-
Notifications
You must be signed in to change notification settings - Fork 13
/
differentiation.py
393 lines (294 loc) · 10.7 KB
/
differentiation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import math
import random
from dreamcoder.utilities import *
class InvalidLoss(Exception):
pass
class DN(object):
'''differentiable node: parent object of every differentiable operation'''
def __init__(self, arguments):
self.gradient = None
if arguments != []:
self.data = None
self.arguments = arguments
# descendents: every variable that takes this variable as input
# descendents: [(DN,float)]
# the additional float parameter is d Descendent / d This
self.descendents = []
self.recalculate()
def __str__(self):
if self.arguments == []:
return self.name
return "(%s %s)" % (self.name, " ".join(str(x)
for x in self.arguments))
def __repr__(self):
return "DN(op = %s, data = %s, grad = %s, #descendents = %d, args = %s)" % (
self.name, self.data, self.gradient, len(self.descendents), self.arguments)
@property
def derivative(self): return self.differentiate()
def differentiate(self):
if self.gradient is None:
self.gradient = sum(partial * descendent.differentiate()
for descendent, partial in self.descendents)
return self.gradient
def zeroEverything(self):
if self.gradient is None and self.descendents == [] and (
self.data is None or self.arguments == []):
return
self.gradient = None
self.descendents = []
if self.arguments != []:
self.data = None
for x in self.arguments:
x.zeroEverything()
def lightweightRecalculate(self):
return self.forward(*[a.lightweightRecalculate()
for a in self.arguments])
def recalculate(self):
if self.data is None:
inputs = [a.recalculate() for a in self.arguments]
self.data = self.forward(*inputs)
# if invalid(self.data):
# eprint("I am invalid",repr(self))
# eprint("Here are my inputs",inputs)
# self.zeroEverything()
# eprint("Here I am after being zeroed",repr(self))
# raise Exception('invalid loss')
#assert valid(self.data)
partials = self.backward(*inputs)
for d, a in zip(partials, self.arguments):
# if invalid(d):
# eprint("I have an invalid derivative",self)
# eprint("Inputs",inputs)
# eprint("partials",partials)
# raise Exception('invalid derivative')
a.descendents.append((self, d))
return self.data
def backPropagation(self):
self.gradient = 1.
self.recursivelyDifferentiate()
def recursivelyDifferentiate(self):
self.differentiate()
for x in self.arguments:
x.recursivelyDifferentiate()
def updateNetwork(self):
self.zeroEverything()
l = self.recalculate()
self.backPropagation()
return l
def log(self): return Logarithm(self)
def square(self): return Square(self)
def exp(self): return Exponentiation(self)
def clamp(self, l, u): return Clamp(self, l, u)
def __abs__(self): return AbsoluteValue(self)
def __add__(self, o): return Addition(self, Placeholder.maybe(o))
def __radd__(self, o): return Addition(self, Placeholder.maybe(o))
def __sub__(self, o): return Subtraction(self, Placeholder.maybe(o))
def __rsub__(self, o): return Subtraction(Placeholder.maybe(o), self)
def __mul__(self, o): return Multiplication(self, Placeholder.maybe(o))
def __rmul__(self, o): return Multiplication(self, Placeholder.maybe(o))
def __neg__(self): return Negation(self)
def __truediv__(self, o): return Division(self, Placeholder.maybe(o))
def __rtruediv__(self, o): return Division(Placeholder.maybe(o), self)
def numericallyVerifyGradients(self, parameters):
calculatedGradients = [p.derivative for p in parameters]
e = 0.00001
for j, p in enumerate(parameters):
p.data -= e
y1 = self.lightweightRecalculate()
p.data += 2 * e
y2 = self.lightweightRecalculate()
p.data -= e
d = (y2 - y1) / (2 * e)
if abs(calculatedGradients[j] - d) > 0.1:
eprint(
"Bad gradient: expected %f, got %f" %
(d, calculatedGradients[j]))
def gradientDescent(
self,
parameters,
_=None,
lr=0.001,
steps=10**3,
update=None):
for j in range(steps):
l = self.updateNetwork()
if update is not None and j % update == 0:
eprint("LOSS:", l)
for p in parameters:
eprint(p.data, '\t', p.derivative)
if invalid(l):
raise InvalidLoss()
for p in parameters:
p.data -= lr * p.derivative
return self.data
def restartingOptimize(self, parameters, _=None, attempts=1,
s=1., decay=0.5, grow=0.1,
lr=0.1, steps=10**3, update=None):
ls = []
for _ in range(attempts):
for p in parameters:
p.data = random.random()*10 - 5
ls.append(
self.resilientBackPropagation(
parameters, lr=lr, steps=steps,
decay=decay, grow=grow))
return min(ls)
def resilientBackPropagation(
self,
parameters,
_=None,
decay=0.5,
grow=1.2,
lr=0.1,
steps=10**3,
update=None):
previousSign = [None] * len(parameters)
lr = [lr] * len(parameters)
for j in range(steps):
l = self.updateNetwork()
if update is not None and j % update == 0:
eprint("LOSS:", l)
eprint("\t".join(str(p.derivative) for p in parameters))
if invalid(l):
raise InvalidLoss()
newSigns = [p.derivative > 0 for p in parameters]
for i, p in enumerate(parameters):
if p.derivative > 0:
p.data -= lr[i]
elif p.derivative < 0:
p.data += lr[i]
if previousSign[i] is not None:
if previousSign[i] == newSigns[i]:
lr[i] *= grow
else:
lr[i] *= decay
previousSign = newSigns
return self.data
class Placeholder(DN):
COUNTER = 0
def __init__(self, initialValue=0., name=None):
self.data = initialValue
super(Placeholder, self).__init__([])
if name is None:
name = "p_" + str(Placeholder.COUNTER)
Placeholder.COUNTER += 1
self.name = name
@staticmethod
def named(namePrefix, initialValue=0.):
p = Placeholder(initialValue, namePrefix + str(Placeholder.COUNTER))
Placeholder.COUNTER += 1
return p
def __str__(self):
return "Placeholder(%s = %s)" % (self.name, self.data)
@staticmethod
def maybe(x):
if isinstance(x, DN):
return x
return Placeholder(float(x))
def forward(self): return self.data
def backward(self): return []
class Clamp(DN):
def __init__(self, x, l, u):
assert u > l
self.l = l
self.u = u
super(Clamp, self).__init__([x])
self.name = "clamp"
def forward(self, x):
if x > self.u:
return self.u
if x < self.l:
return self.l
return x
def backward(self, x):
if x > self.u or x < self.l:
return [0.]
else:
return [1.]
class Addition(DN):
def __init__(self, x, y):
super(Addition, self).__init__([x, y])
self.name = '+'
def forward(self, x, y): return x + y
def backward(self, x, y): return [1., 1.]
class Subtraction(DN):
def __init__(self, x, y):
super(Subtraction, self).__init__([x, y])
self.name = '-'
def forward(self, x, y): return x - y
def backward(self, x, y): return [1., -1.]
class Negation(DN):
def __init__(self, x):
super(Negation, self).__init__([x])
self.name = '-'
def forward(self, x): return -x
def backward(self, x): return [-1.]
class AbsoluteValue(DN):
def __init__(self, x):
super(AbsoluteValue, self).__init__([x])
self.name = 'abs'
def forward(self, x): return abs(x)
def backward(self, x):
if x > 0:
return [1.]
return [-1.]
class Multiplication(DN):
def __init__(self, x, y):
super(Multiplication, self).__init__([x, y])
self.name = '*'
def forward(self, x, y): return x * y
def backward(self, x, y): return [y, x]
class Division(DN):
def __init__(self, x, y):
super(Division, self).__init__([x, y])
self.name = '/'
def forward(self, x, y): return x / y
def backward(self, x, y): return [1.0 / y, -x / (y * y)]
class Square(DN):
def __init__(self, x):
super(Square, self).__init__([x])
self.name = 'sq'
def forward(self, x): return x * x
def backward(self, x): return [2 * x]
class Exponentiation(DN):
def __init__(self, x):
super(Exponentiation, self).__init__([x])
self.name = 'exp'
def forward(self, x): return math.exp(x)
def backward(self, x): return [math.exp(x)]
class Logarithm(DN):
def __init__(self, x):
super(Logarithm, self).__init__([x])
self.name = 'log'
def forward(self, x): return math.log(x)
def backward(self, x): return [1. / x]
class LSE(DN):
def __init__(self, xs):
super(LSE, self).__init__(xs)
self.name = 'LSE'
def forward(self, *xs):
m = max(xs)
return m + math.log(sum(math.exp(y - m) for y in xs))
def backward(self, *xs):
m = max(xs)
zm = sum(math.exp(x - m) for x in xs)
return [math.exp(x - m) / zm for x in xs]
if __name__ == "__main__":
x = Placeholder(10., "x")
y = Placeholder(2., "y")
z = x - LSE([x, y])
z.updateNetwork()
eprint("dL/dx = %f\tdL/dy = %f" % (x.derivative, y.derivative))
x.data = 2.
y.data = 10.
z.updateNetwork()
eprint("dL/dx = %f\tdL/dy = %f" % (x.differentiate(), y.differentiate()))
x.data = 2.
y.data = 2.
z.updateNetwork()
eprint("z = ", z.data, z)
eprint("dL/dx = %f\tdL/dy = %f" % (x.differentiate(), y.differentiate()))
loss = -z
eprint(loss)
lr = 0.001
loss.gradientDescent([x, y], steps=10000, update=1000)