-
Notifications
You must be signed in to change notification settings - Fork 4
/
off_pol_eval_functions.py
987 lines (874 loc) · 41 KB
/
off_pol_eval_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
import scipy.integrate as integrate
from math import exp
import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate
from scipy.optimize import minimize
from sklearn.grid_search import GridSearchCV
from sklearn.neighbors.kde import KernelDensity
from sklearn.metrics.pairwise import rbf_kernel
import datetime
import pickle
import sys
# For bandwidth estimation
from scipy.stats import norm
from sklearn import linear_model
# import numdifftools as nd
from scipy.misc import derivative
from sklearn.neighbors.kde import KernelDensity
from scipy.stats import truncnorm
# !FIXME Global offset value.
# !FIXME
# Currently when changing data generation distributions, need also to change sampling method in evaluate_subsample
# to generate from the appropriate treatment distribution.
'''
Choices for output function.
'''
def oracle_evaluation(**params):
X = params['x_samp']; tau = params['tau']
return 2*pow(np.abs(X - tau),1.5)
'''
Different options for kernel function.
'''
def db_exp_kernel(x1, x2, variance = 1):
return exp(-1 * (np.linalg.norm(x1-x2)) / (2*variance))
def gram_matrix(xs):
return rbf_kernel(xs, gamma=0.5)
def gaussian_kernel(u):
return np.exp(-0.5 * u**2 )/(np.sqrt(2*np.pi))
def gaussian_kernel_h(u,h_2):
return (1/(np.sqrt(h_2)*np.sqrt(2*np.pi)))*np.exp((-0.5)/h_2 * (1.0*u)**2 )
def gaussian_k_bar(u):
return (1/(np.sqrt(4*np.pi)))*np.exp(.25* np.linalg.norm(1.0*u)**2)
def epanechnikov_kernel(u):
return 0.75*(1-u**2)*(1 if abs(u) <= 1 else 0)
def epanechnikov_int(lo,hi):
'''
:return: Definite integral of the kernel from between lo and hi. Assumes that they are within bounds.
'''
return 0.75*(hi-hi**3/3.0) - 0.75*(lo-lo**3/3.0)
'''
Different option for discrete policy functions
Policy functions take in an x vector and return
'''
def discrete_optimal_central_policy(**params):
'''
:param params:
:return: optimal treatment vector
'''
x = params['x_samp']
T = params['T_samp']
t_lo = min(T)
t_hi = max(T)
n_bins = params['n_bins']
bins = np.linspace(t_lo, t_hi, n_bins)
T_binned = np.digitize(T, bins).flatten()
x_binned = np.digitize(x/2.0, bins).flatten()
bin_means = [T[T_binned == i].mean() for i in range(1, n_bins)]
# return np.asarray([bin_means[T_bin - 1] for T_bin in x_binned]).flatten()
return x_binned
def discretize_tau_policy(**params):
'''
Discretize the treatment vector 'tau' according to uniform binning.
'''
x = params['x_samp']
T = params['T_samp']
n_bins = params['n_bins']
t_lo = min(T)
t_hi = max(T)
bins = np.linspace(t_lo, t_hi, n_bins)
T_binned = np.digitize(T, bins).flatten()
bin_means = [T[T_binned == i].mean() for i in range(1, n_bins)]
tau_binned = np.digitize(params['tau'], bins).flatten()
return tau_binned
'''
Different options for generating data
'''
def generate_data_uniform(m,n, d, t_lo, t_hi, x_scheme = 'unif'):
"""
# Generate random features
# n: number of instances
# m: grid length of treatment
# d: feature dimension
# x_scheme: switch to determine dependency structure of x
"""
xs = np.array(np.random.uniform(0,2,(n,d)))
t_fullgrid = np.linspace(t_lo, t_hi, m )
Z_list = [ np.concatenate([xs, np.ones([n,1])*(t_lo + 1.0*i*(t_hi-t_lo)/(m-1))] , axis=1) for i in np.arange(m) ]
Z = np.concatenate(Z_list, axis=0)
K = np.array(gram_matrix(Z)).reshape([m*n,m*n])
T = Z[:,d]
# mean_vec = np.asarray([ np.mean(z) for z in Z])
mean_vec = np.ones([m*n,1])
F = np.random.multivariate_normal(mean_vec.flatten(), 7*K)
# Ensure outcomes are positive
if min(F) < 0:
F = F + abs(min(F))
Y = F + 0.05*np.random.randn(m*n)
return { 'y': Y, 'z': Z, 'f': F , 'K': K, 'x': xs}
def generate_data(m,n, d, t_lo, t_hi, mean_vec_f, x_scheme = 'unif'):
"""
# Generate random features
# n: number of instances
# m: grid length of treatment
# d: feature dimension
# x_scheme: switch to determine dependency structure of x
"""
xs = np.array(np.random.uniform(0,1,(n,d)))
t = np.array(np.random.uniform(0, t_hi, size=(n,1)))
# change mean vector appropriately
t_fullgrid = np.linspace(t_lo, t_hi, m )
Z_list = [ np.concatenate((xs, np.ones([n,1])*(t_lo + 1.0*i*(t_hi-t_lo)/(m-1))) , axis=1) for i in np.arange(m) ]
Z = np.concatenate(Z_list, axis=0)
K = np.array(gram_matrix(Z)).reshape([m*n,m*n])
T = Z[:,d]
# modify to have T have more of an effect
mean_vec = np.apply_along_axis(mean_vec_f, 1, Z)
# mean_vec = 3*np.multiply(T,Z[:,0]) + 2*T + np.multiply(Z[:,0], np.exp(np.multiply(-Z[:,0],T)))
F = np.random.multivariate_normal(mean_vec, 2*K)
# Ensure outcomes are positive
if min(F) < 0:
F = F + abs(min(F))
Y = F + 0.05*np.random.randn(m*n)
return { 'y': Y, 'z': Z, 'f': F , 'K': K, 'x': xs}
def off_pol_estimator(**params):
THRESH = params['threshold']
y_out = params['y']; x = params['x']; h = params['h'];Q = params['Q']; n = params['n']; t_lo = params['t_lo']; t_hi = params['t_hi']
kernel = params['kernel_func'];kernel_int = params['kernel_int_func']
if ('y_samp' in params.keys()):
y_out = params['y_samp']
if ('T_samp' in params.keys()):
T = params['T_samp']
else:
T = params['T']
if ('x_samp' in params.keys()):
x = params['x_samp']
BMI_IND = params.get('BMI_IND') # propensity score for warfarin data evaluations
if (params.get('DATA_TYPE') == 'warfarin'):
x = params['x'][:,BMI_IND]
loss = 0
tau = params['tau']
clip_tau = np.clip(tau, t_lo, t_hi)
Qs = np.zeros(n)
for i in np.arange(n):
Q_i = Q(x[i], T[i], t_lo, t_hi)
if (abs(clip_tau[i] - t_lo) <= h):
alpha = kernel_int((t_lo-clip_tau[i])/h, 1)
elif (abs(clip_tau[i] - t_hi) <= h):
alpha = kernel_int(-1, (t_hi - clip_tau[i])/h )
else:
alpha = 1
Qs[i] = (1.0/h)*kernel( (clip_tau[i] - T[i])/h )/max(Q_i,THRESH)
loss += kernel( (clip_tau[i] - T[i])/h )*1.0 * y_out[i]/max(Q_i,THRESH) * 1.0/alpha
norm_sum = np.mean(np.maximum(Qs,THRESH*np.ones(n)))
return [loss, norm_sum]
def off_policy_variance(**params):
"""
Takes in a choice of kernel and dictionary of parameters and data required for evaluation
tau is a vector of treatment values (assumed given)
If y_samp, T_samp is present, use that instead.
"""
[loss, norm_sum] = off_pol_estimator(**params)
h = params['h']; n = params['n']
loss = loss / (norm_sum*1.0*n*h)
loss_mean = np.mean(loss)
return np.square(loss - loss_mean)
def off_policy_evaluation(**params):
"""
Takes in a choice of kernel and dictionary of parameters and data required for evaluation
tau is a vector of treatment values (assumed given)
If y_samp, T_samp is present, use that instead.
"""
[loss, norm_sum] = off_pol_estimator(**params)
h = params['h']
n = params['n']
return loss/(norm_sum*1.0*h*n)
def off_pol_disc_evaluation(policy, **params):
THRESH = params['threshold']
y_out = params['y']; x = params['x_samp']; h = params['h']; Q = params['Q']; n = params['n']; t_lo = params['t_lo']; t_hi = params['t_hi']
n_bins = params['n_bins']
if ('y_samp' in params.keys()):
y_out = params['y_samp'].flatten()
if ('T_samp' in params.keys()):
T = params['T_samp'].flatten()
else:
T = params['T'].flatten()
BMI_IND = params.get('BMI_IND') # propensity score for warfarin data evaluations
if (params.get('DATA_TYPE') == 'warfarin'):
x = params['x'][:,BMI_IND]
t_lo = min(T)
t_hi = max(T)
bin_width = t_hi-t_lo
bins = np.linspace(t_lo, t_hi, n_bins)
T_binned = np.digitize(T, bins, right = True).flatten()
bin_means = [T[T_binned == i].mean() for i in range(1, len(bins))]
loss = 0
tau_vec = policy(**params).flatten()
#! FIXME need to establish whether policy returns discrete bins or means
treatment_overlap = np.where(np.equal(tau_vec.flatten(), T_binned))[0]
for ind in treatment_overlap:
Q_i = Q(x[ind], bin_means[T_binned[ind]-1], t_lo, t_hi) * bin_width*1.0/n_bins # BUG FIX: this is going to have to be integrated against
loss += y_out[ind]/max(Q_i,THRESH)
n_overlap = len(treatment_overlap)
if n_overlap == 0:
print "no overlap"
return 0
return loss/(1.0*n)
# Self normalize disc. off pol evaluation
# doesn't work well
# def off_pol_disc_evaluation(policy, **params):
# THRESH = params['threshold']
# y_out = params['y']; x = params['x_samp']; h = params['h']; Q = params['Q']; n = params['n']; t_lo = params['t_lo']; t_hi = params['t_hi']
# n_bins = params['n_bins']
# if ('y_samp' in params.keys()):
# y_out = params['y_samp'].flatten()
# if ('T_samp' in params.keys()):
# T = params['T_samp'].flatten()
# else:
# T = params['T'].flatten()
# BMI_IND = params.get('BMI_IND') # propensity score for warfarin data evaluations
# if (params.get('DATA_TYPE') == 'warfarin'):
# x = params['x'][:,BMI_IND]
# t_lo = min(T)
# t_hi = max(T)
# bin_width = t_hi-t_lo
# bins = np.linspace(t_lo, t_hi, n_bins)
# T_binned = np.digitize(T, bins, right = True).flatten()
# bin_means = [T[T_binned == i].mean() for i in range(1, len(bins))]
# loss = 0
# tau_vec = policy(**params).flatten()
# #! FIXME need to establish whether policy returns discrete bins or means
# treatment_overlap = np.where(np.equal(tau_vec.flatten(), T_binned))[0]
# n_overlap = len(treatment_overlap)
# Qs = np.zeros(n_overlap)
# i=0
# for ind in treatment_overlap:
# Q_i = Q(x[ind], bin_means[T_binned[ind]-1], t_lo, t_hi) * bin_width*1.0/n_bins # BUG FIX: this is going to have to be integrated against
# Qs[i] = 1.0/max(Q_i,THRESH)
# loss += y_out[ind]/max(Q_i,THRESH)
# i+=1
# norm_sum = np.mean(Qs)
# if n_overlap == 0:
# print "no overlap"
# return 0
# return loss/(1.0*n*norm_sum)
def off_pol_gaus_lin_grad(beta, *args):
"""
Compute a gradient for special case of gaussian kernel and linear policy tau
"""
params = dict(args[0])
y_out = params['y'];x = params['x']; T = params['T']; h = params['h']; Q = params['Q']
n = params['n']; t_lo = params['t_lo']; t_hi = params['t_hi']
tau = np.dot(x,beta)
clip_tau = np.clip(tau, t_lo, t_hi)
d = len(beta)
grad = np.zeros([d,1])
for i in np.arange(n):
Q_i = Q(x[i], T[i],t_lo, t_hi)
beta_x_i = np.dot(x[i], beta)
grad += (gaussian_kernel((beta_x_i - T[i])/h) * y_out[i]/Q_i) * (-1.0*x[i]/h**2) * (beta_x_i - T[i])
return grad/(1.0*h*len(y_out))
def partial_g_n_hat_i(**params):
'''
Compute normalization term
'''
def f_g(**params):
THRESH = params['threshold']
y_out = params['y']; x = params['x']; h = params['h'];Q = params['Q']; n = params['n']; t_lo = params['t_lo']; t_hi = params['t_hi']
kernel = params['kernel_func'];kernel_int = params['kernel_int_func']
if ('y_samp' in params.keys()):
y_out = params['y_samp']
if ('T_samp' in params.keys()):
T = params['T_samp']
else:
T = params['T']
if ('x_samp' in params.keys()):
x = params['x_samp']
BMI_IND = params.get('BMI_IND') # propensity score for warfarin data evaluations
loss = 0
g = 0 # also keep track of normalized probability ratio quantity
partial_f = 0
partial_g = 0
tau = params['tau']
clip_tau = np.clip(tau, t_lo, t_hi)
Qs = np.zeros(n)
for i in np.arange(n):
if (params.get('DATA_TYPE') == 'warfarin'):
Q_i = Q(x[i,BMI_IND], T[i], t_lo, t_hi)
else:
Q_i = Q(x[i], T[i], t_lo, t_hi)
if (abs(clip_tau[i] - t_lo) <= h):
alpha = kernel_int((t_lo-clip_tau[i])/h, 1)
elif (abs(clip_tau[i] - t_hi) <= h):
alpha = kernel_int(-1, (t_hi - clip_tau[i])/h )
else:
alpha = 1
Qs[i] = kernel( (clip_tau[i] - T[i])/h )/max(Q_i,THRESH)
loss += kernel( (clip_tau[i] - T[i])/h )*1.0 * y_out[i]/max(Q_i,THRESH) * 1.0/alpha
if abs((clip_tau[i] - T[i])/h) >= 1:
partial_f += 0 # don't add anything to partial derivatives
else:
partial_g += -1.5 * ((clip_tau[i] - T[i])/h ) * 1.0/max(Q_i,THRESH) * x[i,:]
partial_f += -1.5 * ((clip_tau[i] - T[i])/h ) * y_out[i]/max(Q_i,THRESH) * x[i,:]
norm_sum = np.mean(Qs)
return [loss/(1.0*h*n), 1.0*norm_sum/h, partial_f/(1.0*n*h**2) , partial_g/(1.0*n*h**2) ]
def off_pol_epan_lin_grad(beta, *args):
"""
Compute a gradient for special case of Epanechnikov kernel and linear policy tau
"""
# THRESH = 0.001
d = len(beta)
params = dict(args[0])
#! FIXME x vs xsamp
tau = np.dot(beta, params['x'].T)
params['tau'] = tau
params['beta'] = beta
THRESH = params['threshold']
[f, g, nabla_f, nabla_g] = f_g(**params)
# compute gradient vector via quotient rule
if g < THRESH:
g = THRESH
return np.asarray((g*nabla_f - f*nabla_g) / g**2 )
def off_pol_var_lin_grad(beta, *args):
"""
Compute a gradient for special case of Epanechnikov kernel and linear policy tau
"""
# THRESH = 0.001
d = len(beta)
params = dict(args[0])
#! FIXME x vs xsamp
tau = np.dot(beta, params['x'].T)
params['tau'] = tau
params['beta'] = beta
THRESH = params['threshold']
[f, g, nabla_f, nabla_g] = f_g(**params)
# compute gradient vector via quotient rule
if g < THRESH:
g = THRESH
return np.asarray((g*nabla_f - f*nabla_g) / g**2 )
def off_pol_gaus_lin_grad_for_max(beta, *args):
"""Wrapper function which multiplies gradient by -1
"""
return off_pol_gaus_lin_grad(beta, *args)
"""
Options for treatment policies
"""
def tau_test(tau_test_value, x):
return tau_test_value
def linear_tau(x, beta):
return np.dot(beta,x)
def unif_Q(x, t, t_lo, t_hi):
return 1.0/(t_hi-t_lo)
def trunc_norm_Q(x, t, t_lo, t_hi):
# Get pdf from truncated normally distributed propensity score (standard normal centered around (x-t)
sc = 0.5
mu = x
a, b = (t_lo - mu) / sc, (t_hi - mu) / sc
return truncnorm.pdf(t, a,b, loc = mu, scale = sc)
def norm_Q(x, t, t_lo, t_hi):
OFFSET = 0.1
std = 0.5
return 1.0/std *norm.pdf( (t-x - OFFSET)/ std)
def exp_Q(x, t, t_lo, t_hi):
# Sample from an exponential conditional distribution of T on X using Inverse CDF transform
return x*np.exp(-t*x)
def sample_exp_T(x):
u = np.random.uniform()
return -np.log(1-u)/x
def sample_norm_T(x):
# ' Sample randomly from uniform normal distribution'
sc = 0.5
OFFSET = 0.1
return np.random.normal(loc=x + OFFSET, scale = sc)
def evaluate_oracle_outcomes(m,n,f,t_lo,t_hi,tau,X):
"""
Evaluate 'true' outcomes at closest grid point to given tau vector
"""
j_taus = np.array( [int(np.round(1.0*t*(m-1)/t_hi)) for t in tau] )
j_taus = np.clip(j_taus, 0, m-1)
return np.array( [ f[j_taus[ind]*n+ind] for ind in np.arange(n)] )
def evaluate_oracle_interpolated_outcomes(**params):
"""
Function is given a spline curve with which to interpolate values at 'tau'
"""
spline_tck = params['spline']; tau = params['tau']; X = params['x_samp']
outcomes = [ interpolate.bisplev( X[i], tau[i], spline_tck ) for i in np.arange(len(X)) ]
return np.array(outcomes)
def sample_T_given_x(x, t_lo, t_hi, sampling = "uniform"):
# Sample from propensity score
# e.g. exponential distribution
sc = 0.5
if (sampling == "exp"):
sample_exp_T_vec = np.vectorize(sample_exp_T)
T_sub = sample_exp_T_vec(x / std)
T_sub = np.clip(T_sub, t_lo, t_hi)
elif (sampling == "normal"):
# Unbounded normal sampling
sample_norm_T_vec = np.vectorize(sample_norm_T)
T_sub = sample_norm_T_vec(x )
elif (sampling == "truncated_normal"):
# Unbounded normal sampling
# sample_norm_T_vec = np.vectorize(sample_norm_T)
# T_sub = sample_norm_T_vec(x )
T_sub = np.zeros([len(x), 1])
for i in np.arange(len(x)):
a =(t_lo - x[i]) / sc
b = (t_hi - x[i]) / sc
T_sub[i] = truncnorm.rvs(a, b, loc = x[i], scale = sc, size=1)[0]
else:
T_sub = np.array( [ np.random.uniform(low = t_lo, high= t_hi) for x_samp in x ] )
return T_sub
def evaluate_subsample( n_sub, verbose = False, evaluation=False, cross_val = True, **param_dict):
"""
Evaluate off policy evaluation given a subsample of data from full
Or just subsample data and return subsampled_dictionary
"""
Z = param_dict['z']; X = param_dict['x']; t_lo = param_dict['t_lo']; t_hi = param_dict['t_hi']; m = param_dict['m']
n = param_dict['n']; Y = param_dict['y']; d = param_dict['d']; f = param_dict['f']; data_gen = param_dict['data_gen']
sampling = param_dict['sampling']; sub_params = param_dict.copy()
# Subsample data
if (data_gen == "grid"):
X_sub = np.random.choice(n-1, n_sub)
T_sub = sample_T_given_x(X[X_sub], t_lo, t_hi, sampling)
# Round T to grid values
j_s = np.array( [int(np.round(1.0*t*(m-1)/t_hi)) for t in T_sub] ).flatten()
T_grid = np.array([ t_lo + 1.0*np.round(1.0*t*(m-1)/t_hi)*(t_hi-t_lo)/(m-1) for t in T_sub ])
Y_sub = np.array( [ Y[j_s[ind]*n+x] for (ind,x) in enumerate(X_sub)] )
sub_params['n'] = n_sub
sub_params['y_samp'] = Y_sub.flatten()
#! FIXME flattening possibly multidimensional data
sub_params['x_samp'] = X[X_sub,:]
sub_params['T_samp'] = T_grid.flatten()
else:
# Uniform sampling
X_sub = np.random.choice(m*n-1, n_sub)
sub_params['n'] = n_sub
sub_params['x_samp'] = X[X_sub,:].reshape([n_sub,1])
# Toggle how sampling is drawn
if sampling != "uniform":
sub_params['T_samp'] = sample_T_given_x( X[X_sub,:], t_lo, t_hi, sampling ).reshape([n_sub,1])
else: # assume uniform otherwise
sub_params['T_samp'] = Z[:,d][X_sub].reshape([n_sub,1])
# Toggle how oracle values are drawn
if (sub_params['oracle_func']):
# temporary setting of tau to
sub_params['tau'] = sub_params['T_samp']
# adding noise to 'y' values
sub_params['y_samp'] = oracle_evaluation(**sub_params) #+ np.random.randn(n_sub,1)*0.05
sub_params['f_samp'] = oracle_evaluation(**sub_params)
del sub_params['tau']
else: #Oracle fnc parameter not set
sub_params['y_samp'] = Y[X_sub].reshape([n_sub,1])
sub_params['f_samp'] = f[X_sub].reshape([n_sub,1])
if 'tau' in param_dict.keys():
sub_params['tau'] = param_dict['tau'][X_sub]
else:
if verbose:
print "No taus given"
if cross_val:
h_opt = find_best_h(cv_func, res, **sub_params)
sub_params['h'] = h_opt
return sub_params
def plot_surface(plot_sample = False, **params):
fig = plt.figure(figsize=plt.figaspect(.2))
ax = fig.add_subplot(1,3,1, projection='3d')
if not plot_sample:
x = params['z'][:,0]
t = params['z'][:,1]
y = params['y']
else:
x = params['x_samp']
t = params['T_samp']
y = params['y_samp']
ax.scatter(x, t, y, s = 0.06)
ax.set_xlabel('x Label')
ax.set_ylabel('t Label')
ax.set_zlabel('y Label')
ax = fig.add_subplot(1, 3, 2, projection='3d')
ax.scatter(x, t, y, s = 0.06)
# Add best beta vector
# ax1.scatter(x[40:],y[40:], s=10, c='r', marker="o", label='second')
ax.azim = 240
ax.elev = 20
ax.set_xlabel('x ')
ax.set_ylabel('t ')
ax.set_zlabel('y ')
plt.show()
def lin_off_policy_loss_evaluation(beta, *args):
arg_dict = dict(args[0])
t_lo = arg_dict['t_lo']
t_hi = arg_dict['t_hi']
x = arg_dict['x_samp']
arg_dict['tau'] = np.clip(np.dot(x,beta), t_lo, t_hi)
return off_policy_evaluation(**arg_dict)
def constant_off_policy_loss_evaluation(const, *args):
arg_dict = dict(args[0])
x = arg_dict['x_samp']
arg_dict['tau'] = const * np.ones(arg_dict['n'])
return off_policy_evaluation(**arg_dict)
def eval_interpolated_oracle_tau(beta, *args):
params = dict(args[0])
t_lo = params['t_lo']
t_hi = params['t_hi']
spline_tck = params['spline']
tau_candidate = np.clip(np.dot(beta, params['x_samp'].T), t_lo, t_hi)
params['tau'] = tau_candidate
return np.mean(evaluate_oracle_interpolated_outcomes(**params))
def eval_const_interpolated_oracle_tau(const, *args):
params = dict(args[0])
t_lo = params['t_lo']
t_hi = params['t_hi']
spline_tck = params['spline']
tau_candidate = const * np.ones(params['n'])
params['tau'] = tau_candidate
return np.mean(evaluate_oracle_interpolated_outcomes(**params))
def eval_oracle_tau(beta, *args):
params = dict(args[0])
t_lo = params['t_lo']
t_hi = params['t_hi']
tau_candidate = np.clip(np.dot(beta, params['x'].T), t_lo, t_hi)
#!FIXME graceful handling of loss function of y_i
params['tau'] = tau_candidate
return np.mean(evaluate_oracle_interpolated_outcomes(**params))
def eval_oracle_tau_evaluation(beta, *args):
params = dict(args[0])
t_lo = params['t_lo']
t_hi = params['t_hi']
tau_candidate = np.clip(np.dot(beta, params['x'].T), t_lo, t_hi)
#!FIXME graceful handling of loss function of y_i
params['tau'] = tau_candidate
return np.mean(oracle_evaluation(**params))
def pol_opt(verbose = True, samp_func = lin_off_policy_loss_evaluation, oracle_eval = eval_interpolated_oracle_tau, **samp_params):
"""
Run a policy optimization test, comparing performance of empirical minimizer against the true counterfactual outcomes.
"""
d = samp_params['d']
n = samp_params['n']
t_lo = samp_params['t_lo']
t_hi = samp_params['t_hi']
beta_d = [np.random.uniform() for i in np.arange(d)]
if samp_params['kernel_func'] == gaussian_kernel:
res = minimize(samp_func, x0 = beta_d, jac = off_pol_gaus_lin_grad_for_max, bounds = ((0, t_hi/max(samp_params['x']) ),) , args=samp_params.items() )
else:
res = minimize(samp_func, x0 = beta_d, jac = off_pol_epan_lin_grad, bounds = ((t_lo/max(samp_params['x_samp']), t_hi/max(samp_params['x_samp']) ),) , args=samp_params.items() )
emp_best_tau = np.clip(np.dot(res.x, samp_params['x'].T), t_lo, t_hi)
if verbose:
print "Optimization results"
print res
print "Policy treatments:"
print emp_best_tau
print "Observed treatments: "
print samp_params['T_samp']
# print "Deviation in treatment vector: "
# print np.linalg.norm(emp_best_tau - samp_params['T_samp'])
print 'x: ' + str( res.x )
print 'off pol evaluation value '
print res.fun
"""
Optimize a treatment policy over oracle outcomes f
"""
# spl_x = samp_params['z'][:,0]
# spl_t = samp_params['z'][:,1]
# # f is positive
# splined_f_tck = interpolate.bisplrep(spl_x,spl_t, samp_params['f'])
# samp_params['spline'] = splined_f_tck
samp_params['tau'] = emp_best_tau
oracle_outcomes = samp_params['oracle_func'](**samp_params)
## Evaluate the 'true' performance of this treatment vector
print 'oracle mean of empirically best feature vector \n'
print np.mean(oracle_outcomes)
# print 'Computing oracle best-in-class linear policy via interpolation of true response surface: \n'
beta_d = [np.random.uniform() for i in np.arange(d)]
# print "initial condition: " + str(beta_d)
# print 'val of initial condition: '
# print oracle_func(beta_d, samp_params.items())
oracle_res = minimize(oracle_eval, x0 = beta_d, bounds = ((0, 1.0/np.mean(samp_params['x']) ),) , args=samp_params.items() )
if verbose:
print oracle_res
print 'beta'
print oracle_res.x
print 'oracle best linear treatment policy value '
print oracle_res.fun
return [res, oracle_res, splined_f_tck]
def off_pol_opt_test(n_max, n_trials, n_spacing, n_0, t_lo_sub,t_hi_sub, **sub_params):
n = sub_params['n']; m = sub_params['m']; t_lo = t_lo_sub; t_hi = t_hi_sub
d = sub_params['d']
n_space = np.linspace(n_0, n_max, n_spacing)
best_beta = np.zeros([len(n_space),n_trials])
best_oracle_beta = np.zeros([len(n_space),n_trials])
OOS_OPE = np.zeros([len(n_space),n_trials])
OOS_oracle = np.zeros([len(n_space),n_trials])
# discrete_off_pol_evals = np.zeros([n_treatments, n_spacing, n_trials])
oracle_func = sub_params['oracle_func']
h_orig = sub_params['h']
TEST_N = 250
TEST_SET = evaluate_subsample( 250, evaluation = False, cross_val = False, **sub_params )
for i, n_sub in enumerate(np.linspace(n_0, n_max, n_spacing)):
# sub_params['h'] = h_orig * (np.power(n_sub,0.2))/np.power(n_0,0.2)
n_rnd = int(np.floor(n_sub))
print "testing with n = " + str(n_rnd)
for k in np.arange(n_trials):
subsamples_pm = evaluate_subsample( n_rnd, evaluation = False, cross_val = False, **sub_params )
# oracle_evals[t_ind, i, k] = np.mean(evaluate_oracle_interpolated_outcomes(splined_f_tck, m,n_rnd, subsamples_pm['f'], t_lo, t_hi, subsamples_pm['tau'], subsamples_pm['x_samp']))
### Compute best betas with random restarts
oracle_betas = np.zeros([n_restarts, d]);eval_vals = np.zeros([n_restarts, d]);emp_betas = np.zeros([n_restarts, d]);emp_eval_vals = np.zeros([n_restarts, d])
for i_restart in np.arange(n_restarts):
beta_d = [np.random.uniform() for i in np.arange(d)]
res = minimize(lin_off_policy_loss_evaluation, x0 = beta_d, jac = off_pol_epan_lin_grad, bounds = ((t_lo/max(samp_params['x_samp']), t_hi/max(samp_params['x_samp']) ),) , args=samp_params.items() )
emp_betas[i_restart] = res.x; emp_eval_vals[i_restart] = res.fun
oracle_res = minimize(oracle_func, x0 = beta_d, bounds = ((0, 1.0/np.mean(samp_params['x']) ),) , args=samp_params.items() )
oracle_betas[i_restart] = oracle_res.x; eval_vals[i_restart] = oracle_res.fun
emp_best_tau = np.clip(np.dot(res.x, samp_params['x_samp'].T), t_lo, t_hi)
# get best beta value from random restarts
best_ind = np.argmin(emp_eval_vals)
best_beta[i,k] = emp_betas[best_ind,:]
best_oracle_ind = np.argmin(eval_vals)
best_oracle_beta[i,k] = oracle_betas[oracle_betas,:]
TEST_SET['tau'] = best_beta[i,k] * TEST_SET['x_samp']
OOS_OPE[i,k] = off_policy_evaluation(**TEST_SET)
OOS_oracle[i,k] = np.mean(oracle_func(**TEST_SET))
return [best_beta, best_oracle_beta, OOS_OPE, OOS_oracle]
def off_pol_eval_cons_test(n_max, n_trials, n_treatments, n_spacing, n_0,t_lo_sub,t_hi_sub, **sub_params):
n = sub_params['n']; m = sub_params['m']; t_lo = t_lo_sub; t_hi = t_hi_sub
treatment_space = np.linspace(t_lo, t_hi, n_treatments)
off_pol_evals = np.zeros([n_treatments, n_spacing, n_trials])
oracle_evals = np.zeros([n_treatments, n_spacing, n_trials])
discrete_off_pol_evals = np.zeros([n_treatments, n_spacing, n_trials])
oracle_func = sub_params['oracle_func']
splined_f_tck = sub_params['spline']
h_orig = sub_params['h']
for i, n_sub in enumerate(np.linspace(n_0, n_max, n_spacing)):
# sub_params['h'] = h_orig * (np.power(n_sub,0.2))/np.power(n_0,0.2)
n_rnd = int(np.floor(n_sub))
print "testing with n = " + str(n_rnd)
for k in np.arange(n_trials):
for t_ind, t in enumerate(treatment_space):
subsamples_pm = evaluate_subsample( n_rnd, evaluation = False, cross_val = False, **sub_params )
subsamples_pm['tau'] = t * np.ones(n_sub)
oracle_evals[t_ind, i, k] = np.mean(oracle_func(**subsamples_pm))
# oracle_evals[t_ind, i, k] = np.mean(evaluate_oracle_interpolated_outcomes(splined_f_tck, m,n_rnd, subsamples_pm['f'], t_lo, t_hi, subsamples_pm['tau'], subsamples_pm['x_samp']))
off_pol_evals[t_ind, i, k] = off_policy_evaluation(**subsamples_pm)
discrete_off_pol_evals[t_ind, i, k] = off_pol_disc_evaluation(discretize_tau_policy , **subsamples_pm)
off_pol_evals.dump( str(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")) + 'off_pol_vals.np')
oracle_evals.dump(str(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")) + 'off_pol_oracles.np')
return [oracle_evals, off_pol_evals, discrete_off_pol_evals]
def off_pol_eval_linear_test( n_max, beta_0, beta_hi, n_trials, n_treatments, n_spacing, n_0, **sub_params):
'''
Systematically evaluate over a treatment space defined by a linear treatment policy
'''
treatment_space = np.linspace(beta_0, beta_hi, n_treatments)
off_pol_evals = np.zeros([n_treatments, n_spacing, n_trials])
oracle_evals = np.zeros([n_treatments, n_spacing, n_trials])
discrete_off_pol_evals = np.zeros([n_treatments, n_spacing, n_trials])
t_lo = sub_params['t_lo']; t_hi = sub_params['t_hi']; spl_x = sub_params['z'][:,0]; spl_t = sub_params['z'][:,1]
# f is positive
splined_f_tck = interpolate.bisplrep(spl_x,spl_t, sub_params['f'])
sub_params['spline'] = splined_f_tck
oracle_func = sub_params['oracle_func']
n = sub_params['n']; m = sub_params['m']
for i, n_sub in enumerate(np.linspace(n_0, n_max, n_spacing)):
n_rnd = int(np.floor(n_sub))
print "testing n = " + str(n_rnd)
for k in np.arange(n_trials):
for beta_ind, beta in enumerate(treatment_space):
subsamples_pm = evaluate_subsample( n_rnd, evaluation = False, cross_val = False, **sub_params )
tau = np.clip(np.dot( subsamples_pm['x_samp'], beta ) , t_lo, t_hi)
subsamples_pm['tau'] = tau
oracle_evals[beta_ind, i, k] = np.mean(oracle_func(**subsamples_pm))
# oracle_evals[beta_ind, i, k] = np.mean(evaluate_oracle_interpolated_outcomes(splined_f_tck,m,n_rnd, subsamples_pm['f'], beta_0, beta_hi, tau, subsamples_pm['x_samp']))
# off_pol_evals[beta_ind, i, k] = off_policy_evaluation(**subsamples_pm)
off_pol_evals[beta_ind, i, k] = off_policy_evaluation(**subsamples_pm)
discrete_off_pol_evals[beta_ind, i, k] = off_pol_disc_evaluation(discretize_tau_policy , **subsamples_pm)
off_pol_evals.dump( str(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")) + 'off_pol_linear_vals.np')
oracle_evals.dump(str(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")) + 'off_pol_linear_oracles.np')
return [oracle_evals, off_pol_evals, discrete_off_pol_evals]
'''
Systematically evaluate over a treatment space defined by a linear treatment policy
With DM
'''
def off_pol_eval_linear_test( n_max, beta_0, beta_hi, n_trials, n_treatments, n_spacing, n_0, **sub_params):
'''
'''
treatment_space = np.linspace(beta_0, beta_hi, n_treatments)
off_pol_evals = np.zeros([n_treatments, n_spacing, n_trials])
oracle_evals = np.zeros([n_treatments, n_spacing, n_trials])
discrete_off_pol_evals = np.zeros([n_treatments, n_spacing, n_trials])
t_lo = sub_params['t_lo']; t_hi = sub_params['t_hi']; spl_x = sub_params['z'][:,0]; spl_t = sub_params['z'][:,1]
# f is positive
splined_f_tck = interpolate.bisplrep(spl_x,spl_t, sub_params['f'])
sub_params['spline'] = splined_f_tck
oracle_func = sub_params['oracle_func']
n = sub_params['n']; m = sub_params['m']
for i, n_sub in enumerate(np.linspace(n_0, n_max, n_spacing)):
n_rnd = int(np.floor(n_sub))
print "testing n = " + str(n_rnd)
for k in np.arange(n_trials):
for beta_ind, beta in enumerate(treatment_space):
subsamples_pm = evaluate_subsample( n_rnd, evaluation = False, cross_val = False, **sub_params )
tau = np.clip(np.dot( subsamples_pm['x_samp'], beta ) , t_lo, t_hi)
subsamples_pm['tau'] = tau
oracle_evals[beta_ind, i, k] = np.mean(oracle_func(**subsamples_pm))
# oracle_evals[beta_ind, i, k] = np.mean(evaluate_oracle_interpolated_outcomes(splined_f_tck,m,n_rnd, subsamples_pm['f'], beta_0, beta_hi, tau, subsamples_pm['x_samp']))
# off_pol_evals[beta_ind, i, k] = off_policy_evaluation(**subsamples_pm)
off_pol_evals[beta_ind, i, k] = off_policy_evaluation(**subsamples_pm)
discrete_off_pol_evals[beta_ind, i, k] = off_pol_disc_evaluation(discretize_tau_policy , **subsamples_pm)
off_pol_evals.dump( str(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")) + 'off_pol_linear_vals.np')
oracle_evals.dump(str(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")) + 'off_pol_linear_oracles.np')
return [oracle_evals, off_pol_evals, discrete_off_pol_evals]
def plot_off_pol_evals(off_pol_evals, oracle_evals, off_pol_disc_evals, n_0, n, n_trials, n_treatments, n_spacing, t_lo, t_hi, x_label, title_stem, truncate_y = False):
mean_off_pol_vals = np.mean(off_pol_evals, axis = 2)
mean_oracle_vals = np.mean(oracle_evals,axis=2)
sds_off_pol = np.std(off_pol_evals, axis = 2)
sds_oracle = np.std(oracle_evals, axis = 2)
mean_off_pol_disc_evals = np.mean(off_pol_disc_evals,axis=2)
sds_off_pol_disc = np.std(off_pol_disc_evals, axis = 2)
ts = np.linspace(t_lo, t_hi, n_treatments)
ns = np.linspace(n_0, n, n_spacing)
for i in np.arange(n_spacing):
plt.figure(i+1)
error_1 = 1.96*sds_off_pol[:,i]/np.sqrt(n_trials)
error_2 = 1.96*sds_oracle[:,i]/np.sqrt(n_trials)
error_3 = 1.96*sds_off_pol_disc[:,i]/np.sqrt(n_trials)
plt.plot(ts, mean_oracle_vals[:,i], c = "blue")
plt.fill_between(ts, mean_oracle_vals[:,i]-error_2, mean_oracle_vals[:,i]+error_2, alpha=0.5, edgecolor='blue', facecolor='blue')
plt.scatter(ts, mean_off_pol_disc_evals[:,i], c = "green")
plt.fill_between(ts, mean_off_pol_disc_evals[:,i]-error_3, mean_off_pol_disc_evals[:,i]+error_3, alpha=0.4, edgecolor='g', facecolor='g')
plt.scatter(ts, mean_off_pol_vals[:,i], c = "red")
plt.fill_between(ts, mean_off_pol_vals[:,i]-error_1, mean_off_pol_vals[:,i]+error_1, alpha=0.5, edgecolor='#CC4F1B', facecolor='#FF9848')
# plt.ylim( (0, 10) )
plt.title(title_stem+ " with n = " + str(ns[i]))
plt.ylabel("outcome Y")
plt.xlabel(x_label)
if truncate_y:
plt.ylim((0,truncate_y))
plt.show()
'''
Helper functions for (noisy) bandwidth estimation:
'''
def build_linear_model( **samp_params):
'''
Fit a linear response model for use in estimation of bandwidth
Test code for testing linear model of response
# test_val = np.random.uniform()
# samp_params['tau'] = test_val * np.ones([n,1])
# test_data = np.concatenate( [samp_params['x'], samp_params['tau']], axis = 1 )
# pred = regr.predict(test_data)
pred_params = {'z' : test_data, 'y' : pred }
plot_surface(**pred_params)
plot_surface(**sub_params)
'''
n = samp_params['n']
regr = linear_model.LinearRegression()
samp_params['z_samp'] = np.concatenate( [samp_params['x_samp'], samp_params['T_samp']],axis = 1 )
regr.fit(samp_params['z_samp'], samp_params['y_samp'])
return regr
def scores_cond_f_y_given_tau_x(joint_f_t_x, joint_f_y_t_x, test_point):
"""
Use the estimates of joint density of F_{T,X} and F_{Y,T,X} to estimate
the conditional density F_{Y|T,X} at the given test point
Test point: [y, t, x]
"""
tp = test_point[1:]
joint_f_tau_x = joint_f_t_x.score_samples( tp.reshape([1,2]) )
joint_f_y_tau_x = joint_f_y_t_x.score_samples( test_point.reshape([1,3]) )
return np.exp(joint_f_y_tau_x - joint_f_tau_x)
# def scores_cond_f_y_given_tau_x_caller(test_point):
# #FIXME: will look in global scope
# return scores_cond_f_y_given_tau_x(joint_f_t_x, joint_f_y_t_x, test_point)
def bias_integrand(y, tau, x, hessian):
x0 = np.asarray([y, tau, x])
return y**2 * hessian([y, tau, x])[1][1] * 0.5
def empirical_exp_second_moment(regr, **params):
x = params['x']
tau = params['tau']
y = params['y_samp']
T = params['T']
y_pred = regr.predict(np.concatenate([params['x_samp'], params['tau']], axis = 1))
Q = params['Q']
Q_vec = np.asarray([Q(x[i], T[i], params['t_lo'], params['t_hi']) for i in range(params['n'])])
return np.square(y_pred) / Q_vec
def est_h(h_sub, regr, hess, **samp_params):
R_K = 1.0/(2*np.sqrt(np.pi))
kappa_two = 1.0
C = R_K /(4.0 * samp_params['n'] * kappa_two**2)
exp_second_moment = np.mean(empirical_exp_second_moment(regr, **samp_params))
# Assume that tau doesn't change for x_i for now
bias = 0
ymin = min(samp_params['y_samp'])
ymax = max(samp_params['y_samp'])
for i in range(h_sub):
print i
bias += integrate.quad(lambda u: bias_integrand(u, samp_params['tau'][i], samp_params['x_samp'][i], hess), ymin, ymax)[0]
mean_bias_sqd = (bias/h_sub)**2
h = np.power(C*exp_second_moment/(mean_bias_sqd*samp_params['n']), 0.2)
print "opt h for this treatment vector: " + str(h)
return h
''' variant of OPE with known propensities
'''
## given Known propensities
def off_policy_evaluation_known_Q(**params):
"""
Takes in a choice of kernel and dictionary of parameters and data required for evaluation
tau is a vector of treatment values (assumed given)
If y_samp, T_samp is present, use that instead.
"""
[loss, norm_sum] = off_pol_estimator_known_Q(**params)
h = params['h']
n = params['n']
return loss/(norm_sum*1.0*h*n)
def off_pol_estimator_known_Q(**params):
THRESH = params['threshold']
y_out = params['y']; x = params['x']; h = params['h'];n = params['n']; t_lo = params['t_lo']; t_hi = params['t_hi']
kernel = params['kernel_func'];kernel_int = params['kernel_int_func']
Q = params['Q_known'];
if ('y_samp' in params.keys()):
y_out = params['y_samp']
if ('T_samp' in params.keys()):
T = params['T_samp']
else:
T = params['T']
if ('x_samp' in params.keys()):
x = params['x_samp']
BMI_IND = params.get('BMI_IND') # propensity score for warfarin data evaluations
if (params.get('DATA_TYPE') == 'warfarin'):
x = params['x'][:,BMI_IND]
loss = 0
tau = params['tau']
clip_tau = np.clip(tau, t_lo, t_hi)
Qs = np.zeros(n)
for i in np.arange(n):
Q_i = Q[i]
if (abs(clip_tau[i] - t_lo) <= h):
alpha = kernel_int((t_lo-clip_tau[i])/h, 1)
elif (abs(clip_tau[i] - t_hi) <= h):
alpha = kernel_int(-1, (t_hi - clip_tau[i])/h )
else:
alpha = 1
Qs[i] = (1.0/h)*kernel( (clip_tau[i] - T[i])/h )/max(Q_i,THRESH)
loss += kernel( (clip_tau[i] - T[i])/h )*1.0 * y_out[i]/max(Q_i,THRESH) * 1.0/alpha
# if kernel( (clip_tau[i] - T[i])/h )>0.5:
# print y_out[i]
# print 'propensity: ' + str(Q_i)
norm_sum = np.mean(np.maximum(Qs,THRESH*np.ones(n)))
return [loss, norm_sum]
def bandwidth_selection(n_samp,h_sub, **params):
'''
Top-level function for estimating bandwidth. Note that this scales incredibly poorly with the size of the sampled dataset.
'''
def scores_cond_f_y_given_tau_x_caller(test_point):
return scores_cond_f_y_given_tau_x(joint_f_t_x, joint_f_y_t_x, test_point)
n = params['n']
samp_params = evaluate_subsample(n_samp, cross_val = False, evaluation = False, **params)
regr = build_linear_model(**samp_params)
samp_params['tau'] = 0.5 * np.ones([samp_params['n'], 1])
samp_params['z_samp'] = np.concatenate([samp_params['x_samp'], samp_params['T_samp']], axis = 1)
bandwidths = {'bandwidth': np.logspace(-1,1,20)}
grid = GridSearchCV(KernelDensity(), bandwidths)
grid.fit(samp_params['z_samp'])
bandwidth_est = grid.best_estimator_.bandwidth
joint_f_t_x = KernelDensity(kernel='gaussian', bandwidth = bandwidth_est).fit(samp_params['z_samp'] )
joint_f_y_t_x = KernelDensity(kernel='gaussian', bandwidth = bandwidth_est).fit(
np.concatenate([samp_params['y_samp'],samp_params['z_samp']],axis=1) )
cond_dens_hess = nd.Hessian(scores_cond_f_y_given_tau_x_caller)
h = est_h(h_sub, regr, cond_dens_hess, **samp_params)
return h