Skip to content

Latest commit

 

History

History
301 lines (227 loc) · 8.52 KB

README.md

File metadata and controls

301 lines (227 loc) · 8.52 KB

Langscout Langscout

GitHub License

Contents

Overview

Langscout is an LLM tracing tool that consumes the data from Langchain and saves the data to MongoDB allowing for easy querying and visualization of the data through either the UI or MongoDB Atlas Charts.

It is built using Next.js, Node.js 20, Typescript and MongoDB Atlas.

Current Features

  • Ingests trace data from Langchain/Langsmith
  • Handles feedback creation and updating
  • UI to view trace data
  • UI authentication providers (Github, Microsoft AD)
  • MongoDB Trigger to add token usage data to the trace data

Limitations

  • Assumes all project names set in LANGCHAIN_PROJECT are URL safe, as they are used in the URL
    • No need to register projects, they are automatically created when data is ingested
  • No API key required for ingestion or querying

Running Modes

Langscout can be run in two modes: Full Mode and Headless Mode. Full mode runs the UI and APIs together.

Headless mode runs the ingestion api only

Full Mode

This will start 3 services:

  • UI
  • Langscout API (backend for the UI)
  • Ingest Server

Headless Mode

This will start 1 service:

  • Ingest Server

It's assumed to view data you will use MongoDB Atlas Charts

Setup MongoDB Atlas

Create/Provision cluster in MongoDB Atlas

  • Create/Provision cluster in MongoDB Atlas
  • Create a database in the cluster and set LANGSCOUT_MONGODB_DB_NAME to the name of the database in the .env file in /server. Example langscout
  • Create a collection in the database and set LANGSCOUT_TRACES_MONGODB_COLLECTION_NAME to the name of the collection in the .env file in /server. Example traces
  • Create a readWrite user for the trace collection and setup a connection string for that user on LANGSCOUT_INGEST_MONGODB_URI
  • Create a readOnly user for the trace collection and setup a connection string for that user on LANGSCOUT_API_MONGODB_URI

Setup Functions for automated token usage data

MongoDB Atlas required for this feature. If you are using MongoDB outside of Atlas you will need to handle the updates separately.

Example of a function to add token usage data to the trace data in ./atlas/functions/add-token-usage.js

Create a trigger in MongoDB Atlas to run the function on the traces collection ( LANGSCOUT_TRACES_MONGODB_COLLECTION_NAME)

Steps in UI

  • In the MongoDB Atlas UI, navigate to Triggers

  • Create a new trigger

  • Select the cluster and database

  • Select the collection

  • Set Operation Type to Insert and Update

  • In advanced settings set the following:

    • Match Expression:
    {
      "fullDocument.run_type": "llm",
      "fullDocument.end_time": {
        "$exists": true,
        "$ne": null
      },
      "fullDocument.extra.tokens": {
        "$exists": false
      },
      "fullDocument.outputs.generations": {
        "$exists": true,
        "$ne": null
      },
      "fullDocument.inputs.messages": {
        "$exists": true,
        "$ne": null
      }
    }   
    • Project Expression:
    {
      "fullDocument.end_time": 1,
      "fullDocument.run_type": 1,
      "fullDocument.outputs.generations": 1,
      "fullDocument.extra.invocation_params.model": 1,
      "fullDocument.inputs.messages": 1,
      "ns.coll": 1,
      "documentKey._id": 1,
      "operationType": 1
    }
  • Got to function and select the function you created and paste the code from the function file ./atlas/functions/add-token-usage.js

  • Repeat process for add-latency.js

    • Match
      {
        "fullDocument.run_type": "llm",
        "fullDocument.end_time": {
          "$exists": true,
          "$ne": null
        },
        "fullDocument.latency": {
          "$exists": false
        }
      }
    • Project
      {
        "fullDocument.end_time": 1,
        "fullDocument.run_type": 1,
        "fullDocument.latency": 1,
        "ns.coll": 1,
        "documentKey._id": 1,
        "operationType": 1
      }
  • Go to Triggers and Dependencies in MongoDB Atlas and add js-tiktoken-mongodb version 0.0.3

  • Finally, you need to add the encoding for tokens to a new table called encoding in the same database LANGSCOUT_TRACES_MONGODB_COLLECTION_NAME. Import the file ./atlas/encoding.json to that table

Steps in atlas app service CLI

Assumes you have an existing project configured for defining you Atlas infrastructure

  • Install the MongoDB Atlas CLI
  • Copy the contents of ./atlas/functions/ into the functions folder in your project
  • Copy the contents of ./atlas/trigger/ into the trigger folder in your project
  • In the trigger file set the following fields
  • Deploy changes

Running Services

Prerequisites

Configuration

  • In ./ui copy .env.example to .env and set the values
  • In ./server copy .env.example to .env and set the values

Langchain Configuration

Note: Langscout is currently configured to use the langsmith-sdk.

  • Add Langsmith dependency to your Langchain app
    • pip install langsmith or npm i langsmith
  • Add the following VARs to your Langchain app
    • LANGCHAIN_TRACING_V2 - set to true
    • LANGCHAIN_ENDPOINT - the URL of your Langscout API
    • LANGCHAIN_PROJECT - the name of your project

Running via Docker

Options

Docker Compose - Full Mode
docker-compose up --build -f docker-compose.full.yml
Docker Compose - Headless Mode
docker-compose up --build -f docker-compose.headless.yml

Running Services (development)

Development Prerequisites

Development Configuration

  • In ./packages/ui copy .env.example to .env and set the values
  • In ./packages/api copy .env.example to .env and set the values
  • In ./packages/ingest copy .env.example to .env and set the values

Running the services

Install the dependencies:

npm install
UI
npm run dev --workspace=@langscout/ui
Langscout API

This is the API that the UI uses to get data from MongoDB

npm run dev --workspace=@langscout/api
Ingest Server

This is the server that listens for data from Langchain

npm run dev --workspace=@langscout/ingest