diff --git a/eiuie/consolidate_dataset.py b/eiuie/consolidate_dataset.py new file mode 100644 index 0000000..7de28ae --- /dev/null +++ b/eiuie/consolidate_dataset.py @@ -0,0 +1,53 @@ +import numpy as np +import pandas as pd +import cv2 + + +# # Text content to be written in the file +# text_content = "This is an example ASCII text that will be written to a file." +# +# # source path and name +# data_path = "../data/" +# +# # File path and name +# file_path = "../data/dataset.txt" +# +# # Writing text content to a .txt file in ASCII encoding +# with open(file_path, 'w') as file: +# file.write(text_content) + + +def image_to_pandas(source_path) -> pd.DataFrame: + """ + Convert image to pandas dataframe. + """ + + # Path to the image file + path_original = source_path + "lol_dataset/our485/" + path_retinex = source_path + "intermediate/retinex/" + path_unsharp = source_path + "intermediate/unsharp_masking/" + path_homomorphic = source_path + "intermediate/homomorphic_filtering/" + + # Read same image in each folder + for i in range(1, 486): + image_original = cv2.imread(path_original + str(i) + ".png") + image_retinex = cv2.imread(path_retinex + str(i) + ".png") + image_unsharp = cv2.imread(path_unsharp + str(i) + ".png") + image_homomorphic = cv2.imread(path_homomorphic + str(i) + ".png") + + # reshape image to 2D array + image2D_original = image_original.reshape(-1, image_original.shape[-1]) + image2D_retinex = image_retinex.reshape(-1, image_retinex.shape[-1]) + image2D_unsharp = image_unsharp.reshape(-1, image_unsharp.shape[-1]) + image2D_homomorphic = image_homomorphic.reshape(-1, image_homomorphic.shape[-1]) + + # convert to single pandas dataframe + data = { + "original": image2D_original, + "retinex": image2D_retinex, + "unsharp": image2D_unsharp, + "homomorphic": image2D_homomorphic, + } + df = pd.DataFrame(data) + return df +