This repository has been archived by the owner on Dec 7, 2023. It is now read-only.
forked from pytorch/audio
-
Notifications
You must be signed in to change notification settings - Fork 1
/
voxceleb1_test.py
193 lines (159 loc) · 7.18 KB
/
voxceleb1_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
from torchaudio.datasets import voxceleb1
from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase
_NUM_SPEAKERS = 3
_NUM_YOUTUBE = 5
def _save_sample(dataset_dir: str, sample_rate: int, speaker_id: int, youtube_id: int, utterance_id: int, seed: int):
"""Create and save audio samples to corresponding files
Args:
dataset_dir (str): The directory of the dataset.
sample_rate (int): Sample rate of waveform.
speaker_id (int): The index of speaker sub directory.
youtube_id (int): The index of youtube sub directory.
utterance_id (int): The utterance index.
seed (int): The seed to generate the waveform.
Returns:
Tuple[torch.Tensor, int, int, str, str]
The waveform Tensor, sample rate, speaker label, file_name, and the file path.
"""
# add random string before youtube_id
youtube_id = "Zxhsj" + str(youtube_id)
path = os.path.join(dataset_dir, "id10" + str(speaker_id), youtube_id)
os.makedirs(path, exist_ok=True)
filename = str(utterance_id) + ".wav"
file_path = os.path.join(path, filename)
waveform = get_whitenoise(
sample_rate=sample_rate,
duration=0.01,
n_channels=1,
seed=seed,
)
save_wav(file_path, waveform, sample_rate)
file_name = "-".join(["id10" + str(speaker_id), youtube_id, str(utterance_id)])
file_path = "/".join(["id10" + str(speaker_id), youtube_id, str(utterance_id) + ".wav"])
return waveform, sample_rate, speaker_id, file_name, file_path
def get_mock_iden_dataset(root_dir: str, meta_file: str):
"""Get the mocked dataset for VoxCeleb1Identification dataset.
Args:
root_dir (str): Directory to the mocked dataset
meta_file (str): The file name which stores the file list.
Returns:
Tuple[List, List, List]:
The mocked samples for train, dev, and test subsets.
"""
os.makedirs(root_dir, exist_ok=True)
wav_dir = os.path.join(root_dir, "wav")
os.makedirs(wav_dir, exist_ok=True)
mocked_train_samples, mocked_dev_samples, mocked_test_samples = [], [], []
sample_rate = 16000
seed = 0
idx = 1
with open(os.path.join(root_dir, meta_file), "w") as f:
for speaker_id in range(_NUM_SPEAKERS):
for youtube_id in range(_NUM_YOUTUBE):
waveform, sample_rate, speaker_id, file_name, file_path = _save_sample(
wav_dir, sample_rate, speaker_id, youtube_id, idx, seed
)
sample = (waveform, sample_rate, speaker_id, file_name)
if idx % 1 == 0:
mocked_train_samples.append(sample)
f.write(f"1 {file_path}\n")
elif idx % 2 == 0:
mocked_dev_samples.append(sample)
f.write(f"2 {file_path}\n")
else:
mocked_test_samples.append(sample)
f.write(f"3 {file_path}\n")
idx += 1
return (
mocked_train_samples,
mocked_dev_samples,
mocked_test_samples,
)
def get_mock_veri_dataset(root_dir: str, meta_file: str):
"""Get the mocked dataset for VoxCeleb1Verification dataset.
Args:
root_dir (str): Directory to the mocked dataset
meta_file (str): The file name which stores the file list.
Returns:
List[Sample]:
The mocked samples.
"""
os.makedirs(root_dir, exist_ok=True)
wav_dir = os.path.join(root_dir, "wav")
os.makedirs(wav_dir, exist_ok=True)
mocked_samples = []
sample_rate = 16000
seed = 0
idx = 1
with open(os.path.join(root_dir, meta_file), "w") as f:
for speaker_id1 in range(_NUM_SPEAKERS):
for speaker_id2 in range(_NUM_SPEAKERS):
for youtube_id in range(_NUM_YOUTUBE):
waveform_spk1, sample_rate, _, file_name_spk1, file_path_spk1 = _save_sample(
wav_dir, sample_rate, speaker_id1, youtube_id, idx, seed
)
waveform_spk2, sample_rate, _, file_name_spk2, file_path_spk2 = _save_sample(
wav_dir, sample_rate, speaker_id1, youtube_id, idx + 1, seed
)
if speaker_id1 == speaker_id2:
label = 1
else:
label = 0
sample = (waveform_spk1, waveform_spk2, sample_rate, label, file_name_spk1, file_name_spk2)
mocked_samples.append(sample)
f.write(f"{label} {file_path_spk1} {file_path_spk2}\n")
idx += 2
return mocked_samples
class TestVoxCeleb1Identification(TempDirMixin, TorchaudioTestCase):
root_dir = None
backend = "default"
meta_file = "iden_list.txt"
train_samples = {}
dev_samples = {}
test_samples = {}
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
(cls.train_samples, cls.dev_samples, cls.test_samples) = get_mock_iden_dataset(cls.root_dir, cls.meta_file)
def _testVoxCeleb1Identification(self, dataset, data_samples):
num_samples = 0
for i, (waveform, sample_rate, speaker_id, file_id) in enumerate(dataset):
self.assertEqual(waveform, data_samples[i][0])
assert sample_rate == data_samples[i][1]
assert speaker_id == data_samples[i][2]
assert file_id == data_samples[i][3]
num_samples += 1
assert num_samples == len(data_samples)
def testVoxCeleb1SubsetTrain(self):
dataset = voxceleb1.VoxCeleb1Identification(self.root_dir, subset="train", meta_url=self.meta_file)
self._testVoxCeleb1Identification(dataset, self.train_samples)
def testVoxCeleb1SubsetDev(self):
dataset = voxceleb1.VoxCeleb1Identification(self.root_dir, subset="dev", meta_url=self.meta_file)
self._testVoxCeleb1Identification(dataset, self.dev_samples)
def testVoxCeleb1SubsetTest(self):
dataset = voxceleb1.VoxCeleb1Identification(self.root_dir, subset="test", meta_url=self.meta_file)
self._testVoxCeleb1Identification(dataset, self.test_samples)
class TestVoxCeleb1Verification(TempDirMixin, TorchaudioTestCase):
root_dir = None
backend = "default"
meta_file = "veri_test.txt"
train_samples = {}
dev_samples = {}
test_samples = {}
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
(cls.samples) = get_mock_veri_dataset(cls.root_dir, cls.meta_file)
def testVoxCeleb1Verification(self):
dataset = voxceleb1.VoxCeleb1Verification(self.root_dir, meta_url=self.meta_file)
num_samples = 0
for i, (waveform_spk1, waveform_spk2, sample_rate, label, file_id_spk1, file_id_spk2) in enumerate(dataset):
self.assertEqual(waveform_spk1, self.samples[i][0])
self.assertEqual(waveform_spk2, self.samples[i][1])
assert sample_rate == self.samples[i][2]
assert label == self.samples[i][3]
assert file_id_spk1 == self.samples[i][4]
assert file_id_spk2 == self.samples[i][5]
num_samples += 1
assert num_samples == len(self.samples)