-
Notifications
You must be signed in to change notification settings - Fork 38
/
compress_good_bad.txt
executable file
·3488 lines (3488 loc) · 637 KB
/
compress_good_bad.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1910.00370 Sub-Architecture Ensemble Pruning in Neural Architecture Search Machine Learning (cs.LG) Yijun Bian, Qingquan Song, Mengnan Du, Jun Yao, Huanhuan Chen, Xia Hu
1910.00700 NESTA: Hamming Weight Compression-Based Neural Proc. Engine Machine Learning (cs.LG) Ali Mirzaeian, Houman Homayoun, Avesta Sasan
1910.00762 Accelerating Deep Learning by Focusing on the Biggest Losers Machine Learning (cs.LG) Angela H. Jiang, Daniel L.-K. Wong, Giulio Zhou, David G. Andersen, Jeffrey Dean, Gregory R. Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C. Lipton, Padmanabhan Pillai
1910.01108 DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter Computation and Language (cs.CL) Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf
1910.01196 Accelerating Data Loading in Deep Neural Network Training Machine Learning (cs.LG) Chih-Chieh Yang, Guojing Cong
1910.01255 Distillation $\approx$ Early Stopping? Harvesting Dark Knowledge Utilizing Anisotropic Information Retrieval For Overparameterized Neural Network Machine Learning (stat.ML) Bin Dong, Jikai Hou, Yiping Lu, Zhihua Zhang
1910.01348 On the Efficacy of Knowledge Distillation Machine Learning (cs.LG) Jang Hyun Cho, Bharath Hariharan
1910.01740 AntMan: Sparse Low-Rank Compression to Accelerate RNN inference Machine Learning (cs.LG) Samyam Rajbhandari, Harsh Shrivastava, Yuxiong He
1910.01769 Distilling Transformers into Simple Neural Networks with Unlabeled Transfer Data Computation and Language (cs.CL) Subhabrata Mukherjee, Ahmed Hassan Awadallah
1910.02115 Privacy Preserving Stochastic Channel-Based Federated Learning with Neural Network Pruning Machine Learning (cs.LG) Rulin Shao, Hui Liu, Dianbo Liu
1910.02551 Improving Dataset Distillation Machine Learning (cs.LG) Ilia Sucholutsky, Matthias Schonlau
1910.02558 Pushing the limits of RNN Compression Machine Learning (cs.LG) Urmish Thakker, Igor Fedorov, Jesse Beu, Dibakar Gope, Chu Zhou, Ganesh Dasika, Matthew Mattina
1910.02747 Deep Neural Network Compression for Image Classification and Object Detection Computer Vision and Pattern Recognition (cs.CV) Georgios Tzelepis, Ahraz Asif, Saimir Baci, Selcuk Cavdar, Eren Erdal Aksoy
1910.03197 Accelerating Federated Learning via Momentum Gradient Descent Machine Learning (cs.LG) Wei Liu, Li Chen, Yunfei Chen, Wenyi Zhang
1910.03539 Pruning Algorithms for Low-Dimensional Non-metric k-NN Search: A Case Study Information Retrieval (cs.IR) Leonid Boytsov, Eric Nyberg
1910.03581 FedMD: Heterogenous Federated Learning via Model Distillation Machine Learning (cs.LG) Daliang Li, Junpu Wang
1910.03723 Knowledge Distillation from Internal Representations Computation and Language (cs.CL) Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, Edward Guo
1910.04576 Trained Rank Pruning for Efficient Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Wenrui Dai, Yingyong Qi, Yiran Chen, Weiyao Lin, Hongkai Xiong
1910.04641 Cross-modal knowledge distillation for action recognition Computer Vision and Pattern Recognition (cs.CV) Fida Mohammad Thoker, Juergen Gall
1910.04732 Structured Pruning of Large Language Models Computation and Language (cs.CL) Ziheng Wang, Jeremy Wohlwend, Tao Lei
1910.04796 DBCSR: A Library for Dense Matrix Multiplications on Distributed GPU-Accelerated Systems Distributed, Parallel, and Cluster Computing (cs.DC) Ilia Sivkov, Alfio Lazzaro, Juerg Hutter
1910.04877 Bit Efficient Quantization for Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Prateeth Nayak, David Zhang, Sek Chai
1910.05054 Green Deep Reinforcement Learning for Radio Resource Management: Architecture, Algorithm Compression and Challenge Machine Learning (cs.LG) Zhiyong Du, Yansha Deng, Weisi Guo, Arumugam Nallanathan, Qihui Wu
1910.05057 Improving Generalization and Robustness with Noisy Collaboration in Knowledge Distillation Machine Learning (cs.LG) Elahe Arani, Fahad Sarfraz, Bahram Zonooz
1910.05422 SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks Machine Learning (cs.LG) Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, Daniela Rus
1910.05872 Rethinking Data Augmentation: Self-Supervision and Self-Distillation Machine Learning (cs.LG) Hankook Lee, Sung Ju Hwang, Jinwoo Shin
1910.05897 Learning Sparsity and Quantization Jointly and Automatically for Neural Network Compression via Constrained Optimization Machine Learning (cs.LG) Haichuan Yang, Shupeng Gui, Yuhao Zhu, Ji Liu
1910.06360 Pruning a BERT-based Question Answering Model Computation and Language (cs.CL) J.S. McCarley
1910.06591 SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference Machine Learning (cs.LG) Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, Marcin Michalski
1910.06720 Distilled embedding: non-linear embedding factorization using knowledge distillation Computation and Language (cs.CL) Vasileios Lioutas, Ahmad Rashid, Krtin Kumar, Md Akmal Haidar, Mehdi Rezagholizadeh
1910.07561 A Double Residual Compression Algorithm for Efficient Distributed Learning Machine Learning (cs.LG) Xiaorui Liu, Yao Li, Jiliang Tang, Ming Yan
1910.07939 A Stochastic Variance Reduced Nesterov's Accelerated Quasi-Newton Method Machine Learning (cs.LG) Sota Yasuda, Shahrzad Mahboubi, S. Indrapriyadarsini, Hiroshi Ninomiya, Hideki Asai
1910.08237 Mirror Descent View for Neural Network Quantization Machine Learning (cs.LG) Thalaiyasingam Ajanthan, Kartik Gupta, Philip H. S. Torr, Richard Hartley, Puneet K. Dokania
1910.08381 Model Compression with Two-stage Multi-teacher Knowledge Distillation for Web Question Answering System Computation and Language (cs.CL) Ze Yang, Linjun Shou, Ming Gong, Wutao Lin, Daxin Jiang
1910.08906 Self-Adaptive Network Pruning Machine Learning (cs.LG) Jinting Chen, Zhaocheng Zhu, Cheng Li, Yuming Zhao
1910.09152 A New Framework for Multi-Agent Reinforcement Learning -- Centralized Training and Exploration with Decentralized Execution via Policy Distillation Machine Learning (cs.LG) Gang Chen
1910.09158 Implementation of a modified Nesterov's Accelerated quasi-Newton Method on Tensorflow Machine Learning (cs.LG) S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Hideki Asai
1910.09177 A Complexity Efficient DMT-Optimal Tree Pruning Based Sphere Decoding Signal Processing (eess.SP) Mohammad Neinavaie, Mostafa Derakhtian, Negar Daryanavardan, Sergiy Vorobyov
1910.09318 Directed-Weighting Group Lasso for Eltwise Blocked CNN Pruning Computer Vision and Pattern Recognition (cs.CV) Ke Zhan, Shimiao Jiang, Yu Bai, Yi Li, Xu Liu, Zhuoran Xu
1910.09347 Approximate Sampling using an Accelerated Metropolis-Hastings based on Bayesian Optimization and Gaussian Processes Machine Learning (cs.LG) Asif J. Chowdhury, Gabriel Terejanu
1910.09455 Depth-wise Decomposition for Accelerating Separable Convolutions in Efficient Convolutional Neural Networks Computer Vision and Pattern Recognition (cs.CV) Yihui He, Jianing Qian, Jianren Wang
1910.10032 GPU-Accelerated Viterbi Exact Lattice Decoder for Batched Online and Offline Speech Recognition Computation and Language (cs.CL) Hugo Braun, Justin Luitjens, Ryan Leary
1910.10699 Contrastive Representation Distillation Machine Learning (cs.LG) Yonglong Tian, Dilip Krishnan, Phillip Isola
1910.11144 A Comparative Study of Neural Network Compression Machine Learning (cs.LG) Hossein Baktash (CRISAM, SUT), Emanuele Natale (COATI), Laurent Viennot (GANG)
1910.12061 Variational Student: Learning Compact and Sparser Networks in Knowledge Distillation Framework Machine Learning (cs.LG) Srinidhi Hegde, Ranjitha Prasad, Ramya Hebbalaguppe, Vishwajith Kumar
1910.12232 Neural Network Distiller: A Python Package For DNN Compression Research Machine Learning (cs.LG) Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, Gal Novik
1910.12295 MOD: A Deep Mixture Model with Online Knowledge Distillation for Large Scale Video Temporal Concept Localization Computer Vision and Pattern Recognition (cs.CV) Rongcheng Lin, Jing Xiao, Jianping Fan
1910.12727 Layer Pruning for Accelerating Very Deep Neural Networks Machine Learning (cs.LG) Weiwei Zhang, Changsheng chen, Xuechun Wu, Jialin Gao, Di Bao, Jiwei Li, Xi Zhou
1910.12828 Blind Robust 3-D Mesh Watermarking based on Mesh Saliency and QIM quantization for Copyright Protection Multimedia (cs.MM) Mohamed Hamidi, Aladine Chetouani, Mohamed El Haziti, Mohammed El Hassouni, and Hocine Cherifi
1910.13372 Gait Event Detection in Tibial Acceleration Profiles: a Structured Learning Approach Machine Learning (cs.LG) Pieter Robberechts, Rud Derie, Pieter Van den Berghe, Joeri Gerlo, Dirk De Clercq, Veerle Segers, Jesse Davis
1910.13618 Optimal Analysis of Subset-Selection Based L_p Low Rank Approximation Machine Learning (cs.LG) Chen Dan, Hong Wang, Hongyang Zhang, Yuchen Zhou, Pradeep Ravikumar
1910.13930 Distilling Black-Box Travel Mode Choice Model for Behavioral Interpretation Machine Learning (stat.ML) Xilei Zhao, Zhengze Zhou, Xiang Yan, Pascal Van Hentenryck
1910.14226 Distilling Pixel-Wise Feature Similarities for Semantic Segmentation Computer Vision and Pattern Recognition (cs.CV) Yuhu Shan
1910.14315 BottleNet++: An End-to-End Approach for Feature Compression in Device-Edge Co-Inference Systems Machine Learning (cs.LG) Jiawei Shao, Jun Zhang
1911.00208 LFZip: Lossy compression of multivariate floating-point time series data via improved prediction Signal Processing (eess.SP) Shubham Chandak, Kedar Tatwawadi, Chengtao Wen, Lingyun Wang, Juan Aparicio, Tsachy Weissman
1911.00216 On Distributed Quantization for Classification Machine Learning (cs.LG) Osama A. Hanna, Yahya H. Ezzeldin, Tara Sadjadpour, Christina Fragouli, Suhas Diggavi
1911.00400 Sparsely Activated Networks: A new method for decomposing and compressing data Machine Learning (cs.LG) Paschalis Bizopoulos
1911.00527 Memory Requirement Reduction of Deep Neural Networks Using Low-bit Quantization of Parameters Audio and Speech Processing (eess.AS) Niccoló Nicodemo, Gaurav Naithani, Konstantinos Drossos, Tuomas Virtanen, Roberto Saletti
1911.00822 Comprehensive SNN Compression Using ADMM Optimization and Activity Regularization Neural and Evolutionary Computing (cs.NE) Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, Yuan Xie
1911.01226 Human-centric Metric for Accelerating Pathology Reports Annotation Computation and Language (cs.CL) Ruibin Ma, Po-Hsuan Cameron Chen, Gang Li, Wei-Hung Weng, Angela Lin, Krishna Gadepalli, Yuannan Cai
1911.01654 Detecting Point Outliers Using Prune-based Outlier Factor (PLOF) Machine Learning (cs.LG) Kasra Babaei, ZhiYuan Chen, Tomas Maul
1911.01699 Reversible Data Hiding in Encrypted Images based on Pixel Prediction and Bit-plane Compression Multimedia (cs.MM) Zhaoxia Yin, Yinyin Peng, Youzhi Xiang
1911.02079 Post-Training 4-bit Quantization on Embedding Tables Machine Learning (cs.LG) Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park, Hector Yuen
1911.02237 Localization-aware Channel Pruning for Object Detection Computer Vision and Pattern Recognition (cs.CV) Zihao Xie, Wenbing Tao, Li Zhu, Lin Zhao
1911.02497 A Programmable Approach to Model Compression Machine Learning (cs.LG) Vinu Joseph, Saurav Muralidharan, Animesh Garg, Michael Garland, Ganesh Gopalakrishnan
1911.02639 Word Embedding Algorithms as Generalized Low Rank Models and their Canonical Form Computation and Language (cs.CL) Kian Kenyon-Dean
1911.02727 Understanding Knowledge Distillation in Non-autoregressive Machine Translation Computation and Language (cs.CL) Chunting Zhou, Graham Neubig, Jiatao Gu
1911.03080 Deep geometric knowledge distillation with graphs Machine Learning (cs.LG) Carlos Lassance, Myriam Bontonou, Ghouthi Boukli Hacene, Vincent Gripon, Jian Tang, Antonio Ortega
1911.03388 A different take on the best-first game tree pruning algorithms Artificial Intelligence (cs.AI) Ishan Srivastava
1911.03462 Knowledge Distillation for Incremental Learning in Semantic Segmentation Computer Vision and Pattern Recognition (cs.CV) Umberto Michieli, Pietro Zanuttigh
1911.03572 DZip: improved general-purpose lossless compression based on novel neural network modeling Machine Learning (cs.LG) Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, Idoia Ochoa
1911.03588 Attentive Student Meets Multi-Task Teacher: Improved Knowledge Distillation for Pretrained Models Computation and Language (cs.CL) Linqing Liu, Huan Wang, Jimmy Lin, Richard Socher, Caiming Xiong
1911.03829 Distilling the Knowledge of BERT for Text Generation Computation and Language (cs.CL) Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu, Jingjing Liu
1911.03852 HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks Computer Vision and Pattern Recognition (cs.CV) Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney, Kurt Keutzer
1911.04453 Structural Pruning in Deep Neural Networks: A Small-World Approach Machine Learning (cs.LG) Gokul Krishnan, Xiaocong Du, Yu Cao
1911.04477 A Computing Kernel for Network Binarization on PyTorch Machine Learning (cs.LG) Xianda Xu, Marco Pedersoli
1911.04654 Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner Product Search Information Retrieval (cs.IR) Xinyan Dai, Xiao Yan, Kelvin K. W. Ng, Jie Liu, James Cheng
1911.04655 Hyper-Sphere Quantization: Communication-Efficient SGD for Federated Learning Machine Learning (cs.LG) Xinyan Dai, Xiao Yan, Kaiwen Zhou, Han Yang, Kelvin K. W. Ng, James Cheng, Yu Fan
1911.04657 CALPA-NET: Channel-pruning-assisted Deep Residual Network for Steganalysis of Digital Images Multimedia (cs.MM) Shunquan Tan, Weilong Wu, Zilong Shao, Qiushi Li, Bin Li, Jiwu Huang
1911.04947 Accelerating Training in Pommerman with Imitation and Reinforcement Learning Machine Learning (cs.LG) Hardik Meisheri, Omkar Shelke, Richa Verma, Harshad Khadilkar
1911.04951 Iteratively Training Look-Up Tables for Network Quantization Machine Learning (cs.LG) Fabien Cardinaux, Stefan Uhlich, Kazuki Yoshiyama, Javier Alonso Garcia, Lukas Mauch, Stephen Tiedemann, Thomas Kemp, Akira Nakamura
1911.05063 Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research Computer Vision and Pattern Recognition (cs.CV) Krishna Murthy Jatavallabhula, Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang, Artem Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, Sanja Fidler
1911.05248 Selective Brain Damage: Measuring the Disparate Impact of Model Pruning Machine Learning (cs.LG) Sara Hooker, Aaron Courville, Yann Dauphin, Andrea Frome
1911.05276 Collaborative Distillation for Top-N Recommendation Machine Learning (cs.LG) Jae-woong Lee, Minjin Choi, Jongwuk Lee, Hyunjung Shim
1911.05329 Knowledge Representing: Efficient, Sparse Representation of Prior Knowledge for Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Junjie Liu, Dongchao Wen, Hongxing Gao, Wei Tao, Tse-Wei Chen, Kinya Osa, Masami Kato
1911.05443 Dynamic Connected Neural Decision Classifier and Regressor with Dynamic Softing Pruning Machine Learning (cs.LG) Faen Zhang, Xinyu Fan, Hui Xu, Pengcheng Zhou, Yujian He, Junlong Liu
1911.05700 Graph Representation Learning via Multi-task Knowledge Distillation Machine Learning (cs.LG) Jiaqi Ma, Qiaozhu Mei
1911.06020 An Accelerated Nonlinear Contrast Source Inversion Scheme For Sparse Electromagnetic Imaging Signal Processing (eess.SP) A. I. Sandhu, A. Desmal, H. Bagci
1911.06319 The Canonical Distortion Measure for Vector Quantization and Function Approximation Machine Learning (cs.LG) Jonathan Baxter
1911.06786 Stagewise Knowledge Distillation Machine Learning (cs.LG) Akshay Kulkarni, Navid Panchi, Shital Chiddarwar
1911.06996 Selective sampling for accelerating training of deep neural networks Machine Learning (cs.LG) Berry Weinstein, Shai Fine, Yacov Hel-Or
1911.07190 Loss Aware Post-training Quantization Machine Learning (cs.LG) Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M. Bronstein, Avi Mendelson
1911.07412 Provable Filter Pruning for Efficient Neural Networks Machine Learning (cs.LG) Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, Daniela Rus
1911.07471 Preparing Lessons: Improve Knowledge Distillation with Better Supervision Computer Vision and Pattern Recognition (cs.CV) Tiancheng Wen, Shenqi Lai, Xueming Qian
1911.07919 ASV: Accelerated Stereo Vision System Computer Vision and Pattern Recognition (cs.CV) Yu Feng, Paul Whatmough, Yuhao Zhu
1911.07930 BiNet: Degraded-Manuscript Binarization in Diverse Document Textures and Layouts using Deep Encoder-Decoder Networks Computer Vision and Pattern Recognition (cs.CV) Maruf A. Dhali, Jan Willem de Wit, Lambert Schomaker
1911.08019 Online Learned Continual Compression with Stacked Quantization Module Machine Learning (cs.LG) Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Joelle Pineau
1911.08020 DARB: A Density-Aware Regular-Block Pruning for Deep Neural Networks Machine Learning (cs.LG) Ao Ren, Tao Zhang, Yuhao Wang, Sheng Lin, Peiyan Dong, Yen-kuang Chen, Yuan Xie, Yanzhi Wang
1911.08076 IFQ-Net: Integrated Fixed-point Quantization Networks for Embedded Vision Computer Vision and Pattern Recognition (cs.CV) Hongxing Gao, Wei Tao, Dongchao Wen, Tse-Wei Chen, Kinya Osa, Masami Kato
1911.08114 Neural Network Pruning with Residual-Connections and Limited-Data Computer Vision and Pattern Recognition (cs.CV) Jian-Hao Luo, Jianxin Wu
1911.08630 CUP: Cluster Pruning for Compressing Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Rahul Duggal, Cao Xiao, Richard Vuduc, Jimeng Sun
1911.08947 Real-time Scene Text Detection with Differentiable Binarization Computer Vision and Pattern Recognition (cs.CV) Minghui Liao, Zhaoyi Wan, Cong Yao, Kai Chen, Xiang Bai
1911.09074 Search to Distill: Pearls are Everywhere but not the Eyes Computer Vision and Pattern Recognition (cs.CV) Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli, Yukun Zhu, Bradley Green, Xiaogang Wang
1911.09391 Accelerating Reinforcement Learning with Suboptimal Guidance Machine Learning (cs.LG) Eivind Bøhn, Signe Moe, Tor Arne Johansen
1911.09418 MSD: Multi-Self-Distillation Learning via Multi-classifiers within Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Yunteng Luan, Hanyu Zhao, Zhi Yang, Yafei Dai
1911.09450 Few Shot Network Compression via Cross Distillation Machine Learning (cs.LG) Haoli Bai, Jiaxiang Wu, Irwin King, Michael Lyu
1911.09464 Quantization Networks Computer Vision and Pattern Recognition (cs.CV) Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang Huang, Xiansheng Hua
1911.09817 Graph Pruning for Model Compression Computer Vision and Pattern Recognition (cs.CV) Mingyang Zhang, Xinyi Yu, Jingtao Rong, Linlin Ou, Weidong Zhang
1911.09837 Graph Convolution Networks for Probabilistic Modeling of Driving Acceleration Machine Learning (cs.LG) Jianyu Su, Peter A. Beling, Rui Guo, Kyungtae Han
1911.09895 Visual Relationship Detection with Low Rank Non-Negative Tensor Decomposition Computer Vision and Pattern Recognition (cs.CV) Mohammed Haroon Dupty, Zhen Zhang, Wee Sun Lee
1911.10090 Learning End-To-End Scene Flow by Distilling Single Tasks Knowledge Computer Vision and Pattern Recognition (cs.CV) Filippo Aleotti, Matteo Poggi, Fabio Tosi, Stefano Mattoccia
1911.10321 Compressing Representations for Embedded Deep Learning Machine Learning (cs.LG) Juliano S. Assine, Alan Godoy, Eduardo Valle
1911.10434 Low Rank Approximation for Smoothing Spline via Eigensystem Truncation Machine Learning (stat.ML) Danqing Xu, Yuedong Wang
1911.10636 Pyramid Vector Quantization and Bit Level Sparsity in Weights for Efficient Neural Networks Inference Computer Vision and Pattern Recognition (cs.CV) Vincenzo Liguori
1911.10988 Sparsity through evolutionary pruning prevents neuronal networks from overfitting Neural and Evolutionary Computing (cs.NE) Richard C. Gerum, André Erpenbeck, Patrick Krauss, Achim Schilling
1911.11065 Knowledge Distillation in Document Retrieval Information Retrieval (cs.IR) Siamak Shakeri, Abhinav Sethy, Cheng Cheng
1911.11170 Real-Time Object Tracking via Meta-Learning: Efficient Model Adaptation and One-Shot Channel Pruning Computer Vision and Pattern Recognition (cs.CV) Ilchae Jung, Kihyun You, Hyeonwoo Noh, Minsu Cho, Bohyung Han
1911.11177 Structured Multi-Hashing for Model Compression Machine Learning (cs.LG) Elad Eban, Yair Movshovitz-Attias, Hao Wu, Mark Sandler, Andrew Poon, Yerlan Idelbayev, Miguel A. Carreira-Perpinan
1911.11502 Hearing Lips: Improving Lip Reading by Distilling Speech Recognizers Computer Vision and Pattern Recognition (cs.CV) Ya Zhao, Rui Xu, Xinchao Wang, Peng Hou, Haihong Tang, Mingli Song
1911.11554 Multi-source Distilling Domain Adaptation Machine Learning (cs.LG) Sicheng Zhao, Guangzhi Wang, Shanghang Zhang, Yang Gu, Yaxian Li, Zhichao Song, Pengfei Xu, Runbo Hu, Hua Chai, Kurt Keutzer
1911.12446 QubitHD: A Stochastic Acceleration Method for HD Computing-Based Machine Learning Machine Learning (cs.LG) Samuel Bosch, Alexander Sanchez de la Cerda, Mohsen Imani, Tajana Simunic Rosing, Giovanni De Micheli
1911.12491 QKD: Quantization-aware Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Jangho Kim, Yash Bhalgat, Jinwon Lee, Chirag Patel, Nojun Kwak
1911.12740 Data-Driven Compression of Convolutional Neural Networks Machine Learning (cs.LG) Ramit Pahwa, Manoj Ghuhan Arivazhagan, Ankur Garg, Siddarth Krishnamoorthy, Rohit Saxena, Sunav Choudhary
1911.12747 ASR is all you need: cross-modal distillation for lip reading Computer Vision and Pattern Recognition (cs.CV) Triantafyllos Afouras, Joon Son Chung, Andrew Zisserman
1911.12990 Semi-Relaxed Quantization with DropBits: Training Low-Bit Neural Networks via Bit-wise Regularization Computer Vision and Pattern Recognition (cs.CV) Jihun Yun, Jung Hyun Lee, Sung Ju Hwang, Eunho Yang
1911.13019 Towards Oracle Knowledge Distillation with Neural Architecture Search Machine Learning (cs.LG) Minsoo Kang, Jonghwan Mun, Bohyung Han
1911.13053 Blockwisely Supervised Neural Architecture Search with Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, Xiaojun Chang
1911.13056 Distributed Soft Actor-Critic with Multivariate Reward Representation and Knowledge Distillation Artificial Intelligence (cs.AI) Dmitry Akimov
1912.00120 One-Shot Pruning of Recurrent Neural Networks by Jacobian Spectrum Evaluation Machine Learning (cs.LG) Matthew Shunshi Zhang, Bradly Stadie
1912.00200 Pruning at a Glance: Global Neural Pruning for Model Compression Computer Vision and Pattern Recognition (cs.CV) Abdullah Salama, Oleksiy Ostapenko, Tassilo Klein, Moin Nabi
1912.00350 Online Knowledge Distillation with Diverse Peers Machine Learning (cs.LG) Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, Chun Chen
1912.00583 Anomaly Detection in Particulate Matter Sensor using Hypothesis Pruning Generative Adversarial Network Machine Learning (cs.LG) YeongHyeon Park, Won Seok Park, Yeong Beom Kim, Seok Woong Chang
1912.00835 Low Rank Factorization for Compact Multi-Head Self-Attention Computation and Language (cs.CL) Sneha Mehta, Huzefa Rangwala, Naren Ramakrishnan
1912.01274 The Knowledge Within: Methods for Data-Free Model Compression Machine Learning (cs.LG) Matan Haroush, Itay Hubara, Elad Hoffer, Daniel Soudry
1912.02254 Deep Model Compression via Deep Reinforcement Learning Machine Learning (cs.LG) Huixin Zhan, Yongcan Cao
1912.02854 An Accelerated Correlation Filter Tracker Computer Vision and Pattern Recognition (cs.CV) Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, Josef Kittler
1912.02973 LaTeS: Latent Space Distillation for Teacher-Student Driving Policy Learning Computer Vision and Pattern Recognition (cs.CV) Albert Zhao, Tong He, Yitao Liang, Haibin Huang, Guy Van den Broeck, Stefano Soatto
1912.03145 Face Recognition via Locality Constrained Low Rank Representation and Dictionary Learning Computer Vision and Pattern Recognition (cs.CV) He-Feng Yin, Xiao-Jun Wu, Josef Kittler
1912.03334 Explaining Sequence-Level Knowledge Distillation as Data-Augmentation for Neural Machine Translation Computation and Language (cs.CL) Mitchell A. Gordon, Kevin Duh
1912.03433 Deep Generalization of Structured Low Rank Algorithms (Deep-SLR) Machine Learning (cs.LG) Aniket Pramanik, Hemant Aggarwal, Mathews Jacob
1912.03435 Tensor Low Rank Modeling and Its Applications in Signal Processing Signal Processing (eess.SP) Baburaj Madathil, Sameera V Mohd Sagheer, Abdu Rahiman V, Anju Jose Tom, Baiju P S, Jobin Francis, Sudhish N. George
1912.03647 Lossless Compression for 3DCNNs Based on Tensor Train Decomposition Computer Vision and Pattern Recognition (cs.CV) Dingheng Wang, Guangshe Zhao, Guoqi Li, Lei Deng, Yang Wu
1912.03734 Unified Signal Compression Using Generative Adversarial Networks Signal Processing (eess.SP) Bowen Liu, Ang Cao, Hun-seok Kim
1912.04050 PhoneBit: Efficient GPU-Accelerated Binary Neural Network Inference Engine for Mobile Phones Distributed, Parallel, and Cluster Computing (cs.DC) Gang Chen, Shengyu He, Haitao Meng, Kai Huang
1912.04548 Maximum Average Entropy-Based Quantization of Local Observations for Distributed Detection Signal Processing (eess.SP) Muath A. Wahdan, Mustafa A. Altınkaya
1912.04695 Transparent Classification with Multilayer Logical Perceptrons and Random Binarization Machine Learning (cs.LG) Zhuo Wang, Wei Zhang, Ning Liu, Jianyong Wang
1912.04822 libmolgrid: GPU Accelerated Molecular Gridding for Deep Learning Applications Machine Learning (cs.LG) Jocelyn Sunseri, David Ryan Koes
1912.04845 Magnitude and Uncertainty Pruning Criterion for Neural Networks Machine Learning (cs.LG) Vinnie Ko, Stefan Oehmcke, Fabian Gieseke
1912.05078 An Improving Framework of regularization for Network Compression Machine Learning (cs.LG) E Zhenqian, Gao Weiguo
1912.05304 Learning Agent Communication under Limited Bandwidth by Message Pruning Artificial Intelligence (cs.AI) Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, Yan Ni
1912.05524 GLU-Net: Global-Local Universal Network for Dense Flow and Correspondences Computer Vision and Pattern Recognition (cs.CV) Prune Truong, Martin Danelljan, Radu Timofte
1912.05831 STEERAGE: Synthesis of Neural Networks Using Architecture Search and Grow-and-Prune Methods Neural and Evolutionary Computing (cs.NE) Shayan Hassantabar, Xiaoliang Dai, Niraj K. Jha
1912.06638 WaLDORf: Wasteless Language-model Distillation On Reading-comprehension Machine Learning (cs.LG) James Yi Tian, Alexander P. Kreuzer, Pai-Hung Chen, Hans-Martin Will
1912.07106 Towards Building a Real Time Mobile Device Bird Counting System Through Synthetic Data Training and Model Compression Computer Vision and Pattern Recognition (cs.CV) Runde Yang
1912.07768 Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data Machine Learning (cs.LG) Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, Jeff Clune
1912.07806 Joint Architecture and Knowledge Distillation in Convolutional Neural Network for Offline Handwritten Chinese Text Recognition Computer Vision and Pattern Recognition (cs.CV) Zi-Rui Wang, Jun Du
1912.07863 In Defense of the Triplet Loss Again: Learning Robust Person Re-Identification with Fast Approximated Triplet Loss and Label Distillation Computer Vision and Pattern Recognition (cs.CV) Ye Yuan, Wuyang Chen, Yang Yang, Zhangyang Wang
1912.08422 Distilling Structured Knowledge into Embeddings for Explainable and Accurate Recommendation Information Retrieval (cs.IR) Yuan Zhang, Xiaoran Xu, Hanning Zhou, Yan Zhang
1912.08756 Interleaved Composite Quantization for High-Dimensional Similarity Search Machine Learning (cs.LG) Soroosh Khoram, Stephen J Wright, Jing Li
1912.08792 TOCO: A Framework for Compressing Neural Network Models Based on Tolerance Analysis Machine Learning (cs.LG) Soroosh Khoram, Jing Li
1912.08795 Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion Machine Learning (cs.LG) Hongxu Yin, Pavlo Molchanov, Zhizhong Li, Jose M. Alvarez, Arun Mallya, Derek Hoiem, Niraj K. Jha, Jan Kautz
1912.08881 Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning Machine Learning (cs.LG) Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Simon Wiedemann, Klaus-Robert Müller, Wojciech Samek
1912.08883 Adaptive Loss-aware Quantization for Multi-bit Networks Computer Vision and Pattern Recognition (cs.CV) Zhongnan Qu, Zimu Zhou, Yun Cheng, Lothar Thiele
1912.09091 Overcoming Long-term Catastrophic Forgetting through Adversarial Neural Pruning and Synaptic Consolidation Machine Learning (cs.LG) Jian Peng Bo Tang, Hao Jiang, Zhuo Li, Yinjie Lei, Tao Lin, Haifeng Li
1912.09236 Neural Networks Weights Quantization: Target None-retraining Ternary (TNT) Machine Learning (cs.LG) Tianyu Zhang, Lei Zhu, Qian Zhao, Kilho Shin
1912.09666 AdaBits: Neural Network Quantization with Adaptive Bit-Widths Computer Vision and Pattern Recognition (cs.CV) Qing Jin, Linjie Yang, Zhenyu Liao
1912.09802 Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks Machine Learning (cs.LG) Andrey Kuzmin, Markus Nagel, Saurabh Pitre, Sandeep Pendyam, Tijmen Blankevoort, Max Welling
1912.10087 EAST: Encoding-Aware Sparse Training for Deep Memory Compression of ConvNets Machine Learning (cs.LG) Matteo Grimaldi, Valentino Peluso, Andrea Calimera
1912.10178 DBP: Discrimination Based Block-Level Pruning for Deep Model Acceleration Computer Vision and Pattern Recognition (cs.CV) Wenxiao Wang, Shuai Zhao, Minghao Chen, Jinming Hu, Deng Cai, Haifeng Liu
1912.10207 Towards Efficient Training for Neural Network Quantization Computer Vision and Pattern Recognition (cs.CV) Qing Jin, Linjie Yang, Zhenyu Liao
1912.10850 The State of Knowledge Distillation for Classification Machine Learning (cs.LG) Fabian Ruffy, Karanbir Chahal
1912.10982 DMCL: Distillation Multiple Choice Learning for Multimodal Action Recognition Computer Vision and Pattern Recognition (cs.CV) Nuno C. Garcia, Sarah Adel Bargal, Vitaly Ablavsky, Pietro Morerio, Vittorio Murino, Stan Sclaroff
1912.11006 Data-Free Adversarial Distillation Machine Learning (cs.LG) Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, Mingli Song
1912.11527 Pruning Deep Neural Networks Architectures with Evolution Strategy Neural and Evolutionary Computing (cs.NE) Francisco Erivaldo Fernandes Junior, Gary G. Yen
1912.11554 Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro Machine Learning (stat.ML) Du Phan, Neeraj Pradhan, Martin Jankowiak
1912.11853 Domain Adaptation Regularization for Spectral Pruning Computer Vision and Pattern Recognition (cs.CV) Laurent Dillard, Yosuke Shinya, Taiji Suzuki
1912.12630 Real-time Policy Distillation in Deep Reinforcement Learning Machine Learning (cs.LG) Yuxiang Sun, Pooyan Fazli
1912.12953 RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing Distributed, Parallel, and Cluster Computing (cs.DC) Liu Ke, Udit Gupta, Carole-Jean Wu, Benjamin Youngjae Cho, Mark Hempstead, Brandon Reagen, Xuan Zhang, David Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang
1912.13179 Modeling Teacher-Student Techniques in Deep Neural Networks for Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Sajjad Abbasi, Mohsen Hajabdollahi, Nader Karimi, Shadrokh Samavi
2001.00138 PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with Pattern-based Weight Pruning Machine Learning (cs.LG) Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi Wang, Bin Ren
2001.00218 Lossless Compression of Deep Neural Networks Machine Learning (cs.LG) Thiago Serra, Abhinav Kumar, Srikumar Ramalingam
2001.00281 ZeroQ: A Novel Zero Shot Quantization Framework Computer Vision and Pattern Recognition (cs.CV) Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W. Mahoney, Kurt Keutzer
2001.00503 Joint Goal and Strategy Inference across Heterogeneous Demonstrators via Reward Network Distillation Machine Learning (cs.LG) Letian Chen, Rohan Paleja, Muyleng Ghuy, Matthew Gombolay
2001.00602 Accelerating Smooth Games by Manipulating Spectral Shapes Machine Learning (cs.LG) Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel
2001.01050 Discrimination-aware Network Pruning for Deep Model Compression Computer Vision and Pattern Recognition (cs.CV) Jing Liu, Bohan Zhuang, Zhuangwei Zhuang, Yong Guo, Junzhou Huang, Jinhui Zhu, Mingkui Tan
2001.01536 Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Computer Vision and Pattern Recognition (cs.CV) Liuyu Xiang, Guiguang Ding
2001.01755 Investigation and Analysis of Hyper and Hypo neuron pruning to selectively update neurons during Unsupervised Adaptation Machine Learning (cs.LG) Vikramjit Mitra, Horacio Franco
2001.01797 Bridge Modal Identification using Acceleration Measurements within Moving Vehicles Signal Processing (eess.SP) Soheil Sadeghi Eshkevari, Thomas J. Matarazzo, Shamim N. Pakzad
2001.01842 Single-bit Quantization Capacity of Binary-input Continuous-output Channels Signal Processing (eess.SP) Thuan Nguyen, Thinh Nguyen
2001.02786 Least squares binary quantization of neural networks Machine Learning (cs.LG) Hadi Pouransari, Zhucheng Tu, Oncel Tuzel
2001.02935 Multipass SAR Interferometry Based on Total Variation Regularized Robust Low Rank Tensor Decomposition Signal Processing (eess.SP) Jian Kang, Yuanyuan Wang, Xiao Xiang Zhu
2001.03102 Compression of convolutional neural networks for high performance imagematching tasks on mobile devices Computer Vision and Pattern Recognition (cs.CV) Roy Miles, Krystian Mikolajczyk
2001.03111 Unpaired Multi-modal Segmentation via Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Qi Dou, Quande Liu, Pheng Ann Heng, Ben Glocker
2001.03199 Downlink Fronthaul Compression in Frequency Domain using OpenAirInterface Signal Processing (eess.SP) Cleverson Nahum, Leonardo Ramalho, Joary Fortuna, Chenguang Lu, Miguel Berg, Igor Almeida, Aldebaro Klautau
2001.03311 Guess First to Enable Better Compression and Adversarial Robustness Machine Learning (cs.LG) Sicheng Zhu, Bang An, Shiyu Niu
2001.03554 Pruning Convolutional Neural Networks with Self-Supervision Computer Vision and Pattern Recognition (cs.CV) Mathilde Caron, Ari Morcos, Piotr Bojanowski, Julien Mairal, Armand Joulin
2001.03569 Video Coding for Machines: A Paradigm of Collaborative Compression and Intelligent Analytics Computer Vision and Pattern Recognition (cs.CV) Ling-Yu Duan, Jiaying Liu, Wenhan Yang, Tiejun Huang, Wen Gao
2001.03851 Deep Optimized Multiple Description Image Coding via Scalar Quantization Learning Computer Vision and Pattern Recognition (cs.CV) Lijun Zhao, Huihui Bai, Anhong Wang, Yao Zhao
2001.03955 Aggregated Learning: A Vector-Quantization Approach to Learning Neural Network Classifiers Machine Learning (cs.LG) Masoumeh Soflaei, Hongyu Guo, Ali Al-Bashabsheh, Yongyi Mao, Richong Zhang
2001.04062 Modeling of Pruning Techniques for Deep Neural Networks Simplification Computer Vision and Pattern Recognition (cs.CV) Morteza Mousa Pasandi, Mohsen Hajabdollahi, Nader Karimi, Shadrokh Samavi
2001.04246 AdaBERT: Task-Adaptive BERT Compression with Differentiable Neural Architecture Search Computation and Language (cs.CL) Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang, Wei Lin, Jingren Zhou
2001.04625 Asymmetric Correlation Quantization Hashing for Cross-modal Retrieval Information Retrieval (cs.IR) Lu Wang, Jie Yang
2001.04694 Hydra: Preserving Ensemble Diversity for Model Distillation Machine Learning (cs.LG) Linh Tran, Bastiaan S. Veeling, Kevin Roth, Jakub Swiatkowski, Joshua V. Dillon, Jasper Snoek, Stephan Mandt, Tim Salimans, Sebastian Nowozin, Rodolphe Jenatton
2001.04850 Quantisation and Pruning for Neural Network Compression and Regularisation Machine Learning (cs.LG) Kimessha Paupamah, Steven James, Richard Klein
2001.05012 PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning Machine Learning (cs.LG) Dor Livne, Kobi Cohen
2001.05050 On Iterative Neural Network Pruning, Reinitialization, and the Similarity of Masks Machine Learning (cs.LG) Michela Paganini, Jessica Forde
2001.05197 Uncertainty-Aware Multi-Shot Knowledge Distillation for Image-Based Object Re-Identification Computer Vision and Pattern Recognition (cs.CV) Xin Jin, Cuiling Lan, Wenjun Zeng, Zhibo Chen
2001.05314 Embedding Compression with Isotropic Iterative Quantization Computation and Language (cs.CL) Siyu Liao, Jie Chen, Yanzhi Wang, Qinru Qiu, Bo Yuan
2001.05545 A "Network Pruning Network" Approach to Deep Model Compression Computer Vision and Pattern Recognition (cs.CV) Vinay Kumar Verma, Pravendra Singh, Vinay P. Namboodiri, Piyush Rai
2001.06139 FRaZ: A Generic High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific Floating-point Data Distributed, Parallel, and Cluster Computing (cs.DC) Robert Underwood, Sheng Di, Jon C. Calhoun, Franck Cappello
2001.06472 Gradient descent with momentum --- to accelerate or to super-accelerate? Machine Learning (cs.LG) Goran Nakerst, John Brennan, Masudul Haque
2001.06590 A Foreground-background Parallel Compression with Residual Encoding for Surveillance Video Computer Vision and Pattern Recognition (cs.CV) Lirong Wu, Kejie Huang, Haibin Shen, Lianli Gao
2001.06613 Accelerating the Registration of Image Sequences by Spatio-temporal Multilevel Strategies Signal Processing (eess.SP) Hari Om Aggrawal, Jan Modersitzki
2001.07809 Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework Computer Vision and Pattern Recognition (cs.CV) Subhayan Mukherjee, Ram Mohana Reddy Guddeti
2001.08055 Up to two billion times acceleration of scientific simulations with deep neural architecture search Machine Learning (stat.ML) M. F. Kasim, D. Watson-Parris, L. Deaconu, S. Oliver, P. Hatfield, D. H. Froula, G. Gregori, M. Jarvis, S. Khatiwala, J. Korenaga, J. Topp-Mugglestone, E. Viezzer, S. M. Vinko
2001.08142 Pruning CNN's with linear filter ensembles Machine Learning (cs.LG) Csanád Sándor, Szabolcs Pável, Lehel Csató
2001.08357 BLK-REW: A Unified Block-based DNN Pruning Framework using Reweighted Regularization Method Machine Learning (cs.LG) Xiaolong Ma, Zhengang Li, Yifan Gong, Tianyun Zhang, Wei Niu, Zheng Zhan, Pu Zhao, Jian Tang, Xue Lin, Bin Ren, Yanzhi Wang
2001.08514 Filter Sketch for Network Pruning Computer Vision and Pattern Recognition (cs.CV) Mingbao Lin, Rongrong Ji, Shaojie Li, Qixiang Ye, Yonghong Tian, Jianzhuang Liu, Qi Tian
2001.08565 Channel Pruning via Automatic Structure Search Computer Vision and Pattern Recognition (cs.CV) Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, Yonghong Tian
2001.08650 Structured Compression and Sharing of Representational Space for Continual Learning Machine Learning (cs.LG) Gobinda Saha, Isha Garg, Aayush Ankit, Kaushik Roy
2001.08839 SS-Auto: A Single-Shot, Automatic Structured Weight Pruning Framework of DNNs with Ultra-High Efficiency Machine Learning (cs.LG) Zhengang Li, Yifan Gong, Xiaolong Ma, Sijia Liu, Mengshu Sun, Zheng Zhan, Zhenglun Kong, Geng Yuan, Yanzhi Wang
2001.08878 Progressive Local Filter Pruning for Image Retrieval Acceleration Computer Vision and Pattern Recognition (cs.CV) Xiaodong Wang, Zhedong Zheng, Yang He, Fei Yan, Zhiqiang Zeng, Yi Yang
2001.08896 Compressing Language Models using Doped Kronecker Products Machine Learning (cs.LG) Urmish Thakker, Paul Whatmough, Matthew Mattina, Jesse Beu
2001.08950 PoWER-BERT: Accelerating BERT inference for Classification Tasks Machine Learning (cs.LG) Saurabh Goyal, Anamitra Roy Choudhary, Venkatesan Chakaravarthy, Saurabh ManishRaje, Yogish Sabharwal, Ashish Verma
2001.09595 Developing Multi-Task Recommendations with Long-Term Rewards via Policy Distilled Reinforcement Learning Machine Learning (cs.LG) Xi Liu, Li Li, Ping-Chun Hsieh, Muhe Xie, Yong Ge, Rui Chen
2001.09882 Efficient and Stable Graph Scattering Transforms via Pruning Signal Processing (eess.SP) Vassilis N. Ioannidis, Siheng Chen, Georgios B. Giannakis
2001.10318 Margin Maximization as Lossless Maximal Compression Machine Learning (cs.LG) Nikolaos Nikolaou, Henry Reeve, Gavin Brown
2001.11235 Learning Discrete Distributions by Dequantization Machine Learning (cs.LG) Emiel Hoogeboom, Taco S. Cohen, Jakub M. Tomczak
2001.11612 Search for Better Students to Learn Distilled Knowledge Computer Vision and Pattern Recognition (cs.CV) Jindong Gu, Volker Tresp
2002.00104 Post-Training Piecewise Linear Quantization for Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, Joseph Hassoun
2002.00149 Periodic Intra-Ensemble Knowledge Distillation for Reinforcement Learning Machine Learning (cs.LG) Zhang-Wei Hong, Prabhat Nagarajan, Guilherme Maeda
2002.00497 Accelerating Cooperative Planning for Automated Vehicles with Learned Heuristics and Monte Carlo Tree Search Machine Learning (cs.LG) Karl Kurzer, Marcus Fechner, J. Marius Zöllner
2002.00523 Automatic Pruning for Quantized Neural Networks Computer Vision and Pattern Recognition (cs.CV) Luis Guerra, Bohan Zhuang, Ian Reid, Tom Drummond
2002.00552 DWM: A Decomposable Winograd Method for Convolution Acceleration Machine Learning (cs.LG) Di Huang, Xishan Zhang, Rui Zhang, Tian Zhi, Deyuan He, Jiaming Guo, Chang Liu, Qi Guo, Zidong Du, Shaoli Liu, Tianshi Chen, Yunji Chen
2002.00585 Proving the Lottery Ticket Hypothesis: Pruning is All You Need Machine Learning (cs.LG) Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, Ohad Shamir
2002.00733 Generation-Distillation for Efficient Natural Language Understanding in Low-Data Settings Computation and Language (cs.CL) Luke Melas-Kyriazi, George Han, Celine Liang
2002.01337 Cooperative Learning via Federated Distillation over Fading Channels Signal Processing (eess.SP) Jin-Hyun Ahn, Osvaldo Simeone, Joonhyuk Kang
2002.01547 Accelerating Psychometric Screening Tests With Bayesian Active Differential Selection Machine Learning (cs.LG) Trevor J. Larsen, Gustavo Malkomes, Dennis L. Barbour
2002.01769 Robust Clock Synchronization via Low Rank Approximation in Wireless Networks Signal Processing (eess.SP) Osama Elnahas, Zhi Quan
2002.01775 Feature-map-level Online Adversarial Knowledge Distillation Machine Learning (cs.LG) Inseop Chung, SeongUk Park, Jangho Kim, Nojun Kwak
2002.02202 Transfer Heterogeneous Knowledge Among Peer-to-Peer Teammates: A Model Distillation Approach Artificial Intelligence (cs.AI) Zeyue Xue, Shuang Luo, Chao Wu, Pan Zhou, Kaigui Bian, Wei Du
2002.02547 Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow Machine Learning (cs.LG) Didrik Nielsen, Ole Winther
2002.02645 Accelerating Deep Learning Inference via Freezing Machine Learning (cs.LG) Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, Aditya Akella
2002.02697 Accelerating Reinforcement Learning for Reaching using Continuous Curriculum Learning Artificial Intelligence (cs.AI) Sha Luo, Hamidreza Kasaei, Lambert Schomaker
2002.02842 Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification Machine Learning (cs.LG) Meet P. Vadera, Satya Narayan Shukla, Brian Jalaian, Benjamin M. Marlin
2002.02925 BERT-of-Theseus: Compressing BERT by Progressive Module Replacing Computation and Language (cs.CL) Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou
2002.02949 Activation Density driven Energy-Efficient Pruning in Training Machine Learning (cs.LG) Timothy Foldy-Porto, Priyadarshini Panda
2002.02998 Improving the Adversarial Robustness of Transfer Learning via Noisy Feature Distillation Machine Learning (cs.LG) Ting-Wu Chin, Cha Zhang, Diana Marculescu
2002.03090 BitPruning: Learning Bitlengths for Aggressive and Accurate Quantization Machine Learning (cs.LG) Miloš Nikolić, Ghouthi Boukli Hacene, Ciaran Bannon, Alberto Delmas Lascorz, Matthieu Courbariaux, Yoshua Bengio, Vincent Gripon, Andreas Moshovos
2002.03299 Convolutional Neural Network Pruning Using Filter Attenuation Computer Vision and Pattern Recognition (cs.CV) Morteza Mousa-Pasandi, Mohsen Hajabdollahi, Nader Karimi, Shadrokh Samavi, Shahram Shirani
2002.03532 Understanding and Improving Knowledge Distillation Machine Learning (cs.LG) Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, Anima Singh, Ed H. Chi, Sagar Jain
2002.03577 Accelerating RNN Transducer Inference via One-Step Constrained Beam Search Machine Learning (cs.LG) Juntae Kim, Yoonhan Lee
2002.03627 End-to-End Facial Deep Learning Feature Compression with Teacher-Student Enhancement Computer Vision and Pattern Recognition (cs.CV) Shurun Wang, Wenhan Yang, Shiqi Wang
2002.03662 Distribution Distillation Loss: Generic Approach for Improving Face Recognition from Hard Samples Computer Vision and Pattern Recognition (cs.CV) Yuge Huang, Pengcheng Shen, Ying Tai, Shaoxin Li, Xiaoming Liu, Jilin Li, Feiyue Huang, Rongrong Ji
2002.03742 Dynamic Error-bounded Lossy Compression (EBLC) to Reduce the Bandwidth Requirement for Real-time Vision-based Pedestrian Safety Applications Computer Vision and Pattern Recognition (cs.CV) Mizanur Rahman, Mhafuzul Islam, Jon C. Calhoun, Mashrur Chowdhury
2002.03875 Calibrate and Prune: Improving Reliability of Lottery Tickets Through Prediction Calibration Machine Learning (stat.ML) Bindya Venkatesh, Jayaraman J. Thiagarajan, Kowshik Thopalli, Prasanna Sattigeri
2002.03936 Subclass Distillation Machine Learning (cs.LG) Rafael Müller, Simon Kornblith, Geoffrey Hinton
2002.04809 Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning Machine Learning (cs.LG) Sejun Park, Jaeho Lee, Sangwoo Mo, Jinwoo Shin
2002.05604 Efficient And Scalable Neural Residual Waveform Coding With Collaborative Quantization Audio and Speech Processing (eess.AS) Kai Zhen, Mi Suk Lee, Jongmo Sung, Seungkwon Beack, Minje Kim
2002.05715 Self-Distillation Amplifies Regularization in Hilbert Space Machine Learning (cs.LG) Hossein Mobahi, Mehrdad Farajtabar, Peter L. Bartlett
2002.06048 Layer-wise Pruning and Auto-tuning of Layer-wise Learning Rates in Fine-tuning of Deep Networks Computer Vision and Pattern Recognition (cs.CV) Youngmin Ro, Jin Young Choi
2002.06275 TwinBERT: Distilling Knowledge to Twin-Structured BERT Models for Efficient Retrieval Information Retrieval (cs.IR) Wenhao Lu, Jian Jiao, Ruofei Zhang
2002.07036 Back-and-Forth prediction for deep tensor compression Machine Learning (cs.LG) Hyomin Choi, Robert A. Cohen, Ivan V. Bajic
2002.07051 Retrain or not retrain? -- efficient pruning methods of deep CNN networks Machine Learning (cs.LG) Marcin Pietron, Maciej Wielgosz
2002.07215 STANNIS: Low-Power Acceleration of Deep Neural Network Training Using Computational Storage Distributed, Parallel, and Cluster Computing (cs.DC) Ali HeydariGorji, Mahdi Torabzadehkashi, Siavash Rezaei, Hossein Bobarshad, Vladimir Alves, Pai H. Chou
2002.07418 KoGuN: Accelerating Deep Reinforcement Learning via Integrating Human Suboptimal Knowledge Artificial Intelligence (cs.AI) Peng Zhang, Jianye Hao, Weixun Wang, Hongyao Tang, Yi Ma, Yihai Duan, Yan Zheng
2002.07520 Gradient $\ell_1$ Regularization for Quantization Robustness Machine Learning (cs.LG) Milad Alizadeh, Arash Behboodi, Mart van Baalen, Christos Louizos, Tijmen Blankevoort, Max Welling
2002.07686 Robust Quantization: One Model to Rule Them All Machine Learning (cs.LG) Moran Shkolnik, Brian Chmiel, Ron Banner, Gil Shomron, Yuri Nahshan, Alex Bronstein, Uri Weiser
2002.08204 SYMOG: learning symmetric mixture of Gaussian modes for improved fixed-point quantization Machine Learning (cs.LG) Lukas Enderich, Fabian Timm, Wolfram Burgard
2002.08258 Knapsack Pruning with Inner Distillation Machine Learning (cs.LG) Yonathan Aflalo, Asaf Noy, Ming Lin, Itamar Friedman, Lihi Zelnik
2002.08307 Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning Computation and Language (cs.CL) Mitchell A. Gordon, Kevin Duh, Nicholas Andrews
2002.08326 Balancing Efficiency and Flexibility for DNN Acceleration via Temporal GPU-Systolic Array Integration Distributed, Parallel, and Cluster Computing (cs.DC) Cong Guo, Yangjie Zhou, Jingwen Leng, Yuhao Zhu, Zidong Du, Quan Chen, Chao Li, Minyi Guo, Bin Yao
2002.08679 Neural Network Compression Framework for fast model inference Computer Vision and Pattern Recognition (cs.CV) Alexander Kozlov, Ivan Lazarevich, Vasily Shamporov, Nikolay Lyalyushkin, Yury Gorbachev
2002.08697 Performance Aware Convolutional Neural Network Channel Pruning for Embedded GPUs Machine Learning (cs.LG) Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, Jose Cano, Elliot J. Crowley, Bjorn Franke, Amos Storkey, Michael O'Boyle
2002.08797 Pruning untrained neural networks: Principles and Analysis Machine Learning (stat.ML) Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, Yee Whye Teh
2002.09049 Post-training Quantization with Multiple Points: Mixed Precision without Mixed Precision Machine Learning (cs.LG) Xingchao Liu, Mao Ye, Dengyong Zhou, Qiang Liu
2002.09077 Accelerating Reinforcement Learning with a Directional-Gaussian-Smoothing Evolution Strategy Machine Learning (cs.LG) Jiaxing Zhang, Hoang Tran, Guannan Zhang
2002.09168 Residual Knowledge Distillation Machine Learning (cs.LG) Mengya Gao, Yujun Shen, Quanquan Li, Chen Change Loy
2002.09607 Multi-Representation Knowledge Distillation For Audio Classification Multimedia (cs.MM) Liang Gao, Kele Xu, Huaimin Wang, Yuxing Peng
2002.09958 Gradual Channel Pruning while Training using Feature Relevance Scores for Convolutional Neural Networks Machine Learning (cs.LG) Sai Aparna Aketi, Sourjya Roy, Anand Raghunathan, Kaushik Roy
2002.10179 HRank: Filter Pruning using High-Rank Feature Map Computer Vision and Pattern Recognition (cs.CV) Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, Ling Shao
2002.10345 Improving BERT Fine-Tuning via Self-Ensemble and Self-Distillation Computation and Language (cs.CL) Yige Xu, Xipeng Qiu, Ligao Zhou, Xuanjing Huang
2002.10509 On Pruning Adversarially Robust Neural Networks Computer Vision and Pattern Recognition (cs.CV) Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana
2002.10583 Scheduled Restart Momentum for Accelerated Stochastic Gradient Descent Machine Learning (cs.LG) Bao Wang, Tan M. Nguyen, Andrea L. Bertozzi, Richard G. Baraniuk, Stanley J. Osher
2002.10621 Model-Based Reinforcement Learning for Physical Systems Without Velocity and Acceleration Measurements Machine Learning (cs.LG) Alberto Dalla Libera, Diego Romeres, Devesh K. Jha, Bill Yerazunis, Daniel Nikovski
2002.10636 Non-Volatile Memory Array Based Quantization- and Noise-Resilient LSTM Neural Networks Neural and Evolutionary Computing (cs.NE) Wen Ma, Pi-Feng Chiu, Won Ho Choi, Minghai Qin, Daniel Bedau, Martin Lueker-Boden
2002.10941 A$^3$: Accelerating Attention Mechanisms in Neural Networks with Approximation Distributed, Parallel, and Cluster Computing (cs.DC) Tae Jun Ham, Sung Jun Jung, Seonghak Kim, Young H. Oh, Yeonhong Park, Yoonho Song, Jung-Hun Park, Sanghee Lee, Kyoung Park, Jae W. Lee, Deog-Kyoon Jeong
2002.10957 MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers Computation and Language (cs.CL) Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, Ming Zhou
2002.11082 Optimal Gradient Quantization Condition for Communication-Efficient Distributed Training Machine Learning (cs.LG) An Xu, Zhouyuan Huo, Heng Huang
2002.11281 Generalized Product Quantization Network for Semi-supervised Image Retrieval Computer Vision and Pattern Recognition (cs.CV) Young Kyun Jang, Nam Ik Cho
2002.11374 Adversarial Attack on Deep Product Quantization Network for Image Retrieval Computer Vision and Pattern Recognition (cs.CV) Yan Feng, Bin Chen, Tao Dai, Shutao Xia
2002.11531 A general framework for ensemble distribution distillation Machine Learning (stat.ML) Jakob Lindqvist, Amanda Olmin, Fredrik Lindsten, Lennart Svensson
2002.11665 Profile Entropy: A Fundamental Measure for the Learnability and Compressibility of Discrete Distributions Machine Learning (stat.ML) Yi Hao, Alon Orlitsky
2002.11794 Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers Computation and Language (cs.CL) Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, Joseph E. Gonzalez
2002.11903 Acceleration of Actor-Critic Deep Reinforcement Learning for Visual Grasping in Clutter by State Representation Learning Based on Disentanglement of a Raw Input Image Machine Learning (cs.LG) Taewon Kim, Yeseong Park, Youngbin Park, Il Hong Suh
2002.11985 Compressing Large-Scale Transformer-Based Models: A Case Study on BERT Machine Learning (cs.LG) Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Deming Chen, Marianne Winslett, Hassan Sajjad, Preslav Nakov
2002.12410 On Biased Compression for Distributed Learning Machine Learning (cs.LG) Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, Mher Safaryan
2002.12414 On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings Machine Learning (cs.LG) Mahmoud Assran, Michael Rabbat
2002.12585 Exploring and Distilling Cross-Modal Information for Image Captioning Computer Vision and Pattern Recognition (cs.CV) Fenglin Liu, Xuancheng Ren, Yuanxin Liu, Kai Lei, Xu Sun
2002.12597 An Efficient Method of Training Small Models for Regression Problems with Knowledge Distillation Machine Learning (cs.LG) Makoto Takamoto, Yusuke Morishita, Hitoshi Imaoka
2002.12620 TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language Processing Computation and Language (cs.CL) Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang Che, Ting Liu, Shijin Wang, Guoping Hu
2002.12663 HOTCAKE: Higher Order Tucker Articulated Kernels for Deeper CNN Compression Machine Learning (cs.LG) Rui Lin, Ching-Yun Ko, Zhuolun He, Cong Chen, Yuan Cheng, Hao Yu, Graziano Chesi, Ngai Wong
2003.00058 Generalized Rational Variable Projection With Application in ECG Compression Signal Processing (eess.SP) Péter Kovács, Sándor Fridli, Ferenc Schipp
2003.00075 Learned Threshold Pruning Machine Learning (cs.LG) Kambiz Azarian, Yash Bhalgat, Jinwon Lee, Tijmen Blankevoort
2003.00146 Gradient-Based Deep Quantization of Neural Networks through Sinusoidal Adaptive Regularization Machine Learning (cs.LG) Ahmed T. Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Tarek Elgindi, Charles-Alban Deledalle, Hadi Esmaeilzadeh
2003.00608 MBGD-RDA Training and Rule Pruning for Concise TSK Fuzzy Regression Models Machine Learning (cs.LG) Dongrui Wu
2003.00631 Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism Principled Robust Deep Neural Nets Machine Learning (cs.LG) Thu Dinh, Bao Wang, Andrea L. Bertozzi, Stanley J. Osher
2003.00706 GPU-Accelerated Mobile Multi-view Style Transfer Computer Vision and Pattern Recognition (cs.CV) Puneet Kohli, Saravana Gunaseelan, Jason Orozco, Yiwen Hua, Edward Li, Nicolas Dahlquist
2003.00739 Long Short-Term Sample Distillation Computer Vision and Pattern Recognition (cs.CV) Liang Jiang, Zujie Wen, Zhongping Liang, Yafang Wang, Gerard de Melo, Zhe Li, Liangzhuang Ma, Jiaxing Zhang, Xiaolong Li, Yuan Qi
2003.01474 Distilled Hierarchical Neural Ensembles with Adaptive Inference Cost Computer Vision and Pattern Recognition (cs.CV) Adria Ruiz, Jakob Verbeek
2003.01794 Good Subnetworks Provably Exist: Pruning via Greedy Forward Selection Machine Learning (cs.LG) Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, Qiang Liu
2003.01836 A GPU-Accelerated Barycentric Lagrange Treecode Distributed, Parallel, and Cluster Computing (cs.DC) Nathan Vaughn, Leighton Wilson, Robert Krasny
2003.01876 Privacy-preserving Learning via Deep Net Pruning Machine Learning (cs.LG) Yangsibo Huang, Yushan Su, Sachin Ravi, Zhao Song, Sanjeev Arora, Kai Li
2003.02389 Comparing Rewinding and Fine-tuning in Neural Network Pruning Machine Learning (cs.LG) Alex Renda, Jonathan Frankle, Michael Carbin
2003.02449 Cluster Pruning: An Efficient Filter Pruning Method for Edge AI Vision Applications Computer Vision and Pattern Recognition (cs.CV) Chinthaka Gamanayake, Lahiru Jayasinghe, Benny Ng, Chau Yuen
2003.02586 MarginDistillation: distillation for margin-based softmax Computer Vision and Pattern Recognition (cs.CV) David Svitov, Sergey Alyamkin
2003.02628 Phoenix: A Low-Precision Floating-Point Quantization Oriented Architecture for Convolutional Neural Networks Signal Processing (eess.SP) Chen Wu, Mingyu Wang, Xiayu Li, Jicheng Lu, Kun Wang, Lei He
2003.02800 Pruning Filters while Training for Efficiently Optimizing Deep Learning Networks Machine Learning (cs.LG) Sourjya Roy, Priyadarshini Panda, Gopalakrishnan Srinivasan, Anand Raghunathan
2003.02874 Optimizing JPEG Quantization for Classification Networks Computer Vision and Pattern Recognition (cs.CV) Zhijing Li, Christopher De Sa, Adrian Sampson
2003.02877 Distill, Adapt, Distill: Training Small, In-Domain Models for Neural Machine Translation Computation and Language (cs.CL) Mitchell A. Gordon, Kevin Duh
2003.03033 What is the State of Neural Network Pruning? Machine Learning (cs.LG) Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, John Guttag
2003.03131 Morfessor EM+Prune: Improved Subword Segmentation with Expectation Maximization and Pruning Computation and Language (cs.CL) Stig-Arne Grönroos, Sami Virpioja, Mikko Kurimo
2003.03519 Distilling portable Generative Adversarial Networks for Image Translation Computer Vision and Pattern Recognition (cs.CV) Hanting Chen, Yunhe Wang, Han Shu, Changyuan Wen, Chunjing Xu, Boxin Shi, Chao Xu, Chang Xu
2003.03564 Ternary Compression for Communication-Efficient Federated Learning Machine Learning (cs.LG) Jinjin Xu, Wenli Du, Ran Cheng, Wangli He, Yaochu Jin
2003.03581 StyleGAN2 Distillation for Feed-forward Image Manipulation Computer Vision and Pattern Recognition (cs.CV) Yuri Viazovetskyi, Vladimir Ivashkin, Evgeny Kashin
2003.03603 Generative Low-bitwidth Data Free Quantization Computer Vision and Pattern Recognition (cs.CV) Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, Mingkui Tan
2003.03622 Explaining Knowledge Distillation by Quantifying the Knowledge Machine Learning (cs.LG) Xu Cheng, Zhefan Rao, Yilan Chen, Quanshi Zhang
2003.03944 Pacemaker: Intermediate Teacher Knowledge Distillation For On-The-Fly Convolutional Neural Network Computer Vision and Pattern Recognition (cs.CV) Wonchul Son, Youngbin Kim, Wonseok Song, Youngsu Moon, Wonjun Hwang
2003.04222 Sparse and Cosparse Audio Dequantization Using Convex Optimization Signal Processing (eess.SP) Pavel Záviška, Pavel Rajmic
2003.04289 Knowledge distillation via adaptive instance normalization Computer Vision and Pattern Recognition (cs.CV) Jing Yang, Brais Martinez, Adrian Bulat, Georgios Tzimiropoulos
2003.04510 HEAAN Demystified: Accelerating Fully Homomorphic Encryption Through Architecture-centric Analysis and Optimization Distributed, Parallel, and Cluster Computing (cs.DC) Wonkyung Jung, Eojin Lee, Sangpyo Kim, Keewoo Lee, Namhoon Kim, Chohong Min, Jung Hee Cheon, Jung Ho Ahn
2003.04566 Channel Pruning via Optimal Thresholding Computer Vision and Pattern Recognition (cs.CV) Yun Ye, Ganmei You, Jong-Kae Fwu, Xia Zhu, Qing Yang, Yuan Zhu
2003.04684 Distributed Deep Convolutional Compression for Massive MIMO CSI Feedback Signal Processing (eess.SP) Qianqian Yang, Mahdi Boloursaz Mashhadi, Deniz Gunduz
2003.04769 AP-MTL: Attention Pruned Multi-task Learning Model for Real-time Instrument Detection and Segmentation in Robot-assisted Surgery Computer Vision and Pattern Recognition (cs.CV) Mobarakol Islam, Vibashan VS, Hongliang Ren
2003.05148 Kernel Quantization for Efficient Network Compression Machine Learning (cs.LG) Zhongzhi Yu, Yemin Shi, Tiejun Huang, Yizhou Yu
2003.05326 Training-Set Distillation for Real-Time UAV Object Tracking Computer Vision and Pattern Recognition (cs.CV) Fan Li, Changhong Fu, Fuling Lin, Yiming Li, Peng Lu
2003.05891 SASL: Saliency-Adaptive Sparsity Learning for Neural Network Acceleration Computer Vision and Pattern Recognition (cs.CV) Jun Shi, Jianfeng Xu, Kazuyuki Tasaka, Zhibo Chen
2003.06212 Accelerating and Improving AlphaZero Using Population Based Training Artificial Intelligence (cs.AI) Ti-Rong Wu, Ting-Han Wei, I-Chen Wu
2003.06254 What Information Does a ResNet Compress? Machine Learning (cs.LG) Luke Nicholas Darlow, Amos Storkey
2003.06513 A Privacy-Preserving DNN Pruning and Mobile Acceleration Framework Machine Learning (cs.LG) Zheng Zhan, Yifan Gong, Zhengang Li, Pu Zhao, Xiaolong Ma, Wei Niu, Xiaolin Xu, Bin Ren, Yanzhi Wang, Xue Lin
2003.06700 CoCoPIE: Making Mobile AI Sweet As PIE --Compression-Compilation Co-Design Goes a Long Way Machine Learning (cs.LG) Shaoshan Liu, Bin Ren, Xipeng Shen, Yanzhi Wang
2003.06757 Channel Pruning Guided by Classification Loss and Feature Importance Computer Vision and Pattern Recognition (cs.CV) Jinyang Guo, Wanli Ouyang, Dong Xu
2003.07636 Verification of Neural Networks: Enhancing Scalability through Pruning Machine Learning (cs.LG) Dario Guidotti, Francesco Leofante, Luca Pulina, Armando Tacchella
2003.07849 Blur, Noise, and Compression Robust Generative Adversarial Networks Computer Vision and Pattern Recognition (cs.CV) Takuhiro Kaneko, Tatsuya Harada
2003.08436 Collaborative Distillation for Ultra-Resolution Universal Style Transfer Computer Vision and Pattern Recognition (cs.CV) Huan Wang, Yijun Li, Yuehai Wang, Haoji Hu, Ming-Hsuan Yang
2003.08472 MINT: Deep Network Compression via Mutual Information-based Neuron Trimming Machine Learning (cs.LG) Madan Ravi Ganesh, Jason J. Corso, Salimeh Yasaei Sekeh
2003.08755 Adaptive binarization based on fuzzy integrals Computer Vision and Pattern Recognition (cs.CV) Francesco Bardozzo, Borja De La Osa, Lubomira Horanska, Javier Fumanal-Idocin, Mattia delli Priscoli, Luigi Troiano, Roberto Tagliaferri, Javier Fernandez, Humberto Bustince
2003.08935 Group Sparsity: The Hinge Between Filter Pruning and Decomposition for Network Compression Computer Vision and Pattern Recognition (cs.CV) Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, Radu Timofte
2003.08936 GAN Compression: Efficient Architectures for Interactive Conditional GANs Computer Vision and Pattern Recognition (cs.CV) Muyang Li, Ji Lin, Yaoyao Ding, Zhijian Liu, Jun-Yan Zhu, Song Han
2003.09615 DP-Net: Dynamic Programming Guided Deep Neural Network Compression Machine Learning (cs.LG) Dingcheng Yang, Wenjian Yu, Ao Zhou, Haoyuan Mu, Gary Yao, Xiaoyi Wang
2003.09708 Accelerating Deep Reinforcement Learning With the Aid of a Partial Model: Power-Efficient Predictive Video Streaming Machine Learning (cs.LG) Dong Liu, Jianyu Zhao, Chenyang Yang, Lajos Hanzo
2003.09833 SAC: Accelerating and Structuring Self-Attention via Sparse Adaptive Connection Computation and Language (cs.CL) Xiaoya Li, Yuxian Meng, Qinghong Han, Fei Wu, Jiwei Li
2003.09896 Multi-target regression via output space quantization Machine Learning (cs.LG) Eleftherios Spyromitros-Xioufis, Konstantinos Sechidis, Ioannis Vlahavas
2003.10184 Learning Better Lossless Compression Using Lossy Compression Computer Vision and Pattern Recognition (cs.CV) Fabian Mentzer, Luc Van Gool, Michael Tschannen
2003.10477 Distilling Knowledge from Graph Convolutional Networks Computer Vision and Pattern Recognition (cs.CV) Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, Xinchao Wang
2003.10735 ShadowTutor: Distributed Partial Distillation for Mobile Video DNN Inference Distributed, Parallel, and Cluster Computing (cs.DC) Jae-Won Chung, Jae-Yun Kim, Soo-Mook Moon
2003.11333 Accelerated learning algorithms of general fuzzy min-max neural network using a branch-and-bound-based hyperbox selection rule Machine Learning (cs.LG) Thanh Tung Khuat, Bogdan Gabrys
2003.11337 SPFCN: Select and Prune the Fully Convolutional Networks for Real-time Parking Slot Detection Computer Vision and Pattern Recognition (cs.CV) Zhuoping Yu, Zhong Gao, Hansheng Chen, Yuyao Huang
2003.11342 Circumventing Outliers of AutoAugment with Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Longhui Wei, An Xiao, Lingxi Xie, Xin Chen, Xiaopeng Zhang, Qi Tian
2003.11996 Accelerated Analog Neuromorphic Computing Neural and Evolutionary Computing (cs.NE) Johannes Schemmel, Sebastian Billaudelle, Phillip Dauer, Johannes Weis
2003.12563 DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search Computer Vision and Pattern Recognition (cs.CV) Xiyang Dai, Dongdong Chen, Mengchen Liu, Yinpeng Chen, Lu Yuan
2003.12621 Acceleration of Convolutional Neural Network Using FFT-Based Split Convolutions Computer Vision and Pattern Recognition (cs.CV) Kamran Chitsaz, Mohsen Hajabdollahi, Nader Karimi, Shadrokh Samavi, Shahram Shirani
2003.12635 The impossibility of low rank representations for triangle-rich complex networks Machine Learning (cs.LG) C. Seshadhri, Aneesh Sharma, Andrew Stolman, Ashish Goel
2003.13438 On the Unreasonable Effectiveness of Knowledge Distillation: Analysis in the Kernel Regime Machine Learning (cs.LG) Arman Rahbar, Ashkan Panahi, Chiranjib Bhattacharyya, Devdatt Dubhashi, Morteza Haghir Chehreghani
2003.13493 Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO Computer Vision and Pattern Recognition (cs.CV) Balazs Nagy, Philipp Foehn, Davide Scaramuzza
2003.13586 Squeezed Deep 6DoF Object Detection Using Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Heitor Felix, Walber M. Rodrigues, David Macêdo, Francisco Simões, Adriano L. I. Oliveira, Veronica Teichrieb, Cleber Zanchettin
2003.13593 How Not to Give a FLOP: Combining Regularization and Pruning for Efficient Inference Machine Learning (cs.LG) Tai Vu, Emily Wen, Roy Nehoran
2003.13683 DHP: Differentiable Meta Pruning via HyperNetworks Computer Vision and Pattern Recognition (cs.CV) Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte
2003.13942 Spatio-Temporal Graph for Video Captioning with Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Boxiao Pan, Haoye Cai, De-An Huang, Kuan-Hui Lee, Adrien Gaidon, Ehsan Adeli, Juan Carlos Niebles
2003.13960 Neural Networks Are More Productive Teachers Than Human Raters: Active Mixup for Data-Efficient Knowledge Distillation from a Blackbox Model Computer Vision and Pattern Recognition (cs.CV) Dongdong Wang, Yandong Li, Liqiang Wang, Boqing Gong
2003.13964 Regularizing Class-wise Predictions via Self-knowledge Distillation Machine Learning (cs.LG) Sukmin Yun, Jongjin Park, Kimin Lee, Jinwoo Shin
2003.14030 Distilled Semantics for Comprehensive Scene Understanding from Videos Computer Vision and Pattern Recognition (cs.CV) Fabio Tosi, Filippo Aleotti, Pierluigi Zama Ramirez, Matteo Poggi, Samuele Salti, Luigi Di Stefano, Stefano Mattoccia
2004.00224 Understanding GPU-Based Lossy Compression for Extreme-Scale Cosmological Simulations Distributed, Parallel, and Cluster Computing (cs.DC) Sian Jin, Pascal Grosset, Christopher M. Biwer, Jesus Pulido, Jiannan Tian, Dingwen Tao, James Ahrens
2004.00280 Creating Something from Nothing: Unsupervised Knowledge Distillation for Cross-Modal Hashing Computer Vision and Pattern Recognition (cs.CV) Hengtong Hu, Lingxi Xie, Richang Hong, Qi Tian
2004.00390 More Grounded Image Captioning by Distilling Image-Text Matching Model Computer Vision and Pattern Recognition (cs.CV) Yuanen Zhou, Meng Wang, Daqing Liu, Zhenzhen Hu, Hanwang Zhang
2004.00999 Pruned Wasserstein Index Generation Model and wigpy Package Machine Learning (cs.LG) Fangzhou Xie
2004.02088 Feature Quantization Improves GAN Training Machine Learning (cs.LG) Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, Changyou Chen
2004.02164 DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation Computer Vision and Pattern Recognition (cs.CV) Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, Huazhong Yang
2004.02178 FastBERT: a Self-distilling BERT with Adaptive Inference Time Computation and Language (cs.CL) Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang Deng, Qi Ju
2004.02297 Reducing Data Motion to Accelerate the Training of Deep Neural Networks Distributed, Parallel, and Cluster Computing (cs.DC) Sicong Zhuang, Cristiano Malossi, Marc Casas
2004.02569 Gradient-Based Training and Pruning of Radial Basis Function Networks with an Application in Materials Physics Machine Learning (cs.LG) Jussi Määttä, Viacheslav Bazaliy, Jyri Kimari, Flyura Djurabekova, Kai Nordlund, Teemu Roos
2004.03097 Towards Non-task-specific Distillation of BERT via Sentence Representation Approximation Computation and Language (cs.CL) Bowen Wu, Huan Zhang, Mengyuan Li, Zongsheng Wang, Qihang Feng, Junhong Huang, Baoxun Wang
2004.03281 Teacher-Class Network: A Neural Network Compression Mechanism Machine Learning (cs.LG) Shaiq Munir Malik, Mohbat Tharani, Murtaza Taj
2004.03303 Towards Efficient Unconstrained Palmprint Recognition via Deep Distillation Hashing Computer Vision and Pattern Recognition (cs.CV) Huikai Shao, Dexing Zhong, Xuefeng Du
2004.03376 Composition of Saliency Metrics for Channel Pruning with a Myopic Oracle Computer Vision and Pattern Recognition (cs.CV) Kaveena Persand, Andrew Anderson, David Gregg
2004.03846 Structure-Level Knowledge Distillation For Multilingual Sequence Labeling Computation and Language (cs.CL) Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Fei Huang, Kewei Tu
2004.04124 LadaBERT: Lightweight Adaptation of BERT through Hybrid Model Compression Computation and Language (cs.CL) Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang, Yang Wang, Yaming Yang, Quanlu Zhang, Yunhai Tong, Jing Bai
2004.04342 Feedback Recurrent Autoencoder for Video Compression Machine Learning (cs.LG) Adam Golinski, Reza Pourreza, Yang Yang, Guillaume Sautiere, Taco S Cohen
2004.04343 Pruning and Sparsemax Methods for Hierarchical Attention Networks Computation and Language (cs.CL) João G. Ribeiro, Frederico S. Felisberto, Isabel C. Neto
2004.04710 Prune2Edge: A Multi-Phase Pruning Pipelines to Deep Ensemble Learning in IIoT Machine Learning (cs.LG) Besher Alhalabi, Mohamed Gaber, Shadi Basurra
2004.05085 Beyond Disentangled Representations: An Attentive Angular Distillation Approach to Large-scale Lightweight Age-Invariant Face Recognition Computer Vision and Pattern Recognition (cs.CV) Thanh-Dat Truong, Chi Nhan Duong, Kha Gia Quach, Dung Nguyen, Ngan Le, Khoa Luu, Tien D. Bui
2004.05140 One Model to Recognize Them All: Marginal Distillation from NER Models with Different Tag Sets Computation and Language (cs.CL) Keunwoo Peter Yu, Yi Yang
2004.05304 Inter-Region Affinity Distillation for Road Marking Segmentation Computer Vision and Pattern Recognition (cs.CV) Yuenan Hou, Zheng Ma, Chunxiao Liu, Tak-Wai Hui, Chen Change Loy
2004.05333 Bit-Parallel Vector Composability for Neural Acceleration Machine Learning (cs.LG) Soroush Ghodrati, Hardik Sharma, Cliff Young, Nam Sung Kim, Hadi Esmaeilzadeh
2004.05531 A Unified DNN Weight Compression Framework Using Reweighted Optimization Methods Machine Learning (cs.LG) Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin Zhou, Minghai Qin, Fei Sun, Yen-Kuang Chen, Caiwen Ding, Makan Fardad, Yanzhi Wang
2004.05686 XtremeDistil: Multi-stage Distillation for Massive Multilingual Models Computation and Language (cs.CL) Subhabrata Mukherjee, Ahmed Awadallah
2004.05913 Blind Adversarial Pruning: Balance Accuracy, Efficiency and Robustness Machine Learning (cs.LG) Haidong Xie, Lixin Qian, Xueshuang Xiang, Naijin Liu
2004.05930 Technical Report: NEMO DNN Quantization for Deployment Model Machine Learning (cs.LG) Francesco Conti
2004.05937 Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks Computer Vision and Pattern Recognition (cs.CV) Lin Wang, Kuk-Jin Yoon
2004.05962 Accelerating B-spline Interpolation on GPUs: Application to Medical Image Registration Distributed, Parallel, and Cluster Computing (cs.DC) Orestis Zachariadis, Andrea Teatini, Nitin Satpute, Juan Gómez-Luna, Onur Mutlu, Ole Jakob Elle, Joaquín Olivares
2004.06638 Distilling Localization for Self-Supervised Representation Learning Computer Vision and Pattern Recognition (cs.CV) Nanxuan Zhao, Zhirong Wu, Rynson W.H. Lau, Stephen Lin
2004.06692 Quantization Analysis and Robust Design for Distributed Graph Filters Signal Processing (eess.SP) Leila Ben Saad, Baltasar Beferull-Lozano, Elvin Isufi
2004.07320 Training with Quantization Noise for Extreme Model Compression Machine Learning (cs.LG) Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Remi Gribonval, Herve Jegou, Armand Joulin
2004.07324 Building a Multi-domain Neural Machine Translation Model using Knowledge Distillation Computation and Language (cs.CL) Idriss Mghabbar, Pirashanth Ratnamogan
2004.07544 Multimodal and multiview distillation for real-time player detection on a football field Computer Vision and Pattern Recognition (cs.CV) Anthony Cioppa, Adrien Deliège, Noor Ul Huda, Rikke Gade, Marc Van Droogenbroeck, Thomas B. Moeslund
2004.07711 Knowledge Distillation for Action Anticipation via Label Smoothing Computer Vision and Pattern Recognition (cs.CV) Guglielmo Camporese, Pasquale Coscia, Antonino Furnari, Giovanni Maria Farinella, Lamberto Ballan
2004.08116 Triplet Loss for Knowledge Distillation Machine Learning (cs.LG) Hideki Oki, Motoshi Abe, Junichi Miyao, Takio Kurita
2004.08151 Accelerating Physics-Informed Neural Network Training with Prior Dictionaries Machine Learning (cs.LG) Wei Peng, Weien Zhou, Jun Zhang, Wen Yao
2004.08552 Accurate Tumor Tissue Region Detection with Accelerated Deep Convolutional Neural Networks Computer Vision and Pattern Recognition (cs.CV) Gabriel Tjio, Xulei Yang, Jia Mei Hong, Sum Thai Wong, Vanessa Ding, Andre Choo, Yi Su
2004.08861 Role-Wise Data Augmentation for Knowledge Distillation Machine Learning (cs.LG) Jie Fu, Xue Geng, Zhijian Duan, Bohan Zhuang, Xingdi Yuan, Adam Trischler, Jie Lin, Chris Pal, Hao Dong
2004.09569 Towards deep neural network compression via learnable wavelet transforms Machine Learning (cs.LG) Moritz Wolter ( Bonn University), Shaohui Lin ( National University of Singapore), Angela Yao ( National University of Singapore)
2004.09576 LSQ+: Improving low-bit quantization through learnable offsets and better initialization Computer Vision and Pattern Recognition (cs.CV) Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, Nojun Kwak
2004.09602 Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation Machine Learning (cs.LG) Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, Paulius Micikevicius
2004.09813 Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation Computation and Language (cs.CL) Nils Reimers, Iryna Gurevych
2004.10043 Towards Analysis-friendly Face Representation with Scalable Feature and Texture Compression Computer Vision and Pattern Recognition (cs.CV) Shurun Wang, Shiqi Wang, Wenhan Yang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Wen Gao
2004.10171 Knowledge Distillation for Multilingual Unsupervised Neural Machine Translation Computation and Language (cs.CL) Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita, Tiejun Zhao
2004.10568 Up or Down? Adaptive Rounding for Post-Training Quantization Machine Learning (cs.LG) Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, Tijmen Blankevoort
2004.10694 DyNet: Dynamic Convolution for Accelerating Convolutional Neural Networks Computer Vision and Pattern Recognition (cs.CV) Yikang Zhang, Jian Zhang, Qiang Wang, Zhao Zhong
2004.10943 Distilling Knowledge from Refinement in Multiple Instance Detection Networks Computer Vision and Pattern Recognition (cs.CV) Luis Felipe Zeni, Claudio Jung
2004.11045 Distilling Knowledge for Fast Retrieval-based Chat-bots Information Retrieval (cs.IR) Amir Vakili Tahami, Kamyar Ghajar, Azadeh Shakery
2004.11233 QUANOS- Adversarial Noise Sensitivity Driven Hybrid Quantization of Neural Networks Machine Learning (cs.LG) Priyadarshini Panda
2004.11250 Towards Real-Time DNN Inference on Mobile Platforms with Model Pruning and Compiler Optimization Machine Learning (cs.LG) Wei Niu, Pu Zhao, Zheng Zhan, Xue Lin, Yanzhi Wang, Bin Ren
2004.11506 Automatic low-bit hybrid quantization of neural networks through meta learning Machine Learning (cs.LG) Tao Wang, Junsong Wang, Chang Xu, Chao Xue
2004.11627 Convolution-Weight-Distribution Assumption: Rethinking the Criteria of Channel Pruning Machine Learning (cs.LG) Zhongzhan Huang, Xinjiang Wang, Ping Luo
2004.11783 Quantization of Deep Neural Networks for Accumulator-constrained Processors Computer Vision and Pattern Recognition (cs.CV) Barry de Bruin, Zoran Zivkovic, Henk Corporaal
2004.12311 DGD: Densifying the Knowledge of Neural Networks with Filter Grafting and Knowledge Distillation Machine Learning (cs.LG) Hao Cheng, Fanxu Meng, Ke Li, Huixiang Luo, Guangming Lu, Xiaowei Guo, Feiyue Huang, Xing Sun
2004.12817 LightPAFF: A Two-Stage Distillation Framework for Pre-training and Fine-tuning Computation and Language (cs.CL) Kaitao Song, Hao Sun, Xu Tan, Tao Qin, Jianfeng Lu, Hongzhi Liu, Tie-Yan Liu
2004.12909 Evolutionary Stochastic Policy Distillation Machine Learning (cs.LG) Hao Sun, Xinyu Pan, Bo Dai, Dahua Lin, Bolei Zhou
2004.12993 DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference Computation and Language (cs.CL) Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, Jimmy Lin
2004.13027 FlexSA: Flexible Systolic Array Architecture for Efficient Pruned DNN Model Training Machine Learning (cs.LG) Sangkug Lym, Mattan Erez
2004.13139 A Generic Network Compression Framework for Sequential Recommender Systems Information Retrieval (cs.IR) Yang Sun, Fajie Yuan, Min Yang, Guoao Wei, Zhou Zhao, Duo Liu
2004.13401 CmnRec: Sequential Recommendations with Chunk-accelerated Memory Network Information Retrieval (cs.IR) Shilin Qu, Fajie Yuan, Guibing Guo, Liguang Zhang, Wei Wei
2004.13653 GPU-Accelerated Compression and Visualization of Large-Scale Vessel Trajectories in Maritime IoT Industries Signal Processing (eess.SP) Yu Huang, Yan Li, Zhaofeng Zhang, Ryan Wen Liu
2004.13770 Streamlining Tensor and Network Pruning in PyTorch Machine Learning (cs.LG) Michela Paganini, Jessica Forde
2004.14340 WoodFisher: Efficient second-order approximations for model compression Machine Learning (cs.LG) Sidak Pal Singh, Dan Alistarh
2004.14492 Rethinking Class-Discrimination Based CNN Channel Pruning Computer Vision and Pattern Recognition (cs.CV) Yuchen Liu, David Wentzlaff, S.Y. Kung
2004.14566 TRP: Trained Rank Pruning for Efficient Deep Neural Networks Machine Learning (cs.LG) Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang, Yingyong Qi, Yiran Chen, Weiyao Lin, Hongkai Xiong
2004.14584 Out-of-the-box channel pruned networks Machine Learning (cs.LG) Ragav Venkatesan, Gurumurthy Swaminathan, Xiong Zhou, Anna Luo
2004.14765 Pruning artificial neural networks: a way to find well-generalizing, high-entropy sharp minima Machine Learning (cs.LG) Enzo Tartaglione, Andrea Bragagnolo, Marco Grangetto
2005.00288 Distilling Spikes: Knowledge Distillation in Spiking Neural Networks Neural and Evolutionary Computing (cs.NE) Ravi Kumar Kushawaha, Saurabh Kumar, Biplab Banerjee, Rajbabu Velmurugan
2005.00727 Heterogeneous Knowledge Distillation using Information Flow Modeling Computer Vision and Pattern Recognition (cs.CV) Nikolaos Passalis, Maria Tzelepi, Anastasios Tefas
2005.00797 Multi-consensus Decentralized Accelerated Gradient Descent Machine Learning (cs.LG) Haishan Ye, Luo Luo, Ziang Zhou, Tong Zhang
2005.00955 How Can We Accelerate Progress Towards Human-like Linguistic Generalization? Computation and Language (cs.CL) Tal Linzen
2005.00974 Quadtree Driven Lossy Event Compression Computer Vision and Pattern Recognition (cs.CV) Srutarshi Banerjee, Zihao W. Wang, Henry H. Chopp, Oliver Cossairt, Aggelos Katsaggelos
2005.01432 Hierarchical Decomposition of Nonlinear Dynamics and Control for System Identification and Policy Distillation Machine Learning (cs.LG) Hany Abdulsamad, Jan Peters
2005.01864 Streaming Object Detection for 3-D Point Clouds Computer Vision and Pattern Recognition (cs.CV) Wei Han, Zhengdong Zhang, Benjamin Caine, Brandon Yang, Christoph Sprunk, Ouais Alsharif, Jiquan Ngiam, Vijay Vasudevan, Jonathon Shlens, Zhifeng Chen
2005.02177 CDC: Classification Driven Compression for Bandwidth Efficient Edge-Cloud Collaborative Deep Learning Machine Learning (cs.LG) Yuanrui Dong, Peng Zhao, Hanqiao Yu, Cong Zhao, Shusen Yang
2005.02634 Dependency Aware Filter Pruning Computer Vision and Pattern Recognition (cs.CV) Kai Zhao, Xin-Yu Zhang, Qi Han, Ming-Ming Cheng
2005.03354 DMCP: Differentiable Markov Channel Pruning for Neural Networks Computer Vision and Pattern Recognition (cs.CV) Shaopeng Guo, Yujie Wang, Quanquan Li, Junjie Yan
2005.03848 Distilling Knowledge from Pre-trained Language Models via Text Smoothing Computation and Language (cs.CL) Xing Wu, Yibing Liu, Xiangyang Zhou, Dianhai Yu
2005.03858 Compressing Large Sample Data for Discriminant Analysis Machine Learning (stat.ML) Alexander F. Lapanowski, Irina Gaynanova
2005.04064 Lossy Compression with Distortion Constrained Optimization Machine Learning (cs.LG) Ties van Rozendaal, Guillaume Sautière, Taco S. Cohen
2005.04098 Near Memory Acceleration on High Resolution Radio Astronomy Imaging Distributed, Parallel, and Cluster Computing (cs.DC) Stefano Corda, Bram Veenboer, Ahsan Javed Awan, Akash Kumar, Roel Jordans, Henk Corporaal
2005.04136 Data-Free Network Quantization With Adversarial Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, Jungwon Lee
2005.04275 Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge Applications: A Survey Machine Learning (cs.LG) Jiayi Liu, Samarth Tripathi, Unmesh Kurup, Mohak Shah
2005.04347 GPU Acceleration of Sparse Neural Networks Distributed, Parallel, and Cluster Computing (cs.DC) Aavaas Gajurel, Sushil J. Louis, Frederick C Harris
2005.04355 Learning to Accelerate Heuristic Searching for Large-Scale Maximum Weighted b-Matching Problems in Online Advertising Distributed, Parallel, and Cluster Computing (cs.DC) Xiaotian Hao, Junqi Jin, Jianye Hao, Jin Li, Weixun Wang, Yi Ma, Zhenzhe Zheng, Han Li, Jian Xu, Kun Gai
2005.04366 Compressing Recurrent Neural Networks Using Hierarchical Tucker Tensor Decomposition Machine Learning (cs.LG) Miao Yin, Siyu Liao, Xiao-Yang Liu, Xiaodong Wang, Bo Yuan
2005.04559 Compact Neural Representation Using Attentive Network Pruning Computer Vision and Pattern Recognition (cs.CV) Mahdi Biparva, John Tsotsos
2005.05276 CupNet -- Pruning a network for geometric data Machine Learning (cs.LG) Raoul Heese, Lukas Morand, Dirk Helm, Michael Bortz
2005.05418 Optimizing Vessel Trajectory Compression Computer Vision and Pattern Recognition (cs.CV) Giannis Fikioris, Kostas Patroumpas, Alexander Artikis
2005.05704 Fostering Event Compression using Gated Surprise Machine Learning (cs.LG) Dania Humaidan, Sebastian Otte, Martin V. Butz
2005.05898 Learning to Estimate Driver Drowsiness from Car Acceleration Sensors using Weakly Labeled Data Machine Learning (cs.LG) Takayuki Katsuki, Kun Zhao, Takayuki Yoshizumi
2005.06105 Proxy Experience Replay: Federated Distillation for Distributed Reinforcement Learning Machine Learning (cs.LG) Han Cha, Jihong Park, Hyesung Kim, Mehdi Bennis, Seong-Lyun Kim
2005.06284 Artificial Neural Network Pruning to Extract Knowledge Machine Learning (cs.LG) Evgeny M Mirkes
2005.07093 Bayesian Bits: Unifying Quantization and Pruning Machine Learning (cs.LG) Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen Blankevoort, Max Welling
2005.07111 Distilling neural networks into skipgram-level decision lists Computation and Language (cs.CL) Madhumita Sushil, Simon Šuster, Walter Daelemans
2005.07133 PENNI: Pruned Kernel Sharing for Efficient CNN Inference Computer Vision and Pattern Recognition (cs.CV) Shiyu Li, Edward Hanson, Hai Li, Yiran Chen
2005.07259 A Reconstruction-Computation-Quantization (RCQ) Approach to Node Operations in LDPC Decoding Signal Processing (eess.SP) Linfang Wang, Maximilian Stark, Richard D. Wesel, Gerhard Bauch
2005.07683 Movement Pruning: Adaptive Sparsity by Fine-Tuning Computation and Language (cs.CL) Victor Sanh, Thomas Wolf, Alexander M. Rush
2005.07786 A flexible, extensible software framework for model compression based on the LC algorithm Machine Learning (cs.LG) Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán
2005.07839 Joint Progressive Knowledge Distillation and Unsupervised Domain Adaptation Machine Learning (cs.LG) Le Thanh Nguyen-Meidine, Eric Granger, Madhu Kiran, Jose Dolz, Louis-Antoine Blais-Morin
2005.07925 Spatiotemporal Adaptive Quantization for Video Compression Applications Multimedia (cs.MM) Lee Prangnell
2005.07928 Spatiotemporal Adaptive Quantization for the Perceptual Video Coding of RGB 4:4:4 Data Multimedia (cs.MM) Lee Prangnell, Victor Sanchez
2005.08110 Generalized Bayesian Posterior Expectation Distillation for Deep Neural Networks Machine Learning (cs.LG) Meet P. Vadera, Brian Jalaian, Benjamin M. Marlin
2005.08213 Speech to Text Adaptation: Towards an Efficient Cross-Modal Distillation Computation and Language (cs.CL) Won Ik Cho, Donghyun Kwak, Jiwon Yoon, Nam Soo Kim
2005.08501 VecQ: Minimal Loss DNN Model Compression With Vectorized Weight Quantization Computer Vision and Pattern Recognition (cs.CV) Cheng Gong, Yao Chen, Ye Lu, Tao Li, Cong Hao, Deming Chen
2005.08898 Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent Machine Learning (cs.LG) Tian Tong, Cong Ma, Yuejie Chi
2005.08931 Joint Multi-Dimension Pruning Computer Vision and Pattern Recognition (cs.CV) Zechun Liu, Xiangyu Zhang, Zhiqiang Shen, Zhe Li, Yichen Wei, Kwang-Ting Cheng, Jian Sun
2005.09034 Cross-filter compression for CNN inference acceleration Computer Vision and Pattern Recognition (cs.CV) Fuyuan Lyu, Shien Zhu, Weichen Liu
2005.09163 Learning from a Lightweight Teacher for Efficient Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Yuang Liu, Wei Zhang, Jun Wang
2005.09310 Distilling Knowledge from Ensembles of Acoustic Models for Joint CTC-Attention End-to-End Speech Recognition Machine Learning (cs.LG) Yan Gao, Titouan Parcollet, Nicholas Lane
2005.09453 Experience Augmentation: Boosting and Accelerating Off-Policy Multi-Agent Reinforcement Learning Machine Learning (cs.LG) Zhenhui Ye, Yining Chen, Guanghua Song, Bowei Yang, Shen Fan
2005.10419 Why distillation helps: a statistical perspective Machine Learning (cs.LG) Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Seungyeon Kim, Sanjiv Kumar
2005.10451 CPOT: Channel Pruning via Optimal Transport Machine Learning (cs.LG) Yucong Shen, Li Shen, Hao-Zhi Huang, Xuan Wang, Wei Liu
2005.10615 Accelerated Convergence for Counterfactual Learning to Rank Machine Learning (cs.LG) Rolf Jagerman, Maarten de Rijke
2005.10985 Deep learning application of vibration data for predictive maintenance of gravity acceleration equipment Signal Processing (eess.SP) SeonWoo Lee, YuHyeon Tak, HoJun Yang, JaeHeung Yang, GangMin Lim, KyuSung Kim, ByeongKeun Choi, JangWoo Kwon
2005.11035 Position-based Scaled Gradient for Model Quantization and Sparse Training Computer Vision and Pattern Recognition (cs.CV) Jangho Kim, KiYoon Yoo, Nojun Kwak
2005.11248 Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics Machine Learning (cs.LG) Payel Das, Tom Sercu, Kahini Wadhawan, Inkit Padhi, Sebastian Gehrmann, Flaviu Cipcigan, Vijil Chenthamarakshan, Hendrik Strobelt, Cicero dos Santos, Pin-Yu Chen, Yi Yan Yang, Jeremy Tan, James Hedrick, Jason Crain, Aleksandra Mojsilovic
2005.11282 PruneNet: Channel Pruning via Global Importance Machine Learning (cs.LG) Ashish Khetan, Zohar Karnin
2005.11619 Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study Machine Learning (cs.LG) Himanshu Sharma, Elise Jennings
2005.11638 Joint learning of interpretation and distillation Machine Learning (cs.LG) Jinchao Huang, Guofu Li, Zhicong Yan, Fucai Luo, Shenghong Li
2005.11704 MIMO Speech Compression and Enhancement Based on Convoltuional Denoising Autoencoder Audio and Speech Processing (eess.AS) You-Jin Li, Syu-Siang Wang, Yu Tsao, Borching Su
2005.12193 Feature Statistics Guided Efficient Filter Pruning Machine Learning (cs.LG) Hang Li, Chen Ma, Wei Xu, Xue Liu
2005.12364 Distributed Resource Scheduling for Large-Scale MEC Systems: A Multi-Agent Ensemble Deep Reinforcement Learning with Imitation Acceleration Distributed, Parallel, and Cluster Computing (cs.DC) Feibo Jiang, Li Dong, Kezhi Wang, Kun Yang, Cunhua Pan
2005.12553 Efficient Use of heuristics for accelerating XCS-based Policy Learning in Markov Games Artificial Intelligence (cs.AI) Hao Chen, Chang Wang, Jian Huang, Jianxing Gong
2005.13297 Accelerating Neural Network Inference by Overflow Aware Quantization Computer Vision and Pattern Recognition (cs.CV) Hongwei Xie, Shuo Zhang, Huanghao Ding, Yafei Song, Baitao Shao, Conggang Hu, Ling Cai, Mingyang Li
2005.13482 Syntactic Structure Distillation Pretraining For Bidirectional Encoders Computation and Language (cs.CL) Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried, Dani Yogatama, Laura Rimell, Chris Dyer, Phil Blunsom
2005.13746 CPAC-Conv: CP-decomposition to Approximately Compress Convolutional Layers in Deep Learning Machine Learning (cs.LG) Yinan Wang, Weihong (Grace)Guo, Xiaowei Yue
2005.13796 A Feature-map Discriminant Perspective for Pruning Deep Neural Networks Machine Learning (cs.LG) Zejiang Hou, Sun-Yuan Kung
2005.14070 Exploiting Non-Linear Redundancy for Neural Model Compression Machine Learning (cs.LG) Muhammad A. Shah, Raphael Olivier, Bhiksha Raj
2005.14435 Sub-band Knowledge Distillation Framework for Speech Enhancement Audio and Speech Processing (eess.AS) Xiang Hao, Shixue Wen, Xiangdong Su, Yun Liu, Guanglai Gao, Xiaofei Li
2006.00423 A New Accelerated Stochastic Gradient Method with Momentum Machine Learning (cs.LG) Liang Liu, Xiaopeng Luo
2006.00555 Transferring Inductive Biases through Knowledge Distillation Machine Learning (cs.LG) Samira Abnar, Mostafa Dehghani, Willem Zuidema
2006.00844 Distilling Neural Networks for Greener and Faster Dependency Parsing Computation and Language (cs.CL) Mark Anderson, Carlos Gómez-Rodríguez
2006.00896 Pruning via Iterative Ranking of Sensitivity Statistics Machine Learning (cs.LG) Stijn Verdenius, Maarten Stol, Patrick Forré
2006.01683 Channel Distillation: Channel-Wise Attention for Knowledge Distillation Machine Learning (cs.LG) Zaida Zhou, Chaoran Zhuge, Xinwei Guan, Wen Liu
2006.01795 Shapley Value as Principled Metric for Structured Network Pruning Machine Learning (cs.LG) Marco Ancona, Cengiz Öztireli, Markus Gross
2006.01819 Acceleration of Descent-based Optimization Algorithms via Carathéodory's Theorem Machine Learning (cs.LG) Francesco Cosentino, Harald Oberhauser, Alessandro Abate
2006.02768 Weight Pruning via Adaptive Sparsity Loss Machine Learning (cs.LG) George Retsinas, Athena Elafrou, Georgios Goumas, Petros Maragos
2006.02901 A Polynomial Neural network with Controllable Precision and Human-Readable Topology II: Accelerated Approach Based on Expanded Layer Machine Learning (cs.LG) Gang Liu, Jing Wang
2006.02965 End-to-End Speech-Translation with Knowledge Distillation: FBK@IWSLT2020 Computation and Language (cs.CL) Marco Gaido, Mattia Antonino Di Gangi, Matteo Negri, Marco Turchi
2006.03262 UVeQFed: Universal Vector Quantization for Federated Learning Machine Learning (cs.LG) Nir Shlezinger, Mingzhe Chen, Yonina C. Eldar, H. Vincent Poor, Shuguang Cui
2006.03669 An Overview of Neural Network Compression Machine Learning (cs.LG) James O' Neill
2006.03701 Accelerating Natural Language Understanding in Task-Oriented Dialog Computation and Language (cs.CL) Ojas Ahuja, Shrey Desai
2006.03810 An Empirical Analysis of the Impact of Data Augmentation on Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Deepan Das, Haley Massa, Abhimanyu Kulkarni, Theodoros Rekatsinas
2006.04061 Dual Policy Distillation Machine Learning (cs.LG) Kwei-Herng Lai, Daochen Zha, Yuening Li, Xia Hu
2006.04093 Multi-view Contrastive Learning for Online Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Chuanguang Yang, Zhulin An, Xiaolong Hu, Hui Zhu, Kaiqiang Xu, Yongjun Xu
2006.04127 ADMP: An Adversarial Double Masks Based Pruning Framework For Unsupervised Cross-Domain Compression Computer Vision and Pattern Recognition (cs.CV) Xiaoyu Feng, Zhuqing Yuan, Guijin Wang, Yongpan Liu
2006.04147 Peer Collaborative Learning for Online Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Guile Wu, Shaogang Gong
2006.04154 VQVC+: One-Shot Voice Conversion by Vector Quantization and U-Net architecture Audio and Speech Processing (eess.AS) Da-Yi Wu, Yen-Hao Chen, Hung-Yi Lee
2006.04270 EDropout: Energy-Based Dropout and Pruning of Deep Neural Networks Machine Learning (cs.LG) Hojjat Salehinejad, Shahrokh Valaee
2006.04432 AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles Machine Learning (cs.LG) Sicong Liu, Junzhao Du, Kaiming Nan, ZimuZhou, Atlas Wang, Yingyan Lin
2006.04451 Novel Adaptive Binary Search Strategy-First Hybrid Pyramid- and Clustering-Based CNN Filter Pruning Method without Parameters Setting Computer Vision and Pattern Recognition (cs.CV) Kuo-Liang Chung, Yu-Lun Chang, Bo-Wei Tsai
2006.04472 Accelerated Search for Non-Negative Greedy Sparse Decomposition via Dimensionality Reduction Signal Processing (eess.SP) Konstantinos Voulgaris, Mike E. Davies, Mehrdad Yaghoobi
2006.04551 Cracking the Black Box: Distilling Deep Sports Analytics Machine Learning (cs.LG) Xiangyu Sun, Jack Davis, Oliver Schulte, Guiliang Liu
2006.04588 EDCompress: Energy-Aware Model Compression with Dataflow Machine Learning (cs.LG) Zhehui Wang, Tao Luo, Joey Tianyi Zhou, Rick Siow Mong Goh
2006.04719 ResKD: Residual-Guided Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Xuewei Li, Songyuan Li, Bourahla Omar, Xi Li
2006.04753 Approximate learning of high dimensional Bayesian network structures via pruning of Candidate Parent Sets Artificial Intelligence (cs.AI) Zhigao Guo, Anthony C. Constantinou
2006.04920 Survival regression with accelerated failure time model in XGBoost Machine Learning (cs.LG) Avinash Barnwal, Hyunsu Cho, Toby Dylan Hocking
2006.04981 A Framework for Neural Network Pruning Using Gibbs Distributions Machine Learning (cs.LG) Alex Labach, Shahrokh Valaee
2006.05065 Self-Distillation as Instance-Specific Label Smoothing Machine Learning (cs.LG) Zhilu Zhang, Mert R. Sabuncu
2006.05210 Neural Network Activation Quantization with Bitwise Information Bottlenecks Computer Vision and Pattern Recognition (cs.CV) Xichuan Zhou, Kui Liu, Cong Shi, Haijun Liu, Ji Liu
2006.05352 Design Challenges of Neural Network Acceleration Using Stochastic Computing Signal Processing (eess.SP) Alireza Khadem
2006.05467 Pruning neural networks without any data by iteratively conserving synaptic flow Machine Learning (cs.LG) Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, Surya Ganguli
2006.05525 Knowledge Distillation: A Survey Machine Learning (cs.LG) Jianping Gou, Baosheng Yu, Stephen John Maybank, Dacheng Tao
2006.05691 Low Rank Directed Acyclic Graphs and Causal Structure Learning Machine Learning (cs.LG) Zhuangyan Fang, Shengyu Zhu, Jiji Zhang, Yue Liu, Zhitang Chen, Yangbo He
2006.06185 JIT-Masker: Efficient Online Distillation for Background Matting Computer Vision and Pattern Recognition (cs.CV) Jo Chuang, Qian Dong
2006.06443 Convolutional neural networks compression with low rank and sparse tensor decompositions Computer Vision and Pattern Recognition (cs.CV) Pavel Kaloshin
2006.06608 GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs Distributed, Parallel, and Cluster Computing (cs.DC) Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, Yufei Ding
2006.07114 Knowledge Distillation Meets Self-Supervision Computer Vision and Pattern Recognition (cs.CV) Guodong Xu, Ziwei Liu, Xiaoxiao Li, Chen Change Loy
2006.07242 Ensemble Distillation for Robust Model Fusion in Federated Learning Machine Learning (cs.LG) Tao Lin, Lingjing Kong, Sebastian U. Stich, Martin Jaggi
2006.07253 Dynamic Model Pruning with Feedback Machine Learning (cs.LG) Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, Martin Jaggi
2006.07755 Recurrent Distillation based Crowd Counting Computer Vision and Pattern Recognition (cs.CV) Yue Gu, Wenxi Liu
2006.08198 AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks Computer Vision and Pattern Recognition (cs.CV) Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, Zhangyang Wang
2006.08341 Multi-fidelity Neural Architecture Search with Knowledge Distillation Machine Learning (cs.LG) Ilya Trofimov, Nikita Klyuchnikov, Mikhail Salnikov, Alexander Filippov, Evgeny Burnaev
2006.08509 APQ: Joint Search for Network Architecture, Pruning and Quantization Policy Machine Learning (cs.LG) Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Song Han
2006.08572 Flexible Dataset Distillation: Learn Labels Instead of Images Machine Learning (cs.LG) Ondrej Bohdal, Yongxin Yang, Timothy Hospedales
2006.08781 Optimizing variational representations of divergences and accelerating their statistical estimation Machine Learning (cs.LG) Jeremiah Birrell, Markos A. Katsoulakis, Yannis Pantazis
2006.08861 GPU-accelerated Hierarchical Panoramic Image Feature Retrieval for Indoor Localization Computer Vision and Pattern Recognition (cs.CV) Feng Hu
2006.08878 CNN Acceleration by Low-rank Approximation with Quantized Factors Computer Vision and Pattern Recognition (cs.CV) Nikolay Kozyrskiy, Anh-Huy Phan
2006.08950 Federated Accelerated Stochastic Gradient Descent Machine Learning (cs.LG) Honglin Yuan, Tengyu Ma
2006.09029 Real-time Universal Style Transfer on High-resolution Images via Zero-channel Pruning Computer Vision and Pattern Recognition (cs.CV) Jie An, Tao Li, Haozhi Huang, Li Shen, Xuan Wang, Yongyi Tang, Jinwen Ma, Wei Liu, Jiebo Luo
2006.09043 Improved Deep Point Cloud Geometry Compression Computer Vision and Pattern Recognition (cs.CV) Maurice Quach, Giuseppe Valenzise, Frederic Dufaux
2006.09054 Quantization of Acoustic Model Parameters in Automatic Speech Recognition Framework Audio and Speech Processing (eess.AS) Amrutha Prasad, Petr Motlicek, Srikanth Madikeri
2006.09230 Hessian-Free High-Resolution Nesterov Acceleration for Sampling Machine Learning (cs.LG) Ruilin Li, Hongyuan Zha, Molei Tao
2006.09247 Prior knowledge distillation based on financial time series Machine Learning (cs.LG) Jie Fang, Jianwu Lin
2006.09264 Bonsai-Net: One-Shot Neural Architecture Search via Differentiable Pruners Machine Learning (cs.LG) Rob Geada, Dennis Prangle, Andrew Stephen McGough
2006.09358 Directional Pruning of Deep Neural Networks Machine Learning (cs.LG) Shih-Kang Chao, Zhanyu Wang, Yue Xing, Guang Cheng
2006.09359 Accelerating Online Reinforcement Learning with Offline Datasets Machine Learning (cs.LG) Ashvin Nair, Murtaza Dalal, Abhishek Gupta, Sergey Levine
2006.09675 A Real-time Action Representation with Temporal Encoding and Deep Compression Computer Vision and Pattern Recognition (cs.CV) Kun Liu, Wu Liu, Huadong Ma, Mingkui Tan, Chuang Gan
2006.09679 StatAssist & GradBoost: A Study on Optimal INT8 Quantization-aware Training from Scratch Machine Learning (cs.LG) Taehoon Kim, Youngjoon Yoo, Jihoon Yang
2006.09785 Self-supervised Knowledge Distillation for Few-shot Learning Computer Vision and Pattern Recognition (cs.CV) Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Mubarak Shah
2006.09801 Mix2FLD: Downlink Federated Learning After Uplink Federated Distillation With Two-Way Mixup Machine Learning (cs.LG) Seungeun Oh, Jihong Park, Eunjeong Jeong, Hyesung Kim, Mehdi Bennis, Seong-Lyun Kim
2006.09952 Universally Quantized Neural Compression Machine Learning (stat.ML) Eirikur Agustsson, Lucas Theis
2006.10273 A Tutorial on VAEs: From Bayes' Rule to Lossless Compression Machine Learning (cs.LG) Ronald Yu
2006.10502 Distillation of neural network models for detection and description of key points of images Computer Vision and Pattern Recognition (cs.CV) A.V. Yashchenko, A.V. Belikov, M.V. Peterson, A.S. Potapov
2006.10518 Improving Post Training Neural Quantization: Layer-wise Calibration and Integer Programming Machine Learning (cs.LG) Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, Daniel Soudry
2006.10621 On the Predictability of Pruning Across Scales Machine Learning (cs.LG) Jonathan S. Rosenfeld, Jonathan Frankle, Michael Carbin, Nir Shavit
2006.10814 FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs Machine Learning (cs.LG) Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, Wen Sun
2006.10829 Matrix Completion with Quantified Uncertainty through Low Rank Gaussian Copula Machine Learning (stat.ML) Yuxuan Zhao, Madeleine Udell
2006.10903 Exploring Weight Importance and Hessian Bias in Model Pruning Machine Learning (cs.LG) Mingchen Li, Yahya Sattar, Christos Thrampoulidis, Samet Oymak
2006.11487 Paying more attention to snapshots of Iterative Pruning: Improving Model Compression via Ensemble Distillation Computer Vision and Pattern Recognition (cs.CV) Duong H. Le, Vo Trung Nhan, Nam Thoai
2006.11645 Accelerating Safe Reinforcement Learning with Constraint-mismatched Policies Machine Learning (cs.LG) Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, Peter J. Ramadge
2006.11812 Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning Computer Vision and Pattern Recognition (cs.CV) Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan, Alessio Del Bue
2006.11967 Exploiting Weight Redundancy in CNNs: Beyond Pruning and Quantization Machine Learning (cs.LG) Yuan Wen, David Gregg
2006.12000 Self-Knowledge Distillation: A Simple Way for Better Generalization Machine Learning (cs.LG) Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, Sangheum Hwang
2006.12139 Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive Meta-Pruning Machine Learning (cs.LG) Minyoung Song, Jaehong Yoon, Eunho Yang, Sung Ju Hwang
2006.12156 Logarithmic Pruning is All You Need Machine Learning (cs.LG) Laurent Orseau, Marcus Hutter, Omar Rivasplata
2006.12279 Revisiting Loss Modelling for Unstructured Pruning Machine Learning (cs.LG) César Laurent, Camille Ballas, Thomas George, Nicolas Ballas, Pascal Vincent
2006.12285 Human-Expert-Level Brain Tumor Detection Using Deep Learning with Data Distillation and Augmentation Computer Vision and Pattern Recognition (cs.CV) Diyuan Lu, Nenad Polomac, Iskra Gacheva, Elke Hattingen, Jochen Triesch
2006.12341 Compression Algorithm Based on Irregular Sequence Signal Processing (eess.SP) Rui Zhu
2006.12459 IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression Machine Learning (cs.LG) Rianne van den Berg, Alexey A. Gritsenko, Mostafa Dehghani, Casper Kaae Sønderby, Tim Salimans
2006.12714 On Compression Principle and Bayesian Optimization for Neural Networks Machine Learning (cs.LG) Michael Tetelman
2006.12919 Distance Correlation Sure Independence Screening for Accelerated Feature Selection in Parkinson's Disease Vocal Data Machine Learning (cs.LG) Dan Schellhas, Bishal Neupane, Deepak Thammineni, Bhargav Kanumuri, Robert C. Green II
2006.12963 PFGDF: Pruning Filter via Gaussian Distribution Feature for Deep Neural Networks Acceleration Computer Vision and Pattern Recognition (cs.CV) Jianrong Xu, Chao Li, Bifeng Cui, Kang Yang, Yongjun Xu
2006.13108 Distilling Object Detectors with Task Adaptive Regularization Computer Vision and Pattern Recognition (cs.CV) Ruoyu Sun, Fuhui Tang, Xiaopeng Zhang, Hongkai Xiong, Qi Tian
2006.13484 Accelerated Large Batch Optimization of BERT Pretraining in 54 minutes Machine Learning (cs.LG) Shuai Zheng, Haibin Lin, Sheng Zha, Mu Li
2006.14239 Fine granularity access in interactive compression of 360-degree images based on rate adaptive channel codes Multimedia (cs.MM) Navid Mahmoudian Bidgoli, Thomas Maugey, Aline Roumy
2006.14284 Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation Machine Learning (cs.LG) Rasool Fakoor, Jonas Mueller, Nick Erickson, Pratik Chaudhari, Alexander J. Smola
2006.14350 Data-dependent Pruning to find the Winning Lottery Ticket Machine Learning (cs.LG) Dániel Lévai, Zsolt Zombori
2006.14371 Accelerating Training in Artificial Neural Networks with Dynamic Mode Decomposition Machine Learning (cs.LG) Mauricio E. Tano, Gavin D. Portwood, Jean C. Ragusa
2006.14591 Artemis: tight convergence guarantees for bidirectional compression in Federated Learning Machine Learning (cs.LG) Constantin Philippenko, Aymeric Dieuleveut
2007.00192 Personalization of Hearing Aid Compression by Human-In-Loop Deep Reinforcement Learning Audio and Speech Processing (eess.AS) Nasim Alamdari, Edward Lobarinas, Nasser Kehtarnavaz
2007.00232 Linear Convergent Decentralized Optimization with Compression Machine Learning (cs.LG) Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, Ming Yan
2007.00389 Single Shot Structured Pruning Before Training Machine Learning (cs.LG) Joost van Amersfoort, Milad Alizadeh, Sebastian Farquhar, Nicholas Lane, Yarin Gal
2007.00699 Accelerated Message Passing for Entropy-Regularized MAP Inference Machine Learning (cs.LG) Jonathan N. Lee, Aldo Pacchiano, Peter Bartlett, Michael I. Jordan
2007.01055 Bayesian Low Rank Tensor Ring Model for Image Completion Machine Learning (stat.ML) Zhen Long, Ce Zhu, Jiani Liu, Yipeng Liu
2007.01154 Federated Learning with Compression: Unified Analysis and Sharp Guarantees Machine Learning (cs.LG) Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, Mehrdad Mahdavi
2007.01476 Interactive Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Shipeng Fu, Zhen Li, Jun Xu, Ming-Ming Cheng, Zitao Liu, Xiaomin Yang
2007.01486 Learning to Prune in Training via Dynamic Channel Propagation Computer Vision and Pattern Recognition (cs.CV) Shibo Shen, Rongpeng Li, Zhifeng Zhao, Honggang Zhang, Yugeng Zhou
2007.01491 Self-Supervised GAN Compression Machine Learning (cs.LG) Chong Yu, Jeff Pool
2007.01696 Channel Compression: Rethinking Information Redundancy among Channels in CNN Architecture Machine Learning (cs.LG) Jinhua Liang, Tao Zhang, Guoqing Feng
2007.01903 Model Distillation for Revenue Optimization: Interpretable Personalized Pricing Machine Learning (stat.ML) Max Biggs, Wei Sun, Markus Ettl
2007.01922 Knowledge Distillation Beyond Model Compression Machine Learning (cs.LG) Fahad Sarfraz, Elahe Arani, Bahram Zonooz
2007.01951 Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Liwei Wang, Jing Huang, Yin Li, Kun Xu, Zhengyuan Yang, Dong Yu
2007.01990 Accelerating Nonconvex Learning via Replica Exchange Langevin Diffusion Machine Learning (stat.ML) Yi Chen, Jinglin Chen, Jing Dong, Jian Peng, Zhaoran Wang
2007.02017 FracBits: Mixed Precision Quantization via Fractional Bit-Widths Computer Vision and Pattern Recognition (cs.CV) Linjie Yang, Qing Jin
2007.02038 Low Rank Fusion based Transformers for Multimodal Sequences Computation and Language (cs.CL) Saurav Sahay, Eda Okur, Shachi H Kumar, Lama Nachman
2007.02066 Weight-dependent Gates for Differentiable Neural Network Pruning Computer Vision and Pattern Recognition (cs.CV) Yun Li, Weiqun Wu, Zechun Liu, Chi Zhang, Xiangyu Zhang, Haotian Yao, Baoqun Yin
2007.02449 Momentum Accelerates Evolutionary Dynamics Machine Learning (cs.LG) Marc Harper, Joshua Safyan
2007.02491 EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning Computer Vision and Pattern Recognition (cs.CV) Bailin Li, Bowen Wu, Jiang Su, Guangrun Wang, Liang Lin
2007.03213 Enabling On-Device CNN Training by Self-Supervised Instance Filtering and Error Map Pruning Machine Learning (cs.LG) Yawen Wu, Zhepeng Wang, Yiyu Shi, Jingtong Hu
2007.03219 Meta-Learning with Network Pruning Machine Learning (cs.LG) Hongduan Tian, Bo Liu, Xiao-Tong Yuan, Qingshan Liu
2007.03260 Lossless CNN Channel Pruning via Gradient Resetting and Convolutional Re-parameterization Machine Learning (cs.LG) Xiaohan Ding, Tianxiang Hao, Ji Liu, Jungong Han, Yuchen Guo, Guiguang Ding
2007.03903 AUSN: Approximately Uniform Quantization by Adaptively Superimposing Non-uniform Distribution for Deep Neural Networks Signal Processing (eess.SP) Liu Fangxin, Zhao Wenbo, Wang Yanzhi, Dai Changzhi, Jiang Li
2007.03938 Operation-Aware Soft Channel Pruning using Differentiable Masks Machine Learning (cs.LG) Minsoo Kang, Bohyung Han
2007.04006 Accelerated Sparse Bayesian Learning via Screening Test and Its Applications Machine Learning (stat.ML) Yiping Jiang, Tianshi Chen
2007.04057 Reversible Data Hiding in Encrypted Images Based on Bit plane Compression of Prediction Error Multimedia (cs.MM) Youqing Wu, Wenjing Ma, Yinyin Peng, Ruiling Zhang, Zhaoxia Yin
2007.04108 A Distilled Model for Tracking and Tracker Fusion Computer Vision and Pattern Recognition (cs.CV) Matteo Dunnhofer, Niki Martinel, Christian Micheloni
2007.04174 Robust Re-Identification by Multiple Views Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Angelo Porrello, Luca Bergamini, Simone Calderara
2007.04216 RicciNets: Curvature-guided Pruning of High-performance Neural Networks Using Ricci Flow Machine Learning (cs.LG) Samuel Glass, Simeon Spasov, Pietro Liò
2007.04242 Dynamic Group Convolution for Accelerating Convolutional Neural Networks Computer Vision and Pattern Recognition (cs.CV) Zhuo Su, Linpu Fang, Wenxiong Kang, Dewen Hu, Matti Pietikäinen, Li Liu
2007.04457 Accelerating Multigrid-based Hierarchical Scientific Data Refactoring on GPUs Distributed, Parallel, and Cluster Computing (cs.DC) Jieyang Chen, Lipeng Wan, Xin Liang, Ben Whitney, Qing Liu, Dave Pugmire, Nicholas Thompson, Matthew Wolf, Todd Munson, Ian Foster, Scott Klasky
2007.04756 Learning to Prune Deep Neural Networks via Reinforcement Learning Artificial Intelligence (cs.AI) Manas Gupta, Siddharth Aravindan, Aleksandra Kalisz, Vijay Chandrasekhar, Lin Jie
2007.05100 SGQuant: Squeezing the Last Bit on Graph Neural Networks with Specialized Quantization Machine Learning (cs.LG) Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, Yufei Ding
2007.05146 Optical Flow Distillation: Towards Efficient and Stable Video Style Transfer Computer Vision and Pattern Recognition (cs.CV) Xinghao Chen, Yiman Zhang, Yunhe Wang, Han Shu, Chunjing Xu, Chang Xu
2007.05223 Distillation Guided Residual Learning for Binary Convolutional Neural Networks Computer Vision and Pattern Recognition (cs.CV) Jianming Ye, Shiliang Zhang, Jingdong Wang
2007.05299 Data-Efficient Ranking Distillation for Image Retrieval Computer Vision and Pattern Recognition (cs.CV) Zakaria Laskar, Juho Kannala
2007.05611 Deep Contextual Clinical Prediction with Reverse Distillation Machine Learning (cs.LG) Rohan S. Kodialam, Rebecca Boiarsky, David Sontag
2007.05617 Quantization in Relative Gradient Angle Domain For Building Polygon Estimation Computer Vision and Pattern Recognition (cs.CV) Yuhao Chen, Yifan Wu, Linlin Xu, Alexander Wong
2007.05667 To filter prune, or to layer prune, that is the question Computer Vision and Pattern Recognition (cs.CV) Sara Elkerdawy, Mostafa Elhoushi, Abhineet Singh, Hong Zhang, Nilanjan Ray
2007.06000 Accelerating Deep Learning Inference with Cross-Layer Data Reuse on GPUs Distributed, Parallel, and Cluster Computing (cs.DC) Xueying Wang, Guangli Li, Xiao Dong, Jiansong Li, Lei Liu, Xiaobing Feng
2007.06389 Term Revealing: Furthering Quantization at Run Time on Quantized DNNs Computer Vision and Pattern Recognition (cs.CV) H. T. Kung, Bradley McDanel, Sai Qian Zhang
2007.06483 Accelerating Translational Image Registration for HDR Images on GPU Computer Vision and Pattern Recognition (cs.CV) Kadir Cenk Alpay, Kadir Berkay Aydemir, Alptekin Temizel
2007.06504 Towards practical lipreading with distilled and efficient models Computer Vision and Pattern Recognition (cs.CV) Pingchuan Ma, Brais Martinez, Stavros Petridis, Maja Pantic
2007.06555 Adversarial robustness via robust low rank representations Machine Learning (cs.LG) Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, Aravindan Vijayaraghavan
2007.06567 Lossless Compression of Structured Convolutional Models via Lifting Machine Learning (cs.LG) Gustav Sourek, Filip Zelezny
2007.06889 Knowledge Distillation for Multi-task Learning Computer Vision and Pattern Recognition (cs.CV) Wei-Hong Li, Hakan Bilen
2007.06932 REPrune: Filter Pruning via Representative Election Computer Vision and Pattern Recognition (cs.CV) Mincheol Park, Woojeong Kim, Suhyun Kim
2007.06963 P-KDGAN: Progressive Knowledge Distillation with GANs for One-class Novelty Detection Computer Vision and Pattern Recognition (cs.CV) Zhiwei Zhang, Shifeng Chen, Lei Sun
2007.07075 UDBNET: Unsupervised Document Binarization Network via Adversarial Game Computer Vision and Pattern Recognition (cs.CV) Amandeep Kumar, Shuvozit Ghose, Pinaki Nath Chowdhury, Partha Pratim Roy, Umapada Pal
2007.07077 Unsupervised Multi-Target Domain Adaptation Through Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Le Thanh Nguyen-Meidine, Atif Bela, Madhu Kiran, Jose Dolz, Louis-Antoine Blais-Morin, Eric Granger
2007.07743 Finding Non-Uniform Quantization Schemes using Multi-Task Gaussian Processes Computer Vision and Pattern Recognition (cs.CV) Marcelo Gennari do Nascimento, Theo W. Costain, Victor Adrian Prisacariu
2007.07923 Image De-Quantization Using Generative Models as Priors Computer Vision and Pattern Recognition (cs.CV) Kalliopi Basioti, George V. Moustakides
2007.07967 Compression strategies and space-conscious representations for deep neural networks Machine Learning (cs.LG) Giosuè Cataldo Marinò, Gregorio Ghidoli, Marco Frasca, Dario Malchiodi
2007.08113 Defocus Blur Detection via Depth Distillation Computer Vision and Pattern Recognition (cs.CV) Xiaodong Cun, Chi-Man Pun
2007.08243 Lottery Tickets in Linear Models: An Analysis of Iterative Magnitude Pruning Machine Learning (cs.LG) Bryn Elesedy, Varun Kanade, Yee Whye Teh
2007.08301 Robust adaptive steganography based on dither modulation and modification with re-compression Multimedia (cs.MM) Zhaoxia Yin, Longfei Ke
2007.08386 Multi-Task Pruning for Semantic Segmentation Networks Computer Vision and Pattern Recognition (cs.CV) Xinghao Chen, Yunhe Wang, Yiman Zhang, Peng Du, Chunjing Xu, Chang Xu
2007.08501 Accelerating 3D Deep Learning with PyTorch3D Computer Vision and Pattern Recognition (cs.CV) Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, Georgia Gkioxari
2007.08520 Accelerating Robustness Verification of Deep Neural Networks Guided by Target Labels Machine Learning (cs.LG) Wenjie Wan, Zhaodi Zhang, Yiwei Zhu, Min Zhang, Fu Song
2007.08954 SummPip: Unsupervised Multi-Document Summarization with Sentence Graph Compression Computation and Language (cs.CL) Jinming Zhao, Ming Liu, Longxiang Gao, Yuan Jin, Lan Du, He Zhao, He Zhang, Gholamreza Haffari
2007.09029 Knowledge Distillation in Deep Learning and its Applications Machine Learning (cs.LG) Abdolmaged Alkhulaifi, Fahad Alsahli, Irfan Ahmad
2007.09625 cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compression Framework for Scientific Data Distributed, Parallel, and Cluster Computing (cs.DC) Jiannan Tian, Sheng Di, Kai Zhao, Cody Rivera, Megan Hickman Fulp, Robert Underwood, Sian Jin, Xin Liang, Jon Calhoun, Dingwen Tao, Franck Cappello
2007.09785 ASAP-NMS: Accelerating Non-Maximum Suppression Using Spatially Aware Priors Computer Vision and Pattern Recognition (cs.CV) Rohun Tripathi, Vasu Singla, Mahyar Najibi, Bharat Singh, Abhishek Sharma, Larry Davis
2007.09867 Interpretable Foreground Object Search As Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Boren Li, Po-Yu Zhuang, Jian Gu, Mingyang Li, Ping Tan
2007.10026 Search What You Want: Barrier Panelty NAS for Mixed Precision Quantization Computer Vision and Pattern Recognition (cs.CV) Haibao Yu, Qi Han, Jianbo Li, Jianping Shi, Guangliang Cheng, Bin Fan
2007.10787 Deep Semi-supervised Knowledge Distillation for Overlapping Cervical Cell Instance Segmentation Computer Vision and Pattern Recognition (cs.CV) Yanning Zhou, Hao Chen, Huangjing Lin, Pheng-Ann Heng
2007.11088 Understanding BERT Rankers Under Distillation Information Retrieval (cs.IR) Luyu Gao, Zhuyun Dai, Jamie Callan
2007.11089 Accelerating Deep Learning Applications in Space Computer Vision and Pattern Recognition (cs.CV) Martina Lofqvist, José Cano
2007.11471 Geometric compression of invariant manifolds in neural nets Machine Learning (cs.LG) Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, Matthieu Wyart
2007.11797 End-to-end Learning of Compressible Features Computer Vision and Pattern Recognition (cs.CV) Saurabh Singh, Sami Abu-El-Haija, Nick Johnston, Johannes Ballé, Abhinav Shrivastava, George Toderici
2007.12000 ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation Machine Learning (cs.LG) Fei Mi, Xiaoyu Lin, Boi Faltings
2007.12174 Recursive Variable-Length State Compression for Multi-Core Software Model Checking Distributed, Parallel, and Cluster Computing (cs.DC) Freark I. van der Berg
2007.12355 Dynamic Knowledge Distillation for Black-box Hypothesis Transfer Learning Machine Learning (cs.LG) Yiqin Yu, Xu Min, Shiwan Zhao, Jing Mei, Fei Wang, Dongsheng Li, Kenney Ng, Shaochun Li
2007.12362 Performance analysis of weighted low rank model with sparse image histograms for face recognition under lowlevel illumination and occlusion Computer Vision and Pattern Recognition (cs.CV) K.V. Sridhar, Raghu vamshi Hemadri
2007.12401 Predictive Information Accelerates Learning in RL Machine Learning (cs.LG) Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, Sergio Guadarrama
2007.12731 COVID-19 Knowledge Graph: Accelerating Information Retrieval and Discovery for Scientific Literature Information Retrieval (cs.IR) Colby Wise, Vassilis N. Ioannidis, Miguel Romero Calvo, Xiang Song, George Price, Ninad Kulkarni, Ryan Brand, Parminder Bhatia, George Karypis
2007.12892 MP3 Compression To Diminish Adversarial Noise in End-to-End Speech Recognition Audio and Speech Processing (eess.AS) Iustina Andronic, Ludwig Kürzinger, Edgar Ricardo Chavez Rosas, Gerhard Rigoll, Bernhard U. Seeber
2007.13428 Two-Level Residual Distillation based Triple Network for Incremental Object Detection Computer Vision and Pattern Recognition (cs.CV) Dongbao Yang, Yu Zhou, Dayan Wu, Can Ma, Fei Yang, Weiping Wang
2007.13552 HeAT -- a Distributed and GPU-accelerated Tensor Framework for Data Analytics Distributed, Parallel, and Cluster Computing (cs.DC) Markus Götz, Daniel Coquelin, Charlotte Debus, Kai Krajsek, Claudia Comito, Philipp Knechtges, Björn Hagemeier, Michael Tarnawa, Simon Hanselmann, Martin Siggel, Achim Basermann, Achim Streit
2007.14137 Nonnegative Low Rank Tensor Approximation and its Application to Multi-dimensional Images Computer Vision and Pattern Recognition (cs.CV) Tai-Xiang Jiang, Michael K. Ng, Junjun Pan, Guangjing Song
2007.14283 Faster Mean-shift: GPU-accelerated Embedding-clustering for Cell Segmentation and Tracking Computer Vision and Pattern Recognition (cs.CV) Mengyang Zhao, Aadarsh Jha, Quan Liu, Bryan A. Millis, Anita Mahadevan-Jansen, Le Lu, Bennett A. Landman, Matthew J.Tyskac, Yuankai Huo
2007.14314 On the Impact of Lossy Image and Video Compression on the Performance of Deep Convolutional Neural Network Architectures Computer Vision and Pattern Recognition (cs.CV) Matt Poyser, Amir Atapour-Abarghouei, Toby P. Breckon
2007.14374 Accelerating Federated Learning over Reliability-Agnostic Clients in Mobile Edge Computing Systems Distributed, Parallel, and Cluster Computing (cs.DC) Wentai Wu, Ligang He, Weiwei Lin, Rui Mao
2007.14917 Compressing Deep Neural Networks via Layer Fusion Machine Learning (cs.LG) James O' Neill, Greg Ver Steeg, Aram Galstyan
2008.00261 Distilling Visual Priors from Self-Supervised Learning Computer Vision and Pattern Recognition (cs.CV) Bingchen Zhao, Xin Wen
2008.00325 Bringing UMAP Closer to the Speed of Light with GPU Acceleration Machine Learning (cs.LG) Corey J. Nolet, Victor Lafargue, Edward Raff, Thejaswi Nanditale, Tim Oates, John Zedlewski, Joshua Patterson
2008.00506 Differentiable Feature Aggregation Search for Knowledge Distillation Machine Learning (cs.LG) Yushuo Guan, Pengyu Zhao, Bingxuan Wang, Yuanxing Zhang, Cong Yao, Kaigui Bian, Jian Tang
2008.00671 TutorNet: Towards Flexible Knowledge Distillation for End-to-End Speech Recognition Audio and Speech Processing (eess.AS) Ji Won Yoon, Hyeonseung Lee, Hyung Yong Kim, Won Ik Cho, Nam Soo Kim
2008.01425 PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning Machine Learning (cs.LG) Thijs Vogels, Sai Praneeth Karimireddy, Martin Jaggi
2008.01458 Prime-Aware Adaptive Distillation Computer Vision and Pattern Recognition (cs.CV) Youcai Zhang, Zhonghao Lan, Yuchen Dai, Fangao Zeng, Yan Bai, Jie Chang, Yichen Wei
2008.01901 Machine Learning and Feature Engineering for Predicting Pulse Status during Chest Compressions Signal Processing (eess.SP) Diya Sashidhar (1 and 3), Heemun Kwok (2 and 3), Jason Coult (3), Jen Blackwood (3), Peter Kudenchuck (3 and 4), Shiv Bhandari (3), Thomas Rea (3 and 5), J. Nathan Kutz (1 and 3) ((1) Department of Applied Mathematics, University of Washington (2) Department of Emergency Medicine, University of Washington, (3) Center for Progress in Resuscitation, (4) Heart Institute, University of Washington, (5) Harborview Medical Center, and General Internal Medicine, University of Washington)
2008.01989 Differentially Private Accelerated Optimization Algorithms Machine Learning (cs.LG) Nurdan Kuru, Ş. İlker Birbil, Mert Gurbuzbalaban, Sinan Yildirim
2008.02002 Fast top-K Cosine Similarity Search through XOR-Friendly Binary Quantization on GPUs Computer Vision and Pattern Recognition (cs.CV) Xiaozheng Jian, Jianqiu Lu, Zexi Yuan, Ao Li
2008.02014 Optimizing AD Pruning of Sponsored Search with Reinforcement Learning Machine Learning (cs.LG) Yijiang Lian, Zhijie Chen, Xin Pei, Shuang Li, Yifei Wang, Yuefeng Qiu, Zhiheng Zhang, Zhipeng Tao, Liang Yuan, Hanju Guan, Kefeng Zhang, Zhigang Li, Xiaochun Liu
2008.02093 Point Proposal Network: Accelerating Point Source Detection Through Deep Learning Computer Vision and Pattern Recognition (cs.CV) Duncan Tilley, Christopher W. Cleghorn, Kshitij Thorat, Roger Deane
2008.02897 Iterative Compression of End-to-End ASR Model using AutoML Machine Learning (cs.LG) Abhinav Mehrotra, Łukasz Dudziak, Jinsu Yeo, Young-yoon Lee, Ravichander Vipperla, Mohamed S. Abdelfattah, Sourav Bhattacharya, Samin Ishtiaq, Alberto Gil C. P. Ramos, SangJeong Lee, Daehyun Kim, Nicholas D. Lane
2008.03433 GPU-Accelerated Primal Learning for Extremely Fast Large-Scale Classification Machine Learning (cs.LG) John T. Halloran, David M. Rocke
2008.03789 3D Human Motion Estimation via Motion Compression and Refinement Computer Vision and Pattern Recognition (cs.CV) Zhengyi Luo, S. Alireza Golestaneh, Kris M. Kitani
2008.03822 Distilling the Knowledge of BERT for Sequence-to-Sequence ASR Computation and Language (cs.CL) Hayato Futami, Hirofumi Inaguma, Sei Ueno, Masato Mimura, Shinsuke Sakai, Tatsuya Kawahara
2008.03923 Knowledge Distillation and Data Selection for Semi-Supervised Learning in CTC Acoustic Models Computation and Language (cs.CL) Prakhar Swarup, Debmalya Chakrabarty, Ashtosh Sapru, Hitesh Tulsiani, Harish Arsikere, Sri Garimella
2008.05000 Degree-Quant: Quantization-Aware Training for Graph Neural Networks Machine Learning (cs.LG) Shyam A. Tailor, Javier Fernandez-Marques, Nicholas D. Lane
2008.05124 Leveraging Automated Mixed-Low-Precision Quantization for tiny edge microcontrollers Machine Learning (cs.LG) Manuele Rusci, Marco Fariselli, Alessandro Capotondi, Luca Benini
2008.05221 Compression of Deep Learning Models for Text: A Survey Computation and Language (cs.CL) Manish Gupta, Puneet Agrawal
2008.05441 Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network Computer Vision and Pattern Recognition (cs.CV) Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr Tichavsky, Valeriy Glukhov, Ivan Oseledets, Andrzej Cichocki
2008.05672 JQF: Optimal JPEG Quantization Table Fusion by Simulated Annealing on Texture Images and Predicting Textures Multimedia (cs.MM) Chen-Hsiu Huang, Ja-Ling Wu
2008.05767 Weight Equalizing Shift Scaler-Coupled Post-training Quantization Machine Learning (cs.LG) Jihun Oh, SangJeong Lee, Meejeong Park, Pooni Walagaurav, Kiseok Kwon
2008.05969 Variance Regularization for Accelerating Stochastic Optimization Machine Learning (cs.LG) Tong Yang, Long Sha, Pengyu Hong
2008.06180 Distillation-Based Semi-Supervised Federated Learning for Communication-Efficient Collaborative Training with Non-IID Private Data Distributed, Parallel, and Cluster Computing (cs.DC) Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, Koji Yamamoto
2008.06388 Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review Machine Learning (cs.LG) Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, James H.F. Rudd, Evis Sala, Carola-Bibiane Schönlieb (on behalf of the AIX-COVNET collaboration)
2008.06653 Evaluating Lossy Compression Rates of Deep Generative Models Machine Learning (cs.LG) Sicong Huang, Alireza Makhzani, Yanshuai Cao, Roger Grosse
2008.06814 Cascaded channel pruning using hierarchical self-distillation Computer Vision and Pattern Recognition (cs.CV) Roy Miles, Krystian Mikolajczyk
2008.06867 Audio Dequantization for High Fidelity Audio Generation in Flow-based Neural Vocoder Audio and Speech Processing (eess.AS) Hyun-Wook Yoon, Sang-Hoon Lee, Hyeong-Rae Noh, Seong-Whan Lee
2008.07063 To Bag is to Prune Machine Learning (stat.ML) Philippe Goulet Coulombe
2008.07112 AnciNet: An Efficient Deep Learning Approach for Feedback Compression of Estimated CSI in Massive MIMO Systems Signal Processing (eess.SP) Yuyao Sun, Wei Xu, Lisheng Fan, Geoffrey Ye Li, George K. Karagiannidis
2008.07130 Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation Computer Vision and Pattern Recognition (cs.CV) Filippo Aleotti, Fabio Tosi, Li Zhang, Matteo Poggi, Stefano Mattoccia
2008.07816 Knowledge Transfer via Dense Cross-Layer Mutual-Distillation Computer Vision and Pattern Recognition (cs.CV) Anbang Yao, Dawei Sun
2008.07948 Adaptive Distillation for Decentralized Learning from Heterogeneous Clients Machine Learning (cs.LG) Jiaxin Ma, Ryo Yonetani, Zahid Iqbal
2008.08284 Channel-wise Hessian Aware trace-Weighted Quantization of Neural Networks Computer Vision and Pattern Recognition (cs.CV) Xu Qian, Victor Li, Crews Darren
2008.08289 Restructuring, Pruning, and Adjustment of Deep Models for Parallel Distributed Inference Machine Learning (cs.LG) Afshin Abdi, Saeed Rashidi, Faramarz Fekri, Tushar Krishna
2008.08316 Data-Independent Structured Pruning of Neural Networks via Coresets Machine Learning (cs.LG) Ben Mussay, Daniel Feldman, Samson Zhou, Vladimir Braverman, Margarita Osadchy
2008.09072 Utilizing Explainable AI for Quantization and Pruning of Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Muhammad Sabih, Frank Hannig, Juergen Teich
2008.09206 Training of mixed-signal optical convolutional neural network with reduced quantization level Signal Processing (eess.SP) Joseph Ulseth, Zheyuan Zhu, Guifang Li, Shuo Pang
2008.09342 Kronecker CP Decomposition with Fast Multiplication for Compressing RNNs Computer Vision and Pattern Recognition (cs.CV) Dingheng Wang, Bijiao Wu, Guangshe Zhao, Hengnu Chen, Lei Deng, Tianyi Yan, Guoqi Li
2008.09457 DOPE: Distillation Of Part Experts for whole-body 3D pose estimation in the wild Computer Vision and Pattern Recognition (cs.CV) Philippe Weinzaepfel, Romain Brégier, Hadrien Combaluzier, Vincent Leroy, Grégory Rogez
2008.09903 iCVI-ARTMAP: Accelerating and improving clustering using adaptive resonance theory predictive mapping and incremental cluster validity indices Machine Learning (cs.LG) Leonardo Enzo Brito da Silva, Nagasharath Rayapati, Donald C. Wunsch II
2008.09958 Matching Guided Distillation Computer Vision and Pattern Recognition (cs.CV) Kaiyu Yue, Jiangfan Deng, Feng Zhou
2008.10092 Adaptive Subband Compression of Streaming Data for Power System Monitoring and Control Signal Processing (eess.SP) Xinyi Wang, Yilu Liu, Lang Tong
2008.10191 Affinity-aware Compression and Expansion Network for Human Parsing Computer Vision and Pattern Recognition (cs.CV) Xinyan Zhang, Yunfeng Wang, Pengfei Xiong
2008.10850 Discriminability Distillation in Group Representation Learning Computer Vision and Pattern Recognition (cs.CV) Manyuan Zhang, Guanglu Song, Hang Zhou, Yu Liu
2008.11062 GAN Slimming: All-in-One GAN Compression by A Unified Optimization Framework Machine Learning (cs.LG) Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, Zhangyang Wang
2008.11281 Accelerating Federated Learning in Heterogeneous Data and Computational Environments Machine Learning (cs.LG) Dimitris Stripelis, Jose Luis Ambite
2008.11420 Low Complexity Trellis-Coded Quantization in Versatile Video Coding Multimedia (cs.MM) Meng Wang, Shiqi Wang, Junru Li, Li Zhang, Yue Wang, Siwei Ma, Sam Kwong
2008.11827 Smart-PGSim: Using Neural Network to Accelerate AC-OPF Power Grid Simulation Signal Processing (eess.SP) Wenqian Dong, Zhen Xie, Gokcen Kestor, Dong Li
2008.11832 Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation Machine Learning (cs.LG) Wenqian Dong, Jie Liu, Zhen Xie, Dong Li
2008.11849 SparseRT: Accelerating Unstructured Sparsity on GPUs for Deep Learning Inference Machine Learning (cs.LG) Ziheng Wang
2008.11911 Domain Adaptation Through Task Distillation Computer Vision and Pattern Recognition (cs.CV) Brady Zhou, Nimit Kalra, Philipp Krähenbühl
2008.12094 MetaDistiller: Network Self-Boosting via Meta-Learned Top-Down Distillation Computer Vision and Pattern Recognition (cs.CV) Benlin Liu, Yongming Rao, Jiwen Lu, Jie Zhou, Cho-jui Hsieh
2008.12889 Source-Aware Neural Speech Coding for Noisy Speech Compression Audio and Speech Processing (eess.AS) Haici Yang, Seungkwon Beack, Minje Kim
2008.13128 Optimal Quantization for Batch Normalization in Neural Network Deployments and Beyond Machine Learning (cs.LG) Dachao Lin, Peiqin Sun, Guangzeng Xie, Shuchang Zhou, Zhihua Zhang
2008.13485 ROS-Neuro Integration of Deep Convolutional Autoencoders for EEG Signal Compression in Real-time BCIs Machine Learning (cs.LG) Andrea Valenti, Michele Barsotti, Raffaello Brondi, Davide Bacciu, Luca Ascari
2008.13528 Microsoft Recommenders: Tools to Accelerate Developing Recommender Systems Information Retrieval (cs.IR) Scott Graham, Jun-Ki Min, Tao Wu
2008.13578 MCMIA: Model Compression Against Membership Inference Attack in Deep Neural Networks Machine Learning (cs.LG) Yijue Wang, Chenghong Wang, Zigeng Wang, Shanglin Zhou, Hang Liu, Jinbo Bi, Caiwen Ding, Sanguthevar Rajasekaran
2008.13590 Efficient and Sparse Neural Networks by Pruning Weights in a Multiobjective Learning Approach Machine Learning (cs.LG) Malena Reiners, Kathrin Klamroth, Michael Stiglmayr
2009.00189 Object Detection-Based Variable Quantization Processing Computer Vision and Pattern Recognition (cs.CV) Likun Liu, Hua Qi
2009.00210 Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision Action Recognition Computer Vision and Pattern Recognition (cs.CV) Yang Liu, Guanbin Li, Liang Lin
2009.00694 Automatic Assignment of Radiology Examination Protocols Using Pre-trained Language Models with Knowledge Distillation Computation and Language (cs.CL) Wilson Lau, Laura Aaltonen, Martin Gunn, Meliha Yetisgen
2009.01174 Transform Quantization for CNN Compression Computer Vision and Pattern Recognition (cs.CV) Sean I. Young, Wang Zhe, David Taubman, Bernd Girod
2009.01395 A Partial Regularization Method for Network Compression Machine Learning (cs.LG) E Zhenqian, Gao Weiguo
2009.01759 Intra-Utterance Similarity Preserving Knowledge Distillation for Audio Tagging Audio and Speech Processing (eess.AS) Chun-Chieh Chang, Chieh-Chi Kao, Ming Sun, Chao Wang
2009.01956 Compression-aware Continual Learning using Singular Value Decomposition Computer Vision and Pattern Recognition (cs.CV) Varigonda Pavan Teja, Priyadarshini Panda
2009.01974 FedDistill: Making Bayesian Model Ensemble Applicable to Federated Learning Machine Learning (cs.LG) Hong-You Chen, Wei-Lun Chao
2009.02326 CLEANN: Accelerated Trojan Shield for Embedded Neural Networks Machine Learning (cs.LG) Mojan Javaheripi, Mohammad Samragh, Gregory Fields, Tara Javidi, Farinaz Koushanfar
2009.02388 On Communication Compression for Distributed Optimization on Heterogeneous Data Machine Learning (cs.LG) Sebastian U. Stich
2009.03294 GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training Machine Learning (cs.LG) Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, Liwei Wang
2009.03998 Tangent Space Based Alternating Projections for Nonnegative Low Rank Matrix Approximation Machine Learning (cs.LG) Guangjing Song, Michael K. Ng, Tai-Xiang Jiang
2009.04120 On the Orthogonality of Knowledge Distillation with Other Techniques: From an Ensemble Perspective Machine Learning (cs.LG) SeongUk Park, KiYoon Yoo, Nojun Kwak
2009.04126 FleXOR: Trainable Fractional Quantization Machine Learning (cs.LG) Dongsoo Lee, Se Jung Kwon, Byeongwook Kim, Yongkweon Jeon, Baeseong Park, Jeongin Yun
2009.04619 Accelerating High-Order Stencils on GPUs Distributed, Parallel, and Cluster Computing (cs.DC) Ryuichi Sai, John Mellor-Crummey, Xiaozhu Meng, Mauricio Araya-Polo, Jie Meng
2009.04646 Key-Point Sequence Lossless Compression for Intelligent Video Analysis Multimedia (cs.MM) Weiyao Lin, Xiaoyi He, Wenrui Dai, John See, Tushar Shinde, Hongkai Xiong, Lingyu Duan
2009.05014 OrthoReg: Robust Network Pruning Using Orthonormality Regularization Computer Vision and Pattern Recognition (cs.CV) Ekdeep Singh Lubana, Puja Trivedi, Conrad Hougen, Robert P. Dick, Alfred O. Hero
2009.05167 Accelerating Real-Time Question Answering via Question Generation Computation and Language (cs.CL) Yuwei Fang, Shuohang Wang, Zhe Gan, Siqi Sun, Jingjing Liu
2009.05226 Extending Label Smoothing Regularization with Self-Knowledge Distillation Machine Learning (cs.LG) Ji-Yue Wang, Pei Zhang, Wen-feng Pang, Jie Li
2009.05252 Novel and Effective CNN-Based Binarization for Historically Degraded As-built Drawing Maps Computer Vision and Pattern Recognition (cs.CV) Kuo-Liang Chung, De-Wei Hsieh
2009.05300 Enabling Image Recognition on Constrained Devices Using Neural Network Pruning and a CycleGAN Computer Vision and Pattern Recognition (cs.CV) August Lidfelt, Daniel Isaksson, Ludwig Hedlund, Simon Åberg, Markus Borg, Erik Larsson
2009.05697 YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design Computer Vision and Pattern Recognition (cs.CV) Yuxuan Cai, Hongjia Li, Geng Yuan, Wei Niu, Yanyu Li, Xulong Tang, Bin Ren, Yanzhi Wang
2009.05972 SSKD: Self-Supervised Knowledge Distillation for Cross Domain Adaptive Person Re-Identification Computer Vision and Pattern Recognition (cs.CV) Junhui Yin, Jiayan Qiu, Siqing Zhang, Zhanyu Ma, Jun Guo
2009.05982 Improving Deep Video Compression by Resolution-adaptive Flow Coding Computer Vision and Pattern Recognition (cs.CV) Zhihao Hu (1), Zhenghao Chen (2), Dong Xu (2), Guo Lu (3), Wanli Ouyang (2), Shuhang Gu (2) ((1) College of Software, Beihang University, China, (2) School of Electrical and Information Engineering, The University of Sydney, Australia, (3) School of Computer Science & Technology, Beijing Institute of Technology, China)
2009.06116 Accelerating COVID-19 Differential Diagnosis with Explainable Ultrasound Image Analysis Computer Vision and Pattern Recognition (cs.CV) Jannis Born, Nina Wiedemann, Gabriel Brändle, Charlotte Buhre, Bastian Rieck, Karsten Borgwardt
2009.06245 Accelerating gradient-based topology optimization design with dual-model neural networks Artificial Intelligence (cs.AI) Chao Qian, Wenjing Ye
2009.06902 Collaborative Distillation in the Parameter and Spectrum Domains for Video Action Recognition Computer Vision and Pattern Recognition (cs.CV) Haisheng Su, Jing Su, Dongliang Wang, Weihao Gan, Wei Wu, Mengmeng Wang, Junjie Yan, Yu Qiao
2009.07032 Noisy Self-Knowledge Distillation for Text Summarization Computation and Language (cs.CL) Yang Liu, Sheng Shen, Mirella Lapata
2009.07253 Autoregressive Knowledge Distillation through Imitation Learning Computation and Language (cs.CL) Alexander Lin, Jeremy Wohlwend, Howard Chen, Tao Lei
2009.07325 GPU Accelerated RIS-based Influence Maximization Algorithm Distributed, Parallel, and Cluster Computing (cs.DC) Soheil Shahrouz, Saber Salehkaleybar, Matin Hashemi
2009.07411 Mimic and Conquer: Heterogeneous Tree Structure Distillation for Syntactic NLP Computation and Language (cs.CL) Hao Fei, Yafeng Ren, Donghong Ji
2009.07453 Extremely Low Bit Transformer Quantization for On-Device Neural Machine Translation Machine Learning (cs.LG) Insoo Chung, Byeongwook Kim, Yoonjung Choi, Se Jung Kwon, Yongkweon Jeon, Baeseong Park, Sangha Kim, Dongsoo Lee
2009.07531 Simplified TinyBERT: Knowledge Distillation for Document Retrieval Information Retrieval (cs.IR) Xuanang Chen, Ben He, Kai Hui, Le Sun, Yingfei Sun
2009.07604 Compressing Facial Makeup Transfer Networks by Collaborative Distillation and Kernel Decomposition Computer Vision and Pattern Recognition (cs.CV) Bianjiang Yang, Zi Hui, Haoji Hu, Xinyi Hu, Lu Yu
2009.07785 Accelerating Domain Propagation: an Efficient GPU-Parallel Algorithm over Sparse Matrices Distributed, Parallel, and Cluster Computing (cs.DC) Boro Sofranac, Ambros Gleixner, Sebastian Pokutta
2009.07823 GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network Computer Vision and Pattern Recognition (cs.CV) Prune Truong, Martin Danelljan, Luc Van Gool, Radu Timofte
2009.07999 Distilled One-Shot Federated Learning Machine Learning (cs.LG) Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, Dapeng Wu
2009.08169 Holistic Filter Pruning for Efficient Deep Neural Networks Machine Learning (cs.LG) Lukas Enderich, Fabian Timm, Wolfram Burgard
2009.08278 Accelerated solving of coupled, non-linear ODEs through LSTM-AI Machine Learning (cs.LG) Camila Faccini de Lima, Juliano Ferrari Gianlupi, John Metzcar, Juliette Zerick
2009.08348 S2SD: Simultaneous Similarity-based Self-Distillation for Deep Metric Learning Computer Vision and Pattern Recognition (cs.CV) Karsten Roth, Timo Milbich, Björn Ommer, Joseph Paul Cohen, Marzyeh Ghassemi
2009.08576 Pruning Neural Networks at Initialization: Why are We Missing the Mark? Machine Learning (cs.LG) Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, Michael Carbin
2009.08591 Accelerating Search on Binary Codes in Weighted Hamming Space Computer Vision and Pattern Recognition (cs.CV) Zhenyu Weng, Yuesheng Zhu, Ruixin Liu
2009.08716 Federated Learning with Nesterov Accelerated Gradient Momentum Method Machine Learning (cs.LG) Zhengjie Yang, Wei Bao, Dong Yuan, Nguyen H. Tran, Albert Y. Zomaya
2009.08825 Densely Guided Knowledge Distillation using Multiple Teacher Assistants Computer Vision and Pattern Recognition (cs.CV) Wonchul Son, Jaemin Na, Wonjun Hwang
2009.09140 Introspective Learning by Distilling Knowledge from Online Self-explanation Computer Vision and Pattern Recognition (cs.CV) Jindong Gu, Zhiliang Wu, Volker Tresp
2009.09152 Weight Distillation: Transferring the Knowledge in Neural Network Parameters Computation and Language (cs.CL) Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du, Tong Xiao, Jingbo Zhu
2009.09402 Accelerating Auxiliary Function-based Independent Vector Analysis Audio and Speech Processing (eess.AS) Andreas Brendel, Walter Kellermann
2009.09427 Dialogue Distillation: Open-domain Dialogue Augmentation Using Unpaired Data Computation and Language (cs.CL) Rongsheng Zhang, Yinhe Zheng, Jianzhi Shao, Xiaoxi Mao, Yadong Xi, Minlie Huang
2009.09724 Conditional Automated Channel Pruning for Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Yixin Liu, Yong Guo, Zichang Liu, Haohua Liu, Jingjie Zhang, Zejun Chen, Jing Liu, Jian Chen
2009.09922 Feature Distillation With Guided Adversarial Contrastive Learning Machine Learning (cs.LG) Tao Bai, Jinnan Chen, Jun Zhao, Bihan Wen, Xudong Jiang, Alex Kot
2009.09936 Prune Responsibly Computer Vision and Pattern Recognition (cs.CV) Michela Paganini
2009.09940 CNNPruner: Pruning Convolutional Neural Networks with Visual Analytics Computer Vision and Pattern Recognition (cs.CV) Guan Li, Junpeng Wang, Han-Wei Shen, Kaixin Chen, Guihua Shan, Zhonghua Lu
2009.10115 Extreme compression of grayscale images Computer Vision and Pattern Recognition (cs.CV) Franklin Mendivil, Örjan Stenflo
2009.10893 Pruning Convolutional Filters using Batch Bridgeout Machine Learning (cs.LG) Najeeb Khan, Ian Stavness
2009.11094 Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot Machine Learning (cs.LG) Jingtong Su, Yihang Chen, Tianle Cai, Tianhao Wu, Ruiqi Gao, Liwei Wang, Jason D. Lee
2009.11839 A Gradient Flow Framework For Analyzing Network Pruning Machine Learning (cs.LG) Ekdeep Singh Lubana, Robert P. Dick
2009.11859 Multi-Frame to Single-Frame: Knowledge Distillation for 3D Object Detection Computer Vision and Pattern Recognition (cs.CV) Yue Wang, Alireza Fathi, Jiajun Wu, Thomas Funkhouser, Justin Solomon
2009.11896 Bootstrapped Q-learning with Context Relevant Observation Pruning to Generalize in Text-based Games Machine Learning (cs.LG) Subhajit Chaudhury, Daiki Kimura, Kartik Talamadupula, Michiaki Tatsubori, Asim Munawar, Ryuki Tachibana
2009.12812 TernaryBERT: Distillation-aware Ultra-low Bit BERT Computation and Language (cs.CL) Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, Qun Liu
2009.13044 Kernel Based Progressive Distillation for Adder Neural Networks Computer Vision and Pattern Recognition (cs.CV) Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing Xu, Yunhe Wang
2009.13062 Accelerating Multi-Model Inference by Merging DNNs of Different Weights Machine Learning (cs.LG) Joo Seong Jeong, Soojeong Kim, Gyeong-In Yu, Yunseong Lee, Byung-Gon Chun
2009.13101 Distillation of Weighted Automata from Recurrent Neural Networks using a Spectral Approach Machine Learning (cs.LG) Remi Eyraud, Stephane Ayache
2009.13829 TinyGAN: Distilling BigGAN for Conditional Image Generation Computer Vision and Pattern Recognition (cs.CV) Ting-Yun Chang, Chi-Jen Lu
2009.14167 Contrastive Distillation on Intermediate Representations for Language Model Compression Computation and Language (cs.CL) Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, Jingjing Liu
2009.14244 Acceleration of Large Margin Metric Learning for Nearest Neighbor Classification Using Triplet Mining and Stratified Sampling Machine Learning (cs.LG) Parisa Abdolrahim Poorheravi, Benyamin Ghojogh, Vincent Gaudet, Fakhri Karray, Mark Crowley
2009.14410 Pruning Filter in Filter Computer Vision and Pattern Recognition (cs.CV) Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, Xing Sun
2009.14416 Efficient Kernel Transfer in Knowledge Distillation Machine Learning (cs.LG) Qi Qian, Hao Li, Juhua Hu
2009.14502 Stochastic Precision Ensemble: Self-Knowledge Distillation for Quantized Deep Neural Networks Machine Learning (cs.LG) Yoonho Boo, Sungho Shin, Jungwook Choi, Wonyong Sung
2009.14822 Pea-KD: Parameter-efficient and Accurate Knowledge Distillation Machine Learning (cs.LG) Ikhyun Cho, U Kang
2010.00071 Erratum Concerning the Obfuscated Gradients Attack on Stochastic Activation Pruning Machine Learning (cs.LG) Guneet S. Dhillon, Nicholas Carlini
2010.00195 BiLiMO: Bit-Limited MIMO Radar via Task-Based Quantization Signal Processing (eess.SP) Feng Xi, Nir Shlezinger, Yonina C. Eldar
2010.00363 How LSTM Encodes Syntax: Exploring Context Vectors and Semi-Quantization on Natural Text Computation and Language (cs.CL) Chihiro Shibata, Kei Uchiumi, Daichi Mochihashi
2010.00520 On the Compression of Translation Operator Tensors in FMM-FFT-Accelerated SIE Simulators via Tensor Decompositions Signal Processing (eess.SP) Cheng Qian, Abdulkadir C. Yucel
2010.00769 Supervised Heart Rate Tracking using Wrist-Type Photoplethysmographic (PPG) Signals during Physical Exercise without Simultaneous Acceleration Signals Signal Processing (eess.SP) Mahmoud Essalat, Mahdi Boloursaz Mashhadi, Farokh Marvasti
2010.00795 Online Knowledge Distillation via Multi-branch Diversity Enhancement Computer Vision and Pattern Recognition (cs.CV) Zheng Li, Ying Huang, Defang Chen, Tianren Luo, Ning Cai, Zhigeng Pan
2010.01084 Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction Machine Learning (stat.ML) Wei Deng, Qi Feng, Georgios Karagiannis, Guang Lin, Faming Liang
2010.01189 Neighbourhood Distillation: On the benefits of non end-to-end distillation Machine Learning (cs.LG) Laëtitia Shao, Max Moroz, Elad Eban, Yair Movshovitz-Attias
2010.01242 Nonconvex Regularization for Network Slimming:Compressing CNNs Even More Computer Vision and Pattern Recognition (cs.CV) Kevin Bui, Fredrick Park, Shuai Zhang, Yingyong Qi, Jack Xin
2010.01251 UCP: Uniform Channel Pruning for Deep Convolutional Neural Networks Compression and Acceleration Computer Vision and Pattern Recognition (cs.CV) Jingfei Chang, Yang Lu, Ping Xue, Xing Wei, Zhen Wei
2010.01343 A Variational Information Bottleneck Based Method to Compress Sequential Networks for Human Action Recognition Computer Vision and Pattern Recognition (cs.CV) Ayush Srivastava, Oshin Dutta, Prathosh AP, Sumeet Agarwal, Jigyasa Gupta
2010.01618 Provable Acceleration of Neural Net Training via Polyak's Momentum Machine Learning (cs.LG) Jun-Kun Wang, Jacob Abernethy
2010.01637 Understanding How Over-Parametrization Leads to Acceleration: A case of learning a single teacher neuron Machine Learning (cs.LG) Jun-Kun Wang, Jacob Abernethy
2010.01791 Pruning Redundant Mappings in Transformer Models via Spectral-Normalized Identity Prior Computation and Language (cs.CL) Zi Lin, Jeremiah Zhe Liu, Zi Yang, Nan Hua, Dan Roth
2010.01892 Joint Pruning & Quantization for Extremely Sparse Neural Networks Computer Vision and Pattern Recognition (cs.CV) Po-Hsiang Yu, Sih-Sian Wu, Jan P. Klopp, Liang-Gee Chen, Shao-Yi Chien
2010.02123 Lifelong Language Knowledge Distillation Computation and Language (cs.CL) Yung-Sung Chuang, Shang-Yu Su, Yun-Nung Chen
2010.02377 Improving Neural Topic Models using Knowledge Distillation Computation and Language (cs.CL) Alexander Hoyle, Pranav Goel, Philip Resnik
2010.02488 RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs Computer Vision and Pattern Recognition (cs.CV) Zhiwei Xu, Thalaiyasingam Ajanthan, Vibhav Vineet, Richard Hartley
2010.02623 Comprehensive Online Network Pruning via Learnable Scaling Factors Computer Vision and Pattern Recognition (cs.CV) Muhammad Umair Haider, Murtaza Taj
2010.02666 Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation Information Retrieval (cs.IR) Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, Allan Hanbury
2010.02700 Joint Collaboration and Compression Design for Distributed Sequential Estimation in a Wireless Sensor Network Signal Processing (eess.SP) Xiancheng Cheng, Prashant Khanduri, Boxiao Chen, Pramod K.Varshney
2010.02778 Compressing Deep Convolutional Neural Networks by Stacking Low-dimensional Binary Convolution Filters Computer Vision and Pattern Recognition (cs.CV) Weichao Lan, Liang Lan
2010.02838 A Closer Look at Codistillation for Distributed Training Machine Learning (cs.LG) Shagun Sodhani, Olivier Delalleau, Mahmoud Assran, Koustuv Sinha, Nicolas Ballas, Michael Rabbat
2010.02840 Semantic Evaluation for Text-to-SQL with Distilled Test Suites Computation and Language (cs.CL) Ruiqi Zhong, Tao Yu, Dan Klein
2010.03034 Why Skip If You Can Combine: A Simple Knowledge Distillation Technique for Intermediate Layers Computation and Language (cs.CL) Yimeng Wu, Peyman Passban, Mehdi Rezagholizade, Qun Liu
2010.03099 DiPair: Fast and Accurate Distillation for Trillion-Scale Text Matching and Pair Modeling Computation and Language (cs.CL) Jiecao Chen, Liu Yang, Karthik Raman, Michael Bendersky, Jung-Jung Yeh, Yun Zhou, Marc Najork, Danyang Cai, Ehsan Emadzadeh
2010.03193 Rank and run-time aware compression of NLP Applications Computation and Language (cs.CL) Urmish Thakker, Jesse Beu, Dibakar Gope, Ganesh Dasika, Matthew Mattina
2010.03246 Optimal Gradient Compression for Distributed and Federated Learning Machine Learning (cs.LG) Alyazeed Albasyoni, Mher Safaryan, Laurent Condat, Peter Richtárik
2010.03322 Training GANs with predictive projection centripetal acceleration Machine Learning (stat.ML) Li Keke, Zhang Ke, Liu Qiang, Yang Xinmin
2010.03954 A Survey on Deep Neural Network Compression: Challenges, Overview, and Solutions Machine Learning (cs.LG) Rahul Mishra, Hari Prabhat Gupta, Tanima Dutta
2010.04004 Accelerating Simulation of Stiff Nonlinear Systems using Continuous-Time Echo State Networks Machine Learning (cs.LG) Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral Shah, Alan Edelman, Chris Rackauckas
2010.04351 Connection Pruning for Deep Spiking Neural Networks with On-Chip Learning Neural and Evolutionary Computing (cs.NE) Thao N.N. Nguyen, Bharadwaj Veeravalli, Xuanyao Fong
2010.04786 Reparametrizing gradient descent Machine Learning (cs.LG) David Sprunger
2010.04812 Locally Linear Region Knowledge Distillation Machine Learning (cs.LG) Xiang Deng, Zhongfei (Mark)Zhang
2010.04842 Conformal retrofitting via Riemannian manifolds: distilling task-specific graphs into pretrained embeddings Machine Learning (cs.LG) Justin Dieter, Arun Tejasvi Chaganty
2010.04879 Accelerate Your CNN from Three Dimensions: A Comprehensive Pruning Framework Computer Vision and Pattern Recognition (cs.CV) Wenxiao Wang, Minghao Chen, Shuai Zhao, Jinming Hu, Boxi Wu, Zhengxu Yu, Deng Cai, Haifeng Liu
2010.04883 Adversarial Self-Supervised Data-Free Distillation for Text Classification Computation and Language (cs.CL) Xinyin Ma, Yongliang Shen, Gongfan Fang, Chen Chen, Chenghao Jia, Weiming Lu
2010.04974 Distilling a Deep Neural Network into a Takagi-Sugeno-Kang Fuzzy Inference System Artificial Intelligence (cs.AI) Xiangming Gu, Xiang Cheng
2010.05002 Compressing Transformer-Based Semantic Parsing Models using Compositional Code Embeddings Computation and Language (cs.CL) Prafull Prakash, Saurabh Kumar Shashidhar, Wenlong Zhao, Subendhu Rongali, Haidar Khan, Michael Kayser
2010.05010 Structural Knowledge Distillation Computation and Language (cs.CL) Xinyu Wang, Yong Jiang, Zhaohui Yan, Zixia Jia, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, Kewei Tu
2010.05119 Anomaly Detection based on Zero-Shot Outlier Synthesis and Hierarchical Feature Distillation Computer Vision and Pattern Recognition (cs.CV) Adín Ramírez Rivera, Adil Khan, Imad E. I. Bekkouch, Taimoor S. Sheikh
2010.05265 Unsupervised Distillation of Syntactic Information from Contextualized Word Representations Computation and Language (cs.CL) Shauli Ravfogel, Yanai Elazar, Jacob Goldberger, Yoav Goldberg
2010.05371 Early Abandoning PrunedDTW and its application to similarity search Machine Learning (cs.LG) Matthieu Herrmann, Geoffrey I. Webb
2010.05445 Collective Wisdom: Improving Low-resource Neural Machine Translation using Adaptive Knowledge Distillation Computation and Language (cs.CL) Fahimeh Saleh, Wray Buntine, Gholamreza Haffari
2010.05448 securePrune:Secure block pruning in UTXO based blockchains using Accumulators Distributed, Parallel, and Cluster Computing (cs.DC) Swaroopa Reddy B
2010.06084 Accelerating the Development of Multimodal, Integrative-AI Systems with Platform for Situated Intelligence Artificial Intelligence (cs.AI) Sean Andrist, Dan Bohus
2010.06133 BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth Mover's Distance Computation and Language (cs.CL) Jianquan Li, Xiaokang Liu, Honghong Zhao, Ruifeng Xu, Min Yang, Yaohong Jin
2010.06715 Random Network Distillation as a Diversity Metric for Both Image and Text Generation Machine Learning (cs.LG) Liam Fowl, Micah Goldblum, Arjun Gupta, Amr Sharaf, Tom Goldstein
2010.06721 Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast---Choose Three Machine Learning (cs.LG) Steven Reich, David Mueller, Nicholas Andrews
2010.06821 Towards Optimal Filter Pruning with Balanced Performance and Pruning Speed Computer Vision and Pattern Recognition (cs.CV) Dong Li, Sitong Chen, Xudong Liu, Yunda Sun, Li Zhang
2010.06993 Weight Squeezing: Reparameterization for Compression and Fast Inference Machine Learning (cs.LG) Artem Chumachenko, Daniil Gavrilov, Pavel Kalaidin
2010.07004 Binarization Methods for Motor-Imagery Brain-Computer Interface Classification Signal Processing (eess.SP) Michael Hersche, Luca Benini, Abbas Rahimi
2010.07109 An Investigation on Different Underlying Quantization Schemes for Pre-trained Language Models Computation and Language (cs.CL) Zihan Zhao, Yuncong Liu, Lu Chen, Qi Liu, Rao Ma, Kai Yu
2010.07152 Multi-teacher Knowledge Distillation for Knowledge Graph Completion Artificial Intelligence (cs.AI) Kai Wang, Yu Liu, Qian Ma, Quan Z. Sheng
2010.07334 Towards Accurate Quantization and Pruning via Data-free Knowledge Transfer Machine Learning (cs.LG) Chen Zhu, Zheng Xu, Ali Shafahi, Manli Shu, Amin Ghiasi, Tom Goldstein
2010.07382 Learning, compression, and leakage: Minimizing classification error via meta-universal compression principles Machine Learning (cs.LG) Fernando E. Rosas, Pedro A.M. Mediano, Michael Gastpar
2010.07422 Rapid Robust Principal Component Analysis: CUR Accelerated Inexact Low Rank Estimation Machine Learning (stat.ML) HanQin Cai, Keaton Hamm, Longxiu Huang, Jiaqi Li, Tao Wang
2010.07611 A Deeper Look at the Layerwise Sparsity of Magnitude-based Pruning Machine Learning (cs.LG) Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, Jinwoo Shin
2010.08038 Why Layer-Wise Learning is Hard to Scale-up and a Possible Solution via Accelerated Downsampling Computer Vision and Pattern Recognition (cs.CV) Wenchi Ma, Miao Yu, Kaidong Li, Guanghui Wang
2010.08390 Volumetric Calculation of Quantization Error in 3-D Vision Systems Computer Vision and Pattern Recognition (cs.CV) Eleni Bohacek, Andrew J. Coates, David R. Selviah
2010.08655 Adaptive Dense-to-Sparse Paradigm for Pruning Online Recommendation System with Non-Stationary Data Machine Learning (cs.LG) Mao Ye, Dhruv Choudhary, Jiecao Yu, Ellie Wen, Zeliang Chen, Jiyan Yang, Jongsoo Park, Qiang Liu, Arun Kejariwal
2010.08919 Boosting High-Level Vision with Joint Compression Artifacts Reduction and Super-Resolution Computer Vision and Pattern Recognition (cs.CV) Xiaoyu Xiang, Qian Lin, Jan P. Allebach
2010.08923 Towards Data Distillation for End-to-end Spoken Conversational Question Answering Computation and Language (cs.CL) Chenyu You, Nuo Chen, Fenglin Liu, Dongchao Yang, Yuexian Zou
2010.09336 Causal Discovery using Compression-Complexity Measures Machine Learning (cs.LG) Pranay SY, Nithin Nagaraj
2010.09465 A Nesterov's Accelerated quasi-Newton method for Global Routing using Deep Reinforcement Learning Machine Learning (cs.LG) S. Indrapriyadarsini, Shahrzad Mahboubi, Hiroshi Ninomiya, Takeshi Kamio, Hideki Asai
2010.09498 Softer Pruning, Incremental Regularization Computer Vision and Pattern Recognition (cs.CV) Linhang Cai, Zhulin An, Chuanguang Yang, Yongjun Xu
2010.09839 New Properties of the Data Distillation Method When Working With Tabular Data Machine Learning (cs.LG) Dmitry Medvedev, Alexander D'yakonov
2010.09923 Anti-Distillation: Improving reproducibility of deep networks Machine Learning (cs.LG) Gil I. Shamir, Lorenzo Coviello
2010.10027 Fast Video Salient Object Detection via Spatiotemporal Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Tang Yi, Li Yuan
2010.10090 Knowledge Distillation in Wide Neural Networks: Risk Bound, Data Efficiency and Imperfect Teacher Machine Learning (cs.LG) Guangda Ji, Zhanxing Zhu
2010.10103 Two-Stage Generative Adversarial Networks for Document Image Binarization with Color Noise and Background Removal Computer Vision and Pattern Recognition (cs.CV) Sungho Suh, Jihun Kim, Paul Lukowicz, Yong Oh Lee
2010.10338 Asynchronous Edge Learning using Cloned Knowledge Distillation Machine Learning (cs.LG) Sang-ho Lee, Kiyoon Yoo, Nojun Kwak
2010.10442 BERT2DNN: BERT Distillation with Massive Unlabeled Data for Online E-Commerce Search Machine Learning (cs.LG) Yunjiang Jiang, Yue Shang, Ziyang Liu, Hongwei Shen, Yun Xiao, Wei Xiong, Sulong Xu, Weipeng Yan, Di Jin
2010.10732 SCOP: Scientific Control for Reliable Neural Network Pruning Computer Vision and Pattern Recognition (cs.CV) Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing Xu, Chao Xu, Chang Xu
2010.11067 Knowledge Distillation for Improved Accuracy in Spoken Question Answering Computation and Language (cs.CL) Chenyu You, Nuo Chen, Yuexian Zou
2010.11166 Decentralized Deep Learning using Momentum-Accelerated Consensus Machine Learning (cs.LG) Aditya Balu, Zhanhong Jiang, Sin Yong Tan, Chinmay Hedge, Young M Lee, Soumik Sarkar
2010.11271 Robustness-aware 2-bit quantization with real-time performance for neural network Machine Learning (cs.LG) Xiaobin Li, Hongxu Jiang, Shuangxi Huang, Fangzheng Tian
2010.11322 Learning to Summarize Long Texts with Memory Compression and Transfer Computation and Language (cs.CL) Jaehong Park, Jonathan Pilault, Christopher Pal
2010.11386 Distilling Dense Representations for Ranking using Tightly-Coupled Teachers Information Retrieval (cs.IR) Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin
2010.11478 Knowledge Distillation for BERT Unsupervised Domain Adaptation Computation and Language (cs.CL) Minho Ryu, Kichun Lee
2010.11944 Accelerating Reinforcement Learning with Learned Skill Priors Machine Learning (cs.LG) Karl Pertsch, Youngwoon Lee, Joseph J. Lim
2010.11980 A Joint Learning Approach based on Self-Distillation for Keyphrase Extraction from Scientific Documents Computation and Language (cs.CL) Tuan Manh Lai, Trung Bui, Doo Soon Kim, Quan Hung Tran
2010.12021 AutoPruning for Deep Neural Network with Dynamic Channel Masking Computer Vision and Pattern Recognition (cs.CV) Baopu Li, Yanwen Fan, Zhihong Pan, Gang Zhang
2010.12023 Comprehensive Attention Self-Distillation for Weakly-Supervised Object Detection Computer Vision and Pattern Recognition (cs.CV) Zeyi Huang, Yang Zou, Vijayakumar Bhagavatula, Dong Huang
2010.12110 Tensor Reordering for CNN Compression Machine Learning (cs.LG) Matej Ulicny, Vladimir A. Krylov, Rozenn Dahyot
2010.12128 Accelerating Metropolis-Hastings with Lightweight Inference Compilation Machine Learning (cs.LG) Feynman Liang, Nimar Arora, Nazanin Tehrani, Yucen Li, Michael Tingley, Erik Meijer
2010.12188 Generating Long Financial Report using Conditional Variational Autoencoders with Knowledge Distillation Machine Learning (cs.LG) Yunpeng Ren, Ziao Wang, Yiyuan Wang, Xiaofeng Zhang
2010.12460 Adaptive Gradient Quantization for Data-Parallel SGD Machine Learning (cs.LG) Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel Roy, Ali Ramezani-Kebrya
2010.12609 Iterative Graph Self-Distillation Machine Learning (cs.LG) Hanlin Zhang, Shuai Lin, Weiyang Liu, Pan Zhou, Jian Tang, Xiaodan Liang, Eric P. Xing
2010.12746 LCFI: A Fault Injection Tool for Studying Lossy Compression Error Propagation in HPC Programs Distributed, Parallel, and Cluster Computing (cs.DC) Baodi Shan, Aabid Shamji, Jiannan Tian, Guanpeng Li, Dingwen Tao
2010.13002 Pre-trained Summarization Distillation Computation and Language (cs.CL) Sam Shleifer, Alexander M. Rush
2010.13105 Two-stage Textual Knowledge Distillation to Speech Encoder for Spoken Language Understanding Computation and Language (cs.CL) Seongbin Kim, Gyuwan Kim, Seongjin Shin, Sangmin Lee
2010.13114 Empowering Knowledge Distillation via Open Set Recognition for Robust 3D Point Cloud Classification Computer Vision and Pattern Recognition (cs.CV) Ayush Bhardwaj, Sakshee Pimpale, Saurabh Kumar, Biplab Banerjee
2010.13160 Neuron Merging: Compensating for Pruned Neurons Computer Vision and Pattern Recognition (cs.CV) Woojeong Kim, Suhyun Kim, Mincheol Park, Geonseok Jeon
2010.13335 Convergence Acceleration via Chebyshev Step: Plausible Interpretation of Deep-Unfolded Gradient Descent Machine Learning (cs.LG) Satoshi Takabe, Tadashi Wadayama
2010.13369 Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping Machine Learning (cs.LG) Minjia Zhang, Yuxiong He
2010.13500 Activation Map Adaptation for Effective Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Zhiyuan Wu, Hong Qi, Yu Jiang, Minghao Zhao, Chupeng Cui, Zongmin Yang, Xinhui Xue
2010.13611 OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement Learning Machine Learning (cs.LG) Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, Ofir Nachum
2010.14271 Cross-lingual Machine Reading Comprehension with Language Branch Knowledge Distillation Computation and Language (cs.CL) Junhao Liu, Linjun Shou, Jian Pei, Ming Gong, Min Yang, Daxin Jiang
2010.14713 CompRess: Self-Supervised Learning by Compressing Representations Computer Vision and Pattern Recognition (cs.CV) Soroush Abbasi Koohpayegani, Ajinkya Tejankar, Hamed Pirsiavash
2010.14714 Differentiable Channel Pruning Search Computer Vision and Pattern Recognition (cs.CV) Yu Zhao, Chung-Kuei Lee
2010.14803 Enhanced Blind Calibration of Uniform Linear Arrays with One-Bit Quantization by Kullback-Leibler Divergence Covariance Fitting Signal Processing (eess.SP) Amir Weiss, Arie Yeredor
2010.15054 Attribution Preservation in Network Compression for Reliable Network Interpretation Machine Learning (cs.LG) Geondo Park, June Yong Yang, Sung Ju Hwang, Eunho Yang
2010.15302 Point Cloud Attribute Compression via Successive Subspace Graph Transform Computer Vision and Pattern Recognition (cs.CV) Yueru Chen, Yiting Shao, Jing Wang, Ge Li, C.-C. Jay Kuo
2010.15703 Permute, Quantize, and Fine-tune: Efficient Compression of Neural Networks Computer Vision and Pattern Recognition (cs.CV) Julieta Martinez, Jashan Shewakramani, Ting Wei Liu, Ioan Andrei Bârsan, Wenyuan Zeng, Raquel Urtasun
2010.15821 Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture Search Computer Vision and Pattern Recognition (cs.CV) Houwen Peng, Hao Du, Hongyuan Yu, Qi Li, Jing Liao, Jianlong Fu
2010.16165 Fusion-Catalyzed Pruning for Optimizing Deep Learning on Intelligent Edge Devices Neural and Evolutionary Computing (cs.NE) Guangli Li, Xiu Ma, Xueying Wang, Lei Liu, Jingling Xue, Xiaobing Feng
2010.16386 Audio Dequantization Using (Co)Sparse (Non)Convex Methods Audio and Speech Processing (eess.AS) Pavel Záviška, Pavel Rajmic, Ondřej Mokrý
2011.00215 LRA: an accelerated rough set framework based on local redundancy of attribute for feature selection Artificial Intelligence (cs.AI) Shuyin Xia, Wenhua Li, Guoyin Wang, Xinbo Gao, Changqing Zhang, Elisabeth Giem
2011.00241 Methods for Pruning Deep Neural Networks Machine Learning (cs.LG) Sunil Vadera, Salem Ameen
2011.00265 ProxylessKD: Direct Knowledge Distillation with Inherited Classifier for Face Recognition Computer Vision and Pattern Recognition (cs.CV) Weidong Shi, Guanghui Ren, Yunpeng Chen, Shuicheng Yan
2011.00593 MixKD: Towards Efficient Distillation of Large-scale Language Models Computation and Language (cs.CL) Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan Zhou, Weizhu Chen, Changyou Chen, Lawrence Carin
2011.00809 Data-free Knowledge Distillation for Segmentation using Data-Enriching GAN Computer Vision and Pattern Recognition (cs.CV) Kaushal Bhogale
2011.01302 IOS: Inter-Operator Scheduler for CNN Acceleration Machine Learning (cs.LG) Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, Song Han
2011.01424 In Defense of Feature Mimicking for Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Guo-Hua Wang, Yifan Ge, Jianxin Wu
2011.02166 DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator Search Computer Vision and Pattern Recognition (cs.CV) Yushuo Guan, Ning Liu, Pengyu Zhao, Zhengping Che, Kaigui Bian, Yanzhi Wang, Jian Tang
2011.02255 On Self-Distilling Graph Neural Network Machine Learning (cs.LG) Yuzhao Chen, Yatao Bian, Xi Xiao, Yu Rong, Tingyang Xu, Junzhou Huang
2011.02367 Federated Knowledge Distillation Machine Learning (cs.LG) Hyowoon Seo, Jihong Park, Seungeun Oh, Mehdi Bennis, Seong-Lyun Kim
2011.02379 Asynchrony and Acceleration in Gossip Algorithms Distributed, Parallel, and Cluster Computing (cs.DC) Mathieu Even, Hadrien Hendrikx, Laurent Massoulié
2011.02389 Filter Pruning using Hierarchical Group Sparse Regularization for Deep Convolutional Neural Networks Computer Vision and Pattern Recognition (cs.CV) Kakeru Mitsuno, Takio Kurita
2011.02390 Channel Planting for Deep Neural Networks using Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Kakeru Mitsuno, Yuichiro Nomura, Takio Kurita
2011.03029 CompressAI: a PyTorch library and evaluation platform for end-to-end compression research Computer Vision and Pattern Recognition (cs.CV) Jean Bégaint, Fabien Racapé, Simon Feltman, Akshay Pushparaja
2011.03083 A Tunable Robust Pruning Framework Through Dynamic Network Rewiring of DNNs Computer Vision and Pattern Recognition (cs.CV) Souvik Kundu, Mahdi Nazemi, Peter A. Beerel, Massoud Pedram
2011.03170 GHFP: Gradually Hard Filter Pruning Computer Vision and Pattern Recognition (cs.CV) Linhang Cai, Zhulin An, Yongjun Xu
2011.03240 Channel Pruning via Multi-Criteria based on Weight Dependency Computer Vision and Pattern Recognition (cs.CV) Yangchun Yan, Chao Li, Rongzuo Guo, Kang Yang, Yongjun Xu
2011.03749 Robustness and Diversity Seeking Data-Free Knowledge Distillation Machine Learning (cs.LG) Pengchao Han, Jihong Park, Shiqiang Wang, Yejun Liu
2011.03770 Know What You Don't Need: Single-Shot Meta-Pruning for Attention Heads Computation and Language (cs.CL) Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Qun Liu, Maosong Sun
2011.03891 Channel Pruning Guided by Spatial and Channel Attention for DNNs in Intelligent Edge Computing Computer Vision and Pattern Recognition (cs.CV) Mengran Liu, Weiwei Fang, Xiaodong Ma, Wenyuan Xu, Naixue Xiong, Yi Ding
2011.03970 The quantization error in a Self-Organizing Map as a contrast and colour specific indicator of single-pixel change in large random patterns Computer Vision and Pattern Recognition (cs.CV) John M Wandeto, Birgitta Dresp-Langley
2011.04106 Ensembled CTR Prediction via Knowledge Distillation Machine Learning (cs.LG) Jieming Zhu, Jinyang Liu, Weiqi Li, Jincai Lai, Xiuqiang He, Liang Chen, Zibin Zheng
2011.04586 Stable Sample Compression Schemes: New Applications and an Optimal SVM Margin Bound Machine Learning (cs.LG) Steve Hanneke, Aryeh Kontorovich
2011.04868 Neural Network Compression Via Sparse Optimization Machine Learning (cs.LG) Tianyi Chen, Bo Ji, Yixin Shi, Tianyu Ding, Biyi Fang, Sheng Yi, Xiao Tu
2011.04908 Stage-wise Channel Pruning for Model Compression Computer Vision and Pattern Recognition (cs.CV) Mingyang Zhang, Linlin Ou
2011.04976 Conceptual Compression via Deep Structure and Texture Synthesis Computer Vision and Pattern Recognition (cs.CV) Jianhui Chang, Zhenghui Zhao, Chuanmin Jia, Shiqi Wang, Lingbo Yang, Jian Zhang, Siwei Ma
2011.04981 Exploring the acceleration of Nekbone on reconfigurable architectures Distributed, Parallel, and Cluster Computing (cs.DC) Nick Brown
2011.05390 Gaussian Compression Stream: Principle and Preliminary Results Signal Processing (eess.SP) Farouk Yahaya, Matthieu Puigt, Gilles Delmaire, Gilles Roussel
2011.05578 Compression Boosts Differentially Private Federated Learning Machine Learning (cs.LG) Raouf Kerkouche, Gergely Ács, Claude Castelluccia, Pierre Genevès
2011.05664 Distill2Vec: Dynamic Graph Representation Learning with Knowledge Distillation Machine Learning (cs.LG) Stefanos Antaris, Dimitrios Rafailidis
2011.05702 Invariant Deep Compressible Covariance Pooling for Aerial Scene Categorization Computer Vision and Pattern Recognition (cs.CV) Shidong Wang, Yi Ren, Gerard Parr, Yu Guan, Ling Shao
2011.05705 EGAD: Evolving Graph Representation Learning with Self-Attention and Knowledge Distillation for Live Video Streaming Events Machine Learning (cs.LG) Stefanos Antaris, Dimitrios Rafailidis, Sarunas Girdzijauskas
2011.05985 Dirichlet Pruning for Neural Network Compression Machine Learning (cs.LG) Kamil Adamczewski, Mijung Park
2011.06110 Efficient Knowledge Distillation for RNN-Transducer Models Audio and Speech Processing (eess.AS) Sankaran Panchapagesan, Daniel S. Park, Chung-Cheng Chiu, Yuan Shangguan, Qiao Liang, Alexander Gruenstein
2011.06231 Automated Model Compression by Jointly Applied Pruning and Quantization Computer Vision and Pattern Recognition (cs.CV) Wenting Tang, Xingxing Wei, Bo Li
2011.06295 When deep learning models on GPU can be accelerated by taking advantage of unstructured sparsity Machine Learning (cs.LG) Marcin Pietroń Dominik Żurek
2011.06751 Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Jun Nishikawa, Ryoji Ikegaya
2011.06923 LEAN: graph-based pruning for convolutional neural networks by extracting longest chains Machine Learning (cs.LG) Richard Schoonhoven, Allard A. Hendriksen, Daniël M. Pelt, K. Joost Batenburg
2011.07363 RecTen: A Recursive Hierarchical Low Rank Tensor Factorization Method to Discover Hierarchical Patterns in Multi-modal Data Information Retrieval (cs.IR) Risul Islam, Md Omar Faruk Rokon, Evangelos E. Papalexakis, Michalis Faloutsos
2011.07449 Online Ensemble Model Compression using Knowledge Distillation Computer Vision and Pattern Recognition (cs.CV) Devesh Walawalkar, Zhiqiang Shen, Marios Savvides
2011.07643 Advances in the training, pruning and enforcement of shape constraints of Morphological Neural Networks using Tropical Algebra Machine Learning (cs.LG) Nikolaos Dimitriadis, Petros Maragos
2011.08007 Domain Adaptive Knowledge Distillation for Driving Scene Semantic Segmentation Computer Vision and Pattern Recognition (cs.CV) Divya Kothandaraman, Athira Nambiar, Anurag Mittal
2011.08009 Subtensor Quantization for Mobilenets Computer Vision and Pattern Recognition (cs.CV) Thu Dinh, Andrey Melnikov, Vasilios Daskalopoulos, Sek Chai
2011.08345 Distilling a Hierarchical Policy for Planning and Control via Representation and Reinforcement Learning Machine Learning (cs.LG) Jung-Su Ha, Young-Jin Park, Hyeok-Joo Chae, Soon-Seo Park, Han-Lim Choi
2011.08382 Learning Efficient GANs using Differentiable Masks and co-Attention Distillation Computer Vision and Pattern Recognition (cs.CV) Shaojie Li, Mingbao Lin, Yan Wang, Mingliang Xu, Feiyue Huang, Yongjian Wu, Ling Shao, Rongrong Ji
2011.08545 Dynamic Hard Pruning of Neural Networks at the Edge of the Internet Machine Learning (cs.LG) Lorenzo Valerio, Franco Maria Nardini, Andrea Passarella, Raffaele Perego
2011.08932 Analyzing and Mitigating Compression Defects in Deep Learning Computer Vision and Pattern Recognition (cs.CV) Max Ehrlich, Larry Davis, Ser-Nam Lim, Abhinav Shrivastava
2011.08954 Multi-agent Reinforcement Learning Accelerated MCMC on Multiscale Inversion Problem Machine Learning (cs.LG) Eric Chung, Yalchin Efendiev, Wing Tat Leung, Sai-Mang Pun, Zecheng Zhang
2011.09017 A Novel Memory-Efficient Deep Learning Training Framework via Error-Bounded Lossy Compression Distributed, Parallel, and Cluster Computing (cs.DC) Sian Jin, Guanpeng Li, Shuaiwen Leon Song, Dingwen Tao
2011.09058 Layer-Wise Data-Free CNN Compression Computer Vision and Pattern Recognition (cs.CV) Maxwell Horton, Yanzi Jin, Ali Farhadi, Mohammad Rastegari
2011.09113 Effectiveness of Arbitrary Transfer Sets for Data-free Knowledge Distillation Machine Learning (cs.LG) Gaurav Kumar Nayak, Konda Reddy Mopuri, Anirban Chakraborty
2011.09158 Privileged Knowledge Distillation for Online Action Detection Computer Vision and Pattern Recognition (cs.CV) Peisen Zhao, Lingxi Xie, Ya Zhang, Yanfeng Wang, Qi Tian
2011.09361 A Knowledge Distillation Ensemble Framework for Predicting Short and Long-term Hospitalisation Outcomes from Electronic Health Records Data Machine Learning (cs.LG) Zina M Ibrahim, Daniel Bean, Thomas Searle, Honghan Wu, Anthony Shek, Zeljko Kraljevic, James Galloway, Sam Norton, James T Teo, Richard JB Dobson
2011.09757 KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via Knowledge Distillation Machine Learning (cs.LG) Hao-Zhe Feng, Zhaoyang You, Minghao Chen, Tianye Zhang, Minfeng Zhu, Fei Wu, Chao Wu, Wei Chen
2011.09899 Learning in School: Multi-teacher Knowledge Inversion for Data-Free Quantization Machine Learning (cs.LG) Yuhang Li, Feng Zhu, Ruihao Gong, Mingzhu Shen, Fengwei Yu, Shaoqing Lu, Shi Gu
2011.09969 Neural network algorithm and its application in reactive distillation Neural and Evolutionary Computing (cs.NE) Huihui Wang, Ruyang Mo
2011.10015 DiffusionNet: Accelerating the solution of Time-Dependent partial differential equations using deep learning Machine Learning (cs.LG) Mahmoud Asem
2011.10065 Anderson acceleration of coordinate descent Machine Learning (stat.ML) Quentin Bertrand, Mathurin Massias
2011.10170 An Efficient End-to-End Deep Learning Training Framework via Fine-Grained Pattern-Based Pruning Computer Vision and Pattern Recognition (cs.CV) Chengming Zhang, Geng Yuan, Wei Niu, Jiannan Tian, Sian Jin, Donglin Zhuang, Zhe Jiang, Yanzhi Wang, Bin Ren, Shuaiwen Leon Song, Dingwen Tao
2011.10290 Image Denoising by Gaussian Patch Mixture Model and Low Rank Patches Computer Vision and Pattern Recognition (cs.CV) Jing Guo (1), Shuping Wang (1), Chen Luo (1), Qiyu Jin (1), Michael Kwok-Po Ng (2) ((1) School of Mathematical Science, Inner Mongolia University, Hohhot, China, (2) Department of Mathematics, University of Hong Kong, Pokfulam, Hong Kong, China)
2011.10469 Empirical Evaluation of Deep Learning Model Compression Techniques on the WaveNet Vocoder Machine Learning (cs.LG) Sam Davis, Giuseppe Coccia, Sam Gooch, Julian Mack
2011.10520 Continuous Pruning of Deep Convolutional Networks Using Selective Weight Decay Neural and Evolutionary Computing (cs.NE) Hugo Tessier, Vincent Gripon, Mathieu Léonardon, Matthieu Arzel, Thomas Hannagan, David Bertrand
2011.10680 HAWQV3: Dyadic Neural Network Quantization Computer Vision and Pattern Recognition (cs.CV) Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang, Michael W. Mahoney, Kurt Keutzer
2011.10704 Neural Group Testing to Accelerate Deep Learning Machine Learning (cs.LG) Weixin Liang, James Zou
2011.11108 Multiresolution Knowledge Distillation for Anomaly Detection Computer Vision and Pattern Recognition (cs.CV) Mohammadreza Salehi, Niousha Sadjadi, Soroosh Baselizadeh, Mohammad Hossein Rohban, Hamid R. Rabiee
2011.11358 Synthesis and Pruning as a Dynamic Compression Strategy for Efficient Deep Neural Networks Artificial Intelligence (cs.AI) Alastair Finlinson, Sotiris Moschoyiannis
2011.11846 AutoWeka4MCPS-AVATAR: Accelerating Automated Machine Learning Pipeline Composition and Optimisation Machine Learning (cs.LG) Tien-Dung Nguyen, Bogdan Gabrys, Katarzyna Musial
2011.12641 Auto Graph Encoder-Decoder for Model Compression and Network Acceleration Computer Vision and Pattern Recognition (cs.CV) Sixing Yu, Arya Mazaheri, Ali Jannesari
2011.12913 torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation Machine Learning (cs.LG) Yoshitomo Matsubara
2011.12984 Enabling GPU Accelerated Computing in the SUNDIALS Time Integration Library Distributed, Parallel, and Cluster Computing (cs.DC) Cody J. Balos, David J. Gardner, Carol S. Woodward, Daniel R. Reynolds
2011.13000 Ax-BxP: Approximate Blocked Computation for Precision-Reconfigurable Deep Neural Network Acceleration Machine Learning (cs.LG) Reena Elangovan, Shubham Jain, Anand Raghunathan
2011.13256 Channel-wise Distillation for Semantic Segmentation Computer Vision and Pattern Recognition (cs.CV) Changyong Shu, Yifan Liu, Jianfei Gao, Lin Xu, Chunhua Shen
2011.13772 Gradient Descent for Deep Matrix Factorization: Dynamics and Implicit Bias towards Low Rank Machine Learning (cs.LG) Hung-Hsu Chou, Carsten Gieshoff, Johannes Maly, Holger Rauhut
2011.13894 Efficient Scene Compression for Visual-based Localization Computer Vision and Pattern Recognition (cs.CV) Marcela Mera-Trujillo, Benjamin Smith, Victor Fragoso
2011.14058 Efficient Attention Network: Accelerate Attention by Searching Where to Plug Computer Vision and Pattern Recognition (cs.CV) Zhongzhan Huang, Senwei Liang, Mingfu Liang, Wei He, Haizhao Yang
2011.14266 Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning Machine Learning (cs.LG) Hongseok Namkoong, Samuel Daulton, Eytan Bakshy
2011.14356 Layer Pruning via Fusible Residual Convolutional Block for Deep Neural Networks Computer Vision and Pattern Recognition (cs.CV) Pengtao Xu, Jian Cao, Fanhua Shang, Wenyu Sun, Pu Li
2011.14554 A Selective Survey on Versatile Knowledge Distillation Paradigm for Neural Network Models Machine Learning (cs.LG) Jeong-Hoe Ku, JiHun Oh, YoungYoon Lee, Gaurav Pooniwala, SangJeong Lee
2011.14563 Learnable Motion Coherence for Correspondence Pruning Computer Vision and Pattern Recognition (cs.CV) Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang
2011.14586 FactorizeNet: Progressive Depth Factorization for Efficient Network Architecture Exploration Under Quantization Constraints Computer Vision and Pattern Recognition (cs.CV) Stone Yun, Alexander Wong
2011.14691 KD-Lib: A PyTorch library for Knowledge Distillation, Pruning and Quantization Machine Learning (cs.LG) Het Shah, Avishree Khare, Neelay Shah, Khizir Siddiqui
2012.00083 Using dynamical quantization to perform split attempts in online tree regressors Machine Learning (cs.LG) Saulo Martiello Mastelini, Andre Carlos Ponce de Leon Ferreira de Carvalho
2012.00124 Extreme Model Compression for On-device Natural Language Understanding Computation and Language (cs.CL) Kanthashree Mysore Sathyendra, Samridhi Choudhary, Leah Nicolich-Henkin
2012.00138 Robust error bounds for quantised and pruned neural networks Machine Learning (cs.LG) Jiaqi Li, Ross Drummond, Stephen R. Duncan
2012.00165 An accelerated hybrid data-driven/model-based approach for poroelasticity problems with multi-fidelity multi-physics data Machine Learning (cs.LG) Bahador Bahmani, WaiChing Sun
2012.00194 Solvable Model for Inheriting the Regularization through Knowledge Distillation Machine Learning (cs.LG) Luca Saglietti, Lenka Zdeborová
2012.00328 Low Bandwidth Video-Chat Compression using Deep Generative Models Computer Vision and Pattern Recognition (cs.CV) Maxime Oquab, Pierre Stock, Oran Gafni, Daniel Haziza, Tao Xu, Peizhao Zhang, Onur Celebi, Yana Hasson, Patrick Labatut, Bobo Bose-Kolanu, Thibault Peyronel, Camille Couprie