-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathvideoCaption.py
121 lines (102 loc) · 4.13 KB
/
videoCaption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# coding: utf-8
from ShortDetect import get_key_frames
from img2txt import *
import cv2
import numpy as np
from tqdm import tqdm
from Word2VectTextRank import summarize
def video2txt(video_path, save_key_frame=False):
'''
@input:
'''
PATH = os.path.split(os.path.realpath(video_path))[0] + '/'
# 生成关键帧
key_frames, IMG_SIZE = get_key_frames(video_path)
# 存储关键帧到硬盘
# if save_key_frame:
# print('\n--saving key frames...')
# key_frame_path = os.path.join(PATH + 'key_frames')
# if not os.path.exists(key_frame_path):
# os.makedirs(key_frame_path)
# for i, frame in enumerate(key_frames):
# kf_path = os.path.join(key_frame_path + '/' + str(i) + '.jpg')
# if not os.path.exists(kf_path):
# cv2.imwrite(kf_path, frame)
# print('--{} saved.'.format(kf_path))
# 模型加载
opt = Config()
opt.caption_data_path = './caption.pth'
opt.model_ckpt = './caption_0914_1947'
opt.use_gpu = False
data = t.load(opt.caption_data_path)
word2ix, ix2word = data['word2ix'], data['ix2word']
IMG_NET_MEAN = [0.485, 0.456, 0.406]
IMG_NET_STD = [0.229, 0.224, 0.225]
normalize = tv.transforms.Normalize(mean=IMG_NET_MEAN, std=IMG_NET_STD)
transforms = tv.transforms.Compose([
tv.transforms.Resize(opt.scale_size),
tv.transforms.CenterCrop(opt.img_size),
tv.transforms.ToTensor(),
normalize
])
resnet50 = tv.models.resnet50(True).eval() # 用resnet50提取图像特征
del resnet50.fc
resnet50.fc = lambda x: x # 将全连接层替换为恒等映射
resnet50.avgpool.stride = 7 # 修改average pool步长
cap_model = CaptionModel(opt, word2ix, ix2word) # 加载图像描述模型
cap_model = cap_model.load(opt.model_ckpt).eval()
# 为每一帧image生成Caption
tr4s = TextRank4Sentence()
is_resize = True
if max(IMG_SIZE) == 256:
is_resize = False
print('\n--processing key frames...')
txts = ''
for frame in tqdm(key_frames):
# 处理每帧图像
frame = Image.fromarray(frame).convert('RGB') # 转换为3通道的格式(RGB)
if is_resize:
frame.resize(IMG_SIZE)
img = transforms(frame).unsqueeze(0)
txts += generate_txt(img, tr4s, resnet50, cap_model, opt.use_gpu)
txts = ''.join(txts.split()) # 去空格
print('all img_txts:\n', txts) # 字符串数组
# ----------------文本摘要(有很多算法,这里尝试两种算法,未尝试的算法如seq2seq)
# 算法一: textRank
tr4s.analyze(text=txts, lower=True, source='all_filters')
summary = tr4s.get_key_sentences()[0].sentence + '。' \
+ tr4s.get_key_sentences()[1].sentence + '。' \
+ tr4s.get_key_sentences()[2].sentence + '。' \
# + tr4s.get_key_sentences()[3].sentence + '。' \
# + tr4s.get_key_sentences()[4].sentence + '。' # 取3个最重要的句子
summary = ''.join(summary.split())
print('video caption 1:\n', summary)
# 算法二: word2vect based textRank
summary = summarize(txts, 2) # 排序后,取2个句子
sum_2 = ''
for sent in summary:
sum_2 += sent
print('video caption 2:\n', sum_2)
# 保存summary
# print('--saving text...')
# txts_path = os.path.join(PATH + 'summary.txt')
# print('txts_path: ', txts_path)
# with open(txts_path, "w", encoding='utf-8') as txt_file:
# txt_file.write(txts)
# if (len(key_frames) != 0):
# cv2.imshow('key_frame example', key_frames[int(len(key_frames) * 0.5)])
# cv2.waitKey()
# else:
# print('[error]: extract key frames failed.')
# return
# if __name__ == '__main__':
# video2txt('./actor.mp4', True)
# print('--Test done.')
if __name__ == '__main__':
if len(sys.argv) != 2:
print("Usage: python videoCaption.py input_file")
sys.exit()
in_file = sys.argv[1]
print('in_file: ', in_file)
video2txt(in_file)
print('--Video caption done.')