MqjqapqdN//N/18LjdBPUGgZPv9e1O/Ay/Pae+dw4NYMibqprRtfH14Lq4NVabDFDVjfnHbjZUvea756j7bN3grs/V1O2USNg6C44vV9vq9DcEjToVJvZ6Wr05cmUfhO1Vb1jkL2/g1kyFjU0GQ6PeRZdSqCFyPXPrq++v4eBPtnMxLp3P7uvAmA7Xf8/f+f0MC3df4pE+gbx+Z+sqP6+mafz397Ms2nOpWoJPIYQQQigSSlZAfb8AFNXEZIKfJ6sGDjauqmItNQqaj4D7lpWvqq42ZaeqKYchm1Rwkx53/bG+L8LA14qvWDu1Gn59TlWV6c2h+3To/0r5AllDtpq+WZnvVWq06op9Zbe6HdhfTf/MDyKaD1fTPm1cVCiWfFWFlqnRENhXhVjVFQblpKsmNVlJKjS1tFPVgJb2Koi6VcPr6qBpKhA/vlz9bN24zqVna9Vox7udWiLgwhZ1v85MNQDq+RR4tir9+CYToJVt+m++jGtw+Ds4sKBw1aeZlQqnHHzyKm8DwCVAhXHOAWqqenGhcVayCtgOfQexpws/Zu+tpgQ36KT2NRlUsJ2/zqWZuarAu/FDl/d7U/Dzq1NBaIOOZfuZzrgGuz6Bg9+UXt15I0df9XrozdTfivQ4tfxCbob6fvR7CTo+qKpKyyrqhPo9CfpXyUF57FlYMVkt65DPwha82qjX/twGtQQEOujxhPq7ZWWvfud3fqSm9t/4BkXz4epNDHvPwueJOAJ/vKZCR3Nr9fPV46mSK+BTY9RrdWOIWovkeubWV99fww82nWP+9os421qw+oleNPFQzXIe+/4Qf56JYdaYNjzYs1G1nPvvy9e496t9eDpYceD/BssUbiGEEKIaSChZAfX9AlBUkz9fV1P7zCzhwV/V5+9GqP/c9/u3ajxSl2SlqEqoa6F5U07zpp2mRFKwphqAlaMKf/JDvqZD4F8LVagHan3GP/7v+pRK/x6q+YtHixp9OoUYDWqa9q5Prt8X2E9N2cxf803cOgw5cGGz6goevKloYKYzgw4T1dRg18AaGE+2CkytHNXanzYulQuyNU1NPQ/ZqKruIg6DKbfqxuscoNYxDRqnfpdvHKshW1Wtnlqt1lPMXze1YS/o/zJY2OUFjbEqbMxMVJXL3kFqKruta/HnzElX1Z/V+WZMdirs+FBVKMacVs1jbuTZWgWNfsVUQCVcVNWgV/aqZQ86PVjya6hpKpx0aXR9fdVbxK16PTN16lR0Oh3vvfceXl5eTJ06tcz76nQ6vv3222ocXc26VV/DssrMMXLfN/s5fjWJhq62rH2yF272Vgyfu5Nz0al8N6UrA1t43vxAFTx30Ft/YDRp7Js5CB+nUtai/occg4mUrFzsrcyxtijHm1tCCCHEbUZCyQqo7xeAohrc2MjkX9+qaaagpgv/Ml19Pf57aD2mdsZ3I01TawFuelVVchbHtbGq8GwxXDV7MLOAEyvVmm+GTPWf8wk/qmYyKx9SUzlBVVIO+L/Sp2jWpAtb1BTZ/DUJxa0vM0mtO3jiZ1VR1+ouVY1XE2FkTSnoZL5PrdcIeeunmqmQT6dXVZPGnLyPXBUuFkwv1tTvucmolpLInyIOavq4d5Caop0crtYyvZF3WzVduumQW6sBj8mogsboEyqgdGwAnR4qX4VmPXSrXs/kd9s+e/YszZs3R1+OcFu6b9964lKzGTd/D1evZdKxoTPLH+1B5/9uJj3HyNYX+xdUT1aHkZ/t4kxUCl890InhQT7FbpNjMPHSyuOcjUohOTOXlKxcsnLV31sfJ2t+fboPHg5lXM9ZCCGEuM1IKFkBt8MFoKhC57fAsvFqKuDA11V10Y02zVRTTC3s4JHNanphbUm8AhtehvN/qNsujVQ3YeeGedNN86ac/nMKY76oE7DiflVVaWF7vQmIrRuM+1oFGUKIuiMnHUL+gNNr4Pzm4ruLm9uoyubez0LrsbfOUhPipm7V65kdO3YA0L17d6ytrQtul1X//sV0WL9F3aqvYXldiE3jX/P3kpyZS99m7gXdsc/OGl6tlYgz15xk+cEwHu/fmJkjil/2Y+vZGKYtOVTiMfo192Dxw13R64t/I2fLmRh+PnSVx/s3pnNACdXlQgghRD1VnmuZOlLaJMQt5Mo+VSmoGaH9JFWx9U93/FdV7lzaAUvuUlMfczNUNVRuhqqAumcRNOpTfeM05qpGHdtn553TAvq+AH1eUB1gy8qnHTy2Q3VtDt2m7gvoraZzOzaonrELISrO0k5N2w4ap6Y7h/yh1sN08svrPt+w5MZRQtSSf4aKNRUyzps3j48++oioqCjatGnD3Llz6du3b7Hbbt++nYEDBxa5/+zZs7Rs2RKAxYsXM2XKlCLbZGZmYm1djn97bwNNPe35enJnJn97kF3n4wHwdrSu9qnRHfydWH4Qjl9NKnGbvRdVQ7MRQd48NbApTjYWONpYEJ2cxZgvd7MzJI5vd1/i0X6Ni+y750I8T/x4mFyjxpazMTwzqBnPDGqKuZm8+SOEEEL8k4SSQpTHxW2wfKKazhzYH+76rPj/2JuZw72L4ZuBqjt1cd16f30GnthXvoCwrDQNVj6sGvCAChHv/LTiaz7ausIDq+HAV4AOuj1Wd6ZrCyFKZuVwfWkJIW4h48aNw8fHhy+//LLazrFixQpmzJjBvHnz6N27NwsWLGDEiBGcOXOGhg0blrhfcHBwoXf9PTw8Cj3u6OhIcHBwofskkCxe98ZufHRvO5776RgA/q621X7ODv5qfeyT4ckYTRpmxVQ75oeSI9v6EOTrVHC/k40F/7mzDf+39iQf/nGO7o1daefnXPD46chkHv9BBZL+rjZcvZbJZ1vPs/tCPHMndKiR5yeEEELcSuQtOyHKKngjLJugAsmmQ2DSitLXLrN1hem7VRfu+1fBw+vh0b/g8Z2qy+61UNgzt3rGemiRCiTNLGH0/9S5K9uERm+mOhz3fFICSSGEENVqw4YNJCQU84ZeFZozZw7Tpk3jkUceoVWrVsydOxd/f3/mz59f6n6enp54e3sXfJiZFa7s0+l0hR739vauzqdxyxvTwZeXh6lrlK6NXKr9fE097bGzNCM9x8iF2LQijyekZXM2KgWAnk2KNrqa2M2fEUHe5Bo1nl1+lLRsAwBXr2Xw8Hd/k5ZtoEdjV7a80J+5Ezpgb2XO4SuJjPxsF+uORVTvkxNCCCFuMRJKClEWp9bAigdUB+CWd6qg0aIMHRutHKDlKGh2h5qq7dsZfNrD8PfU47vmqEYNVSkuBP7I6/o95C3oNFmmaQohhLilBAYGkp6eXm3Hz8nJ4fDhwwwdOrTQ/UOHDmXv3r2l7tuxY0d8fHwYPHgw27ZtK/J4WloaAQEB+Pn5ceedd3L06NFSj5ednU1KSkqhj9vNUwObsn/mYF68o5JvoJaBmV5HWz9V/VjcFO79odcAaOntgLt90WY2Op2O98e1o4GTNZcTMvjPulMkpufw0HcHiUvNpqW3A18/2AUrczPu7ujLxuf60qmhM6nZBp776RjvbTiLLOkvhBBCKBJKCnEzx5bB6mlgMkDbe+HeJWBeyY6LbcapZjPGbNWEpqouTg05aqyGTHX87k9UzXGFEEKIGjRx4kR27NhBdHT0zTeugPj4eIxGI15eXoXu9/LyKvGcPj4+fP3116xevZo1a9bQokULBg8ezM6dOwu2admyJYsXL+bXX39l+fLlWFtb07t3b86fP1/iWGbPno2Tk1PBh7+/f9U8yVuMt5N1iY1jqlp7f2cAjoUnFXls70W1vmVxVZL5nGwt+GxiR/Q6WHMkgrv+t5vQuHQaOFmzeEo3HK0tCrb1d7Xl58d78uzgZgB8vTOUj/8MlmBSCCGEQEJJIUqWcBFWToFfngDNBJ0ehLELqmbqsk4HIz9W06svboUz6yp/TIBt70D0CbBxhbvnS0ddIYQQt6SZM2fSt29f+vfvz9q1a8nNza2W8+j+MZNA07Qi9+Vr0aIFjz76KJ06daJnz57MmzePUaNG8fHHHxds06NHDx544AHat29P3759+fnnn2nevDlffPFFiWOYOXMmycnJBR9Xr16tmicnStQhbx3IY2FJRR7bl7eeZK8m7qUeo2sj14KgMTwxEycbC5ZM7Ya3U9H1Q83N9LxwR3NmjWkDwJfbLvL51guVeAZCCCFE/SALw4nas+dz+HshPLAG3JvW9miuS42BnR/C4cWqOhId9Hoahsyq2pDPvSn0eR52fACbZkLTwWq6d0Vd2qm+pwCjvwBHn6oZpxBCCFHDWrRogclk4urVq9xzzz3odDo8PT2LbRij0+m4eLF8S6G4u7tjZmZWpCoyNja2SPVkaXr06MHSpUtLfFyv19O1a9dSKyWtrKywsqrkDAxRLh0aOgMQHJNKZo4RG0u1LmhUciah8enoddAt0PWmx3l6YFNORSRz+EoiXz/YhWZepV/HPdizETkGE++sP8unW0KwMNfx5IA6dA1cgt3n41l3LIKUrFxSMg3qc1YuVuZmfPVAJ5p6VuL6VQghxG1NQklRO0wm2Ps5pMfB39/AiA9qe0SQkwG758C+LyE3Q93X9A4Y8iZ4t62ec/Z5Hk6sUB26t78Pw96t2HEyrsGaxwENOj0Ere6sylEKIYQQNery5cuFbmuaVqVTuS0tLencuTObN29m7NixBfdv3ryZMWPGlPk4R48excen5DcBNU3j2LFjtG1bTdcRokK8Ha3xdLAiNjWbU5HJdG2kAsj8Ksm2vk442ViUdghAVUB+82AXDCYNC7OyvXH9SN/GZBtMfPRHMB9uCsbSTM8jfRtX/MlUsyNhiTz03UGMpuKnmz+/4jhrnuxV5ucvhBBC3EhCSVE7Io+qQBJUE5mh79ZuR+e0WNVZO/KIuu3bBe54WzWnqU4WNmoa94/3wP750G4C+LQr3zFMRvj1GUiNBNcmMHx29YxVCCGEqCEmk6naz/HCCy8wefJkunTpQs+ePfn6668JCwtj+vTpgJpWHRERwffffw/A3LlzadSoEW3atCEnJ4elS5eyevVqVq9eXXDMt99+mx49etCsWTNSUlL4/PPPOXbsGF9++WW1Px9Rdjqdjvb+zmw+E8Pxq0kFoeTevFCy502mbv/zWBZm5VsL86mBTckxmPhs63neWX8WawszHugRUK5j1ITkzFyeXX4Uo0mjbzN3hrbxxtHaHEcbCyz0ep788TAnI5L5avtFnsmbyi6EEEKUh4SSonaEbLr+dXosXN4FTQbWzljiglUomBSm1mK86zNodVfNdaxudge0Gg1nf4Uld8LdX0HLkWXb12SEtY/Dud9Bbw7/+gYs7ap3vEIIIUQ9MGHCBBISEpg1axZRUVEEBQWxYcMGAgJUOBQVFUVYWFjB9jk5Obz00ktERERgY2NDmzZtWL9+PSNHXv83Oykpiccee4zo6GicnJzo2LEjO3fupFu3bjX+/ETpOuSFksfyOnBrmnbDepIlN7mpKjOGNCPXaGLe9ov8Z90p/F1t6d/co9rPW1aapvF/a08SnpiJv6sNX97fqVADH4C3x7Th+RXH+fyv8wxu5UXrBo61NFohhBC3Kp0mrd8ASElJwcnJieTkZBwd5R/UaregH0QdB3svSIuBjg/AmFqoIri8G36aBFnJ4BIID6wGtyY1P460OFh+H0QcUrd7Pg1D3gKzUqYO5QeSJ1eqQPLexSpMFUIIcduS65lbn7yGNWPPhXjuX3gAPxcbdr8yiMvx6Qz4eDsWZjqOvzkUW8vqr93QNI1/rzrBysPhOFiZs/apXnVmfcafDobx6pqTmOt1rHqiFx3yOpbfSNM0HvvhMJvPxNDax5FfnuqNpblM4xZCiNtdea5l5F8NUfNSIlUgiQ5GfKjuO/MbGLJrdhwnVsIPY1Ug6dcNHtlSO4EkgL0HTNkIPZ5Ut/f9D74bCcnhxW9vMsLa6RJICiGEqJd+/PFHGjduzObNm0vc5s8//6Rx48asWLGiBkcm6ou2fk7odKpzdnxadsHU7Y4NXWokkAQ19fudsUF0a+RKaraBqYsPcS09p0bOXZrzMam89dtpAF4a1qLYQBLU+N8b2xYXWwvORKXw5TbpKC6EEKJ8JJQUNe/8n+qzb2c1bdnRF7KT4XzJ//GoUiaTaiqz5hEw5qgxPPQr2JV9/aBqYW6p1oOcsBSsnCD8IHzVB3Z9or43KZGgaTcEkj9LICmEEKJe+uGHH0hPT2fgwJKXdhk0aBBpaWksWbKkBkcm6gtHawuaeNgDcCI8ib0X44Gambp9IytzM76a3Bl/VxvCrmUwfelhcgzVv6ZqSbJyjTy97ChZuSb6NnPnsZs04fFwsGLWmCAAvtx2gVMRyTUxTCGEEPWEhJKi5oXkhZLNh4NeD0Hj1O2TK6v/3JmJsHwCbM9rBtPzabh3iWo4U1e0ugse3wE+HdR4t85Sa17OaQUfNIJ5Pa4Hkvd8J4GkEEKIeufUqVO0a9cOc/OSK9bMzc1p3749p06dqsGRifqkvZ8zAEfDkm5YT7Lm36R2tbNk0UNdcbAy5+Cla7z+y0lqa4Wtd9afITgmFXd7Sz4Z3x69/uZrrN/ZzoeRbb0xmDRe/Pk42QZjDYxUCCFEfSChpKhZuVkQuk193XyY+hx0j/ocsgmyU6vv3FHHYUF/Valpbg1j5sGwd1UwWte4BsK0P2HYbGgzDjxags4MspIgPuR6INl6dG2PVAghhKhy8fHxeHp63nQ7T09PYmNja2BEoj7q0NAZgDVHIkhIz8HaQl/iVOXq1szLgS8mdUSvg58PhfPVjtAaH8PZqBSW7lfNneaM74Cng3WZ9tPpdPx3TBBudpYEx6TydS2MXQghxK1Jum+LmnV5N+RmgEMD8G6r7vNpD27NIOE8nFsP7e8r27GiToCtGzj53nzbY8vg9+fBkAXOATDhB3XeuszcCno+ef12bpYKJGPPqrUv/brU3tiEEEKIauTm5sbFixdvut3Fixdxdnau/gGJeqlDXqVkRFImAF0budZqo5YBLTx5487WvP3bGT7YdI5r6dm8OqIVZmWoVqwKC3ddAmBUOx/6lbMTuJu9Ff+5qzXP/XSMr3eG8kCPAFzsLKtjmEIIIeqROlgiJuq183+oz82Hgi7vAkung7Z51ZInV938GBnXYM3jsKAvfNYefnsOksKKbqdpcGUv/Pwg/PKECiSb3gGPba/7gWRxLKzBpx20nyCBpBBCiHqtd+/e/P333+zatavEbXbv3s3Bgwfp1atXDY5M1CctvB0KhZC1MXX7nx7u1YgX7mgOwDe7LjF96WEycgzVft6YlCx+PR4BwKM3WUeyJHe1a0ArH0dSsw18tePmbyoIIYQQEkqKmqNpaoo2qPUkb5Q/hfviX5AeX/Ixzv6u1lQ88ZO6bcqFw4vh807Xw8msFDj4DczvBd+NgDPrAB0MmAmTfgZb16p+ZkIIIYSoQs8//zwAo0ePZu7cuaSnpxc8lp6ezty5cxkzZgw6na5gWyHKy9JcT1ADx4LbNd3kpjg6nY5nBzfj84kdsTTXs/lMDPd+tY/o5KxqPe+SvZfJNWp0beRS4Snser2Ol4epQHXx3svEpFTvmIUQQtz6JJQUNSfunAoNza0hsH/hx9ybqsYumhHO/FJ03/QEWDUNVtwPaTHg3gIe2QpTNqpj3RhOftISNrwEsWfA3AY6TlaNYwa8WjfXjxRCCCFEIT179uSTTz4hJSWFF198EUdHR3x8fGjQoAGOjo68+OKLJCUl8dFHH9G3b9/aHq64hbXPC+AcrM0J8nWq3cHcYHT7Bix/tAdudpacjkxhzJe7q62zdUaOgR8PqFlH0/pUrEoy38AWnnQOcCHbYOKLv85XxfCEEELUY5LQ3O40DXIza+Zc+VWSjfqCpW3Rx/85hdtkgrD9sGkmfNkVTq0CnR76PA+P71RTmAN6wUO/Fg4nc9PBvTkM/wBePAdj/ndrTtcWQgghbmMzZsxg27ZtDBs2DGtra2JiYoiOjsba2prhw4ezbds2XnjhhdoeprjF9c9bO/GOVl41tnZjWXUOcOGXp3rTzNOemJRsJizYR0hM1TeFXHU4nOTMXALcbLmjtVeljqXT6Xh5WAsAfjp4lSsJ6TfZQwghxO1Mp2maVtuDqAtSUlJwcnIiOTkZR0fHm+9QH2Qlw4oH4Orf8MQe1TylOi0aAWF7YeTH0O3Roo8nR8CnbQANOj0EIX9AWvT1xz1bw5gvwbdTyeeIOgHGHPDtfH3NSiGEEOI2UV+vZ0wmE/HxankXd3d39PV45kN9fQ3rspPhyTT2sMPOqm72AE3JyuWRxYc4ePkajT3sWPdUbxysLark2EaTxqBPtnMlIYNZY9rwYM9GVXLcBxcdZGdIHGM7+vLphA5VckwhhBC3hvJcy9TfKzpRuoxrsGQ0XNoJhkwI3Vb957u6X33dfFjx2zj5QkBv9fWRJSqQtHKEdvfBfcvgsR2lB5KgGsH4dZFAUgghhKhH9Ho9np6eeHp61utAUtSOtn5OdTaQBHC0tmD+A53wcbImNC6dV1afoKrqSjafieFKQgZONhbc09mvSo4J8PJQVS35y7EIgqOrvrpTCCFE/SBXdbej1Gj4biREHbt+X8yZ6j3nha2gmcCzDTg3LHm7Aa+qbTo8AJNWwssXYNwCaDkKzC2rd4xCCCGEqBMyMjIICwsr1OAGIDk5mZkzZ3LnnXfy1FNPcenSpVoaoRA1y83eii/v74SFmY4NJ6P5dnfV/Owv3BUKwAM9GmJrWXXBbFs/J0YEeaNp8MmfwVV2XCGEEPWLhJK3m6QwWDQc4s6Cgw/0e1ndH1vNoWTIRvW5+dDStwvsC0/uhbu/VNuaW1XvuIQQQghR57zzzjsEBgZy9uzZgvtycnLo2bMnH374IRs2bGD+/Pn07NmTmJiYWhypEDWnU0MX3rizNQCzN57jQGhCmfY7fjWJPh/8xSNL/uaP09HkGk0AHA1L5NCVRCzN9DxURdO2b/Ti0ObodfDnmRiOhiVW+fGFEELc+iSUvJ3EX1CBZOIlcA5QzWFa360eizmjmt5Utew0+G0GnFqtbjcfUfXnEEIIIUS9snXrVgIDA+nSpUvBfcuWLePcuXMMHDiQP/74gxkzZhAbG8unn35aiyMVomZN7hHA3R0aYDRpPL38KLEpWTfd5+M/gwlPzGTL2Vge/+EwPWdv5d31Z/h0i+qOPbpDAzwdrat8rE09HRjXSU0Jf37FMSKTaqi5phBCiFuGhJK3C6MBlo6DlAjVmXrqJnANVF/rzSE7WT1WlcL2w1e94fB36nbv58C/W9WeQwghhBD1TlhYGM2bNy903y+//IJer2fx4sXccccdzJkzhxYtWrB+/fpaGqUQNU+n0/HeuLa08HIgLjWbp5YdKah8LE5wdCq7zsej18HDvRrhbm9FfFoO3+y6xM6QOAAe6RtYbeN9aWgLfJ1tuJyQwfgF+7h6LaPSx4xNyWLt0XCyco1VMEIhhBC1SULJ28Wl7ZB0BWxcVIWkYwN1v7kluDVTX1fVupKGbNjyFnw3AhIvg6MfPPgr3DFLGtAIIYQQ4qYSExNxcXEpdN/evXtp27Ytfn7Xm3G0a9eOq1ev1vTwhKhVtpbmfDW5Mw5W5vx9OZEf9l0pcdtFeWtPDg/y5q3Rbdg3cxALH+zCHa29MNPrGN2+AS29q6/Lu7eTNT9P70mAmy3hiZnc+9U+QuPSKny86OQsxs7by/MrjjN+wT5iylApKoSoXWnZBr7Yep57v9rLm+tOsSMkTt5UEAXqbps5UbWOr1Cfg/4Fdu6FH/NqrdaYjD198zUfb8ZkVF298zttt58IIz4Aa6fKHVcIIYQQtw1vb28iIyMLbp8+fZr4+HgmTZpUaDudvNkpblOB7nb836hWzFxzks+2nmdcJ1+cbQs3hYxPy2btMTUTalofVQ1pYaZnSGsvhrT2ItdowqwGfod8nW34+fGe3L/wABdi0xi/YD8/PtKdFt4O5TpOUkYODy46QETeNPAT4cmM/t9uvnmwC+38nKth5EKIysjKNbJ0/xXmbb/ItfQcAP6+nMiSfVewtTSjd1N3Brf05M72DbC3kmjqdiWVkrea7NTyr/2YnQbnfldft7uv6OOeasHsKqmUjDqmAkkLWxj/A4z9SgJJIYQQQpRLx44d2bNnD8eOHQPg008/RafTceeddxba7vz58zRo0KAWRihE7RvfxZ8WXg4kZ+byxV8Xijy+dP8VcgwmOvg706mhS5HHLcz06PU1E+x7OVrz02M9aOXjSHxaNvd9vY9Vh8PZFhzLwUvXOB2ZzJWE9BKrpzJzjExbcoiQmDQ8HaxY9kh3mnnaE5OSzb1f7eP3E5HF7ieEqB6appGYnsPZqBQOXb7GsatJnIpI5lx0Chdi01h+MIyBH2/nnfVnuZaeQ6C7HW/e1ZqJ3fzxcrQiI8fI5jMxvLrmJMM+3cm+i2Vr3CXqH4mjbyWn1sCqKTDyY+j2aNn3O/sb5GaAaxPw61L0ca826nNVdOC+sk99DuwHrUdX/nhCCCGEuO28+uqr/Pbbb3Tp0gUnJycSExPp0KEDgwYNKtgmNjaW48ePM3HixFocqRC1x0yv47VRrXhw0UG+33eZyT0CaORuB6gKpfxp3dP6BNaJqmJ3eyuWP9qdhxYd5Hh4Mi+tPF5kGwdrcyZ1a8hDvRrRwNkGgFyjiaeWHeHwlUQcrc35flo3Wno7subJXjy7/CjbguN4etlRzsek8dzgZjUWtJYmPDGDmWtO0s7PiRlDmmNhJrVAtzKjSeNsVAp7L8az92ICR8OSaOxhx9MDmzKopWed+P2qDE3TiE3N5nxMGudjUzkfm8bF2DQMJg0zvQ4LMx3mej3meh2pWQaiU7KIScki21Dyerb5GjhZ89yQZvyrkx/meb8HmqZxOjKFv87FsuLvq0QkZTLxm/1M6d2IV4a3xNrCrLqfcpVKzcpl1/l4/joXS1hCBq+NakV7f+faHtYtQ0LJW8m+/6nPZ9aVL5Q88ZP63P6+4td0zK+UjAsGYy6YWVR8jGF5oWTDHhU/hhBCCCFua927d2fdunV89NFHxMXFMWrUKN577z30+uv/sV+2bBkODg4MHz68FkcqRO3q19yD/s092BESx/sbz/HV5M4A/HoskoT0HBo4WTMiyLuWR3mds60lSx/pzgebzhESk0Z6toGMHCNp2QbSsgykZhlYsDOUb3dfYlQ7Hx7p05jFey/z17lYrMz1fPtw14I1MB2sLVj4UFfe33iWb3Zd4rOt5wm7lsGH97Sr1RDwWnoODy46SGhcOrvOx/P3pUT+d39HPB2qvsO5qF7B0anM3RLCngvxpGQZCj12NCyJaUsO0aaBI88MasbQ1l51IhAvrxV/h/HhpmAS8qZXl5ernSUO1uYYjBpGk4bBZMJg0nCwNmdq70AmdmtYJGTU6XQE+ToR5OvE1D6BvLv+LMsPhvHdnsvsCIljzvgOdPhHqJdrNKHX6TAr5XusaRpxadlomqrOrk5xqdmsOxbBX+dUtbfBdH026wMLD7BkWrdiK9RBvWm07lgE7fycaeVT+pq+2QYjBqOGXT2e3q7TtPLOBa6fUlJScHJyIjk5GUfH6lvsucLiQuDLruprS3t4NQz0ZXgHISUS5rQGNHjuOLg0KrqNpsFsP8hJgyf3g2erio1R0+CjppARD1P/hIbdK3YcIYQQQlRInb+eETclr6Eor5CYVIbP3YlJg58f70nXRi4Mn7uL4JhU/m9kSx7r16S2h1gmJpPGtuBYvtkVyv7Qa4UeM9PrWPBAZ4a09ip235//vsrMtScxmjQGt/Tky/s71Uq1VUaOgUnfHODY1SQ1RTXbSGq2AU8HK+bd34kujVwLttU0jWNXk1hzJAKTpvHGna2rdczLD4ZxITaNJh72NPW0p5mnPS52ljff8TaUazTx1faLfP7XeXKNKi6xtzKnW6ArvZq40bGhM3+eieGHfVfIyFFLDrTwcuC5Ic0YEeRdbZWTWblGNpyMIiPHiL+rLf4uNvi62GBlXv6fm6xcI2/8coqVh8MB0OugkZsdTT3tae7lQFNPe2wszTAYVdCYa9QwGE3YWZnj7WSNt6M1no5WFTp3cbYFx/LKqhPEpmZjptfRzNOe9BwD6dnqTYscgwlzvQ4vR2u8nazxyfsw0+sJu5bOpfgMriSkF7wek3sE8NqoVuX+nTKZtJuGy+eiU3hg4UHi07IL7mvsbsfAlp6cCE/i78uJ2FuZs2RqVzoHuBba90JsGs8sP8rZqBQszHS8OLQFj/VtXOw5N52K4o11p0nPNvDs4GZM7R2IpfmtUXVdnmsZCSXz1PkLwC1vw+45128/sU81qLmZPZ/B5v9Aw54wdVPJ2y0cAuF/w7++hbb3VGyM8efhf13AzApmXgVzq4odRwghhBAVUuevZ8RNyWsoKuL/1p5k2YEw2vk58dLQFjy46CC2lmbsmzkYJ5tKzIKqJacikvlmVyi/n4jCaNL46J523NvFv9R9/joXwxNLj5BtMNGtkSsLH+6Co/XNn7umaRy9mkRmjpGujVwr/J/+XKOJx74/xLbgOJxtLVg1vSd6nY7pSw8TEpOGuV7H66NaMbKtD2uPRrDycDgXYq93Ip/YrSGzx7Wt0Llv5vCVa/xr/r4i97vZWdK3mTvvjm1b45VYmqaRa9Qq/P3WNK1awr9TEcn8e9UJzkSlADCklSdPDmxKO1+ngunH+a6l57Bo9yWW7L1MaraqpOzg78xro1rRtZFrkWODCr1SsnJxsrEo8/gzc4z8eOAKX+8MJTY1u9BjOh14OaigztnWAmcbC5xtLXG0saCBkzV9mrnj52JbaJ8rCek8sfQIZ6JS0OvgxaEteKRvYJUFjBWVlJHDf9ad5tfjFV8jVq+D/KLFNg0c+XJSp4JlLW4mJCaVyd8ewNPBmo/ubVdQlX2jI2GJTPnub5Izc2niYcek7gEMaulJYN45MnIMTF38N/tDr2Fnacbiqd3o2sgVTdP4+dBV3vr1DJm5RqzM9QXT33s1cWPO+A54O6nqztjULN5cd5qNp6ILnbuppz2zxrShV5N/NC5GVVRGJmXhbm+JQxn+7lU3CSUroE5fAJqMMLctpESAuQ0YMmH0/6DT5JvvO6+X6qp951zoMqXk7X59Fo4sgb4vwuD/VGych5fAb89CQG+YsqFixxBCCCFEhdXp6xlRJvIaioqIS81mwEfbSM8x4m5vRXxaNg/3asRbo9vU9tAqJSYli+TMXJp7la1T98FL15i2+G9Ssw209nFkydRueDgUXyiRlJHD6iMRBRWEAE42Fgxr48Wodg3o1cStYBq4wWgiPDGT0Pg04tNyaOvrRAsvh4LqJk3TeGnlCVYfCcfaQs+Pj/Sgc4CaupmebeCV1Sf4/UQUoEKk/P+BW1vo6dfMg81nY9SkszKErxUx8ev97AtNoIO/M042FlyITSvoYg7waN9AXhtVhoKXKpJtMPLY94fZH5rA4/0a88SApthYlj0Q23Qqin+vOoG7gxXD23gzIsiHIF/HUkO+bIORvy8lsiMklh0hcVxOyMDP2YYAN1sC3OwIdLcjKjmLhbtCMZg0nG0teHt0G0a3b3DT8DA5I5dv91xi4a7Qgkq9oa29eGVES5p42JOckcvO83FsD45jR0gs8Wk5OFiZE+ihztvY3Z5G7rZ42FvhbGuJq50lzrYWGE0aS/df4ZtdocSnqenVvs42tPJx4Oq1TK4mZhScrzTNvewZ2NKTQS08SczI5eVVx0nNMuBmZ8nnEzvSu2nRkKs2nQxPJjEjBzsrcxyszbGzMsfe0pzMXCORyZlEJ2cRmZRJVHIWBqOJhm52BLqr19HfxZY9F+N58efjXEvPwd7KnNnj2nJX+9Kb4iWkZXP3vD1cvaZ+LyzN9Lw8rAXT+gQW/J7vPh/PYz8cIiPHSKeGznz3cDecbIsGgKox19/svZiAraUZn9/XkV+ORRT8DejT1J0549uzLTi2IKR0trXg/XHtSMs28N/fz5CcmYuZXscT/ZsQ4GbLB5vOFfwMjG7fgCcGNOFyfDpHwhI5EpbEyYhkcvJCTgcrcxo429DA2RpfFxt6NnZnYEsPbC1r7o0HCSUroE5fAIZuh+/HqC7W7SfCga+g8xS4a27p+0WfhK/6gJklvBQCNsWvaQDAgQWw8d/QfARM+qli41z7BBxfVrlgUwghhBAVVqevZ0rRuHFjdDodW7ZsITAwkMaNG5d5X51Ox8WLF6txdDXrVn0NRe37ctsFPvojGFDB1/aXBhDgVrYKofrkdGQyDy06SHya6vj7zKCmmOnVWnRmOh0mDbacjWH9yaiC/8TbWJhhZ2VeaDqmi60FHfyduZqYyZWE9IJpvDc+3j3QjZ5N3LickM53ey5jptfx9eTODG5VeJq5pmks2nOZ9zacxWjS6NTQmXu7+DOqnQ+O1hZ8tuU8n24Jwcpcz5one9GmgVOR57XpVDTrjkUwY0hzWniXLaQF2HshnkkLD2BppmfbywPwzWsglJFj4I/T0Ty/4jhmeh2/Pd2H1g2q/2+OyaTxzE9HWZ8X0IBqhvJ/o1oxqq1PqQGgyaTx2dbzfLb1fJHHfJ1tGB7kTXMve7JyTWTlGsnMNZKVayIkJpV9FxPILKG7+z+NauvDW6PblBholyQ2NYu5W87z08EwTJpadqC1jyOnI5MxVSB1ubHqz9/VhqcGNGVcJ7+C6lJN00hIz+HqtQziUrNJyswlJTOXpIxckjJzCI5O5fCVxGLP3amhM1/e3wkfJ5vyD+wWEJ2cxbPLj3LwsloKYlL3hvynhCUSsg1G7v/mAIeuJBLgZksTD3v+OhcLQI/GrnwyvgOnIpJ5ZtlRcowm+jR1Z8HkzqVWF2fmGHn0+0PsvhBfcJ+5XsdLwwpP174Yl8ZzPx3lVERKof3bNHDkw3vaFfwtSM7MZc6fwfyw/0qJP0s3Vl/+k7WFngHNPRnR1pvBrbywr+bKaAklK6BOXwCueVw1q+kyFRoPgJ8fBO+2MH136fv98ZpqjtNqNEz4ofRtL+2CJXeCc0OYcbJi4/ysPSRehvtXQ7MhFTuGEEIIISqsTl/PlCK/gc25c+do3rx5oYY2ZWEy3bwD6K3iVn0NRe3LyjUy6OPtRCZnMayNFwsmd6ntIdWaS/HpPLDwQKFqwOK08nFkUveG3N2hAbaW5hy8dI3fT0Sy6VR0kcYfVuZ6At3tcLKx4ER4crEB14f3tGN8KZWOl+LT0UGR6aQmk8a0JX+zLTgOf1cbfn+6b0EFVnq2gVm/nWHFoauAmsK5/tk+ZZpqq2ka4+bv5WhYEg/1DODtMUFFtnnyx8NsOBlNx4bOrJ7eq0zNWkwmjZWHrzJv+0V6NnbjtVGtyjRlVNM0Zv1+hu/2XMbCTMdzg5ux/ODVgtepe6Arb41uU2zzj7RsAy/+fIw/TscAMKV3Izo2dGHTqSi2nYsrU+Do6WBF/+Ye9G/hQZsGTkQlZXI5Qa1FeDkhndQsAw/0CGBkW5+bHqs0F2JTeX/jObacjS24r5mnPQNaeDCwhSft/J2JSsokND6d0Lh0LsWncTkhg8T0HBIzckjMyMWYlzwFutvx1MCmjOnQoEINnJIyctgREse2c6pCNDEjl4d7NeL/Rra6ZdYnrCiD0cTcLef5cvsFNA0ae9jx0T3tC6qYQf1MvrjyOGuOROBgbc7aJ3vTxMOO5Qev8s76M2TkGLG3UlWaRpPG8DbefDaxQ5l+/7JyVTC563w8DV1t+XxixyINfAByDCY++TOYBTtDsTTX8/yQ5jzaN7DIcgGglhd469fTHL2aRHMvBzoHONOpoQudGroQ4GarqkmTVCVpZFImF2LT+PNMDGHXMgqOYWmup39zD+bd36namoJJKFkBdfYCMDsNPm4GuRkwbTM4NoBP24DODGaGg6Vt8fuZjKrBTVo03LcMWo4q/TwZ1+DDQPX1zHCwKvu7bwCkRMGcloAOXr2iqjqFEEIIUaPq7PWMKDN5DUVl7A9NYP72i7x5V2sae9jX9nBqVXRyFh/9EUxsahZGk4ZJ0zCZwKhpNPey576uDWnn51RsZZ7BaGJ/6DUuJaTT0NWWxu52+DrbFAR2uUYTJ8KT2R+awP7QBE5HpvDkgCY80rfsVd7/lJSRw51f7CY8MZNBLT1Z+GAXTkYkM2PFMRVm6sDWwoz0HCPPDGrKi0Nb3PSYW8/GMG3JIawt9Ox8eSCexXQkjk7OYvAn20nPMfLe2LZM6t6w1GNeiE3l/9acKqhAA1WlOGd8e7o3dit13wU7LjJ74zkAPruvA2M6+JKVa+SrHReZv/1iQZVXCy8Huga60C3QjW6NXMkxmHj0+0MEx6Riaabn3bFBhaa5Z+YY2Xk+js1nYkhMz8HawgwrCz3WFmZYm5vh7WRF32YetPR2qLYmNMU5fCWRy/HpdG/sWmRdx9JomkZqtupG7+1oXWrH6fIwmjQSM3Jwt7+9ej/sDInjpZXHiU3NRqeDab0DeXFoC2wszZi//SIfbDqHmV7Hdw93pV9zj4L9Lsen8/zPxzgalgTAPZ39eH9c22LDwpLkGEwcuJRAx4YuN61OPB+Til3e1OubMZq0Mv9caJrG6cgUNp6KYsPJaC7Fp9M5wIXVT/Qq0/4VIaFkBdTZC8Bjy+GX6eDaBJ45rO77pKUKG6dsgoCexe93YSssHQc2rvBiMJiXobPaxy3UcadtBv9u5Rvn6bWw8uGyVXAKIYQQolrU2esZUWbyGgpx+zoVkcy4+XvJMZjo19yDvRfiMZg0fJysmTO+A4kZOTz54xHM9Tp+vcl0a5NJ484vdnMmKoXH+zVm5shWJW67aPclZv1+Bkdrc/56aUCxoVVWrpF52y8yf/sFco0aNhZmTOndiF+PRxKemIlOB4/1bcwLQ5sXW0W29mg4z684DsDro1oVCXDDEzN4b8NZNpyMLrKvuV6HwaTh4WDFgsmd6dSwlGXJhChGckYus34/w+ojqtt4oLsd93T24+M/g9E0mDWmDQ/2bFRkP4PRxPKDYRhNGg/2bFSmSuK6TNM0gmNSSc82FOkMXpXKcy1Tsy22RPkdX6Y+t5+oFocB8O0Mwesh4nDJoeSJFepz0LiyBZKgunmnRUPM6fKHklfyurk1LGE8QgghhBBCCCFKFOTrxDtjgvj36hPsDIkD1PqG741tWzCde3gbbzadjubfq4/zy5O9S6za2ngqmjNRKdhbmTO9f5NSz/tgzwBWHwnndGQK760/y5wJHQoeyzWa2HgqmrlbQgiNSwdgYAsPZo0Jwt/VlicHNuW/edPLF+wMZUdIHI/0bYyFmVrHU6/TkZCWzdu/nQHgkT6BxVaU+rnYMu/+zsSlZnPo8jUOXr7GwUvXOBuVgsGk0d7PiQWTuxR0KBaiPJxsLfhkfHtGtfNm5pqTXIpPL1iD98GeAcUGkgDmZnoml/DYrUin0xXbVbw2SShZlyVdVWs9ArQbf/1+v/xQ8lDx+2Wnwdnf8va7r+zn82wNF/+C2DPlH2uYhJJCCCGEqBp79+5l27ZtnD17lsTERHQ6Ha6urrRu3ZqBAwfSvXv32h6iEEJUi/Fd/bkYn8a6o5G8OLQ593T2KzTleNbdbdh7MZ5TESl8s+sSTwwoGjgaTRpzNqvAZWqfQFzsSi9SMTfT8+7Ytoydt4c1RyO4p4sfbRo48dPBMJbsvUxkchYAHg5WvHlX60INaeytzPngnnYMbuXJzDUnORedyksrjxd7ntHtG/B/pVRs5p9jRFsfRuSt65ialUt4YibNPO3LNW1WiOIMaunFnzNc+e/6M6w6HM6AFh78586a6zwvipJQsi47sQLQoFFfcAm4fr9vZ/U54nDx+537Xa1B6doE/MqxwLVXG/U5ppyhZFYKxJxSX0soKYQQQogKOnHiBFOnTuXo0aOAmmZ0o/z/BHfr1o1vv/2W1q3lPxJCiPpn5ohWzBxRfHjn6WDNG3e25uVVJ/h0SwhD23jR5B/rh/5yNIKLcek42VjwSN/AMp2zg78zD3QP4If9V3h2+TEycgxk5KjmMe72ljzQI4ApvQNxsim+oc3QNt50CnBhzuYQwhIyMGkaRpOGpoFJ02jr58SrI1qWe/qrg7UFrXxu3kRHiLJysrXg43vb8+9hLXC3t7rlp2Tf6iSUrKs00DdlYwAASXlJREFUDY7/pL5u/49qxwYdAR0khUFaHNh7FH78+PLr+5VnIV/PvAv72NPq/GXdN/wgaCZwaQSOletUJoQQQojb099//82gQYNIT0/Hzs6OESNG0KFDB9zd3dE0jfj4eI4dO8amTZs4cOAAPXv2ZPv27XTs2LG2hy6EEDXqns5+/HYiip0hcby6+gTLH+1BVHIWF+PSuBiXzre7QgF4vH9jHMvQFTvfS8NasPFUNPFp2YBqODOtTyCjOzTA2uLm3Ybd7a14b2zbij0pIWpYcY2fRM2rs6HkvHnz+Oijj4iKiqJNmzbMnTuXvn37lrh9dnY2s2bNYunSpURHR+Pn58drr73G1KlTa3DUVSjiMCScB3MbaD2m8GPWTuDeHOKD1XYthl9/LDkCQneor2+c8l0WHi1Ap4fMREiNLnvAWLCeZPV1bxJCCCFE/WU0Grn//vtJT09n2rRpfPLJJyUujJ6SksILL7zAokWLmDRpEqdPn0avlyl9Qojbh06n472xQQz9dCd/X06k9X/+IMdoKrSNu70VD/dqVK7jOtlYsGByJ1YdDmdkWx/6NHWv0W7VQojbT50MJVesWMGMGTOYN28evXv3ZsGCBYwYMYIzZ87QsGHDYvcZP348MTExfPvttzRt2pTY2FgMBkMNj7wKnfhZfW51F1g5FH3cr0teKHmocCh58mdAg4DeqnKxPCxs1JTvhPOqWrKsoWTYfvW5YY/ynU8IIYQQAli3bh0XLlxgwoQJfPPNN6Vu6+joyMKFC0lNTWXVqlX89ttvjBkzptR9hBCivvFzsWXmyFa88cspcowmLMx0BLrb0cTDnsYedtzZrgG2luX/737nANdq7corhBA3qpOh5Jw5c5g2bRqPPPIIAHPnzuWPP/5g/vz5zJ49u8j2mzZtYseOHYSGhuLqqv6ANmrUqCaHXPViTqvPTYcU/7hvJzj2Y+F1JW+c8t1uQsXO69VahZIxZ0o+940M2dcb7gRIpaQQQgghyu+3335Dr9fz3nvvlXmf2bNns2rVKtatWyehpBDitjS5RwAd/Z2xszLH38VGGsEIIW45de6vVk5ODocPH2bo0KGF7h86dCh79+4tdp9ff/2VLl268OGHH+Lr60vz5s156aWXyMzMLPE82dnZpKSkFPqoU5LC1OeSqh198xrYRBwGU16pftRxiDsHZlbQ5u6Kndczr9lNWTtwRx0HQxbYuoNb04qdUwghhBC3tcOHD9OiRQsCA8vWkAGgcePGtGzZksOHS2j8J4QQt4EgXycC3e0kkBRC3JLq3F+u+Ph4jEYjXl5ehe738vIiOjq62H1CQ0PZvXs3p06dYu3atcydO5dVq1bx1FNPlXie2bNn4+TkVPDh7+9fpc+jUowGSIlQXzsXP10drzZgbg1ZyXBNLWRcUCXZcpRad7IivPKa3eRXat7MlbyguGGP8jXVEUIIIYTIExUVRfPmzcu9X/PmzYmMjKyGEQkhhBBCiOpW50LJfP9cUFfTtBIX2TWZTOh0On788Ue6devGyJEjmTNnDosXLy6xWnLmzJkkJycXfFy9erXKn0OFpUSAZgQzS7D3Kn4bMwvwaa++jjgMxlw4tUrd/me37vLI78AdF6zC0ZspWE+yZ8XPKYQQQojbWnJyMk5O5X9D1dHRse7NdhFCCCGEEGVS50JJd3d3zMzMilRFxsbGFqmezOfj44Ovr2+hi9lWrVqhaRrh4eHF7mNlZYWjo2Ohjzojf+q2kz+U1k3St7P6HHEILv4F6XFg5wFNBlX83C6BYGELxmxIvFT6tiYThOV13g6QUFIIIYQQFWMwGCrUQVuv19/ajQ2FEEIIIW5jdS6UtLS0pHPnzmzevLnQ/Zs3b6ZXr+IbqfTu3ZvIyEjS0tIK7gsJCUGv1+Pn51et460W+aFkSVO38xWEkofh+HL1ddt7VRVlRen14NFSfR19ovRtL+2ArCQVYnq3q/g5hRBCCCGEEEIIIcRtpc6FkgAvvPACCxcuZNGiRZw9e5bnn3+esLAwpk+fDqip1w8++GDB9pMmTcLNzY0pU6Zw5swZdu7cycsvv8zUqVOxsbGpradRceUNJaNOwLkN6uvKTN3+53E3zSx5bcmwA7DiAfV1q7sqF4QKIYQQ4ra3ZMkSzMzMyvXx/fff1/awhRBCCCFEBZnX9gCKM2HCBBISEpg1axZRUVEEBQWxYcMGAgICALUYelhYWMH29vb2bN68mWeeeYYuXbrg5ubG+PHjeeedd2rrKVRO0hX12SWg9O1cGoGtG2QkqNseraqmYrH/v1UDm9jT8N0ImLQSGna//njYAVg6DnLSILAf3Dm38ucUQgghxG1N07QK7VfSmuNCCCGEEKJu02kVvQKsZ1JSUnByciI5Obn215f8biRc2QP/+hba3lP6tj/eC+f/VF8PeRv6zKiaMWQmwo/jIfygmp494QdoOqRoIDlxBVjaVs05hRBCCFEpdep6RlSIvIZCCCGEuJWV51qmTk7fvu2Vdfo2XJ9qjQ7aja+6Mdi4wIO/QJPBkJsBy+6D7e/fEEj2l0BSCCGEELe0efPmERgYiLW1NZ07d2bXrl0lbrt9+3Z0Ol2Rj3PnzhXabvXq1bRu3RorKytat27N2rVrq/tpCCGEEELckiSUrGuMuZASob4uSyjZ7A5AB63uBMcGVTsWSzuY+BO0GQemXNg++4ZA8icJJIUQQghxy1qxYgUzZszgtdde4+jRo/Tt25cRI0YUWiKoOMHBwURFRRV8NGvWrOCxffv2MWHCBCZPnszx48eZPHky48eP58CBA9X9dIQQQgghbjkyfTtPnZkqk3gZPmsPZlbwWrTqhl2Wfew8qy8kNBlhw0twaBE0HgD3LZdAUgghhKiD6sz1zC2ge/fudOrUifnz5xfc16pVK+6++25mz55dZPvt27czcOBAEhMTcXZ2LvaYEyZMICUlhY0bNxbcN3z4cFxcXFi+fHmZxiWvoRBCCCFuZTJ9+1ZWMHXbv2yBJKiGN9UZEurN4M5P4dlj8MBaCSSFEEIIcUvLycnh8OHDDB06tND9Q4cOZe/evaXu27FjR3x8fBg8eDDbtm0r9Ni+ffuKHHPYsGGlHjM7O5uUlJRCH0IIIYQQtwMJJeua8qwnWdNcA8selAohhBBC1FHx8fEYjUa8vLwK3e/l5UV0dHSx+/j4+PD111+zevVq1qxZQ4sWLRg8eDA7d+4s2CY6OrpcxwSYPXs2Tk5OBR/+/v6VeGZCCCGEELcO89oegPiHuhxKCiGEEELUIzqdrtBtTdOK3JevRYsWtGjRouB2z549uXr1Kh9//DH9+vWr0DEBZs6cyQsvvFBwOyUlRYJJIYQQQtwWpOytrpFQUgghhBCiWrm7u2NmZlakgjE2NrZIpWNpevTowfnz5wtue3t7l/uYVlZWODo6FvoQQgghhLgdSChZ1xSEkgG1Ow4hhBBCiHrK0tKSzp07s3nz5kL3b968mV69epX5OEePHsXHx6fgds+ePYsc888//yzXMYUQQgghbhcyfbuukUpJIYQQQohq98ILLzB58mS6dOlCz549+frrrwkLC2P69OmAmlYdERHB999/D8DcuXNp1KgRbdq0IScnh6VLl7J69WpWr15dcMznnnuOfv368cEHHzBmzBjWrVvHli1b2L17d608RyGEEEKIukxCybrEmAspEeprCSWFEEIIIarNhAkTSEhIYNasWURFRREUFMSGDRsICFCzVaKioggLCyvYPicnh5deeomIiAhsbGxo06YN69evZ+TIkQXb9OrVi59++onXX3+dN954gyZNmrBixQq6d+9e489PCCGEEKKu02maptX2IOqClJQUnJycSE5Orr21fBIvw2ftwcwKXouWTtdCCCGEKJc6cT0jKkVeQyGEEELcyspzLSOpV11SMHXbXwJJIYQQQgghhBBCCFFvSfJVl8h6kkIIIYQQQgghhBDiNiChZF0ioaQQQgghhBBCCCGEuA1IKFmXFISSAbU7DiGEEEIIIYQQQgghqpGEknWJVEoKIYQQQgghhBBCiNuAhJJ1iVRKCiGEEEIIIYQQQojbgISSdYUxF1Ii1NdSKSmEEEIIIYQQoiI0rbZHIIQQZWJe2wMQeZLDQTOBuTXYe9b2aIQQQgghhBBC1GWX98Dvz0NaNBgNYMr70IzQZhzcswh0utoepRBClEgqJeuK/KnbTv7yD4cQQgghhBBCiJJd2Qc/3gvxwZCVDLnpYMxWgSTA6TVweHHVnCszCaKOq9l9QghRhaRSsq6QJjdCCCGEEEIIIW7m6t/w4z0qiGw8EEZ8CGYWoDdXn48vhy1vwR+vQeMB4BpYvuPnZsHVA3BpB4Ruh8ijalafd1sY9w14tip+v/ObYevbYMiBwH7QuD806gM2LpV7rsHroe294NWm4scRQtRJEkrWFRJKCiGEEEIIIYQoTcRhWDoOctKgUV+4bxlY2hbeptdzKiC8sgfWPQUP/Q76MkySNJlgx/uw53MwZBZ+zMwSok/Cgv4w5C3oPv36MdNiYdOrcGr19e3jg+Hvb0CnB5/20HKU2sfK4ebjMBrg7K+wfx6E/63uO7AAxn4FrcfcfH8hxC1Dpm/XFRJKCiGEEEIIIYQw5kL0KUiJUkFhvshj8MNYyE6BgN4waUXRQBJUWDjmS7CwU8Hkga9ufs7cTFg9FXZ8oAJJe29oNwHung/Pn4EZp6DpHWqK+B8z4Ye7VV+Eo0vhf11VIKnTQ8+nYfwP0PVRcGumKiwjj8Jf78DnneDQdyp0LE5qjApEP+8Aq6aoQNLMEjxaQW4G/Pwg7PhQGvmI8jGZ1O9T0tXCv0+iTpBKybpCQkkhhBBCCCGEuL1dC4XlkyDurLqtNwfHBuDoB7Fn1PqR/t3zAkm7ko/jGgjD3lGNcLa+DU2HgEfz4rdNi4OfJqoQUG8Bd30GHSYV7XVw/0o4tEhNC7+0Az5rrxrrAHi3g9GfQ4OO6nbr0epzcgRc3Aq7P1XP7fcZqupx6H/VmOLOQfAGCN4I4YeAvMDR1h26PgJdp4GNK/z5OhyYD9vehdizKnTND2SzktUam2H7wNYV2k+sG81jkyMg4Tw06ATWjiVvZzJCSgTYe4G5Vc2N73aQcQ1WPgSXdqrb5jbg1gTcmoJ7c2gzFrxal7y/IQeOfq/CzC5TwawORGhpsepvQaO+oDcr//6pMZCVBB4tqnxoFaHTNHmbASAlJQUnJyeSk5NxdCzlD0Z1mdMGUsJh2hbw71rz5xdCCCHELa/Wr2dEpclrKEQVyUlXVXzpcapaT9PyPpvAKwja3F35AMhogMTLkBqpwriyTE0uTegOFaBkJoK5NRhz1Hhv5NsFJq8tPeTKp2lqqvfFv8C3M0z9s2ioEhesGuYkXQFrZ5iwFAL7ln7c+Auw5lGIPKJCnoEzocdTpQc2hhw49K2qxMxMVPfZukNGfOHtGnRS4U/be8HCuvBjh5fA+hfBlAs+HdSalZd2QdSxwt8nvYUKRbtMg4BeNd9IVtPg6A+w4d+q6lRnBn5dILC/WuPTo6Ua89WDau3O8EOQk6q2c2uiwiKPVupzk0EqaBXlF31Khe1JYariVtPUz86NdHro9BAMfA3sPQo/dmELbHxVBcsADXvBv74BJ7+yj0HTVEWxk1/pP4cmExz+Dmycoc24kre9vAd+ngwZCSpU7fcyBP2r5HAyJUpVKkcdVz9zkccgLRoa9oSpm8r+PMqpPNcyEkrmqdULQEMOvOul/pC+GAIOXjV7fiGEEELUCxJo3frkNRSiCoQfgjWPwbWLJW9j6w5dpqgAzLFB8dvkZkJqtKpMSsv7nBwOCRcgPgSuXboecti4QK9noNtjJYeTRoMKG/4ZIGga/L0QNr6iumf7dlZrRdq6q/MmR6gCFpMRWowEK/uyfy+SI2BeT8hOho4PgHdedaPJoJ7fvi/VYy6BqhLSvVnZjmvMVdWNDTqUb7ZfZiLs/FhVS5pywcxKhYstRkDzEeDoU/r+N4YyN3JtogLIuHPX16EEFe41G6JC6swkVSGWmaTGb+euqhPtPdWHgw94tlZhT0Ur4rJSVHXqqVXqtq1b0bEWR6cvGkADWNqrn6meT4OdW8XGBJCdpipSY89As6EqlKrpsLYmnV4Lvzyppv27NFK/T+4tVPiecAHiz6ulDYI3qO0tHaDfi9D9CUiNUtXAwevVY7buYMhS67haO6sq3VZ33nwMuZmw7mn1s9BkMNyzSIWO/2TIhrWPqzGDqiC+67Oi4eff38LGf+dVJ+soqCp2a5oXTt4DmddUVeilnXB5l6pOLkIHvp3gka3V9jMgoWQF1OoF4LVLat0Mc2t4Lbp+/3EQQgghRLWRQOvWJ6+hEJVgzIWdH6nQSzOCQwPVYEVvpkIfdOo/9Od+V9NlQU2PbnWXmgqZHK4qH5OuqM9lCZMsbFVwlB6rbtu4qACp22NqenXUMVUBeWknhO1X2zTooIJH387q6z2fqyopUOs43vV50SrByjj+kwo9SuLfQ4U2lQm9yivpqgqH/LqWL2QF9dr8+TpYO0GjfqrDt5Pv9cejjqsA5+RKFUqVl5mVmtLr3S6vSc+dZSscijym1sK8FqqqHge/oZoOpYSrn4HQ7eojI14FZf7dwb+b+uzRSv0MxZ5VwWrcOQg7oBoGgVoftNujKvi2c1f3aZoKedNi1c+7nYea6p4fqBpzVZXsyZVwbn3h74VnaxXIt5tQtqrbW4XJqNYv3T1H3W48UIWBJVWbXtkLm2aq31NQyySkx6m1U3Vm0P1xGPAqpMfD6mmq6hDU0gJD3wELm+KPmxIJyydePy6osHviT6oaNl9WCqy4X/190Fuov1PGbLByhGHvQsfJ6nXc9IpaOgFUZeTw9+HI97Dvf9crj62dVeh+I51eVeb6dFA/yw06gHfb0pd+qAISSlZArV4Ahu6A70erhYCfOVSz5xZCCCFEvSGB1q1PXkMhKiguBNY+dj00CLoHRn2sQsJ/MuYFkwe/VtVSpTG3zqum81LBlL133np0zVTI4OgLaKrRy44PVNAGKjDTUFWIZaJTXa17P1f1RSqaBrs+Ud8bMwsVxOrNVVjrEqhC1KoMQeuKrGQ48TMkXFSvh42zCm6sndR03vQ4SItRoV56rApKY06rqdQ3MrNUa2z2erZwoJQv8Yo6z84P1ZR7J3/417fQsHvRbU2mvIq7Mvx9N5lUJd+ODyD6hLrPwlb97KXFqTHnr+lZQKd+5u081PPLvHb9IdfGKpwK2XQ9oLSwg3b3qqCrYU/181EXJV5R4Ztr46LfO0MOXNmtKneDN8H/t3fncVWW+f/H34ddRXBBFjfEzBVXXHJ31CEtK6cyy1L7Tk4xk5XjtymdatqmrGamX9toY4tNWaPfcmkvKcUlmzIFo9zIDSVIMQXcQOD+/XFxDhKLrOc+wOv5eJzHfbjX63gpXX3O57o+WUX1OobOlsY/fOGs18JC6dvlZu3VnHSzL2qUNPEpKbRHyeesfUTa/Lz5OaSbCRT3urpkQP/wN9KyaebvVpNW0ri/mC9LstNM31z3url/zk/Sm9eYqvZ+gWbphKB20rt/KM72vWicydI8+IUkhwl0j5hb/DsiN0f6+iXTJmdfh/c2wfqoUVLkUPP33c0ISlaDrQPAbW9I7802f+Gmr3TvswEAQINBQKv+ow9RI8nvmODT+IelrrF2t6ZmTmVKW18zgYix95efkSRJKZ+ZbKP8s+Z/wC9/Wup9beWek5Fssuqy06QWkVLLSJPF1rKTCS4FBFc+SFhYUHZwstNIEyCIGmUyl9K2mtfhb6SfvjPTvSe/KHWbULnnoO4UFkrH95sgYPq3pqBP2taigw6p51UmcCzLBMF2fSQd+b74+m6XS1e9ULvrQFqWCSQmPFEy884poIUJMJ/+Wa4pvU7NQk3AsfcUM2XX4TDT17cvM5l3zkxMyWTndRkndZ1gKq07A22FBSZbr/Bc0bbgvPf55t9mYLip+l6bLMtkF3/xrLTn45KfqXUXqXVnMy39h89LBpL9AqVJ/0/qc13Vnudchza4g1lOoLx/9z98Jq2KM0FfyQT4u/xa6jtVyjttpu8X5Jps1OvfMkWncjKkZTdKad+Y88fMN5mOJw6aAPKN75gsRsn8+X75T5PxWZBb9JmaS9e8XP7viNyT5u9sm+4esQYpQclqsHUAuPYx861KzP9IVzzj3mcDAIAGg4BW/Ucfotp+3ictGm4yoHyaSDPfr58FNI/skv670GQu5Z81+/pPN4GesmQdll4cYYKXncdIkxeVv0akuxQWSAc2mWnJEf0qrpB77mxR9mI1qujCPQ5+aaqHp3xa9nGHlymC0u8Gqd+Ndbccm2WZCuO5OSaQFRhmtj5+5nhhgQlMnjpqpoh7+UjtB5efKWhZJgMv6S1pz6e/KDrkMBmihefKXuvyl7z9pRYdTDC/RaQJGnYaLoX1rnqwsrDQrOf4xbPnrQ/qKFqfM7Psa5qFSl0vNWuudh5TXJm9rpz+2QR2v11mlgv4pW6XSVcvLrm+7PlrTDq17GQKV7XqXPoeR/dIH91tMn6vXuwx1bIrg6BkNdg6AFx5m/nLPO5BaeRc9z4bAAA0GAS06j/6ENVSWGiWgzqw0QQSCvLMtMFb1lS+cInd9m8wayv+EF+8LyzaFOawCk1xif43lbymIF967XLp0H9N9evfrikO0AC17afvTaAs+R2THdhlnAk+XRzrEdlpNVJYaKqp7/nEvDKSKz7fy8esgejtazIMrYKyz2vS0mQKdx5t1s4sLJBys81airk5JuB2OrNoCn1m8TT6kxnmem9/qe/1Zi3NkIvN+cf2Fr1+MAHgLuNN1fbaztSsrCO7TDzn27fN+qEj5kpjHyi7PZYlbfy7SUyL6GMyJAND3d/mOkZQshpsHQC+OlFK3WwWYI2+xr3PBgAADQYBrfqPPkS1bHlZ+vB/zXpzsz6T3rvDTDlt0VG6JV5qHm53C8uXts2s5bYvoWiHwxSnGXq7WeNu49/NNEafAPPZwnsXX/v5I2a6un+QdNv6srONgNqWd8oE5Xz87W5J3TmVaTL7vH2Lg4/O917eJbNBC/LN8gcnDpq1H48fMEHNg1+Y9TOrIyDYFJMZfFvligx5gsJCU2imMgHqk0fNeQ00Q7oqY5lq1rlHrXJWfgtqV/F5AAAAAHC+E6lS/IPm/bgHpbBe0rT/k175tZnS/ea10s0feV6F3cwUae2j0o53zc9evlLMTBOMPD+4OOJ/TRXiH+Kl/5sh3ZpgAhY/fC5tLKqwe8WzBCThPnVcudgjOCt8V4a3T9FarJFS1Hn7C86Z4kr71pu1OTO+NV+c+AeZ30f+zc37ZiFm+nWzEJM12CzU/B6ralV2u3l5VT5jNrBN3balHiEo6QmcJdybVuEfPgAAAIDGzbKk9+402Ugdh0qDbzX7m4VIN600gcmMZOn/pptApd2ZXQXnzBTz5HfMemxWgSSHmZ45Zr4JavySl5dZT+1fo0yQ9d3bpcv+Lq26TZIlDfytFH21uz8JgAvx9pU6DDav0X+yuzXwUAQl7ZafZ9ZUkOr/OhQAAAAA3Gfb69K+dWZq81X/LLmGWaso6ca3pdcmmanRT10kdRwiRQ6TIkeYNRjdsf5i3imT1bjrA7NW3dms4mNdJ0rjHjBZURVp2kqa8m/p1Uulne+bqtWnjpo1Jy99vG7bDwCoMwQl7ebMkpTDTEMAAAAAgAvJSpPW3G/ej71fan1R6XPa9pemviGt+J0pJvHDZ+YlmQrdY+ZJI+bUXRt/TJJev8qss+bUrI0pDtLvRhMkraz2MdKEBaYabU665NtMunaJKTgCAKiXCEra7czPZtukRYNd5BQAAABALSo4J62OMzOu2g+SLvlD+edeNFa6e4+pHHxws3Rwk9mePiZ99pA5HtGnbtq55n4TkAxqL/W8SupxhZnKWd3/7xk0y6xLt325WUeyTddabS4AwL0IStrttDMoydRtAAAAuMGBTdKRnVKnEVJoD7tbg6qyLFNpe/8Gky141T8vHOTz8jaBx4g+0iVx5h7v/I/0/Srpk/nSzR+UrKZbG/ZvMOtHevtJv/1EatGh5vd0OKQrn5cmPNE4io0AQAPndeFTUKecmZKsJwkAAAB3+OpFMwX2wCa7W4Lq2Py8tO3fksNLuvZVqU23qt/D4ZB+/ahZi/LgpuIK2LXFsqR1C8z7ATNrJyB5PgKSANAgEJS0G5mSAAAAcKfAMLM9+ZO97UDV7Xxfiv+LeX/p41K3CdW/V4sO0rA7zfv4B6RzZ2vePqd9CVLqZsnbXxo5t/buCwBoUAhK2o1MSQAAALgTQcn6KW2bKVgjSxr0O2lIXM3vOWKO1LytdCJV+vKFmt9PKsqSLKqIPfC3UlDb2rkvAKDBIShpNzIlAQAA4E6BoWZ78oi97UDlnTgk/ed6Kf+M1OXXZk3F2lgD0q+ZNP4h837j01J2es3v+cNn0uGvTXXvEX+s+f0AAA0WQUm7uTIlW9rbDgAAADQOZErWD5YlHd5qCtG89CvTX6G9zDqS3rVYr7T3FFPB+9wp6fNHanYvy5LWPWbeD7pFah5W8/YBABosqm/b7fRxsyVTEgAAAO5ApqRny/xB2v6W9N0K6fiB4v3BHaVpy6WAoNp9npeXNOFJ6eWx5rmDZ0ntYqp3rz2fSD8mmqrgZEkCAC6AoKTdWFMSAAAA7hQYbrYnf5IKC01QqjH7eZ9ZV9E3wO6WSAc3S69fJRXkmZ99m0rdLpOir5G6jJN8/Ovmue1jpD7XS98uk967S5r6utSqc9XucX6W5JBbpWYhtd9OAECD0shHIB6ANSUBAADgTs3amG1hvnTmuL1tsdu+BOm5/tLHf7K7JabYzPLpJiDZ4RIzTftPP0jXviJ1v6zuApJO4x+UAoKln5KlhUOlDX+X8vMqf33iUikjWfILLK7qDQBABQhK2s2VKdna3nYAAACgcfDxK/5CvLGvK7njPbP9blXVAnC1Lfek9J9p0ulMKbyPNH2lyY70a+a+NgS1lX63TooaLeWfldY+Kv1rpHTwy4qvsyxpw9+k92abn4fOZhYYAKBSCEraybKKMyX5DzcAAADchWI3xoFNZpuXI6VeIPhWVwoLpdW/NxmKzdpI17/l3mDk+VpfJM14V7r6JalpiHR0l7RkgrT6dunIztLnnzsjrZglrf2r+XlInDTKA7JOAQD1AkFJO53NkqwC857p2wAAAHAXit1IOT9JmbuLf05ZY087Njwl7XxP8vKVpi6VWnSwpx1ODofU5zpp9hZpwAyzL2mptPAS6dWJUvI7Un6ulJ0uLblM+u4dyctHmvSMNPHJ2q0MDgBo0Pgvhp2cU7d9m3rGwtoAAABoHJo7i91k2NsOOx0sypJ0eJtEgZQ10qWPubcNO96VEhaY95P+n9TxEvc+vyJNW0lXPi/1u0n68nlp10dS6mbzahoieXmbTNsmLaXr3pCiRtrdYgBAPUNQ0k6nixYWJ0sSAAAA7kSmpLR/o9n2vUHa/h8pc4/0836pVZR7np+ZIq2KM++H/F4aMN09z62qjkPMK/tHaeu/pW3/lnLSzbGQbtK0ZVWv1A0AgAhK2stV5Kalve0AAABA48KaksXrSXa/TDp+wGROpqyRhtxW98+2LOnje6Rzp6VOI6XYv9b9M2sqqK30q/nSqLul3R+ZIO7gW03FbgAAqoE1Je3kLHJDpiQAAIDbLVy4UFFRUQoICFBMTIw2btxYqeu++OIL+fj4qF+/fiX2v/baa3I4HKVeZ8+erYPW11BjD0rmZEjHUiQ5pMhhUtdYs3/Pp+55/q4Ppb1rJW8/6Ypn69c6jN6+Us+rTEEbApIAgBogKGmnM1TeBgAAsMPy5cs1Z84c3XfffUpMTNTIkSM1ceJEpaamVnhdVlaWZsyYoXHjxpV5PCgoSOnp6SVeAQEeuHZ4Y5++7cySDO9t1kS8+NLi/Xmn6vbZ585In84374fdYSpeAwDQCBGUtBOZkgAAALZ4+umndcstt2jWrFnq0aOHnnnmGXXo0EGLFi2q8LrbbrtN06ZN09ChQ8s87nA4FB4eXuLlkRp7puSBoqzYqFFm26ab1KKjVJAr7d9QuXucOCR9+U9pzQPSnjVS3unKXbf5eelEqtS8rTTyf6vedgAAGgiCknYiUxIAAMDt8vLytHXrVsXGxpbYHxsbq82bN5d73ZIlS7R37149+OCD5Z5z8uRJRUZGqn379po0aZISExNrrd21yhmUPHNcys+1ty12cGZKdhphtg5HcbZkRVO4T6SaoOJL46RnoqVP/yxtfk56a4r0VJS09Frpq8Vmjcoyrz8kbXzavI99VPJrVisfBwCA+qgeLV7SAJEpCQAA4HaZmZkqKChQWFhYif1hYWHKyMgo85qUlBTNmzdPGzdulI9P2UPo7t2767XXXlPv3r2VnZ2tZ599VsOHD9f27dt18cUXl3lNbm6ucnOLg4LZ2dnV/FRV1KSl5OUrFZ4zU7hbdHDPcz1Bdrp07AfJ4SV1PC/j9eJYactLptiNZZlApVN+rvT2/0i7PzzvRkXrUbaKkvYmSNmHpR/izevjP0m9r5PGPyQFtyu+ZM39Uv4ZKXKEFH1NHX9QAAA8G0FJO5EpCQAAYBvH+UEnSZZlldonSQUFBZo2bZoefvhhde3atdz7XXLJJbrkkktcPw8fPlwDBgzQ888/r+eee67MaxYsWKCHH364mp+gBhwOky2ZfbjxBSVd60n2kZq0KN4fNVLyaSJlp0lHdkhhvcx+y5I+mFsUkHRIkcOlXpOlHldIzcOLzzmy0wQkU+LNM5L/T9r1gTR8jlk78vAWacdqEwyd+GTJoCcAAI0QQUk7kSkJAADgdiEhIfL29i6VFXnkyJFS2ZOSlJOTo2+++UaJiYmaPXu2JKmwsFCWZcnHx0dr1qzR2LFjS13n5eWlQYMGKSUlpdy2zJ8/X3PnznX9nJ2drQ4d3BQgDAwtCko2snUlnetJOqduO/k2MWtMpnxqpnA7g5Jf/UtKWmqCiTe+I3Upo8iRwyGF9TSv4XdJPyZKn8yXUr+UEh6XEt+QvIr+12vQLCk8uu4+HwAA9QRrStrpzHGzJVMSAADAbfz8/BQTE6P4+PgS++Pj4zVs2LBS5wcFBSk5OVlJSUmuV1xcnLp166akpCQNGTKkzOdYlqWkpCRFRESU2xZ/f38FBQWVeLlNYy1288siN+frWrTOaMoas92XYNaNlKRfP1p2QLIsbftL//OxdO2rUlB7KeuQdHy/SUYYM79GzQcAoKHw2KDkwoULFRUVpYCAAMXExGjjxo3lnpuQkCCHw1HqtWvXLje2uBpOM30bAADADnPnztXLL7+sV199VTt37tQf//hHpaamKi4uTpLJYJwxY4Ykk/EYHR1d4hUaGqqAgABFR0erWTNTrOThhx/Wp59+qn379ikpKUm33HKLK4DpkQJDzbYxBSWz0qSf9xWtJ3lJ6ePOYjeHvpLStklv3yxZBVLfG6Sht1ftWQ6HWTdy9hZpzJ+l1l2kK59j7A8AQBGPnL69fPlyzZkzRwsXLtTw4cP1r3/9SxMnTtSOHTvUsWPHcq/bvXt3iW+X27Rp447mVs+5s9K5U+Y907cBAADcaurUqTp27JgeeeQRpaenKzo6Wh999JEiIyMlSenp6UpNTa3SPU+cOKFbb71VGRkZCg4OVv/+/bVhwwYNHjy4Lj5CzTnXQ2xMQUnnepIRfaWA4NLHW3SQQnuaNSX/fYWUd1JqO0Ca9Ez114D0ayqNude8AACAi8OyLMvuRvzSkCFDNGDAAC1atMi1r0ePHpo8ebIWLFhQ6vyEhAT96le/0vHjx9WiRYtqPTM7O1vBwcHKyspyz7SZ7B+lp3tIDm/pL8dY6BoAANSY28czqHVu7cMtL0sf/q/UfZJ0/Zt1+yxP8e5ss77jsDul2EfLPif+L9IXz5r3gWHSrQlSUFu3NREAgPqsKmMZj5u+nZeXp61btyo2NrbE/tjYWG3evLnCa/v376+IiAiNGzdO69atq/Dc3NxcZWdnl3i5lavITUsCkgAAAHC/6q4puS9B+jGp9tqR/q30n2nS/g21d8/yODMlO40s/5xul5mtt580dSkBSQAA6ojHTd/OzMxUQUFBqcqHYWFhpSokOkVERGjx4sWKiYlRbm6u3njjDY0bN04JCQkaNaqMBawlLViwQA8//HCtt7/SzrCeJAAAAGxUnaDk0d3S65OlZiHS3Sk1/3I99SvpzSlSbpZUkFt28ZnaknXYFJtxeJe9nqRTx0ukq/4ptYySOnjo1HsAABoAjwtKOjl+McCxLKvUPqdu3bqpW7durp+HDh2qQ4cO6e9//3u5Qcn58+dr7ty5rp+zs7PVoUOHWmh5JbkyJQlKAgAAwAauQjdHJMuqXIDx+1WSLOnUUXNd87ALXlKuveukZdOkc6fNz0d3V/9eleHMxGzbTwq4wNT4/jfVbVsAAIDnTd8OCQmRt7d3qazII0eOlMqerMgll1yilJSUco/7+/srKCioxMutyJQEAACAnZyZkvlnpbNZlbtmx7vF73/eV/1n7/pIeus6E5CMHG72ZR2ScnOqf8+KnEiVPiuaJdX5V3XzDAAAUCUeF5T08/NTTEyM4uPjS+yPj4/XsGHDKn2fxMRERURE1Hbzag+ZkgAAALCTbxPJv6gC9ckjFz7/6B5TldqpukHJ5Hek5TdJBXmmyM70VcUB0rrIljxzXFp6rXQyw1TWHnZH7T8DAABUmUdO3547d66mT5+ugQMHaujQoVq8eLFSU1MVFxcnyUy9TktL0+uvvy5JeuaZZ9SpUyf16tVLeXl5Wrp0qVasWKEVK1bY+TEqdua42TZtaW87AAAA0HgFhpr1HE/+JLXpWvG5O1aX/Pn4/qo/b+f70opZkiypz1TpqoWSt4/Uprtpw9FdUvuBVb9vec6dlZbdKGXulpq3lW58W2rSovbuDwAAqs0jg5JTp07VsWPH9Mgjjyg9PV3R0dH66KOPFBkZKUlKT09Xamqq6/y8vDzdfffdSktLU5MmTdSrVy99+OGHuuyyy+z6CBdGpiQAAADsFhgmHUupXLEb59TtNj2kozurnilpWdLnj0qypP7TpSuek7yKJm616S7tXy8d2Vm1e1aksFBaHScd/ELyD5JuekcKbl979wcAADXikUFJSfrDH/6gP/zhD2Uee+2110r8fM899+iee+5xQ6tqEWtKAgAAwG7nF7upSOYP0k/fSV4+0tDbpfdmSz9XMVNyX4LJWPQLlC59vDggKUmh3c326K6q3bMi8Q+YwjxevtLUpVJYr9q7NwAAqDGPW1Oy0SBTEgAAAHZzruV4MqPi83asMtuo0VK7GPO+qpmSXy82277Xl65+3aaH2dbWmpJb/y19+YJ5P3mh1Hl07dwXAADUGoKSdiFTEgAAAHZr7gxKXiBT0jl1u9dkqWUn8/7sieIv2i/k+EFp98fm/eBbSx9v081sa6sC95aXzHb0PKnPdTW/HwAAqHUEJe1CpiQAAADs5sqUrGBNyWN7pYxkyeEtdbtc8msqNY8wxypb7GbLy5IsqfOY4gDk+Zq2qr0K3HmnpZ+KqoQPmF6zewEAgDpDUNIOhYXmm2VJatra1qYAAACgEavMmpLOLMmoUVKzorFrq85mW5l1JfNOS9teN+8H31b+eW1qaV3J9CTJKjCB06B2NbsXAACoMwQl7XD2hGQVmvdNWtraFAAAADRilcmU3LHabHtNLt7XMspsK7OuZPLbZvzboqPU9dLyzwstWleyphW4D28x23YxksNRs3sBAIA6Q1DSDs6p237NJR8/e9sCAACAxssZlDyVKRXklz7+834pfbuZut19UvH+VlHFxytiWcUFbgb9TvLyLv9c57TummZKHv7GbNsPrNl9AABAnSIoaQdXkRuyJAEAAGCjpq0lh5ckSzp1tPRx59TtTiOkZiHF+13Tty+QKZn6pfTTd5JPE6n/TRWf66zAfaSGQcm0rWbbjqAkAACejKCkHShyAwAAAE/g5S01c64rWcYUbufU7Z5XldzfqpLTt7/6l9n2uc4Us6mIM1My+7B0Nrvic8uTnS5lp5lAa9v+1bsHAABwC4KSdnBlShKUBAAAgM3KK3Zz/KD0Y6IJ8PW4suQx55qSp45IuSfLvm9WmrTzffN+8K0Xbsf5Fbgz91Su7b+UVjR1O7Sn5B9YvXsAAAC3IChpBzIlAQAA4CnKK3azfZnZdhohBbYpeaxJi+Kx7PFy1pX85lVTBTtyuBQeXbm2OCtwV7fYjXM9yXYx1bseAAC4DUFJO5ApCQAAAE9RVlCysEBKfMO87z+97OsutK7k9yvNdtCsyrfFWYG7usVunOtJUuQGAACPR1DSDmRKAgAAwFMElrGm5L4EKeuQFBAs9bii7OtcQckyMiWz0kyw0uEldRlX+bbUpAJ3YYGUts28p8gNAAAej6CkHciUBAAAgKdoHm625wclt71utn2mSr5Nyr6uomI3BzaabUQ/E9isrJpU4D6yUzp3SvJrXhzcBAAAHougpB3IlAQAAICn+GWhm1OZ0q4PzfsBM8q/rqLp2/uLgpJRI6vWltCiNSWrU4HbWeSmXX9TVRwAAHg0gpJ2OHPcbJu2tLcdAAAAwC/XlNz+H6nwnNR2gBTeu/zrnEHJ4wdKHzuwwWw7japaW5q0lAKLMjerWoHbVeSGqdsAANQHBCXtQKYkAAAAPIUrKHlEsqziqdsVZUlKUsui6dtZh6VzZ4v3Hz8onUiVvHykjpdUvT3OqddVrcBNkRsAAOoVgpJ2YE1JAAAAeArn9O28k9Lez02Gom9TKfqaiq9rFmLWb5QlnThYvN+5nmTbAZJ/YNXbU50K3Lk5xUFMMiUBAKgXCEq6W95pKb/om+Smre1tCwAAAOAXaIKQkrTh72bb62opIKji6xyO84rdnFeBu7rrSTq1KVpXsipBybRtkiwpuKPUPKx6zwUAAG5FUNLdTh8zWy9fMwAEAAAA7ORwFE/hTv3SbGNmVu7aX1bgtqziTMlONQxKVqUCt7PITfuY6j0TAAC4HUFJdzt/6rbDYW9bAAAAAKk4KCmZoGD7QZW7zlXspihT8ud9Unaa+QK+w5DqtaU6FbgPF60nydRtAADqDYKS7kaRGwAAAHga57qSkilwU9kvz51BSWempDNLsv0gya9p9dpS1QrclnVepiRBSQAA6guCku5GkRsAAAB4GmempJev1Of6yl/X8hfTt2u6nqSTM1uyMhW4sw5LJ38y1b4j+tbsuQAAwG0ISrqbK1Oypb3tAAAAAJxadzHbnldKzapQjNGZKXkiVSrIr/l6kk5VKXbjzJIMi5Z8m9TsuQAAwG187G5Ao3PmuNmSKQkAAABPETNT8mtmgpJV0TxC8gmQ8s9Ke9eajEVv/8qvSVkeZ1Dy8Bap4Jzk7Vv+uYeZug0AQH1EpqS7saYkAAAAPI1vE2nAdCkguGrXeXlJLTuZ99v+bbYdBku+ATVrT4chkhzSoa+kl8ZKGclln3dsr5QSb95T5AYAgHqFoKS7saYkAAAAGhLnFO49n5ht1Kia3zOsp3TtK2bJo4xvpcVjpIQnpPw8c/ynHdI7t0gvDJQyd0u+TWu+jiUAAHArpm+7G5mSAAAAaEicQcnCfLOt6XqSTtHXSJEjpA/nSrs+kBIWSDs/kFp0lHZ/WHzexbHSmHlScPvaeS4AAHALgpLuRqYkAAAAGhLn9G3JZCy2i6m9ezcPk6Yulb5fKX14t/RTsnnJIfW8Sho5l4rbAADUUwQl3Y1MSQAAADQkzkxJyawF6eNXu/d3OEzWZKeR0uePmJ+H3iG16Vq7zwEAAG5FUNLdyJQEAABAQ3J+ULIu13UMDJWueqHu7g8AANyKQjfuVJAvnc0y78mUBAAAQEMQ3EHy8jXvO9VCkRsAANAokCnpTvlnpM6/kk4fM5UEAQAAgPrO20ea+KSUdUhqP9Du1gAAgHqCoKQ7+TeXZqy2uxUAAABA7Rp0i90tAAAA9QzTtwEAAAAAAAC4FUFJAAAANEoLFy5UVFSUAgICFBMTo40bN1bqui+++EI+Pj7q169fqWMrVqxQz5495e/vr549e2rVqlW13GoAAICGgaAkAAAAGp3ly5drzpw5uu+++5SYmKiRI0dq4sSJSk1NrfC6rKwszZgxQ+PGjSt17Msvv9TUqVM1ffp0bd++XdOnT9d1112nr776qq4+BgAAQL3lsCzLsrsRniA7O1vBwcHKyspSUFCQ3c0BAACoMsYzlTdkyBANGDBAixYtcu3r0aOHJk+erAULFpR73fXXX6+LL75Y3t7eWr16tZKSklzHpk6dquzsbH388ceufRMmTFDLli31n//8p1Ltog8BAEB9VpWxDJmSAAAAaFTy8vK0detWxcbGltgfGxurzZs3l3vdkiVLtHfvXj344INlHv/yyy9L3fPSSy+t8J65ubnKzs4u8QIAAGgMCEoCAACgUcnMzFRBQYHCwsJK7A8LC1NGRkaZ16SkpGjevHl688035ePjU+Y5GRkZVbqnJC1YsEDBwcGuV4cOHar4aQAAAOongpIAAABolBwOR4mfLcsqtU+SCgoKNG3aND388MPq2rVrrdzTaf78+crKynK9Dh06VIVPAAAAUH+V/TUvAAAA0ECFhITI29u7VAbjkSNHSmU6SlJOTo6++eYbJSYmavbs2ZKkwsJCWZYlHx8frVmzRmPHjlV4eHil7+nk7+8vf3//WvhUAAAA9QuZkgAAAGhU/Pz8FBMTo/j4+BL74+PjNWzYsFLnBwUFKTk5WUlJSa5XXFycunXrpqSkJA0ZMkSSNHTo0FL3XLNmTZn3BAAAaOzIlAQAAECjM3fuXE2fPl0DBw7U0KFDtXjxYqWmpiouLk6SmVadlpam119/XV5eXoqOji5xfWhoqAICAkrsv+uuuzRq1Cg9+eSTuuqqq/Tuu+/qs88+06ZNm9z62QAAAOoDgpIAAABodKZOnapjx47pkUceUXp6uqKjo/XRRx8pMjJSkpSenq7U1NQq3XPYsGFatmyZ7r//fj3wwAO66KKLtHz5clcmJQAAAIo5LMuy7G6EJ8jOzlZwcLCysrIUFBRkd3MAAACqjPFM/UcfAgCA+qwqYxnWlAQAAAAAAADgVgQlAQAAAAAAALgVQUkAAAAAAAAAbkVQEgAAAAAAAIBbEZQEAAAAAAAA4FYEJQEAAAAAAAC4lY/dDfAUlmVJMqXLAQAA6iPnOMY5rkH9w5gUAADUZ1UZjxKULJKTkyNJ6tChg80tAQAAqJmcnBwFBwfb3QxUA2NSAADQEFRmPOqw+CpdklRYWKgff/xRzZs3l8PhqLPnZGdnq0OHDjp06JCCgoLq7DmoHvrHc9E3no3+8Vz0jWer7f6xLEs5OTlq27atvLxYpac+cseYlN8Lno3+8Vz0jWejfzwXfePZ7ByPkilZxMvLS+3bt3fb84KCgvjH6MHoH89F33g2+sdz0TeerTb7hwzJ+s2dY1J+L3g2+sdz0Teejf7xXPSNZ7NjPMpX6AAAAAAAAADciqAkAAAAAAAAALciKOlm/v7+evDBB+Xv7293U1AG+sdz0Teejf7xXPSNZ6N/YAf+3nk2+sdz0Teejf7xXPSNZ7Ozfyh0AwAAAAAAAMCtyJQEAAAAAAAA4FYEJQEAAAAAAAC4FUFJAAAAAAAAAG5FUBIAAAAAAACAWxGUdKOFCxcqKipKAQEBiomJ0caNG+1uUqO0YMECDRo0SM2bN1doaKgmT56s3bt3lzjHsiw99NBDatu2rZo0aaIxY8bo+++/t6nFjdeCBQvkcDg0Z84c1z76xl5paWm66aab1Lp1azVt2lT9+vXT1q1bXcfpH3vk5+fr/vvvV1RUlJo0aaLOnTvrkUceUWFhoesc+sZ9NmzYoCuuuEJt27aVw+HQ6tWrSxyvTF/k5ubqjjvuUEhIiJo1a6Yrr7xShw8fduOnQEPGmNR+jEfrD8ajnofxqOdiTOo56st4lKCkmyxfvlxz5szRfffdp8TERI0cOVITJ05Uamqq3U1rdNavX6/bb79d//3vfxUfH6/8/HzFxsbq1KlTrnOeeuopPf3003rhhRe0ZcsWhYeH69e//rVycnJsbHnjsmXLFi1evFh9+vQpsZ++sc/x48c1fPhw+fr66uOPP9aOHTv0j3/8Qy1atHCdQ//Y48knn9SLL76oF154QTt37tRTTz2lv/3tb3r++edd59A37nPq1Cn17dtXL7zwQpnHK9MXc+bM0apVq7Rs2TJt2rRJJ0+e1KRJk1RQUOCuj4EGijGpZ2A8Wj8wHvU8jEc9G2NSz1FvxqMW3GLw4MFWXFxciX3du3e35s2bZ1OL4HTkyBFLkrV+/XrLsiyrsLDQCg8Pt5544gnXOWfPnrWCg4OtF1980a5mNio5OTnWxRdfbMXHx1ujR4+27rrrLsuy6Bu73XvvvdaIESPKPU7/2Ofyyy+3fvvb35bYd/XVV1s33XSTZVn0jZ0kWatWrXL9XJm+OHHihOXr62stW7bMdU5aWprl5eVlffLJJ25rOxomxqSeifGo52E86pkYj3o2xqSeyZPHo2RKukFeXp62bt2q2NjYEvtjY2O1efNmm1oFp6ysLElSq1atJEn79+9XRkZGif7y9/fX6NGj6S83uf3223X55Zdr/PjxJfbTN/Z67733NHDgQE2ZMkWhoaHq37+/XnrpJddx+sc+I0aM0Oeff649e/ZIkrZv365Nmzbpsssuk0TfeJLK9MXWrVt17ty5Eue0bdtW0dHR9BdqhDGp52I86nkYj3omxqOejTFp/eBJ41GfWrsTypWZmamCggKFhYWV2B8WFqaMjAybWgXJrKMwd+5cjRgxQtHR0ZLk6pOy+uvgwYNub2Njs2zZMm3btk1btmwpdYy+sde+ffu0aNEizZ07V3/+85/19ddf684775S/v79mzJhB/9jo3nvvVVZWlrp37y5vb28VFBToscce0w033CCJfzuepDJ9kZGRIT8/P7Vs2bLUOYwbUBOMST0T41HPw3jUczEe9WyMSesHTxqPEpR0I4fDUeJny7JK7YN7zZ49W99++602bdpU6hj95X6HDh3SXXfdpTVr1iggIKDc8+gbexQWFmrgwIF6/PHHJUn9+/fX999/r0WLFmnGjBmu8+gf91u+fLmWLl2qt956S7169VJSUpLmzJmjtm3baubMma7z6BvPUZ2+oL9QW/hd4FkYj3oWxqOejfGoZ2NMWr94wniU6dtuEBISIm9v71LR5CNHjpSKTMN97rjjDr333ntat26d2rdv79ofHh4uSfSXDbZu3aojR44oJiZGPj4+8vHx0fr16/Xcc8/Jx8fH9edP39gjIiJCPXv2LLGvR48eruII/Nuxz5/+9CfNmzdP119/vXr37q3p06frj3/8oxYsWCCJvvEklemL8PBw5eXl6fjx4+WeA1QHY1LPw3jU8zAe9WyMRz0bY9L6wZPGowQl3cDPz08xMTGKj48vsT8+Pl7Dhg2zqVWNl2VZmj17tlauXKm1a9cqKiqqxPGoqCiFh4eX6K+8vDytX7+e/qpj48aNU3JyspKSklyvgQMH6sYbb1RSUpI6d+5M39ho+PDh2r17d4l9e/bsUWRkpCT+7djp9OnT8vIq+Z90b29vFRYWSqJvPEll+iImJka+vr4lzklPT9d3331Hf6FGGJN6DsajnovxqGdjPOrZGJPWDx41Hq21kjmo0LJlyyxfX1/rlVdesXbs2GHNmTPHatasmXXgwAG7m9bo/P73v7eCg4OthIQEKz093fU6ffq065wnnnjCCg4OtlauXGklJydbN9xwgxUREWFlZ2fb2PLG6fxqh5ZF39jp66+/tnx8fKzHHnvMSklJsd58802radOm1tKlS13n0D/2mDlzptWuXTvrgw8+sPbv32+tXLnSCgkJse655x7XOfSN++Tk5FiJiYlWYmKiJcl6+umnrcTEROvgwYOWZVWuL+Li4qz27dtbn332mbVt2zZr7NixVt++fa38/Hy7PhYaCMaknoHxaP3CeNRzMB71bIxJPUd9GY8SlHSjf/7zn1ZkZKTl5+dnDRgwwFq/fr3dTWqUJJX5WrJkieucwsJC68EHH7TCw8Mtf39/a9SoUVZycrJ9jW7EfjkIpG/s9f7771vR0dGWv7+/1b17d2vx4sUljtM/9sjOzrbuuusuq2PHjlZAQIDVuXNn67777rNyc3Nd59A37rNu3boy/zszc+ZMy7Iq1xdnzpyxZs+ebbVq1cpq0qSJNWnSJCs1NdWGT4OGiDGp/RiP1i+MRz0L41HPxZjUc9SX8ajDsiyr9vIuAQAAAAAAAKBirCkJAAAAAAAAwK0ISgIAAAAAAABwK4KSAAAAAAAAANyKoCQAAAAAAAAAtyIoCQAAAAAAAMCtCEoCAAAAAAAAcCuCkgAAAAAAAADciqAkgAbB4XDI4XDY3Yw6c/PNN8vhcCghIcHupgAAAKAcjEkBoPIISgJosA4cOCCHw6ExY8bY3ZQL6tSpU4MewAIAADRWjEkBoGwEJQGgHliwYIF27typwYMH290UAAAANFKMSQHUJh+7GwAAuLCIiAhFRETY3QwAAAA0YoxJAdQmMiUBNEgPPfSQoqKiJEnr1693re/jcDh08803lzj36NGjuvvuu9WtWzcFBASoZcuWmjhxojZs2FDqvgkJCa57ZGRkaNasWWrfvr18fHz0zDPPSJLS09P11FNPafTo0WrXrp38/PwUHh6uq6++Wlu2bCnzfgcPHpSkEu3s1KmT67yK1u85dOiQbrvtNkVGRsrf31+hoaFlPksqOX3ozJkzmjdvnuu6Ll266Mknn5RlWVX4kwYAAEB5GJMyJgVQPjIlATRI/fr10zXXXKMVK1YoLCxMEyZMcB0bMWKE6/2uXbs0fvx4paWl6aKLLtJll12mY8eOae3atVqzZo3eeOMNTZs2rdT9jx49qkGDBik/P18jRozQ2bNn1bRpU0nSu+++q3vvvVddunRR7969FRQUpB9++EGrVq3SBx98oA8++ECxsbGSpPDwcM2cOVPvvPOOTp06pZkzZ7qeERIScsHPmZycrLFjxyozM1Pdu3fX1VdfrdTUVK1atUrvv/++3nrrLU2ZMqXUdXl5eYqNjdX333+vwYMHq0ePHlq/fr3mzZunnJwc/fWvf638HzYAAADKxJiUMSmAClgA0ABIsn75K23//v2WJGv06NFlXpOfn29FR0dbkqxnn33WKiwsdB3btm2b1bp1a6tZs2bWTz/95Nq/bt0617N+85vfWGfOnCl132+//dbavn17qf2ffPKJ5efnZ1100UUlnmVZlhUZGVmq/eebOXOmJclat26da19hYaHVu3dvS5I1f/78Evd8++23LS8vL6t58+ZWRkZGqT8TSdbIkSOto0ePuo5t2bLF8vHxsZo2bWrl5OSU2xYAAACUjTEpY1IAlcf0bQCN1vvvv6/vvvtON9xwg+68884SlQb79++vBx54QKdOndLSpUtLXevv76/nn39eAQEBpY717t1bffr0KbX/0ksv1ZQpU7R371599913NW5/QkKCkpOTFRUVpUcffbRE+6+99lpNnjxZOTk5WrJkSalrvby89PLLL5f45nvgwIGaOHGiTp8+rW+++abG7QMAAMCFMSZlTAo0VkzfBtBoxcfHS5ImT55c5nHnlJqy1sEZMGCA2rVrV+69c3Nz9cknn+jrr7/W0aNHlZeXJ8lMbZGklJQU9e7duybN18aNGyVJU6dOlbe3d6nj06dP18qVK7Vx40bNmzevxLFOnTqpa9eupa5x7ktPT69R2wAAAFA5jEkZkwKNFUFJAI3WgQMHJJkB1NSpU8s9LzMzs9S+jh07lnt+cnKyrrzyStf9y5KTk1Ppdpbnxx9/lKQSi4+fz7nfed752rdvX+Y1gYGBkswAFgAAAHWPMWlpjEmBxoGgJIBGq6CgQJI0ceJEhYaGlnte9+7dS+0ra4qMJFmWpeuuu04HDhxQXFyc4uLi1LlzZwUGBsrhcOjPf/6zFixYUKvVBM+fIlPZ4xe6BgAAAO7BmBRAY0VQEkCj5fxmNi4uTldeeWWt3HPXrl3atWuXBg4cqEWLFpU6vm/fvlp5jiS1bdtWkrR///4yjx88eFCSFBERUWvPBAAAQO1iTAqgsaLQDYAGy8/PT5KUn59f5vHx48dLklavXl1rzzx+/LiksqeiHD9+3LVm0C9dqK1lGTlypCRp+fLlrm/Yz+dcDN15HgAAANyPMSljUgBlIygJoMEKCQmRr6+v9u7dW+YA6dprr1X37t312muv6cknn9S5c+dKHM/Ly9PKlStdC4FXRpcuXeTl5aW1a9cqJSXFtf/s2bOKi4vTzz//XOZ1zm+Yd+/eXelnjRkzRr1799b+/fv1l7/8pcT0m9WrV2vlypUKDAzUzTffXOl7AgAAoHYxJmVMCqBsBCUBNFh+fn6aMGGCMjIy1LdvX82YMUOzZs3SkiVLJEk+Pj5atWqVOnTooHnz5ikyMlITJkzQddddp6FDhyosLEzXXHON9u7dW+lnhoaG6pZbblF2drb69u2rSZMmacqUKerUqZPWrl1b7mDMOVVn3LhxuuGGGzRr1qxS1Ql/yeFw6M0331Tr1q31+OOPq1evXpo2bZpGjBih3/zmN/Ly8tKrr76q8PDwSrcfAAAAtYsxKWNSAGUjKAmgQXv55Zc1ffp0HTt2TG+99ZZeeeUVrV+/3nW8e/fuSkpK0kMPPaTQ0FBt2rRJH374oY4ePapRo0ZpyZIlrik1lbVo0SL94x//UFRUlD7//HNt3LhR48eP1zfffKPIyMgyr7nzzjt1//33KzAwUCtWrNArr7yiZcuWXfBZvXv31rZt2/S73/1OJ0+e1DvvvKPdu3dr8uTJ+uKLLzRlypQqtR0AAAC1jzEpY1IApTms2iy3BQAAAAAAAAAXQKYkAAAAAAAAALciKAkAAAAAAADArQhKAgAAAAAAAHArgpIAAAAAAAAA3IqgJAAAAAAAAAC3IigJAAAAAAAAwK0ISgIAAAAAAABwK4KSAAAAAAAAANyKoCQAAAAAAAAAtyIoCQAAAAAAAMCtCEoCAAAAAAAAcCuCkgAAAAAAAADciqAkAAAAAAAAALf6/xL0tm04q5L5AAAAAElFTkSuQmCC",
- "text/plain": [
- "