This repository has been archived by the owner on Dec 7, 2023. It is now read-only.
forked from pytorch/audio
-
Notifications
You must be signed in to change notification settings - Fork 1
/
speechcommands_test.py
150 lines (132 loc) · 4.98 KB
/
speechcommands_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
from pathlib import Path
from torchaudio.datasets import speechcommands
from torchaudio_unittest.common_utils import get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase
_LABELS = [
"bed",
"bird",
"cat",
"dog",
"down",
"eight",
"five",
"follow",
"forward",
"four",
"go",
"happy",
"house",
"learn",
"left",
"marvin",
"nine",
"no",
"off",
"on",
"one",
"right",
"seven",
"sheila",
"six",
"stop",
"three",
"tree",
"two",
"up",
"visual",
"wow",
"yes",
"zero",
]
def get_mock_dataset(dataset_dir):
"""
dataset_dir: directory to the mocked dataset
"""
mocked_samples = []
mocked_train_samples = []
mocked_valid_samples = []
mocked_test_samples = []
os.makedirs(dataset_dir, exist_ok=True)
sample_rate = 16000 # 16kHz sample rate
seed = 0
valid_file = os.path.join(dataset_dir, "validation_list.txt")
test_file = os.path.join(dataset_dir, "testing_list.txt")
with open(valid_file, "w") as valid, open(test_file, "w") as test:
for label in _LABELS:
path = os.path.join(dataset_dir, label)
os.makedirs(path, exist_ok=True)
for j in range(6):
# generate hash ID for speaker
speaker = "{:08x}".format(j)
for utterance in range(3):
filename = f"{speaker}{speechcommands.HASH_DIVIDER}{utterance}.wav"
file_path = os.path.join(path, filename)
seed += 1
data = get_whitenoise(
sample_rate=sample_rate,
duration=0.01,
n_channels=1,
dtype="int16",
seed=seed,
)
save_wav(file_path, data, sample_rate)
sample = (
normalize_wav(data),
sample_rate,
label,
speaker,
utterance,
)
mocked_samples.append(sample)
if j < 2:
mocked_train_samples.append(sample)
elif j < 4:
valid.write(f"{label}/{filename}\n")
mocked_valid_samples.append(sample)
elif j < 6:
test.write(f"{label}/{filename}\n")
mocked_test_samples.append(sample)
return mocked_samples, mocked_train_samples, mocked_valid_samples, mocked_test_samples
class TestSpeechCommands(TempDirMixin, TorchaudioTestCase):
backend = "default"
root_dir = None
samples = []
train_samples = []
valid_samples = []
test_samples = []
@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
dataset_dir = os.path.join(cls.root_dir, speechcommands.FOLDER_IN_ARCHIVE, speechcommands.URL)
cls.samples, cls.train_samples, cls.valid_samples, cls.test_samples = get_mock_dataset(dataset_dir)
def _testSpeechCommands(self, dataset, data_samples):
num_samples = 0
for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(dataset):
self.assertEqual(data, data_samples[i][0], atol=5e-5, rtol=1e-8)
assert sample_rate == data_samples[i][1]
assert label == data_samples[i][2]
assert speaker_id == data_samples[i][3]
assert utterance_number == data_samples[i][4]
num_samples += 1
assert num_samples == len(data_samples)
def testSpeechCommands_str(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir)
self._testSpeechCommands(dataset, self.samples)
def testSpeechCommands_path(self):
dataset = speechcommands.SPEECHCOMMANDS(Path(self.root_dir))
self._testSpeechCommands(dataset, self.samples)
def testSpeechCommandsSubsetTrain(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")
self._testSpeechCommands(dataset, self.train_samples)
def testSpeechCommandsSubsetValid(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")
self._testSpeechCommands(dataset, self.valid_samples)
def testSpeechCommandsSubsetTest(self):
dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")
self._testSpeechCommands(dataset, self.test_samples)
def testSpeechCommandsSum(self):
dataset_all = speechcommands.SPEECHCOMMANDS(self.root_dir)
dataset_train = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training")
dataset_valid = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation")
dataset_test = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing")
assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == len(dataset_all)