-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWIDA_MA_SGP_2024.R
87 lines (73 loc) · 5.84 KB
/
WIDA_MA_SGP_2024.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#######################################################################################################
###
### Script to run 2024 analyses
### STEP 1: Percentiles (cohort and baseline referenced)
### STEP 2: Projections (cohort and baseline referenced/lagged and current) using adjusted grades
###
#######################################################################################################
### Load packages
require(SGP)
require(data.table)
require(SGPmatrices)
options(error=recover)
### Load Data
load("Data/WIDA_MA_SGP_23.Rdata")
load("Data/WIDA_MA_Data_LONG_2024.Rdata")
### Add single-cohort baseline matrices to SGPstateData
SGPstateData <- SGPmatrices::addBaselineMatrices("WIDA_MA", "2024")
### STEP 1: Run analyses to calculate SGPs
WIDA_MA_SGP <- updateSGP(
what_sgp_object=WIDA_MA_SGP_23,
with_sgp_data_LONG=WIDA_MA_Data_LONG_2024,
steps=c("prepareSGP", "analyzeSGP", "combineSGP"),
sgp.percentiles=TRUE,
sgp.projections=FALSE,
sgp.projections.lagged=FALSE,
sgp.percentiles.baseline=TRUE,
sgp.projections.baseline=FALSE,
sgp.projections.lagged.baseline=FALSE,
get.cohort.data.info=TRUE,
#parallel.config=list(BACKEND="PARALLEL", WORKERS=list(PERCENTILES=4, BASELINE_PERCENTILES=4, PROJECTIONS=4, LAGGED_PROJECTIONS=4, SGP_SCALE_SCORE_TARGETS=4, GA_PLOTS=1, SG_PLOTS=1))); Helps "speed things up" - can throw issues with windows; not necessary
save.intermediate.results=FALSE)
### STEP 2: Run analyses to calculate projections (swapping GRADE and GRADE_ADJUSTED)
setnames(WIDA_MA_SGP@Data, c("GRADE", "GRADE_ADJUSTED"), c("GRADE_ADJUSTED", "GRADE"))
WIDA_MA_SGP <- abcSGP(
sgp_object=WIDA_MA_SGP,
steps=c("prepareSGP", "analyzeSGP", "combineSGP", "outputSGP"),
years="2024",
sgp.percentiles=FALSE,
sgp.projections=TRUE,
sgp.projections.lagged=TRUE,
sgp.percentiles.baseline=FALSE,
sgp.projections.baseline=TRUE,
sgp.projections.lagged.baseline=TRUE,
sgp.target.scale.scores=TRUE)
#parallel.config=list(BACKEND="PARALLEL", WORKERS=list(PERCENTILES=4, BASELINE_PERCENTILES=4, PROJECTIONS=4, LAGGED_PROJECTIONS=4, SGP_SCALE_SCORE_TARGETS=4, GA_PLOTS=1, SG_PLOTS=1))); Helps "speed things up" - can throw issues with windows; not necessary
setnames(WIDA_MA_SGP@Data, c("GRADE", "GRADE_ADJUSTED"), c("GRADE_ADJUSTED", "GRADE"))
### Save SGP object
save(WIDA_MA_SGP, file="Data/WIDA_MA_SGP.Rdata")
### Create formatted output
WIDA_MA_Formatted_Output_2024 <- copy(WIDA_MA_SGP@Data[YEAR=="2024"])
### Convert CURRENT SCALE_SCORE_TARGETS to PROFICIENCY_TARGETS
WIDA_MA_Formatted_Output_2024[, PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_5_YEAR_PROJ_YEAR_1_CURRENT:=SGPstateData[['WIDA']][['SGP_Configuration']][['ss_to_pl_function']][['value']](as.character(as.numeric(GRADE)+1), ceiling(SCALE_SCORE_SGP_TARGET_BASELINE_5_YEAR_PROJ_YEAR_1_CURRENT))]
WIDA_MA_Formatted_Output_2024[, PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_4_YEAR_PROJ_YEAR_1_CURRENT:=SGPstateData[['WIDA']][['SGP_Configuration']][['ss_to_pl_function']][['value']](as.character(as.numeric(GRADE)+1), ceiling(SCALE_SCORE_SGP_TARGET_BASELINE_4_YEAR_PROJ_YEAR_1_CURRENT))]
WIDA_MA_Formatted_Output_2024[, PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_3_YEAR_PROJ_YEAR_1_CURRENT:=SGPstateData[['WIDA']][['SGP_Configuration']][['ss_to_pl_function']][['value']](as.character(as.numeric(GRADE)+1), ceiling(SCALE_SCORE_SGP_TARGET_BASELINE_3_YEAR_PROJ_YEAR_1_CURRENT))]
WIDA_MA_Formatted_Output_2024[, PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_2_YEAR_PROJ_YEAR_1_CURRENT:=SGPstateData[['WIDA']][['SGP_Configuration']][['ss_to_pl_function']][['value']](as.character(as.numeric(GRADE)+1), ceiling(SCALE_SCORE_SGP_TARGET_BASELINE_2_YEAR_PROJ_YEAR_1_CURRENT))]
WIDA_MA_Formatted_Output_2024[, PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_1_YEAR_PROJ_YEAR_1_CURRENT:=SGPstateData[['WIDA']][['SGP_Configuration']][['ss_to_pl_function']][['value']](as.character(as.numeric(GRADE)+1), ceiling(SCALE_SCORE_SGP_TARGET_BASELINE_1_YEAR_PROJ_YEAR_1_CURRENT))]
### Select CURRENT PROFICIENCY_TARGETS based upon YEARS_IN_MASS
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==1, ACCOUNTABILITY_PROFICIENCY_LEVEL_TARGET_CURRENT:=PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_5_YEAR_PROJ_YEAR_1_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==2, ACCOUNTABILITY_PROFICIENCY_LEVEL_TARGET_CURRENT:=PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_4_YEAR_PROJ_YEAR_1_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==3, ACCOUNTABILITY_PROFICIENCY_LEVEL_TARGET_CURRENT:=PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_3_YEAR_PROJ_YEAR_1_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==4, ACCOUNTABILITY_PROFICIENCY_LEVEL_TARGET_CURRENT:=PROFICIENCY_LEVEL_SGP_TARGET_BASELINE_2_YEAR_PROJ_YEAR_1_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA>=5, ACCOUNTABILITY_PROFICIENCY_LEVEL_TARGET_CURRENT:=4.2]
### Select CURRENT SGP_TARGETS based upon YEARS_IN_MASS
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==1, ACCOUNTABILITY_SGP_TARGET_CURRENT:=SGP_TARGET_BASELINE_5_YEAR_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==2, ACCOUNTABILITY_SGP_TARGET_CURRENT:=SGP_TARGET_BASELINE_4_YEAR_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==3, ACCOUNTABILITY_SGP_TARGET_CURRENT:=SGP_TARGET_BASELINE_3_YEAR_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA==4, ACCOUNTABILITY_SGP_TARGET_CURRENT:=SGP_TARGET_BASELINE_2_YEAR_CURRENT]
WIDA_MA_Formatted_Output_2024[YEARS_IN_MA>=5, ACCOUNTABILITY_SGP_TARGET_CURRENT:=SGP_TARGET_BASELINE_1_YEAR_CURRENT]
### Define variables in final file
variables.to.keep <- c("ID", "CONTENT_AREA", "YEAR", "GRADE", "ACHIEVEMENT_LEVEL", "ACHIEVEMENT_LEVEL_ORIGINAL", "SCALE_SCORE", "SGP_BASELINE", "ACCOUNTABILITY_SGP_TARGET_CURRENT", "ACCOUNTABILITY_PROFICIENCY_LEVEL_TARGET_CURRENT", "YEARS_IN_MA")
WIDA_MA_Formatted_Output_2024 <- WIDA_MA_Formatted_Output_2024[VALID_CASE=="VALID_CASE", ..variables.to.keep]
### Save results
save(WIDA_MA_Formatted_Output_2024, file="Data/WIDA_MA_Formatted_Output_2024.Rdata")