forked from mikel-brostrom/boxmot
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevolve.py
333 lines (265 loc) · 13.6 KB
/
evolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Yolov5_StrongSORT_OSNet, GPL-3.0 license
"""
Evolve hyperparameters for the specific selected tracking method and a specific dataset.
The best set of hyperparameters is written to the config file of the selected tracker
(trackers/<tracking-method>/configs). Tracker parameter importance and pareto front plots
are generated as well.
Usage:
$ python3 evolve.py --tracking-method strongsort --benchmark MOT17 --device 0,1,2,3 --n-trials 100
--tracking-method ocsort --benchmark MOT16 --n-trials 1000
"""
import os
import sys
import logging
import argparse
import yaml
import re
from pathlib import Path
from val import Evaluator
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov8') not in sys.path:
sys.path.append(str(ROOT / 'yolov8')) # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from yolov8.ultralytics.yolo.utils import LOGGER
from yolov8.ultralytics.yolo.utils.checks import check_requirements, print_args
from track import run
class Objective(Evaluator):
"""Objective function to evolve best set of hyperparams for
This object is passed to an objective function and provides interfaces to overwrite
a tracker's config yaml file and the call to the objective function (evaluation on
a specific benchmark: MOT16, MOT17... and split) with a specifc set up harams.
Note:
The objective function inherits all the methods and properties from the Evaluator
which let us evolve hparams genetically for a specific dataset. Split your dataset in
half to speed up this process.
Args:
opts: the parsed script arguments
Attributes:
opts: the parsed script arguments
"""
def __init__(self, opts):
self.opt = opts
def get_new_config(self, trial):
"""Overwrites the tracking config by newly generated hparams
Args:
trial (type): represents the current process to evaluate on objective function.
Returns:
None
"""
d = {}
self.opt.conf_thres = trial.suggest_float("conf_thres", 0.35, 0.55)
if self.opt.tracking_method == 'strongsort':
iou_thresh = trial.suggest_float("iou_thresh", 0.1, 0.4)
ecc = trial.suggest_categorical("ecc", [True, False])
ema_alpha = trial.suggest_float("ema_alpha", 0.7, 0.95)
max_dist = trial.suggest_float("max_dist", 0.1, 0.4)
max_iou_dist = trial.suggest_float("max_iou_dist", 0.5, 0.95)
max_age = trial.suggest_int("max_age", 10, 150, step=10)
n_init = trial.suggest_int("n_init", 1, 3, step=1)
mc_lambda = trial.suggest_float("mc_lambda", 0.90, 0.999)
nn_budget = trial.suggest_categorical("nn_budget", [100])
max_unmatched_preds = trial.suggest_categorical("max_unmatched_preds", [0])
d['strongsort'] = \
{
'ecc': ecc,
'mc_lambda': mc_lambda,
'ema_alpha': ema_alpha,
'max_dist': max_dist,
'max_iou_dist': max_iou_dist,
'max_unmatched_preds': max_unmatched_preds,
'max_age': max_age,
'n_init': n_init,
'nn_budget': nn_budget
}
elif self.opt.tracking_method == 'botsort':
track_high_thresh = trial.suggest_float("track_high_thresh", 0.2, 0.7)
new_track_thresh = trial.suggest_float("new_track_thresh", 0.1, 0.8)
track_buffer = trial.suggest_int("track_buffer", 20, 80, step=10)
match_thresh = trial.suggest_float("match_thresh", 0.1, 0.9)
proximity_thresh = trial.suggest_float("proximity_thresh", 0.25, 0.75)
appearance_thresh = trial.suggest_float("appearance_thresh", 0.1, 0.8)
cmc_method = trial.suggest_categorical("cmc_method", ['sparseOptFlow'])
frame_rate = trial.suggest_categorical("frame_rate", [30])
lambda_ = trial.suggest_float("lambda_", 0.97, 0.995)
d['botsort'] = \
{
'track_high_thresh': track_high_thresh,
'new_track_thresh': new_track_thresh,
'track_buffer': track_buffer,
'match_thresh': match_thresh,
'proximity_thresh': proximity_thresh,
'appearance_thresh': appearance_thresh,
'cmc_method': cmc_method,
'frame_rate': frame_rate,
'lambda_': lambda_
}
elif self.opt.tracking_method == 'bytetrack':
track_thresh = trial.suggest_float("track_thresh", 0.4, 0.6)
track_buffer = trial.suggest_int("track_buffer", 10, 60, step=10)
match_thresh = trial.suggest_float("match_thresh", 0.7, 0.9)
d['bytetrack'] = \
{
'track_thresh': self.opt.conf_thres,
'match_thresh': match_thresh,
'track_buffer': track_buffer,
'frame_rate': 30
}
elif self.opt.tracking_method == 'ocsort':
det_thresh = trial.suggest_int("det_thresh", 0.4, 0.6)
max_age = trial.suggest_int("max_age", 10, 60, step=10)
min_hits = trial.suggest_int("min_hits", 1, 5, step=1)
iou_thresh = trial.suggest_float("iou_thresh", 0.1, 0.4)
delta_t = trial.suggest_int("delta_t", 1, 5, step=1)
asso_func = trial.suggest_categorical("asso_func", ['iou', 'giou'])
inertia = trial.suggest_float("inertia", 0.1, 0.4)
use_byte = trial.suggest_categorical("use_byte", [True, False])
d['ocsort'] = \
{
'det_thresh': det_thresh,
'max_age': max_age,
'min_hits': min_hits,
'iou_thresh': iou_thresh,
'delta_t': delta_t,
'asso_func': asso_func,
'inertia': inertia,
'use_byte': use_byte,
}
# overwrite existing config for tracker
with open(self.opt.tracking_config, 'w') as f:
data = yaml.dump(d, f)
def __call__(self, trial):
"""Objective function to evolve best set of hyperparams for
Args:
trial (type): represents the current process to evaluate on objective function.
Returns:
float, float, float: HOTA, MOTA and IDF1 scores respectively
"""
# generate new set of params
self.get_new_config(trial)
# run trial, get HOTA, MOTA, IDF1 COMBINED results
results = self.run(self.opt)
# extract objective results of current trial
combined_results = [results.get(key) for key in self.opt.objectives]
return combined_results
def print_best_trial_metric_results(study, objectives):
"""Print the main MOTA metric (HOTA, MOTA, IDF1) results
Args:
study : the complete hyperparameter search study
Returns:
None
"""
for ob in enumerate(objectives):
trial_with_highest_ob = max(study.best_trials, key=lambda t: t.values[0])
print(f"Trial with highest {ob}: ")
print(f"\tnumber: {trial_with_highest_ob.number}")
print(f"\tparams: {trial_with_highest_ob.params}")
print(f"\tvalues: {trial_with_highest_ob.values}")
def save_plots(opt, study, objectives):
"""Print the main MOTA metric (HOTA, MOTA, IDF1) results
Args:
opt: the parsed script arguments
study : the complete hyperparameter search study
Returns:
None
"""
if len(objectives) > 1:
fig = optuna.visualization.plot_pareto_front(study, target_names=objectives)
fig.write_html("pareto_front_" + opt.tracking_method + ".html")
else:
fig = optuna.visualization.plot_optimization_history(study)
fig.write_html("plot_optim_history_" + opt.tracking_method + ".html")
for i, ob in enumerate(objectives):
if not opt.n_trials <= 1: # more than one trial needed for parameter importance
fig = optuna.visualization.plot_param_importances(study, target=lambda t: t.values[i], target_name=ob)
fig.write_html(f"{ob}_param_importances_" + opt.tracking_method + ".html")
def write_best_HOTA_params_to_config(opt, study):
"""Overwrites the config file for the selected tracking method with the
hparams from the trial resulting in the best HOTA result
Args:
opt: the parsed script arguments
study : the complete hyperparameter search study
Returns:
None
"""
trial_with_highest_HOTA = max(study.best_trials, key=lambda t: t.values[0])
d = {opt.tracking_method: trial_with_highest_HOTA.params}
with open(opt.tracking_config, 'w') as f:
f.write(f'# Trial number: {trial_with_highest_HOTA.number}\n')
f.write(f'# HOTA, MOTA, IDF1: {trial_with_highest_HOTA.values}\n')
data = yaml.dump(d, f)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-weights', type=str, default=WEIGHTS / 'yolov8m.pt', help='model.pt path(s)')
parser.add_argument('--reid-weights', type=str, default=WEIGHTS / 'osnet_x1_0_dukemtmcreid.pt')
parser.add_argument('--tracking-method', type=str, default='strongsort', help='strongsort, ocsort')
parser.add_argument('--tracking-config', type=Path, default=None)
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--project', default=ROOT / 'runs' / 'evolve', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--benchmark', type=str, default='MOT17', help='MOT16, MOT17, MOT20')
parser.add_argument('--split', type=str, default='train', help='existing project/name ok, do not increment')
parser.add_argument('--eval-existing', type=str, default='', help='evaluate existing tracker results under mot_callenge/MOTXX-YY/...')
parser.add_argument('--conf-thres', type=float, default=0.45, help='confidence threshold')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[1280], help='inference size h,w')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--n-trials', type=int, default=10, help='nr of trials for evolution')
parser.add_argument('--resume', action='store_true', help='resume hparam search')
parser.add_argument('--processes-per-device', type=int, default=2, help='how many subprocesses can be invoked per GPU (to manage memory consumption)')
parser.add_argument('--objectives', type=str, default='HOTA,MOTA,IDF1', help='set of objective metrics: HOTA,MOTA,IDF1')
opt = parser.parse_args()
opt.tracking_config = ROOT / 'trackers' / opt.tracking_method / 'configs' / (opt.tracking_method + '.yaml')
opt.objectives = opt.objectives.split(",")
device = []
for a in opt.device.split(','):
try:
a = int(a)
except ValueError:
pass
device.append(a)
opt.device = device
print_args(vars(opt))
return opt
class ContinuousStudySave:
"""Helper class for saving the study after each trial. This is to avoid
loosing partial study results if the study is stopped before finishing
Args:
tracking_method: the tracking method name
Attributes:
tracking_method: the tracking method name
"""
def __init__(self, tracking_method):
self.tracking_method = tracking_method
def __call__(self, study, trial):
joblib.dump(study, opt.tracking_method + "_study.pkl")
if __name__ == "__main__":
opt = parse_opt()
check_requirements(('optuna', 'plotly', 'kaleido', 'joblib', 'pycocotools'))
import joblib
import optuna
if opt.resume:
# resume from last saved study
study = joblib.load(opt.tracking_method + "_study.pkl")
else:
# A fast and elitist multiobjective genetic algorithm: NSGA-II
# https://ieeexplore.ieee.org/document/996017
study = optuna.create_study(directions=['maximize']*len(opt.objectives))
# first trial with params in yaml file, evolved for MOT17
with open(opt.tracking_config, 'r') as f:
params = yaml.load(f, Loader=yaml.loader.SafeLoader)
study.enqueue_trial(params[opt.tracking_config.stem])
print(study.trials)
continuous_study_save_cb = ContinuousStudySave(opt.tracking_method)
study.optimize(Objective(opt), n_trials=opt.n_trials, callbacks=[continuous_study_save_cb])
# write the parameters to the config file of the selected tracking method
write_best_HOTA_params_to_config(opt, study)
# save hps study, all trial results are stored here, used for resuming
joblib.dump(study, opt.tracking_method + "_study.pkl")
# plots
save_plots(opt, study, opt.objectives)
print_best_trial_metric_results(study, opt.objectives)