This repository has been archived by the owner on Dec 7, 2023. It is now read-only.
forked from pytorch/audio
-
Notifications
You must be signed in to change notification settings - Fork 1
/
autograd_impl.py
380 lines (339 loc) · 13.3 KB
/
autograd_impl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from functools import partial
from typing import Callable, Tuple
import torch
import torchaudio.functional as F
from parameterized import parameterized
from torch import Tensor
from torch.autograd import gradcheck, gradgradcheck
from torchaudio_unittest.common_utils import get_spectrogram, get_whitenoise, rnnt_utils, TestBaseMixin
class Autograd(TestBaseMixin):
def assert_grad(
self,
transform: Callable[..., Tensor],
inputs: Tuple[torch.Tensor],
*,
enable_all_grad: bool = True,
):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=self.complex_dtype if i.is_complex() else self.dtype, device=self.device)
if enable_all_grad:
i.requires_grad = True
inputs_.append(i)
assert gradcheck(transform, inputs_)
assert gradgradcheck(transform, inputs_)
def test_lfilter_x(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
x.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)
def test_lfilter_a(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
a.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)
def test_lfilter_b(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
b.requires_grad = True
self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False)
def test_lfilter_all_inputs(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
self.assert_grad(F.lfilter, (x, a, b))
def test_lfilter_filterbanks(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=3)
a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]])
b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]])
self.assert_grad(partial(F.lfilter, batching=False), (x, a, b))
def test_lfilter_batching(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]])
b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]])
self.assert_grad(F.lfilter, (x, a, b))
def test_filtfilt_a(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
a.requires_grad = True
self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False)
def test_filtfilt_b(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
b.requires_grad = True
self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False)
def test_filtfilt_all_inputs(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
self.assert_grad(F.filtfilt, (x, a, b))
def test_filtfilt_batching(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2)
a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]])
b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]])
self.assert_grad(F.filtfilt, (x, a, b))
def test_biquad(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=1)
a = torch.tensor([0.7, 0.2, 0.6])
b = torch.tensor([0.4, 0.2, 0.9])
self.assert_grad(F.biquad, (x, b[0], b[1], b[2], a[0], a[1], a[2]))
@parameterized.expand(
[
(800, 0.7, True),
(800, 0.7, False),
]
)
def test_band_biquad(self, central_freq, Q, noise):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.band_biquad, (x, sr, central_freq, Q, noise))
@parameterized.expand(
[
(800, 0.7, 10),
(800, 0.7, -10),
]
)
def test_bass_biquad(self, central_freq, Q, gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
self.assert_grad(F.bass_biquad, (x, sr, gain, central_freq, Q))
@parameterized.expand(
[
(3000, 0.7, 10),
(3000, 0.7, -10),
]
)
def test_treble_biquad(self, central_freq, Q, gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
self.assert_grad(F.treble_biquad, (x, sr, gain, central_freq, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_allpass_biquad(self, central_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.allpass_biquad, (x, sr, central_freq, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_lowpass_biquad(self, cutoff_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
cutoff_freq = torch.tensor(cutoff_freq)
Q = torch.tensor(Q)
self.assert_grad(F.lowpass_biquad, (x, sr, cutoff_freq, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_highpass_biquad(self, cutoff_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
cutoff_freq = torch.tensor(cutoff_freq)
Q = torch.tensor(Q)
self.assert_grad(F.highpass_biquad, (x, sr, cutoff_freq, Q))
@parameterized.expand(
[
(800, 0.7, True),
(800, 0.7, False),
]
)
def test_bandpass_biquad(self, central_freq, Q, const_skirt_gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.bandpass_biquad, (x, sr, central_freq, Q, const_skirt_gain))
@parameterized.expand(
[
(800, 0.7, 10),
(800, 0.7, -10),
]
)
def test_equalizer_biquad(self, central_freq, Q, gain):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
gain = torch.tensor(gain)
self.assert_grad(F.equalizer_biquad, (x, sr, central_freq, gain, Q))
@parameterized.expand(
[
(
800,
0.7,
),
]
)
def test_bandreject_biquad(self, central_freq, Q):
sr = 22050
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
central_freq = torch.tensor(central_freq)
Q = torch.tensor(Q)
self.assert_grad(F.bandreject_biquad, (x, sr, central_freq, Q))
def test_deemph_biquad(self):
x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=1)
self.assert_grad(F.deemph_biquad, (x, 44100))
def test_flanger(self):
x = get_whitenoise(sample_rate=8000, duration=0.01, n_channels=1)
self.assert_grad(F.flanger, (x, 44100))
def test_gain(self):
x = get_whitenoise(sample_rate=8000, duration=0.01, n_channels=1)
self.assert_grad(F.gain, (x, 1.1))
def test_overdrive(self):
x = get_whitenoise(sample_rate=8000, duration=0.01, n_channels=1)
self.assert_grad(F.gain, (x,))
@parameterized.expand([(True,), (False,)])
def test_phaser(self, sinusoidal):
sr = 8000
x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1)
self.assert_grad(F.phaser, (x, sr, sinusoidal))
@parameterized.expand(
[
(True,),
(False,),
]
)
def test_psd(self, use_mask):
specgram = torch.rand(4, 10, 5, dtype=torch.cfloat)
if use_mask:
mask = torch.rand(10, 5)
else:
mask = None
self.assert_grad(F.psd, (specgram, mask))
def test_mvdr_weights_souden(self):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
self.assert_grad(F.mvdr_weights_souden, (psd_speech, psd_noise, 0))
def test_mvdr_weights_souden_with_tensor(self):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
reference_channel = torch.zeros(channel)
reference_channel[0].fill_(1)
self.assert_grad(F.mvdr_weights_souden, (psd_speech, psd_noise, reference_channel))
def test_mvdr_weights_rtf(self):
batch_size = 2
channel = 4
n_fft_bin = 10
rtf = torch.rand(batch_size, n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(batch_size, n_fft_bin, channel, channel, dtype=self.complex_dtype)
self.assert_grad(F.mvdr_weights_rtf, (rtf, psd_noise, 0))
def test_mvdr_weights_rtf_with_tensor(self):
batch_size = 2
channel = 4
n_fft_bin = 10
rtf = torch.rand(batch_size, n_fft_bin, channel, dtype=self.complex_dtype)
psd_noise = torch.rand(batch_size, n_fft_bin, channel, channel, dtype=self.complex_dtype)
reference_channel = torch.zeros(batch_size, channel)
reference_channel[..., 0].fill_(1)
self.assert_grad(F.mvdr_weights_rtf, (rtf, psd_noise, reference_channel))
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
self.assert_grad(F.rtf_power, (psd_speech, psd_noise, 0, n_iter, diagonal_loading))
@parameterized.expand(
[
(1, True),
(3, False),
]
)
def test_rtf_power_with_tensor(self, n_iter, diagonal_loading):
channel = 4
n_fft_bin = 5
psd_speech = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
psd_noise = torch.rand(n_fft_bin, channel, channel, dtype=torch.cfloat)
reference_channel = torch.zeros(channel)
reference_channel[0].fill_(1)
self.assert_grad(F.rtf_power, (psd_speech, psd_noise, reference_channel, n_iter, diagonal_loading))
def test_apply_beamforming(self):
sr = 8000
n_fft = 400
batch_size, num_channels = 2, 3
n_fft_bin = n_fft // 2 + 1
x = get_whitenoise(sample_rate=sr, duration=0.05, n_channels=batch_size * num_channels)
specgram = get_spectrogram(x, n_fft=n_fft, hop_length=100)
specgram = specgram.view(batch_size, num_channels, n_fft_bin, specgram.size(-1))
beamform_weights = torch.rand(batch_size, n_fft_bin, num_channels, dtype=torch.cfloat)
self.assert_grad(F.apply_beamforming, (beamform_weights, specgram))
class AutogradFloat32(TestBaseMixin):
def assert_grad(
self,
transform: Callable[..., Tensor],
inputs: Tuple[torch.Tensor],
enable_all_grad: bool = True,
):
inputs_ = []
for i in inputs:
if torch.is_tensor(i):
i = i.to(dtype=self.dtype, device=self.device)
if enable_all_grad:
i.requires_grad = True
inputs_.append(i)
# gradcheck with float32 requires higher atol and epsilon
assert gradcheck(transform, inputs, eps=1e-3, atol=1e-3, nondet_tol=0.0)
@parameterized.expand(
[
(rnnt_utils.get_B1_T10_U3_D4_data,),
(rnnt_utils.get_B2_T4_U3_D3_data,),
(rnnt_utils.get_B1_T2_U3_D5_data,),
]
)
def test_rnnt_loss(self, data_func):
def get_data(data_func, device):
data = data_func()
if type(data) == tuple:
data = data[0]
return data
data = get_data(data_func, self.device)
inputs = (
data["logits"].to(torch.float32), # logits
data["targets"], # targets
data["logit_lengths"], # logit_lengths
data["target_lengths"], # target_lengths
data["blank"], # blank
-1, # clamp
)
self.assert_grad(F.rnnt_loss, inputs, enable_all_grad=False)