Skip to content
/ APGCC Public
forked from AaronCIH/APGCC

ECCV24 - Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance

License

Notifications You must be signed in to change notification settings

CnoyZ/APGCC

This branch is 2 commits ahead of AaronCIH/APGCC:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

aede796 · Dec 5, 2024

History

19 Commits
Dec 5, 2024
Jul 21, 2024
Jul 21, 2024
Jul 12, 2024
Jul 24, 2024
Jul 21, 2024

Repository files navigation

APGCC: Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance (ECCV)

Official repository for APGCC: Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance.

Project Page | Paper | Video | Code

Updates

  • July 2024: ✨ Inference code has been released!
  • July 2024: ✨ APGCC was accepted into ECCV 2024!

Introduction

Crowd counting and localization have become increasingly important in computer vision due to their wide-ranging applications. While point-based strategies have been widely used in crowd counting methods, they face a significant challenge, i.e., the lack of an effective learning strategy to guide the matching process. This deficiency leads to instability in matching point proposals to target points, adversely affecting overall performance. To address this issue, we introduce an effective approach to stabilize the proposal-target matching in point-based methods.

We propose Auxiliary Point Guidance (APG) to provide clear and effective guidance for proposal selection and optimization, addressing the core issue of matching uncertainty. Additionally, we develop Implicit Feature Interpolation (IFI) to enable adaptive feature extraction in diverse crowd scenarios, further enhancing the model's robustness and accuracy. Extensive experiments demonstrate the effectiveness of our approach, showing significant improvements in crowd counting and localization performance, particularly under challenging conditions.

image

Setup

  1. Create a conda environment and activate it.
conda create --name apgcc python=3.8 -y
conda activatre apgcc
  1. Clone and enter into repo directory.
git clone https://github.com/AaronCIH/APGCC.git
cd APGCC
  1. Install remaining dependencies
pip install -r requirements.txt
  1. Download pretrained APGCC checkpoints and place them into path (./apgcc/outputs/).
cd apgcc
wget --no-check-certificate 'https://docs.google.com/uc?export=download&id=1pEvn5RrvmDqVJUDZ4c9-rCJcl2I7bRhu' -O ./output/SHHA_best.pth

Prepare Dataset

We utilize a list file to collect all the imageas and the corresponding ground truth point annotations in a counting dataset. Please see this page to download the dataset, and then use the below command to create the data list.

cd apgcc
python pre_process_label.py $[src_path] $[dataset] $[output_path]

where [src_path] is the dataset path, [dataset] is the dataset name (e.g., 'SHHA', 'SHHB', 'NWPU'), and the [output_path] specify the output folder.

Data Structures:

DATA_ROOT/
        |->train/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->test/
        |    |->scene01/
        |    |->scene02/
        |    |->...
        |->train.list
        |->test.list

DATA_ROOT is the path containing the counting datasets.

Annotations Format:

x1 y1
x2 y2
...

Inference

  • For SHHA dataset:
cd apgcc
bash test.sh 

In default, the results will be saved to "./output/", and you can customize the inference by the command.

python main.py -t -c $[config] TEST.WEIGHT $[checkpoint] OUTPUT_DIR $[output path] TEST.THRESHOLD $[threshold]

where [config] specifies the initial configuration and defaults as "./configs/SHHA_test.yml", [checkpoint] is your pretrained checkpoint, [output path] specifies the output folder, and [threshold] can filter different confidence levels. The more configure instruction please see the "./configs/SHHA_test.yml" files.

Performance

imageimage

Visual Comparison

Quantitative Comparison

Evaluation on Crowd Counting

image

image image

Evaluation on Crowd Localization

image image

Reference

If you find this work useful, please consider citing us!

@article{chen2024improving,
  title={Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance},
  author={Chen, I and Chen, Wei-Ting and Liu, Yu-Wei and Yang, Ming-Hsuan and Kuo, Sy-Yen},
  journal={arXiv preprint arXiv:2405.10589},
  year={2024}
}

About

ECCV24 - Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%