-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathgrad-cam.py
247 lines (220 loc) · 8.58 KB
/
grad-cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import matplotlib.pyplot as plt
from torch.autograd import Function
from torchvision import models
from torchvision import utils
import cv2
import sys
from collections import OrderedDict
import numpy as np
import argparse
import os
import torch.nn as nn
i=0##testing in what
resnet = models.resnet50(pretrained=True)#这里单独加载一个包含全连接层的resnet50模型
image = []
class FeatureExtractor():
""" Class for extracting activations and
registering gradients from targetted intermediate layers """
def __init__(self, model, target_layers):
self.model = model
self.target_layers = target_layers
self.gradients = []
def save_gradient(self, grad):
self.gradients.append(grad)
def __call__(self, x):
outputs = []
self.gradients = []
for name, module in self.model._modules.items():##resnet50没有.feature这个特征,直接删除用就可以。
x = module(x)
#print('name=',name)
#print('x.size()=',x.size())
if name in self.target_layers:
x.register_hook(self.save_gradient)
outputs += [x]
#print('outputs.size()=',x.size())
#print('len(outputs)',len(outputs))
return outputs, x
class ModelOutputs():
""" Class for making a forward pass, and getting:
1. The network output.
2. Activations from intermeddiate targetted layers.
3. Gradients from intermeddiate targetted layers. """
def __init__(self, model, target_layers,use_cuda):
self.model = model
self.feature_extractor = FeatureExtractor(self.model, target_layers)
self.cuda = use_cuda
def get_gradients(self):
return self.feature_extractor.gradients
def __call__(self, x):
target_activations, output = self.feature_extractor(x)
output = output.view(output.size(0), -1)
#print('classfier=',output.size())
if self.cuda:
output = output.cpu()
output = resnet.fc(output).cuda()##这里就是为什么我们多加载一个resnet模型进来的原因,因为后面我们命名的model不包含fc层,但是这里又偏偏要使用。#
else:
output = resnet.fc(output)##这里对应use-cuda上更正一些bug,不然用use-cuda的时候会导致类型对不上,这样保证既可以在cpu上运行,gpu上运行也不会出问题.
return target_activations, output
def preprocess_image(img):
means=[0.485, 0.456, 0.406]
stds=[0.229, 0.224, 0.225]
preprocessed_img = img.copy()[: , :, ::-1]
for i in range(3):
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
preprocessed_img = \
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
preprocessed_img = torch.from_numpy(preprocessed_img)
preprocessed_img.unsqueeze_(0)
input = preprocessed_img
input.requires_grad = True
return input
def show_cam_on_image(img, mask,name):
heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
cam = heatmap + np.float32(img)
cam = cam / np.max(cam)
cv2.imwrite("cam/cam_{}.jpg".format(name), np.uint8(255 * cam))
class GradCam:
def __init__(self, model, target_layer_names, use_cuda):
self.model = model
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
self.extractor = ModelOutputs(self.model, target_layer_names, use_cuda)
def forward(self, input):
return self.model(input)
def __call__(self, input, index = None):
if self.cuda:
features, output = self.extractor(input.cuda())
else:
features, output = self.extractor(input)
if index == None:
index = np.argmax(output.cpu().data.numpy())
one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32)
one_hot[0][index] = 1
one_hot = torch.Tensor(torch.from_numpy(one_hot))
one_hot.requires_grad = True
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
self.model.zero_grad()##features和classifier不包含,可以重新加回去试一试,会报错不包含这个对象。
#self.model.zero_grad()
one_hot.backward(retain_graph=True)##这里适配我们的torch0.4及以上,我用的1.0也可以完美兼容。(variable改成graph即可)
grads_val = self.extractor.get_gradients()[-1].cpu().data.numpy()
#print('grads_val',grads_val.shape)
target = features[-1]
target = target.cpu().data.numpy()[0, :]
weights = np.mean(grads_val, axis = (2, 3))[0, :]
#print('weights',weights.shape)
cam = np.zeros(target.shape[1 : ], dtype = np.float32)
#print('cam',cam.shape)
#print('features',features[-1].shape)
#print('target',target.shape)
for i, w in enumerate(weights):
cam += w * target[i, :, :]
cam = np.maximum(cam, 0)
cam = cv2.resize(cam, (224, 224))
cam = cam - np.min(cam)
cam = cam / np.max(cam)
return cam
class GuidedBackpropReLUModel:
def __init__(self, model, use_cuda):
self.model = model#这里同理,要的是一个完整的网络,不然最后维度会不匹配。
self.model.eval()
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
for module in self.model.named_modules():
module[1].register_backward_hook(self.bp_relu)
def bp_relu(self, module, grad_in, grad_out):
if isinstance(module, nn.ReLU):
return (torch.clamp(grad_in[0], min=0.0),)
def forward(self, input):
return self.model(input)
def __call__(self, input, index = None):
if self.cuda:
output = self.forward(input.cuda())
else:
output = self.forward(input)
if index == None:
index = np.argmax(output.cpu().data.numpy())
#print(input.grad)
one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32)
one_hot[0][index] = 1
one_hot = torch.from_numpy(one_hot)
one_hot.requires_grad = True
if self.cuda:
one_hot = torch.sum(one_hot.cuda() * output)
else:
one_hot = torch.sum(one_hot * output)
#self.model.classifier.zero_grad()
one_hot.backward(retain_graph=True)
output = input.grad.cpu().data.numpy()
output = output[0,:,:,:]
return output
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--use-cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument('--image-path', type=str, default='./examples/',
help='Input image path')
args = parser.parse_args()
args.use_cuda = args.use_cuda and torch.cuda.is_available()
if args.use_cuda:
print("Using GPU for acceleration")
else:
print("Using CPU for computation")
return args
if __name__ == '__main__':
""" python grad_cam.py <path_to_image>
1. Loads an image with opencv.
2. Preprocesses it for VGG19 and converts to a pytorch variable.
3. Makes a forward pass to find the category index with the highest score,
and computes intermediate activations.
Makes the visualization. """
args = get_args()
# Can work with any model, but it assumes that the model has a
# feature method, and a classifier method,
# as in the VGG models in torchvision.
model = models.resnet50(pretrained=True)#这里相对vgg19而言我们处理的不一样,这里需要删除fc层,因为后面model用到的时候会用不到fc层,只查到fc层之前的所有层数。
del model.fc
print(model)
#modules = list(resnet.children())[:-1]
#model = torch.nn.Sequential(*modules)
#print(model)
grad_cam = GradCam(model , \
target_layer_names = ["layer4"], use_cuda=args.use_cuda)##这里改成layer4也很简单,我把每层name和size都打印出来了,想看哪层自己直接嵌套就可以了。(最后你会在终端看得到name的)
x=os.walk(args.image_path)
for root,dirs,filename in x:
#print(type(grad_cam))
print(filename)
for s in filename:
image.append(cv2.imread(args.image_path+s,1))
#img = cv2.imread(filename, 1)
for img in image:
img = np.float32(cv2.resize(img, (224, 224))) / 255
input = preprocess_image(img)
input.required_grad = True
print('input.size()=',input.size())
# If None, returns the map for the highest scoring category.
# Otherwise, targets the requested index.
target_index =None
mask = grad_cam(input, target_index)
i=i+1
show_cam_on_image(img, mask,i)
gb_model = GuidedBackpropReLUModel(model = models.resnet50(pretrained=True), use_cuda=args.use_cuda)
gb = gb_model(input, index=target_index)
if not os.path.exists('gb'):
os.mkdir('gb')
if not os.path.exists('camgb'):
os.mkdir('camgb')
utils.save_image(torch.from_numpy(gb), 'gb/gb_{}.jpg'.format(i))
cam_mask = np.zeros(gb.shape)
for j in range(0, gb.shape[0]):
cam_mask[j, :, :] = mask
cam_gb = np.multiply(cam_mask, gb)
utils.save_image(torch.from_numpy(cam_gb), 'camgb/cam_gb_{}.jpg'.format(i))