diff --git a/docs/calidhayte/calibrate.html b/docs/calidhayte/calibrate.html index f5e411f..1db2d2e 100644 --- a/docs/calidhayte/calibrate.html +++ b/docs/calidhayte/calibrate.html @@ -95,6 +95,9 @@
42def cont_strat_folds( - 43 df: pd.DataFrame, - 44 target_var: str, - 45 splits: int = 5, - 46 strat_groups: int = 5, - 47 seed: int = 62 - 48 ) -> pd.DataFrame: - 49 """ - 50 Creates stratified k-folds on continuous variable - 51 ---------- - 52 df : pd.DataFrame - 53 Target data to stratify on. - 54 target_var : str - 55 Target feature name. - 56 splits : int, default=5 - 57 Number of folds to make. - 58 strat_groups : int, default=10 - 59 Number of groups to split data in to for stratification. - 60 seed : int, default=62 - 61 Random state to use. - 62 - 63 Returns - 64 ------- - 65 pd.DataFrame - 66 `y_df` with added 'Fold' column, specifying which test data fold - 67 variable corresponds to. - 68 - 69 Examples - 70 -------- - 71 >>> df = pd.read_csv('data.csv') - 72 >>> df - 73 | | x | a | b | - 74 | | | | | - 75 | 0 |2.3|1.8|7.2| - 76 | 1 |3.2|9.6|4.5| - 77 |....|...|...|...| - 78 |1000|2.3|4.5|2.2| - 79 >>> df_with_folds = const_strat_folds( - 80 df=df, - 81 target='a', - 82 splits=3, - 83 strat_groups=3. - 84 seed=78 - 85 ) - 86 >>> df_with_folds - 87 | | x | a | b |Fold| - 88 | | | | | | - 89 | 0 |2.3|1.8|7.2| 2 | - 90 | 1 |3.2|9.6|4.5| 1 | - 91 |....|...|...|...|....| - 92 |1000|2.3|4.5|2.2| 0 | - 93 - 94 All folds should have a roughly equal distribution of values for 'a' - 95 - 96 """ - 97 _df = df.copy() - 98 _df['Fold'] = -1 - 99 skf = StratifiedKFold( -100 n_splits=splits, -101 random_state=seed, -102 shuffle=True -103 ) -104 _df['Group'] = pd.cut( -105 _df.loc[:, target_var], -106 strat_groups, -107 labels=False -108 ) -109 group_label = _df.loc[:, 'Group'] -110 -111 for fold_number, (_, v) in enumerate(skf.split(group_label, group_label)): -112 _df.loc[v, 'Fold'] = fold_number -113 return _df.drop('Group', axis=1) +@@ -1639,1112 +2948,2418 @@45def cont_strat_folds( + 46 df: pd.DataFrame, + 47 target_var: str, + 48 splits: int = 5, + 49 strat_groups: int = 5, + 50 seed: int = 62 + 51 ) -> pd.DataFrame: + 52 """ + 53 Creates stratified k-folds on continuous variable + 54 ---------- + 55 df : pd.DataFrame + 56 Target data to stratify on. + 57 target_var : str + 58 Target feature name. + 59 splits : int, default=5 + 60 Number of folds to make. + 61 strat_groups : int, default=10 + 62 Number of groups to split data in to for stratification. + 63 seed : int, default=62 + 64 Random state to use. + 65 + 66 Returns + 67 ------- + 68 pd.DataFrame + 69 `y_df` with added 'Fold' column, specifying which test data fold + 70 variable corresponds to. + 71 + 72 Examples + 73 -------- + 74 >>> df = pd.read_csv('data.csv') + 75 >>> df + 76 | | x | a | b | + 77 | | | | | + 78 | 0 |2.3|1.8|7.2| + 79 | 1 |3.2|9.6|4.5| + 80 |....|...|...|...| + 81 |1000|2.3|4.5|2.2| + 82 >>> df_with_folds = const_strat_folds( + 83 df=df, + 84 target='a', + 85 splits=3, + 86 strat_groups=3. + 87 seed=78 + 88 ) + 89 >>> df_with_folds + 90 | | x | a | b |Fold| + 91 | | | | | | + 92 | 0 |2.3|1.8|7.2| 2 | + 93 | 1 |3.2|9.6|4.5| 1 | + 94 |....|...|...|...|....| + 95 |1000|2.3|4.5|2.2| 0 | + 96 + 97 All folds should have a roughly equal distribution of values for 'a' + 98 + 99 """ +100 _df = df.copy() +101 _df['Fold'] = -1 +102 skf = StratifiedKFold( +103 n_splits=splits, +104 random_state=seed, +105 shuffle=True +106 ) +107 _df['Group'] = pd.cut( +108 _df.loc[:, target_var], +109 strat_groups, +110 labels=False +111 ) +112 group_label = _df.loc[:, 'Group'] +113 +114 for fold_number, (_, v) in enumerate(skf.split(group_label, group_label)): +115 _df.loc[v, 'Fold'] = fold_number +116 return _df.drop('Group', axis=1)Examples
116class Calibrate: - 117 """ - 118 Calibrate x against y using a range of different methods provided by - 119 scikit-learn[^skl], xgboost[^xgb] and PyMC (via Bambi)[^pmc]. - 120 - 121 [^skl]: https://scikit-learn.org/stable/modules/classes.html - 122 [^xgb]: https://xgboost.readthedocs.io/en/stable/python/python_api.html - 123 [^pmc]: https://bambinos.github.io/bambi/api/ - 124 - 125 Examples - 126 -------- - 127 >>> from calidhayte.calibrate import Calibrate - 128 >>> import pandas as pd - 129 >>> - 130 >>> x = pd.read_csv('independent.csv') - 131 >>> x - 132 | | a | b | - 133 | 0 |2.3|3.2| - 134 | 1 |3.4|3.1| - 135 |...|...|...| - 136 |100|3.7|2.1| - 137 >>> - 138 >>> y = pd.read_csv('dependent.csv') - 139 >>> y - 140 | | a | - 141 | 0 |7.8| - 142 | 1 |9.9| - 143 |...|...| - 144 |100|9.5| - 145 >>> - 146 >>> calibration = Calibrate( - 147 x_data=x, - 148 y_data=y, - 149 target='a', - 150 folds=5, - 151 strat_groups=5, - 152 scaler = [ - 153 'Standard Scale', - 154 'MinMax Scale' - 155 ], - 156 seed=62 - 157 ) - 158 >>> calibration.linreg() - 159 >>> calibration.lars() - 160 >>> calibration.omp() - 161 >>> calibration.ransac() - 162 >>> calibration.random_forest() - 163 >>> - 164 >>> models = calibration.return_models() - 165 >>> list(models.keys()) - 166 [ - 167 'Linear Regression', - 168 'Least Angle Regression', - 169 'Orthogonal Matching Pursuit', - 170 'RANSAC', - 171 'Random Forest' - 172 ] - 173 >>> list(models['Linear Regression'].keys()) - 174 ['Standard Scale', 'MinMax Scale'] - 175 >>> list(models['Linear Regression']['Standard Scale'].keys()) - 176 ['a', 'a + b'] - 177 >>> list(models['Linear Regression']['Standard Scale']['a'].keys()) - 178 [0, 1, 2, 3, 4] - 179 >>> type(models['Linear Regression']['Standard Scale']['a'][0]) - 180 <class sklearn.pipeline.Pipeline> - 181 >>> pipeline = models['Linear Regression']['Standard Scale']['a'][0] - 182 >>> x_new = pd.read_csv('independent_new.csv') - 183 >>> x_new - 184 | | a | b | - 185 | 0 |3.5|2.7| - 186 | 1 |4.0|1.1| - 187 |...|...|...| - 188 |100|2.3|2.1| - 189 >>> pipeline.transform(x_new) - 190 | | a | - 191 | 0 |9.7| - 192 | 1 |9.1| - 193 |...|...| - 194 |100|6.7| - 195 - 196 """ - 197 - 198 def __init__( - 199 self, - 200 x_data: pd.DataFrame, - 201 y_data: pd.DataFrame, - 202 target: str, - 203 folds: int = 5, - 204 strat_groups: int = 10, - 205 scaler: Union[ - 206 Iterable[ - 207 Literal[ - 208 'None', - 209 'Standard Scale', - 210 'MinMax Scale', - 211 'Yeo-Johnson Transform' - 212 'Box-Cox Transform', - 213 'Quantile Transform (Uniform)', - 214 'Quantile Transform (Gaussian)' - 215 ] - 216 ], - 217 Literal[ - 218 'All', - 219 'None', - 220 'Standard Scale', - 221 'MinMax Scale', - 222 'Yeo-Johnson Transform' - 223 'Box-Cox Transform', - 224 'Quantile Transform (Uniform)', - 225 'Quantile Transform (Gaussian)', - 226 ] - 227 ] = 'None', - 228 seed: int = 62 - 229 ): - 230 """Initialises class - 231 - 232 Used to compare one set of measurements against another. - 233 It can perform both univariate and multivariate regression, though - 234 some techniques can only do one or the other. Multivariate regression - 235 can only be performed when secondary variables are provided. - 236 - 237 Parameters - 238 ---------- - 239 x_data : pd.DataFrame - 240 Data to be calibrated. - 241 y_data : pd.DataFrame - 242 'True' data to calibrate against. - 243 target : str - 244 Column name of the primary feature to use in calibration, must be - 245 the name of a column in both `x_data` and `y_data`. - 246 folds : int, default=5 - 247 Number of folds to split the data into, using stratified k-fold. - 248 strat_groups : int, default=10 - 249 Number of groups to stratify against, the data will be split into - 250 n equally sized bins where n is the value of `strat_groups`. - 251 scaler : iterable of {<br>\ - 252 'None',<br>\ - 253 'Standard Scale',<br>\ - 254 'MinMax Scale',<br>\ - 255 'Yeo-Johnson Transform',<br>\ - 256 'Box-Cox Transform',<br>\ - 257 'Quantile Transform (Uniform)',<br>\ - 258 'Quantile Transform (Gaussian)',<br>\ - 259 } or {<br>\ - 260 'All',<br>\ - 261 'None',<br>\ - 262 'Standard Scale',<br>\ - 263 'MinMax Scale',<br>\ - 264 'Yeo-Johnson Transform',<br>\ - 265 'Box-Cox Transform',<br>\ - 266 'Quantile Transform (Uniform)',<br>\ - 267 'Quantile Transform (Gaussian)',<br>\ - 268 }, default='None' - 269 The scaling/transform method (or list of methods) to apply to the - 270 data - 271 seed : int, default=62 - 272 Random state to use when shuffling and splitting the data into n - 273 folds. Ensures repeatability. - 274 - 275 Raises - 276 ------ - 277 ValueError - 278 Raised if the target variables (e.g. 'NO2') is not a column name in - 279 both dataframes. - 280 Raised if `scaler` is not str, tuple or list - 281 """ - 282 if target not in x_data.columns or target not in y_data.columns: - 283 raise ValueError( - 284 f"{target} does not exist in both columns." - 285 ) - 286 join_index = x_data.join( - 287 y_data, - 288 how='inner', - 289 lsuffix='x', - 290 rsuffix='y' - 291 ).dropna().index - 292 """ - 293 The common indices between `x_data` and `y_data`, excluding missing - 294 values - 295 """ - 296 self.x_data: pd.DataFrame = x_data.loc[join_index, :] - 297 """ - 298 The data to be calibrated. - 299 """ - 300 self.target: str = target - 301 """ - 302 The name of the column in both `x_data` and `y_data` that - 303 will be used as the x and y variables in the calibration. - 304 """ - 305 self.scaler_list: dict[str, Any] = { - 306 'None': None, - 307 'Standard Scale': pre.StandardScaler(), - 308 'MinMax Scale': pre.MinMaxScaler(), - 309 'Yeo-Johnson Transform': pre.PowerTransformer( - 310 method='yeo-johnson' - 311 ), - 312 'Box-Cox Transform': pre.PowerTransformer(method='box-cox'), - 313 'Quantile Transform (Uniform)': pre.QuantileTransformer( - 314 output_distribution='uniform' - 315 ), - 316 'Quantile Transform (Gaussian)': pre.QuantileTransformer( - 317 output_distribution='normal' - 318 ) - 319 } - 320 """ - 321 Keys for scaling algorithms available in the pipelines - 322 """ - 323 self.scaler: list[str] = list() - 324 """ - 325 The scaling algorithm(s) to preprocess the data with - 326 """ - 327 if isinstance(scaler, str): - 328 if scaler == "All": - 329 if not bool(self.x_data.ge(0).all(axis=None)): - 330 warnings.warn( - 331 f'Box-Cox is not compatible with provided measurements' - 332 ) - 333 self.scaler_list.pop('Box-Cox Transform') - 334 self.scaler.extend(self.scaler_list.keys()) - 335 elif scaler in self.scaler_list.keys(): - 336 self.scaler.append(scaler) - 337 else: - 338 self.scaler.append('None') - 339 warnings.warn(f'Scaling algorithm {scaler} not recognised') - 340 elif isinstance(scaler, (tuple, list)): - 341 for sc in scaler: - 342 if sc == 'Box-Cox Transform' and not bool( - 343 self.x_data.ge(0).all(axis=None) - 344 ): - 345 warnings.warn( - 346 f'Box-Cox is not compatible with provided measurements' - 347 ) - 348 continue - 349 if sc in self.scaler_list.keys(): - 350 self.scaler.append(sc) - 351 else: - 352 warnings.warn(f'Scaling algorithm {sc} not recognised') - 353 else: - 354 raise ValueError('scaler parameter should be string, list or tuple') - 355 if not self.scaler: - 356 warnings.warn( - 357 f'No valid scaling algorithms provided, defaulting to None' - 358 ) - 359 self.scaler.append('None') - 360 - 361 self.y_data = cont_strat_folds( - 362 y_data.loc[join_index, :], - 363 target, - 364 folds, - 365 strat_groups, - 366 seed - 367 ) - 368 """ - 369 The data that `x_data` will be calibrated against. A '*Fold*' - 370 column is added using the `const_strat_folds` function which splits - 371 the data into k stratified folds (where k is the value of - 372 `folds`). It splits the continuous measurements into n bins (where n - 373 is the value of `strat_groups`) and distributes each bin equally - 374 across all folds. This significantly reduces the chances of one fold - 375 containing a skewed distribution relative to the whole dataset. - 376 """ - 377 self.models: dict[str, # Technique name - 378 dict[str, # Scaling technique - 379 dict[str, # Variable combo - 380 dict[int, # Fold - 381 Pipeline]]]] = dict() - 382 """ - 383 The calibrated models. They are stored in a nested structure as - 384 follows: - 385 1. Primary Key, name of the technique (e.g Lasso Regression). - 386 2. Scaling technique (e.g Yeo-Johnson Transform). - 387 3. Combination of variables used or `target` if calibration is - 388 univariate (e.g "`target` + a + b). - 389 4. Fold, which fold was used excluded from the calibration. If data - 390 if 5-fold cross validated, a key of 4 indicates the data was trained on - 391 folds 0-3. - 392 - 393 ```mermaid - 394 stateDiagram-v2 - 395 models --> Technique - 396 state Technique { - 397 [*] --> Scaling - 398 [*]: The calibration technique used - 399 [*]: (e.g "Lasso Regression") - 400 state Scaling { - 401 [*] --> Variables - 402 [*]: The scaling technique used - 403 [*]: (e.g "Yeo-Johnson Transform") - 404 state Variables { - 405 [*] : The combination of variables used - 406 [*] : (e.g "x + a + b") - 407 [*] --> Fold - 408 state Fold { - 409 [*] : Which fold was excluded from training data - 410 [*] : (e.g 4 indicates folds 0-3 were used to train) - 411 } - 412 } - 413 } - 414 } - 415 ``` - 416 - 417 """ - 418 - 419 def _sklearn_regression_meta( - 420 self, - 421 reg: Union[skl.base.RegressorMixin, Literal['t', 'gaussian']], - 422 name: str, - 423 min_coeffs: int = 1, - 424 max_coeffs: int = (sys.maxsize * 2) + 1, - 425 **kwargs - 426 ): - 427 """ - 428 Metaclass, formats data and uses sklearn classifier to - 429 fit x to y - 430 - 431 Parameters - 432 ---------- - 433 reg : sklearn.base.RegressorMixin or str - 434 Classifier to use, or distribution family to use for bayesian. - 435 name : str - 436 Name of classification technique to save pipeline to. - 437 min_coeffs : int, default=1 - 438 Minimum number of coefficients for technique. - 439 max_coeffs : int, default=(sys.maxsize * 2) + 1 - 440 Maximum number of coefficients for technique. - 441 - 442 Raises - 443 ------ - 444 NotImplementedError - 445 PyMC currently doesn't work, TODO - 446 """ - 447 x_secondary_cols = self.x_data.drop(self.target, axis=1).columns - 448 # All columns in x_data that aren't the target variable - 449 products = [[np.nan, col] for col in x_secondary_cols] - 450 secondary_vals = pd.MultiIndex.from_product(products) - 451 # Get all possible combinations of secondary variables in a pandas - 452 # MultiIndex - 453 if self.models.get(name) is None: - 454 self.models[name] = dict() - 455 # If the classification technique hasn't been used yet, - 456 # add its key to the models dictionary - 457 for scaler in self.scaler: - 458 if self.models[name].get(scaler) is None: - 459 self.models[name][scaler] = dict() - 460 # If the scaling technique hasn't been used with the classification - 461 # technique yet, add its key to the nested dictionary - 462 for sec_vals in secondary_vals: - 463 # Loop over all combinations of secondary values - 464 vals = [self.target] + [v for v in sec_vals if v == v] - 465 vals_str = ' + '.join(vals) - 466 if len(vals) < min_coeffs or len(vals) > max_coeffs: - 467 # Skip if number of coeffs doesn't lie within acceptable range - 468 # for technique. For example, isotonic regression - 469 # only works with one variable - 470 continue - 471 self.models[name][scaler][vals_str] = dict() - 472 for fold in self.y_data.loc[:, 'Fold'].unique(): - 473 y_data = self.y_data[ - 474 self.y_data.loc[:, 'Fold'] != fold - 475 ] - 476 if reg in ['t', 'gaussian']: - 477 # If using PyMC bayesian model, - 478 # format data and build model using bambi - 479 # then store result in pipeline - 480 # Currently doesn't work as PyMC models - 481 # can't be pickled, so don't function with deepcopy. Needs - 482 # looking into - 483 raise NotImplementedError( - 484 "PyMC functions currently don't work with deepcopy" - 485 ) - 486 # sc = scalers[scaler] - 487 # if sc is not None: - 488 # x_data = sc.fit_transform( - 489 # self.x_data.loc[y_data.index, :] - 490 # ) - 491 # else: - 492 # x_data = self.x_data.loc[y_data.index, :] - 493 # x_data['y'] = y_data.loc[:, self.target] - 494 # model = bmb.Model( - 495 # f"y ~ {vals_str}", - 496 # x_data, - 497 # family=reg - 498 # ) - 499 # _ = model.fit( - 500 # progressbar=False, - 501 # **kwargs - 502 # ) - 503 # pipeline = Pipeline([ - 504 # ("Scaler", scaler), - 505 # ("Regression", model) - 506 # ]) - 507 else: - 508 # If using scikit-learn API compatible classifier, - 509 # Build pipeline and fit to - 510 pipeline = Pipeline([ - 511 ("Selector", ColumnTransformer([ - 512 ("selector", "passthrough", vals) - 513 ], remainder="drop") - 514 ), - 515 ("Scaler", self.scaler_list[scaler]), - 516 ("Regression", reg) - 517 ]) - 518 pipeline.fit( - 519 self.x_data.loc[y_data.index, :], - 520 y_data.loc[:, self.target] - 521 ) - 522 self.models[name][scaler][vals_str][fold] = dc(pipeline) - 523 - 524 def pymc_bayesian( - 525 self, - 526 family: Literal[ - 527 "Gaussian", - 528 "Student T", - 529 ] = "Gaussian", - 530 name: str = " PyMC Bayesian", - 531 **kwargs - 532 ): - 533 """ - 534 Performs bayesian linear regression (either uni or multivariate) - 535 fitting x on y. - 536 - 537 Performs bayesian linear regression, both univariate and multivariate, - 538 on X against y. More details can be found at: - 539 https://pymc.io/projects/examples/en/latest/generalized_linear_models/ - 540 GLM-robust.html - 541 - 542 Parameters - 543 ---------- - 544 family : {'Gaussian', 'Student T'}, default='Gaussian' - 545 Statistical distribution to fit measurements to. Options are: - 546 - Gaussian - 547 - Student T - 548 """ - 549 # Define model families - 550 model_families = { - 551 "Gaussian": "gaussian", - 552 "Student T": "t" - 553 } - 554 self._sklearn_regression_meta( - 555 model_families[family], - 556 f'{name} ({model_families})', - 557 **kwargs - 558 ) - 559 - 560 def linreg(self, name: str = "Linear Regression", **kwargs): - 561 """ - 562 Fit x on y via linear regression - 563 - 564 Parameters - 565 ---------- - 566 name : str, default="Linear Regression" - 567 Name of classification technique. - 568 """ - 569 self._sklearn_regression_meta( - 570 lm.LinearRegression(**kwargs), - 571 name - 572 ) - 573 - 574 def ridge(self, name: str = "Ridge Regression", **kwargs): - 575 """ - 576 Fit x on y via ridge regression - 577 - 578 Parameters - 579 ---------- - 580 name : str, default="Ridge Regression" - 581 Name of classification technique - 582 """ - 583 self._sklearn_regression_meta( - 584 lm.Ridge(**kwargs), - 585 name - 586 ) - 587 - 588 def ridge_cv( - 589 self, - 590 name: str = "Ridge Regression (Cross Validated)", - 591 **kwargs - 592 ): - 593 """ - 594 Fit x on y via cross-validated ridge regression - 595 - 596 Parameters - 597 ---------- - 598 name : str, default="Ridge Regression (Cross Validated)" - 599 Name of classification technique - 600 """ - 601 self._sklearn_regression_meta( - 602 lm.RidgeCV(**kwargs), - 603 name - 604 ) - 605 - 606 def lasso(self, name: str = "Lasso Regression", **kwargs): +@@ -2848,232 +5463,238 @@119class Calibrate: + 120 """ + 121 Calibrate x against y using a range of different methods provided by + 122 scikit-learn[^skl], xgboost[^xgb] and PyMC (via Bambi)[^pmc]. + 123 + 124 [^skl]: https://scikit-learn.org/stable/modules/classes.html + 125 [^xgb]: https://xgboost.readthedocs.io/en/stable/python/python_api.html + 126 [^pmc]: https://bambinos.github.io/bambi/api/ + 127 + 128 Examples + 129 -------- + 130 >>> from calidhayte.calibrate import Calibrate + 131 >>> import pandas as pd + 132 >>> + 133 >>> x = pd.read_csv('independent.csv') + 134 >>> x + 135 | | a | b | + 136 | 0 |2.3|3.2| + 137 | 1 |3.4|3.1| + 138 |...|...|...| + 139 |100|3.7|2.1| + 140 >>> + 141 >>> y = pd.read_csv('dependent.csv') + 142 >>> y + 143 | | a | + 144 | 0 |7.8| + 145 | 1 |9.9| + 146 |...|...| + 147 |100|9.5| + 148 >>> + 149 >>> calibration = Calibrate( + 150 x_data=x, + 151 y_data=y, + 152 target='a', + 153 folds=5, + 154 strat_groups=5, + 155 scaler = [ + 156 'Standard Scale', + 157 'MinMax Scale' + 158 ], + 159 seed=62 + 160 ) + 161 >>> calibration.linreg() + 162 >>> calibration.lars() + 163 >>> calibration.omp() + 164 >>> calibration.ransac() + 165 >>> calibration.random_forest() + 166 >>> + 167 >>> models = calibration.return_models() + 168 >>> list(models.keys()) + 169 [ + 170 'Linear Regression', + 171 'Least Angle Regression', + 172 'Orthogonal Matching Pursuit', + 173 'RANSAC', + 174 'Random Forest' + 175 ] + 176 >>> list(models['Linear Regression'].keys()) + 177 ['Standard Scale', 'MinMax Scale'] + 178 >>> list(models['Linear Regression']['Standard Scale'].keys()) + 179 ['a', 'a + b'] + 180 >>> list(models['Linear Regression']['Standard Scale']['a'].keys()) + 181 [0, 1, 2, 3, 4] + 182 >>> type(models['Linear Regression']['Standard Scale']['a'][0]) + 183 <class sklearn.pipeline.Pipeline> + 184 >>> pipeline = models['Linear Regression']['Standard Scale']['a'][0] + 185 >>> x_new = pd.read_csv('independent_new.csv') + 186 >>> x_new + 187 | | a | b | + 188 | 0 |3.5|2.7| + 189 | 1 |4.0|1.1| + 190 |...|...|...| + 191 |100|2.3|2.1| + 192 >>> pipeline.transform(x_new) + 193 | | a | + 194 | 0 |9.7| + 195 | 1 |9.1| + 196 |...|...| + 197 |100|6.7| + 198 + 199 """ + 200 + 201 def __init__( + 202 self, + 203 x_data: pd.DataFrame, + 204 y_data: pd.DataFrame, + 205 target: str, + 206 folds: int = 5, + 207 strat_groups: int = 10, + 208 scaler: Union[ + 209 Iterable[ + 210 Literal[ + 211 'None', + 212 'Standard Scale', + 213 'MinMax Scale', + 214 'Yeo-Johnson Transform', + 215 'Box-Cox Transform', + 216 'Quantile Transform (Uniform)', + 217 'Quantile Transform (Gaussian)' + 218 ] + 219 ], + 220 Literal[ + 221 'All', + 222 'None', + 223 'Standard Scale', + 224 'MinMax Scale', + 225 'Yeo-Johnson Transform', + 226 'Box-Cox Transform', + 227 'Quantile Transform (Uniform)', + 228 'Quantile Transform (Gaussian)', + 229 ] + 230 ] = 'None', + 231 seed: int = 62 + 232 ): + 233 """Initialises class + 234 + 235 Used to compare one set of measurements against another. + 236 It can perform both univariate and multivariate regression, though + 237 some techniques can only do one or the other. Multivariate regression + 238 can only be performed when secondary variables are provided. + 239 + 240 Parameters + 241 ---------- + 242 x_data : pd.DataFrame + 243 Data to be calibrated. + 244 y_data : pd.DataFrame + 245 'True' data to calibrate against. + 246 target : str + 247 Column name of the primary feature to use in calibration, must be + 248 the name of a column in both `x_data` and `y_data`. + 249 folds : int, default=5 + 250 Number of folds to split the data into, using stratified k-fold. + 251 strat_groups : int, default=10 + 252 Number of groups to stratify against, the data will be split into + 253 n equally sized bins where n is the value of `strat_groups`. + 254 scaler : iterable of {<br>\ + 255 'None',<br>\ + 256 'Standard Scale',<br>\ + 257 'MinMax Scale',<br>\ + 258 'Yeo-Johnson Transform',<br>\ + 259 'Box-Cox Transform',<br>\ + 260 'Quantile Transform (Uniform)',<br>\ + 261 'Quantile Transform (Gaussian)',<br>\ + 262 } or {<br>\ + 263 'All',<br>\ + 264 'None',<br>\ + 265 'Standard Scale',<br>\ + 266 'MinMax Scale',<br>\ + 267 'Yeo-Johnson Transform',<br>\ + 268 'Box-Cox Transform',<br>\ + 269 'Quantile Transform (Uniform)',<br>\ + 270 'Quantile Transform (Gaussian)',<br>\ + 271 }, default='None' + 272 The scaling/transform method (or list of methods) to apply to the + 273 data + 274 seed : int, default=62 + 275 Random state to use when shuffling and splitting the data into n + 276 folds. Ensures repeatability. + 277 + 278 Raises + 279 ------ + 280 ValueError + 281 Raised if the target variables (e.g. 'NO2') is not a column name in + 282 both dataframes. + 283 Raised if `scaler` is not str, tuple or list + 284 """ + 285 if target not in x_data.columns or target not in y_data.columns: + 286 raise ValueError( + 287 f"{target} does not exist in both columns." + 288 ) + 289 join_index = x_data.join( + 290 y_data, + 291 how='inner', + 292 lsuffix='x', + 293 rsuffix='y' + 294 ).dropna().index + 295 """ + 296 The common indices between `x_data` and `y_data`, excluding missing + 297 values + 298 """ + 299 self.x_data: pd.DataFrame = x_data.loc[join_index, :] + 300 """ + 301 The data to be calibrated. + 302 """ + 303 self.target: str = target + 304 """ + 305 The name of the column in both `x_data` and `y_data` that + 306 will be used as the x and y variables in the calibration. + 307 """ + 308 self.scaler_list: dict[str, Any] = { + 309 'None': None, + 310 'Standard Scale': pre.StandardScaler(), + 311 'MinMax Scale': pre.MinMaxScaler(), + 312 'Yeo-Johnson Transform': pre.PowerTransformer( + 313 method='yeo-johnson' + 314 ), + 315 'Box-Cox Transform': pre.PowerTransformer(method='box-cox'), + 316 'Quantile Transform (Uniform)': pre.QuantileTransformer( + 317 output_distribution='uniform' + 318 ), + 319 'Quantile Transform (Gaussian)': pre.QuantileTransformer( + 320 output_distribution='normal' + 321 ) + 322 } + 323 """ + 324 Keys for scaling algorithms available in the pipelines + 325 """ + 326 self.scaler: list[str] = list() + 327 """ + 328 The scaling algorithm(s) to preprocess the data with + 329 """ + 330 if isinstance(scaler, str): + 331 if scaler == "All": + 332 if not bool(self.x_data.ge(0).all(axis=None)): + 333 warnings.warn( + 334 'Box-Cox is not compatible with provided measurements' + 335 ) + 336 self.scaler_list.pop('Box-Cox Transform') + 337 self.scaler.extend(self.scaler_list.keys()) + 338 elif scaler in self.scaler_list.keys(): + 339 self.scaler.append(scaler) + 340 else: + 341 self.scaler.append('None') + 342 warnings.warn(f'Scaling algorithm {scaler} not recognised') + 343 elif isinstance(scaler, (tuple, list)): + 344 for sc in scaler: + 345 if sc == 'Box-Cox Transform' and not bool( + 346 self.x_data.ge(0).all(axis=None) + 347 ): + 348 warnings.warn( + 349 'Box-Cox is not compatible with provided measurements' + 350 ) + 351 continue + 352 if sc in self.scaler_list.keys(): + 353 self.scaler.append(sc) + 354 else: + 355 warnings.warn(f'Scaling algorithm {sc} not recognised') + 356 else: + 357 raise ValueError( + 358 'scaler parameter should be string, list or tuple' + 359 ) + 360 if not self.scaler: + 361 warnings.warn( + 362 'No valid scaling algorithms provided, defaulting to None' + 363 ) + 364 self.scaler.append('None') + 365 + 366 self.y_data = cont_strat_folds( + 367 y_data.loc[join_index, :], + 368 target, + 369 folds, + 370 strat_groups, + 371 seed + 372 ) + 373 """ + 374 The data that `x_data` will be calibrated against. A '*Fold*' + 375 column is added using the `const_strat_folds` function which splits + 376 the data into k stratified folds (where k is the value of + 377 `folds`). It splits the continuous measurements into n bins (where n + 378 is the value of `strat_groups`) and distributes each bin equally + 379 across all folds. This significantly reduces the chances of one fold + 380 containing a skewed distribution relative to the whole dataset. + 381 """ + 382 self.models: dict[str, # Technique name + 383 dict[str, # Scaling technique + 384 dict[str, # Variable combo + 385 dict[int, # Fold + 386 Pipeline]]]] = dict() + 387 """ + 388 The calibrated models. They are stored in a nested structure as + 389 follows: + 390 1. Primary Key, name of the technique (e.g Lasso Regression). + 391 2. Scaling technique (e.g Yeo-Johnson Transform). + 392 3. Combination of variables used or `target` if calibration is + 393 univariate (e.g "`target` + a + b). + 394 4. Fold, which fold was used excluded from the calibration. If data + 395 if 5-fold cross validated, a key of 4 indicates the data was trained on + 396 folds 0-3. + 397 + 398 ```mermaid + 399 stateDiagram-v2 + 400 models --> Technique + 401 state Technique { + 402 [*] --> Scaling + 403 [*]: The calibration technique used + 404 [*]: (e.g "Lasso Regression") + 405 state Scaling { + 406 [*] --> Variables + 407 [*]: The scaling technique used + 408 [*]: (e.g "Yeo-Johnson Transform") + 409 state Variables { + 410 [*] : The combination of variables used + 411 [*] : (e.g "x + a + b") + 412 [*] --> Fold + 413 state Fold { + 414 [*] : Which fold was excluded from training data + 415 [*] : (e.g 4 indicates folds 0-3 were used to train) + 416 } + 417 } + 418 } + 419 } + 420 ``` + 421 + 422 """ + 423 self.folds: int = folds + 424 """ + 425 The number of folds used in k-fold cross validation + 426 """ + 427 + 428 def _sklearn_regression_meta( + 429 self, + 430 reg: Union[ + 431 skl.base.RegressorMixin, + 432 RandomizedSearchCV, + 433 Literal['t', 'gaussian'] + 434 ], + 435 name: str, + 436 min_coeffs: int = 1, + 437 max_coeffs: int = (sys.maxsize * 2) + 1, + 438 random_search: bool = False + 439 ): + 440 """ + 441 Metaclass, formats data and uses sklearn classifier to + 442 fit x to y + 443 + 444 Parameters + 445 ---------- + 446 reg : sklearn.base.RegressorMixin or str + 447 Classifier to use, or distribution family to use for bayesian. + 448 name : str + 449 Name of classification technique to save pipeline to. + 450 min_coeffs : int, default=1 + 451 Minimum number of coefficients for technique. + 452 max_coeffs : int, default=(sys.maxsize * 2) + 1 + 453 Maximum number of coefficients for technique. + 454 random_search : bool + 455 Whether RandomizedSearch is used or not + 456 + 457 Raises + 458 ------ + 459 NotImplementedError + 460 PyMC currently doesn't work, TODO + 461 """ + 462 x_secondary_cols = self.x_data.drop(self.target, axis=1).columns + 463 # All columns in x_data that aren't the target variable + 464 products = [[np.nan, col] for col in x_secondary_cols] + 465 secondary_vals = pd.MultiIndex.from_product(products) + 466 # Get all possible combinations of secondary variables in a pandas + 467 # MultiIndex + 468 if self.models.get(name) is None: + 469 self.models[name] = dict() + 470 # If the classification technique hasn't been used yet, + 471 # add its key to the models dictionary + 472 for scaler in self.scaler: + 473 if self.models[name].get(scaler) is None: + 474 self.models[name][scaler] = dict() + 475 # If the scaling technique hasn't been used with the + 476 # classification + 477 # technique yet, add its key to the nested dictionary + 478 for sec_vals in secondary_vals: + 479 # Loop over all combinations of secondary values + 480 vals = [self.target] + [v for v in sec_vals if v == v] + 481 vals_str = ' + '.join(vals) + 482 if len(vals) < min_coeffs or len(vals) > max_coeffs: + 483 # Skip if number of coeffs doesn't lie within acceptable + 484 # range + 485 # for technique. For example, isotonic regression + 486 # only works with one variable + 487 continue + 488 self.models[name][scaler][vals_str] = dict() + 489 if random_search: + 490 pipeline = Pipeline([ + 491 ("Selector", ColumnTransformer([ + 492 ("selector", "passthrough", vals) + 493 ], remainder="drop") + 494 ), + 495 ("Scaler", self.scaler_list[scaler]), + 496 ("Regression", reg) + 497 ]) + 498 pipeline.fit( + 499 self.x_data, + 500 self.y_data.loc[:, self.target] + 501 ) + 502 self.models[name][scaler][vals_str][0] = dc(pipeline) + 503 continue + 504 + 505 for fold in self.y_data.loc[:, 'Fold'].unique(): + 506 y_data = self.y_data[ + 507 self.y_data.loc[:, 'Fold'] != fold + 508 ] + 509 if reg in ['t', 'gaussian']: + 510 # If using PyMC bayesian model, + 511 # format data and build model using bambi + 512 # then store result in pipeline + 513 # Currently doesn't work as PyMC models + 514 # can't be pickled, so don't function with deepcopy. + 515 # Needs looking into + 516 raise NotImplementedError( + 517 "PyMC functions currently don't work with deepcopy" + 518 ) + 519 # sc = scalers[scaler] + 520 # if sc is not None: + 521 # x_data = sc.fit_transform( + 522 # self.x_data.loc[y_data.index, :] + 523 # ) + 524 # else: + 525 # x_data = self.x_data.loc[y_data.index, :] + 526 # x_data['y'] = y_data.loc[:, self.target] + 527 # model = bmb.Model( + 528 # f"y ~ {vals_str}", + 529 # x_data, + 530 # family=reg + 531 # ) + 532 # _ = model.fit( + 533 # progressbar=False, + 534 # **kwargs + 535 # ) + 536 # pipeline = Pipeline([ + 537 # ("Scaler", scaler), + 538 # ("Regression", model) + 539 # ]) + 540 else: + 541 # If using scikit-learn API compatible classifier, + 542 # Build pipeline and fit to + 543 pipeline = Pipeline([ + 544 ("Selector", ColumnTransformer([ + 545 ("selector", "passthrough", vals) + 546 ], remainder="drop") + 547 ), + 548 ("Scaler", self.scaler_list[scaler]), + 549 ("Regression", reg) + 550 ]) + 551 pipeline.fit( + 552 self.x_data.loc[y_data.index, :], + 553 y_data.loc[:, self.target] + 554 ) + 555 self.models[name][scaler][vals_str][fold] = dc(pipeline) + 556 + 557 def pymc_bayesian( + 558 self, + 559 family: Literal[ + 560 "Gaussian", + 561 "Student T", + 562 ] = "Gaussian", + 563 name: str = " PyMC Bayesian", + 564 **kwargs + 565 ): + 566 """ + 567 Performs bayesian linear regression (either uni or multivariate) + 568 fitting x on y. + 569 + 570 Performs bayesian linear regression, both univariate and multivariate, + 571 on X against y. More details can be found at: + 572 https://pymc.io/projects/examples/en/latest/generalized_linear_models/ + 573 GLM-robust.html + 574 + 575 Parameters + 576 ---------- + 577 family : {'Gaussian', 'Student T'}, default='Gaussian' + 578 Statistical distribution to fit measurements to. Options are: + 579 - Gaussian + 580 - Student T + 581 """ + 582 # Define model families + 583 model_families: dict[str, Literal['t', 'gaussian']] = { + 584 "Gaussian": 'gaussian', + 585 "Student T": 't' + 586 } + 587 self._sklearn_regression_meta( + 588 model_families[family], + 589 f'{name} ({model_families})', + 590 **kwargs + 591 ) + 592 + 593 def linreg( + 594 self, + 595 name: str = "Linear Regression", + 596 random_search: bool = False, + 597 parameters: dict[ + 598 str, + 599 Union[ + 600 scipy.stats.rv_continuous, + 601 List[Union[int, str, float]] + 602 ] + 603 ] = { + 604 }, + 605 **kwargs + 606 ): 607 """ - 608 Fit x on y via lasso regression + 608 Fit x on y via linear regression 609 610 Parameters 611 ---------- - 612 name : str, default="Lasso Regression" - 613 Name of classification technique - 614 """ - 615 self._sklearn_regression_meta( - 616 lm.Lasso(**kwargs), - 617 name - 618 ) - 619 - 620 def lasso_cv( - 621 self, - 622 name: str = "Lasso Regression (Cross Validated)", - 623 **kwargs - 624 ): - 625 """ - 626 Fit x on y via cross-validated lasso regression - 627 - 628 Parameters - 629 ---------- - 630 name : str, default="Lasso Regression (Cross Validated)" - 631 Name of classification technique - 632 """ + 612 name : str, default="Linear Regression" + 613 Name of classification technique. + 614 random_search : bool, default=False + 615 Whether to perform RandomizedSearch to optimise parameters + 616 parameters : dict[ + 617 str, + 618 Union[ + 619 scipy.stats.rv_continuous, + 620 List[Union[int, str, float]] + 621 ] + 622 ], default=Preset distributions + 623 The parameters used in RandomizedSearchCV + 624 """ + 625 if random_search: + 626 classifier = RandomizedSearchCV( + 627 lm.LinearRegression(**kwargs), + 628 parameters, + 629 cv=self.folds + 630 ) + 631 else: + 632 classifier = lm.LinearRegression(**kwargs) 633 self._sklearn_regression_meta( - 634 lm.LassoCV(**kwargs), - 635 name - 636 ) - 637 - 638 def multi_task_lasso( - 639 self, - 640 name: str = "Multi-task Lasso Regression", - 641 **kwargs - 642 ): - 643 """ - 644 Fit x on y via multitask lasso regression - 645 - 646 Parameters - 647 ---------- - 648 name : str, default="Multi-task Lasso Regression" - 649 Name of classification technique - 650 """ - 651 self._sklearn_regression_meta( - 652 lm.MultiTaskLasso(**kwargs), - 653 name - 654 ) - 655 - 656 def multi_task_lasso_cv( - 657 self, - 658 name: str = "Multi-task Lasso Regression (Cross Validated)", - 659 **kwargs - 660 ): - 661 """ - 662 Fit x on y via cross validated multitask lasso regression - 663 - 664 Parameters - 665 ---------- - 666 name : str, default="Multi-task Lasso Regression (Cross Validated)" - 667 Name of classification technique - 668 """ - 669 self._sklearn_regression_meta( - 670 lm.MultiTaskLassoCV(**kwargs), - 671 name - 672 ) - 673 - 674 def elastic_net(self, name: str = "Elastic Net Regression", **kwargs): - 675 """ - 676 Fit x on y via elastic net regression - 677 - 678 Parameters - 679 ---------- - 680 name : str, default="Elastic Net Regression" - 681 Name of classification technique - 682 """ - 683 self._sklearn_regression_meta( - 684 lm.ElasticNet(**kwargs), - 685 name - 686 ) - 687 - 688 def elastic_net_cv( - 689 self, - 690 name: str = "Elastic Net Regression (Cross Validated)", - 691 **kwargs - 692 ): - 693 """ - 694 Fit x on y via cross validated elastic net regression + 634 classifier, + 635 f'{name}{" (Random Search)" if random_search else ""}', + 636 random_search=random_search + 637 ) + 638 + 639 def ridge( + 640 self, + 641 name: str = "Ridge Regression", + 642 random_search: bool = False, + 643 parameters: dict[ + 644 str, + 645 Union[ + 646 scipy.stats.rv_continuous, + 647 List[Union[int, str, float]] + 648 ] + 649 ] = { + 650 'alpha': uniform(loc=0, scale=2), + 651 'tol': uniform(loc=0, scale=1), + 652 'solver': [ + 653 'svd', + 654 'cholesky', + 655 'lsqr', + 656 'sparse_cg', + 657 'sag', + 658 'saga', + 659 'lbfgs' + 660 ] + 661 }, + 662 **kwargs + 663 ): + 664 """ + 665 Fit x on y via ridge regression + 666 + 667 Parameters + 668 ---------- + 669 name : str, default="Ridge Regression" + 670 Name of classification technique. + 671 random_search : bool, default=False + 672 Whether to perform RandomizedSearch to optimise parameters + 673 parameters : dict[ + 674 str, + 675 Union[ + 676 scipy.stats.rv_continuous, + 677 List[Union[int, str, float]] + 678 ] + 679 ], default=Preset distributions + 680 The parameters used in RandomizedSearchCV + 681 """ + 682 if random_search: + 683 classifier = RandomizedSearchCV( + 684 lm.Ridge(**kwargs), + 685 parameters, + 686 cv=self.folds + 687 ) + 688 else: + 689 classifier = lm.Ridge(**kwargs) + 690 self._sklearn_regression_meta( + 691 classifier, + 692 f'{name}{" (Random Search)" if random_search else ""}', + 693 random_search=random_search + 694 ) 695 - 696 Parameters - 697 ---------- - 698 name : str, default="Elastic Net Regression (Cross Validated)" - 699 Name of classification technique - 700 """ - 701 self._sklearn_regression_meta( - 702 lm.ElasticNetCV(**kwargs), - 703 name - 704 ) + 696 def ridge_cv( + 697 self, + 698 name: str = "Ridge Regression (Cross Validated)", + 699 random_search: bool = False, + 700 **kwargs + 701 ): + 702 """ + 703 Fit x on y via cross-validated ridge regression. + 704 Already cross validated so random search not required 705 - 706 def multi_task_elastic_net( - 707 self, - 708 name: str = "Multi-Task Elastic Net Regression", - 709 **kwargs - 710 ): - 711 """ - 712 Fit x on y via multi-task elastic net regression - 713 - 714 Parameters - 715 ---------- - 716 name : str, default="Multi-task Elastic Net Regression" - 717 Name of classification technique - 718 """ - 719 self._sklearn_regression_meta( - 720 lm.MultiTaskElasticNet(**kwargs), - 721 name - 722 ) - 723 - 724 def multi_task_elastic_net_cv( - 725 self, - 726 name: str = "Multi-Task Elastic Net Regression (Cross Validated)", - 727 **kwargs - 728 ): - 729 """ - 730 Fit x on y via cross validated multi-task elastic net regression - 731 - 732 Parameters - 733 ---------- - 734 name : str, default="Multi-Task Elastic Net Regression\ - 735 (Cross Validated)" - 736 Name of classification technique - 737 """ - 738 self._sklearn_regression_meta( - 739 lm.MultiTaskElasticNetCV(**kwargs), - 740 name - 741 ) - 742 - 743 def lars(self, name: str = "Least Angle Regression", **kwargs): - 744 """ - 745 Fit x on y via least angle regression - 746 - 747 Parameters - 748 ---------- - 749 name : str, default="Least Angle Regression" - 750 Name of classification technique. - 751 """ - 752 self._sklearn_regression_meta( - 753 lm.Lars(**kwargs), - 754 name - 755 ) - 756 - 757 def lars_lasso( - 758 self, - 759 name: str = "Least Angle Regression (Lasso)", - 760 **kwargs - 761 ): - 762 """ - 763 Fit x on y via lasso least angle regression - 764 - 765 Parameters - 766 ---------- - 767 name : str, default="Least Angle Regression (Lasso)" - 768 Name of classification technique - 769 """ - 770 self._sklearn_regression_meta( - 771 lm.LassoLars(**kwargs), - 772 name - 773 ) - 774 - 775 def omp(self, name: str = "Orthogonal Matching Pursuit", **kwargs): + 706 Parameters + 707 ---------- + 708 name : str, default="Ridge Regression (Cross Validated)" + 709 Name of classification technique + 710 random_search : bool, default=False + 711 Not used + 712 + 713 """ + 714 _ = random_search + 715 self._sklearn_regression_meta( + 716 lm.RidgeCV(**kwargs, cv=self.folds), + 717 name, + 718 random_search=True + 719 ) + 720 + 721 def lasso( + 722 self, + 723 name: str = "Lasso Regression", + 724 random_search: bool = False, + 725 parameters: dict[ + 726 str, + 727 Union[ + 728 scipy.stats.rv_continuous, + 729 List[Union[int, str, float]] + 730 ] + 731 ] = { + 732 'alpha': uniform(loc=0, scale=2), + 733 'tol': uniform(loc=0, scale=1), + 734 'selection': ['cyclic', 'random'] + 735 }, + 736 **kwargs + 737 ): + 738 """ + 739 Fit x on y via lasso regression + 740 + 741 Parameters + 742 ---------- + 743 name : str, default="Lasso Regression" + 744 Name of classification technique. + 745 random_search : bool, default=False + 746 Whether to perform RandomizedSearch to optimise parameters + 747 parameters : dict[ + 748 str, + 749 Union[ + 750 scipy.stats.rv_continuous, + 751 List[Union[int, str, float]] + 752 ] + 753 ], default=Preset distributions + 754 The parameters used in RandomizedSearchCV + 755 """ + 756 if random_search: + 757 classifier = RandomizedSearchCV( + 758 lm.Lasso(**kwargs), + 759 parameters, + 760 cv=self.folds + 761 ) + 762 else: + 763 classifier = lm.Lasso(**kwargs) + 764 self._sklearn_regression_meta( + 765 classifier, + 766 f'{name}{" (Random Search)" if random_search else ""}', + 767 random_search=random_search + 768 ) + 769 + 770 def lasso_cv( + 771 self, + 772 name: str = "Lasso Regression (Cross Validated)", + 773 random_search: bool = False, + 774 **kwargs + 775 ): 776 """ - 777 Fit x on y via orthogonal matching pursuit regression - 778 - 779 Parameters - 780 ---------- - 781 name : str, default="Orthogonal Matching Pursuit" - 782 Name of classification technique - 783 """ - 784 self._sklearn_regression_meta( - 785 lm.OrthogonalMatchingPursuit(**kwargs), - 786 name, - 787 min_coeffs=2 - 788 ) - 789 - 790 def bayesian_ridge( - 791 self, - 792 name: str = "Bayesian Ridge Regression", - 793 **kwargs - 794 ): - 795 """ - 796 Fit x on y via bayesian ridge regression - 797 - 798 Parameters - 799 ---------- - 800 name : str, default="Bayesian Ridge Regression" - 801 Name of classification technique. - 802 """ - 803 self._sklearn_regression_meta( - 804 lm.BayesianRidge(**kwargs), - 805 name - 806 ) - 807 - 808 def bayesian_ard( - 809 self, - 810 name: str = "Bayesian Automatic Relevance Detection", - 811 **kwargs - 812 ): - 813 """ - 814 Fit x on y via bayesian automatic relevance detection - 815 - 816 Parameters - 817 ---------- - 818 name : str, default="Bayesian Automatic Relevance Detection" - 819 Name of classification technique. - 820 """ - 821 self._sklearn_regression_meta( - 822 lm.ARDRegression(**kwargs), - 823 name - 824 ) - 825 - 826 def tweedie(self, name: str = "Tweedie Regression", **kwargs): - 827 """ - 828 Fit x on y via tweedie regression - 829 - 830 Parameters - 831 ---------- - 832 name : str, default="Tweedie Regression" - 833 Name of classification technique. - 834 """ - 835 self._sklearn_regression_meta( - 836 lm.TweedieRegressor(**kwargs), - 837 name - 838 ) - 839 - 840 def stochastic_gradient_descent( - 841 self, - 842 name: str = "Stochastic Gradient Descent", - 843 **kwargs - 844 ): - 845 """ - 846 Fit x on y via stochastic gradient descent regression - 847 - 848 Parameters - 849 ---------- - 850 name : str, default="Stochastic Gradient Descent" - 851 Name of classification technique. - 852 """ - 853 self._sklearn_regression_meta( - 854 lm.SGDRegressor(**kwargs), - 855 name - 856 ) - 857 - 858 def passive_aggressive( - 859 self, - 860 name: str = "Passive Agressive Regression", - 861 **kwargs - 862 ): - 863 """ - 864 Fit x on y via passive aggressive regression - 865 - 866 Parameters - 867 ---------- - 868 name : str, default="Passive Agressive Regression" - 869 Name of classification technique. - 870 """ - 871 self._sklearn_regression_meta( - 872 lm.PassiveAggressiveRegressor(**kwargs), - 873 name - 874 ) - 875 - 876 def ransac(self, name: str = "RANSAC", **kwargs): - 877 """ - 878 Fit x on y via RANSAC regression - 879 - 880 Parameters - 881 ---------- - 882 name : str, default="RANSAC" - 883 Name of classification technique. - 884 """ - 885 self._sklearn_regression_meta( - 886 lm.RANSACRegressor(**kwargs), - 887 name - 888 ) + 777 Fit x on y via cross-validated lasso regression. + 778 Already cross validated so random search not required + 779 + 780 Parameters + 781 ---------- + 782 name : str, default="Lasso Regression (Cross Validated)" + 783 Name of classification technique + 784 random_search : bool, default=False + 785 Not used + 786 + 787 """ + 788 _ = random_search + 789 self._sklearn_regression_meta( + 790 lm.LassoCV(**kwargs, cv=self.folds), + 791 name, + 792 random_search=True + 793 ) + 794 + 795 def multi_task_lasso( + 796 self, + 797 name: str = "Multi-task Lasso Regression", + 798 random_search: bool = False, + 799 parameters: dict[ + 800 str, + 801 Union[ + 802 scipy.stats.rv_continuous, + 803 List[Union[int, str, float]] + 804 ] + 805 ] = { + 806 'alpha': uniform(loc=0, scale=2), + 807 'tol': uniform(loc=0, scale=1), + 808 'selection': ['cyclic', 'random'] + 809 }, + 810 **kwargs + 811 ): + 812 """ + 813 Fit x on y via multitask lasso regression + 814 + 815 Parameters + 816 ---------- + 817 name : str, default="Multi-task Lasso Regression" + 818 Name of classification technique. + 819 random_search : bool, default=False + 820 Whether to perform RandomizedSearch to optimise parameters + 821 parameters : dict[ + 822 str, + 823 Union[ + 824 scipy.stats.rv_continuous, + 825 List[Union[int, str, float]] + 826 ] + 827 ], default=Preset distributions + 828 The parameters used in RandomizedSearchCV + 829 """ + 830 if random_search: + 831 classifier = RandomizedSearchCV( + 832 lm.MultiTaskLasso(**kwargs), + 833 parameters, + 834 cv=self.folds + 835 ) + 836 else: + 837 classifier = lm.MultiTaskLasso(**kwargs) + 838 self._sklearn_regression_meta( + 839 classifier, + 840 f'{name}{" (Random Search)" if random_search else ""}', + 841 random_search=random_search + 842 ) + 843 + 844 def multi_task_lasso_cv( + 845 self, + 846 name: str = "Multi-task Lasso Regression (Cross Validated)", + 847 random_search: bool = False, + 848 **kwargs + 849 ): + 850 """ + 851 Fit x on y via cross-validated multitask lasso regression. + 852 Already cross validated so random search not required + 853 + 854 Parameters + 855 ---------- + 856 name : str, default="Multi-task Lasso Regression (Cross Validated)" + 857 Name of classification technique + 858 random_search : bool, default=False + 859 Not used + 860 + 861 """ + 862 _ = random_search + 863 self._sklearn_regression_meta( + 864 lm.MultiTaskLassoCV(**kwargs, cv=self.folds), + 865 name, + 866 random_search=True + 867 ) + 868 + 869 def elastic_net( + 870 self, + 871 name: str = "Elastic Net Regression", + 872 random_search: bool = False, + 873 parameters: dict[ + 874 str, + 875 Union[ + 876 scipy.stats.rv_continuous, + 877 List[Union[int, str, float]] + 878 ] + 879 ] = { + 880 'alpha': uniform(loc=0, scale=2), + 881 'l1_ratio': uniform(loc=0, scale=1), + 882 'tol': uniform(loc=0, scale=1), + 883 'selection': ['cyclic', 'random'] + 884 }, + 885 **kwargs + 886 ): + 887 """ + 888 Fit x on y via elastic net regression 889 - 890 def theil_sen(self, name: str = "Theil-Sen Regression", **kwargs): - 891 """ - 892 Fit x on y via theil-sen regression - 893 - 894 Parameters - 895 ---------- - 896 name : str, default="Theil-Sen Regression" - 897 Name of classification technique. - 898 -Sen Regression - 899 """ - 900 self._sklearn_regression_meta( - 901 lm.TheilSenRegressor(**kwargs), - 902 name - 903 ) - 904 - 905 def huber(self, name: str = "Huber Regression", **kwargs): - 906 """ - 907 Fit x on y via huber regression - 908 - 909 Parameters - 910 ---------- - 911 name : str, default="Huber Regression" - 912 Name of classification technique. - 913 """ - 914 self._sklearn_regression_meta( - 915 lm.HuberRegressor(**kwargs), - 916 name - 917 ) + 890 Parameters + 891 ---------- + 892 name : str, default="Elastic Net Regression" + 893 Name of classification technique. + 894 random_search : bool, default=False + 895 Whether to perform RandomizedSearch to optimise parameters + 896 parameters : dict[ + 897 str, + 898 Union[ + 899 scipy.stats.rv_continuous, + 900 List[Union[int, str, float]] + 901 ] + 902 ], default=Preset distributions + 903 The parameters used in RandomizedSearchCV + 904 """ + 905 if random_search: + 906 classifier = RandomizedSearchCV( + 907 lm.ElasticNet(**kwargs), + 908 parameters, + 909 cv=self.folds + 910 ) + 911 else: + 912 classifier = lm.ElasticNet(**kwargs) + 913 self._sklearn_regression_meta( + 914 classifier, + 915 f'{name}{" (Random Search)" if random_search else ""}', + 916 random_search=random_search + 917 ) 918 - 919 def quantile(self, name: str = "Quantile Regression", **kwargs): - 920 """ - 921 Fit x on y via quantile regression - 922 - 923 Parameters - 924 ---------- - 925 name : str, default="Quantile Regression" - 926 Name of classification technique. - 927 """ - 928 self._sklearn_regression_meta( - 929 lm.QuantileRegressor(**kwargs), - 930 name - 931 ) - 932 - 933 def decision_tree(self, name: str = "Decision Tree", **kwargs): - 934 """ - 935 Fit x on y using a decision tree - 936 - 937 Parameters - 938 ---------- - 939 name : str, default="Decision Tree" - 940 Name of classification technique. - 941 """ - 942 self._sklearn_regression_meta( - 943 tree.DecisionTreeRegressor(**kwargs), - 944 name - 945 ) - 946 - 947 def extra_tree(self, name: str = "Extra Tree", **kwargs): - 948 """ - 949 Fit x on y using an extra tree - 950 - 951 Parameters - 952 ---------- - 953 name : str, default="Extra Tree" - 954 Name of classification technique. - 955 """ - 956 self._sklearn_regression_meta( - 957 tree.ExtraTreeRegressor(**kwargs), - 958 name - 959 ) - 960 - 961 def random_forest(self, name: str = "Random Forest", **kwargs): - 962 """ - 963 Fit x on y using a random forest - 964 - 965 Parameters - 966 ---------- - 967 name : str, default="Random Forest" - 968 Name of classification technique. - 969 """ - 970 self._sklearn_regression_meta( - 971 en.RandomForestRegressor(**kwargs), - 972 name - 973 ) - 974 - 975 def extra_trees_ensemble( - 976 self, - 977 name: str = "Extra Trees Ensemble", - 978 **kwargs - 979 ): - 980 """ - 981 Fit x on y using an ensemble of extra trees - 982 - 983 Parameters - 984 ---------- - 985 name : str, default="Extra Trees Ensemble" - 986 Name of classification technique. - 987 """ - 988 self._sklearn_regression_meta( - 989 en.ExtraTreesRegressor(**kwargs), - 990 name - 991 ) + 919 def elastic_net_cv( + 920 self, + 921 name: str = "Elastic Net Regression (Cross Validated)", + 922 random_search: bool = False, + 923 **kwargs + 924 ): + 925 """ + 926 Fit x on y via cross-validated elastic regression. + 927 Already cross validated so random search not required + 928 + 929 Parameters + 930 ---------- + 931 name : str, default="Lasso Regression (Cross Validated)" + 932 Name of classification technique + 933 random_search : bool, default=False + 934 Not used + 935 """ + 936 _ = random_search + 937 self._sklearn_regression_meta( + 938 lm.ElasticNetCV(**kwargs, cv=self.folds), + 939 name, + 940 random_search=True + 941 ) + 942 + 943 def multi_task_elastic_net( + 944 self, + 945 name: str = "Multi-task Elastic Net Regression", + 946 random_search: bool = False, + 947 parameters: dict[ + 948 str, + 949 Union[ + 950 scipy.stats.rv_continuous, + 951 List[Union[int, str, float]] + 952 ] + 953 ] = { + 954 'alpha': uniform(loc=0, scale=2), + 955 'l1_ratio': uniform(loc=0, scale=1), + 956 'tol': uniform(loc=0, scale=1), + 957 'selection': ['cyclic', 'random'] + 958 }, + 959 **kwargs + 960 ): + 961 """ + 962 Fit x on y via elastic net regression + 963 + 964 Parameters + 965 ---------- + 966 name : str, default="Multi-task Elastic Net Regression" + 967 Name of classification technique. + 968 random_search : bool, default=False + 969 Whether to perform RandomizedSearch to optimise parameters + 970 parameters : dict[ + 971 str, + 972 Union[ + 973 scipy.stats.rv_continuous, + 974 List[Union[int, str, float]] + 975 ] + 976 ], default=Preset distributions + 977 The parameters used in RandomizedSearchCV + 978 """ + 979 if random_search: + 980 classifier = RandomizedSearchCV( + 981 lm.MultiTaskElasticNet(**kwargs), + 982 parameters, + 983 cv=self.folds + 984 ) + 985 else: + 986 classifier = lm.MultiTaskElasticNet(**kwargs) + 987 self._sklearn_regression_meta( + 988 classifier, + 989 f'{name}{" (Random Search)" if random_search else ""}', + 990 random_search=random_search + 991 ) 992 - 993 def gradient_boost_regressor( + 993 def multi_task_elastic_net_cv( 994 self, - 995 name: str = "Gradient Boosting Regression", - 996 **kwargs - 997 ): - 998 """ - 999 Fit x on y using gradient boosting regression -1000 -1001 Parameters -1002 ---------- -1003 name : str, default="Gradient Boosting Regression" -1004 Name of classification technique. -1005 """ -1006 self._sklearn_regression_meta( -1007 en.GradientBoostingRegressor(**kwargs), -1008 name -1009 ) + 995 name: str = "Multi-Task Elastic Net Regression (Cross Validated)", + 996 random_search: bool = False, + 997 **kwargs + 998 ): + 999 """ +1000 Fit x on y via cross-validated multi-task elastic net regression. +1001 Already cross validated so random search not required +1002 +1003 Parameters +1004 ---------- +1005 name : str, default="Multi-Task Elastic Net Regression \ +1006 (Cross Validated)" +1007 Name of classification technique +1008 random_search : bool, default=False +1009 Not used 1010 -1011 def hist_gradient_boost_regressor( -1012 self, -1013 name: str = "Histogram-Based Gradient Boosting Regression", -1014 **kwargs -1015 ): -1016 """ -1017 Fit x on y using histogram-based gradient boosting regression +1011 """ +1012 _ = random_search +1013 self._sklearn_regression_meta( +1014 lm.MultiTaskElasticNetCV(**kwargs, cv=self.folds), +1015 name, +1016 random_search=True +1017 ) 1018 -1019 Parameters -1020 ---------- -1021 name : str, default="Histogram-Based Gradient Boosting Regression" -1022 Name of classification technique. -1023 -Based -1024 Gradient Boosting Regression -1025 """ -1026 self._sklearn_regression_meta( -1027 en.HistGradientBoostingRegressor(**kwargs), -1028 name -1029 ) -1030 -1031 def mlp_regressor( -1032 self, -1033 name: str = "Multi-Layer Perceptron Regression", -1034 **kwargs -1035 ): -1036 """ -1037 Fit x on y using multi-layer perceptrons -1038 -1039 Parameters -1040 ---------- -1041 name : str, default="Multi-Layer Perceptron Regression" -1042 Name of classification technique. -1043 -Layer Perceptron -1044 Regression -1045 """ -1046 self._sklearn_regression_meta( -1047 nn.MLPRegressor(**kwargs), -1048 name -1049 ) -1050 -1051 def svr(self, name: str = "Support Vector Regression", **kwargs): -1052 """ -1053 Fit x on y using support vector regression -1054 -1055 Parameters -1056 ---------- -1057 name : str, default="Support Vector Regression" -1058 Name of classification technique. -1059 """ +1019 def lars( +1020 self, +1021 name: str = "Least Angle Regression", +1022 random_search: bool = False, +1023 parameters: dict[ +1024 str, +1025 Union[ +1026 scipy.stats.rv_continuous, +1027 List[Union[int, str, float]] +1028 ] +1029 ] = { +1030 'n_nonzero_coefs': list(range(1, 11)) +1031 }, +1032 **kwargs +1033 ): +1034 """ +1035 Fit x on y via least angle regression +1036 +1037 Parameters +1038 ---------- +1039 name : str, default="Least Angle Regression" +1040 Name of classification technique. +1041 random_search : bool, default=False +1042 Whether to perform RandomizedSearch to optimise parameters +1043 parameters : dict[ +1044 str, +1045 Union[ +1046 scipy.stats.rv_continuous, +1047 List[Union[int, str, float]] +1048 ] +1049 ], default=Preset distributions +1050 The parameters used in RandomizedSearchCV +1051 """ +1052 if random_search: +1053 classifier = RandomizedSearchCV( +1054 lm.Lars(**kwargs), +1055 parameters, +1056 cv=self.folds +1057 ) +1058 else: +1059 classifier = lm.Lars(**kwargs) 1060 self._sklearn_regression_meta( -1061 svm.SVR(**kwargs), -1062 name -1063 ) -1064 -1065 def linear_svr( -1066 self, -1067 name: str = "Linear Support Vector Regression", -1068 **kwargs -1069 ): -1070 """ -1071 Fit x on y using linear support vector regression -1072 -1073 Parameters -1074 ---------- -1075 name : str, default="Linear Support Vector Regression" -1076 Name of classification technique. -1077 """ -1078 self._sklearn_regression_meta( -1079 svm.LinearSVR(**kwargs), -1080 name -1081 ) -1082 -1083 def nu_svr(self, name: str = "Nu-Support Vector Regression", **kwargs): -1084 """ -1085 Fit x on y using nu-support vector regression -1086 -1087 Parameters -1088 ---------- -1089 name : str, default="Nu-Support Vector Regression" -1090 Name of classification technique. -1091 -Support Vector -1092 Regression -1093 """ -1094 self._sklearn_regression_meta( -1095 svm.LinearSVR(**kwargs), -1096 name -1097 ) -1098 -1099 def gaussian_process( -1100 self, -1101 name: str = "Gaussian Process Regression", -1102 **kwargs -1103 ): -1104 """ -1105 Fit x on y using gaussian process regression -1106 -1107 Parameters -1108 ---------- -1109 name : str, default="Gaussian Process Regression" -1110 Name of classification technique. -1111 """ -1112 self._sklearn_regression_meta( -1113 gp.GaussianProcessRegressor(**kwargs), -1114 name -1115 ) -1116 -1117 def pls(self, name: str = "PLS Regression", **kwargs): -1118 """ -1119 Fit x on y using pls regression -1120 -1121 Parameters -1122 ---------- -1123 name : str, default="PLS Regression" -1124 Name of classification technique. -1125 """ -1126 self._sklearn_regression_meta( -1127 cd.PLSRegression(n_components=1, **kwargs), -1128 name -1129 ) +1061 classifier, +1062 f'{name}{" (Random Search)" if random_search else ""}', +1063 random_search=random_search +1064 ) +1065 +1066 def lars_lasso( +1067 self, +1068 name: str = "Least Angle Lasso Regression", +1069 random_search: bool = False, +1070 parameters: dict[ +1071 str, +1072 Union[ +1073 scipy.stats.rv_continuous, +1074 List[Union[int, str, float]] +1075 ] +1076 ] = { +1077 'alpha': uniform(loc=0, scale=2) +1078 }, +1079 **kwargs +1080 ): +1081 """ +1082 Fit x on y via least angle lasso regression +1083 +1084 Parameters +1085 ---------- +1086 name : str, default="Least Angle Lasso Regression" +1087 Name of classification technique. +1088 random_search : bool, default=False +1089 Whether to perform RandomizedSearch to optimise parameters +1090 parameters : dict[ +1091 str, +1092 Union[ +1093 scipy.stats.rv_continuous, +1094 List[Union[int, str, float]] +1095 ] +1096 ], default=Preset distributions +1097 The parameters used in RandomizedSearchCV +1098 """ +1099 if random_search: +1100 classifier = RandomizedSearchCV( +1101 lm.LassoLars(**kwargs), +1102 parameters, +1103 cv=self.folds +1104 ) +1105 else: +1106 classifier = lm.LassoLars(**kwargs) +1107 self._sklearn_regression_meta( +1108 classifier, +1109 f'{name}{" (Random Search)" if random_search else ""}', +1110 random_search=random_search +1111 ) +1112 +1113 def omp( +1114 self, +1115 name: str = "Orthogonal Matching Pursuit", +1116 random_search: bool = False, +1117 parameters: dict[ +1118 str, +1119 Union[ +1120 scipy.stats.rv_continuous, +1121 List[Union[int, str, float]] +1122 ] +1123 ] = { +1124 'n_nonzero_coefs': list(range(1, 11)) +1125 }, +1126 **kwargs +1127 ): +1128 """ +1129 Fit x on y via orthogonal matching pursuit regression 1130 -1131 def isotonic(self, name: str = "Isotonic Regression", **kwargs): -1132 """ -1133 Fit x on y using isotonic regression -1134 -1135 Parameters -1136 ---------- -1137 name : str, default="Isotonic Regression" -1138 Name of classification technique. -1139 """ -1140 self._sklearn_regression_meta( -1141 iso.IsotonicRegression(**kwargs), -1142 name, -1143 max_coeffs=1 -1144 ) -1145 -1146 def xgboost(self, name: str = "XGBoost Regression", **kwargs): -1147 """ -1148 Fit x on y using xgboost regression -1149 -1150 Parameters -1151 ---------- -1152 name : str, default="XGBoost Regression" -1153 Name of classification technique. -1154 """ -1155 self._sklearn_regression_meta( -1156 xgb.XGBRegressor(**kwargs), -1157 name -1158 ) -1159 -1160 def xgboost_rf( -1161 self, -1162 name: str = "XGBoost Random Forest Regression", -1163 **kwargs -1164 ): -1165 """ -1166 Fit x on y using xgboosted random forest regression -1167 -1168 Parameters -1169 ---------- -1170 name : str, default="XGBoost Random Forest Regression" -1171 Name of classification technique. -1172 """ -1173 self._sklearn_regression_meta( -1174 xgb.XGBRFRegressor(**kwargs), -1175 name -1176 ) -1177 -1178 def return_measurements(self) -> dict[str, pd.DataFrame]: -1179 """ -1180 Returns the measurements used, with missing values and -1181 non-overlapping measurements excluded +1131 Parameters +1132 ---------- +1133 name : str, default="Orthogonal Matching Pursuit" +1134 Name of classification technique. +1135 random_search : bool, default=False +1136 Whether to perform RandomizedSearch to optimise parameters +1137 parameters : dict[ +1138 str, +1139 Union[ +1140 scipy.stats.rv_continuous, +1141 List[Union[int, str, float]] +1142 ] +1143 ], default=Preset distributions +1144 The parameters used in RandomizedSearchCV +1145 """ +1146 if random_search: +1147 classifier = RandomizedSearchCV( +1148 lm.OrthogonalMatchingPursuit(**kwargs), +1149 parameters, +1150 cv=self.folds +1151 ) +1152 else: +1153 classifier = lm.OrthogonalMatchingPursuit(**kwargs) +1154 self._sklearn_regression_meta( +1155 classifier, +1156 f'{name}{" (Random Search)" if random_search else ""}', +1157 random_search=random_search, +1158 min_coeffs=2 +1159 ) +1160 +1161 def bayesian_ridge( +1162 self, +1163 name: str = "Bayesian Ridge Regression", +1164 random_search: bool = False, +1165 parameters: dict[ +1166 str, +1167 Union[ +1168 scipy.stats.rv_continuous, +1169 List[Union[int, str, float]] +1170 ] +1171 ] = { +1172 'tol': uniform(loc=0, scale=1), +1173 'alpha_1': uniform(loc=0, scale=1), +1174 'alpha_2': uniform(loc=0, scale=1), +1175 'lambda_1': uniform(loc=0, scale=1), +1176 'lambda_2': uniform(loc=0, scale=1) +1177 }, +1178 **kwargs +1179 ): +1180 """ +1181 Fit x on y via bayesian ridge regression 1182 -1183 Returns -1184 ------- -1185 dict[str, pd.DataFrame] -1186 Dictionary with 2 keys: -1187 -1188 |Key|Value| -1189 |---|---| -1190 |x|`x_data`| -1191 |y|`y_data`| -1192 -1193 """ -1194 return { -1195 'x': self.x_data, -1196 'y': self.y_data -1197 } -1198 -1199 def return_models(self) -> dict[str, # Technique -1200 dict[str, # Scaling method -1201 dict[str, # Variables used -1202 dict[int, # Fold -1203 Pipeline]]]]: -1204 """ -1205 Returns the models stored in the object -1206 -1207 Returns -1208 ------- -1209 dict[str, str, str, int, Pipeline] -1210 The calibrated models. They are stored in a nested structure as -1211 follows: -1212 1. Primary Key, name of the technique (e.g Lasso Regression). -1213 2. Scaling technique (e.g Yeo-Johnson Transform). -1214 3. Combination of variables used or `target` if calibration is -1215 univariate (e.g "`target` + a + b). -1216 4. Fold, which fold was used excluded from the calibration. If data -1217 folds 0-3. -1218 if 5-fold cross validated, a key of 4 indicates the data was -1219 trained on -1220 """ -1221 return self.models +1183 Parameters +1184 ---------- +1185 name : str, default="Bayesian Ridge Regression" +1186 Name of classification technique. +1187 random_search : bool, default=False +1188 Whether to perform RandomizedSearch to optimise parameters +1189 parameters : dict[ +1190 str, +1191 Union[ +1192 scipy.stats.rv_continuous, +1193 List[Union[int, str, float]] +1194 ] +1195 ], default=Preset distributions +1196 The parameters used in RandomizedSearchCV +1197 """ +1198 if random_search: +1199 classifier = RandomizedSearchCV( +1200 lm.BayesianRidge(**kwargs), +1201 parameters, +1202 cv=self.folds +1203 ) +1204 else: +1205 classifier = lm.BayesianRidge(**kwargs) +1206 self._sklearn_regression_meta( +1207 classifier, +1208 f'{name}{" (Random Search)" if random_search else ""}', +1209 random_search=random_search +1210 ) +1211 +1212 def bayesian_ard( +1213 self, +1214 name: str = "Bayesian Automatic Relevance Detection", +1215 random_search: bool = False, +1216 parameters: dict[ +1217 str, +1218 Union[ +1219 scipy.stats.rv_continuous, +1220 List[Union[int, str, float]] +1221 ] +1222 ] = { +1223 'tol': uniform(loc=0, scale=1), +1224 'alpha_1': uniform(loc=0, scale=1), +1225 'alpha_2': uniform(loc=0, scale=1), +1226 'lambda_1': uniform(loc=0, scale=1), +1227 'lambda_2': uniform(loc=0, scale=1) +1228 }, +1229 **kwargs +1230 ): +1231 """ +1232 Fit x on y via bayesian automatic relevance detection +1233 +1234 Parameters +1235 ---------- +1236 name : str, default="Bayesian Automatic Relevance Detection" +1237 Name of classification technique. +1238 random_search : bool, default=False +1239 Whether to perform RandomizedSearch to optimise parameters +1240 parameters : dict[ +1241 str, +1242 Union[ +1243 scipy.stats.rv_continuous, +1244 List[Union[int, str, float]] +1245 ] +1246 ], default=Preset distributions +1247 The parameters used in RandomizedSearchCV +1248 """ +1249 if random_search: +1250 classifier = RandomizedSearchCV( +1251 lm.ARDRegression(**kwargs), +1252 parameters, +1253 cv=self.folds +1254 ) +1255 else: +1256 classifier = lm.ARDRegression(**kwargs) +1257 self._sklearn_regression_meta( +1258 classifier, +1259 f'{name}{" (Random Search)" if random_search else ""}', +1260 random_search=random_search +1261 ) +1262 +1263 def tweedie( +1264 self, +1265 name: str = "Tweedie Regression", +1266 random_search: bool = False, +1267 parameters: dict[ +1268 str, +1269 Union[ +1270 scipy.stats.rv_continuous, +1271 List[Union[int, str, float]] +1272 ] +1273 ] = { +1274 'power': [0, 1, 1.5, 2, 2.5, 3], +1275 'alpha': uniform(loc=0, scale=2), +1276 'solver': ['lbfgs', 'newton-cholesky'], +1277 'tol': uniform(loc=0, scale=1), +1278 }, +1279 **kwargs +1280 ): +1281 """ +1282 Fit x on y via tweedie regression +1283 +1284 Parameters +1285 ---------- +1286 name : str, default="Tweedie Regression" +1287 Name of classification technique. +1288 random_search : bool, default=False +1289 Whether to perform RandomizedSearch to optimise parameters +1290 parameters : dict[ +1291 str, +1292 Union[ +1293 scipy.stats.rv_continuous, +1294 List[Union[int, str, float]] +1295 ] +1296 ], default=Preset distributions +1297 The parameters used in RandomizedSearchCV +1298 """ +1299 if random_search: +1300 classifier = RandomizedSearchCV( +1301 lm.TweedieRegressor(**kwargs), +1302 parameters, +1303 cv=self.folds +1304 ) +1305 else: +1306 classifier = lm.TweedieRegressor(**kwargs) +1307 self._sklearn_regression_meta( +1308 classifier, +1309 f'{name}{" (Random Search)" if random_search else ""}', +1310 random_search=random_search +1311 ) +1312 +1313 def stochastic_gradient_descent( +1314 self, +1315 name: str = "Stochastic Gradient Descent", +1316 random_search: bool = False, +1317 parameters: dict[ +1318 str, +1319 Union[ +1320 scipy.stats.rv_continuous, +1321 List[Union[int, str, float]] +1322 ] +1323 ] = { +1324 'tol': uniform(loc=0, scale=1), +1325 'loss': [ +1326 'squared_error', +1327 'huber', +1328 'epsilon_insensitive', +1329 'squared_epsilon_insensitive' +1330 ], +1331 'penalty': [ +1332 'l2', +1333 'l1', +1334 'elasticnet', +1335 None +1336 ], +1337 'alpha': uniform(loc=0, scale=0.001), +1338 'l1_ratio': uniform(loc=0, scale=1), +1339 'epsilon': uniform(loc=0, scale=1), +1340 'learning_rate': [ +1341 'constant', +1342 'optimal', +1343 'invscaling', +1344 'adaptive' +1345 ], +1346 'eta0': uniform(loc=0, scale=0.1), +1347 'power_t': uniform(loc=0, scale=1) +1348 +1349 }, +1350 **kwargs +1351 ): +1352 """ +1353 Fit x on y via stochastic gradient descent +1354 +1355 Parameters +1356 ---------- +1357 name : str, default="Stochastic Gradient Descent" +1358 Name of classification technique. +1359 random_search : bool, default=False +1360 Whether to perform RandomizedSearch to optimise parameters +1361 parameters : dict[ +1362 str, +1363 Union[ +1364 scipy.stats.rv_continuous, +1365 List[Union[int, str, float]] +1366 ] +1367 ], default=Preset distributions +1368 The parameters used in RandomizedSearchCV +1369 """ +1370 if random_search: +1371 classifier = RandomizedSearchCV( +1372 lm.SGDRegressor(**kwargs), +1373 parameters, +1374 cv=self.folds +1375 ) +1376 else: +1377 classifier = lm.SGDRegressor(**kwargs) +1378 self._sklearn_regression_meta( +1379 classifier, +1380 f'{name}{" (Random Search)" if random_search else ""}', +1381 random_search=random_search +1382 ) +1383 +1384 def passive_aggressive( +1385 self, +1386 name: str = "Passive Aggressive Regression", +1387 random_search: bool = False, +1388 parameters: dict[ +1389 str, +1390 Union[ +1391 scipy.stats.rv_continuous, +1392 List[Union[int, str, float]] +1393 ] +1394 ] = { +1395 'C': uniform(loc=0, scale=2), +1396 'tol': uniform(loc=0, scale=1), +1397 'loss': [ +1398 'epsilon_insensitive', +1399 'squared_epsilon_insensitive' +1400 ], +1401 'epsilon': uniform(loc=0, scale=1) +1402 }, +1403 **kwargs +1404 ): +1405 """ +1406 Fit x on y via stochastic gradient descent regression +1407 +1408 Parameters +1409 ---------- +1410 name : str, default="Passive Aggressive Regression" +1411 Name of classification technique. +1412 random_search : bool, default=False +1413 Whether to perform RandomizedSearch to optimise parameters +1414 parameters : dict[\ +1415 str,\ +1416 Union[\ +1417 scipy.stats.rv_continuous,\ +1418 List[Union[int, str, float]]\ +1419 ]\ +1420 ], default=Preset distributions +1421 The parameters used in RandomizedSearchCV +1422 """ +1423 if random_search: +1424 classifier = RandomizedSearchCV( +1425 lm.PassiveAggressiveRegressor(**kwargs), +1426 parameters, +1427 cv=self.folds +1428 ) +1429 else: +1430 classifier = lm.PassiveAggressiveRegressor(**kwargs) +1431 self._sklearn_regression_meta( +1432 classifier, +1433 f'{name}{" (Random Search)" if random_search else ""}', +1434 random_search=random_search +1435 ) +1436 +1437 def ransac( +1438 self, +1439 name: str = "RANSAC", +1440 random_search: bool = False, +1441 parameters: dict[ +1442 str, +1443 Union[ +1444 scipy.stats.rv_continuous, +1445 List[Union[int, str, float]] +1446 ] +1447 ] = { +1448 'estimator': [ +1449 lm.LinearRegression() +1450 # TODO: ADD +1451 ] +1452 }, +1453 **kwargs +1454 ): +1455 """ +1456 Fit x on y via ransac +1457 +1458 Parameters +1459 ---------- +1460 name : str, default="RANSAC" +1461 Name of classification technique. +1462 random_search : bool, default=False +1463 Whether to perform RandomizedSearch to optimise parameters +1464 parameters : dict[\ +1465 str,\ +1466 Union[\ +1467 scipy.stats.rv_continuous,\ +1468 List[Union[int, str, float]]\ +1469 ]\ +1470 ], default=Preset distributions +1471 The parameters used in RandomizedSearchCV +1472 """ +1473 if random_search: +1474 classifier = RandomizedSearchCV( +1475 lm.RANSACRegressor(**kwargs), +1476 parameters, +1477 cv=self.folds +1478 ) +1479 else: +1480 classifier = lm.RANSACRegressor(**kwargs) +1481 self._sklearn_regression_meta( +1482 classifier, +1483 f'{name}{" (Random Search)" if random_search else ""}', +1484 random_search=random_search +1485 ) +1486 +1487 def theil_sen( +1488 self, +1489 name: str = "Theil-Sen Regression", +1490 random_search: bool = False, +1491 parameters: dict[ +1492 str, +1493 Union[ +1494 scipy.stats.rv_continuous, +1495 List[Union[int, str, float]] +1496 ] +1497 ] = { +1498 'tol': uniform(loc=0, scale=1) +1499 }, +1500 **kwargs +1501 ): +1502 """ +1503 Fit x on y via theil-sen regression +1504 +1505 Parameters +1506 ---------- +1507 name : str, default="Theil-Sen Regression" +1508 Name of classification technique. +1509 random_search : bool, default=False +1510 Whether to perform RandomizedSearch to optimise parameters +1511 parameters : dict[\ +1512 str,\ +1513 Union[\ +1514 scipy.stats.rv_continuous,\ +1515 List[Union[int, str, float]]\ +1516 ]\ +1517 ], default=Preset distributions +1518 The parameters used in RandomizedSearchCV +1519 """ +1520 if random_search: +1521 classifier = RandomizedSearchCV( +1522 lm.TheilSenRegressor(**kwargs), +1523 parameters, +1524 cv=self.folds +1525 ) +1526 else: +1527 classifier = lm.TheilSenRegressor(**kwargs) +1528 self._sklearn_regression_meta( +1529 classifier, +1530 f'{name}{" (Random Search)" if random_search else ""}', +1531 random_search=random_search +1532 ) +1533 +1534 def huber( +1535 self, +1536 name: str = "Huber Regression", +1537 random_search: bool = False, +1538 parameters: dict[ +1539 str, +1540 Union[ +1541 scipy.stats.rv_continuous, +1542 List[Union[int, str, float]] +1543 ] +1544 ] = { +1545 'epsilon': uniform(loc=1, scale=4), +1546 'alpha': uniform(loc=0, scale=0.01), +1547 'tol': uniform(loc=0, scale=1) +1548 }, +1549 **kwargs +1550 ): +1551 """ +1552 Fit x on y via huber regression +1553 +1554 Parameters +1555 ---------- +1556 name : str, default="Huber Regression" +1557 Name of classification technique. +1558 random_search : bool, default=False +1559 Whether to perform RandomizedSearch to optimise parameters +1560 parameters : dict[\ +1561 str,\ +1562 Union[\ +1563 scipy.stats.rv_continuous,\ +1564 List[Union[int, str, float]]\ +1565 ]\ +1566 ], default=Preset distributions +1567 The parameters used in RandomizedSearchCV +1568 """ +1569 if random_search: +1570 classifier = RandomizedSearchCV( +1571 lm.HuberRegressor(**kwargs), +1572 parameters, +1573 cv=self.folds +1574 ) +1575 else: +1576 classifier = lm.HuberRegressor(**kwargs) +1577 self._sklearn_regression_meta( +1578 classifier, +1579 f'{name}{" (Random Search)" if random_search else ""}', +1580 random_search=random_search +1581 ) +1582 +1583 def quantile( +1584 self, +1585 name: str = "Quantile Regression", +1586 random_search: bool = False, +1587 parameters: dict[ +1588 str, +1589 Union[ +1590 scipy.stats.rv_continuous, +1591 List[Union[int, str, float]] +1592 ] +1593 ] = { +1594 'quantile': uniform(loc=0, scale=2), +1595 'alpha': uniform(loc=0, scale=2), +1596 'tol': uniform(loc=0, scale=1), +1597 'solver': [ +1598 'highs-ds', +1599 'highs-ipm', +1600 'highs', +1601 'revised simplex', +1602 ] +1603 }, +1604 **kwargs +1605 ): +1606 """ +1607 Fit x on y via quantile regression +1608 +1609 Parameters +1610 'interior-point', +1611 ---------- +1612 name : str, default="Quantile Regression" +1613 Name of classification technique. +1614 random_search : bool, default=False +1615 Whether to perform RandomizedSearch to optimise parameters +1616 parameters : dict[\ +1617 str,\ +1618 Union[\ +1619 scipy.stats.rv_continuous,\ +1620 List[Union[int, str, float]]\ +1621 ]\ +1622 ], default=Preset distributions +1623 The parameters used in RandomizedSearchCV +1624 """ +1625 if random_search: +1626 classifier = RandomizedSearchCV( +1627 lm.QuantileRegressor(**kwargs), +1628 parameters, +1629 cv=self.folds +1630 ) +1631 else: +1632 classifier = lm.QuantileRegressor(**kwargs) +1633 self._sklearn_regression_meta( +1634 classifier, +1635 f'{name}{" (Random Search)" if random_search else ""}', +1636 random_search=random_search +1637 ) +1638 +1639 def decision_tree( +1640 self, +1641 name: str = "Decision Tree", +1642 random_search: bool = False, +1643 parameters: dict[ +1644 str, +1645 Union[ +1646 scipy.stats.rv_continuous, +1647 List[Union[int, str, float]] +1648 ] +1649 ] = { +1650 'criterion': [ +1651 'squared_error', +1652 'friedman_mse', +1653 'absolute_error', +1654 'poisson' +1655 ], +1656 'splitter': [ +1657 'best', +1658 'random' +1659 ], +1660 'max_features': [ +1661 None, +1662 'sqrt', +1663 'log2' +1664 ], +1665 'ccp_alpha': uniform(loc=0, scale=2), +1666 }, +1667 **kwargs +1668 ): +1669 """ +1670 Fit x on y via decision tree +1671 +1672 Parameters +1673 ---------- +1674 name : str, default="Decision Tree" +1675 Name of classification technique. +1676 random_search : bool, default=False +1677 Whether to perform RandomizedSearch to optimise parameters +1678 parameters : dict[\ +1679 str,\ +1680 Union[\ +1681 scipy.stats.rv_continuous,\ +1682 List[Union[int, str, float]]\ +1683 ]\ +1684 ], default=Preset distributions +1685 The parameters used in RandomizedSearchCV +1686 """ +1687 if random_search: +1688 classifier = RandomizedSearchCV( +1689 tree.DecisionTreeRegressor(**kwargs), +1690 parameters, +1691 cv=self.folds +1692 ) +1693 else: +1694 classifier = tree.DecisionTreeRegressor(**kwargs) +1695 self._sklearn_regression_meta( +1696 classifier, +1697 f'{name}{" (Random Search)" if random_search else ""}', +1698 random_search=random_search +1699 ) +1700 +1701 def extra_tree( +1702 self, +1703 name: str = "Extra Tree", +1704 random_search: bool = False, +1705 parameters: dict[ +1706 str, +1707 Union[ +1708 scipy.stats.rv_continuous, +1709 List[Union[int, str, float]] +1710 ] +1711 ] = { +1712 'criterion': [ +1713 'squared_error', +1714 'friedman_mse', +1715 'absolute_error', +1716 'poisson' +1717 ], +1718 'splitter': [ +1719 'best', +1720 'random' +1721 ], +1722 'max_features': [ +1723 None, +1724 'sqrt', +1725 'log2' +1726 ], +1727 'ccp_alpha': uniform(loc=0, scale=2), +1728 }, +1729 **kwargs +1730 ): +1731 """ +1732 Fit x on y via extra tree +1733 +1734 Parameters +1735 ---------- +1736 name : str, default="Extra Tree" +1737 Name of classification technique. +1738 random_search : bool, default=False +1739 Whether to perform RandomizedSearch to optimise parameters +1740 parameters : dict[\ +1741 str,\ +1742 Union[\ +1743 scipy.stats.rv_continuous,\ +1744 List[Union[int, str, float]]\ +1745 ]\ +1746 ], default=Preset distributions +1747 The parameters used in RandomizedSearchCV +1748 """ +1749 if random_search: +1750 classifier = RandomizedSearchCV( +1751 tree.ExtraTreeRegressor(**kwargs), +1752 parameters, +1753 cv=self.folds +1754 ) +1755 else: +1756 classifier = tree.ExtraTreeRegressor(**kwargs) +1757 self._sklearn_regression_meta( +1758 classifier, +1759 f'{name}{" (Random Search)" if random_search else ""}', +1760 random_search=random_search +1761 ) +1762 +1763 def random_forest( +1764 self, +1765 name: str = "Random Forest", +1766 random_search: bool = False, +1767 parameters: dict[ +1768 str, +1769 Union[ +1770 scipy.stats.rv_continuous, +1771 List[Union[int, str, float]] +1772 ] +1773 ] = { +1774 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +1775 'bootstrap': [True, False], +1776 'max_samples': uniform(loc=0.01, scale=0.99), +1777 'criterion': [ +1778 'squared_error', +1779 'friedman_mse', +1780 'absolute_error', +1781 'poisson' +1782 ], +1783 'max_features': [ +1784 None, +1785 'sqrt', +1786 'log2' +1787 ], +1788 'ccp_alpha': uniform(loc=0, scale=2), +1789 }, +1790 **kwargs +1791 ): +1792 """ +1793 Fit x on y via random forest +1794 +1795 Parameters +1796 ---------- +1797 name : str, default="Random Forest" +1798 Name of classification technique. +1799 random_search : bool, default=False +1800 Whether to perform RandomizedSearch to optimise parameters +1801 parameters : dict[\ +1802 str,\ +1803 Union[\ +1804 scipy.stats.rv_continuous,\ +1805 List[Union[int, str, float]]\ +1806 ]\ +1807 ], default=Preset distributions +1808 The parameters used in RandomizedSearchCV +1809 """ +1810 if random_search: +1811 classifier = RandomizedSearchCV( +1812 en.RandomForestRegressor(**kwargs), +1813 parameters, +1814 cv=self.folds +1815 ) +1816 else: +1817 classifier = en.RandomForestRegressor(**kwargs) +1818 self._sklearn_regression_meta( +1819 classifier, +1820 f'{name}{" (Random Search)" if random_search else ""}', +1821 random_search=random_search +1822 ) +1823 +1824 def extra_trees_ensemble( +1825 self, +1826 name: str = "Extra Trees Ensemble", +1827 random_search: bool = False, +1828 parameters: dict[ +1829 str, +1830 Union[ +1831 scipy.stats.rv_continuous, +1832 List[Union[int, str, float]] +1833 ] +1834 ] = { +1835 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +1836 'bootstrap': [True, False], +1837 'max_samples': uniform(loc=0.01, scale=0.99), +1838 'criterion': [ +1839 'squared_error', +1840 'friedman_mse', +1841 'absolute_error', +1842 'poisson' +1843 ], +1844 'max_features': [ +1845 None, +1846 'sqrt', +1847 'log2' +1848 ], +1849 'ccp_alpha': uniform(loc=0, scale=2), +1850 }, +1851 **kwargs +1852 ): +1853 """ +1854 Fit x on y via extra trees ensemble +1855 +1856 Parameters +1857 ---------- +1858 name : str, default="Extra Trees Ensemble" +1859 Name of classification technique. +1860 random_search : bool, default=False +1861 Whether to perform RandomizedSearch to optimise parameters +1862 parameters : dict[\ +1863 str,\ +1864 Union[\ +1865 scipy.stats.rv_continuous,\ +1866 List[Union[int, str, float]]\ +1867 ]\ +1868 ], default=Preset distributions +1869 The parameters used in RandomizedSearchCV +1870 """ +1871 if random_search: +1872 classifier = RandomizedSearchCV( +1873 en.ExtraTreesRegressor(**kwargs), +1874 parameters, +1875 cv=self.folds +1876 ) +1877 else: +1878 classifier = en.ExtraTreesRegressor(**kwargs) +1879 self._sklearn_regression_meta( +1880 classifier, +1881 f'{name}{" (Random Search)" if random_search else ""}', +1882 random_search=random_search +1883 ) +1884 +1885 def gradient_boost_regressor( +1886 self, +1887 name: str = "Gradient Boosting Regression", +1888 random_search: bool = False, +1889 parameters: dict[ +1890 str, +1891 Union[ +1892 scipy.stats.rv_continuous, +1893 List[Union[int, str, float]] +1894 ] +1895 ] = { +1896 'loss': [ +1897 'squared_error', +1898 'absolute_error', +1899 'huber', +1900 'quantile' +1901 ], +1902 'learning_rate': uniform(loc=0, scale=2), +1903 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +1904 'subsample': uniform(loc=0.01, scale=0.99), +1905 'criterion': [ +1906 'friedman_mse', +1907 'squared_error' +1908 ], +1909 'max_features': [ +1910 None, +1911 'sqrt', +1912 'log2' +1913 ], +1914 'init': [ +1915 None, +1916 'zero', +1917 lm.LinearRegression, +1918 lm.TheilSenRegressor +1919 ], +1920 'ccp_alpha': uniform(loc=0, scale=2) +1921 }, +1922 **kwargs +1923 ): +1924 """ +1925 Fit x on y via gradient boosting regression +1926 +1927 Parameters +1928 ---------- +1929 name : str, default="Gradient Boosting Regression" +1930 Name of classification technique. +1931 random_search : bool, default=False +1932 Whether to perform RandomizedSearch to optimise parameters +1933 parameters : dict[\ +1934 str,\ +1935 Union[\ +1936 scipy.stats.rv_continuous,\ +1937 List[Union[int, str, float]]\ +1938 ]\ +1939 ], default=Preset distributions +1940 The parameters used in RandomizedSearchCV +1941 """ +1942 if random_search: +1943 classifier = RandomizedSearchCV( +1944 en.GradientBoostingRegressor(**kwargs), +1945 parameters, +1946 cv=self.folds +1947 ) +1948 else: +1949 classifier = en.GradientBoostingRegressor(**kwargs) +1950 self._sklearn_regression_meta( +1951 classifier, +1952 f'{name}{" (Random Search)" if random_search else ""}', +1953 random_search=random_search +1954 ) +1955 +1956 def hist_gradient_boost_regressor( +1957 self, +1958 name: str = "Histogram-Based Gradient Boosting Regression", +1959 random_search: bool = False, +1960 parameters: dict[ +1961 str, +1962 Union[ +1963 scipy.stats.rv_continuous, +1964 List[Union[int, str, float]] +1965 ] +1966 ] = { +1967 'loss': [ +1968 'squared_error', +1969 'absolute_error', +1970 'gamma', +1971 'poisson', +1972 'quantile' +1973 ], +1974 'quantile': uniform(loc=0, scale=1), +1975 'learning_rate': uniform(loc=0, scale=2), +1976 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], +1977 'l2_regularization': uniform(loc=0, scale=2), +1978 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255] +1979 }, +1980 **kwargs +1981 ): +1982 """ +1983 Fit x on y via histogram-based gradient boosting regression +1984 +1985 Parameters +1986 ---------- +1987 name : str, default="Histogram-Based Gradient Boosting Regression" +1988 Name of classification technique. +1989 random_search : bool, default=False +1990 Whether to perform RandomizedSearch to optimise parameters +1991 parameters : dict[\ +1992 str,\ +1993 Union[\ +1994 scipy.stats.rv_continuous,\ +1995 List[Union[int, str, float]]\ +1996 ]\ +1997 ], default=Preset distributions +1998 The parameters used in RandomizedSearchCV +1999 """ +2000 if random_search: +2001 classifier = RandomizedSearchCV( +2002 en.HistGradientBoostingRegressor(**kwargs), +2003 parameters, +2004 cv=self.folds +2005 ) +2006 else: +2007 classifier = en.HistGradientBoostingRegressor(**kwargs) +2008 self._sklearn_regression_meta( +2009 classifier, +2010 f'{name}{" (Random Search)" if random_search else ""}', +2011 random_search=random_search +2012 ) +2013 +2014 def mlp_regressor( +2015 self, +2016 name: str = "Multi-Layer Perceptron Regression", +2017 random_search: bool = False, +2018 parameters: dict[ +2019 str, +2020 Union[ +2021 scipy.stats.rv_continuous, +2022 List[Union[int, str, float]] +2023 ] +2024 ] = { +2025 'hidden_layer_sizes': [ +2026 (100, ), +2027 (100, 200), +2028 (10, ), +2029 (200, 400), +2030 (100, 200, 300) +2031 ], +2032 'activation': [ +2033 'identity', +2034 'logistic', +2035 'tanh', +2036 'relu' +2037 ], +2038 'solver': [ +2039 'lbfgs', +2040 'sgd', +2041 'adam' +2042 ], +2043 'alpha': uniform(loc=0, scale=0.1), +2044 'batch_size': [ +2045 'auto', +2046 20, +2047 200, +2048 500, +2049 1000, +2050 5000, +2051 10000 +2052 ], +2053 'learning_rate': [ +2054 'constant', +2055 'invscaling', +2056 'adaptive' +2057 ], +2058 'learning_rate_init': uniform(loc=0, scale=0.1), +2059 'power_t': uniform(loc=0.1, scale=0.9), +2060 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], +2061 'shuffle': [True, False], +2062 'momentum': uniform(loc=0.1, scale=0.9), +2063 'beta_1': uniform(loc=0.1, scale=0.9), +2064 'beta_2': uniform(loc=0.1, scale=0.9), +2065 'epsilon': uniform(loc=1E8, scale=1E6), +2066 +2067 }, +2068 **kwargs +2069 ): +2070 """ +2071 Fit x on y via multi-layer perceptron regression +2072 +2073 Parameters +2074 ---------- +2075 name : str, default="Multi-Layer Perceptron Regression" +2076 Name of classification technique. +2077 random_search : bool, default=False +2078 Whether to perform RandomizedSearch to optimise parameters +2079 parameters : dict[\ +2080 str,\ +2081 Union[\ +2082 scipy.stats.rv_continuous,\ +2083 List[Union[int, str, float]]\ +2084 ]\ +2085 ], default=Preset distributions +2086 The parameters used in RandomizedSearchCV +2087 """ +2088 if random_search: +2089 classifier = RandomizedSearchCV( +2090 nn.MLPRegressor(**kwargs), +2091 parameters, +2092 cv=self.folds +2093 ) +2094 else: +2095 classifier = nn.MLPRegressor(**kwargs) +2096 self._sklearn_regression_meta( +2097 classifier, +2098 f'{name}{" (Random Search)" if random_search else ""}', +2099 random_search=random_search +2100 ) +2101 +2102 def svr( +2103 self, +2104 name: str = "Support Vector Regression", +2105 random_search: bool = False, +2106 parameters: dict[ +2107 str, +2108 Union[ +2109 scipy.stats.rv_continuous, +2110 List[Union[int, str, float]] +2111 ] +2112 ] = { +2113 'kernel': [ +2114 'linear', +2115 'poly', +2116 'rbf', +2117 'sigmoid', +2118 ], +2119 'degree': [2, 3, 4], +2120 'gamma': ['scale', 'auto'], +2121 'coef0': uniform(loc=0, scale=1), +2122 'C': uniform(loc=0.1, scale=1.9), +2123 'epsilon': uniform(loc=1E8, scale=1), +2124 'shrinking': [True, False] +2125 }, +2126 **kwargs +2127 ): +2128 """ +2129 Fit x on y via support vector regression +2130 +2131 Parameters +2132 ---------- +2133 name : str, default="Support Vector Regression" +2134 Name of classification technique. +2135 random_search : bool, default=False +2136 Whether to perform RandomizedSearch to optimise parameters +2137 parameters : dict[\ +2138 str,\ +2139 Union[\ +2140 scipy.stats.rv_continuous,\ +2141 List[Union[int, str, float]]\ +2142 ]\ +2143 ], default=Preset distributions +2144 The parameters used in RandomizedSearchCV +2145 """ +2146 if random_search: +2147 classifier = RandomizedSearchCV( +2148 svm.SVR(**kwargs), +2149 parameters, +2150 cv=self.folds +2151 ) +2152 else: +2153 classifier = svm.SVR(**kwargs) +2154 self._sklearn_regression_meta( +2155 classifier, +2156 f'{name}{" (Random Search)" if random_search else ""}', +2157 random_search=random_search +2158 ) +2159 +2160 def linear_svr( +2161 self, +2162 name: str = "Linear Support Vector Regression", +2163 random_search: bool = False, +2164 parameters: dict[ +2165 str, +2166 Union[ +2167 scipy.stats.rv_continuous, +2168 List[Union[int, str, float]] +2169 ] +2170 ] = { +2171 'C': uniform(loc=0.1, scale=1.9), +2172 'epsilon': uniform(loc=1E8, scale=1), +2173 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive'] +2174 }, +2175 **kwargs +2176 ): +2177 """ +2178 Fit x on y via linear support vector regression +2179 +2180 Parameters +2181 ---------- +2182 name : str, default="Linear Support Vector Regression" +2183 Name of classification technique. +2184 random_search : bool, default=False +2185 Whether to perform RandomizedSearch to optimise parameters +2186 parameters : dict[\ +2187 str,\ +2188 Union[\ +2189 scipy.stats.rv_continuous,\ +2190 List[Union[int, str, float]]\ +2191 ]\ +2192 ], default=Preset distributions +2193 The parameters used in RandomizedSearchCV +2194 """ +2195 if random_search: +2196 classifier = RandomizedSearchCV( +2197 svm.LinearSVR(**kwargs), +2198 parameters, +2199 cv=self.folds +2200 ) +2201 else: +2202 classifier = svm.LinearSVR(**kwargs) +2203 self._sklearn_regression_meta( +2204 classifier, +2205 f'{name}{" (Random Search)" if random_search else ""}', +2206 random_search=random_search +2207 ) +2208 +2209 def nu_svr( +2210 self, +2211 name: str = "Nu-Support Vector Regression", +2212 random_search: bool = False, +2213 parameters: dict[ +2214 str, +2215 Union[ +2216 scipy.stats.rv_continuous, +2217 List[Union[int, str, float]] +2218 ] +2219 ] = { +2220 'kernel': [ +2221 'linear', +2222 'poly', +2223 'rbf', +2224 'sigmoid', +2225 ], +2226 'degree': [2, 3, 4], +2227 'gamma': ['scale', 'auto'], +2228 'coef0': uniform(loc=0, scale=1), +2229 'shrinking': [True, False], +2230 'nu': uniform(loc=0, scale=1), +2231 }, +2232 **kwargs +2233 ): +2234 """ +2235 Fit x on y via nu-support vector regression +2236 +2237 Parameters +2238 ---------- +2239 name : str, default="Nu-Support Vector Regression" +2240 Name of classification technique. +2241 random_search : bool, default=False +2242 Whether to perform RandomizedSearch to optimise parameters +2243 parameters : dict[\ +2244 str,\ +2245 Union[\ +2246 scipy.stats.rv_continuous,\ +2247 List[Union[int, str, float]]\ +2248 ]\ +2249 ], default=Preset distributions +2250 The parameters used in RandomizedSearchCV +2251 """ +2252 if random_search: +2253 classifier = RandomizedSearchCV( +2254 svm.NuSVR(**kwargs), +2255 parameters, +2256 cv=self.folds +2257 ) +2258 else: +2259 classifier = svm.NuSVR(**kwargs) +2260 self._sklearn_regression_meta( +2261 classifier, +2262 f'{name}{" (Random Search)" if random_search else ""}', +2263 random_search=random_search +2264 ) +2265 +2266 def gaussian_process( +2267 self, +2268 name: str = "Gaussian Process Regression", +2269 random_search: bool = False, +2270 parameters: dict[ +2271 str, +2272 Union[ +2273 scipy.stats.rv_continuous, +2274 List[Union[int, str, float]] +2275 ] +2276 ] = { +2277 'kernel': [ +2278 None, +2279 kern.RBF, +2280 kern.Matern, +2281 kern.DotProduct, +2282 kern.WhiteKernel, +2283 kern.CompoundKernel, +2284 kern.ExpSineSquared +2285 ], +2286 'alpha': uniform(loc=0, scale=1E8), +2287 'normalize_y': [True, False] +2288 }, +2289 **kwargs +2290 ): +2291 """ +2292 Fit x on y via gaussian process regression +2293 +2294 Parameters +2295 ---------- +2296 name : str, default="Gaussian Process Regression" +2297 Name of classification technique. +2298 random_search : bool, default=False +2299 Whether to perform RandomizedSearch to optimise parameters +2300 parameters : dict[\ +2301 str,\ +2302 Union[\ +2303 scipy.stats.rv_continuous,\ +2304 List[Union[int, str, float]]\ +2305 ]\ +2306 ], default=Preset distributions +2307 The parameters used in RandomizedSearchCV +2308 """ +2309 if random_search: +2310 classifier = RandomizedSearchCV( +2311 gp.GaussianProcessRegressor(**kwargs), +2312 parameters, +2313 cv=self.folds +2314 ) +2315 else: +2316 classifier = gp.GaussianProcessRegressor(**kwargs) +2317 self._sklearn_regression_meta( +2318 classifier, +2319 f'{name}{" (Random Search)" if random_search else ""}', +2320 random_search=random_search +2321 ) +2322 +2323 def isotonic( +2324 self, +2325 name: str = "Isotonic Regression", +2326 random_search: bool = False, +2327 parameters: dict[ +2328 str, +2329 Union[ +2330 scipy.stats.rv_continuous, +2331 List[Union[int, str, float]] +2332 ] +2333 ] = { +2334 'increasing': [True, False] +2335 }, +2336 **kwargs +2337 ): +2338 """ +2339 Fit x on y via isotonic regression +2340 +2341 Parameters +2342 ---------- +2343 name : str, default="Isotonic Regression" +2344 Name of classification technique. +2345 random_search : bool, default=False +2346 Whether to perform RandomizedSearch to optimise parameters +2347 parameters : dict[\ +2348 str,\ +2349 Union[\ +2350 scipy.stats.rv_continuous,\ +2351 List[Union[int, str, float]]\ +2352 ]\ +2353 ], default=Preset distributions +2354 The parameters used in RandomizedSearchCV +2355 """ +2356 if random_search: +2357 classifier = RandomizedSearchCV( +2358 iso.IsotonicRegression(**kwargs), +2359 parameters, +2360 cv=self.folds +2361 ) +2362 else: +2363 classifier = iso.IsotonicRegression(**kwargs) +2364 self._sklearn_regression_meta( +2365 classifier, +2366 f'{name}{" (Random Search)" if random_search else ""}', +2367 random_search=random_search, +2368 max_coeffs=1 +2369 ) +2370 +2371 def xgboost( +2372 self, +2373 name: str = "XGBoost Regression", +2374 random_search: bool = False, +2375 parameters: dict[ +2376 str, +2377 Union[ +2378 scipy.stats.rv_continuous, +2379 List[Union[int, str, float]] +2380 ] +2381 ] = { +2382 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +2383 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255], +2384 'grow_policy': [ +2385 'depthwise', +2386 'lossguide' +2387 ], +2388 'learning_rate': uniform(loc=0, scale=2), +2389 'tree_method': ['exact', 'approx', 'hist'], +2390 'gamma': uniform(loc=0, scale=1), +2391 'subsample': uniform(loc=0, scale=1), +2392 'reg_alpha': uniform(loc=0, scale=1), +2393 'reg_lambda': uniform(loc=0, scale=1) +2394 }, +2395 **kwargs +2396 ): +2397 """ +2398 Fit x on y via xgboost regression +2399 +2400 Parameters +2401 ---------- +2402 name : str, default="XGBoost Regression" +2403 Name of classification technique. +2404 random_search : bool, default=False +2405 Whether to perform RandomizedSearch to optimise parameters +2406 parameters : dict[\ +2407 str,\ +2408 Union[\ +2409 scipy.stats.rv_continuous,\ +2410 List[Union[int, str, float]]\ +2411 ]\ +2412 ], default=Preset distributions +2413 The parameters used in RandomizedSearchCV +2414 """ +2415 if random_search: +2416 classifier = RandomizedSearchCV( +2417 xgb.XGBRegressor(**kwargs), +2418 parameters, +2419 cv=self.folds +2420 ) +2421 else: +2422 classifier = xgb.XGBRegressor(**kwargs) +2423 self._sklearn_regression_meta( +2424 classifier, +2425 f'{name}{" (Random Search)" if random_search else ""}', +2426 random_search=random_search +2427 ) +2428 +2429 def xgboost_rf( +2430 self, +2431 name: str = "XGBoost Random Forest Regression", +2432 random_search: bool = False, +2433 parameters: dict[ +2434 str, +2435 Union[ +2436 scipy.stats.rv_continuous, +2437 List[Union[int, str, float]] +2438 ] +2439 ] = { +2440 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +2441 'max_bin': [1, 3, 7, 15, 31, 63, 127, 255], +2442 'grow_policy': [ +2443 'depthwise', +2444 'lossguide' +2445 ], +2446 'learning_rate': uniform(loc=0, scale=2), +2447 'tree_method': ['exact', 'approx', 'hist'], +2448 'gamma': uniform(loc=0, scale=1), +2449 'subsample': uniform(loc=0, scale=1), +2450 'reg_alpha': uniform(loc=0, scale=1), +2451 'reg_lambda': uniform(loc=0, scale=1) +2452 }, +2453 **kwargs +2454 ): +2455 """ +2456 Fit x on y via xgboosted random forest regression +2457 +2458 Parameters +2459 ---------- +2460 name : str, default="XGBoost Random Forest Regression" +2461 Name of classification technique. +2462 random_search : bool, default=False +2463 Whether to perform RandomizedSearch to optimise parameters +2464 parameters : dict[\ +2465 str,\ +2466 Union[\ +2467 scipy.stats.rv_continuous,\ +2468 List[Union[int, str, float]]\ +2469 ]\ +2470 ], default=Preset distributions +2471 The parameters used in RandomizedSearchCV +2472 """ +2473 if random_search: +2474 classifier = RandomizedSearchCV( +2475 xgb.XGBRFRegressor(**kwargs), +2476 parameters, +2477 cv=self.folds +2478 ) +2479 else: +2480 classifier = xgb.XGBRFRegressor(**kwargs) +2481 self._sklearn_regression_meta( +2482 classifier, +2483 f'{name}{" (Random Search)" if random_search else ""}', +2484 random_search=random_search +2485 ) +2486 +2487 def return_measurements(self) -> dict[str, pd.DataFrame]: +2488 """ +2489 Returns the measurements used, with missing values and +2490 non-overlapping measurements excluded +2491 +2492 Returns +2493 ------- +2494 dict[str, pd.DataFrame] +2495 Dictionary with 2 keys: +2496 +2497 |Key|Value| +2498 |---|---| +2499 |x|`x_data`| +2500 |y|`y_data`| +2501 +2502 """ +2503 return { +2504 'x': self.x_data, +2505 'y': self.y_data +2506 } +2507 +2508 def return_models(self) -> dict[str, # Technique +2509 dict[str, # Scaling method +2510 dict[str, # Variables used +2511 dict[int, # Fold +2512 Pipeline]]]]: +2513 """ +2514 Returns the models stored in the object +2515 +2516 Returns +2517 ------- +2518 dict[str, str, str, int, Pipeline] +2519 The calibrated models. They are stored in a nested structure as +2520 follows: +2521 1. Primary Key, name of the technique (e.g Lasso Regression). +2522 2. Scaling technique (e.g Yeo-Johnson Transform). +2523 3. Combination of variables used or `target` if calibration is +2524 univariate (e.g "`target` + a + b). +2525 4. Fold, which fold was used excluded from the calibration. If data +2526 folds 0-3. +2527 if 5-fold cross validated, a key of 4 indicates the data was +2528 trained on +2529 """ +2530 return self.modelsExamples
- Calibrate( x_data: pandas.core.frame.DataFrame, y_data: pandas.core.frame.DataFrame, target: str, folds: int = 5, strat_groups: int = 10, scaler: Union[collections.abc.Iterable[Literal['None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson TransformBox-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']], Literal['All', 'None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson TransformBox-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']] = 'None', seed: int = 62) + Calibrate( x_data: pandas.core.frame.DataFrame, y_data: pandas.core.frame.DataFrame, target: str, folds: int = 5, strat_groups: int = 10, scaler: Union[collections.abc.Iterable[Literal['None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson Transform', 'Box-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']], Literal['All', 'None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson Transform', 'Box-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']] = 'None', seed: int = 62)-+198 def __init__( -199 self, -200 x_data: pd.DataFrame, -201 y_data: pd.DataFrame, -202 target: str, -203 folds: int = 5, -204 strat_groups: int = 10, -205 scaler: Union[ -206 Iterable[ -207 Literal[ -208 'None', -209 'Standard Scale', -210 'MinMax Scale', -211 'Yeo-Johnson Transform' -212 'Box-Cox Transform', -213 'Quantile Transform (Uniform)', -214 'Quantile Transform (Gaussian)' -215 ] -216 ], -217 Literal[ -218 'All', -219 'None', -220 'Standard Scale', -221 'MinMax Scale', -222 'Yeo-Johnson Transform' -223 'Box-Cox Transform', -224 'Quantile Transform (Uniform)', -225 'Quantile Transform (Gaussian)', -226 ] -227 ] = 'None', -228 seed: int = 62 -229 ): -230 """Initialises class -231 -232 Used to compare one set of measurements against another. -233 It can perform both univariate and multivariate regression, though -234 some techniques can only do one or the other. Multivariate regression -235 can only be performed when secondary variables are provided. -236 -237 Parameters -238 ---------- -239 x_data : pd.DataFrame -240 Data to be calibrated. -241 y_data : pd.DataFrame -242 'True' data to calibrate against. -243 target : str -244 Column name of the primary feature to use in calibration, must be -245 the name of a column in both `x_data` and `y_data`. -246 folds : int, default=5 -247 Number of folds to split the data into, using stratified k-fold. -248 strat_groups : int, default=10 -249 Number of groups to stratify against, the data will be split into -250 n equally sized bins where n is the value of `strat_groups`. -251 scaler : iterable of {<br>\ -252 'None',<br>\ -253 'Standard Scale',<br>\ -254 'MinMax Scale',<br>\ -255 'Yeo-Johnson Transform',<br>\ -256 'Box-Cox Transform',<br>\ -257 'Quantile Transform (Uniform)',<br>\ -258 'Quantile Transform (Gaussian)',<br>\ -259 } or {<br>\ -260 'All',<br>\ -261 'None',<br>\ -262 'Standard Scale',<br>\ -263 'MinMax Scale',<br>\ -264 'Yeo-Johnson Transform',<br>\ -265 'Box-Cox Transform',<br>\ -266 'Quantile Transform (Uniform)',<br>\ -267 'Quantile Transform (Gaussian)',<br>\ -268 }, default='None' -269 The scaling/transform method (or list of methods) to apply to the -270 data -271 seed : int, default=62 -272 Random state to use when shuffling and splitting the data into n -273 folds. Ensures repeatability. -274 -275 Raises -276 ------ -277 ValueError -278 Raised if the target variables (e.g. 'NO2') is not a column name in -279 both dataframes. -280 Raised if `scaler` is not str, tuple or list -281 """ -282 if target not in x_data.columns or target not in y_data.columns: -283 raise ValueError( -284 f"{target} does not exist in both columns." -285 ) -286 join_index = x_data.join( -287 y_data, -288 how='inner', -289 lsuffix='x', -290 rsuffix='y' -291 ).dropna().index -292 """ -293 The common indices between `x_data` and `y_data`, excluding missing -294 values -295 """ -296 self.x_data: pd.DataFrame = x_data.loc[join_index, :] -297 """ -298 The data to be calibrated. -299 """ -300 self.target: str = target -301 """ -302 The name of the column in both `x_data` and `y_data` that -303 will be used as the x and y variables in the calibration. -304 """ -305 self.scaler_list: dict[str, Any] = { -306 'None': None, -307 'Standard Scale': pre.StandardScaler(), -308 'MinMax Scale': pre.MinMaxScaler(), -309 'Yeo-Johnson Transform': pre.PowerTransformer( -310 method='yeo-johnson' -311 ), -312 'Box-Cox Transform': pre.PowerTransformer(method='box-cox'), -313 'Quantile Transform (Uniform)': pre.QuantileTransformer( -314 output_distribution='uniform' -315 ), -316 'Quantile Transform (Gaussian)': pre.QuantileTransformer( -317 output_distribution='normal' -318 ) -319 } -320 """ -321 Keys for scaling algorithms available in the pipelines -322 """ -323 self.scaler: list[str] = list() -324 """ -325 The scaling algorithm(s) to preprocess the data with -326 """ -327 if isinstance(scaler, str): -328 if scaler == "All": -329 if not bool(self.x_data.ge(0).all(axis=None)): -330 warnings.warn( -331 f'Box-Cox is not compatible with provided measurements' -332 ) -333 self.scaler_list.pop('Box-Cox Transform') -334 self.scaler.extend(self.scaler_list.keys()) -335 elif scaler in self.scaler_list.keys(): -336 self.scaler.append(scaler) -337 else: -338 self.scaler.append('None') -339 warnings.warn(f'Scaling algorithm {scaler} not recognised') -340 elif isinstance(scaler, (tuple, list)): -341 for sc in scaler: -342 if sc == 'Box-Cox Transform' and not bool( -343 self.x_data.ge(0).all(axis=None) -344 ): -345 warnings.warn( -346 f'Box-Cox is not compatible with provided measurements' -347 ) -348 continue -349 if sc in self.scaler_list.keys(): -350 self.scaler.append(sc) -351 else: -352 warnings.warn(f'Scaling algorithm {sc} not recognised') -353 else: -354 raise ValueError('scaler parameter should be string, list or tuple') -355 if not self.scaler: -356 warnings.warn( -357 f'No valid scaling algorithms provided, defaulting to None' -358 ) -359 self.scaler.append('None') -360 -361 self.y_data = cont_strat_folds( -362 y_data.loc[join_index, :], -363 target, -364 folds, -365 strat_groups, -366 seed -367 ) -368 """ -369 The data that `x_data` will be calibrated against. A '*Fold*' -370 column is added using the `const_strat_folds` function which splits -371 the data into k stratified folds (where k is the value of -372 `folds`). It splits the continuous measurements into n bins (where n -373 is the value of `strat_groups`) and distributes each bin equally -374 across all folds. This significantly reduces the chances of one fold -375 containing a skewed distribution relative to the whole dataset. -376 """ -377 self.models: dict[str, # Technique name -378 dict[str, # Scaling technique -379 dict[str, # Variable combo -380 dict[int, # Fold -381 Pipeline]]]] = dict() -382 """ -383 The calibrated models. They are stored in a nested structure as -384 follows: -385 1. Primary Key, name of the technique (e.g Lasso Regression). -386 2. Scaling technique (e.g Yeo-Johnson Transform). -387 3. Combination of variables used or `target` if calibration is -388 univariate (e.g "`target` + a + b). -389 4. Fold, which fold was used excluded from the calibration. If data -390 if 5-fold cross validated, a key of 4 indicates the data was trained on -391 folds 0-3. -392 -393 ```mermaid -394 stateDiagram-v2 -395 models --> Technique -396 state Technique { -397 [*] --> Scaling -398 [*]: The calibration technique used -399 [*]: (e.g "Lasso Regression") -400 state Scaling { -401 [*] --> Variables -402 [*]: The scaling technique used -403 [*]: (e.g "Yeo-Johnson Transform") -404 state Variables { -405 [*] : The combination of variables used -406 [*] : (e.g "x + a + b") -407 [*] --> Fold -408 state Fold { -409 [*] : Which fold was excluded from training data -410 [*] : (e.g 4 indicates folds 0-3 were used to train) -411 } -412 } -413 } -414 } -415 ``` -416 -417 """ +@@ -3182,7 +5803,7 @@201 def __init__( +202 self, +203 x_data: pd.DataFrame, +204 y_data: pd.DataFrame, +205 target: str, +206 folds: int = 5, +207 strat_groups: int = 10, +208 scaler: Union[ +209 Iterable[ +210 Literal[ +211 'None', +212 'Standard Scale', +213 'MinMax Scale', +214 'Yeo-Johnson Transform', +215 'Box-Cox Transform', +216 'Quantile Transform (Uniform)', +217 'Quantile Transform (Gaussian)' +218 ] +219 ], +220 Literal[ +221 'All', +222 'None', +223 'Standard Scale', +224 'MinMax Scale', +225 'Yeo-Johnson Transform', +226 'Box-Cox Transform', +227 'Quantile Transform (Uniform)', +228 'Quantile Transform (Gaussian)', +229 ] +230 ] = 'None', +231 seed: int = 62 +232 ): +233 """Initialises class +234 +235 Used to compare one set of measurements against another. +236 It can perform both univariate and multivariate regression, though +237 some techniques can only do one or the other. Multivariate regression +238 can only be performed when secondary variables are provided. +239 +240 Parameters +241 ---------- +242 x_data : pd.DataFrame +243 Data to be calibrated. +244 y_data : pd.DataFrame +245 'True' data to calibrate against. +246 target : str +247 Column name of the primary feature to use in calibration, must be +248 the name of a column in both `x_data` and `y_data`. +249 folds : int, default=5 +250 Number of folds to split the data into, using stratified k-fold. +251 strat_groups : int, default=10 +252 Number of groups to stratify against, the data will be split into +253 n equally sized bins where n is the value of `strat_groups`. +254 scaler : iterable of {<br>\ +255 'None',<br>\ +256 'Standard Scale',<br>\ +257 'MinMax Scale',<br>\ +258 'Yeo-Johnson Transform',<br>\ +259 'Box-Cox Transform',<br>\ +260 'Quantile Transform (Uniform)',<br>\ +261 'Quantile Transform (Gaussian)',<br>\ +262 } or {<br>\ +263 'All',<br>\ +264 'None',<br>\ +265 'Standard Scale',<br>\ +266 'MinMax Scale',<br>\ +267 'Yeo-Johnson Transform',<br>\ +268 'Box-Cox Transform',<br>\ +269 'Quantile Transform (Uniform)',<br>\ +270 'Quantile Transform (Gaussian)',<br>\ +271 }, default='None' +272 The scaling/transform method (or list of methods) to apply to the +273 data +274 seed : int, default=62 +275 Random state to use when shuffling and splitting the data into n +276 folds. Ensures repeatability. +277 +278 Raises +279 ------ +280 ValueError +281 Raised if the target variables (e.g. 'NO2') is not a column name in +282 both dataframes. +283 Raised if `scaler` is not str, tuple or list +284 """ +285 if target not in x_data.columns or target not in y_data.columns: +286 raise ValueError( +287 f"{target} does not exist in both columns." +288 ) +289 join_index = x_data.join( +290 y_data, +291 how='inner', +292 lsuffix='x', +293 rsuffix='y' +294 ).dropna().index +295 """ +296 The common indices between `x_data` and `y_data`, excluding missing +297 values +298 """ +299 self.x_data: pd.DataFrame = x_data.loc[join_index, :] +300 """ +301 The data to be calibrated. +302 """ +303 self.target: str = target +304 """ +305 The name of the column in both `x_data` and `y_data` that +306 will be used as the x and y variables in the calibration. +307 """ +308 self.scaler_list: dict[str, Any] = { +309 'None': None, +310 'Standard Scale': pre.StandardScaler(), +311 'MinMax Scale': pre.MinMaxScaler(), +312 'Yeo-Johnson Transform': pre.PowerTransformer( +313 method='yeo-johnson' +314 ), +315 'Box-Cox Transform': pre.PowerTransformer(method='box-cox'), +316 'Quantile Transform (Uniform)': pre.QuantileTransformer( +317 output_distribution='uniform' +318 ), +319 'Quantile Transform (Gaussian)': pre.QuantileTransformer( +320 output_distribution='normal' +321 ) +322 } +323 """ +324 Keys for scaling algorithms available in the pipelines +325 """ +326 self.scaler: list[str] = list() +327 """ +328 The scaling algorithm(s) to preprocess the data with +329 """ +330 if isinstance(scaler, str): +331 if scaler == "All": +332 if not bool(self.x_data.ge(0).all(axis=None)): +333 warnings.warn( +334 'Box-Cox is not compatible with provided measurements' +335 ) +336 self.scaler_list.pop('Box-Cox Transform') +337 self.scaler.extend(self.scaler_list.keys()) +338 elif scaler in self.scaler_list.keys(): +339 self.scaler.append(scaler) +340 else: +341 self.scaler.append('None') +342 warnings.warn(f'Scaling algorithm {scaler} not recognised') +343 elif isinstance(scaler, (tuple, list)): +344 for sc in scaler: +345 if sc == 'Box-Cox Transform' and not bool( +346 self.x_data.ge(0).all(axis=None) +347 ): +348 warnings.warn( +349 'Box-Cox is not compatible with provided measurements' +350 ) +351 continue +352 if sc in self.scaler_list.keys(): +353 self.scaler.append(sc) +354 else: +355 warnings.warn(f'Scaling algorithm {sc} not recognised') +356 else: +357 raise ValueError( +358 'scaler parameter should be string, list or tuple' +359 ) +360 if not self.scaler: +361 warnings.warn( +362 'No valid scaling algorithms provided, defaulting to None' +363 ) +364 self.scaler.append('None') +365 +366 self.y_data = cont_strat_folds( +367 y_data.loc[join_index, :], +368 target, +369 folds, +370 strat_groups, +371 seed +372 ) +373 """ +374 The data that `x_data` will be calibrated against. A '*Fold*' +375 column is added using the `const_strat_folds` function which splits +376 the data into k stratified folds (where k is the value of +377 `folds`). It splits the continuous measurements into n bins (where n +378 is the value of `strat_groups`) and distributes each bin equally +379 across all folds. This significantly reduces the chances of one fold +380 containing a skewed distribution relative to the whole dataset. +381 """ +382 self.models: dict[str, # Technique name +383 dict[str, # Scaling technique +384 dict[str, # Variable combo +385 dict[int, # Fold +386 Pipeline]]]] = dict() +387 """ +388 The calibrated models. They are stored in a nested structure as +389 follows: +390 1. Primary Key, name of the technique (e.g Lasso Regression). +391 2. Scaling technique (e.g Yeo-Johnson Transform). +392 3. Combination of variables used or `target` if calibration is +393 univariate (e.g "`target` + a + b). +394 4. Fold, which fold was used excluded from the calibration. If data +395 if 5-fold cross validated, a key of 4 indicates the data was trained on +396 folds 0-3. +397 +398 ```mermaid +399 stateDiagram-v2 +400 models --> Technique +401 state Technique { +402 [*] --> Scaling +403 [*]: The calibration technique used +404 [*]: (e.g "Lasso Regression") +405 state Scaling { +406 [*] --> Variables +407 [*]: The scaling technique used +408 [*]: (e.g "Yeo-Johnson Transform") +409 state Variables { +410 [*] : The combination of variables used +411 [*] : (e.g "x + a + b") +412 [*] --> Fold +413 state Fold { +414 [*] : Which fold was excluded from training data +415 [*] : (e.g 4 indicates folds 0-3 were used to train) +416 } +417 } +418 } +419 } +420 ``` +421 +422 """ +423 self.folds: int = folds +424 """ +425 The number of folds used in k-fold cross validation +426 """Raises
+The data that
@@ -3236,6 +5857,19 @@x_data
will be calibrated against. A 'Fold' column is added using theconst_strat_folds
function which splits the data into k stratified folds (where k is the value of -folds
). It splits the continuous measurements into n bins (where n +folds
). It splits the continuous measurements into n bins (where n is the value ofstrat_groups
) and distributes each bin equally across all folds. This significantly reduces the chances of one fold containing a skewed distribution relative to the whole dataset.Raises
@@ -3248,41 +5882,41 @@-Raises
524 def pymc_bayesian( -525 self, -526 family: Literal[ -527 "Gaussian", -528 "Student T", -529 ] = "Gaussian", -530 name: str = " PyMC Bayesian", -531 **kwargs -532 ): -533 """ -534 Performs bayesian linear regression (either uni or multivariate) -535 fitting x on y. -536 -537 Performs bayesian linear regression, both univariate and multivariate, -538 on X against y. More details can be found at: -539 https://pymc.io/projects/examples/en/latest/generalized_linear_models/ -540 GLM-robust.html -541 -542 Parameters -543 ---------- -544 family : {'Gaussian', 'Student T'}, default='Gaussian' -545 Statistical distribution to fit measurements to. Options are: -546 - Gaussian -547 - Student T -548 """ -549 # Define model families -550 model_families = { -551 "Gaussian": "gaussian", -552 "Student T": "t" -553 } -554 self._sklearn_regression_meta( -555 model_families[family], -556 f'{name} ({model_families})', -557 **kwargs -558 ) +@@ -3311,25 +5945,57 @@557 def pymc_bayesian( +558 self, +559 family: Literal[ +560 "Gaussian", +561 "Student T", +562 ] = "Gaussian", +563 name: str = " PyMC Bayesian", +564 **kwargs +565 ): +566 """ +567 Performs bayesian linear regression (either uni or multivariate) +568 fitting x on y. +569 +570 Performs bayesian linear regression, both univariate and multivariate, +571 on X against y. More details can be found at: +572 https://pymc.io/projects/examples/en/latest/generalized_linear_models/ +573 GLM-robust.html +574 +575 Parameters +576 ---------- +577 family : {'Gaussian', 'Student T'}, default='Gaussian' +578 Statistical distribution to fit measurements to. Options are: +579 - Gaussian +580 - Student T +581 """ +582 # Define model families +583 model_families: dict[str, Literal['t', 'gaussian']] = { +584 "Gaussian": 'gaussian', +585 "Student T": 't' +586 } +587 self._sklearn_regression_meta( +588 model_families[family], +589 f'{name} ({model_families})', +590 **kwargs +591 )Parameters
def - linreg(self, name: str = 'Linear Regression', **kwargs): + linreg( self, name: str = 'Linear Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {}, **kwargs):-@@ -3350,25 +6026,68 @@560 def linreg(self, name: str = "Linear Regression", **kwargs): -561 """ -562 Fit x on y via linear regression -563 -564 Parameters -565 ---------- -566 name : str, default="Linear Regression" -567 Name of classification technique. -568 """ -569 self._sklearn_regression_meta( -570 lm.LinearRegression(**kwargs), -571 name -572 ) +@@ -3340,6 +6006,16 @@593 def linreg( +594 self, +595 name: str = "Linear Regression", +596 random_search: bool = False, +597 parameters: dict[ +598 str, +599 Union[ +600 scipy.stats.rv_continuous, +601 List[Union[int, str, float]] +602 ] +603 ] = { +604 }, +605 **kwargs +606 ): +607 """ +608 Fit x on y via linear regression +609 +610 Parameters +611 ---------- +612 name : str, default="Linear Regression" +613 Name of classification technique. +614 random_search : bool, default=False +615 Whether to perform RandomizedSearch to optimise parameters +616 parameters : dict[ +617 str, +618 Union[ +619 scipy.stats.rv_continuous, +620 List[Union[int, str, float]] +621 ] +622 ], default=Preset distributions +623 The parameters used in RandomizedSearchCV +624 """ +625 if random_search: +626 classifier = RandomizedSearchCV( +627 lm.LinearRegression(**kwargs), +628 parameters, +629 cv=self.folds +630 ) +631 else: +632 classifier = lm.LinearRegression(**kwargs) +633 self._sklearn_regression_meta( +634 classifier, +635 f'{name}{" (Random Search)" if random_search else ""}', +636 random_search=random_search +637 )Parameters
- name (str, default="Linear Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - ridge(self, name: str = 'Ridge Regression', **kwargs): + ridge( self, name: str = 'Ridge Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe30d50>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe31950>, 'solver': ['svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga', 'lbfgs']}, **kwargs):-@@ -3389,39 +6118,49 @@574 def ridge(self, name: str = "Ridge Regression", **kwargs): -575 """ -576 Fit x on y via ridge regression -577 -578 Parameters -579 ---------- -580 name : str, default="Ridge Regression" -581 Name of classification technique -582 """ -583 self._sklearn_regression_meta( -584 lm.Ridge(**kwargs), -585 name -586 ) +@@ -3378,7 +6097,17 @@639 def ridge( +640 self, +641 name: str = "Ridge Regression", +642 random_search: bool = False, +643 parameters: dict[ +644 str, +645 Union[ +646 scipy.stats.rv_continuous, +647 List[Union[int, str, float]] +648 ] +649 ] = { +650 'alpha': uniform(loc=0, scale=2), +651 'tol': uniform(loc=0, scale=1), +652 'solver': [ +653 'svd', +654 'cholesky', +655 'lsqr', +656 'sparse_cg', +657 'sag', +658 'saga', +659 'lbfgs' +660 ] +661 }, +662 **kwargs +663 ): +664 """ +665 Fit x on y via ridge regression +666 +667 Parameters +668 ---------- +669 name : str, default="Ridge Regression" +670 Name of classification technique. +671 random_search : bool, default=False +672 Whether to perform RandomizedSearch to optimise parameters +673 parameters : dict[ +674 str, +675 Union[ +676 scipy.stats.rv_continuous, +677 List[Union[int, str, float]] +678 ] +679 ], default=Preset distributions +680 The parameters used in RandomizedSearchCV +681 """ +682 if random_search: +683 classifier = RandomizedSearchCV( +684 lm.Ridge(**kwargs), +685 parameters, +686 cv=self.folds +687 ) +688 else: +689 classifier = lm.Ridge(**kwargs) +690 self._sklearn_regression_meta( +691 classifier, +692 f'{name}{" (Random Search)" if random_search else ""}', +693 random_search=random_search +694 )Parameters
- name (str, default="Ridge Regression"): -Name of classification technique
+Name of classification technique. +- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - ridge_cv(self, name: str = 'Ridge Regression (Cross Validated)', **kwargs): + ridge_cv( self, name: str = 'Ridge Regression (Cross Validated)', random_search: bool = False, **kwargs):-588 def ridge_cv( -589 self, -590 name: str = "Ridge Regression (Cross Validated)", -591 **kwargs -592 ): -593 """ -594 Fit x on y via cross-validated ridge regression -595 -596 Parameters -597 ---------- -598 name : str, default="Ridge Regression (Cross Validated)" -599 Name of classification technique -600 """ -601 self._sklearn_regression_meta( -602 lm.RidgeCV(**kwargs), -603 name -604 ) +-696 def ridge_cv( +697 self, +698 name: str = "Ridge Regression (Cross Validated)", +699 random_search: bool = False, +700 **kwargs +701 ): +702 """ +703 Fit x on y via cross-validated ridge regression. +704 Already cross validated so random search not required +705 +706 Parameters +707 ---------- +708 name : str, default="Ridge Regression (Cross Validated)" +709 Name of classification technique +710 random_search : bool, default=False +711 Not used +712 +713 """ +714 _ = random_search +715 self._sklearn_regression_meta( +716 lm.RidgeCV(**kwargs, cv=self.folds), +717 name, +718 random_search=True +719 )Fit x on y via cross-validated ridge regression
+@@ -3432,25 +6171,60 @@Fit x on y via cross-validated ridge regression. +Already cross validated so random search not required
Parameters
- name (str, default="Ridge Regression (Cross Validated)"): Name of classification technique
+- random_search (bool, default=False): +Not used
Parameters
def - lasso(self, name: str = 'Lasso Regression', **kwargs): + lasso( self, name: str = 'Lasso Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe32550>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe32650>, 'selection': ['cyclic', 'random']}, **kwargs):-@@ -3471,39 +6255,49 @@606 def lasso(self, name: str = "Lasso Regression", **kwargs): -607 """ -608 Fit x on y via lasso regression -609 -610 Parameters -611 ---------- -612 name : str, default="Lasso Regression" -613 Name of classification technique -614 """ -615 self._sklearn_regression_meta( -616 lm.Lasso(**kwargs), -617 name -618 ) +@@ -3460,7 +6234,17 @@721 def lasso( +722 self, +723 name: str = "Lasso Regression", +724 random_search: bool = False, +725 parameters: dict[ +726 str, +727 Union[ +728 scipy.stats.rv_continuous, +729 List[Union[int, str, float]] +730 ] +731 ] = { +732 'alpha': uniform(loc=0, scale=2), +733 'tol': uniform(loc=0, scale=1), +734 'selection': ['cyclic', 'random'] +735 }, +736 **kwargs +737 ): +738 """ +739 Fit x on y via lasso regression +740 +741 Parameters +742 ---------- +743 name : str, default="Lasso Regression" +744 Name of classification technique. +745 random_search : bool, default=False +746 Whether to perform RandomizedSearch to optimise parameters +747 parameters : dict[ +748 str, +749 Union[ +750 scipy.stats.rv_continuous, +751 List[Union[int, str, float]] +752 ] +753 ], default=Preset distributions +754 The parameters used in RandomizedSearchCV +755 """ +756 if random_search: +757 classifier = RandomizedSearchCV( +758 lm.Lasso(**kwargs), +759 parameters, +760 cv=self.folds +761 ) +762 else: +763 classifier = lm.Lasso(**kwargs) +764 self._sklearn_regression_meta( +765 classifier, +766 f'{name}{" (Random Search)" if random_search else ""}', +767 random_search=random_search +768 )Parameters
- name (str, default="Lasso Regression"): -Name of classification technique
+Name of classification technique. +- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - lasso_cv(self, name: str = 'Lasso Regression (Cross Validated)', **kwargs): + lasso_cv( self, name: str = 'Lasso Regression (Cross Validated)', random_search: bool = False, **kwargs):-620 def lasso_cv( -621 self, -622 name: str = "Lasso Regression (Cross Validated)", -623 **kwargs -624 ): -625 """ -626 Fit x on y via cross-validated lasso regression -627 -628 Parameters -629 ---------- -630 name : str, default="Lasso Regression (Cross Validated)" -631 Name of classification technique -632 """ -633 self._sklearn_regression_meta( -634 lm.LassoCV(**kwargs), -635 name -636 ) +-770 def lasso_cv( +771 self, +772 name: str = "Lasso Regression (Cross Validated)", +773 random_search: bool = False, +774 **kwargs +775 ): +776 """ +777 Fit x on y via cross-validated lasso regression. +778 Already cross validated so random search not required +779 +780 Parameters +781 ---------- +782 name : str, default="Lasso Regression (Cross Validated)" +783 Name of classification technique +784 random_search : bool, default=False +785 Not used +786 +787 """ +788 _ = random_search +789 self._sklearn_regression_meta( +790 lm.LassoCV(**kwargs, cv=self.folds), +791 name, +792 random_search=True +793 )Fit x on y via cross-validated lasso regression
+@@ -3514,29 +6308,60 @@Fit x on y via cross-validated lasso regression. +Already cross validated so random search not required
Parameters
- name (str, default="Lasso Regression (Cross Validated)"): Name of classification technique
+- random_search (bool, default=False): +Not used
Parameters
def - multi_task_lasso(self, name: str = 'Multi-task Lasso Regression', **kwargs): + multi_task_lasso( self, name: str = 'Multi-task Lasso Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe32c10>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe33310>, 'selection': ['cyclic', 'random']}, **kwargs):-@@ -3557,39 +6392,49 @@638 def multi_task_lasso( -639 self, -640 name: str = "Multi-task Lasso Regression", -641 **kwargs -642 ): -643 """ -644 Fit x on y via multitask lasso regression -645 -646 Parameters -647 ---------- -648 name : str, default="Multi-task Lasso Regression" -649 Name of classification technique -650 """ -651 self._sklearn_regression_meta( -652 lm.MultiTaskLasso(**kwargs), -653 name -654 ) +@@ -3546,7 +6371,17 @@795 def multi_task_lasso( +796 self, +797 name: str = "Multi-task Lasso Regression", +798 random_search: bool = False, +799 parameters: dict[ +800 str, +801 Union[ +802 scipy.stats.rv_continuous, +803 List[Union[int, str, float]] +804 ] +805 ] = { +806 'alpha': uniform(loc=0, scale=2), +807 'tol': uniform(loc=0, scale=1), +808 'selection': ['cyclic', 'random'] +809 }, +810 **kwargs +811 ): +812 """ +813 Fit x on y via multitask lasso regression +814 +815 Parameters +816 ---------- +817 name : str, default="Multi-task Lasso Regression" +818 Name of classification technique. +819 random_search : bool, default=False +820 Whether to perform RandomizedSearch to optimise parameters +821 parameters : dict[ +822 str, +823 Union[ +824 scipy.stats.rv_continuous, +825 List[Union[int, str, float]] +826 ] +827 ], default=Preset distributions +828 The parameters used in RandomizedSearchCV +829 """ +830 if random_search: +831 classifier = RandomizedSearchCV( +832 lm.MultiTaskLasso(**kwargs), +833 parameters, +834 cv=self.folds +835 ) +836 else: +837 classifier = lm.MultiTaskLasso(**kwargs) +838 self._sklearn_regression_meta( +839 classifier, +840 f'{name}{" (Random Search)" if random_search else ""}', +841 random_search=random_search +842 )Parameters
- name (str, default="Multi-task Lasso Regression"): -Name of classification technique
+Name of classification technique. +- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - multi_task_lasso_cv( self, name: str = 'Multi-task Lasso Regression (Cross Validated)', **kwargs): + multi_task_lasso_cv( self, name: str = 'Multi-task Lasso Regression (Cross Validated)', random_search: bool = False, **kwargs):-656 def multi_task_lasso_cv( -657 self, -658 name: str = "Multi-task Lasso Regression (Cross Validated)", -659 **kwargs -660 ): -661 """ -662 Fit x on y via cross validated multitask lasso regression -663 -664 Parameters -665 ---------- -666 name : str, default="Multi-task Lasso Regression (Cross Validated)" -667 Name of classification technique -668 """ -669 self._sklearn_regression_meta( -670 lm.MultiTaskLassoCV(**kwargs), -671 name -672 ) +-844 def multi_task_lasso_cv( +845 self, +846 name: str = "Multi-task Lasso Regression (Cross Validated)", +847 random_search: bool = False, +848 **kwargs +849 ): +850 """ +851 Fit x on y via cross-validated multitask lasso regression. +852 Already cross validated so random search not required +853 +854 Parameters +855 ---------- +856 name : str, default="Multi-task Lasso Regression (Cross Validated)" +857 Name of classification technique +858 random_search : bool, default=False +859 Not used +860 +861 """ +862 _ = random_search +863 self._sklearn_regression_meta( +864 lm.MultiTaskLassoCV(**kwargs, cv=self.folds), +865 name, +866 random_search=True +867 )Fit x on y via cross validated multitask lasso regression
+@@ -3600,25 +6445,61 @@Fit x on y via cross-validated multitask lasso regression. +Already cross validated so random search not required
Parameters
- name (str, default="Multi-task Lasso Regression (Cross Validated)"): Name of classification technique
+- random_search (bool, default=False): +Not used
Parameters
def - elastic_net(self, name: str = 'Elastic Net Regression', **kwargs): + elastic_net( self, name: str = 'Elastic Net Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe338d0>, 'l1_ratio': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe33fd0>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3c5d0>, 'selection': ['cyclic', 'random']}, **kwargs):-@@ -3639,39 +6530,48 @@674 def elastic_net(self, name: str = "Elastic Net Regression", **kwargs): -675 """ -676 Fit x on y via elastic net regression -677 -678 Parameters -679 ---------- -680 name : str, default="Elastic Net Regression" -681 Name of classification technique -682 """ -683 self._sklearn_regression_meta( -684 lm.ElasticNet(**kwargs), -685 name -686 ) +@@ -3628,7 +6509,17 @@869 def elastic_net( +870 self, +871 name: str = "Elastic Net Regression", +872 random_search: bool = False, +873 parameters: dict[ +874 str, +875 Union[ +876 scipy.stats.rv_continuous, +877 List[Union[int, str, float]] +878 ] +879 ] = { +880 'alpha': uniform(loc=0, scale=2), +881 'l1_ratio': uniform(loc=0, scale=1), +882 'tol': uniform(loc=0, scale=1), +883 'selection': ['cyclic', 'random'] +884 }, +885 **kwargs +886 ): +887 """ +888 Fit x on y via elastic net regression +889 +890 Parameters +891 ---------- +892 name : str, default="Elastic Net Regression" +893 Name of classification technique. +894 random_search : bool, default=False +895 Whether to perform RandomizedSearch to optimise parameters +896 parameters : dict[ +897 str, +898 Union[ +899 scipy.stats.rv_continuous, +900 List[Union[int, str, float]] +901 ] +902 ], default=Preset distributions +903 The parameters used in RandomizedSearchCV +904 """ +905 if random_search: +906 classifier = RandomizedSearchCV( +907 lm.ElasticNet(**kwargs), +908 parameters, +909 cv=self.folds +910 ) +911 else: +912 classifier = lm.ElasticNet(**kwargs) +913 self._sklearn_regression_meta( +914 classifier, +915 f'{name}{" (Random Search)" if random_search else ""}', +916 random_search=random_search +917 )Parameters
- name (str, default="Elastic Net Regression"): -Name of classification technique
+Name of classification technique. +- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - elastic_net_cv( self, name: str = 'Elastic Net Regression (Cross Validated)', **kwargs): + elastic_net_cv( self, name: str = 'Elastic Net Regression (Cross Validated)', random_search: bool = False, **kwargs):-688 def elastic_net_cv( -689 self, -690 name: str = "Elastic Net Regression (Cross Validated)", -691 **kwargs -692 ): -693 """ -694 Fit x on y via cross validated elastic net regression -695 -696 Parameters -697 ---------- -698 name : str, default="Elastic Net Regression (Cross Validated)" -699 Name of classification technique -700 """ -701 self._sklearn_regression_meta( -702 lm.ElasticNetCV(**kwargs), -703 name -704 ) +-919 def elastic_net_cv( +920 self, +921 name: str = "Elastic Net Regression (Cross Validated)", +922 random_search: bool = False, +923 **kwargs +924 ): +925 """ +926 Fit x on y via cross-validated elastic regression. +927 Already cross validated so random search not required +928 +929 Parameters +930 ---------- +931 name : str, default="Lasso Regression (Cross Validated)" +932 Name of classification technique +933 random_search : bool, default=False +934 Not used +935 """ +936 _ = random_search +937 self._sklearn_regression_meta( +938 lm.ElasticNetCV(**kwargs, cv=self.folds), +939 name, +940 random_search=True +941 )Fit x on y via cross validated elastic net regression
+@@ -3682,39 +6582,81 @@Fit x on y via cross-validated elastic regression. +Already cross validated so random search not required
Parameters
-
- name (str, default="Elastic Net Regression (Cross Validated)"): +
- name (str, default="Lasso Regression (Cross Validated)"): Name of classification technique
+- random_search (bool, default=False): +Not used
Parameters
def - multi_task_elastic_net(self, name: str = 'Multi-Task Elastic Net Regression', **kwargs): + multi_task_elastic_net( self, name: str = 'Multi-task Elastic Net Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3cbd0>, 'l1_ratio': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3d310>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3da10>, 'selection': ['cyclic', 'random']}, **kwargs):-706 def multi_task_elastic_net( -707 self, -708 name: str = "Multi-Task Elastic Net Regression", -709 **kwargs -710 ): -711 """ -712 Fit x on y via multi-task elastic net regression -713 -714 Parameters -715 ---------- -716 name : str, default="Multi-task Elastic Net Regression" -717 Name of classification technique -718 """ -719 self._sklearn_regression_meta( -720 lm.MultiTaskElasticNet(**kwargs), -721 name -722 ) +-943 def multi_task_elastic_net( +944 self, +945 name: str = "Multi-task Elastic Net Regression", +946 random_search: bool = False, +947 parameters: dict[ +948 str, +949 Union[ +950 scipy.stats.rv_continuous, +951 List[Union[int, str, float]] +952 ] +953 ] = { +954 'alpha': uniform(loc=0, scale=2), +955 'l1_ratio': uniform(loc=0, scale=1), +956 'tol': uniform(loc=0, scale=1), +957 'selection': ['cyclic', 'random'] +958 }, +959 **kwargs +960 ): +961 """ +962 Fit x on y via elastic net regression +963 +964 Parameters +965 ---------- +966 name : str, default="Multi-task Elastic Net Regression" +967 Name of classification technique. +968 random_search : bool, default=False +969 Whether to perform RandomizedSearch to optimise parameters +970 parameters : dict[ +971 str, +972 Union[ +973 scipy.stats.rv_continuous, +974 List[Union[int, str, float]] +975 ] +976 ], default=Preset distributions +977 The parameters used in RandomizedSearchCV +978 """ +979 if random_search: +980 classifier = RandomizedSearchCV( +981 lm.MultiTaskElasticNet(**kwargs), +982 parameters, +983 cv=self.folds +984 ) +985 else: +986 classifier = lm.MultiTaskElasticNet(**kwargs) +987 self._sklearn_regression_meta( +988 classifier, +989 f'{name}{" (Random Search)" if random_search else ""}', +990 random_search=random_search +991 )Fit x on y via multi-task elastic net regression
+@@ -3725,40 +6667,50 @@Fit x on y via elastic net regression
Parameters
- name (str, default="Multi-task Elastic Net Regression"): -Name of classification technique
+Name of classification technique. +- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - multi_task_elastic_net_cv( self, name: str = 'Multi-Task Elastic Net Regression (Cross Validated)', **kwargs): + multi_task_elastic_net_cv( self, name: str = 'Multi-Task Elastic Net Regression (Cross Validated)', random_search: bool = False, **kwargs):-724 def multi_task_elastic_net_cv( -725 self, -726 name: str = "Multi-Task Elastic Net Regression (Cross Validated)", -727 **kwargs -728 ): -729 """ -730 Fit x on y via cross validated multi-task elastic net regression -731 -732 Parameters -733 ---------- -734 name : str, default="Multi-Task Elastic Net Regression\ -735 (Cross Validated)" -736 Name of classification technique -737 """ -738 self._sklearn_regression_meta( -739 lm.MultiTaskElasticNetCV(**kwargs), -740 name -741 ) +-993 def multi_task_elastic_net_cv( + 994 self, + 995 name: str = "Multi-Task Elastic Net Regression (Cross Validated)", + 996 random_search: bool = False, + 997 **kwargs + 998 ): + 999 """ +1000 Fit x on y via cross-validated multi-task elastic net regression. +1001 Already cross validated so random search not required +1002 +1003 Parameters +1004 ---------- +1005 name : str, default="Multi-Task Elastic Net Regression \ +1006 (Cross Validated)" +1007 Name of classification technique +1008 random_search : bool, default=False +1009 Not used +1010 +1011 """ +1012 _ = random_search +1013 self._sklearn_regression_meta( +1014 lm.MultiTaskElasticNetCV(**kwargs, cv=self.folds), +1015 name, +1016 random_search=True +1017 )Fit x on y via cross validated multi-task elastic net regression
+@@ -3769,25 +6721,58 @@Fit x on y via cross-validated multi-task elastic net regression. +Already cross validated so random search not required
Parameters
-
- name (str, default="Multi-Task Elastic Net Regression (Cross Validated)"): +
- name (str, default="Multi-Task Elastic Net Regression (Cross Validated)"): Name of classification technique
+- random_search (bool, default=False): +Not used
Parameters
def - lars(self, name: str = 'Least Angle Regression', **kwargs): + lars( self, name: str = 'Least Angle Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_nonzero_coefs': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, **kwargs):-@@ -3808,39 +6803,78 @@743 def lars(self, name: str = "Least Angle Regression", **kwargs): -744 """ -745 Fit x on y via least angle regression -746 -747 Parameters -748 ---------- -749 name : str, default="Least Angle Regression" -750 Name of classification technique. -751 """ -752 self._sklearn_regression_meta( -753 lm.Lars(**kwargs), -754 name -755 ) +@@ -3798,6 +6783,16 @@1019 def lars( +1020 self, +1021 name: str = "Least Angle Regression", +1022 random_search: bool = False, +1023 parameters: dict[ +1024 str, +1025 Union[ +1026 scipy.stats.rv_continuous, +1027 List[Union[int, str, float]] +1028 ] +1029 ] = { +1030 'n_nonzero_coefs': list(range(1, 11)) +1031 }, +1032 **kwargs +1033 ): +1034 """ +1035 Fit x on y via least angle regression +1036 +1037 Parameters +1038 ---------- +1039 name : str, default="Least Angle Regression" +1040 Name of classification technique. +1041 random_search : bool, default=False +1042 Whether to perform RandomizedSearch to optimise parameters +1043 parameters : dict[ +1044 str, +1045 Union[ +1046 scipy.stats.rv_continuous, +1047 List[Union[int, str, float]] +1048 ] +1049 ], default=Preset distributions +1050 The parameters used in RandomizedSearchCV +1051 """ +1052 if random_search: +1053 classifier = RandomizedSearchCV( +1054 lm.Lars(**kwargs), +1055 parameters, +1056 cv=self.folds +1057 ) +1058 else: +1059 classifier = lm.Lars(**kwargs) +1060 self._sklearn_regression_meta( +1061 classifier, +1062 f'{name}{" (Random Search)" if random_search else ""}', +1063 random_search=random_search +1064 )Parameters
- name (str, default="Least Angle Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - lars_lasso(self, name: str = 'Least Angle Regression (Lasso)', **kwargs): + lars_lasso( self, name: str = 'Least Angle Lasso Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3e710>}, **kwargs):-757 def lars_lasso( -758 self, -759 name: str = "Least Angle Regression (Lasso)", -760 **kwargs -761 ): -762 """ -763 Fit x on y via lasso least angle regression -764 -765 Parameters -766 ---------- -767 name : str, default="Least Angle Regression (Lasso)" -768 Name of classification technique -769 """ -770 self._sklearn_regression_meta( -771 lm.LassoLars(**kwargs), -772 name -773 ) +-1066 def lars_lasso( +1067 self, +1068 name: str = "Least Angle Lasso Regression", +1069 random_search: bool = False, +1070 parameters: dict[ +1071 str, +1072 Union[ +1073 scipy.stats.rv_continuous, +1074 List[Union[int, str, float]] +1075 ] +1076 ] = { +1077 'alpha': uniform(loc=0, scale=2) +1078 }, +1079 **kwargs +1080 ): +1081 """ +1082 Fit x on y via least angle lasso regression +1083 +1084 Parameters +1085 ---------- +1086 name : str, default="Least Angle Lasso Regression" +1087 Name of classification technique. +1088 random_search : bool, default=False +1089 Whether to perform RandomizedSearch to optimise parameters +1090 parameters : dict[ +1091 str, +1092 Union[ +1093 scipy.stats.rv_continuous, +1094 List[Union[int, str, float]] +1095 ] +1096 ], default=Preset distributions +1097 The parameters used in RandomizedSearchCV +1098 """ +1099 if random_search: +1100 classifier = RandomizedSearchCV( +1101 lm.LassoLars(**kwargs), +1102 parameters, +1103 cv=self.folds +1104 ) +1105 else: +1106 classifier = lm.LassoLars(**kwargs) +1107 self._sklearn_regression_meta( +1108 classifier, +1109 f'{name}{" (Random Search)" if random_search else ""}', +1110 random_search=random_search +1111 )Fit x on y via lasso least angle regression
+@@ -3851,26 +6885,59 @@Fit x on y via least angle lasso regression
Parameters
-
- name (str, default="Least Angle Regression (Lasso)"): -Name of classification technique
+- name (str, default="Least Angle Lasso Regression"): +Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - omp(self, name: str = 'Orthogonal Matching Pursuit', **kwargs): + omp( self, name: str = 'Orthogonal Matching Pursuit', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_nonzero_coefs': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, **kwargs):-@@ -3891,29 +6968,62 @@775 def omp(self, name: str = "Orthogonal Matching Pursuit", **kwargs): -776 """ -777 Fit x on y via orthogonal matching pursuit regression -778 -779 Parameters -780 ---------- -781 name : str, default="Orthogonal Matching Pursuit" -782 Name of classification technique -783 """ -784 self._sklearn_regression_meta( -785 lm.OrthogonalMatchingPursuit(**kwargs), -786 name, -787 min_coeffs=2 -788 ) +@@ -3880,7 +6947,17 @@1113 def omp( +1114 self, +1115 name: str = "Orthogonal Matching Pursuit", +1116 random_search: bool = False, +1117 parameters: dict[ +1118 str, +1119 Union[ +1120 scipy.stats.rv_continuous, +1121 List[Union[int, str, float]] +1122 ] +1123 ] = { +1124 'n_nonzero_coefs': list(range(1, 11)) +1125 }, +1126 **kwargs +1127 ): +1128 """ +1129 Fit x on y via orthogonal matching pursuit regression +1130 +1131 Parameters +1132 ---------- +1133 name : str, default="Orthogonal Matching Pursuit" +1134 Name of classification technique. +1135 random_search : bool, default=False +1136 Whether to perform RandomizedSearch to optimise parameters +1137 parameters : dict[ +1138 str, +1139 Union[ +1140 scipy.stats.rv_continuous, +1141 List[Union[int, str, float]] +1142 ] +1143 ], default=Preset distributions +1144 The parameters used in RandomizedSearchCV +1145 """ +1146 if random_search: +1147 classifier = RandomizedSearchCV( +1148 lm.OrthogonalMatchingPursuit(**kwargs), +1149 parameters, +1150 cv=self.folds +1151 ) +1152 else: +1153 classifier = lm.OrthogonalMatchingPursuit(**kwargs) +1154 self._sklearn_regression_meta( +1155 classifier, +1156 f'{name}{" (Random Search)" if random_search else ""}', +1157 random_search=random_search, +1158 min_coeffs=2 +1159 )Parameters
- name (str, default="Orthogonal Matching Pursuit"): -Name of classification technique
+Name of classification technique. +- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - bayesian_ridge(self, name: str = 'Bayesian Ridge Regression', **kwargs): + bayesian_ridge( self, name: str = 'Bayesian Ridge Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3f010>, 'alpha_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3f2d0>, 'alpha_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3f9d0>, 'lambda_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc48110>, 'lambda_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc48810>}, **kwargs):-@@ -3934,29 +7054,62 @@790 def bayesian_ridge( -791 self, -792 name: str = "Bayesian Ridge Regression", -793 **kwargs -794 ): -795 """ -796 Fit x on y via bayesian ridge regression -797 -798 Parameters -799 ---------- -800 name : str, default="Bayesian Ridge Regression" -801 Name of classification technique. -802 """ -803 self._sklearn_regression_meta( -804 lm.BayesianRidge(**kwargs), -805 name -806 ) +@@ -3924,6 +7034,16 @@1161 def bayesian_ridge( +1162 self, +1163 name: str = "Bayesian Ridge Regression", +1164 random_search: bool = False, +1165 parameters: dict[ +1166 str, +1167 Union[ +1168 scipy.stats.rv_continuous, +1169 List[Union[int, str, float]] +1170 ] +1171 ] = { +1172 'tol': uniform(loc=0, scale=1), +1173 'alpha_1': uniform(loc=0, scale=1), +1174 'alpha_2': uniform(loc=0, scale=1), +1175 'lambda_1': uniform(loc=0, scale=1), +1176 'lambda_2': uniform(loc=0, scale=1) +1177 }, +1178 **kwargs +1179 ): +1180 """ +1181 Fit x on y via bayesian ridge regression +1182 +1183 Parameters +1184 ---------- +1185 name : str, default="Bayesian Ridge Regression" +1186 Name of classification technique. +1187 random_search : bool, default=False +1188 Whether to perform RandomizedSearch to optimise parameters +1189 parameters : dict[ +1190 str, +1191 Union[ +1192 scipy.stats.rv_continuous, +1193 List[Union[int, str, float]] +1194 ] +1195 ], default=Preset distributions +1196 The parameters used in RandomizedSearchCV +1197 """ +1198 if random_search: +1199 classifier = RandomizedSearchCV( +1200 lm.BayesianRidge(**kwargs), +1201 parameters, +1202 cv=self.folds +1203 ) +1204 else: +1205 classifier = lm.BayesianRidge(**kwargs) +1206 self._sklearn_regression_meta( +1207 classifier, +1208 f'{name}{" (Random Search)" if random_search else ""}', +1209 random_search=random_search +1210 )Parameters
- name (str, default="Bayesian Ridge Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - bayesian_ard(self, name: str = 'Bayesian Automatic Relevance Detection', **kwargs): + bayesian_ard( self, name: str = 'Bayesian Automatic Relevance Detection', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc48f10>, 'alpha_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc496d0>, 'alpha_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc49dd0>, 'lambda_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4a4d0>, 'lambda_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4abd0>}, **kwargs):-@@ -3977,25 +7140,61 @@808 def bayesian_ard( -809 self, -810 name: str = "Bayesian Automatic Relevance Detection", -811 **kwargs -812 ): -813 """ -814 Fit x on y via bayesian automatic relevance detection -815 -816 Parameters -817 ---------- -818 name : str, default="Bayesian Automatic Relevance Detection" -819 Name of classification technique. -820 """ -821 self._sklearn_regression_meta( -822 lm.ARDRegression(**kwargs), -823 name -824 ) +@@ -3967,6 +7120,16 @@1212 def bayesian_ard( +1213 self, +1214 name: str = "Bayesian Automatic Relevance Detection", +1215 random_search: bool = False, +1216 parameters: dict[ +1217 str, +1218 Union[ +1219 scipy.stats.rv_continuous, +1220 List[Union[int, str, float]] +1221 ] +1222 ] = { +1223 'tol': uniform(loc=0, scale=1), +1224 'alpha_1': uniform(loc=0, scale=1), +1225 'alpha_2': uniform(loc=0, scale=1), +1226 'lambda_1': uniform(loc=0, scale=1), +1227 'lambda_2': uniform(loc=0, scale=1) +1228 }, +1229 **kwargs +1230 ): +1231 """ +1232 Fit x on y via bayesian automatic relevance detection +1233 +1234 Parameters +1235 ---------- +1236 name : str, default="Bayesian Automatic Relevance Detection" +1237 Name of classification technique. +1238 random_search : bool, default=False +1239 Whether to perform RandomizedSearch to optimise parameters +1240 parameters : dict[ +1241 str, +1242 Union[ +1243 scipy.stats.rv_continuous, +1244 List[Union[int, str, float]] +1245 ] +1246 ], default=Preset distributions +1247 The parameters used in RandomizedSearchCV +1248 """ +1249 if random_search: +1250 classifier = RandomizedSearchCV( +1251 lm.ARDRegression(**kwargs), +1252 parameters, +1253 cv=self.folds +1254 ) +1255 else: +1256 classifier = lm.ARDRegression(**kwargs) +1257 self._sklearn_regression_meta( +1258 classifier, +1259 f'{name}{" (Random Search)" if random_search else ""}', +1260 random_search=random_search +1261 )Parameters
- name (str, default="Bayesian Automatic Relevance Detection"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - tweedie(self, name: str = 'Tweedie Regression', **kwargs): + tweedie( self, name: str = 'Tweedie Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'power': [0, 1, 1.5, 2, 2.5, 3], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4b2d0>, 'solver': ['lbfgs', 'newton-cholesky'], 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4bb10>}, **kwargs):-@@ -4016,39 +7225,102 @@826 def tweedie(self, name: str = "Tweedie Regression", **kwargs): -827 """ -828 Fit x on y via tweedie regression -829 -830 Parameters -831 ---------- -832 name : str, default="Tweedie Regression" -833 Name of classification technique. -834 """ -835 self._sklearn_regression_meta( -836 lm.TweedieRegressor(**kwargs), -837 name -838 ) +@@ -4006,6 +7205,16 @@1263 def tweedie( +1264 self, +1265 name: str = "Tweedie Regression", +1266 random_search: bool = False, +1267 parameters: dict[ +1268 str, +1269 Union[ +1270 scipy.stats.rv_continuous, +1271 List[Union[int, str, float]] +1272 ] +1273 ] = { +1274 'power': [0, 1, 1.5, 2, 2.5, 3], +1275 'alpha': uniform(loc=0, scale=2), +1276 'solver': ['lbfgs', 'newton-cholesky'], +1277 'tol': uniform(loc=0, scale=1), +1278 }, +1279 **kwargs +1280 ): +1281 """ +1282 Fit x on y via tweedie regression +1283 +1284 Parameters +1285 ---------- +1286 name : str, default="Tweedie Regression" +1287 Name of classification technique. +1288 random_search : bool, default=False +1289 Whether to perform RandomizedSearch to optimise parameters +1290 parameters : dict[ +1291 str, +1292 Union[ +1293 scipy.stats.rv_continuous, +1294 List[Union[int, str, float]] +1295 ] +1296 ], default=Preset distributions +1297 The parameters used in RandomizedSearchCV +1298 """ +1299 if random_search: +1300 classifier = RandomizedSearchCV( +1301 lm.TweedieRegressor(**kwargs), +1302 parameters, +1303 cv=self.folds +1304 ) +1305 else: +1306 classifier = lm.TweedieRegressor(**kwargs) +1307 self._sklearn_regression_meta( +1308 classifier, +1309 f'{name}{" (Random Search)" if random_search else ""}', +1310 random_search=random_search +1311 )Parameters
- name (str, default="Tweedie Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - stochastic_gradient_descent(self, name: str = 'Stochastic Gradient Descent', **kwargs): + stochastic_gradient_descent( self, name: str = 'Stochastic Gradient Descent', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc502d0>, 'loss': ['squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'], 'penalty': ['l2', 'l1', 'elasticnet', None], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc50ad0>, 'l1_ratio': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc51290>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc519d0>, 'learning_rate': ['constant', 'optimal', 'invscaling', 'adaptive'], 'eta0': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc52110>, 'power_t': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc52890>}, **kwargs):-840 def stochastic_gradient_descent( -841 self, -842 name: str = "Stochastic Gradient Descent", -843 **kwargs -844 ): -845 """ -846 Fit x on y via stochastic gradient descent regression -847 -848 Parameters -849 ---------- -850 name : str, default="Stochastic Gradient Descent" -851 Name of classification technique. -852 """ -853 self._sklearn_regression_meta( -854 lm.SGDRegressor(**kwargs), -855 name -856 ) +-1313 def stochastic_gradient_descent( +1314 self, +1315 name: str = "Stochastic Gradient Descent", +1316 random_search: bool = False, +1317 parameters: dict[ +1318 str, +1319 Union[ +1320 scipy.stats.rv_continuous, +1321 List[Union[int, str, float]] +1322 ] +1323 ] = { +1324 'tol': uniform(loc=0, scale=1), +1325 'loss': [ +1326 'squared_error', +1327 'huber', +1328 'epsilon_insensitive', +1329 'squared_epsilon_insensitive' +1330 ], +1331 'penalty': [ +1332 'l2', +1333 'l1', +1334 'elasticnet', +1335 None +1336 ], +1337 'alpha': uniform(loc=0, scale=0.001), +1338 'l1_ratio': uniform(loc=0, scale=1), +1339 'epsilon': uniform(loc=0, scale=1), +1340 'learning_rate': [ +1341 'constant', +1342 'optimal', +1343 'invscaling', +1344 'adaptive' +1345 ], +1346 'eta0': uniform(loc=0, scale=0.1), +1347 'power_t': uniform(loc=0, scale=1) +1348 +1349 }, +1350 **kwargs +1351 ): +1352 """ +1353 Fit x on y via stochastic gradient descent +1354 +1355 Parameters +1356 ---------- +1357 name : str, default="Stochastic Gradient Descent" +1358 Name of classification technique. +1359 random_search : bool, default=False +1360 Whether to perform RandomizedSearch to optimise parameters +1361 parameters : dict[ +1362 str, +1363 Union[ +1364 scipy.stats.rv_continuous, +1365 List[Union[int, str, float]] +1366 ] +1367 ], default=Preset distributions +1368 The parameters used in RandomizedSearchCV +1369 """ +1370 if random_search: +1371 classifier = RandomizedSearchCV( +1372 lm.SGDRegressor(**kwargs), +1373 parameters, +1374 cv=self.folds +1375 ) +1376 else: +1377 classifier = lm.SGDRegressor(**kwargs) +1378 self._sklearn_regression_meta( +1379 classifier, +1380 f'{name}{" (Random Search)" if random_search else ""}', +1381 random_search=random_search +1382 )Fit x on y via stochastic gradient descent regression
+@@ -4059,39 +7331,78 @@Fit x on y via stochastic gradient descent
Parameters
- name (str, default="Stochastic Gradient Descent"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[): +str, + Union[ + scipy.stats.rv_continuous, + List[Union[int, str, float]] + ] +], default=Preset distributions +The parameters used in RandomizedSearchCV
Parameters
def - passive_aggressive(self, name: str = 'Passive Agressive Regression', **kwargs): + passive_aggressive( self, name: str = 'Passive Aggressive Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'C': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc52fd0>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc537d0>, 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive'], 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc53f10>}, **kwargs):-858 def passive_aggressive( -859 self, -860 name: str = "Passive Agressive Regression", -861 **kwargs -862 ): -863 """ -864 Fit x on y via passive aggressive regression -865 -866 Parameters -867 ---------- -868 name : str, default="Passive Agressive Regression" -869 Name of classification technique. -870 """ -871 self._sklearn_regression_meta( -872 lm.PassiveAggressiveRegressor(**kwargs), -873 name -874 ) +-1384 def passive_aggressive( +1385 self, +1386 name: str = "Passive Aggressive Regression", +1387 random_search: bool = False, +1388 parameters: dict[ +1389 str, +1390 Union[ +1391 scipy.stats.rv_continuous, +1392 List[Union[int, str, float]] +1393 ] +1394 ] = { +1395 'C': uniform(loc=0, scale=2), +1396 'tol': uniform(loc=0, scale=1), +1397 'loss': [ +1398 'epsilon_insensitive', +1399 'squared_epsilon_insensitive' +1400 ], +1401 'epsilon': uniform(loc=0, scale=1) +1402 }, +1403 **kwargs +1404 ): +1405 """ +1406 Fit x on y via stochastic gradient descent regression +1407 +1408 Parameters +1409 ---------- +1410 name : str, default="Passive Aggressive Regression" +1411 Name of classification technique. +1412 random_search : bool, default=False +1413 Whether to perform RandomizedSearch to optimise parameters +1414 parameters : dict[\ +1415 str,\ +1416 Union[\ +1417 scipy.stats.rv_continuous,\ +1418 List[Union[int, str, float]]\ +1419 ]\ +1420 ], default=Preset distributions +1421 The parameters used in RandomizedSearchCV +1422 """ +1423 if random_search: +1424 classifier = RandomizedSearchCV( +1425 lm.PassiveAggressiveRegressor(**kwargs), +1426 parameters, +1427 cv=self.folds +1428 ) +1429 else: +1430 classifier = lm.PassiveAggressiveRegressor(**kwargs) +1431 self._sklearn_regression_meta( +1432 classifier, +1433 f'{name}{" (Random Search)" if random_search else ""}', +1434 random_search=random_search +1435 )Fit x on y via passive aggressive regression
+@@ -4102,35 +7413,75 @@Fit x on y via stochastic gradient descent regression
Parameters
-
- name (str, default="Passive Agressive Regression"): +
- name (str, default="Passive Aggressive Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - ransac(self, name: str = 'RANSAC', **kwargs): + ransac( self, name: str = 'RANSAC', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'estimator': [LinearRegression()]}, **kwargs):-876 def ransac(self, name: str = "RANSAC", **kwargs): -877 """ -878 Fit x on y via RANSAC regression -879 -880 Parameters -881 ---------- -882 name : str, default="RANSAC" -883 Name of classification technique. -884 """ -885 self._sklearn_regression_meta( -886 lm.RANSACRegressor(**kwargs), -887 name -888 ) +-1437 def ransac( +1438 self, +1439 name: str = "RANSAC", +1440 random_search: bool = False, +1441 parameters: dict[ +1442 str, +1443 Union[ +1444 scipy.stats.rv_continuous, +1445 List[Union[int, str, float]] +1446 ] +1447 ] = { +1448 'estimator': [ +1449 lm.LinearRegression() +1450 # TODO: ADD +1451 ] +1452 }, +1453 **kwargs +1454 ): +1455 """ +1456 Fit x on y via ransac +1457 +1458 Parameters +1459 ---------- +1460 name : str, default="RANSAC" +1461 Name of classification technique. +1462 random_search : bool, default=False +1463 Whether to perform RandomizedSearch to optimise parameters +1464 parameters : dict[\ +1465 str,\ +1466 Union[\ +1467 scipy.stats.rv_continuous,\ +1468 List[Union[int, str, float]]\ +1469 ]\ +1470 ], default=Preset distributions +1471 The parameters used in RandomizedSearchCV +1472 """ +1473 if random_search: +1474 classifier = RandomizedSearchCV( +1475 lm.RANSACRegressor(**kwargs), +1476 parameters, +1477 cv=self.folds +1478 ) +1479 else: +1480 classifier = lm.RANSACRegressor(**kwargs) +1481 self._sklearn_regression_meta( +1482 classifier, +1483 f'{name}{" (Random Search)" if random_search else ""}', +1484 random_search=random_search +1485 )Fit x on y via RANSAC regression
+@@ -4141,26 +7492,58 @@Fit x on y via ransac
Parameters
- name (str, default="RANSAC"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - theil_sen(self, name: str = 'Theil-Sen Regression', **kwargs): + theil_sen( self, name: str = 'Theil-Sen Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc68cd0>}, **kwargs):-@@ -4182,25 +7568,60 @@890 def theil_sen(self, name: str = "Theil-Sen Regression", **kwargs): -891 """ -892 Fit x on y via theil-sen regression -893 -894 Parameters -895 ---------- -896 name : str, default="Theil-Sen Regression" -897 Name of classification technique. -898 -Sen Regression -899 """ -900 self._sklearn_regression_meta( -901 lm.TheilSenRegressor(**kwargs), -902 name -903 ) +@@ -4171,7 +7554,10 @@1487 def theil_sen( +1488 self, +1489 name: str = "Theil-Sen Regression", +1490 random_search: bool = False, +1491 parameters: dict[ +1492 str, +1493 Union[ +1494 scipy.stats.rv_continuous, +1495 List[Union[int, str, float]] +1496 ] +1497 ] = { +1498 'tol': uniform(loc=0, scale=1) +1499 }, +1500 **kwargs +1501 ): +1502 """ +1503 Fit x on y via theil-sen regression +1504 +1505 Parameters +1506 ---------- +1507 name : str, default="Theil-Sen Regression" +1508 Name of classification technique. +1509 random_search : bool, default=False +1510 Whether to perform RandomizedSearch to optimise parameters +1511 parameters : dict[\ +1512 str,\ +1513 Union[\ +1514 scipy.stats.rv_continuous,\ +1515 List[Union[int, str, float]]\ +1516 ]\ +1517 ], default=Preset distributions +1518 The parameters used in RandomizedSearchCV +1519 """ +1520 if random_search: +1521 classifier = RandomizedSearchCV( +1522 lm.TheilSenRegressor(**kwargs), +1523 parameters, +1524 cv=self.folds +1525 ) +1526 else: +1527 classifier = lm.TheilSenRegressor(**kwargs) +1528 self._sklearn_regression_meta( +1529 classifier, +1530 f'{name}{" (Random Search)" if random_search else ""}', +1531 random_search=random_search +1532 )Parameters
- name (str, default="Theil-Sen Regression"): Name of classification technique.
-- -Sen Regression
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - huber(self, name: str = 'Huber Regression', **kwargs): + huber( self, name: str = 'Huber Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc69010>, 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc69810>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc69f50>}, **kwargs):-@@ -4221,36 +7646,82 @@905 def huber(self, name: str = "Huber Regression", **kwargs): -906 """ -907 Fit x on y via huber regression -908 -909 Parameters -910 ---------- -911 name : str, default="Huber Regression" -912 Name of classification technique. -913 """ -914 self._sklearn_regression_meta( -915 lm.HuberRegressor(**kwargs), -916 name -917 ) +@@ -4211,6 +7632,10 @@1534 def huber( +1535 self, +1536 name: str = "Huber Regression", +1537 random_search: bool = False, +1538 parameters: dict[ +1539 str, +1540 Union[ +1541 scipy.stats.rv_continuous, +1542 List[Union[int, str, float]] +1543 ] +1544 ] = { +1545 'epsilon': uniform(loc=1, scale=4), +1546 'alpha': uniform(loc=0, scale=0.01), +1547 'tol': uniform(loc=0, scale=1) +1548 }, +1549 **kwargs +1550 ): +1551 """ +1552 Fit x on y via huber regression +1553 +1554 Parameters +1555 ---------- +1556 name : str, default="Huber Regression" +1557 Name of classification technique. +1558 random_search : bool, default=False +1559 Whether to perform RandomizedSearch to optimise parameters +1560 parameters : dict[\ +1561 str,\ +1562 Union[\ +1563 scipy.stats.rv_continuous,\ +1564 List[Union[int, str, float]]\ +1565 ]\ +1566 ], default=Preset distributions +1567 The parameters used in RandomizedSearchCV +1568 """ +1569 if random_search: +1570 classifier = RandomizedSearchCV( +1571 lm.HuberRegressor(**kwargs), +1572 parameters, +1573 cv=self.folds +1574 ) +1575 else: +1576 classifier = lm.HuberRegressor(**kwargs) +1577 self._sklearn_regression_meta( +1578 classifier, +1579 f'{name}{" (Random Search)" if random_search else ""}', +1580 random_search=random_search +1581 )Parameters
- name (str, default="Huber Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - quantile(self, name: str = 'Quantile Regression', **kwargs): + quantile( self, name: str = 'Quantile Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'quantile': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6a690>, 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6ae90>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6b5d0>, 'solver': ['highs-ds', 'highs-ipm', 'highs', 'revised simplex']}, **kwargs):-919 def quantile(self, name: str = "Quantile Regression", **kwargs): -920 """ -921 Fit x on y via quantile regression -922 -923 Parameters -924 ---------- -925 name : str, default="Quantile Regression" -926 Name of classification technique. -927 """ -928 self._sklearn_regression_meta( -929 lm.QuantileRegressor(**kwargs), -930 name -931 ) +1583 def quantile( +1584 self, +1585 name: str = "Quantile Regression", +1586 random_search: bool = False, +1587 parameters: dict[ +1588 str, +1589 Union[ +1590 scipy.stats.rv_continuous, +1591 List[Union[int, str, float]] +1592 ] +1593 ] = { +1594 'quantile': uniform(loc=0, scale=2), +1595 'alpha': uniform(loc=0, scale=2), +1596 'tol': uniform(loc=0, scale=1), +1597 'solver': [ +1598 'highs-ds', +1599 'highs-ipm', +1600 'highs', +1601 'revised simplex', +1602 ] +1603 }, +1604 **kwargs +1605 ): +1606 """ +1607 Fit x on y via quantile regression +1608 +1609 Parameters +1610 'interior-point', +1611 ---------- +1612 name : str, default="Quantile Regression" +1613 Name of classification technique. +1614 random_search : bool, default=False +1615 Whether to perform RandomizedSearch to optimise parameters +1616 parameters : dict[\ +1617 str,\ +1618 Union[\ +1619 scipy.stats.rv_continuous,\ +1620 List[Union[int, str, float]]\ +1621 ]\ +1622 ], default=Preset distributions +1623 The parameters used in RandomizedSearchCV +1624 """ +1625 if random_search: +1626 classifier = RandomizedSearchCV( +1627 lm.QuantileRegressor(**kwargs), +1628 parameters, +1629 cv=self.folds +1630 ) +1631 else: +1632 classifier = lm.QuantileRegressor(**kwargs) +1633 self._sklearn_regression_meta( +1634 classifier, +1635 f'{name}{" (Random Search)" if random_search else ""}', +1636 random_search=random_search +1637 )@@ -4260,35 +7731,87 @@Fit x on y via quantile regression
-Parameters
+Parameters
--
+- name (str, default="Quantile Regression"): -Name of classification technique.
-'interior-point',
+ +name : str, default="Quantile Regression" + Name of classification technique. +random_search : bool, default=False + Whether to perform RandomizedSearch to optimise parameters +parameters : dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions + The parameters used in RandomizedSearchCV
Parameters
def - decision_tree(self, name: str = 'Decision Tree', **kwargs): + decision_tree( self, name: str = 'Decision Tree', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'splitter': ['best', 'random'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6bd10>}, **kwargs):-933 def decision_tree(self, name: str = "Decision Tree", **kwargs): -934 """ -935 Fit x on y using a decision tree -936 -937 Parameters -938 ---------- -939 name : str, default="Decision Tree" -940 Name of classification technique. -941 """ -942 self._sklearn_regression_meta( -943 tree.DecisionTreeRegressor(**kwargs), -944 name -945 ) +-1639 def decision_tree( +1640 self, +1641 name: str = "Decision Tree", +1642 random_search: bool = False, +1643 parameters: dict[ +1644 str, +1645 Union[ +1646 scipy.stats.rv_continuous, +1647 List[Union[int, str, float]] +1648 ] +1649 ] = { +1650 'criterion': [ +1651 'squared_error', +1652 'friedman_mse', +1653 'absolute_error', +1654 'poisson' +1655 ], +1656 'splitter': [ +1657 'best', +1658 'random' +1659 ], +1660 'max_features': [ +1661 None, +1662 'sqrt', +1663 'log2' +1664 ], +1665 'ccp_alpha': uniform(loc=0, scale=2), +1666 }, +1667 **kwargs +1668 ): +1669 """ +1670 Fit x on y via decision tree +1671 +1672 Parameters +1673 ---------- +1674 name : str, default="Decision Tree" +1675 Name of classification technique. +1676 random_search : bool, default=False +1677 Whether to perform RandomizedSearch to optimise parameters +1678 parameters : dict[\ +1679 str,\ +1680 Union[\ +1681 scipy.stats.rv_continuous,\ +1682 List[Union[int, str, float]]\ +1683 ]\ +1684 ], default=Preset distributions +1685 The parameters used in RandomizedSearchCV +1686 """ +1687 if random_search: +1688 classifier = RandomizedSearchCV( +1689 tree.DecisionTreeRegressor(**kwargs), +1690 parameters, +1691 cv=self.folds +1692 ) +1693 else: +1694 classifier = tree.DecisionTreeRegressor(**kwargs) +1695 self._sklearn_regression_meta( +1696 classifier, +1697 f'{name}{" (Random Search)" if random_search else ""}', +1698 random_search=random_search +1699 )Fit x on y using a decision tree
+@@ -4299,35 +7822,87 @@Fit x on y via decision tree
Parameters
- name (str, default="Decision Tree"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - extra_tree(self, name: str = 'Extra Tree', **kwargs): + extra_tree( self, name: str = 'Extra Tree', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'splitter': ['best', 'random'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6c650>}, **kwargs):-947 def extra_tree(self, name: str = "Extra Tree", **kwargs): -948 """ -949 Fit x on y using an extra tree -950 -951 Parameters -952 ---------- -953 name : str, default="Extra Tree" -954 Name of classification technique. -955 """ -956 self._sklearn_regression_meta( -957 tree.ExtraTreeRegressor(**kwargs), -958 name -959 ) +-1701 def extra_tree( +1702 self, +1703 name: str = "Extra Tree", +1704 random_search: bool = False, +1705 parameters: dict[ +1706 str, +1707 Union[ +1708 scipy.stats.rv_continuous, +1709 List[Union[int, str, float]] +1710 ] +1711 ] = { +1712 'criterion': [ +1713 'squared_error', +1714 'friedman_mse', +1715 'absolute_error', +1716 'poisson' +1717 ], +1718 'splitter': [ +1719 'best', +1720 'random' +1721 ], +1722 'max_features': [ +1723 None, +1724 'sqrt', +1725 'log2' +1726 ], +1727 'ccp_alpha': uniform(loc=0, scale=2), +1728 }, +1729 **kwargs +1730 ): +1731 """ +1732 Fit x on y via extra tree +1733 +1734 Parameters +1735 ---------- +1736 name : str, default="Extra Tree" +1737 Name of classification technique. +1738 random_search : bool, default=False +1739 Whether to perform RandomizedSearch to optimise parameters +1740 parameters : dict[\ +1741 str,\ +1742 Union[\ +1743 scipy.stats.rv_continuous,\ +1744 List[Union[int, str, float]]\ +1745 ]\ +1746 ], default=Preset distributions +1747 The parameters used in RandomizedSearchCV +1748 """ +1749 if random_search: +1750 classifier = RandomizedSearchCV( +1751 tree.ExtraTreeRegressor(**kwargs), +1752 parameters, +1753 cv=self.folds +1754 ) +1755 else: +1756 classifier = tree.ExtraTreeRegressor(**kwargs) +1757 self._sklearn_regression_meta( +1758 classifier, +1759 f'{name}{" (Random Search)" if random_search else ""}', +1760 random_search=random_search +1761 )Fit x on y using an extra tree
+@@ -4338,35 +7913,86 @@Fit x on y via extra tree
Parameters
- name (str, default="Extra Tree"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - random_forest(self, name: str = 'Random Forest', **kwargs): + random_forest( self, name: str = 'Random Forest', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'bootstrap': [True, False], 'max_samples': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6d510>, 'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6d7d0>}, **kwargs):-961 def random_forest(self, name: str = "Random Forest", **kwargs): -962 """ -963 Fit x on y using a random forest -964 -965 Parameters -966 ---------- -967 name : str, default="Random Forest" -968 Name of classification technique. -969 """ -970 self._sklearn_regression_meta( -971 en.RandomForestRegressor(**kwargs), -972 name -973 ) +-1763 def random_forest( +1764 self, +1765 name: str = "Random Forest", +1766 random_search: bool = False, +1767 parameters: dict[ +1768 str, +1769 Union[ +1770 scipy.stats.rv_continuous, +1771 List[Union[int, str, float]] +1772 ] +1773 ] = { +1774 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +1775 'bootstrap': [True, False], +1776 'max_samples': uniform(loc=0.01, scale=0.99), +1777 'criterion': [ +1778 'squared_error', +1779 'friedman_mse', +1780 'absolute_error', +1781 'poisson' +1782 ], +1783 'max_features': [ +1784 None, +1785 'sqrt', +1786 'log2' +1787 ], +1788 'ccp_alpha': uniform(loc=0, scale=2), +1789 }, +1790 **kwargs +1791 ): +1792 """ +1793 Fit x on y via random forest +1794 +1795 Parameters +1796 ---------- +1797 name : str, default="Random Forest" +1798 Name of classification technique. +1799 random_search : bool, default=False +1800 Whether to perform RandomizedSearch to optimise parameters +1801 parameters : dict[\ +1802 str,\ +1803 Union[\ +1804 scipy.stats.rv_continuous,\ +1805 List[Union[int, str, float]]\ +1806 ]\ +1807 ], default=Preset distributions +1808 The parameters used in RandomizedSearchCV +1809 """ +1810 if random_search: +1811 classifier = RandomizedSearchCV( +1812 en.RandomForestRegressor(**kwargs), +1813 parameters, +1814 cv=self.folds +1815 ) +1816 else: +1817 classifier = en.RandomForestRegressor(**kwargs) +1818 self._sklearn_regression_meta( +1819 classifier, +1820 f'{name}{" (Random Search)" if random_search else ""}', +1821 random_search=random_search +1822 )Fit x on y using a random forest
+@@ -4377,39 +8003,86 @@Fit x on y via random forest
Parameters
- name (str, default="Random Forest"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - extra_trees_ensemble(self, name: str = 'Extra Trees Ensemble', **kwargs): + extra_trees_ensemble( self, name: str = 'Extra Trees Ensemble', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'bootstrap': [True, False], 'max_samples': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6e590>, 'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6e850>}, **kwargs):-975 def extra_trees_ensemble( -976 self, -977 name: str = "Extra Trees Ensemble", -978 **kwargs -979 ): -980 """ -981 Fit x on y using an ensemble of extra trees -982 -983 Parameters -984 ---------- -985 name : str, default="Extra Trees Ensemble" -986 Name of classification technique. -987 """ -988 self._sklearn_regression_meta( -989 en.ExtraTreesRegressor(**kwargs), -990 name -991 ) +-1824 def extra_trees_ensemble( +1825 self, +1826 name: str = "Extra Trees Ensemble", +1827 random_search: bool = False, +1828 parameters: dict[ +1829 str, +1830 Union[ +1831 scipy.stats.rv_continuous, +1832 List[Union[int, str, float]] +1833 ] +1834 ] = { +1835 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +1836 'bootstrap': [True, False], +1837 'max_samples': uniform(loc=0.01, scale=0.99), +1838 'criterion': [ +1839 'squared_error', +1840 'friedman_mse', +1841 'absolute_error', +1842 'poisson' +1843 ], +1844 'max_features': [ +1845 None, +1846 'sqrt', +1847 'log2' +1848 ], +1849 'ccp_alpha': uniform(loc=0, scale=2), +1850 }, +1851 **kwargs +1852 ): +1853 """ +1854 Fit x on y via extra trees ensemble +1855 +1856 Parameters +1857 ---------- +1858 name : str, default="Extra Trees Ensemble" +1859 Name of classification technique. +1860 random_search : bool, default=False +1861 Whether to perform RandomizedSearch to optimise parameters +1862 parameters : dict[\ +1863 str,\ +1864 Union[\ +1865 scipy.stats.rv_continuous,\ +1866 List[Union[int, str, float]]\ +1867 ]\ +1868 ], default=Preset distributions +1869 The parameters used in RandomizedSearchCV +1870 """ +1871 if random_search: +1872 classifier = RandomizedSearchCV( +1873 en.ExtraTreesRegressor(**kwargs), +1874 parameters, +1875 cv=self.folds +1876 ) +1877 else: +1878 classifier = en.ExtraTreesRegressor(**kwargs) +1879 self._sklearn_regression_meta( +1880 classifier, +1881 f'{name}{" (Random Search)" if random_search else ""}', +1882 random_search=random_search +1883 )Fit x on y using an ensemble of extra trees
+@@ -4420,39 +8093,96 @@Fit x on y via extra trees ensemble
Parameters
- name (str, default="Extra Trees Ensemble"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - gradient_boost_regressor(self, name: str = 'Gradient Boosting Regression', **kwargs): + gradient_boost_regressor( self, name: str = 'Gradient Boosting Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'loss': ['squared_error', 'absolute_error', 'huber', 'quantile'], 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6f010>, 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'subsample': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6fe50>, 'criterion': ['friedman_mse', 'squared_error'], 'max_features': [None, 'sqrt', 'log2'], 'init': [None, 'zero', <class 'sklearn.linear_model._base.LinearRegression'>, <class 'sklearn.linear_model._theil_sen.TheilSenRegressor'>], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc74050>}, **kwargs):-993 def gradient_boost_regressor( - 994 self, - 995 name: str = "Gradient Boosting Regression", - 996 **kwargs - 997 ): - 998 """ - 999 Fit x on y using gradient boosting regression -1000 -1001 Parameters -1002 ---------- -1003 name : str, default="Gradient Boosting Regression" -1004 Name of classification technique. -1005 """ -1006 self._sklearn_regression_meta( -1007 en.GradientBoostingRegressor(**kwargs), -1008 name -1009 ) +-1885 def gradient_boost_regressor( +1886 self, +1887 name: str = "Gradient Boosting Regression", +1888 random_search: bool = False, +1889 parameters: dict[ +1890 str, +1891 Union[ +1892 scipy.stats.rv_continuous, +1893 List[Union[int, str, float]] +1894 ] +1895 ] = { +1896 'loss': [ +1897 'squared_error', +1898 'absolute_error', +1899 'huber', +1900 'quantile' +1901 ], +1902 'learning_rate': uniform(loc=0, scale=2), +1903 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +1904 'subsample': uniform(loc=0.01, scale=0.99), +1905 'criterion': [ +1906 'friedman_mse', +1907 'squared_error' +1908 ], +1909 'max_features': [ +1910 None, +1911 'sqrt', +1912 'log2' +1913 ], +1914 'init': [ +1915 None, +1916 'zero', +1917 lm.LinearRegression, +1918 lm.TheilSenRegressor +1919 ], +1920 'ccp_alpha': uniform(loc=0, scale=2) +1921 }, +1922 **kwargs +1923 ): +1924 """ +1925 Fit x on y via gradient boosting regression +1926 +1927 Parameters +1928 ---------- +1929 name : str, default="Gradient Boosting Regression" +1930 Name of classification technique. +1931 random_search : bool, default=False +1932 Whether to perform RandomizedSearch to optimise parameters +1933 parameters : dict[\ +1934 str,\ +1935 Union[\ +1936 scipy.stats.rv_continuous,\ +1937 List[Union[int, str, float]]\ +1938 ]\ +1939 ], default=Preset distributions +1940 The parameters used in RandomizedSearchCV +1941 """ +1942 if random_search: +1943 classifier = RandomizedSearchCV( +1944 en.GradientBoostingRegressor(**kwargs), +1945 parameters, +1946 cv=self.folds +1947 ) +1948 else: +1949 classifier = en.GradientBoostingRegressor(**kwargs) +1950 self._sklearn_regression_meta( +1951 classifier, +1952 f'{name}{" (Random Search)" if random_search else ""}', +1953 random_search=random_search +1954 )Fit x on y using gradient boosting regression
+@@ -4463,42 +8193,83 @@Fit x on y via gradient boosting regression
Parameters
- name (str, default="Gradient Boosting Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - hist_gradient_boost_regressor( self, name: str = 'Histogram-Based Gradient Boosting Regression', **kwargs): + hist_gradient_boost_regressor( self, name: str = 'Histogram-Based Gradient Boosting Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'loss': ['squared_error', 'absolute_error', 'gamma', 'poisson', 'quantile'], 'quantile': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc74850>, 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc75090>, 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], 'l2_regularization': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc75dd0>, 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255]}, **kwargs):-1011 def hist_gradient_boost_regressor( -1012 self, -1013 name: str = "Histogram-Based Gradient Boosting Regression", -1014 **kwargs -1015 ): -1016 """ -1017 Fit x on y using histogram-based gradient boosting regression -1018 -1019 Parameters -1020 ---------- -1021 name : str, default="Histogram-Based Gradient Boosting Regression" -1022 Name of classification technique. -1023 -Based -1024 Gradient Boosting Regression -1025 """ -1026 self._sklearn_regression_meta( -1027 en.HistGradientBoostingRegressor(**kwargs), -1028 name -1029 ) +-1956 def hist_gradient_boost_regressor( +1957 self, +1958 name: str = "Histogram-Based Gradient Boosting Regression", +1959 random_search: bool = False, +1960 parameters: dict[ +1961 str, +1962 Union[ +1963 scipy.stats.rv_continuous, +1964 List[Union[int, str, float]] +1965 ] +1966 ] = { +1967 'loss': [ +1968 'squared_error', +1969 'absolute_error', +1970 'gamma', +1971 'poisson', +1972 'quantile' +1973 ], +1974 'quantile': uniform(loc=0, scale=1), +1975 'learning_rate': uniform(loc=0, scale=2), +1976 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], +1977 'l2_regularization': uniform(loc=0, scale=2), +1978 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255] +1979 }, +1980 **kwargs +1981 ): +1982 """ +1983 Fit x on y via histogram-based gradient boosting regression +1984 +1985 Parameters +1986 ---------- +1987 name : str, default="Histogram-Based Gradient Boosting Regression" +1988 Name of classification technique. +1989 random_search : bool, default=False +1990 Whether to perform RandomizedSearch to optimise parameters +1991 parameters : dict[\ +1992 str,\ +1993 Union[\ +1994 scipy.stats.rv_continuous,\ +1995 List[Union[int, str, float]]\ +1996 ]\ +1997 ], default=Preset distributions +1998 The parameters used in RandomizedSearchCV +1999 """ +2000 if random_search: +2001 classifier = RandomizedSearchCV( +2002 en.HistGradientBoostingRegressor(**kwargs), +2003 parameters, +2004 cv=self.folds +2005 ) +2006 else: +2007 classifier = en.HistGradientBoostingRegressor(**kwargs) +2008 self._sklearn_regression_meta( +2009 classifier, +2010 f'{name}{" (Random Search)" if random_search else ""}', +2011 random_search=random_search +2012 )Fit x on y using histogram-based gradient boosting regression
+@@ -4509,42 +8280,113 @@Fit x on y via histogram-based gradient boosting regression
Parameters
- name (str, default="Histogram-Based Gradient Boosting Regression"): Name of classification technique.
-- -Based: Gradient Boosting Regression
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - mlp_regressor(self, name: str = 'Multi-Layer Perceptron Regression', **kwargs): + mlp_regressor( self, name: str = 'Multi-Layer Perceptron Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'hidden_layer_sizes': [(100,), (100, 200), (10,), (200, 400), (100, 200, 300)], 'activation': ['identity', 'logistic', 'tanh', 'relu'], 'solver': ['lbfgs', 'sgd', 'adam'], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc76590>, 'batch_size': ['auto', 20, 200, 500, 1000, 5000, 10000], 'learning_rate': ['constant', 'invscaling', 'adaptive'], 'learning_rate_init': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc76ed0>, 'power_t': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc770d0>, 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], 'shuffle': [True, False], 'momentum': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc77e10>, 'beta_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc84050>, 'beta_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc84790>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc84ed0>}, **kwargs):-1031 def mlp_regressor( -1032 self, -1033 name: str = "Multi-Layer Perceptron Regression", -1034 **kwargs -1035 ): -1036 """ -1037 Fit x on y using multi-layer perceptrons -1038 -1039 Parameters -1040 ---------- -1041 name : str, default="Multi-Layer Perceptron Regression" -1042 Name of classification technique. -1043 -Layer Perceptron -1044 Regression -1045 """ -1046 self._sklearn_regression_meta( -1047 nn.MLPRegressor(**kwargs), -1048 name -1049 ) +-2014 def mlp_regressor( +2015 self, +2016 name: str = "Multi-Layer Perceptron Regression", +2017 random_search: bool = False, +2018 parameters: dict[ +2019 str, +2020 Union[ +2021 scipy.stats.rv_continuous, +2022 List[Union[int, str, float]] +2023 ] +2024 ] = { +2025 'hidden_layer_sizes': [ +2026 (100, ), +2027 (100, 200), +2028 (10, ), +2029 (200, 400), +2030 (100, 200, 300) +2031 ], +2032 'activation': [ +2033 'identity', +2034 'logistic', +2035 'tanh', +2036 'relu' +2037 ], +2038 'solver': [ +2039 'lbfgs', +2040 'sgd', +2041 'adam' +2042 ], +2043 'alpha': uniform(loc=0, scale=0.1), +2044 'batch_size': [ +2045 'auto', +2046 20, +2047 200, +2048 500, +2049 1000, +2050 5000, +2051 10000 +2052 ], +2053 'learning_rate': [ +2054 'constant', +2055 'invscaling', +2056 'adaptive' +2057 ], +2058 'learning_rate_init': uniform(loc=0, scale=0.1), +2059 'power_t': uniform(loc=0.1, scale=0.9), +2060 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], +2061 'shuffle': [True, False], +2062 'momentum': uniform(loc=0.1, scale=0.9), +2063 'beta_1': uniform(loc=0.1, scale=0.9), +2064 'beta_2': uniform(loc=0.1, scale=0.9), +2065 'epsilon': uniform(loc=1E8, scale=1E6), +2066 +2067 }, +2068 **kwargs +2069 ): +2070 """ +2071 Fit x on y via multi-layer perceptron regression +2072 +2073 Parameters +2074 ---------- +2075 name : str, default="Multi-Layer Perceptron Regression" +2076 Name of classification technique. +2077 random_search : bool, default=False +2078 Whether to perform RandomizedSearch to optimise parameters +2079 parameters : dict[\ +2080 str,\ +2081 Union[\ +2082 scipy.stats.rv_continuous,\ +2083 List[Union[int, str, float]]\ +2084 ]\ +2085 ], default=Preset distributions +2086 The parameters used in RandomizedSearchCV +2087 """ +2088 if random_search: +2089 classifier = RandomizedSearchCV( +2090 nn.MLPRegressor(**kwargs), +2091 parameters, +2092 cv=self.folds +2093 ) +2094 else: +2095 classifier = nn.MLPRegressor(**kwargs) +2096 self._sklearn_regression_meta( +2097 classifier, +2098 f'{name}{" (Random Search)" if random_search else ""}', +2099 random_search=random_search +2100 )Fit x on y using multi-layer perceptrons
+@@ -4555,35 +8397,83 @@Fit x on y via multi-layer perceptron regression
Parameters
- name (str, default="Multi-Layer Perceptron Regression"): Name of classification technique.
-- -Layer Perceptron: Regression
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - svr(self, name: str = 'Support Vector Regression', **kwargs): + svr( self, name: str = 'Support Vector Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'degree': [2, 3, 4], 'gamma': ['scale', 'auto'], 'coef0': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc85610>, 'C': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc85ed0>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc86610>, 'shrinking': [True, False]}, **kwargs):-1051 def svr(self, name: str = "Support Vector Regression", **kwargs): -1052 """ -1053 Fit x on y using support vector regression -1054 -1055 Parameters -1056 ---------- -1057 name : str, default="Support Vector Regression" -1058 Name of classification technique. -1059 """ -1060 self._sklearn_regression_meta( -1061 svm.SVR(**kwargs), -1062 name -1063 ) +-2102 def svr( +2103 self, +2104 name: str = "Support Vector Regression", +2105 random_search: bool = False, +2106 parameters: dict[ +2107 str, +2108 Union[ +2109 scipy.stats.rv_continuous, +2110 List[Union[int, str, float]] +2111 ] +2112 ] = { +2113 'kernel': [ +2114 'linear', +2115 'poly', +2116 'rbf', +2117 'sigmoid', +2118 ], +2119 'degree': [2, 3, 4], +2120 'gamma': ['scale', 'auto'], +2121 'coef0': uniform(loc=0, scale=1), +2122 'C': uniform(loc=0.1, scale=1.9), +2123 'epsilon': uniform(loc=1E8, scale=1), +2124 'shrinking': [True, False] +2125 }, +2126 **kwargs +2127 ): +2128 """ +2129 Fit x on y via support vector regression +2130 +2131 Parameters +2132 ---------- +2133 name : str, default="Support Vector Regression" +2134 Name of classification technique. +2135 random_search : bool, default=False +2136 Whether to perform RandomizedSearch to optimise parameters +2137 parameters : dict[\ +2138 str,\ +2139 Union[\ +2140 scipy.stats.rv_continuous,\ +2141 List[Union[int, str, float]]\ +2142 ]\ +2143 ], default=Preset distributions +2144 The parameters used in RandomizedSearchCV +2145 """ +2146 if random_search: +2147 classifier = RandomizedSearchCV( +2148 svm.SVR(**kwargs), +2149 parameters, +2150 cv=self.folds +2151 ) +2152 else: +2153 classifier = svm.SVR(**kwargs) +2154 self._sklearn_regression_meta( +2155 classifier, +2156 f'{name}{" (Random Search)" if random_search else ""}', +2157 random_search=random_search +2158 )Fit x on y using support vector regression
+@@ -4594,39 +8484,74 @@Fit x on y via support vector regression
Parameters
- name (str, default="Support Vector Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - linear_svr(self, name: str = 'Linear Support Vector Regression', **kwargs): + linear_svr( self, name: str = 'Linear Support Vector Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'C': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc86d50>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc87590>, 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive']}, **kwargs):-1065 def linear_svr( -1066 self, -1067 name: str = "Linear Support Vector Regression", -1068 **kwargs -1069 ): -1070 """ -1071 Fit x on y using linear support vector regression -1072 -1073 Parameters -1074 ---------- -1075 name : str, default="Linear Support Vector Regression" -1076 Name of classification technique. -1077 """ -1078 self._sklearn_regression_meta( -1079 svm.LinearSVR(**kwargs), -1080 name -1081 ) +-2160 def linear_svr( +2161 self, +2162 name: str = "Linear Support Vector Regression", +2163 random_search: bool = False, +2164 parameters: dict[ +2165 str, +2166 Union[ +2167 scipy.stats.rv_continuous, +2168 List[Union[int, str, float]] +2169 ] +2170 ] = { +2171 'C': uniform(loc=0.1, scale=1.9), +2172 'epsilon': uniform(loc=1E8, scale=1), +2173 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive'] +2174 }, +2175 **kwargs +2176 ): +2177 """ +2178 Fit x on y via linear support vector regression +2179 +2180 Parameters +2181 ---------- +2182 name : str, default="Linear Support Vector Regression" +2183 Name of classification technique. +2184 random_search : bool, default=False +2185 Whether to perform RandomizedSearch to optimise parameters +2186 parameters : dict[\ +2187 str,\ +2188 Union[\ +2189 scipy.stats.rv_continuous,\ +2190 List[Union[int, str, float]]\ +2191 ]\ +2192 ], default=Preset distributions +2193 The parameters used in RandomizedSearchCV +2194 """ +2195 if random_search: +2196 classifier = RandomizedSearchCV( +2197 svm.LinearSVR(**kwargs), +2198 parameters, +2199 cv=self.folds +2200 ) +2201 else: +2202 classifier = svm.LinearSVR(**kwargs) +2203 self._sklearn_regression_meta( +2204 classifier, +2205 f'{name}{" (Random Search)" if random_search else ""}', +2206 random_search=random_search +2207 )Fit x on y using linear support vector regression
+@@ -4637,38 +8562,82 @@Fit x on y via linear support vector regression
Parameters
- name (str, default="Linear Support Vector Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - nu_svr(self, name: str = 'Nu-Support Vector Regression', **kwargs): + nu_svr( self, name: str = 'Nu-Support Vector Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'degree': [2, 3, 4], 'gamma': ['scale', 'auto'], 'coef0': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc87cd0>, 'shrinking': [True, False], 'nu': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9c610>}, **kwargs):-1083 def nu_svr(self, name: str = "Nu-Support Vector Regression", **kwargs): -1084 """ -1085 Fit x on y using nu-support vector regression -1086 -1087 Parameters -1088 ---------- -1089 name : str, default="Nu-Support Vector Regression" -1090 Name of classification technique. -1091 -Support Vector -1092 Regression -1093 """ -1094 self._sklearn_regression_meta( -1095 svm.LinearSVR(**kwargs), -1096 name -1097 ) +-2209 def nu_svr( +2210 self, +2211 name: str = "Nu-Support Vector Regression", +2212 random_search: bool = False, +2213 parameters: dict[ +2214 str, +2215 Union[ +2216 scipy.stats.rv_continuous, +2217 List[Union[int, str, float]] +2218 ] +2219 ] = { +2220 'kernel': [ +2221 'linear', +2222 'poly', +2223 'rbf', +2224 'sigmoid', +2225 ], +2226 'degree': [2, 3, 4], +2227 'gamma': ['scale', 'auto'], +2228 'coef0': uniform(loc=0, scale=1), +2229 'shrinking': [True, False], +2230 'nu': uniform(loc=0, scale=1), +2231 }, +2232 **kwargs +2233 ): +2234 """ +2235 Fit x on y via nu-support vector regression +2236 +2237 Parameters +2238 ---------- +2239 name : str, default="Nu-Support Vector Regression" +2240 Name of classification technique. +2241 random_search : bool, default=False +2242 Whether to perform RandomizedSearch to optimise parameters +2243 parameters : dict[\ +2244 str,\ +2245 Union[\ +2246 scipy.stats.rv_continuous,\ +2247 List[Union[int, str, float]]\ +2248 ]\ +2249 ], default=Preset distributions +2250 The parameters used in RandomizedSearchCV +2251 """ +2252 if random_search: +2253 classifier = RandomizedSearchCV( +2254 svm.NuSVR(**kwargs), +2255 parameters, +2256 cv=self.folds +2257 ) +2258 else: +2259 classifier = svm.NuSVR(**kwargs) +2260 self._sklearn_regression_meta( +2261 classifier, +2262 f'{name}{" (Random Search)" if random_search else ""}', +2263 random_search=random_search +2264 )Fit x on y using nu-support vector regression
+@@ -4679,78 +8648,82 @@Fit x on y via nu-support vector regression
Parameters
- name (str, default="Nu-Support Vector Regression"): Name of classification technique.
-- -Support Vector: Regression
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - gaussian_process(self, name: str = 'Gaussian Process Regression', **kwargs): + gaussian_process( self, name: str = 'Gaussian Process Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'kernel': [None, <class 'sklearn.gaussian_process.kernels.RBF'>, <class 'sklearn.gaussian_process.kernels.Matern'>, <class 'sklearn.gaussian_process.kernels.DotProduct'>, <class 'sklearn.gaussian_process.kernels.WhiteKernel'>, <class 'sklearn.gaussian_process.kernels.CompoundKernel'>, <class 'sklearn.gaussian_process.kernels.ExpSineSquared'>], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9cd90>, 'normalize_y': [True, False]}, **kwargs):-1099 def gaussian_process( -1100 self, -1101 name: str = "Gaussian Process Regression", -1102 **kwargs -1103 ): -1104 """ -1105 Fit x on y using gaussian process regression -1106 -1107 Parameters -1108 ---------- -1109 name : str, default="Gaussian Process Regression" -1110 Name of classification technique. -1111 """ -1112 self._sklearn_regression_meta( -1113 gp.GaussianProcessRegressor(**kwargs), -1114 name -1115 ) +-2266 def gaussian_process( +2267 self, +2268 name: str = "Gaussian Process Regression", +2269 random_search: bool = False, +2270 parameters: dict[ +2271 str, +2272 Union[ +2273 scipy.stats.rv_continuous, +2274 List[Union[int, str, float]] +2275 ] +2276 ] = { +2277 'kernel': [ +2278 None, +2279 kern.RBF, +2280 kern.Matern, +2281 kern.DotProduct, +2282 kern.WhiteKernel, +2283 kern.CompoundKernel, +2284 kern.ExpSineSquared +2285 ], +2286 'alpha': uniform(loc=0, scale=1E8), +2287 'normalize_y': [True, False] +2288 }, +2289 **kwargs +2290 ): +2291 """ +2292 Fit x on y via gaussian process regression +2293 +2294 Parameters +2295 ---------- +2296 name : str, default="Gaussian Process Regression" +2297 Name of classification technique. +2298 random_search : bool, default=False +2299 Whether to perform RandomizedSearch to optimise parameters +2300 parameters : dict[\ +2301 str,\ +2302 Union[\ +2303 scipy.stats.rv_continuous,\ +2304 List[Union[int, str, float]]\ +2305 ]\ +2306 ], default=Preset distributions +2307 The parameters used in RandomizedSearchCV +2308 """ +2309 if random_search: +2310 classifier = RandomizedSearchCV( +2311 gp.GaussianProcessRegressor(**kwargs), +2312 parameters, +2313 cv=self.folds +2314 ) +2315 else: +2316 classifier = gp.GaussianProcessRegressor(**kwargs) +2317 self._sklearn_regression_meta( +2318 classifier, +2319 f'{name}{" (Random Search)" if random_search else ""}', +2320 random_search=random_search +2321 )-Fit x on y using gaussian process regression
+- - -Fit x on y via gaussian process regression
Parameters
-
- name (str, default="Gaussian Process Regression"): Name of classification technique.
-- -- - def - pls(self, name: str = 'PLS Regression', **kwargs): - - - -- -- - -1117 def pls(self, name: str = "PLS Regression", **kwargs): -1118 """ -1119 Fit x on y using pls regression -1120 -1121 Parameters -1122 ---------- -1123 name : str, default="PLS Regression" -1124 Name of classification technique. -1125 """ -1126 self._sklearn_regression_meta( -1127 cd.PLSRegression(n_components=1, **kwargs), -1128 name -1129 ) -@@ -4761,36 +8734,73 @@Fit x on y using pls regression
- -Parameters
- --
- name (str, default="PLS Regression"): -Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - isotonic(self, name: str = 'Isotonic Regression', **kwargs): + isotonic( self, name: str = 'Isotonic Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'increasing': [True, False]}, **kwargs):-1131 def isotonic(self, name: str = "Isotonic Regression", **kwargs): -1132 """ -1133 Fit x on y using isotonic regression -1134 -1135 Parameters -1136 ---------- -1137 name : str, default="Isotonic Regression" -1138 Name of classification technique. -1139 """ -1140 self._sklearn_regression_meta( -1141 iso.IsotonicRegression(**kwargs), -1142 name, -1143 max_coeffs=1 -1144 ) +-2323 def isotonic( +2324 self, +2325 name: str = "Isotonic Regression", +2326 random_search: bool = False, +2327 parameters: dict[ +2328 str, +2329 Union[ +2330 scipy.stats.rv_continuous, +2331 List[Union[int, str, float]] +2332 ] +2333 ] = { +2334 'increasing': [True, False] +2335 }, +2336 **kwargs +2337 ): +2338 """ +2339 Fit x on y via isotonic regression +2340 +2341 Parameters +2342 ---------- +2343 name : str, default="Isotonic Regression" +2344 Name of classification technique. +2345 random_search : bool, default=False +2346 Whether to perform RandomizedSearch to optimise parameters +2347 parameters : dict[\ +2348 str,\ +2349 Union[\ +2350 scipy.stats.rv_continuous,\ +2351 List[Union[int, str, float]]\ +2352 ]\ +2353 ], default=Preset distributions +2354 The parameters used in RandomizedSearchCV +2355 """ +2356 if random_search: +2357 classifier = RandomizedSearchCV( +2358 iso.IsotonicRegression(**kwargs), +2359 parameters, +2360 cv=self.folds +2361 ) +2362 else: +2363 classifier = iso.IsotonicRegression(**kwargs) +2364 self._sklearn_regression_meta( +2365 classifier, +2366 f'{name}{" (Random Search)" if random_search else ""}', +2367 random_search=random_search, +2368 max_coeffs=1 +2369 )Fit x on y using isotonic regression
+@@ -4801,35 +8811,83 @@Fit x on y via isotonic regression
Parameters
- name (str, default="Isotonic Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - xgboost(self, name: str = 'XGBoost Regression', **kwargs): + xgboost( self, name: str = 'XGBoost Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255], 'grow_policy': ['depthwise', 'lossguide'], 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9d9d0>, 'tree_method': ['exact', 'approx', 'hist'], 'gamma': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9e050>, 'subsample': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9e7d0>, 'reg_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9ef10>, 'reg_lambda': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9f650>}, **kwargs):-1146 def xgboost(self, name: str = "XGBoost Regression", **kwargs): -1147 """ -1148 Fit x on y using xgboost regression -1149 -1150 Parameters -1151 ---------- -1152 name : str, default="XGBoost Regression" -1153 Name of classification technique. -1154 """ -1155 self._sklearn_regression_meta( -1156 xgb.XGBRegressor(**kwargs), -1157 name -1158 ) +-2371 def xgboost( +2372 self, +2373 name: str = "XGBoost Regression", +2374 random_search: bool = False, +2375 parameters: dict[ +2376 str, +2377 Union[ +2378 scipy.stats.rv_continuous, +2379 List[Union[int, str, float]] +2380 ] +2381 ] = { +2382 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +2383 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255], +2384 'grow_policy': [ +2385 'depthwise', +2386 'lossguide' +2387 ], +2388 'learning_rate': uniform(loc=0, scale=2), +2389 'tree_method': ['exact', 'approx', 'hist'], +2390 'gamma': uniform(loc=0, scale=1), +2391 'subsample': uniform(loc=0, scale=1), +2392 'reg_alpha': uniform(loc=0, scale=1), +2393 'reg_lambda': uniform(loc=0, scale=1) +2394 }, +2395 **kwargs +2396 ): +2397 """ +2398 Fit x on y via xgboost regression +2399 +2400 Parameters +2401 ---------- +2402 name : str, default="XGBoost Regression" +2403 Name of classification technique. +2404 random_search : bool, default=False +2405 Whether to perform RandomizedSearch to optimise parameters +2406 parameters : dict[\ +2407 str,\ +2408 Union[\ +2409 scipy.stats.rv_continuous,\ +2410 List[Union[int, str, float]]\ +2411 ]\ +2412 ], default=Preset distributions +2413 The parameters used in RandomizedSearchCV +2414 """ +2415 if random_search: +2416 classifier = RandomizedSearchCV( +2417 xgb.XGBRegressor(**kwargs), +2418 parameters, +2419 cv=self.folds +2420 ) +2421 else: +2422 classifier = xgb.XGBRegressor(**kwargs) +2423 self._sklearn_regression_meta( +2424 classifier, +2425 f'{name}{" (Random Search)" if random_search else ""}', +2426 random_search=random_search +2427 )Fit x on y using xgboost regression
+@@ -4840,39 +8898,83 @@Fit x on y via xgboost regression
Parameters
- name (str, default="XGBoost Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
def - xgboost_rf(self, name: str = 'XGBoost Random Forest Regression', **kwargs): + xgboost_rf( self, name: str = 'XGBoost Random Forest Regression', random_search: bool = False, parameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'max_bin': [1, 3, 7, 15, 31, 63, 127, 255], 'grow_policy': ['depthwise', 'lossguide'], 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9ff90>, 'tree_method': ['exact', 'approx', 'hist'], 'gamma': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca0710>, 'subsample': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca0e90>, 'reg_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca15d0>, 'reg_lambda': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca1d10>}, **kwargs):--1160 def xgboost_rf( -1161 self, -1162 name: str = "XGBoost Random Forest Regression", -1163 **kwargs -1164 ): -1165 """ -1166 Fit x on y using xgboosted random forest regression -1167 -1168 Parameters -1169 ---------- -1170 name : str, default="XGBoost Random Forest Regression" -1171 Name of classification technique. -1172 """ -1173 self._sklearn_regression_meta( -1174 xgb.XGBRFRegressor(**kwargs), -1175 name -1176 ) +-2429 def xgboost_rf( +2430 self, +2431 name: str = "XGBoost Random Forest Regression", +2432 random_search: bool = False, +2433 parameters: dict[ +2434 str, +2435 Union[ +2436 scipy.stats.rv_continuous, +2437 List[Union[int, str, float]] +2438 ] +2439 ] = { +2440 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], +2441 'max_bin': [1, 3, 7, 15, 31, 63, 127, 255], +2442 'grow_policy': [ +2443 'depthwise', +2444 'lossguide' +2445 ], +2446 'learning_rate': uniform(loc=0, scale=2), +2447 'tree_method': ['exact', 'approx', 'hist'], +2448 'gamma': uniform(loc=0, scale=1), +2449 'subsample': uniform(loc=0, scale=1), +2450 'reg_alpha': uniform(loc=0, scale=1), +2451 'reg_lambda': uniform(loc=0, scale=1) +2452 }, +2453 **kwargs +2454 ): +2455 """ +2456 Fit x on y via xgboosted random forest regression +2457 +2458 Parameters +2459 ---------- +2460 name : str, default="XGBoost Random Forest Regression" +2461 Name of classification technique. +2462 random_search : bool, default=False +2463 Whether to perform RandomizedSearch to optimise parameters +2464 parameters : dict[\ +2465 str,\ +2466 Union[\ +2467 scipy.stats.rv_continuous,\ +2468 List[Union[int, str, float]]\ +2469 ]\ +2470 ], default=Preset distributions +2471 The parameters used in RandomizedSearchCV +2472 """ +2473 if random_search: +2474 classifier = RandomizedSearchCV( +2475 xgb.XGBRFRegressor(**kwargs), +2476 parameters, +2477 cv=self.folds +2478 ) +2479 else: +2480 classifier = xgb.XGBRFRegressor(**kwargs) +2481 self._sklearn_regression_meta( +2482 classifier, +2483 f'{name}{" (Random Search)" if random_search else ""}', +2484 random_search=random_search +2485 )-Fit x on y using xgboosted random forest regression
+@@ -4889,26 +8991,26 @@Fit x on y via xgboosted random forest regression
Parameters
- name (str, default="XGBoost Random Forest Regression"): Name of classification technique.
+- random_search (bool, default=False): +Whether to perform RandomizedSearch to optimise parameters
+- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions): +The parameters used in RandomizedSearchCV
Parameters
-1178 def return_measurements(self) -> dict[str, pd.DataFrame]: -1179 """ -1180 Returns the measurements used, with missing values and -1181 non-overlapping measurements excluded -1182 -1183 Returns -1184 ------- -1185 dict[str, pd.DataFrame] -1186 Dictionary with 2 keys: -1187 -1188 |Key|Value| -1189 |---|---| -1190 |x|`x_data`| -1191 |y|`y_data`| -1192 -1193 """ -1194 return { -1195 'x': self.x_data, -1196 'y': self.y_data -1197 } +@@ -4954,29 +9056,29 @@2487 def return_measurements(self) -> dict[str, pd.DataFrame]: +2488 """ +2489 Returns the measurements used, with missing values and +2490 non-overlapping measurements excluded +2491 +2492 Returns +2493 ------- +2494 dict[str, pd.DataFrame] +2495 Dictionary with 2 keys: +2496 +2497 |Key|Value| +2498 |---|---| +2499 |x|`x_data`| +2500 |y|`y_data`| +2501 +2502 """ +2503 return { +2504 'x': self.x_data, +2505 'y': self.y_data +2506 }Returns
@@ -549,237 +681,263 @@1199 def return_models(self) -> dict[str, # Technique -1200 dict[str, # Scaling method -1201 dict[str, # Variables used -1202 dict[int, # Fold -1203 Pipeline]]]]: -1204 """ -1205 Returns the models stored in the object -1206 -1207 Returns -1208 ------- -1209 dict[str, str, str, int, Pipeline] -1210 The calibrated models. They are stored in a nested structure as -1211 follows: -1212 1. Primary Key, name of the technique (e.g Lasso Regression). -1213 2. Scaling technique (e.g Yeo-Johnson Transform). -1214 3. Combination of variables used or `target` if calibration is -1215 univariate (e.g "`target` + a + b). -1216 4. Fold, which fold was used excluded from the calibration. If data -1217 folds 0-3. -1218 if 5-fold cross validated, a key of 4 indicates the data was -1219 trained on -1220 """ -1221 return self.models +diff --git a/docs/calidhayte/graphs.html b/docs/calidhayte/graphs.html index 3683410..ac0df79 100644 --- a/docs/calidhayte/graphs.html +++ b/docs/calidhayte/graphs.html @@ -113,6 +113,9 @@2508 def return_models(self) -> dict[str, # Technique +2509 dict[str, # Scaling method +2510 dict[str, # Variables used +2511 dict[int, # Fold +2512 Pipeline]]]]: +2513 """ +2514 Returns the models stored in the object +2515 +2516 Returns +2517 ------- +2518 dict[str, str, str, int, Pipeline] +2519 The calibrated models. They are stored in a nested structure as +2520 follows: +2521 1. Primary Key, name of the technique (e.g Lasso Regression). +2522 2. Scaling technique (e.g Yeo-Johnson Transform). +2523 3. Combination of variables used or `target` if calibration is +2524 univariate (e.g "`target` + a + b). +2525 4. Fold, which fold was used excluded from the calibration. If data +2526 folds 0-3. +2527 if 5-fold cross validated, a key of 4 indicates the data was +2528 trained on +2529 """ +2530 return self.modelsAPI Documentation
lin_reg_plot ++ shap + save_plots @@ -131,6 +134,12 @@API Documentation
ecdf_plot ++ shap_plot + ++ get_shap + @@ -157,383 +166,506 @@3from typing import Callable, Literal, Optional, Union 4 5from matplotlib import get_backend - 6import matplotlib.pyplot as plt - 7import numpy as np - 8import pandas as pd - 9import shap - 10from sklearn.pipeline import Pipeline - 11 + 6import matplotlib.figure + 7import matplotlib.pyplot as plt + 8import numpy as np + 9import pandas as pd + 10import shap + 11from sklearn.pipeline import Pipeline 12 - 13class Graphs: - 14 """ - 15 Calculates errors between "true" and "predicted" measurements, plots - 16 graphs and returns all results - 17 """ - 18 - 19 def __init__( - 20 self, - 21 x: pd.DataFrame, - 22 x_name: str, - 23 y: pd.DataFrame, - 24 y_name: str, - 25 target: str, - 26 models: dict[str, dict[str, dict[str, dict[int, Pipeline]]]], - 27 style: str = 'bmh', - 28 backend: str = str(get_backend()) - 29 ): - 30 """ - 31 """ - 32 self.x: pd.DataFrame = x - 33 """ - 34 Independent variable(s) that are calibrated against `y`, the independent - 35 variable. Index should match `y`. - 36 """ - 37 self.y: pd.DataFrame = y - 38 """ - 39 Dependent variable used to calibrate the independent variables `x`. - 40 Index should match `x`. - 41 """ - 42 self.x_name: str = x_name - 43 """ - 44 Label for `x` measurements - 45 """ - 46 self.y_name: str = y_name - 47 """ - 48 Label for `y` measurements - 49 """ - 50 self.target = target - 51 """ - 52 Measurand in `y` to calibrate against - 53 """ - 54 self.models: dict[str, - 55 dict[str, # Scaling Method - 56 dict[str, # Variables used - 57 dict[int, # Fold - 58 Pipeline]]]] = models - 59 """ - 60 The precalibrated models. They are stored in a nested structure as - 61 follows: - 62 1. Primary Key, name of the technique (e.g Lasso Regression). - 63 2. Scaling technique (e.g Yeo-Johnson Transform). - 64 3. Combination of variables used or `target` if calibration is - 65 univariate (e.g "`target` + a + b). - 66 4. Fold, which fold was used excluded from the calibration. If data - 67 if 5-fold cross validated, a key of 4 indicates the data was trained on - 68 folds 0-3. - 69 - 70 ```mermaid - 71 stateDiagram-v2 - 72 models --> Technique - 73 state Technique { - 74 [*] --> Scaling - 75 [*]: The calibration technique used - 76 [*]: (e.g "Lasso Regression") - 77 state Scaling { - 78 [*] --> Variables - 79 [*]: The scaling technique used - 80 [*]: (e.g "Yeo-Johnson Transform") - 81 state Variables { - 82 [*] : The combination of variables used - 83 [*] : (e.g "x + a + b") - 84 [*] --> Fold - 85 state Fold { - 86 [*] : Which fold was excluded from training data - 87 [*] : (e.g 4 indicates folds 0-3 were used to train) - 88 } - 89 } - 90 } - 91 } - 92 ``` - 93 - 94 """ - 95 self.plots: dict[str, # Technique - 96 dict[str, # Scaling Method - 97 dict[str, # Variables used - 98 dict[str, # Plot Name - 99 plt.figure.Figure]]]] = dict() -100 """ -101 The plotted data, stored in a similar structure to `models` -102 1. Primary Key, name of the technique (e.g Lasso Regression). -103 2. Scaling technique (e.g Yeo-Johnson Transform). -104 3. Combination of variables used or `target` if calibration is -105 univariate (e.g "`target` + a + b). -106 4. Name of the plot (e.g. 'Bland-Altman') -107 -108 ```mermaid -109 stateDiagram-v2 -110 models --> Technique -111 state Technique { -112 [*] --> Scaling -113 [*]: The calibration technique used -114 [*]: (e.g "Lasso Regression") -115 state Scaling { -116 [*] --> Variables -117 [*]: The scaling technique used -118 [*]: (e.g "Yeo-Johnson Transform") -119 state Variables { -120 [*] : The combination of variables used -121 [*] : (e.g "x + a + b") -122 [*] --> pn -123 state "Plot Name" as pn { -124 [*] : Name of the plot -125 [*] : (e.g Bland-Altman) -126 } -127 } -128 } -129 } -130 ``` -131 -132 """ -133 self.style: Union[str, Path] = style -134 """ -135 Name of in-built matplotlib style or path to stylesheet -136 """ -137 self.backend = backend -138 """ -139 Matplotlib backend to use -140 """ -141 -142 def plot_meta(self, plot_func: Callable, name: str, **kwargs): -143 """ -144 Iterates over data and creates plots using function specified in -145 `plot_func` -146 -147 Should not be accessed directly, should instead be called by -148 another method -149 -150 Parameters -151 ---------- -152 plot_func : Callable -153 Function that returns matplotlib figure -154 name : str -155 Name to give plot, used as key in `plots` dict -156 **kwargs -157 Additional arguments passed to `plot_func` -158 """ -159 if not self.x.sort_index().index.to_series().eq( -160 self.y.sort_index().index.to_series() -161 ).all(): -162 raise ValueError( -163 'Index of x and y do not match. Output of Calibrate class ' -164 'in calidhayte should have matching indexes' -165 ) -166 for technique, scaling_methods in self.models.items(): -167 if self.plots.get(technique) is None: -168 self.plots[technique] = dict() -169 for scaling_method, var_combos in scaling_methods.items(): -170 if self.plots[technique].get(scaling_method) is None: -171 self.plots[technique][scaling_method] = dict() -172 for vars, folds in var_combos.items(): -173 if self.plots[technique][scaling_method].get(vars) is None: -174 self.plots[technique][scaling_method][vars] = dict() -175 pred = pd.Series() -176 for fold, model in folds.items(): -177 x_data = self.x.loc[ -178 self.y[self.y.loc[:, 'Fold'] == fold].index, -179 : -180 ] -181 pred = pd.concat( -182 [ -183 pred, -184 pd.Series( -185 index=x_data.index, -186 data=model.predict(x_data) -187 ) -188 ] -189 ) -190 x = pred -191 y = self.y.loc[:, self.target].reindex(x.index) -192 fig = plot_func( -193 x=x, -194 y=y, -195 x_name=self.x_name, -196 y_name=self.y_name, -197 **kwargs + 13 + 14class Graphs: + 15 """ + 16 Calculates errors between "true" and "predicted" measurements, plots + 17 graphs and returns all results + 18 """ + 19 + 20 def __init__( + 21 self, + 22 x: pd.DataFrame, + 23 x_name: str, + 24 y: pd.DataFrame, + 25 y_name: str, + 26 target: str, + 27 models: dict[str, dict[str, dict[str, dict[int, Pipeline]]]], + 28 style: str = 'bmh', + 29 backend: str = str(get_backend()) + 30 ): + 31 """ + 32 """ + 33 self.x: pd.DataFrame = x + 34 """ + 35 Independent variable(s) that are calibrated against `y`, + 36 the independent variable. Index should match `y`. + 37 """ + 38 self.y: pd.DataFrame = y + 39 """ + 40 Dependent variable used to calibrate the independent variables `x`. + 41 Index should match `x`. + 42 """ + 43 self.x_name: str = x_name + 44 """ + 45 Label for `x` measurements + 46 """ + 47 self.y_name: str = y_name + 48 """ + 49 Label for `y` measurements + 50 """ + 51 self.target = target + 52 """ + 53 Measurand in `y` to calibrate against + 54 """ + 55 self.models: dict[ + 56 str, dict[ # Scaling Method + 57 str, dict[ # Variables used + 58 str, dict[ # Fold + 59 int, Pipeline]]]] = models + 60 """ + 61 The precalibrated models. They are stored in a nested structure as + 62 follows: + 63 1. Primary Key, name of the technique (e.g Lasso Regression). + 64 2. Scaling technique (e.g Yeo-Johnson Transform). + 65 3. Combination of variables used or `target` if calibration is + 66 univariate (e.g "`target` + a + b). + 67 4. Fold, which fold was used excluded from the calibration. If data + 68 if 5-fold cross validated, a key of 4 indicates the data was trained on + 69 folds 0-3. + 70 + 71 ```mermaid + 72 stateDiagram-v2 + 73 models --> Technique + 74 state Technique { + 75 [*] --> Scaling + 76 [*]: The calibration technique used + 77 [*]: (e.g "Lasso Regression") + 78 state Scaling { + 79 [*] --> Variables + 80 [*]: The scaling technique used + 81 [*]: (e.g "Yeo-Johnson Transform") + 82 state Variables { + 83 [*] : The combination of variables used + 84 [*] : (e.g "x + a + b") + 85 [*] --> Fold + 86 state Fold { + 87 [*] : Which fold was excluded from training data + 88 [*] : (e.g 4 indicates folds 0-3 were used to train) + 89 } + 90 } + 91 } + 92 } + 93 ``` + 94 + 95 """ + 96 self.plots: dict[str, # Technique + 97 dict[str, # Scaling Method + 98 dict[str, # Variables used + 99 dict[str, # Plot Name +100 matplotlib.figure.Figure]]]] = dict() +101 """ +102 The plotted data, stored in a similar structure to `models` +103 1. Primary Key, name of the technique (e.g Lasso Regression). +104 2. Scaling technique (e.g Yeo-Johnson Transform). +105 3. Combination of variables used or `target` if calibration is +106 univariate (e.g "`target` + a + b). +107 4. Name of the plot (e.g. 'Bland-Altman') +108 +109 ```mermaid +110 stateDiagram-v2 +111 models --> Technique +112 state Technique { +113 [*] --> Scaling +114 [*]: The calibration technique used +115 [*]: (e.g "Lasso Regression") +116 state Scaling { +117 [*] --> Variables +118 [*]: The scaling technique used +119 [*]: (e.g "Yeo-Johnson Transform") +120 state Variables { +121 [*] : The combination of variables used +122 [*] : (e.g "x + a + b") +123 [*] --> pn +124 state "Plot Name" as pn { +125 [*] : Name of the plot +126 [*] : (e.g Bland-Altman) +127 } +128 } +129 } +130 } +131 ``` +132 +133 """ +134 self.style: Union[str, Path] = style +135 """ +136 Name of in-built matplotlib style or path to stylesheet +137 """ +138 self.backend = backend +139 """ +140 Matplotlib backend to use +141 """ +142 +143 def plot_meta( +144 self, +145 plot_func: Callable[ +146 ..., +147 matplotlib.figure.Figure +148 ], +149 name: str, +150 **kwargs +151 ): +152 """ +153 Iterates over data and creates plots using function specified in +154 `plot_func` +155 +156 Should not be accessed directly, should instead be called by +157 another method +158 +159 Parameters +160 ---------- +161 plot_func : Callable +162 Function that returns matplotlib figure +163 name : str +164 Name to give plot, used as key in `plots` dict +165 **kwargs +166 Additional arguments passed to `plot_func` +167 """ +168 if not self.x.sort_index().index.to_series().eq( +169 self.y.sort_index().index.to_series() +170 ).all(): +171 raise ValueError( +172 'Index of x and y do not match. Output of Calibrate class ' +173 'in calidhayte should have matching indexes' +174 ) +175 for technique, scaling_methods in self.models.items(): +176 if self.plots.get(technique) is None: +177 self.plots[technique] = dict() +178 for scaling_method, var_combos in scaling_methods.items(): +179 if self.plots[technique].get(scaling_method) is None: +180 self.plots[technique][scaling_method] = dict() +181 for vars, folds in var_combos.items(): +182 if self.plots[technique][scaling_method].get(vars) is None: +183 self.plots[technique][scaling_method][vars] = dict() +184 pred = pd.Series() +185 for fold, model in folds.items(): +186 x_data = self.x.loc[ +187 self.y[self.y.loc[:, 'Fold'] == fold].index, +188 : +189 ] +190 pred = pd.concat( +191 [ +192 pred, +193 pd.Series( +194 index=x_data.index, +195 data=model.predict(x_data) +196 ) +197 ] 198 ) -199 self.plots[technique][scaling_method][vars][name] = fig -200 -201 def bland_altman_plot(self, title=None): -202 with plt.rc_context({'backend': self.backend}), \ -203 plt.style.context(self.style): -204 self.plot_meta(bland_altman_plot, 'Bland-Altman', title=title) -205 -206 def ecdf_plot(self, title=None): -207 with plt.rc_context({'backend': self.backend}), \ -208 plt.style.context(self.style): -209 self.plot_meta(ecdf_plot, 'eCDF', title=title) -210 -211 def lin_reg_plot(self, title=None): -212 with plt.rc_context({'backend': self.backend}), \ -213 plt.style.context(self.style): -214 self.plot_meta(lin_reg_plot, 'Linear Regression', title=title) -215 -216 def save_plots( -217 self, -218 path: str, -219 filetype: Union[ -220 Literal['png', 'pgf', 'pdf'], -221 Iterable[Literal['png', 'pgf', 'pdf']] -222 ] = 'png' -223 ): -224 for technique, scaling_methods in self.plots.items(): -225 for scaling_method, var_combos in scaling_methods.items(): -226 for vars, figures in var_combos.items(): -227 for plot_type, fig in figures.items(): -228 plot_path = Path( -229 f'{path}/{technique}/{plot_type}' -230 ) -231 plot_path.mkdir(parents=True, exist_ok=True) -232 if isinstance(filetype, str): -233 fig.savefig( -234 plot_path / -235 f'{scaling_method} {vars}.{filetype}' -236 ) -237 elif isinstance(filetype, Iterable): -238 for ftype in filetype: -239 fig.savefig( -240 plot_path / -241 f'{scaling_method} {vars}.{ftype}' -242 ) -243 plt.close(fig) -244 -245 -246def ecdf(data): -247 x = np.sort(data) -248 y = np.arange(1, len(data) + 1) / len(data) -249 return x, y -250 -251 -252def lin_reg_plot( -253 x: pd.Series, -254 y: pd.Series, -255 x_name: str, -256 y_name: str, -257 title: Optional[str] = None -258 ): -259 """ -260 """ -261 fig = plt.figure(figsize=(4, 4), dpi=200) -262 fig_gs = fig.add_gridspec( -263 2, -264 2, -265 width_ratios=(7, 2), -266 height_ratios=(2, 7), -267 left=0.1, -268 right=0.9, -269 bottom=0.1, -270 top=0.9, -271 wspace=0.0, -272 hspace=0.0, -273 ) -274 -275 scatter_ax = fig.add_subplot(fig_gs[1, 0]) -276 histx_ax = fig.add_subplot(fig_gs[0, 0], sharex=scatter_ax) -277 histx_ax.axis("off") -278 histy_ax = fig.add_subplot(fig_gs[1, 1], sharey=scatter_ax) -279 histy_ax.axis("off") -280 -281 max_value = max((y.max(), x.max())) -282 min_value = min((y.min(), x.min())) -283 scatter_ax.set_xlim(min_value - 3, max_value + 3) -284 scatter_ax.set_ylim(min_value - 3, max_value + 3) -285 scatter_ax.set_xlabel(x_name) -286 scatter_ax.set_ylabel(y_name) -287 scatter_ax.scatter(x, y, color="C0", marker='.', alpha=0.75) -288 -289 binwidth = 7.5 -290 xymax = max(np.max(np.abs(x)), np.max(np.abs(y))) -291 lim = (int(xymax / binwidth) + 1) * binwidth -292 -293 bins = np.arange(-lim, lim + binwidth, binwidth) -294 histx_ax.hist(x, bins=bins, color="C0") -295 histy_ax.hist(y, bins=bins, orientation="horizontal", color="C0") -296 if isinstance(title, str): -297 fig.suptitle(title) -298 return fig -299 -300 -301def bland_altman_plot( -302 x: pd.DataFrame, -303 y: pd.Series, -304 title: Optional[str] = None, -305 **kwargs -306 ): -307 """ -308 """ -309 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) -310 x_data = np.mean(np.vstack((x, y)).T, axis=1) -311 y_data = np.array(x) - np.array(y) -312 y_mean = np.mean(y_data) -313 y_sd = 1.96 * np.std(y_data) -314 max_diff_from_mean = max( -315 (y_data - y_mean).min(), (y_data - y_mean).max(), key=abs -316 ) -317 text_adjust = (12 * max_diff_from_mean) / 300 -318 ax.set_ylim(y_mean - max_diff_from_mean, y_mean + max_diff_from_mean) -319 ax.set_xlabel("Average of Measured and Reference") -320 ax.set_ylabel("Difference Between Measured and Reference") -321 ax.scatter(x_data, y_data, alpha=0.75) -322 ax.axline((0, y_mean), (1, y_mean), color="xkcd:vermillion") -323 ax.text( -324 max(x_data), -325 y_mean + text_adjust, -326 f"Mean: {y_mean:.2f}", -327 verticalalignment="bottom", -328 horizontalalignment="right", -329 ) -330 ax.axline( -331 (0, y_mean + y_sd), (1, y_mean + y_sd), color="xkcd:fresh green" -332 ) -333 ax.text( -334 max(x_data), -335 y_mean + y_sd + text_adjust, -336 f"1.96$\\sigma$: {y_mean + y_sd:.2f}", -337 verticalalignment="bottom", -338 horizontalalignment="right", -339 ) -340 ax.axline( -341 (0, y_mean - y_sd), (1, y_mean - y_sd), color="xkcd:fresh green" -342 ) -343 ax.text( -344 max(x_data), -345 y_mean - y_sd + text_adjust, -346 f"1.96$\\sigma$: -{y_sd:.2f}", -347 verticalalignment="bottom", -348 horizontalalignment="right", -349 ) -350 if isinstance(title, str): -351 fig.suptitle(title) -352 return fig -353 -354 -355def ecdf_plot( -356 x: pd.DataFrame, -357 y: pd.Series, -358 x_name: str, -359 y_name: str, -360 title: Optional[str] = None -361 ): -362 """ -363 """ -364 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) -365 true_x, true_y = ecdf(y) -366 pred_x, pred_y = ecdf(x) -367 ax.set_ylim(0, 1) -368 ax.set_xlabel("Measurement") -369 ax.set_ylabel("Cumulative Total") -370 ax.plot(true_x, true_y, linestyle="none", marker=".", label=y_name) -371 ax.plot( -372 pred_x, -373 pred_y, -374 linestyle="none", -375 marker=".", -376 alpha=0.8, -377 label=x_name, -378 ) -379 ax.legend() -380 if isinstance(title, str): -381 fig.suptitle(title) -382 return fig +199 x = pred +200 y = self.y.loc[:, self.target].reindex(x.index) +201 fig = plot_func( +202 x=x, +203 y=y, +204 x_name=self.x_name, +205 y_name=self.y_name, +206 **kwargs +207 ) +208 self.plots[technique][scaling_method][vars][name] = fig +209 +210 def bland_altman_plot(self, title=None): +211 with plt.rc_context({'backend': self.backend}), \ +212 plt.style.context(self.style): +213 self.plot_meta(bland_altman_plot, 'Bland-Altman', title=title) +214 +215 def ecdf_plot(self, title=None): +216 with plt.rc_context({'backend': self.backend}), \ +217 plt.style.context(self.style): +218 self.plot_meta(ecdf_plot, 'eCDF', title=title) +219 +220 def lin_reg_plot(self, title=None): +221 with plt.rc_context({'backend': self.backend}), \ +222 plt.style.context(self.style): +223 self.plot_meta(lin_reg_plot, 'Linear Regression', title=title) +224 +225 def shap(self, pipeline_keys: list[str], title=None): +226 x = self.x +227 y = self.y +228 pipeline = self.models[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]] +229 +230 if not self.plots.get(pipeline_keys[0]): +231 self.plots[pipeline_keys[0]] = dict() +232 if not self.plots[pipeline_keys[0]].get(pipeline_keys[1]): +233 self.plots[pipeline_keys[0]][pipeline_keys[1]] = dict() +234 if not self.plots[pipeline_keys[0]][pipeline_keys[1]].get(pipeline_keys[2]): +235 self.plots[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]] = dict() +236 with plt.rc_context({'backend': self.backend}), \ +237 plt.style.context(self.style): +238 shap_df = get_shap(x, y, pipeline) +239 self.plots[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]]['Shap'] = shap_plot(shap_df, x) +240 +241 +242 +243 def save_plots( +244 self, +245 path: str, +246 filetype: Union[ +247 Literal['png', 'pgf', 'pdf'], +248 Iterable[Literal['png', 'pgf', 'pdf']] +249 ] = 'png' +250 ): +251 for technique, scaling_methods in self.plots.items(): +252 for scaling_method, var_combos in scaling_methods.items(): +253 for vars, figures in var_combos.items(): +254 for plot_type, fig in figures.items(): +255 plot_path = Path( +256 f'{path}/{technique}/{plot_type}' +257 ) +258 plot_path.mkdir(parents=True, exist_ok=True) +259 if isinstance(filetype, str): +260 fig.savefig( +261 plot_path / +262 f'{scaling_method} {vars}.{filetype}' +263 ) +264 elif isinstance(filetype, Iterable): +265 for ftype in filetype: +266 fig.savefig( +267 plot_path / +268 f'{scaling_method} {vars}.{ftype}' +269 ) +270 plt.close(fig) +271 +272 +273def ecdf(data): +274 x = np.sort(data) +275 y = np.arange(1, len(data) + 1) / len(data) +276 return x, y +277 +278 +279def lin_reg_plot( +280 x: pd.Series, +281 y: pd.Series, +282 x_name: str, +283 y_name: str, +284 title: Optional[str] = None +285 ): +286 """ +287 """ +288 fig = plt.figure(figsize=(4, 4), dpi=200) +289 fig_gs = fig.add_gridspec( +290 2, +291 2, +292 width_ratios=(7, 2), +293 height_ratios=(2, 7), +294 left=0.1, +295 right=0.9, +296 bottom=0.1, +297 top=0.9, +298 wspace=0.0, +299 hspace=0.0, +300 ) +301 +302 scatter_ax = fig.add_subplot(fig_gs[1, 0]) +303 histx_ax = fig.add_subplot(fig_gs[0, 0], sharex=scatter_ax) +304 histx_ax.axis("off") +305 histy_ax = fig.add_subplot(fig_gs[1, 1], sharey=scatter_ax) +306 histy_ax.axis("off") +307 +308 max_value = max((y.max(), x.max())) +309 min_value = min((y.min(), x.min())) +310 scatter_ax.set_xlim(min_value - 3, max_value + 3) +311 scatter_ax.set_ylim(min_value - 3, max_value + 3) +312 scatter_ax.set_xlabel(x_name) +313 scatter_ax.set_ylabel(y_name) +314 scatter_ax.scatter(x, y, color="C0", marker='.', alpha=0.75) +315 +316 binwidth = 7.5 +317 xymax = max(np.max(np.abs(x)), np.max(np.abs(y))) +318 lim = (int(xymax / binwidth) + 1) * binwidth +319 +320 bins = list(np.arange(-lim, lim + binwidth, binwidth)) +321 histx_ax.hist(x, bins=bins, color="C0") +322 histy_ax.hist(y, bins=bins, orientation="horizontal", color="C0") +323 if isinstance(title, str): +324 fig.suptitle(title) +325 return fig +326 +327 +328def bland_altman_plot( +329 x: pd.DataFrame, +330 y: pd.Series, +331 title: Optional[str] = None, +332 **kwargs +333 ): +334 """ +335 """ +336 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) +337 x_data = np.mean(np.vstack((x, y)).T, axis=1) +338 y_data = np.array(x) - np.array(y) +339 y_mean = np.mean(y_data) +340 y_sd = 1.96 * np.std(y_data) +341 max_diff_from_mean = max( +342 (y_data - y_mean).min(), (y_data - y_mean).max(), key=abs +343 ) +344 text_adjust = (12 * max_diff_from_mean) / 300 +345 ax.set_ylim(y_mean - max_diff_from_mean, y_mean + max_diff_from_mean) +346 ax.set_xlabel("Average of Measured and Reference") +347 ax.set_ylabel("Difference Between Measured and Reference") +348 ax.scatter(x_data, y_data, alpha=0.75) +349 ax.axline((0, y_mean), (1, y_mean), color="xkcd:vermillion") +350 ax.text( +351 max(x_data), +352 y_mean + text_adjust, +353 f"Mean: {y_mean:.2f}", +354 verticalalignment="bottom", +355 horizontalalignment="right", +356 ) +357 ax.axline( +358 (0, y_mean + y_sd), (1, y_mean + y_sd), color="xkcd:fresh green" +359 ) +360 ax.text( +361 max(x_data), +362 y_mean + y_sd + text_adjust, +363 f"1.96$\\sigma$: {y_mean + y_sd:.2f}", +364 verticalalignment="bottom", +365 horizontalalignment="right", +366 ) +367 ax.axline( +368 (0, y_mean - y_sd), (1, y_mean - y_sd), color="xkcd:fresh green" +369 ) +370 ax.text( +371 max(x_data), +372 y_mean - y_sd + text_adjust, +373 f"1.96$\\sigma$: -{y_sd:.2f}", +374 verticalalignment="bottom", +375 horizontalalignment="right", +376 ) +377 if isinstance(title, str): +378 fig.suptitle(title) +379 return fig +380 +381 +382def ecdf_plot( +383 x: pd.DataFrame, +384 y: pd.Series, +385 x_name: str, +386 y_name: str, +387 title: Optional[str] = None +388 ): +389 """ +390 """ +391 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) +392 true_x, true_y = ecdf(y) +393 pred_x, pred_y = ecdf(x) +394 ax.set_ylim(0, 1) +395 ax.set_xlabel("Measurement") +396 ax.set_ylabel("Cumulative Total") +397 ax.plot(true_x, true_y, linestyle="none", marker=".", label=y_name) +398 ax.plot( +399 pred_x, +400 pred_y, +401 linestyle="none", +402 marker=".", +403 alpha=0.8, +404 label=x_name, +405 ) +406 ax.legend() +407 if isinstance(title, str): +408 fig.suptitle(title) +409 return fig +410 +411def shap_plot(shaps: pd.DataFrame, x: pd.DataFrame): +412 """ +413 """ +414 shaps_min = shaps.drop(['Fold'], axis=1).min(axis=None) +415 shaps_max = shaps.drop(['Fold'], axis=1).max(axis=None) +416 shaps_range = shaps_max - shaps_min +417 shaps_lims = ( +418 shaps_min - (shaps_range * 0.1), +419 shaps_max + (shaps_range * 0.1) +420 ) +421 +422 num_of_cols = shaps.drop(['Fold'], axis=1).shape[1] +423 +424 shape_of_scatters = ( +425 int(np.ceil(num_of_cols / 2)), +426 (min(2, int(num_of_cols))) +427 ) +428 +429 fig, ax = plt.subplots( +430 *shape_of_scatters, +431 figsize=( +432 4 * shape_of_scatters[0], +433 4 * shape_of_scatters[1] +434 ), +435 dpi=200 +436 ) +437 +438 for col_ind, col in enumerate(shaps.drop(['Fold'], axis=1).columns): +439 scatter_data = pd.concat( +440 [ +441 x.loc[:, col].rename('Value'), +442 shaps.loc[:, col].rename('Shap'), +443 shaps.loc[:, 'Fold'].rename('Fold') +444 ], +445 axis=1 +446 ) +447 x_min = scatter_data.loc[:, 'Value'].min() +448 x_max = scatter_data.loc[:, 'Value'].max() +449 x_range = x_max - x_min +450 x_lims = (x_min - (x_range * 0.1), x_max + (x_range * 0.1)) +451 +452 row_num = int(np.floor(col_ind / 2)) +453 col_num = col_ind % 2 +454 for i, fold in enumerate(sorted(shaps.loc[:, 'Fold'].unique())): +455 scat_fold = scatter_data[scatter_data.loc[:, 'Fold'] == fold] +456 ax[row_num, col_num].scatter( +457 scat_fold['Value'], +458 scat_fold['Shap'], +459 c=f'C{i}', +460 label=f'Fold {fold}', +461 marker='.' +462 ) +463 ax[row_num, col_num].set_title(col) +464 ax[row_num, col_num].set_xlabel('Value') +465 ax[row_num, col_num].set_xlim(x_lims) +466 ax[row_num, col_num].set_ylabel('Shap') +467 ax[row_num, col_num].set_ylim(shaps_lims) +468 +469 ax[0, 0].legend(loc='best') +470 plt.tight_layout() +471 return fig +472 +473def get_shap( +474 x: pd.DataFrame, +475 y: pd.DataFrame, +476 pipeline: dict[int, Pipeline] +477 ): +478 shaps = pd.DataFrame() +479 for fold in pipeline.keys(): +480 if len(pipeline.keys()) > 1: +481 fold_index = y[y.loc[:, 'Fold'] == fold].index +482 x_data = x.loc[fold_index, :] +483 else: +484 x_data = x +485 explainer = shap.KernelExplainer( +486 model=pipeline[fold][-1].predict, +487 data=x_data, +488 link='identity' +489 ) +490 shaps = pd.concat( +491 [ +492 shaps, +493 pd.DataFrame( +494 explainer.shap_values(x_data), +495 index=x_data.index, +496 columns=x_data.columns +497 ) +498 ] +499 ) +500 if len(pipeline.keys()) > 1: +501 shaps.loc[x_data.index, 'Fold'] = y.loc[x_data.index, 'Fold'] +502 else: +503 shaps.loc[:, 'Fold'] = 'Cross-Validated' +504 shaps = shaps.sort_index() +505 return shaps
14class Graphs: - 15 """ - 16 Calculates errors between "true" and "predicted" measurements, plots - 17 graphs and returns all results - 18 """ - 19 - 20 def __init__( - 21 self, - 22 x: pd.DataFrame, - 23 x_name: str, - 24 y: pd.DataFrame, - 25 y_name: str, - 26 target: str, - 27 models: dict[str, dict[str, dict[str, dict[int, Pipeline]]]], - 28 style: str = 'bmh', - 29 backend: str = str(get_backend()) - 30 ): - 31 """ - 32 """ - 33 self.x: pd.DataFrame = x - 34 """ - 35 Independent variable(s) that are calibrated against `y`, the independent - 36 variable. Index should match `y`. - 37 """ - 38 self.y: pd.DataFrame = y - 39 """ - 40 Dependent variable used to calibrate the independent variables `x`. - 41 Index should match `x`. - 42 """ - 43 self.x_name: str = x_name - 44 """ - 45 Label for `x` measurements - 46 """ - 47 self.y_name: str = y_name - 48 """ - 49 Label for `y` measurements - 50 """ - 51 self.target = target - 52 """ - 53 Measurand in `y` to calibrate against - 54 """ - 55 self.models: dict[str, - 56 dict[str, # Scaling Method - 57 dict[str, # Variables used - 58 dict[int, # Fold - 59 Pipeline]]]] = models - 60 """ - 61 The precalibrated models. They are stored in a nested structure as - 62 follows: - 63 1. Primary Key, name of the technique (e.g Lasso Regression). - 64 2. Scaling technique (e.g Yeo-Johnson Transform). - 65 3. Combination of variables used or `target` if calibration is - 66 univariate (e.g "`target` + a + b). - 67 4. Fold, which fold was used excluded from the calibration. If data - 68 if 5-fold cross validated, a key of 4 indicates the data was trained on - 69 folds 0-3. - 70 - 71 ```mermaid - 72 stateDiagram-v2 - 73 models --> Technique - 74 state Technique { - 75 [*] --> Scaling - 76 [*]: The calibration technique used - 77 [*]: (e.g "Lasso Regression") - 78 state Scaling { - 79 [*] --> Variables - 80 [*]: The scaling technique used - 81 [*]: (e.g "Yeo-Johnson Transform") - 82 state Variables { - 83 [*] : The combination of variables used - 84 [*] : (e.g "x + a + b") - 85 [*] --> Fold - 86 state Fold { - 87 [*] : Which fold was excluded from training data - 88 [*] : (e.g 4 indicates folds 0-3 were used to train) - 89 } - 90 } - 91 } - 92 } - 93 ``` - 94 - 95 """ - 96 self.plots: dict[str, # Technique - 97 dict[str, # Scaling Method - 98 dict[str, # Variables used - 99 dict[str, # Plot Name -100 plt.figure.Figure]]]] = dict() -101 """ -102 The plotted data, stored in a similar structure to `models` -103 1. Primary Key, name of the technique (e.g Lasso Regression). -104 2. Scaling technique (e.g Yeo-Johnson Transform). -105 3. Combination of variables used or `target` if calibration is -106 univariate (e.g "`target` + a + b). -107 4. Name of the plot (e.g. 'Bland-Altman') -108 -109 ```mermaid -110 stateDiagram-v2 -111 models --> Technique -112 state Technique { -113 [*] --> Scaling -114 [*]: The calibration technique used -115 [*]: (e.g "Lasso Regression") -116 state Scaling { -117 [*] --> Variables -118 [*]: The scaling technique used -119 [*]: (e.g "Yeo-Johnson Transform") -120 state Variables { -121 [*] : The combination of variables used -122 [*] : (e.g "x + a + b") -123 [*] --> pn -124 state "Plot Name" as pn { -125 [*] : Name of the plot -126 [*] : (e.g Bland-Altman) -127 } -128 } -129 } -130 } -131 ``` -132 -133 """ -134 self.style: Union[str, Path] = style -135 """ -136 Name of in-built matplotlib style or path to stylesheet -137 """ -138 self.backend = backend -139 """ -140 Matplotlib backend to use -141 """ -142 -143 def plot_meta(self, plot_func: Callable, name: str, **kwargs): -144 """ -145 Iterates over data and creates plots using function specified in -146 `plot_func` -147 -148 Should not be accessed directly, should instead be called by -149 another method -150 -151 Parameters -152 ---------- -153 plot_func : Callable -154 Function that returns matplotlib figure -155 name : str -156 Name to give plot, used as key in `plots` dict -157 **kwargs -158 Additional arguments passed to `plot_func` -159 """ -160 if not self.x.sort_index().index.to_series().eq( -161 self.y.sort_index().index.to_series() -162 ).all(): -163 raise ValueError( -164 'Index of x and y do not match. Output of Calibrate class ' -165 'in calidhayte should have matching indexes' -166 ) -167 for technique, scaling_methods in self.models.items(): -168 if self.plots.get(technique) is None: -169 self.plots[technique] = dict() -170 for scaling_method, var_combos in scaling_methods.items(): -171 if self.plots[technique].get(scaling_method) is None: -172 self.plots[technique][scaling_method] = dict() -173 for vars, folds in var_combos.items(): -174 if self.plots[technique][scaling_method].get(vars) is None: -175 self.plots[technique][scaling_method][vars] = dict() -176 pred = pd.Series() -177 for fold, model in folds.items(): -178 x_data = self.x.loc[ -179 self.y[self.y.loc[:, 'Fold'] == fold].index, -180 : -181 ] -182 pred = pd.concat( -183 [ -184 pred, -185 pd.Series( -186 index=x_data.index, -187 data=model.predict(x_data) -188 ) -189 ] -190 ) -191 x = pred -192 y = self.y.loc[:, self.target].reindex(x.index) -193 fig = plot_func( -194 x=x, -195 y=y, -196 x_name=self.x_name, -197 y_name=self.y_name, -198 **kwargs +@@ -792,134 +950,134 @@15class Graphs: + 16 """ + 17 Calculates errors between "true" and "predicted" measurements, plots + 18 graphs and returns all results + 19 """ + 20 + 21 def __init__( + 22 self, + 23 x: pd.DataFrame, + 24 x_name: str, + 25 y: pd.DataFrame, + 26 y_name: str, + 27 target: str, + 28 models: dict[str, dict[str, dict[str, dict[int, Pipeline]]]], + 29 style: str = 'bmh', + 30 backend: str = str(get_backend()) + 31 ): + 32 """ + 33 """ + 34 self.x: pd.DataFrame = x + 35 """ + 36 Independent variable(s) that are calibrated against `y`, + 37 the independent variable. Index should match `y`. + 38 """ + 39 self.y: pd.DataFrame = y + 40 """ + 41 Dependent variable used to calibrate the independent variables `x`. + 42 Index should match `x`. + 43 """ + 44 self.x_name: str = x_name + 45 """ + 46 Label for `x` measurements + 47 """ + 48 self.y_name: str = y_name + 49 """ + 50 Label for `y` measurements + 51 """ + 52 self.target = target + 53 """ + 54 Measurand in `y` to calibrate against + 55 """ + 56 self.models: dict[ + 57 str, dict[ # Scaling Method + 58 str, dict[ # Variables used + 59 str, dict[ # Fold + 60 int, Pipeline]]]] = models + 61 """ + 62 The precalibrated models. They are stored in a nested structure as + 63 follows: + 64 1. Primary Key, name of the technique (e.g Lasso Regression). + 65 2. Scaling technique (e.g Yeo-Johnson Transform). + 66 3. Combination of variables used or `target` if calibration is + 67 univariate (e.g "`target` + a + b). + 68 4. Fold, which fold was used excluded from the calibration. If data + 69 if 5-fold cross validated, a key of 4 indicates the data was trained on + 70 folds 0-3. + 71 + 72 ```mermaid + 73 stateDiagram-v2 + 74 models --> Technique + 75 state Technique { + 76 [*] --> Scaling + 77 [*]: The calibration technique used + 78 [*]: (e.g "Lasso Regression") + 79 state Scaling { + 80 [*] --> Variables + 81 [*]: The scaling technique used + 82 [*]: (e.g "Yeo-Johnson Transform") + 83 state Variables { + 84 [*] : The combination of variables used + 85 [*] : (e.g "x + a + b") + 86 [*] --> Fold + 87 state Fold { + 88 [*] : Which fold was excluded from training data + 89 [*] : (e.g 4 indicates folds 0-3 were used to train) + 90 } + 91 } + 92 } + 93 } + 94 ``` + 95 + 96 """ + 97 self.plots: dict[str, # Technique + 98 dict[str, # Scaling Method + 99 dict[str, # Variables used +100 dict[str, # Plot Name +101 matplotlib.figure.Figure]]]] = dict() +102 """ +103 The plotted data, stored in a similar structure to `models` +104 1. Primary Key, name of the technique (e.g Lasso Regression). +105 2. Scaling technique (e.g Yeo-Johnson Transform). +106 3. Combination of variables used or `target` if calibration is +107 univariate (e.g "`target` + a + b). +108 4. Name of the plot (e.g. 'Bland-Altman') +109 +110 ```mermaid +111 stateDiagram-v2 +112 models --> Technique +113 state Technique { +114 [*] --> Scaling +115 [*]: The calibration technique used +116 [*]: (e.g "Lasso Regression") +117 state Scaling { +118 [*] --> Variables +119 [*]: The scaling technique used +120 [*]: (e.g "Yeo-Johnson Transform") +121 state Variables { +122 [*] : The combination of variables used +123 [*] : (e.g "x + a + b") +124 [*] --> pn +125 state "Plot Name" as pn { +126 [*] : Name of the plot +127 [*] : (e.g Bland-Altman) +128 } +129 } +130 } +131 } +132 ``` +133 +134 """ +135 self.style: Union[str, Path] = style +136 """ +137 Name of in-built matplotlib style or path to stylesheet +138 """ +139 self.backend = backend +140 """ +141 Matplotlib backend to use +142 """ +143 +144 def plot_meta( +145 self, +146 plot_func: Callable[ +147 ..., +148 matplotlib.figure.Figure +149 ], +150 name: str, +151 **kwargs +152 ): +153 """ +154 Iterates over data and creates plots using function specified in +155 `plot_func` +156 +157 Should not be accessed directly, should instead be called by +158 another method +159 +160 Parameters +161 ---------- +162 plot_func : Callable +163 Function that returns matplotlib figure +164 name : str +165 Name to give plot, used as key in `plots` dict +166 **kwargs +167 Additional arguments passed to `plot_func` +168 """ +169 if not self.x.sort_index().index.to_series().eq( +170 self.y.sort_index().index.to_series() +171 ).all(): +172 raise ValueError( +173 'Index of x and y do not match. Output of Calibrate class ' +174 'in calidhayte should have matching indexes' +175 ) +176 for technique, scaling_methods in self.models.items(): +177 if self.plots.get(technique) is None: +178 self.plots[technique] = dict() +179 for scaling_method, var_combos in scaling_methods.items(): +180 if self.plots[technique].get(scaling_method) is None: +181 self.plots[technique][scaling_method] = dict() +182 for vars, folds in var_combos.items(): +183 if self.plots[technique][scaling_method].get(vars) is None: +184 self.plots[technique][scaling_method][vars] = dict() +185 pred = pd.Series() +186 for fold, model in folds.items(): +187 x_data = self.x.loc[ +188 self.y[self.y.loc[:, 'Fold'] == fold].index, +189 : +190 ] +191 pred = pd.concat( +192 [ +193 pred, +194 pd.Series( +195 index=x_data.index, +196 data=model.predict(x_data) +197 ) +198 ] 199 ) -200 self.plots[technique][scaling_method][vars][name] = fig -201 -202 def bland_altman_plot(self, title=None): -203 with plt.rc_context({'backend': self.backend}), \ -204 plt.style.context(self.style): -205 self.plot_meta(bland_altman_plot, 'Bland-Altman', title=title) -206 -207 def ecdf_plot(self, title=None): -208 with plt.rc_context({'backend': self.backend}), \ -209 plt.style.context(self.style): -210 self.plot_meta(ecdf_plot, 'eCDF', title=title) -211 -212 def lin_reg_plot(self, title=None): -213 with plt.rc_context({'backend': self.backend}), \ -214 plt.style.context(self.style): -215 self.plot_meta(lin_reg_plot, 'Linear Regression', title=title) -216 -217 def save_plots( -218 self, -219 path: str, -220 filetype: Union[ -221 Literal['png', 'pgf', 'pdf'], -222 Iterable[Literal['png', 'pgf', 'pdf']] -223 ] = 'png' -224 ): -225 for technique, scaling_methods in self.plots.items(): -226 for scaling_method, var_combos in scaling_methods.items(): -227 for vars, figures in var_combos.items(): -228 for plot_type, fig in figures.items(): -229 plot_path = Path( -230 f'{path}/{technique}/{plot_type}' -231 ) -232 plot_path.mkdir(parents=True, exist_ok=True) -233 if isinstance(filetype, str): -234 fig.savefig( -235 plot_path / -236 f'{scaling_method} {vars}.{filetype}' -237 ) -238 elif isinstance(filetype, Iterable): -239 for ftype in filetype: -240 fig.savefig( -241 plot_path / -242 f'{scaling_method} {vars}.{ftype}' -243 ) -244 plt.close(fig) +200 x = pred +201 y = self.y.loc[:, self.target].reindex(x.index) +202 fig = plot_func( +203 x=x, +204 y=y, +205 x_name=self.x_name, +206 y_name=self.y_name, +207 **kwargs +208 ) +209 self.plots[technique][scaling_method][vars][name] = fig +210 +211 def bland_altman_plot(self, title=None): +212 with plt.rc_context({'backend': self.backend}), \ +213 plt.style.context(self.style): +214 self.plot_meta(bland_altman_plot, 'Bland-Altman', title=title) +215 +216 def ecdf_plot(self, title=None): +217 with plt.rc_context({'backend': self.backend}), \ +218 plt.style.context(self.style): +219 self.plot_meta(ecdf_plot, 'eCDF', title=title) +220 +221 def lin_reg_plot(self, title=None): +222 with plt.rc_context({'backend': self.backend}), \ +223 plt.style.context(self.style): +224 self.plot_meta(lin_reg_plot, 'Linear Regression', title=title) +225 +226 def shap(self, pipeline_keys: list[str], title=None): +227 x = self.x +228 y = self.y +229 pipeline = self.models[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]] +230 +231 if not self.plots.get(pipeline_keys[0]): +232 self.plots[pipeline_keys[0]] = dict() +233 if not self.plots[pipeline_keys[0]].get(pipeline_keys[1]): +234 self.plots[pipeline_keys[0]][pipeline_keys[1]] = dict() +235 if not self.plots[pipeline_keys[0]][pipeline_keys[1]].get(pipeline_keys[2]): +236 self.plots[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]] = dict() +237 with plt.rc_context({'backend': self.backend}), \ +238 plt.style.context(self.style): +239 shap_df = get_shap(x, y, pipeline) +240 self.plots[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]]['Shap'] = shap_plot(shap_df, x) +241 +242 +243 +244 def save_plots( +245 self, +246 path: str, +247 filetype: Union[ +248 Literal['png', 'pgf', 'pdf'], +249 Iterable[Literal['png', 'pgf', 'pdf']] +250 ] = 'png' +251 ): +252 for technique, scaling_methods in self.plots.items(): +253 for scaling_method, var_combos in scaling_methods.items(): +254 for vars, figures in var_combos.items(): +255 for plot_type, fig in figures.items(): +256 plot_path = Path( +257 f'{path}/{technique}/{plot_type}' +258 ) +259 plot_path.mkdir(parents=True, exist_ok=True) +260 if isinstance(filetype, str): +261 fig.savefig( +262 plot_path / +263 f'{scaling_method} {vars}.{filetype}' +264 ) +265 elif isinstance(filetype, Iterable): +266 for ftype in filetype: +267 fig.savefig( +268 plot_path / +269 f'{scaling_method} {vars}.{ftype}' +270 ) +271 plt.close(fig)
- Graphs( x: pandas.core.frame.DataFrame, x_name: str, y: pandas.core.frame.DataFrame, y_name: str, target: str, models: dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]], style: str = 'bmh', backend: str = 'agg') + Graphs( x: pandas.core.frame.DataFrame, x_name: str, y: pandas.core.frame.DataFrame, y_name: str, target: str, models: dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]], style: str = 'bmh', backend: str = 'TkAgg')--20 def __init__( - 21 self, - 22 x: pd.DataFrame, - 23 x_name: str, - 24 y: pd.DataFrame, - 25 y_name: str, - 26 target: str, - 27 models: dict[str, dict[str, dict[str, dict[int, Pipeline]]]], - 28 style: str = 'bmh', - 29 backend: str = str(get_backend()) - 30 ): - 31 """ - 32 """ - 33 self.x: pd.DataFrame = x - 34 """ - 35 Independent variable(s) that are calibrated against `y`, the independent - 36 variable. Index should match `y`. - 37 """ - 38 self.y: pd.DataFrame = y - 39 """ - 40 Dependent variable used to calibrate the independent variables `x`. - 41 Index should match `x`. - 42 """ - 43 self.x_name: str = x_name - 44 """ - 45 Label for `x` measurements - 46 """ - 47 self.y_name: str = y_name - 48 """ - 49 Label for `y` measurements - 50 """ - 51 self.target = target - 52 """ - 53 Measurand in `y` to calibrate against - 54 """ - 55 self.models: dict[str, - 56 dict[str, # Scaling Method - 57 dict[str, # Variables used - 58 dict[int, # Fold - 59 Pipeline]]]] = models - 60 """ - 61 The precalibrated models. They are stored in a nested structure as - 62 follows: - 63 1. Primary Key, name of the technique (e.g Lasso Regression). - 64 2. Scaling technique (e.g Yeo-Johnson Transform). - 65 3. Combination of variables used or `target` if calibration is - 66 univariate (e.g "`target` + a + b). - 67 4. Fold, which fold was used excluded from the calibration. If data - 68 if 5-fold cross validated, a key of 4 indicates the data was trained on - 69 folds 0-3. - 70 - 71 ```mermaid - 72 stateDiagram-v2 - 73 models --> Technique - 74 state Technique { - 75 [*] --> Scaling - 76 [*]: The calibration technique used - 77 [*]: (e.g "Lasso Regression") - 78 state Scaling { - 79 [*] --> Variables - 80 [*]: The scaling technique used - 81 [*]: (e.g "Yeo-Johnson Transform") - 82 state Variables { - 83 [*] : The combination of variables used - 84 [*] : (e.g "x + a + b") - 85 [*] --> Fold - 86 state Fold { - 87 [*] : Which fold was excluded from training data - 88 [*] : (e.g 4 indicates folds 0-3 were used to train) - 89 } - 90 } - 91 } - 92 } - 93 ``` - 94 - 95 """ - 96 self.plots: dict[str, # Technique - 97 dict[str, # Scaling Method - 98 dict[str, # Variables used - 99 dict[str, # Plot Name -100 plt.figure.Figure]]]] = dict() -101 """ -102 The plotted data, stored in a similar structure to `models` -103 1. Primary Key, name of the technique (e.g Lasso Regression). -104 2. Scaling technique (e.g Yeo-Johnson Transform). -105 3. Combination of variables used or `target` if calibration is -106 univariate (e.g "`target` + a + b). -107 4. Name of the plot (e.g. 'Bland-Altman') -108 -109 ```mermaid -110 stateDiagram-v2 -111 models --> Technique -112 state Technique { -113 [*] --> Scaling -114 [*]: The calibration technique used -115 [*]: (e.g "Lasso Regression") -116 state Scaling { -117 [*] --> Variables -118 [*]: The scaling technique used -119 [*]: (e.g "Yeo-Johnson Transform") -120 state Variables { -121 [*] : The combination of variables used -122 [*] : (e.g "x + a + b") -123 [*] --> pn -124 state "Plot Name" as pn { -125 [*] : Name of the plot -126 [*] : (e.g Bland-Altman) -127 } -128 } -129 } -130 } -131 ``` -132 -133 """ -134 self.style: Union[str, Path] = style -135 """ -136 Name of in-built matplotlib style or path to stylesheet -137 """ -138 self.backend = backend -139 """ -140 Matplotlib backend to use -141 """ +@@ -934,8 +1092,8 @@21 def __init__( + 22 self, + 23 x: pd.DataFrame, + 24 x_name: str, + 25 y: pd.DataFrame, + 26 y_name: str, + 27 target: str, + 28 models: dict[str, dict[str, dict[str, dict[int, Pipeline]]]], + 29 style: str = 'bmh', + 30 backend: str = str(get_backend()) + 31 ): + 32 """ + 33 """ + 34 self.x: pd.DataFrame = x + 35 """ + 36 Independent variable(s) that are calibrated against `y`, + 37 the independent variable. Index should match `y`. + 38 """ + 39 self.y: pd.DataFrame = y + 40 """ + 41 Dependent variable used to calibrate the independent variables `x`. + 42 Index should match `x`. + 43 """ + 44 self.x_name: str = x_name + 45 """ + 46 Label for `x` measurements + 47 """ + 48 self.y_name: str = y_name + 49 """ + 50 Label for `y` measurements + 51 """ + 52 self.target = target + 53 """ + 54 Measurand in `y` to calibrate against + 55 """ + 56 self.models: dict[ + 57 str, dict[ # Scaling Method + 58 str, dict[ # Variables used + 59 str, dict[ # Fold + 60 int, Pipeline]]]] = models + 61 """ + 62 The precalibrated models. They are stored in a nested structure as + 63 follows: + 64 1. Primary Key, name of the technique (e.g Lasso Regression). + 65 2. Scaling technique (e.g Yeo-Johnson Transform). + 66 3. Combination of variables used or `target` if calibration is + 67 univariate (e.g "`target` + a + b). + 68 4. Fold, which fold was used excluded from the calibration. If data + 69 if 5-fold cross validated, a key of 4 indicates the data was trained on + 70 folds 0-3. + 71 + 72 ```mermaid + 73 stateDiagram-v2 + 74 models --> Technique + 75 state Technique { + 76 [*] --> Scaling + 77 [*]: The calibration technique used + 78 [*]: (e.g "Lasso Regression") + 79 state Scaling { + 80 [*] --> Variables + 81 [*]: The scaling technique used + 82 [*]: (e.g "Yeo-Johnson Transform") + 83 state Variables { + 84 [*] : The combination of variables used + 85 [*] : (e.g "x + a + b") + 86 [*] --> Fold + 87 state Fold { + 88 [*] : Which fold was excluded from training data + 89 [*] : (e.g 4 indicates folds 0-3 were used to train) + 90 } + 91 } + 92 } + 93 } + 94 ``` + 95 + 96 """ + 97 self.plots: dict[str, # Technique + 98 dict[str, # Scaling Method + 99 dict[str, # Variables used +100 dict[str, # Plot Name +101 matplotlib.figure.Figure]]]] = dict() +102 """ +103 The plotted data, stored in a similar structure to `models` +104 1. Primary Key, name of the technique (e.g Lasso Regression). +105 2. Scaling technique (e.g Yeo-Johnson Transform). +106 3. Combination of variables used or `target` if calibration is +107 univariate (e.g "`target` + a + b). +108 4. Name of the plot (e.g. 'Bland-Altman') +109 +110 ```mermaid +111 stateDiagram-v2 +112 models --> Technique +113 state Technique { +114 [*] --> Scaling +115 [*]: The calibration technique used +116 [*]: (e.g "Lasso Regression") +117 state Scaling { +118 [*] --> Variables +119 [*]: The scaling technique used +120 [*]: (e.g "Yeo-Johnson Transform") +121 state Variables { +122 [*] : The combination of variables used +123 [*] : (e.g "x + a + b") +124 [*] --> pn +125 state "Plot Name" as pn { +126 [*] : Name of the plot +127 [*] : (e.g Bland-Altman) +128 } +129 } +130 } +131 } +132 ``` +133 +134 """ +135 self.style: Union[str, Path] = style +136 """ +137 Name of in-built matplotlib style or path to stylesheet +138 """ +139 self.backend = backend +140 """ +141 Matplotlib backend to use +142 """
Independent variable(s) that are calibrated against
+y
, the independent -variable. Index should matchy
.@@ -1042,7 +1200,7 @@Independent variable(s) that are calibrated against
y
, +the independent variable. Index should matchy
.
- plots: 'dict[str, dict[str, dict[str, dict[str, plt.figure.Figure]]]]' + plots: dict[str, dict[str, dict[str, dict[str, matplotlib.figure.Figure]]]]@@ -1115,70 +1273,78 @@
def - plot_meta(self, plot_func: Callable, name: str, **kwargs): + plot_meta( self, plot_func: Callable[..., matplotlib.figure.Figure], name: str, **kwargs):--143 def plot_meta(self, plot_func: Callable, name: str, **kwargs): -144 """ -145 Iterates over data and creates plots using function specified in -146 `plot_func` -147 -148 Should not be accessed directly, should instead be called by -149 another method -150 -151 Parameters -152 ---------- -153 plot_func : Callable -154 Function that returns matplotlib figure -155 name : str -156 Name to give plot, used as key in `plots` dict -157 **kwargs -158 Additional arguments passed to `plot_func` -159 """ -160 if not self.x.sort_index().index.to_series().eq( -161 self.y.sort_index().index.to_series() -162 ).all(): -163 raise ValueError( -164 'Index of x and y do not match. Output of Calibrate class ' -165 'in calidhayte should have matching indexes' -166 ) -167 for technique, scaling_methods in self.models.items(): -168 if self.plots.get(technique) is None: -169 self.plots[technique] = dict() -170 for scaling_method, var_combos in scaling_methods.items(): -171 if self.plots[technique].get(scaling_method) is None: -172 self.plots[technique][scaling_method] = dict() -173 for vars, folds in var_combos.items(): -174 if self.plots[technique][scaling_method].get(vars) is None: -175 self.plots[technique][scaling_method][vars] = dict() -176 pred = pd.Series() -177 for fold, model in folds.items(): -178 x_data = self.x.loc[ -179 self.y[self.y.loc[:, 'Fold'] == fold].index, -180 : -181 ] -182 pred = pd.concat( -183 [ -184 pred, -185 pd.Series( -186 index=x_data.index, -187 data=model.predict(x_data) -188 ) -189 ] -190 ) -191 x = pred -192 y = self.y.loc[:, self.target].reindex(x.index) -193 fig = plot_func( -194 x=x, -195 y=y, -196 x_name=self.x_name, -197 y_name=self.y_name, -198 **kwargs +@@ -1212,10 +1378,10 @@144 def plot_meta( +145 self, +146 plot_func: Callable[ +147 ..., +148 matplotlib.figure.Figure +149 ], +150 name: str, +151 **kwargs +152 ): +153 """ +154 Iterates over data and creates plots using function specified in +155 `plot_func` +156 +157 Should not be accessed directly, should instead be called by +158 another method +159 +160 Parameters +161 ---------- +162 plot_func : Callable +163 Function that returns matplotlib figure +164 name : str +165 Name to give plot, used as key in `plots` dict +166 **kwargs +167 Additional arguments passed to `plot_func` +168 """ +169 if not self.x.sort_index().index.to_series().eq( +170 self.y.sort_index().index.to_series() +171 ).all(): +172 raise ValueError( +173 'Index of x and y do not match. Output of Calibrate class ' +174 'in calidhayte should have matching indexes' +175 ) +176 for technique, scaling_methods in self.models.items(): +177 if self.plots.get(technique) is None: +178 self.plots[technique] = dict() +179 for scaling_method, var_combos in scaling_methods.items(): +180 if self.plots[technique].get(scaling_method) is None: +181 self.plots[technique][scaling_method] = dict() +182 for vars, folds in var_combos.items(): +183 if self.plots[technique][scaling_method].get(vars) is None: +184 self.plots[technique][scaling_method][vars] = dict() +185 pred = pd.Series() +186 for fold, model in folds.items(): +187 x_data = self.x.loc[ +188 self.y[self.y.loc[:, 'Fold'] == fold].index, +189 : +190 ] +191 pred = pd.concat( +192 [ +193 pred, +194 pd.Series( +195 index=x_data.index, +196 data=model.predict(x_data) +197 ) +198 ] 199 ) -200 self.plots[technique][scaling_method][vars][name] = fig +200 x = pred +201 y = self.y.loc[:, self.target].reindex(x.index) +202 fig = plot_func( +203 x=x, +204 y=y, +205 x_name=self.x_name, +206 y_name=self.y_name, +207 **kwargs +208 ) +209 self.plots[technique][scaling_method][vars][name] = figParameters
-202 def bland_altman_plot(self, title=None): -203 with plt.rc_context({'backend': self.backend}), \ -204 plt.style.context(self.style): -205 self.plot_meta(bland_altman_plot, 'Bland-Altman', title=title) +@@ -1233,10 +1399,10 @@211 def bland_altman_plot(self, title=None): +212 with plt.rc_context({'backend': self.backend}), \ +213 plt.style.context(self.style): +214 self.plot_meta(bland_altman_plot, 'Bland-Altman', title=title)Parameters
-207 def ecdf_plot(self, title=None): -208 with plt.rc_context({'backend': self.backend}), \ -209 plt.style.context(self.style): -210 self.plot_meta(ecdf_plot, 'eCDF', title=title) +@@ -1254,10 +1420,42 @@216 def ecdf_plot(self, title=None): +217 with plt.rc_context({'backend': self.backend}), \ +218 plt.style.context(self.style): +219 self.plot_meta(ecdf_plot, 'eCDF', title=title)Parameters
+212 def lin_reg_plot(self, title=None): -213 with plt.rc_context({'backend': self.backend}), \ -214 plt.style.context(self.style): -215 self.plot_meta(lin_reg_plot, 'Linear Regression', title=title) + + + + + ++ +-+ + def + shap(self, pipeline_keys: list[str], title=None): + + + ++ +@@ -1275,34 +1473,34 @@226 def shap(self, pipeline_keys: list[str], title=None): +227 x = self.x +228 y = self.y +229 pipeline = self.models[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]] +230 +231 if not self.plots.get(pipeline_keys[0]): +232 self.plots[pipeline_keys[0]] = dict() +233 if not self.plots[pipeline_keys[0]].get(pipeline_keys[1]): +234 self.plots[pipeline_keys[0]][pipeline_keys[1]] = dict() +235 if not self.plots[pipeline_keys[0]][pipeline_keys[1]].get(pipeline_keys[2]): +236 self.plots[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]] = dict() +237 with plt.rc_context({'backend': self.backend}), \ +238 plt.style.context(self.style): +239 shap_df = get_shap(x, y, pipeline) +240 self.plots[pipeline_keys[0]][pipeline_keys[1]][pipeline_keys[2]]['Shap'] = shap_plot(shap_df, x)Parameters
-217 def save_plots( -218 self, -219 path: str, -220 filetype: Union[ -221 Literal['png', 'pgf', 'pdf'], -222 Iterable[Literal['png', 'pgf', 'pdf']] -223 ] = 'png' -224 ): -225 for technique, scaling_methods in self.plots.items(): -226 for scaling_method, var_combos in scaling_methods.items(): -227 for vars, figures in var_combos.items(): -228 for plot_type, fig in figures.items(): -229 plot_path = Path( -230 f'{path}/{technique}/{plot_type}' -231 ) -232 plot_path.mkdir(parents=True, exist_ok=True) -233 if isinstance(filetype, str): -234 fig.savefig( -235 plot_path / -236 f'{scaling_method} {vars}.{filetype}' -237 ) -238 elif isinstance(filetype, Iterable): -239 for ftype in filetype: -240 fig.savefig( -241 plot_path / -242 f'{scaling_method} {vars}.{ftype}' -243 ) -244 plt.close(fig) +@@ -1321,10 +1519,10 @@244 def save_plots( +245 self, +246 path: str, +247 filetype: Union[ +248 Literal['png', 'pgf', 'pdf'], +249 Iterable[Literal['png', 'pgf', 'pdf']] +250 ] = 'png' +251 ): +252 for technique, scaling_methods in self.plots.items(): +253 for scaling_method, var_combos in scaling_methods.items(): +254 for vars, figures in var_combos.items(): +255 for plot_type, fig in figures.items(): +256 plot_path = Path( +257 f'{path}/{technique}/{plot_type}' +258 ) +259 plot_path.mkdir(parents=True, exist_ok=True) +260 if isinstance(filetype, str): +261 fig.savefig( +262 plot_path / +263 f'{scaling_method} {vars}.{filetype}' +264 ) +265 elif isinstance(filetype, Iterable): +266 for ftype in filetype: +267 fig.savefig( +268 plot_path / +269 f'{scaling_method} {vars}.{ftype}' +270 ) +271 plt.close(fig)Parameters
-247def ecdf(data): -248 x = np.sort(data) -249 y = np.arange(1, len(data) + 1) / len(data) -250 return x, y +@@ -1342,53 +1540,53 @@274def ecdf(data): +275 x = np.sort(data) +276 y = np.arange(1, len(data) + 1) / len(data) +277 return x, yParameters
-253def lin_reg_plot( -254 x: pd.Series, -255 y: pd.Series, -256 x_name: str, -257 y_name: str, -258 title: Optional[str] = None -259 ): -260 """ -261 """ -262 fig = plt.figure(figsize=(4, 4), dpi=200) -263 fig_gs = fig.add_gridspec( -264 2, -265 2, -266 width_ratios=(7, 2), -267 height_ratios=(2, 7), -268 left=0.1, -269 right=0.9, -270 bottom=0.1, -271 top=0.9, -272 wspace=0.0, -273 hspace=0.0, -274 ) -275 -276 scatter_ax = fig.add_subplot(fig_gs[1, 0]) -277 histx_ax = fig.add_subplot(fig_gs[0, 0], sharex=scatter_ax) -278 histx_ax.axis("off") -279 histy_ax = fig.add_subplot(fig_gs[1, 1], sharey=scatter_ax) -280 histy_ax.axis("off") -281 -282 max_value = max((y.max(), x.max())) -283 min_value = min((y.min(), x.min())) -284 scatter_ax.set_xlim(min_value - 3, max_value + 3) -285 scatter_ax.set_ylim(min_value - 3, max_value + 3) -286 scatter_ax.set_xlabel(x_name) -287 scatter_ax.set_ylabel(y_name) -288 scatter_ax.scatter(x, y, color="C0", marker='.', alpha=0.75) -289 -290 binwidth = 7.5 -291 xymax = max(np.max(np.abs(x)), np.max(np.abs(y))) -292 lim = (int(xymax / binwidth) + 1) * binwidth -293 -294 bins = np.arange(-lim, lim + binwidth, binwidth) -295 histx_ax.hist(x, bins=bins, color="C0") -296 histy_ax.hist(y, bins=bins, orientation="horizontal", color="C0") -297 if isinstance(title, str): -298 fig.suptitle(title) -299 return fig +@@ -1406,58 +1604,58 @@280def lin_reg_plot( +281 x: pd.Series, +282 y: pd.Series, +283 x_name: str, +284 y_name: str, +285 title: Optional[str] = None +286 ): +287 """ +288 """ +289 fig = plt.figure(figsize=(4, 4), dpi=200) +290 fig_gs = fig.add_gridspec( +291 2, +292 2, +293 width_ratios=(7, 2), +294 height_ratios=(2, 7), +295 left=0.1, +296 right=0.9, +297 bottom=0.1, +298 top=0.9, +299 wspace=0.0, +300 hspace=0.0, +301 ) +302 +303 scatter_ax = fig.add_subplot(fig_gs[1, 0]) +304 histx_ax = fig.add_subplot(fig_gs[0, 0], sharex=scatter_ax) +305 histx_ax.axis("off") +306 histy_ax = fig.add_subplot(fig_gs[1, 1], sharey=scatter_ax) +307 histy_ax.axis("off") +308 +309 max_value = max((y.max(), x.max())) +310 min_value = min((y.min(), x.min())) +311 scatter_ax.set_xlim(min_value - 3, max_value + 3) +312 scatter_ax.set_ylim(min_value - 3, max_value + 3) +313 scatter_ax.set_xlabel(x_name) +314 scatter_ax.set_ylabel(y_name) +315 scatter_ax.scatter(x, y, color="C0", marker='.', alpha=0.75) +316 +317 binwidth = 7.5 +318 xymax = max(np.max(np.abs(x)), np.max(np.abs(y))) +319 lim = (int(xymax / binwidth) + 1) * binwidth +320 +321 bins = list(np.arange(-lim, lim + binwidth, binwidth)) +322 histx_ax.hist(x, bins=bins, color="C0") +323 histy_ax.hist(y, bins=bins, orientation="horizontal", color="C0") +324 if isinstance(title, str): +325 fig.suptitle(title) +326 return figParameters
-302def bland_altman_plot( -303 x: pd.DataFrame, -304 y: pd.Series, -305 title: Optional[str] = None, -306 **kwargs -307 ): -308 """ -309 """ -310 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) -311 x_data = np.mean(np.vstack((x, y)).T, axis=1) -312 y_data = np.array(x) - np.array(y) -313 y_mean = np.mean(y_data) -314 y_sd = 1.96 * np.std(y_data) -315 max_diff_from_mean = max( -316 (y_data - y_mean).min(), (y_data - y_mean).max(), key=abs -317 ) -318 text_adjust = (12 * max_diff_from_mean) / 300 -319 ax.set_ylim(y_mean - max_diff_from_mean, y_mean + max_diff_from_mean) -320 ax.set_xlabel("Average of Measured and Reference") -321 ax.set_ylabel("Difference Between Measured and Reference") -322 ax.scatter(x_data, y_data, alpha=0.75) -323 ax.axline((0, y_mean), (1, y_mean), color="xkcd:vermillion") -324 ax.text( -325 max(x_data), -326 y_mean + text_adjust, -327 f"Mean: {y_mean:.2f}", -328 verticalalignment="bottom", -329 horizontalalignment="right", -330 ) -331 ax.axline( -332 (0, y_mean + y_sd), (1, y_mean + y_sd), color="xkcd:fresh green" -333 ) -334 ax.text( -335 max(x_data), -336 y_mean + y_sd + text_adjust, -337 f"1.96$\\sigma$: {y_mean + y_sd:.2f}", -338 verticalalignment="bottom", -339 horizontalalignment="right", -340 ) -341 ax.axline( -342 (0, y_mean - y_sd), (1, y_mean - y_sd), color="xkcd:fresh green" -343 ) -344 ax.text( -345 max(x_data), -346 y_mean - y_sd + text_adjust, -347 f"1.96$\\sigma$: -{y_sd:.2f}", -348 verticalalignment="bottom", -349 horizontalalignment="right", -350 ) -351 if isinstance(title, str): -352 fig.suptitle(title) -353 return fig +@@ -1475,34 +1673,162 @@329def bland_altman_plot( +330 x: pd.DataFrame, +331 y: pd.Series, +332 title: Optional[str] = None, +333 **kwargs +334 ): +335 """ +336 """ +337 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) +338 x_data = np.mean(np.vstack((x, y)).T, axis=1) +339 y_data = np.array(x) - np.array(y) +340 y_mean = np.mean(y_data) +341 y_sd = 1.96 * np.std(y_data) +342 max_diff_from_mean = max( +343 (y_data - y_mean).min(), (y_data - y_mean).max(), key=abs +344 ) +345 text_adjust = (12 * max_diff_from_mean) / 300 +346 ax.set_ylim(y_mean - max_diff_from_mean, y_mean + max_diff_from_mean) +347 ax.set_xlabel("Average of Measured and Reference") +348 ax.set_ylabel("Difference Between Measured and Reference") +349 ax.scatter(x_data, y_data, alpha=0.75) +350 ax.axline((0, y_mean), (1, y_mean), color="xkcd:vermillion") +351 ax.text( +352 max(x_data), +353 y_mean + text_adjust, +354 f"Mean: {y_mean:.2f}", +355 verticalalignment="bottom", +356 horizontalalignment="right", +357 ) +358 ax.axline( +359 (0, y_mean + y_sd), (1, y_mean + y_sd), color="xkcd:fresh green" +360 ) +361 ax.text( +362 max(x_data), +363 y_mean + y_sd + text_adjust, +364 f"1.96$\\sigma$: {y_mean + y_sd:.2f}", +365 verticalalignment="bottom", +366 horizontalalignment="right", +367 ) +368 ax.axline( +369 (0, y_mean - y_sd), (1, y_mean - y_sd), color="xkcd:fresh green" +370 ) +371 ax.text( +372 max(x_data), +373 y_mean - y_sd + text_adjust, +374 f"1.96$\\sigma$: -{y_sd:.2f}", +375 verticalalignment="bottom", +376 horizontalalignment="right", +377 ) +378 if isinstance(title, str): +379 fig.suptitle(title) +380 return figParameters
-356def ecdf_plot( -357 x: pd.DataFrame, -358 y: pd.Series, -359 x_name: str, -360 y_name: str, -361 title: Optional[str] = None -362 ): -363 """ -364 """ -365 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) -366 true_x, true_y = ecdf(y) -367 pred_x, pred_y = ecdf(x) -368 ax.set_ylim(0, 1) -369 ax.set_xlabel("Measurement") -370 ax.set_ylabel("Cumulative Total") -371 ax.plot(true_x, true_y, linestyle="none", marker=".", label=y_name) -372 ax.plot( -373 pred_x, -374 pred_y, -375 linestyle="none", -376 marker=".", -377 alpha=0.8, -378 label=x_name, -379 ) -380 ax.legend() -381 if isinstance(title, str): -382 fig.suptitle(title) -383 return fig ++ + + + + +383def ecdf_plot( +384 x: pd.DataFrame, +385 y: pd.Series, +386 x_name: str, +387 y_name: str, +388 title: Optional[str] = None +389 ): +390 """ +391 """ +392 fig, ax = plt.subplots(figsize=(4, 4), dpi=200) +393 true_x, true_y = ecdf(y) +394 pred_x, pred_y = ecdf(x) +395 ax.set_ylim(0, 1) +396 ax.set_xlabel("Measurement") +397 ax.set_ylabel("Cumulative Total") +398 ax.plot(true_x, true_y, linestyle="none", marker=".", label=y_name) +399 ax.plot( +400 pred_x, +401 pred_y, +402 linestyle="none", +403 marker=".", +404 alpha=0.8, +405 label=x_name, +406 ) +407 ax.legend() +408 if isinstance(title, str): +409 fig.suptitle(title) +410 return fig ++ + ++ + def + shap_plot(shaps: pandas.core.frame.DataFrame, x: pandas.core.frame.DataFrame): + + + ++ ++ + + + +412def shap_plot(shaps: pd.DataFrame, x: pd.DataFrame): +413 """ +414 """ +415 shaps_min = shaps.drop(['Fold'], axis=1).min(axis=None) +416 shaps_max = shaps.drop(['Fold'], axis=1).max(axis=None) +417 shaps_range = shaps_max - shaps_min +418 shaps_lims = ( +419 shaps_min - (shaps_range * 0.1), +420 shaps_max + (shaps_range * 0.1) +421 ) +422 +423 num_of_cols = shaps.drop(['Fold'], axis=1).shape[1] +424 +425 shape_of_scatters = ( +426 int(np.ceil(num_of_cols / 2)), +427 (min(2, int(num_of_cols))) +428 ) +429 +430 fig, ax = plt.subplots( +431 *shape_of_scatters, +432 figsize=( +433 4 * shape_of_scatters[0], +434 4 * shape_of_scatters[1] +435 ), +436 dpi=200 +437 ) +438 +439 for col_ind, col in enumerate(shaps.drop(['Fold'], axis=1).columns): +440 scatter_data = pd.concat( +441 [ +442 x.loc[:, col].rename('Value'), +443 shaps.loc[:, col].rename('Shap'), +444 shaps.loc[:, 'Fold'].rename('Fold') +445 ], +446 axis=1 +447 ) +448 x_min = scatter_data.loc[:, 'Value'].min() +449 x_max = scatter_data.loc[:, 'Value'].max() +450 x_range = x_max - x_min +451 x_lims = (x_min - (x_range * 0.1), x_max + (x_range * 0.1)) +452 +453 row_num = int(np.floor(col_ind / 2)) +454 col_num = col_ind % 2 +455 for i, fold in enumerate(sorted(shaps.loc[:, 'Fold'].unique())): +456 scat_fold = scatter_data[scatter_data.loc[:, 'Fold'] == fold] +457 ax[row_num, col_num].scatter( +458 scat_fold['Value'], +459 scat_fold['Shap'], +460 c=f'C{i}', +461 label=f'Fold {fold}', +462 marker='.' +463 ) +464 ax[row_num, col_num].set_title(col) +465 ax[row_num, col_num].set_xlabel('Value') +466 ax[row_num, col_num].set_xlim(x_lims) +467 ax[row_num, col_num].set_ylabel('Shap') +468 ax[row_num, col_num].set_ylim(shaps_lims) +469 +470 ax[0, 0].legend(loc='best') +471 plt.tight_layout() +472 return fig ++ + + + def + get_shap( x: pandas.core.frame.DataFrame, y: pandas.core.frame.DataFrame, pipeline: dict[int, sklearn.pipeline.Pipeline]): + + + ++ +diff --git a/docs/calidhayte/summary.html b/docs/calidhayte/summary.html index d31c22b..e5156f4 100644 --- a/docs/calidhayte/summary.html +++ b/docs/calidhayte/summary.html @@ -125,95 +125,96 @@474def get_shap( +475 x: pd.DataFrame, +476 y: pd.DataFrame, +477 pipeline: dict[int, Pipeline] +478 ): +479 shaps = pd.DataFrame() +480 for fold in pipeline.keys(): +481 if len(pipeline.keys()) > 1: +482 fold_index = y[y.loc[:, 'Fold'] == fold].index +483 x_data = x.loc[fold_index, :] +484 else: +485 x_data = x +486 explainer = shap.KernelExplainer( +487 model=pipeline[fold][-1].predict, +488 data=x_data, +489 link='identity' +490 ) +491 shaps = pd.concat( +492 [ +493 shaps, +494 pd.DataFrame( +495 explainer.shap_values(x_data), +496 index=x_data.index, +497 columns=x_data.columns +498 ) +499 ] +500 ) +501 if len(pipeline.keys()) > 1: +502 shaps.loc[x_data.index, 'Fold'] = y.loc[x_data.index, 'Fold'] +503 else: +504 shaps.loc[:, 'Fold'] = 'Cross-Validated' +505 shaps = shaps.sort_index() +506 return shaps
@@ -229,91 +230,91 @@1import pathlib 2 3from matplotlib import get_backend - 4import matplotlib.pyplot as plt - 5import pandas as pd - 6 + 4import matplotlib.figure + 5import matplotlib.pyplot as plt + 6import pandas as pd 7 - 8class Summary: - 9 """ -10 """ -11 def __init__( -12 self, -13 results: pd.DataFrame, -14 cols: list[str], -15 style: str = 'bmh', -16 backend: str = str(get_backend()) -17 ): -18 """ -19 """ -20 self.results = results -21 print(self.results) -22 self.plots: dict[str, dict[str, plt.figure.Figure]] = dict() -23 self.cols: list[str] = cols -24 self.style = style -25 self.backend = backend -26 -27 def boxplots(self): -28 """ -29 """ -30 self.plots["Box Plots"] = dict() -31 for label in self.results.index.names[:-1]: -32 for col in self.cols: -33 with plt.rc_context( -34 { -35 'backend': self.backend, -36 'figure.dpi': 200 -37 } -38 ), \ -39 plt.style.context(self.style): -40 plot = self.results.loc[ -41 :, [col] -42 ].boxplot( -43 by=label, -44 figsize=( -45 len(self.cols), -46 2 * round(len(self.cols)/2) -47 ), -48 rot=90, -49 fontsize=8, -50 sym='.', -51 ) -52 plot.title.set_size(8) -53 plt.tight_layout() -54 self.plots["Box Plots"][f'{label} {col}'] = plot -55 plt.close() -56 -57 def histograms(self): -58 """ -59 """ -60 self.plots["Histograms"] = dict() -61 for col in self.cols: -62 with plt.rc_context( -63 { -64 'backend': self.backend, -65 'figure.dpi': 200 -66 } -67 ), \ -68 plt.style.context(self.style): -69 plot = self.results.loc[ -70 :, col -71 ].plot.hist( -72 bins=30, -73 figsize=(8, 4) -74 ) -75 plot.set_xlabel(col) -76 plot.title.set_size(8) -77 plt.tight_layout() -78 self.plots["Histograms"][col] = plot -79 plt.close() -80 -81 def save_plots(self, path, filetype: str = 'png'): -82 """ -83 """ -84 for plot_type, plots in self.plots.items(): -85 for variable, ax in plots.items(): -86 plot_path = pathlib.Path( -87 f'{path}/Summary' -88 ) -89 fig = ax.figure -90 plot_path.mkdir(parents=True, exist_ok=True) -91 fig.savefig(plot_path / f'{plot_type} {variable}.{filetype}') -92 plt.close(fig) + 8 + 9class Summary: +10 """ +11 """ +12 def __init__( +13 self, +14 results: pd.DataFrame, +15 cols: list[str], +16 style: str = 'bmh', +17 backend: str = str(get_backend()) +18 ): +19 """ +20 """ +21 self.results = results +22 print(self.results) +23 self.plots: dict[str, dict[str, matplotlib.figure.Figure]] = dict() +24 self.cols: list[str] = cols +25 self.style = style +26 self.backend = backend +27 +28 def boxplots(self): +29 """ +30 """ +31 self.plots["Box Plots"] = dict() +32 for label in self.results.index.names[:-1]: +33 for col in self.cols: +34 with plt.rc_context( +35 { +36 'backend': self.backend, +37 'figure.dpi': 200 +38 } +39 ), \ +40 plt.style.context(self.style): +41 plot = self.results.loc[ +42 :, [col] +43 ].boxplot( +44 by=label, +45 figsize=( +46 len(self.cols), +47 2 * round(len(self.cols)/2) +48 ), +49 rot=90, +50 fontsize=8, +51 sym='.', +52 ) +53 plot.title.set_size(8) +54 plt.tight_layout() +55 self.plots["Box Plots"][f'{label} {col}'] = plot +56 plt.close() +57 +58 def histograms(self): +59 """ +60 """ +61 self.plots["Histograms"] = dict() +62 for col in self.cols: +63 with plt.rc_context( +64 { +65 'backend': self.backend, +66 'figure.dpi': 200 +67 } +68 ), \ +69 plt.style.context(self.style): +70 plot = self.results.loc[ +71 :, col +72 ].plot.hist( +73 bins=30, +74 figsize=(8, 4) +75 ) +76 plot.set_xlabel(col) +77 plot.title.set_size(8) +78 plt.tight_layout() +79 self.plots["Histograms"][col] = plot +80 plt.close() +81 +82 def save_plots(self, path, filetype: str = 'png'): +83 """ +84 """ +85 for plot_type, plots in self.plots.items(): +86 for variable, ax in plots.items(): +87 plot_path = pathlib.Path( +88 f'{path}/Summary' +89 ) +90 fig = ax.figure +91 plot_path.mkdir(parents=True, exist_ok=True) +92 fig.savefig(plot_path / f'{plot_type} {variable}.{filetype}') +93 plt.close(fig)
9class Summary: -10 """ -11 """ -12 def __init__( -13 self, -14 results: pd.DataFrame, -15 cols: list[str], -16 style: str = 'bmh', -17 backend: str = str(get_backend()) -18 ): -19 """ -20 """ -21 self.results = results -22 print(self.results) -23 self.plots: dict[str, dict[str, plt.figure.Figure]] = dict() -24 self.cols: list[str] = cols -25 self.style = style -26 self.backend = backend -27 -28 def boxplots(self): -29 """ -30 """ -31 self.plots["Box Plots"] = dict() -32 for label in self.results.index.names[:-1]: -33 for col in self.cols: -34 with plt.rc_context( -35 { -36 'backend': self.backend, -37 'figure.dpi': 200 -38 } -39 ), \ -40 plt.style.context(self.style): -41 plot = self.results.loc[ -42 :, [col] -43 ].boxplot( -44 by=label, -45 figsize=( -46 len(self.cols), -47 2 * round(len(self.cols)/2) -48 ), -49 rot=90, -50 fontsize=8, -51 sym='.', -52 ) -53 plot.title.set_size(8) -54 plt.tight_layout() -55 self.plots["Box Plots"][f'{label} {col}'] = plot -56 plt.close() -57 -58 def histograms(self): -59 """ -60 """ -61 self.plots["Histograms"] = dict() -62 for col in self.cols: -63 with plt.rc_context( -64 { -65 'backend': self.backend, -66 'figure.dpi': 200 -67 } -68 ), \ -69 plt.style.context(self.style): -70 plot = self.results.loc[ -71 :, col -72 ].plot.hist( -73 bins=30, -74 figsize=(8, 4) -75 ) -76 plot.set_xlabel(col) -77 plot.title.set_size(8) -78 plt.tight_layout() -79 self.plots["Histograms"][col] = plot -80 plt.close() -81 -82 def save_plots(self, path, filetype: str = 'png'): -83 """ -84 """ -85 for plot_type, plots in self.plots.items(): -86 for variable, ax in plots.items(): -87 plot_path = pathlib.Path( -88 f'{path}/Summary' -89 ) -90 fig = ax.figure -91 plot_path.mkdir(parents=True, exist_ok=True) -92 fig.savefig(plot_path / f'{plot_type} {variable}.{filetype}') -93 plt.close(fig) +@@ -323,27 +324,27 @@10class Summary: +11 """ +12 """ +13 def __init__( +14 self, +15 results: pd.DataFrame, +16 cols: list[str], +17 style: str = 'bmh', +18 backend: str = str(get_backend()) +19 ): +20 """ +21 """ +22 self.results = results +23 print(self.results) +24 self.plots: dict[str, dict[str, matplotlib.figure.Figure]] = dict() +25 self.cols: list[str] = cols +26 self.style = style +27 self.backend = backend +28 +29 def boxplots(self): +30 """ +31 """ +32 self.plots["Box Plots"] = dict() +33 for label in self.results.index.names[:-1]: +34 for col in self.cols: +35 with plt.rc_context( +36 { +37 'backend': self.backend, +38 'figure.dpi': 200 +39 } +40 ), \ +41 plt.style.context(self.style): +42 plot = self.results.loc[ +43 :, [col] +44 ].boxplot( +45 by=label, +46 figsize=( +47 len(self.cols), +48 2 * round(len(self.cols)/2) +49 ), +50 rot=90, +51 fontsize=8, +52 sym='.', +53 ) +54 plot.title.set_size(8) +55 plt.tight_layout() +56 self.plots["Box Plots"][f'{label} {col}'] = plot +57 plt.close() +58 +59 def histograms(self): +60 """ +61 """ +62 self.plots["Histograms"] = dict() +63 for col in self.cols: +64 with plt.rc_context( +65 { +66 'backend': self.backend, +67 'figure.dpi': 200 +68 } +69 ), \ +70 plt.style.context(self.style): +71 plot = self.results.loc[ +72 :, col +73 ].plot.hist( +74 bins=30, +75 figsize=(8, 4) +76 ) +77 plot.set_xlabel(col) +78 plot.title.set_size(8) +79 plt.tight_layout() +80 self.plots["Histograms"][col] = plot +81 plt.close() +82 +83 def save_plots(self, path, filetype: str = 'png'): +84 """ +85 """ +86 for plot_type, plots in self.plots.items(): +87 for variable, ax in plots.items(): +88 plot_path = pathlib.Path( +89 f'{path}/Summary' +90 ) +91 fig = ax.figure +92 plot_path.mkdir(parents=True, exist_ok=True) +93 fig.savefig(plot_path / f'{plot_type} {variable}.{filetype}') +94 plt.close(fig)
- Summary( results: pandas.core.frame.DataFrame, cols: list[str], style: str = 'bmh', backend: str = 'agg') + Summary( results: pandas.core.frame.DataFrame, cols: list[str], style: str = 'bmh', backend: str = 'TkAgg')-12 def __init__( -13 self, -14 results: pd.DataFrame, -15 cols: list[str], -16 style: str = 'bmh', -17 backend: str = str(get_backend()) -18 ): -19 """ -20 """ -21 self.results = results -22 print(self.results) -23 self.plots: dict[str, dict[str, plt.figure.Figure]] = dict() -24 self.cols: list[str] = cols -25 self.style = style -26 self.backend = backend +@@ -363,7 +364,7 @@13 def __init__( +14 self, +15 results: pd.DataFrame, +16 cols: list[str], +17 style: str = 'bmh', +18 backend: str = str(get_backend()) +19 ): +20 """ +21 """ +22 self.results = results +23 print(self.results) +24 self.plots: dict[str, dict[str, matplotlib.figure.Figure]] = dict() +25 self.cols: list[str] = cols +26 self.style = style +27 self.backend = backend
-- plots: 'dict[str, dict[str, plt.figure.Figure]]' + plots: dict[str, dict[str, matplotlib.figure.Figure]]@@ -416,35 +417,35 @@
-28 def boxplots(self): -29 """ -30 """ -31 self.plots["Box Plots"] = dict() -32 for label in self.results.index.names[:-1]: -33 for col in self.cols: -34 with plt.rc_context( -35 { -36 'backend': self.backend, -37 'figure.dpi': 200 -38 } -39 ), \ -40 plt.style.context(self.style): -41 plot = self.results.loc[ -42 :, [col] -43 ].boxplot( -44 by=label, -45 figsize=( -46 len(self.cols), -47 2 * round(len(self.cols)/2) -48 ), -49 rot=90, -50 fontsize=8, -51 sym='.', -52 ) -53 plot.title.set_size(8) -54 plt.tight_layout() -55 self.plots["Box Plots"][f'{label} {col}'] = plot -56 plt.close() +@@ -462,29 +463,29 @@29 def boxplots(self): +30 """ +31 """ +32 self.plots["Box Plots"] = dict() +33 for label in self.results.index.names[:-1]: +34 for col in self.cols: +35 with plt.rc_context( +36 { +37 'backend': self.backend, +38 'figure.dpi': 200 +39 } +40 ), \ +41 plt.style.context(self.style): +42 plot = self.results.loc[ +43 :, [col] +44 ].boxplot( +45 by=label, +46 figsize=( +47 len(self.cols), +48 2 * round(len(self.cols)/2) +49 ), +50 rot=90, +51 fontsize=8, +52 sym='.', +53 ) +54 plot.title.set_size(8) +55 plt.tight_layout() +56 self.plots["Box Plots"][f'{label} {col}'] = plot +57 plt.close()
-58 def histograms(self): -59 """ -60 """ -61 self.plots["Histograms"] = dict() -62 for col in self.cols: -63 with plt.rc_context( -64 { -65 'backend': self.backend, -66 'figure.dpi': 200 -67 } -68 ), \ -69 plt.style.context(self.style): -70 plot = self.results.loc[ -71 :, col -72 ].plot.hist( -73 bins=30, -74 figsize=(8, 4) -75 ) -76 plot.set_xlabel(col) -77 plot.title.set_size(8) -78 plt.tight_layout() -79 self.plots["Histograms"][col] = plot -80 plt.close() +@@ -502,18 +503,18 @@59 def histograms(self): +60 """ +61 """ +62 self.plots["Histograms"] = dict() +63 for col in self.cols: +64 with plt.rc_context( +65 { +66 'backend': self.backend, +67 'figure.dpi': 200 +68 } +69 ), \ +70 plt.style.context(self.style): +71 plot = self.results.loc[ +72 :, col +73 ].plot.hist( +74 bins=30, +75 figsize=(8, 4) +76 ) +77 plot.set_xlabel(col) +78 plot.title.set_size(8) +79 plt.tight_layout() +80 self.plots["Histograms"][col] = plot +81 plt.close()
82 def save_plots(self, path, filetype: str = 'png'): -83 """ -84 """ -85 for plot_type, plots in self.plots.items(): -86 for variable, ax in plots.items(): -87 plot_path = pathlib.Path( -88 f'{path}/Summary' -89 ) -90 fig = ax.figure -91 plot_path.mkdir(parents=True, exist_ok=True) -92 fig.savefig(plot_path / f'{plot_type} {variable}.{filetype}') -93 plt.close(fig) +diff --git a/docs/search.js b/docs/search.js index be17cce..7166616 100644 --- a/docs/search.js +++ b/docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u83 def save_plots(self, path, filetype: str = 'png'): +84 """ +85 """ +86 for plot_type, plots in self.plots.items(): +87 for variable, ax in plots.items(): +88 plot_path = pathlib.Path( +89 f'{path}/Summary' +90 ) +91 fig = ax.figure +92 plot_path.mkdir(parents=True, exist_ok=True) +93 fig.savefig(plot_path / f'{plot_type} {variable}.{filetype}') +94 plt.close(fig)0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e 1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o \n calidhayte\n\n\n Contact: CaderIdrisGH@outlook.com
\n\n\n\n
\n\nTable of Contents
\n\n\n\n
\n\nSummary
\n\ncalidhayte calibrates one set of measurements against another, using a variety of parametric and non parametric techniques.\nThe datasets are split by k-fold cross validation and stratified so the distribution of 'true' measurements is consistent in all.\nIt can then performs multiple error calculations to validate them, as well as produce several graphs to visualise the calibrations.
\n\n
\n\nMain Features
\n\n\n
\n\n- Calibrate one set of measurements (cross-comparing all available secondary variables) against a 'true' set\n
\n\n
- A suite of calibration methods are available, including bayesian regression
\n- Perform a suite of error calculations on the resulting calibration
\n- Visualise results of calibration
\n- Summarise calibrations to highlight best performing techniques
\n
\n\nHow to install
\n\npip
\n\n\n\n\n\npip install git+https://github.com/CaderIdris/calidhayte@release_tag\n
conda
\n\n\n\n\n\nconda install git pip\npip install git+https://github.com/CaderIdris/calidhayte@release_tag \n
The release tags can be found in the sidebar
\n\n
\n\nDependencies
\n\nPlease see Pipfile.
\n\n
\n\nExample Usage
\n\nThis module requires two dataframes as a prerequisite.
\n\nIndependent Measurements
\n\n\n\n
\n\n\n \n\n\n\n x \na \nb \nc \nd \ne \n\n \n2022-01-01 \n0.1 \n0 \n7 \n2.2 \n3 \n5 \n\n \n2022-01-02 \n0.7 \n1 \n3 \n2 \n8.9 \n1 \n\n \n2022-01-03 \nnan \nnan \n1 \nnan \nnan \n7 \n\n \n_ \n_ \n_ \n_ \n_ \n_ \n_ \n\n \n\n2022-09-30 \n0.5 \n3 \n1 \n2.7 \n4 \n0 \nDependent Measurements
\n\n\n\n
\n\n\n \n\n\n\n x \n\n \n2022-01-02 \n1 \n\n \n2022-01-05 \n3 \n\n \n_ \n_ \n\n \n2022-09-29 \nnan \n\n \n2022-09-30 \n37 \n\n \n\n2022-10-01 \n3 \n\n
\n\n- The two dataframes are joined on the index as an inner join, so the indices do not have to match initially
\n- nan values can be present
\n- More than one column can be present for the dependent measurements but only 'Values' will be used
\n- The index can contain date objects, datetime objects or integers. They should be unique. Strings are untested and may cause unexpected behaviours
\n\n\n\n\nfrom calidhayte import Calibrate, Results, Graphs, Summary\n\n# x_df is a dataframe containing multiple columns containing independent measurements.\n# The primary measurement is denoted by the 'Values' columns, the other measurement columns can have any name.\n# y_df is a dataframe containing the dependent measurement in the 'Values' column.\n\ncoeffs = Calibrate(\n x=x_df,\n y=y_df\n target='x'\n)\n\ncal.linreg()\ncal.theil_sen()\ncal.random_forest(n_estimators=500, max_features=1.0)\n\nmodels = coeffs.return_models()\n\nresults = Results(\n x=x_df,\n y=y_df,\n target='x',\n models=models\n)\n\nresults.r2()\nresults.median_absolute()\nresults.max()\n\nresults_df = results.return_errors()\nresults_df.to_csv('results.csv')\n\ngraphs = Graphs(\n x=x_df,\n y=y_df,\n target='x',\n models=models,\n x_name='x',\n y_name='y'\n)\ngraphs.ecdf_plot()\ngraphs.lin_reg_plot()\ngraphs.save_plots()\n
\n\nAcknowledgements
\n\nMany thanks to James Murphy at Mcoding who's excellent tutorial Automated Testing in Python and associated repository helped a lot when structuring this package
\n"}, "calidhayte.calibrate": {"fullname": "calidhayte.calibrate", "modulename": "calidhayte.calibrate", "kind": "module", "doc": "Contains code used to perform a range of univariate and multivariate\nregressions on provided data.
\n\nActs as a wrapper for scikit-learn 1, XGBoost 2 and PyMC (via Bambi)\n3
\n\n\n\n"}, "calidhayte.calibrate.cont_strat_folds": {"fullname": "calidhayte.calibrate.cont_strat_folds", "modulename": "calidhayte.calibrate", "qualname": "cont_strat_folds", "kind": "function", "doc": "
\n\nCreates stratified k-folds on continuous variable
\n\ndf : pd.DataFrame\n Target data to stratify on.\ntarget_var : str\n Target feature name.\nsplits : int, default=5\n Number of folds to make.\nstrat_groups : int, default=10\n Number of groups to split data in to for stratification.\nseed : int, default=62\n Random state to use.
\n\nReturns
\n\n\n
\n\n- pd.DataFrame:
\ny_df
with added 'Fold' column, specifying which test data fold\nvariable corresponds to.Examples
\n\n\n\n\n\n>>> df = pd.read_csv('data.csv')\n>>> df\n| | x | a | b |\n| | | | |\n| 0 |2.3|1.8|7.2|\n| 1 |3.2|9.6|4.5|\n|....|...|...|...|\n|1000|2.3|4.5|2.2|\n>>> df_with_folds = const_strat_folds(\n df=df,\n target='a',\n splits=3,\n strat_groups=3.\n seed=78\n )\n>>> df_with_folds\n| | x | a | b |Fold|\n| | | | | |\n| 0 |2.3|1.8|7.2| 2 |\n| 1 |3.2|9.6|4.5| 1 |\n|....|...|...|...|....|\n|1000|2.3|4.5|2.2| 0 |\n
All folds should have a roughly equal distribution of values for 'a'
\n", "signature": "(\tdf: pandas.core.frame.DataFrame,\ttarget_var: str,\tsplits: int = 5,\tstrat_groups: int = 5,\tseed: int = 62) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "calidhayte.calibrate.Calibrate": {"fullname": "calidhayte.calibrate.Calibrate", "modulename": "calidhayte.calibrate", "qualname": "Calibrate", "kind": "class", "doc": "Calibrate x against y using a range of different methods provided by\nscikit-learn1, xgboost2 and PyMC (via Bambi)3.
\n\nExamples
\n\n\n\n\n\n>>> from calidhayte.calibrate import Calibrate\n>>> import pandas as pd\n>>>\n>>> x = pd.read_csv('independent.csv')\n>>> x\n| | a | b |\n| 0 |2.3|3.2|\n| 1 |3.4|3.1|\n|...|...|...|\n|100|3.7|2.1|\n>>>\n>>> y = pd.read_csv('dependent.csv')\n>>> y\n| | a |\n| 0 |7.8|\n| 1 |9.9|\n|...|...|\n|100|9.5|\n>>>\n>>> calibration = Calibrate(\n x_data=x,\n y_data=y,\n target='a',\n folds=5,\n strat_groups=5,\n scaler = [\n 'Standard Scale',\n 'MinMax Scale'\n ],\n seed=62\n)\n>>> calibration.linreg()\n>>> calibration.lars()\n>>> calibration.omp()\n>>> calibration.ransac()\n>>> calibration.random_forest()\n>>>\n>>> models = calibration.return_models()\n>>> list(models.keys())\n[\n 'Linear Regression',\n 'Least Angle Regression',\n 'Orthogonal Matching Pursuit',\n 'RANSAC',\n 'Random Forest'\n]\n>>> list(models['Linear Regression'].keys())\n['Standard Scale', 'MinMax Scale']\n>>> list(models['Linear Regression']['Standard Scale'].keys())\n['a', 'a + b']\n>>> list(models['Linear Regression']['Standard Scale']['a'].keys())\n[0, 1, 2, 3, 4]\n>>> type(models['Linear Regression']['Standard Scale']['a'][0])\n<class sklearn.pipeline.Pipeline>\n>>> pipeline = models['Linear Regression']['Standard Scale']['a'][0]\n>>> x_new = pd.read_csv('independent_new.csv')\n>>> x_new\n| | a | b |\n| 0 |3.5|2.7|\n| 1 |4.0|1.1|\n|...|...|...|\n|100|2.3|2.1|\n>>> pipeline.transform(x_new)\n| | a |\n| 0 |9.7|\n| 1 |9.1|\n|...|...|\n|100|6.7|\n
\n\n"}, "calidhayte.calibrate.Calibrate.__init__": {"fullname": "calidhayte.calibrate.Calibrate.__init__", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.__init__", "kind": "function", "doc": "
\n\nInitialises class
\n\nUsed to compare one set of measurements against another.\nIt can perform both univariate and multivariate regression, though\nsome techniques can only do one or the other. Multivariate regression\ncan only be performed when secondary variables are provided.
\n\nParameters
\n\n\n
\n\n- x_data (pd.DataFrame):\nData to be calibrated.
\n- y_data (pd.DataFrame):\n'True' data to calibrate against.
\n- target (str):\nColumn name of the primary feature to use in calibration, must be\nthe name of a column in both
\nx_data
andy_data
.- folds (int, default=5):\nNumber of folds to split the data into, using stratified k-fold.
\n- strat_groups (int, default=10):\nNumber of groups to stratify against, the data will be split into\nn equally sized bins where n is the value of
\nstrat_groups
.- scaler (iterable of {
\n
'None',
'Standard Scale',
'MinMax Scale',
'Yeo-Johnson Transform',
'Box-Cox Transform',
'Quantile Transform (Uniform)',
'Quantile Transform (Gaussian)',
} or {
'All',
'None',
'Standard Scale',
'MinMax Scale',
'Yeo-Johnson Transform',
'Box-Cox Transform',
'Quantile Transform (Uniform)',
'Quantile Transform (Gaussian)',
}, default='None'):\nThe scaling/transform method (or list of methods) to apply to the\ndata- seed (int, default=62):\nRandom state to use when shuffling and splitting the data into n\nfolds. Ensures repeatability.
\nRaises
\n\n\n
\n", "signature": "(\tx_data: pandas.core.frame.DataFrame,\ty_data: pandas.core.frame.DataFrame,\ttarget: str,\tfolds: int = 5,\tstrat_groups: int = 10,\tscaler: Union[collections.abc.Iterable[Literal['None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson TransformBox-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']], Literal['All', 'None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson TransformBox-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']] = 'None',\tseed: int = 62)"}, "calidhayte.calibrate.Calibrate.x_data": {"fullname": "calidhayte.calibrate.Calibrate.x_data", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.x_data", "kind": "variable", "doc": "- ValueError: Raised if the target variables (e.g. 'NO2') is not a column name in\nboth dataframes.\nRaised if
\nscaler
is not str, tuple or listThe data to be calibrated.
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.calibrate.Calibrate.target": {"fullname": "calidhayte.calibrate.Calibrate.target", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.target", "kind": "variable", "doc": "The name of the column in both
\n", "annotation": ": str"}, "calidhayte.calibrate.Calibrate.scaler_list": {"fullname": "calidhayte.calibrate.Calibrate.scaler_list", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.scaler_list", "kind": "variable", "doc": "x_data
andy_data
that\nwill be used as the x and y variables in the calibration.Keys for scaling algorithms available in the pipelines
\n", "annotation": ": dict[str, typing.Any]"}, "calidhayte.calibrate.Calibrate.scaler": {"fullname": "calidhayte.calibrate.Calibrate.scaler", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.scaler", "kind": "variable", "doc": "The scaling algorithm(s) to preprocess the data with
\n", "annotation": ": list[str]"}, "calidhayte.calibrate.Calibrate.y_data": {"fullname": "calidhayte.calibrate.Calibrate.y_data", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.y_data", "kind": "variable", "doc": "The data that
\n"}, "calidhayte.calibrate.Calibrate.models": {"fullname": "calidhayte.calibrate.Calibrate.models", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.models", "kind": "variable", "doc": "x_data
will be calibrated against. A 'Fold'\ncolumn is added using theconst_strat_folds
function which splits\nthe data into k stratified folds (where k is the value of\nfolds
). It splits the continuous measurements into n bins (where n\nis the value ofstrat_groups
) and distributes each bin equally\nacross all folds. This significantly reduces the chances of one fold\ncontaining a skewed distribution relative to the whole dataset.The calibrated models. They are stored in a nested structure as\nfollows:
\n\n\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nif 5-fold cross validated, a key of 4 indicates the data was trained on\nfolds 0-3.
\n\n", "annotation": ": dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"fullname": "calidhayte.calibrate.Calibrate.pymc_bayesian", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.pymc_bayesian", "kind": "function", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> Fold\n state Fold {\n [*] : Which fold was excluded from training data\n [*] : (e.g 4 indicates folds 0-3 were used to train)\n }\n }\n }\n }\nPerforms bayesian linear regression (either uni or multivariate)\nfitting x on y.
\n\nPerforms bayesian linear regression, both univariate and multivariate,\non X against y. More details can be found at:\nhttps://pymc.io/projects/examples/en/latest/generalized_linear_models/\nGLM-robust.html
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tfamily: Literal['Gaussian', 'Student T'] = 'Gaussian',\tname: str = ' PyMC Bayesian',\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.linreg": {"fullname": "calidhayte.calibrate.Calibrate.linreg", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.linreg", "kind": "function", "doc": "- family ({'Gaussian', 'Student T'}, default='Gaussian'):\nStatistical distribution to fit measurements to. Options are:\n - Gaussian\n - Student T
\nFit x on y via linear regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Linear Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.ridge": {"fullname": "calidhayte.calibrate.Calibrate.ridge", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.ridge", "kind": "function", "doc": "- name (str, default=\"Linear Regression\"):\nName of classification technique.
\nFit x on y via ridge regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Ridge Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.ridge_cv": {"fullname": "calidhayte.calibrate.Calibrate.ridge_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.ridge_cv", "kind": "function", "doc": "- name (str, default=\"Ridge Regression\"):\nName of classification technique
\nFit x on y via cross-validated ridge regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Ridge Regression (Cross Validated)', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lasso": {"fullname": "calidhayte.calibrate.Calibrate.lasso", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lasso", "kind": "function", "doc": "- name (str, default=\"Ridge Regression (Cross Validated)\"):\nName of classification technique
\nFit x on y via lasso regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Lasso Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lasso_cv": {"fullname": "calidhayte.calibrate.Calibrate.lasso_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lasso_cv", "kind": "function", "doc": "- name (str, default=\"Lasso Regression\"):\nName of classification technique
\nFit x on y via cross-validated lasso regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Lasso Regression (Cross Validated)', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_lasso", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_lasso", "kind": "function", "doc": "- name (str, default=\"Lasso Regression (Cross Validated)\"):\nName of classification technique
\nFit x on y via multitask lasso regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Multi-task Lasso Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_lasso_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_lasso_cv", "kind": "function", "doc": "- name (str, default=\"Multi-task Lasso Regression\"):\nName of classification technique
\nFit x on y via cross validated multitask lasso regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Multi-task Lasso Regression (Cross Validated)',\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.elastic_net": {"fullname": "calidhayte.calibrate.Calibrate.elastic_net", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.elastic_net", "kind": "function", "doc": "- name (str, default=\"Multi-task Lasso Regression (Cross Validated)\"):\nName of classification technique
\nFit x on y via elastic net regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Elastic Net Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"fullname": "calidhayte.calibrate.Calibrate.elastic_net_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.elastic_net_cv", "kind": "function", "doc": "- name (str, default=\"Elastic Net Regression\"):\nName of classification technique
\nFit x on y via cross validated elastic net regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Elastic Net Regression (Cross Validated)',\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_elastic_net", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_elastic_net", "kind": "function", "doc": "- name (str, default=\"Elastic Net Regression (Cross Validated)\"):\nName of classification technique
\nFit x on y via multi-task elastic net regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Multi-Task Elastic Net Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_elastic_net_cv", "kind": "function", "doc": "- name (str, default=\"Multi-task Elastic Net Regression\"):\nName of classification technique
\nFit x on y via cross validated multi-task elastic net regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Multi-Task Elastic Net Regression (Cross Validated)',\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lars": {"fullname": "calidhayte.calibrate.Calibrate.lars", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lars", "kind": "function", "doc": "- name (str, default=\"Multi-Task Elastic Net Regression (Cross Validated)\"):\nName of classification technique
\nFit x on y via least angle regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Least Angle Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lars_lasso": {"fullname": "calidhayte.calibrate.Calibrate.lars_lasso", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lars_lasso", "kind": "function", "doc": "- name (str, default=\"Least Angle Regression\"):\nName of classification technique.
\nFit x on y via lasso least angle regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Least Angle Regression (Lasso)', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.omp": {"fullname": "calidhayte.calibrate.Calibrate.omp", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.omp", "kind": "function", "doc": "- name (str, default=\"Least Angle Regression (Lasso)\"):\nName of classification technique
\nFit x on y via orthogonal matching pursuit regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Orthogonal Matching Pursuit', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"fullname": "calidhayte.calibrate.Calibrate.bayesian_ridge", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.bayesian_ridge", "kind": "function", "doc": "- name (str, default=\"Orthogonal Matching Pursuit\"):\nName of classification technique
\nFit x on y via bayesian ridge regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Bayesian Ridge Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"fullname": "calidhayte.calibrate.Calibrate.bayesian_ard", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.bayesian_ard", "kind": "function", "doc": "- name (str, default=\"Bayesian Ridge Regression\"):\nName of classification technique.
\nFit x on y via bayesian automatic relevance detection
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Bayesian Automatic Relevance Detection', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.tweedie": {"fullname": "calidhayte.calibrate.Calibrate.tweedie", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.tweedie", "kind": "function", "doc": "- name (str, default=\"Bayesian Automatic Relevance Detection\"):\nName of classification technique.
\nFit x on y via tweedie regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Tweedie Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"fullname": "calidhayte.calibrate.Calibrate.stochastic_gradient_descent", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.stochastic_gradient_descent", "kind": "function", "doc": "- name (str, default=\"Tweedie Regression\"):\nName of classification technique.
\nFit x on y via stochastic gradient descent regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Stochastic Gradient Descent', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"fullname": "calidhayte.calibrate.Calibrate.passive_aggressive", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.passive_aggressive", "kind": "function", "doc": "- name (str, default=\"Stochastic Gradient Descent\"):\nName of classification technique.
\nFit x on y via passive aggressive regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Passive Agressive Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.ransac": {"fullname": "calidhayte.calibrate.Calibrate.ransac", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.ransac", "kind": "function", "doc": "- name (str, default=\"Passive Agressive Regression\"):\nName of classification technique.
\nFit x on y via RANSAC regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'RANSAC', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.theil_sen": {"fullname": "calidhayte.calibrate.Calibrate.theil_sen", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.theil_sen", "kind": "function", "doc": "- name (str, default=\"RANSAC\"):\nName of classification technique.
\nFit x on y via theil-sen regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Theil-Sen Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.huber": {"fullname": "calidhayte.calibrate.Calibrate.huber", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.huber", "kind": "function", "doc": "- name (str, default=\"Theil-Sen Regression\"):\nName of classification technique.
\n- -Sen Regression
\nFit x on y via huber regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Huber Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.quantile": {"fullname": "calidhayte.calibrate.Calibrate.quantile", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.quantile", "kind": "function", "doc": "- name (str, default=\"Huber Regression\"):\nName of classification technique.
\nFit x on y via quantile regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Quantile Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.decision_tree": {"fullname": "calidhayte.calibrate.Calibrate.decision_tree", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.decision_tree", "kind": "function", "doc": "- name (str, default=\"Quantile Regression\"):\nName of classification technique.
\nFit x on y using a decision tree
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Decision Tree', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.extra_tree": {"fullname": "calidhayte.calibrate.Calibrate.extra_tree", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.extra_tree", "kind": "function", "doc": "- name (str, default=\"Decision Tree\"):\nName of classification technique.
\nFit x on y using an extra tree
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Extra Tree', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.random_forest": {"fullname": "calidhayte.calibrate.Calibrate.random_forest", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.random_forest", "kind": "function", "doc": "- name (str, default=\"Extra Tree\"):\nName of classification technique.
\nFit x on y using a random forest
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Random Forest', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"fullname": "calidhayte.calibrate.Calibrate.extra_trees_ensemble", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.extra_trees_ensemble", "kind": "function", "doc": "- name (str, default=\"Random Forest\"):\nName of classification technique.
\nFit x on y using an ensemble of extra trees
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Extra Trees Ensemble', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"fullname": "calidhayte.calibrate.Calibrate.gradient_boost_regressor", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.gradient_boost_regressor", "kind": "function", "doc": "- name (str, default=\"Extra Trees Ensemble\"):\nName of classification technique.
\nFit x on y using gradient boosting regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Gradient Boosting Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"fullname": "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.hist_gradient_boost_regressor", "kind": "function", "doc": "- name (str, default=\"Gradient Boosting Regression\"):\nName of classification technique.
\nFit x on y using histogram-based gradient boosting regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Histogram-Based Gradient Boosting Regression',\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"fullname": "calidhayte.calibrate.Calibrate.mlp_regressor", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.mlp_regressor", "kind": "function", "doc": "- name (str, default=\"Histogram-Based Gradient Boosting Regression\"):\nName of classification technique.
\n- -Based: Gradient Boosting Regression
\nFit x on y using multi-layer perceptrons
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Multi-Layer Perceptron Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.svr": {"fullname": "calidhayte.calibrate.Calibrate.svr", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.svr", "kind": "function", "doc": "- name (str, default=\"Multi-Layer Perceptron Regression\"):\nName of classification technique.
\n- -Layer Perceptron: Regression
\nFit x on y using support vector regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Support Vector Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.linear_svr": {"fullname": "calidhayte.calibrate.Calibrate.linear_svr", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.linear_svr", "kind": "function", "doc": "- name (str, default=\"Support Vector Regression\"):\nName of classification technique.
\nFit x on y using linear support vector regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Linear Support Vector Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.nu_svr": {"fullname": "calidhayte.calibrate.Calibrate.nu_svr", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.nu_svr", "kind": "function", "doc": "- name (str, default=\"Linear Support Vector Regression\"):\nName of classification technique.
\nFit x on y using nu-support vector regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Nu-Support Vector Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.gaussian_process": {"fullname": "calidhayte.calibrate.Calibrate.gaussian_process", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.gaussian_process", "kind": "function", "doc": "- name (str, default=\"Nu-Support Vector Regression\"):\nName of classification technique.
\n- -Support Vector: Regression
\nFit x on y using gaussian process regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Gaussian Process Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.pls": {"fullname": "calidhayte.calibrate.Calibrate.pls", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.pls", "kind": "function", "doc": "- name (str, default=\"Gaussian Process Regression\"):\nName of classification technique.
\nFit x on y using pls regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'PLS Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.isotonic": {"fullname": "calidhayte.calibrate.Calibrate.isotonic", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.isotonic", "kind": "function", "doc": "- name (str, default=\"PLS Regression\"):\nName of classification technique.
\nFit x on y using isotonic regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'Isotonic Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.xgboost": {"fullname": "calidhayte.calibrate.Calibrate.xgboost", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.xgboost", "kind": "function", "doc": "- name (str, default=\"Isotonic Regression\"):\nName of classification technique.
\nFit x on y using xgboost regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'XGBoost Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"fullname": "calidhayte.calibrate.Calibrate.xgboost_rf", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.xgboost_rf", "kind": "function", "doc": "- name (str, default=\"XGBoost Regression\"):\nName of classification technique.
\nFit x on y using xgboosted random forest regression
\n\nParameters
\n\n\n
\n", "signature": "(self, name: str = 'XGBoost Random Forest Regression', **kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.return_measurements": {"fullname": "calidhayte.calibrate.Calibrate.return_measurements", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.return_measurements", "kind": "function", "doc": "- name (str, default=\"XGBoost Random Forest Regression\"):\nName of classification technique.
\nReturns the measurements used, with missing values and\nnon-overlapping measurements excluded
\n\nReturns
\n\n\n
\n\n- dict[str, pd.DataFrame]: Dictionary with 2 keys:
\n\n\n
\n", "signature": "(self) -> dict[str, pandas.core.frame.DataFrame]:", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.return_models": {"fullname": "calidhayte.calibrate.Calibrate.return_models", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.return_models", "kind": "function", "doc": "\n \n\n\nKey \nValue \n\n \nx \n\n x_data
\n \n\ny \n\n y_data
Returns the models stored in the object
\n\nReturns
\n\n\n
\n", "signature": "(\tself) -> dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]:", "funcdef": "def"}, "calidhayte.graphs": {"fullname": "calidhayte.graphs", "modulename": "calidhayte.graphs", "kind": "module", "doc": "\n"}, "calidhayte.graphs.Graphs": {"fullname": "calidhayte.graphs.Graphs", "modulename": "calidhayte.graphs", "qualname": "Graphs", "kind": "class", "doc": "- dict[str, str, str, int, Pipeline]: The calibrated models. They are stored in a nested structure as\nfollows:\n
\n\n
- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nfolds 0-3.\nif 5-fold cross validated, a key of 4 indicates the data was\ntrained on
\nCalculates errors between \"true\" and \"predicted\" measurements, plots\ngraphs and returns all results
\n"}, "calidhayte.graphs.Graphs.__init__": {"fullname": "calidhayte.graphs.Graphs.__init__", "modulename": "calidhayte.graphs", "qualname": "Graphs.__init__", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.frame.DataFrame,\tx_name: str,\ty: pandas.core.frame.DataFrame,\ty_name: str,\ttarget: str,\tmodels: dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]],\tstyle: str = 'bmh',\tbackend: str = 'agg')"}, "calidhayte.graphs.Graphs.x": {"fullname": "calidhayte.graphs.Graphs.x", "modulename": "calidhayte.graphs", "qualname": "Graphs.x", "kind": "variable", "doc": "Independent variable(s) that are calibrated against
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.graphs.Graphs.y": {"fullname": "calidhayte.graphs.Graphs.y", "modulename": "calidhayte.graphs", "qualname": "Graphs.y", "kind": "variable", "doc": "y
, the independent\nvariable. Index should matchy
.Dependent variable used to calibrate the independent variables
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.graphs.Graphs.x_name": {"fullname": "calidhayte.graphs.Graphs.x_name", "modulename": "calidhayte.graphs", "qualname": "Graphs.x_name", "kind": "variable", "doc": "x
.\nIndex should matchx
.Label for
\n", "annotation": ": str"}, "calidhayte.graphs.Graphs.y_name": {"fullname": "calidhayte.graphs.Graphs.y_name", "modulename": "calidhayte.graphs", "qualname": "Graphs.y_name", "kind": "variable", "doc": "x
measurementsLabel for
\n", "annotation": ": str"}, "calidhayte.graphs.Graphs.target": {"fullname": "calidhayte.graphs.Graphs.target", "modulename": "calidhayte.graphs", "qualname": "Graphs.target", "kind": "variable", "doc": "y
measurementsMeasurand in
\n"}, "calidhayte.graphs.Graphs.models": {"fullname": "calidhayte.graphs.Graphs.models", "modulename": "calidhayte.graphs", "qualname": "Graphs.models", "kind": "variable", "doc": "y
to calibrate againstThe precalibrated models. They are stored in a nested structure as\nfollows:
\n\n\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nif 5-fold cross validated, a key of 4 indicates the data was trained on\nfolds 0-3.
\n\n", "annotation": ": dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.graphs.Graphs.plots": {"fullname": "calidhayte.graphs.Graphs.plots", "modulename": "calidhayte.graphs", "qualname": "Graphs.plots", "kind": "variable", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> Fold\n state Fold {\n [*] : Which fold was excluded from training data\n [*] : (e.g 4 indicates folds 0-3 were used to train)\n }\n }\n }\n }\nThe plotted data, stored in a similar structure to
\n\nmodels
\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Name of the plot (e.g. 'Bland-Altman')
\n\n", "annotation": ": 'dict[str, dict[str, dict[str, dict[str, plt.figure.Figure]]]]'"}, "calidhayte.graphs.Graphs.style": {"fullname": "calidhayte.graphs.Graphs.style", "modulename": "calidhayte.graphs", "qualname": "Graphs.style", "kind": "variable", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> pn\n state \"Plot Name\" as pn {\n [*] : Name of the plot\n [*] : (e.g Bland-Altman)\n }\n }\n }\n }\nName of in-built matplotlib style or path to stylesheet
\n", "annotation": ": Union[str, pathlib.Path]"}, "calidhayte.graphs.Graphs.backend": {"fullname": "calidhayte.graphs.Graphs.backend", "modulename": "calidhayte.graphs", "qualname": "Graphs.backend", "kind": "variable", "doc": "Matplotlib backend to use
\n"}, "calidhayte.graphs.Graphs.plot_meta": {"fullname": "calidhayte.graphs.Graphs.plot_meta", "modulename": "calidhayte.graphs", "qualname": "Graphs.plot_meta", "kind": "function", "doc": "Iterates over data and creates plots using function specified in\n
\n\nplot_func
Should not be accessed directly, should instead be called by\nanother method
\n\nParameters
\n\n\n
\n", "signature": "(self, plot_func: Callable, name: str, **kwargs):", "funcdef": "def"}, "calidhayte.graphs.Graphs.bland_altman_plot": {"fullname": "calidhayte.graphs.Graphs.bland_altman_plot", "modulename": "calidhayte.graphs", "qualname": "Graphs.bland_altman_plot", "kind": "function", "doc": "\n", "signature": "(self, title=None):", "funcdef": "def"}, "calidhayte.graphs.Graphs.ecdf_plot": {"fullname": "calidhayte.graphs.Graphs.ecdf_plot", "modulename": "calidhayte.graphs", "qualname": "Graphs.ecdf_plot", "kind": "function", "doc": "\n", "signature": "(self, title=None):", "funcdef": "def"}, "calidhayte.graphs.Graphs.lin_reg_plot": {"fullname": "calidhayte.graphs.Graphs.lin_reg_plot", "modulename": "calidhayte.graphs", "qualname": "Graphs.lin_reg_plot", "kind": "function", "doc": "\n", "signature": "(self, title=None):", "funcdef": "def"}, "calidhayte.graphs.Graphs.save_plots": {"fullname": "calidhayte.graphs.Graphs.save_plots", "modulename": "calidhayte.graphs", "qualname": "Graphs.save_plots", "kind": "function", "doc": "\n", "signature": "(\tself,\tpath: str,\tfiletype: Union[Literal['png', 'pgf', 'pdf'], collections.abc.Iterable[Literal['png', 'pgf', 'pdf']]] = 'png'):", "funcdef": "def"}, "calidhayte.graphs.ecdf": {"fullname": "calidhayte.graphs.ecdf", "modulename": "calidhayte.graphs", "qualname": "ecdf", "kind": "function", "doc": "\n", "signature": "(data):", "funcdef": "def"}, "calidhayte.graphs.lin_reg_plot": {"fullname": "calidhayte.graphs.lin_reg_plot", "modulename": "calidhayte.graphs", "qualname": "lin_reg_plot", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.series.Series,\ty: pandas.core.series.Series,\tx_name: str,\ty_name: str,\ttitle: Optional[str] = None):", "funcdef": "def"}, "calidhayte.graphs.bland_altman_plot": {"fullname": "calidhayte.graphs.bland_altman_plot", "modulename": "calidhayte.graphs", "qualname": "bland_altman_plot", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.frame.DataFrame,\ty: pandas.core.series.Series,\ttitle: Optional[str] = None,\t**kwargs):", "funcdef": "def"}, "calidhayte.graphs.ecdf_plot": {"fullname": "calidhayte.graphs.ecdf_plot", "modulename": "calidhayte.graphs", "qualname": "ecdf_plot", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.frame.DataFrame,\ty: pandas.core.series.Series,\tx_name: str,\ty_name: str,\ttitle: Optional[str] = None):", "funcdef": "def"}, "calidhayte.results": {"fullname": "calidhayte.results", "modulename": "calidhayte.results", "kind": "module", "doc": "- plot_func (Callable):\nFunction that returns matplotlib figure
\n- name (str):\nName to give plot, used as key in
\nplots
dict- **kwargs: Additional arguments passed to
\nplot_func
Determine the performance of different calibration techniques using a range of\ndifferent metrics.
\n\nActs as a wrapper for scikit-learn performance metrics 1.
\n\n\n\n"}, "calidhayte.results.CoefficientPipelineDict": {"fullname": "calidhayte.results.CoefficientPipelineDict", "modulename": "calidhayte.results", "qualname": "CoefficientPipelineDict", "kind": "variable", "doc": "
\n\nType alias for the nested dictionaries that the models are stored in
\n", "annotation": ": TypeAlias", "default_value": "dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.results.Results": {"fullname": "calidhayte.results.Results", "modulename": "calidhayte.results", "qualname": "Results", "kind": "class", "doc": "Determine performance of models using a range of metrics.
\n\nUsed to compare a range of different models that were fitted in the\nCalibrate class in
\n"}, "calidhayte.results.Results.__init__": {"fullname": "calidhayte.results.Results.__init__", "modulename": "calidhayte.results", "qualname": "Results.__init__", "kind": "function", "doc": "coefficients.py
.Initialises the class
\n\nParameters
\n\n\n
\n", "signature": "(\tx_data: pandas.core.frame.DataFrame,\ty_data: pandas.core.frame.DataFrame,\ttarget: str,\tmodels: dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]])"}, "calidhayte.results.Results.x": {"fullname": "calidhayte.results.Results.x", "modulename": "calidhayte.results", "qualname": "Results.x", "kind": "variable", "doc": "- x_data (pd.DataFrame):\nDependent measurements
\n- y_data (pd.DataFrame):\nIndependent measurements
\n- target (str):\nColumn name of the primary feature to use in calibration, must be\nthe name of a column in both
\nx_data
andy_data
.- models (CoefficientPipelineDict):\nThe calibrated models.
\nDependent measurements
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.results.Results.y": {"fullname": "calidhayte.results.Results.y", "modulename": "calidhayte.results", "qualname": "Results.y", "kind": "variable", "doc": "Independent Measurements
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.results.Results.target": {"fullname": "calidhayte.results.Results.target", "modulename": "calidhayte.results", "qualname": "Results.target", "kind": "variable", "doc": "Column name of primary feature to use in calibration
\n", "annotation": ": str"}, "calidhayte.results.Results.models": {"fullname": "calidhayte.results.Results.models", "modulename": "calidhayte.results", "qualname": "Results.models", "kind": "variable", "doc": "They are stored in a nested structure as\nfollows:
\n\n\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nif 5-fold cross validated, a key of 4 indicates the data was\ntrained on folds 0-3.
\n\n", "annotation": ": dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.results.Results.errors": {"fullname": "calidhayte.results.Results.errors", "modulename": "calidhayte.results", "qualname": "Results.errors", "kind": "variable", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> Fold\n state Fold {\n [*] : Which fold was excluded from training data\n [*] : (e.g 4 indicates folds 0-3 were used to train)\n }\n }\n }\n }\nResults of error metric valculations. Index increases sequentially\nby 1, columns contain the technique, scaling method, variables and\nfold for each row. It also contains a column for each metric.
\n\n\n\n
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.results.Results.explained_variance_score": {"fullname": "calidhayte.results.Results.explained_variance_score", "modulename": "calidhayte.results", "qualname": "Results.explained_variance_score", "kind": "function", "doc": "\n \n\n\n\n Technique \nScaling Method \nVariables \nFold \nExplained Variance Score \n... \nMean Absolute Percentage Error \n\n \n0 \nRandom Forest \nStandard Scaling \nx + a \n0 \n0.95 \n... \n0.05 \n\n \n1 \nTheil-Sen \nYeo-JohnsonScaling \nx + a + b \n1 \n0.98 \n... \n0.01 \n\n \n... \n... \n... \n... \n... \n... \n... \n... \n\n \n\n55 \nExtra Trees \nNone \nx \n2 \n0.43 \n... \n0.52 \nCalculate the explained variance score between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.max": {"fullname": "calidhayte.results.Results.max", "modulename": "calidhayte.results", "qualname": "Results.max", "kind": "function", "doc": "Calculate the max error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_absolute": {"fullname": "calidhayte.results.Results.mean_absolute", "modulename": "calidhayte.results", "qualname": "Results.mean_absolute", "kind": "function", "doc": "Calculate the mean absolute error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.root_mean_squared": {"fullname": "calidhayte.results.Results.root_mean_squared", "modulename": "calidhayte.results", "qualname": "Results.root_mean_squared", "kind": "function", "doc": "Calculate the root mean squared error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.root_mean_squared_log": {"fullname": "calidhayte.results.Results.root_mean_squared_log", "modulename": "calidhayte.results", "qualname": "Results.root_mean_squared_log", "kind": "function", "doc": "Calculate the root mean squared log error between the true values\n(y) and predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.median_absolute": {"fullname": "calidhayte.results.Results.median_absolute", "modulename": "calidhayte.results", "qualname": "Results.median_absolute", "kind": "function", "doc": "Calculate the median absolute error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_absolute_percentage": {"fullname": "calidhayte.results.Results.mean_absolute_percentage", "modulename": "calidhayte.results", "qualname": "Results.mean_absolute_percentage", "kind": "function", "doc": "Calculate the mean absolute percentage error between the true\nvalues (y) and predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.r2": {"fullname": "calidhayte.results.Results.r2", "modulename": "calidhayte.results", "qualname": "Results.r2", "kind": "function", "doc": "Calculate the r2 between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_poisson_deviance": {"fullname": "calidhayte.results.Results.mean_poisson_deviance", "modulename": "calidhayte.results", "qualname": "Results.mean_poisson_deviance", "kind": "function", "doc": "Calculate the mean poisson deviance between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_gamma_deviance": {"fullname": "calidhayte.results.Results.mean_gamma_deviance", "modulename": "calidhayte.results", "qualname": "Results.mean_gamma_deviance", "kind": "function", "doc": "Calculate the mean gamma deviance between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_tweedie_deviance": {"fullname": "calidhayte.results.Results.mean_tweedie_deviance", "modulename": "calidhayte.results", "qualname": "Results.mean_tweedie_deviance", "kind": "function", "doc": "Calculate the mean tweedie deviance between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_pinball_loss": {"fullname": "calidhayte.results.Results.mean_pinball_loss", "modulename": "calidhayte.results", "qualname": "Results.mean_pinball_loss", "kind": "function", "doc": "Calculate the mean pinball loss between the true values (y)\npredicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.return_errors": {"fullname": "calidhayte.results.Results.return_errors", "modulename": "calidhayte.results", "qualname": "Results.return_errors", "kind": "function", "doc": "Returns all calculated errors in dataframe format
\n\nInitially the error dataframe has the following structure:
\n\n\n\n
\n\n\n \n\n\n\n Technique \nScaling Method \nVariables \nFold \nExplained Variance Score \n... \nMean Absolute Percentage Error \n\n \n0 \nRandom Forest \nStandard Scaling \nx + a \n0 \n0.95 \n... \n0.05 \n\n \n1 \nTheil-Sen \nYeo-JohnsonScaling \nx + a + b \n1 \n0.98 \n... \n0.01 \n\n \n... \n... \n... \n... \n... \n... \n... \n... \n\n \n\n55 \nExtra Trees \nNone \nx \n2 \n0.43 \n... \n0.52 \nHowever, before returning the data, a new MultiIndex is built using\nthe Technique, Scaling Method, Variables and Fold columns. This\nallows easy comparison of the different techniques by grouping on one\nor multiple levels of the MultiIndex.
\n\nReturns
\n\n\n
\n\n- pd.DataFrame: Results dataframe in the following format:
\n\n\n
\n", "signature": "(self) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "calidhayte.summary": {"fullname": "calidhayte.summary", "modulename": "calidhayte.summary", "kind": "module", "doc": "\n"}, "calidhayte.summary.Summary": {"fullname": "calidhayte.summary.Summary", "modulename": "calidhayte.summary", "qualname": "Summary", "kind": "class", "doc": "\n"}, "calidhayte.summary.Summary.__init__": {"fullname": "calidhayte.summary.Summary.__init__", "modulename": "calidhayte.summary", "qualname": "Summary.__init__", "kind": "function", "doc": "\n", "signature": "(\tresults: pandas.core.frame.DataFrame,\tcols: list[str],\tstyle: str = 'bmh',\tbackend: str = 'agg')"}, "calidhayte.summary.Summary.results": {"fullname": "calidhayte.summary.Summary.results", "modulename": "calidhayte.summary", "qualname": "Summary.results", "kind": "variable", "doc": "\n"}, "calidhayte.summary.Summary.plots": {"fullname": "calidhayte.summary.Summary.plots", "modulename": "calidhayte.summary", "qualname": "Summary.plots", "kind": "variable", "doc": "\n", "annotation": ": 'dict[str, dict[str, plt.figure.Figure]]'"}, "calidhayte.summary.Summary.cols": {"fullname": "calidhayte.summary.Summary.cols", "modulename": "calidhayte.summary", "qualname": "Summary.cols", "kind": "variable", "doc": "\n", "annotation": ": list[str]"}, "calidhayte.summary.Summary.style": {"fullname": "calidhayte.summary.Summary.style", "modulename": "calidhayte.summary", "qualname": "Summary.style", "kind": "variable", "doc": "\n"}, "calidhayte.summary.Summary.backend": {"fullname": "calidhayte.summary.Summary.backend", "modulename": "calidhayte.summary", "qualname": "Summary.backend", "kind": "variable", "doc": "\n"}, "calidhayte.summary.Summary.boxplots": {"fullname": "calidhayte.summary.Summary.boxplots", "modulename": "calidhayte.summary", "qualname": "Summary.boxplots", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.summary.Summary.histograms": {"fullname": "calidhayte.summary.Summary.histograms", "modulename": "calidhayte.summary", "qualname": "Summary.histograms", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.summary.Summary.save_plots": {"fullname": "calidhayte.summary.Summary.save_plots", "modulename": "calidhayte.summary", "qualname": "Summary.save_plots", "kind": "function", "doc": "\n", "signature": "(self, path, filetype: str = 'png'):", "funcdef": "def"}}, "docInfo": {"calidhayte": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1226}, "calidhayte.calibrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 111}, "calidhayte.calibrate.cont_strat_folds": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 117, "bases": 0, "doc": 336}, "calidhayte.calibrate.Calibrate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 986}, "calidhayte.calibrate.Calibrate.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 318, "bases": 0, "doc": 334}, "calidhayte.calibrate.Calibrate.x_data": {"qualname": 3, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "calidhayte.calibrate.Calibrate.target": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 32}, "calidhayte.calibrate.Calibrate.scaler_list": {"qualname": 3, "fullname": 5, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "calidhayte.calibrate.Calibrate.scaler": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 11}, "calidhayte.calibrate.Calibrate.y_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 89}, "calidhayte.calibrate.Calibrate.models": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 192}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 75}, "calidhayte.calibrate.Calibrate.linreg": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 31}, "calidhayte.calibrate.Calibrate.ridge": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 30}, "calidhayte.calibrate.Calibrate.ridge_cv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 34}, "calidhayte.calibrate.Calibrate.lasso": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 30}, "calidhayte.calibrate.Calibrate.lasso_cv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 34}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 37}, "calidhayte.calibrate.Calibrate.elastic_net": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 32}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 36}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 36}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"qualname": 6, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 40}, "calidhayte.calibrate.Calibrate.lars": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.lars_lasso": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 34}, "calidhayte.calibrate.Calibrate.omp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 35}, "calidhayte.calibrate.Calibrate.tweedie": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 31}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 34}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.ransac": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 30}, "calidhayte.calibrate.Calibrate.theil_sen": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 40}, "calidhayte.calibrate.Calibrate.huber": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 31}, "calidhayte.calibrate.Calibrate.quantile": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 31}, "calidhayte.calibrate.Calibrate.decision_tree": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 32}, "calidhayte.calibrate.Calibrate.extra_tree": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 32}, "calidhayte.calibrate.Calibrate.random_forest": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 32}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 35}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 46}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 42}, "calidhayte.calibrate.Calibrate.svr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.linear_svr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 35}, "calidhayte.calibrate.Calibrate.nu_svr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 43}, "calidhayte.calibrate.Calibrate.gaussian_process": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "calidhayte.calibrate.Calibrate.pls": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 31}, "calidhayte.calibrate.Calibrate.isotonic": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 31}, "calidhayte.calibrate.Calibrate.xgboost": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 40, "bases": 0, "doc": 31}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 35}, "calidhayte.calibrate.Calibrate.return_measurements": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 80}, "calidhayte.calibrate.Calibrate.return_models": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 119}, "calidhayte.graphs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "calidhayte.graphs.Graphs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 198, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.x": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 22}, "calidhayte.graphs.Graphs.y": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 20}, "calidhayte.graphs.Graphs.x_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "calidhayte.graphs.Graphs.y_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "calidhayte.graphs.Graphs.target": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "calidhayte.graphs.Graphs.models": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 192}, "calidhayte.graphs.Graphs.plots": {"qualname": 2, "fullname": 4, "annotation": 11, "default_value": 0, "signature": 0, "bases": 0, "doc": 164}, "calidhayte.graphs.Graphs.style": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 12}, "calidhayte.graphs.Graphs.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "calidhayte.graphs.Graphs.plot_meta": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 82}, "calidhayte.graphs.Graphs.bland_altman_plot": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.ecdf_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.lin_reg_plot": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.save_plots": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 127, "bases": 0, "doc": 3}, "calidhayte.graphs.ecdf": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "calidhayte.graphs.lin_reg_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 106, "bases": 0, "doc": 3}, "calidhayte.graphs.bland_altman_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 3}, "calidhayte.graphs.ecdf_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 106, "bases": 0, "doc": 3}, "calidhayte.results": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 61}, "calidhayte.results.CoefficientPipelineDict": {"qualname": 1, "fullname": 3, "annotation": 2, "default_value": 7, "signature": 0, "bases": 0, "doc": 14}, "calidhayte.results.Results": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 35}, "calidhayte.results.Results.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 132, "bases": 0, "doc": 81}, "calidhayte.results.Results.x": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 4}, "calidhayte.results.Results.y": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 4}, "calidhayte.results.Results.target": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 11}, "calidhayte.results.Results.models": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 189}, "calidhayte.results.Results.errors": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 220}, "calidhayte.results.Results.explained_variance_score": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.max": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 46}, "calidhayte.results.Results.mean_absolute": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.root_mean_squared": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 48}, "calidhayte.results.Results.root_mean_squared_log": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 49}, "calidhayte.results.Results.median_absolute": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_absolute_percentage": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 48}, "calidhayte.results.Results.r2": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 45}, "calidhayte.results.Results.mean_poisson_deviance": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_gamma_deviance": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_tweedie_deviance": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_pinball_loss": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 46}, "calidhayte.results.Results.return_errors": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 435}, "calidhayte.summary": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.results": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.plots": {"qualname": 2, "fullname": 4, "annotation": 9, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.cols": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.style": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.boxplots": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.histograms": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.save_plots": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}}, "length": 106, "save": true}, "index": {"qualname": {"root": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 49}}}}}}}}, "v": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.summary.Summary": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}, "calidhayte.summary.Summary.results": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.cols": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}, "calidhayte.summary.Summary.boxplots": {"tf": 1}, "calidhayte.summary.Summary.histograms": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 10}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.median_absolute": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.results.Results.max": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pls": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 7, "s": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.boxplots": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "r": {"2": {"docs": {"calidhayte.results.Results.r2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.results": {"tf": 1}}, "df": 21}}}}}}, "f": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 16}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.histograms": {"tf": 1}}, "df": 1}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}}}, "fullname": {"root": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary": {"tf": 1}, "calidhayte.summary.Summary": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}, "calidhayte.summary.Summary.results": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.cols": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}, "calidhayte.summary.Summary.boxplots": {"tf": 1}, "calidhayte.summary.Summary.histograms": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 106}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}}, "df": 51}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.summary": {"tf": 1}, "calidhayte.summary.Summary": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.__init__": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.results": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.cols": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.style": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.backend": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.boxplots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.histograms": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.save_plots": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.median_absolute": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.results.Results.max": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pls": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 7, "s": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.boxplots": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "r": {"2": {"docs": {"calidhayte.results.Results.r2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.x": {"tf": 1.4142135623730951}, "calidhayte.results.Results.y": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.explained_variance_score": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1.4142135623730951}, "calidhayte.results.Results.median_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1.4142135623730951}, "calidhayte.results.Results.r2": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.results": {"tf": 1}}, "df": 23}}}}}}, "f": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x_name": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y_name": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.target": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.style": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.backend": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 21}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.histograms": {"tf": 1}}, "df": 1}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}}}, "annotation": {"root": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 20, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 4}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 2}}}}}}}}, "x": {"2": {"7": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}}}}}}}}}, "default_value": {"root": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "signature": {"root": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "3": {"9": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 5.291502622129181}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.__init__": {"tf": 2}, "calidhayte.graphs.Graphs.save_plots": {"tf": 3.7416573867739413}, "calidhayte.summary.Summary.__init__": {"tf": 2}, "calidhayte.summary.Summary.save_plots": {"tf": 1.4142135623730951}}, "df": 44}, "docs": {}, "df": 0}, "5": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}, "6": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 9.746794344808963}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 15}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 8.12403840463596}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 5.916079783099616}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 5.916079783099616}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 5.916079783099616}, "calidhayte.calibrate.Calibrate.lars": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.omp": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.huber": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 5.916079783099616}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.svr": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.pls": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 5.830951894845301}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 7.416198487095663}, "calidhayte.graphs.Graphs.__init__": {"tf": 12.569805089976535}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 5.656854249492381}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 4.242640687119285}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 4.242640687119285}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 4.242640687119285}, "calidhayte.graphs.Graphs.save_plots": {"tf": 9.797958971132712}, "calidhayte.graphs.ecdf": {"tf": 3.1622776601683795}, "calidhayte.graphs.lin_reg_plot": {"tf": 9.273618495495704}, "calidhayte.graphs.bland_altman_plot": {"tf": 8.660254037844387}, "calidhayte.graphs.ecdf_plot": {"tf": 9.273618495495704}, "calidhayte.results.Results.__init__": {"tf": 10.295630140987}, "calidhayte.results.Results.explained_variance_score": {"tf": 3.1622776601683795}, "calidhayte.results.Results.max": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_absolute": {"tf": 3.1622776601683795}, "calidhayte.results.Results.root_mean_squared": {"tf": 3.1622776601683795}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 3.1622776601683795}, "calidhayte.results.Results.median_absolute": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 3.1622776601683795}, "calidhayte.results.Results.r2": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 3.1622776601683795}, "calidhayte.results.Results.return_errors": {"tf": 4.898979485566356}, "calidhayte.summary.Summary.__init__": {"tf": 8.54400374531753}, "calidhayte.summary.Summary.boxplots": {"tf": 3.1622776601683795}, "calidhayte.summary.Summary.histograms": {"tf": 3.1622776601683795}, "calidhayte.summary.Summary.save_plots": {"tf": 5.477225575051661}}, "df": 71, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}}, "df": 3, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 9}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 2}, "calidhayte.graphs.Graphs.__init__": {"tf": 2}, "calidhayte.results.Results.__init__": {"tf": 2}}, "df": 4}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 10}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pls": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 10}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {"calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 1}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 9}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2.449489742783178}}, "df": 1, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 6}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.__init__": {"tf": 2.8284271247461903}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1.7320508075688772}, "calidhayte.results.Results.__init__": {"tf": 2}, "calidhayte.summary.Summary.__init__": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 52, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.boxplots": {"tf": 1}, "calidhayte.summary.Summary.histograms": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 62}}, "n": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.lin_reg_plot": {"tf": 2}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2}}, "df": 1, "r": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 5}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 3}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 6, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 5}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}}, "df": 43}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 2}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 41}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 30}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 3}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"1": {"docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "5": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}, "9": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"calidhayte": {"tf": 2.449489742783178}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 2.8284271247461903}, "calidhayte.results.Results.return_errors": {"tf": 3.872983346207417}}, "df": 9, "|": {"1": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "1": {"0": {"0": {"0": {"docs": {}, "df": 0, "|": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "|": {"2": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "3": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "6": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "9": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}, "6": {"0": {"docs": {"calidhayte.calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 3.3166247903554}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.7320508075688772}}, "df": 19}, "2": {"0": {"2": {"2": {"docs": {"calidhayte": {"tf": 3}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 7, "|": {"9": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "3": {"0": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "9": {"docs": {"calidhayte": {"tf": 4}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 7.3484692283495345}}, "df": 3}, "docs": {"calidhayte": {"tf": 2.23606797749979}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 8, "|": {"1": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "3": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "4": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "4": {"3": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6, "|": {"3": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}, "docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 8, "|": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "6": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "|": {"4": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "7": {"8": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}, "docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 2}}, "df": 2, "|": {"2": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "8": {"6": {"1": {"7": {"docs": {"calidhayte.calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2, "|": {"7": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "9": {"5": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "8": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 2}}, "df": 2}, "docs": {"calidhayte": {"tf": 27.294688127912362}, "calidhayte.calibrate": {"tf": 7.937253933193772}, "calidhayte.calibrate.cont_strat_folds": {"tf": 13.114877048604}, "calidhayte.calibrate.Calibrate": {"tf": 25.03996805109783}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 10.295630140987}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.models": {"tf": 7.416198487095663}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 4.47213595499958}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.lars": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.omp": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 4.358898943540674}, "calidhayte.calibrate.Calibrate.huber": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 4.358898943540674}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 4.358898943540674}, "calidhayte.calibrate.Calibrate.svr": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 4.358898943540674}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.pls": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 7.211102550927978}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 5.744562646538029}, "calidhayte.graphs": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.x": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.y": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.x_name": {"tf": 2}, "calidhayte.graphs.Graphs.y_name": {"tf": 2}, "calidhayte.graphs.Graphs.target": {"tf": 2}, "calidhayte.graphs.Graphs.models": {"tf": 7.416198487095663}, "calidhayte.graphs.Graphs.plots": {"tf": 7.54983443527075}, "calidhayte.graphs.Graphs.style": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.backend": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 5.477225575051661}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1.7320508075688772}, "calidhayte.graphs.ecdf": {"tf": 1.7320508075688772}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.ecdf_plot": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 5.656854249492381}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 2.8284271247461903}, "calidhayte.results.Results.__init__": {"tf": 5.830951894845301}, "calidhayte.results.Results.x": {"tf": 1.4142135623730951}, "calidhayte.results.Results.y": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 7.416198487095663}, "calidhayte.results.Results.errors": {"tf": 11.958260743101398}, "calidhayte.results.Results.explained_variance_score": {"tf": 5.385164807134504}, "calidhayte.results.Results.max": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_absolute": {"tf": 5.385164807134504}, "calidhayte.results.Results.root_mean_squared": {"tf": 5.385164807134504}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 5.385164807134504}, "calidhayte.results.Results.median_absolute": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 5.385164807134504}, "calidhayte.results.Results.r2": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 5.385164807134504}, "calidhayte.results.Results.return_errors": {"tf": 16.97056274847714}, "calidhayte.summary": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.__init__": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.results": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.plots": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.cols": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.style": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.backend": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.boxplots": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.histograms": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.save_plots": {"tf": 1.7320508075688772}}, "df": 106, "c": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 6, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}}, "df": 12, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 12, "s": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}}, "df": 1}, "d": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "n": {"docs": {"calidhayte": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 3}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 8, "s": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 2.449489742783178}}, "df": 3}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 38}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 10}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}}, "df": 4}}}, "o": {"docs": {"calidhayte": {"tf": 2.8284271247461903}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 3}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 20}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 2.449489742783178}, "calidhayte.graphs.Graphs.plots": {"tf": 2.449489742783178}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 45, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 4}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 3.1622776601683795}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 2}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 2.449489742783178}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.plots": {"tf": 2.6457513110645907}, "calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1.4142135623730951}, "calidhayte.results.Results.median_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1.4142135623730951}, "calidhayte.results.Results.r2": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 2.6457513110645907}}, "df": 33, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "m": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 7}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte": {"tf": 2.8284271247461903}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2.23606797749979}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1.7320508075688772}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 57}, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 47, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 10, "g": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}}, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.7320508075688772}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 43, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 6}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}}, "df": 6, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 6}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}}, "df": 5}}}}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}}, "df": 2, "r": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.return_errors": {"tf": 2}}, "df": 9, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 3}}}}}}}}, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "x": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1}}, "df": 2}, "n": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 11}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.target": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 10}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.results.Results.errors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}}, "df": 5, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 11}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 4, "s": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 10, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 2}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 8}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}}, "df": 9, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 6}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 39, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 2}}, "s": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 3}}}}}}, "x": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 18, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 2.23606797749979}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 6}}}}}}}, "x": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 9, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}}, "df": 6}}, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 41}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 3.1622776601683795}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 17, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 2}}, "df": 6, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}, "f": {"docs": {"calidhayte": {"tf": 3.1622776601683795}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.8284271247461903}}, "df": 2}}, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.plots": {"tf": 2.8284271247461903}, "calidhayte.results.Results.models": {"tf": 2.6457513110645907}}, "df": 7, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.7320508075688772}}, "df": 9, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}}, "df": 2}}, "s": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 23}}}, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 5, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2.449489742783178}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}}, "df": 13}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 8}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"calidhayte": {"tf": 3}, "calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate": {"tf": 3.3166247903554}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.return_errors": {"tf": 2.23606797749979}}, "df": 18, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}}, "df": 7}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 24}, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 9}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 11, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 2}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"2": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}}, "df": 3, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 11}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 9}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 3, "s": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 25}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 42}}}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 13}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.models": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 9}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte": {"tf": 2}}, "df": 1, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 2}}, "df": 3, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}}, "df": 3}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"calidhayte.calibrate.Calibrate.pls": {"tf": 1.4142135623730951}}, "df": 1}}, "y": {"docs": {"calidhayte.results.Results": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "n": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}}, "df": 1}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 3, "o": {"2": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 2, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 2.449489742783178}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 51}}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}}, "df": 4}}}, "b": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 10, "y": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.backend": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"calidhayte": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 8, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 13}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 4}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "k": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 4, "e": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 7, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 3}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}}, "df": 4}}}, "g": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.plots": {"tf": 2.8284271247461903}, "calidhayte.results.Results.models": {"tf": 2.6457513110645907}}, "df": 6, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}}, "df": 3}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 3.4641016151377544}, "calidhayte.calibrate.Calibrate": {"tf": 8.888194417315589}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}}, "df": 6}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "r": {"2": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 42, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"calidhayte": {"tf": 3.3166247903554}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 8}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}}, "df": 4}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "x": {"docs": {"calidhayte": {"tf": 3.7416573867739413}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 2.449489742783178}}, "df": 67, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"calidhayte": {"tf": 3}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.pls": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.explained_variance_score": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1.4142135623730951}, "calidhayte.results.Results.median_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1.4142135623730951}, "calidhayte.results.Results.r2": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1.4142135623730951}}, "df": 61, "e": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 8}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}}, "df": 4}}}, "k": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 12}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "g": {"docs": {"calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.results": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 10}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.7320508075688772}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"calidhayte": {"fullname": "calidhayte", "modulename": "calidhayte", "kind": "module", "doc": "\n \n\n\n\n \n \n \n Explained Variance Score \n... \nMean Absolute Percentage Error \n\n \nRandom Forest \nStandard Scaling \nx + a \n0 \n0.95 \n... \n0.05 \n\n \nTheil-Sen \nYeo-JohnsonScaling \nx + a + b \n1 \n0.98 \n... \n0.01 \n\n \n... \n... \n... \n... \n... \n... \n... \n\n \n\nExtra Trees \nNone \nx \n2 \n0.43 \n... \n0.52 \n\n calidhayte\n
\n\nContact: CaderIdrisGH@outlook.com
\n\n\n\n
\n\nTable of Contents
\n\n\n\n
\n\nSummary
\n\ncalidhayte calibrates one set of measurements against another, using a variety of parametric and non parametric techniques.\nThe datasets are split by k-fold cross validation and stratified so the distribution of 'true' measurements is consistent in all.\nIt can then performs multiple error calculations to validate them, as well as produce several graphs to visualise the calibrations.
\n\n
\n\nMain Features
\n\n\n
\n\n- Calibrate one set of measurements (cross-comparing all available secondary variables) against a 'true' set\n
\n\n
- A suite of calibration methods are available, including bayesian regression
\n- Perform a suite of error calculations on the resulting calibration
\n- Visualise results of calibration
\n- Summarise calibrations to highlight best performing techniques
\n
\n\nHow to install
\n\npip
\n\n\n\n\n\npip install git+https://github.com/CaderIdris/calidhayte@release_tag\n
conda
\n\n\n\n\n\nconda install git pip\npip install git+https://github.com/CaderIdris/calidhayte@release_tag \n
The release tags can be found in the sidebar
\n\n
\n\nDependencies
\n\nPlease see Pipfile.
\n\n
\n\nExample Usage
\n\nThis module requires two dataframes as a prerequisite.
\n\nIndependent Measurements
\n\n\n\n
\n\n\n \n\n\n\n x \na \nb \nc \nd \ne \n\n \n2022-01-01 \n0.1 \n0 \n7 \n2.2 \n3 \n5 \n\n \n2022-01-02 \n0.7 \n1 \n3 \n2 \n8.9 \n1 \n\n \n2022-01-03 \nnan \nnan \n1 \nnan \nnan \n7 \n\n \n_ \n_ \n_ \n_ \n_ \n_ \n_ \n\n \n\n2022-09-30 \n0.5 \n3 \n1 \n2.7 \n4 \n0 \nDependent Measurements
\n\n\n\n
\n\n\n \n\n\n\n x \n\n \n2022-01-02 \n1 \n\n \n2022-01-05 \n3 \n\n \n_ \n_ \n\n \n2022-09-29 \nnan \n\n \n2022-09-30 \n37 \n\n \n\n2022-10-01 \n3 \n\n
\n\n- The two dataframes are joined on the index as an inner join, so the indices do not have to match initially
\n- nan values can be present
\n- More than one column can be present for the dependent measurements but only 'Values' will be used
\n- The index can contain date objects, datetime objects or integers. They should be unique. Strings are untested and may cause unexpected behaviours
\n\n\n\n\nfrom calidhayte import Calibrate, Results, Graphs, Summary\n\n# x_df is a dataframe containing multiple columns containing independent measurements.\n# The primary measurement is denoted by the 'Values' columns, the other measurement columns can have any name.\n# y_df is a dataframe containing the dependent measurement in the 'Values' column.\n\ncoeffs = Calibrate(\n x=x_df,\n y=y_df\n target='x'\n)\n\ncal.linreg()\ncal.theil_sen()\ncal.random_forest(n_estimators=500, max_features=1.0)\n\nmodels = coeffs.return_models()\n\nresults = Results(\n x=x_df,\n y=y_df,\n target='x',\n models=models\n)\n\nresults.r2()\nresults.median_absolute()\nresults.max()\n\nresults_df = results.return_errors()\nresults_df.to_csv('results.csv')\n\ngraphs = Graphs(\n x=x_df,\n y=y_df,\n target='x',\n models=models,\n x_name='x',\n y_name='y'\n)\ngraphs.ecdf_plot()\ngraphs.lin_reg_plot()\ngraphs.save_plots()\n
\n\nAcknowledgements
\n\nMany thanks to James Murphy at Mcoding who's excellent tutorial Automated Testing in Python and associated repository helped a lot when structuring this package
\n"}, "calidhayte.calibrate": {"fullname": "calidhayte.calibrate", "modulename": "calidhayte.calibrate", "kind": "module", "doc": "Contains code used to perform a range of univariate and multivariate\nregressions on provided data.
\n\nActs as a wrapper for scikit-learn 1, XGBoost 2 and PyMC (via Bambi)\n3
\n\n\n\n"}, "calidhayte.calibrate.cont_strat_folds": {"fullname": "calidhayte.calibrate.cont_strat_folds", "modulename": "calidhayte.calibrate", "qualname": "cont_strat_folds", "kind": "function", "doc": "
\n\nCreates stratified k-folds on continuous variable
\n\ndf : pd.DataFrame\n Target data to stratify on.\ntarget_var : str\n Target feature name.\nsplits : int, default=5\n Number of folds to make.\nstrat_groups : int, default=10\n Number of groups to split data in to for stratification.\nseed : int, default=62\n Random state to use.
\n\nReturns
\n\n\n
\n\n- pd.DataFrame:
\ny_df
with added 'Fold' column, specifying which test data fold\nvariable corresponds to.Examples
\n\n\n\n\n\n>>> df = pd.read_csv('data.csv')\n>>> df\n| | x | a | b |\n| | | | |\n| 0 |2.3|1.8|7.2|\n| 1 |3.2|9.6|4.5|\n|....|...|...|...|\n|1000|2.3|4.5|2.2|\n>>> df_with_folds = const_strat_folds(\n df=df,\n target='a',\n splits=3,\n strat_groups=3.\n seed=78\n )\n>>> df_with_folds\n| | x | a | b |Fold|\n| | | | | |\n| 0 |2.3|1.8|7.2| 2 |\n| 1 |3.2|9.6|4.5| 1 |\n|....|...|...|...|....|\n|1000|2.3|4.5|2.2| 0 |\n
All folds should have a roughly equal distribution of values for 'a'
\n", "signature": "(\tdf: pandas.core.frame.DataFrame,\ttarget_var: str,\tsplits: int = 5,\tstrat_groups: int = 5,\tseed: int = 62) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "calidhayte.calibrate.Calibrate": {"fullname": "calidhayte.calibrate.Calibrate", "modulename": "calidhayte.calibrate", "qualname": "Calibrate", "kind": "class", "doc": "Calibrate x against y using a range of different methods provided by\nscikit-learn1, xgboost2 and PyMC (via Bambi)3.
\n\nExamples
\n\n\n\n\n\n>>> from calidhayte.calibrate import Calibrate\n>>> import pandas as pd\n>>>\n>>> x = pd.read_csv('independent.csv')\n>>> x\n| | a | b |\n| 0 |2.3|3.2|\n| 1 |3.4|3.1|\n|...|...|...|\n|100|3.7|2.1|\n>>>\n>>> y = pd.read_csv('dependent.csv')\n>>> y\n| | a |\n| 0 |7.8|\n| 1 |9.9|\n|...|...|\n|100|9.5|\n>>>\n>>> calibration = Calibrate(\n x_data=x,\n y_data=y,\n target='a',\n folds=5,\n strat_groups=5,\n scaler = [\n 'Standard Scale',\n 'MinMax Scale'\n ],\n seed=62\n)\n>>> calibration.linreg()\n>>> calibration.lars()\n>>> calibration.omp()\n>>> calibration.ransac()\n>>> calibration.random_forest()\n>>>\n>>> models = calibration.return_models()\n>>> list(models.keys())\n[\n 'Linear Regression',\n 'Least Angle Regression',\n 'Orthogonal Matching Pursuit',\n 'RANSAC',\n 'Random Forest'\n]\n>>> list(models['Linear Regression'].keys())\n['Standard Scale', 'MinMax Scale']\n>>> list(models['Linear Regression']['Standard Scale'].keys())\n['a', 'a + b']\n>>> list(models['Linear Regression']['Standard Scale']['a'].keys())\n[0, 1, 2, 3, 4]\n>>> type(models['Linear Regression']['Standard Scale']['a'][0])\n<class sklearn.pipeline.Pipeline>\n>>> pipeline = models['Linear Regression']['Standard Scale']['a'][0]\n>>> x_new = pd.read_csv('independent_new.csv')\n>>> x_new\n| | a | b |\n| 0 |3.5|2.7|\n| 1 |4.0|1.1|\n|...|...|...|\n|100|2.3|2.1|\n>>> pipeline.transform(x_new)\n| | a |\n| 0 |9.7|\n| 1 |9.1|\n|...|...|\n|100|6.7|\n
\n\n"}, "calidhayte.calibrate.Calibrate.__init__": {"fullname": "calidhayte.calibrate.Calibrate.__init__", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.__init__", "kind": "function", "doc": "
\n\nInitialises class
\n\nUsed to compare one set of measurements against another.\nIt can perform both univariate and multivariate regression, though\nsome techniques can only do one or the other. Multivariate regression\ncan only be performed when secondary variables are provided.
\n\nParameters
\n\n\n
\n\n- x_data (pd.DataFrame):\nData to be calibrated.
\n- y_data (pd.DataFrame):\n'True' data to calibrate against.
\n- target (str):\nColumn name of the primary feature to use in calibration, must be\nthe name of a column in both
\nx_data
andy_data
.- folds (int, default=5):\nNumber of folds to split the data into, using stratified k-fold.
\n- strat_groups (int, default=10):\nNumber of groups to stratify against, the data will be split into\nn equally sized bins where n is the value of
\nstrat_groups
.- scaler (iterable of {
\n
'None',
'Standard Scale',
'MinMax Scale',
'Yeo-Johnson Transform',
'Box-Cox Transform',
'Quantile Transform (Uniform)',
'Quantile Transform (Gaussian)',
} or {
'All',
'None',
'Standard Scale',
'MinMax Scale',
'Yeo-Johnson Transform',
'Box-Cox Transform',
'Quantile Transform (Uniform)',
'Quantile Transform (Gaussian)',
}, default='None'):\nThe scaling/transform method (or list of methods) to apply to the\ndata- seed (int, default=62):\nRandom state to use when shuffling and splitting the data into n\nfolds. Ensures repeatability.
\nRaises
\n\n\n
\n", "signature": "(\tx_data: pandas.core.frame.DataFrame,\ty_data: pandas.core.frame.DataFrame,\ttarget: str,\tfolds: int = 5,\tstrat_groups: int = 10,\tscaler: Union[collections.abc.Iterable[Literal['None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson Transform', 'Box-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']], Literal['All', 'None', 'Standard Scale', 'MinMax Scale', 'Yeo-Johnson Transform', 'Box-Cox Transform', 'Quantile Transform (Uniform)', 'Quantile Transform (Gaussian)']] = 'None',\tseed: int = 62)"}, "calidhayte.calibrate.Calibrate.x_data": {"fullname": "calidhayte.calibrate.Calibrate.x_data", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.x_data", "kind": "variable", "doc": "- ValueError: Raised if the target variables (e.g. 'NO2') is not a column name in\nboth dataframes.\nRaised if
\nscaler
is not str, tuple or listThe data to be calibrated.
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.calibrate.Calibrate.target": {"fullname": "calidhayte.calibrate.Calibrate.target", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.target", "kind": "variable", "doc": "The name of the column in both
\n", "annotation": ": str"}, "calidhayte.calibrate.Calibrate.scaler_list": {"fullname": "calidhayte.calibrate.Calibrate.scaler_list", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.scaler_list", "kind": "variable", "doc": "x_data
andy_data
that\nwill be used as the x and y variables in the calibration.Keys for scaling algorithms available in the pipelines
\n", "annotation": ": dict[str, typing.Any]"}, "calidhayte.calibrate.Calibrate.scaler": {"fullname": "calidhayte.calibrate.Calibrate.scaler", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.scaler", "kind": "variable", "doc": "The scaling algorithm(s) to preprocess the data with
\n", "annotation": ": list[str]"}, "calidhayte.calibrate.Calibrate.y_data": {"fullname": "calidhayte.calibrate.Calibrate.y_data", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.y_data", "kind": "variable", "doc": "The data that
\n"}, "calidhayte.calibrate.Calibrate.models": {"fullname": "calidhayte.calibrate.Calibrate.models", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.models", "kind": "variable", "doc": "x_data
will be calibrated against. A 'Fold'\ncolumn is added using theconst_strat_folds
function which splits\nthe data into k stratified folds (where k is the value of\nfolds
). It splits the continuous measurements into n bins (where n\nis the value ofstrat_groups
) and distributes each bin equally\nacross all folds. This significantly reduces the chances of one fold\ncontaining a skewed distribution relative to the whole dataset.The calibrated models. They are stored in a nested structure as\nfollows:
\n\n\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nif 5-fold cross validated, a key of 4 indicates the data was trained on\nfolds 0-3.
\n\n", "annotation": ": dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.calibrate.Calibrate.folds": {"fullname": "calidhayte.calibrate.Calibrate.folds", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.folds", "kind": "variable", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> Fold\n state Fold {\n [*] : Which fold was excluded from training data\n [*] : (e.g 4 indicates folds 0-3 were used to train)\n }\n }\n }\n }\nThe number of folds used in k-fold cross validation
\n", "annotation": ": int"}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"fullname": "calidhayte.calibrate.Calibrate.pymc_bayesian", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.pymc_bayesian", "kind": "function", "doc": "Performs bayesian linear regression (either uni or multivariate)\nfitting x on y.
\n\nPerforms bayesian linear regression, both univariate and multivariate,\non X against y. More details can be found at:\nhttps://pymc.io/projects/examples/en/latest/generalized_linear_models/\nGLM-robust.html
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tfamily: Literal['Gaussian', 'Student T'] = 'Gaussian',\tname: str = ' PyMC Bayesian',\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.linreg": {"fullname": "calidhayte.calibrate.Calibrate.linreg", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.linreg", "kind": "function", "doc": "- family ({'Gaussian', 'Student T'}, default='Gaussian'):\nStatistical distribution to fit measurements to. Options are:\n - Gaussian\n - Student T
\nFit x on y via linear regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Linear Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.ridge": {"fullname": "calidhayte.calibrate.Calibrate.ridge", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.ridge", "kind": "function", "doc": "- name (str, default=\"Linear Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via ridge regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Ridge Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe30d50>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe31950>, 'solver': ['svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga', 'lbfgs']},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.ridge_cv": {"fullname": "calidhayte.calibrate.Calibrate.ridge_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.ridge_cv", "kind": "function", "doc": "- name (str, default=\"Ridge Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via cross-validated ridge regression.\nAlready cross validated so random search not required
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Ridge Regression (Cross Validated)',\trandom_search: bool = False,\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lasso": {"fullname": "calidhayte.calibrate.Calibrate.lasso", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lasso", "kind": "function", "doc": "- name (str, default=\"Ridge Regression (Cross Validated)\"):\nName of classification technique
\n- random_search (bool, default=False):\nNot used
\nFit x on y via lasso regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Lasso Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe32550>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe32650>, 'selection': ['cyclic', 'random']},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lasso_cv": {"fullname": "calidhayte.calibrate.Calibrate.lasso_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lasso_cv", "kind": "function", "doc": "- name (str, default=\"Lasso Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via cross-validated lasso regression.\nAlready cross validated so random search not required
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Lasso Regression (Cross Validated)',\trandom_search: bool = False,\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_lasso", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_lasso", "kind": "function", "doc": "- name (str, default=\"Lasso Regression (Cross Validated)\"):\nName of classification technique
\n- random_search (bool, default=False):\nNot used
\nFit x on y via multitask lasso regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Multi-task Lasso Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe32c10>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe33310>, 'selection': ['cyclic', 'random']},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_lasso_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_lasso_cv", "kind": "function", "doc": "- name (str, default=\"Multi-task Lasso Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via cross-validated multitask lasso regression.\nAlready cross validated so random search not required
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Multi-task Lasso Regression (Cross Validated)',\trandom_search: bool = False,\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.elastic_net": {"fullname": "calidhayte.calibrate.Calibrate.elastic_net", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.elastic_net", "kind": "function", "doc": "- name (str, default=\"Multi-task Lasso Regression (Cross Validated)\"):\nName of classification technique
\n- random_search (bool, default=False):\nNot used
\nFit x on y via elastic net regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Elastic Net Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe338d0>, 'l1_ratio': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbe33fd0>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3c5d0>, 'selection': ['cyclic', 'random']},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"fullname": "calidhayte.calibrate.Calibrate.elastic_net_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.elastic_net_cv", "kind": "function", "doc": "- name (str, default=\"Elastic Net Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via cross-validated elastic regression.\nAlready cross validated so random search not required
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Elastic Net Regression (Cross Validated)',\trandom_search: bool = False,\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_elastic_net", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_elastic_net", "kind": "function", "doc": "- name (str, default=\"Lasso Regression (Cross Validated)\"):\nName of classification technique
\n- random_search (bool, default=False):\nNot used
\nFit x on y via elastic net regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Multi-task Elastic Net Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3cbd0>, 'l1_ratio': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3d310>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3da10>, 'selection': ['cyclic', 'random']},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"fullname": "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.multi_task_elastic_net_cv", "kind": "function", "doc": "- name (str, default=\"Multi-task Elastic Net Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via cross-validated multi-task elastic net regression.\nAlready cross validated so random search not required
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Multi-Task Elastic Net Regression (Cross Validated)',\trandom_search: bool = False,\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lars": {"fullname": "calidhayte.calibrate.Calibrate.lars", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lars", "kind": "function", "doc": "- name (str, default=\"Multi-Task Elastic Net Regression (Cross Validated)\"):\nName of classification technique
\n- random_search (bool, default=False):\nNot used
\nFit x on y via least angle regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Least Angle Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_nonzero_coefs': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.lars_lasso": {"fullname": "calidhayte.calibrate.Calibrate.lars_lasso", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.lars_lasso", "kind": "function", "doc": "- name (str, default=\"Least Angle Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via least angle lasso regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Least Angle Lasso Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3e710>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.omp": {"fullname": "calidhayte.calibrate.Calibrate.omp", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.omp", "kind": "function", "doc": "- name (str, default=\"Least Angle Lasso Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via orthogonal matching pursuit regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Orthogonal Matching Pursuit',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_nonzero_coefs': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"fullname": "calidhayte.calibrate.Calibrate.bayesian_ridge", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.bayesian_ridge", "kind": "function", "doc": "- name (str, default=\"Orthogonal Matching Pursuit\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via bayesian ridge regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Bayesian Ridge Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3f010>, 'alpha_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3f2d0>, 'alpha_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc3f9d0>, 'lambda_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc48110>, 'lambda_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc48810>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"fullname": "calidhayte.calibrate.Calibrate.bayesian_ard", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.bayesian_ard", "kind": "function", "doc": "- name (str, default=\"Bayesian Ridge Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via bayesian automatic relevance detection
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Bayesian Automatic Relevance Detection',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc48f10>, 'alpha_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc496d0>, 'alpha_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc49dd0>, 'lambda_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4a4d0>, 'lambda_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4abd0>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.tweedie": {"fullname": "calidhayte.calibrate.Calibrate.tweedie", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.tweedie", "kind": "function", "doc": "- name (str, default=\"Bayesian Automatic Relevance Detection\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via tweedie regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Tweedie Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'power': [0, 1, 1.5, 2, 2.5, 3], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4b2d0>, 'solver': ['lbfgs', 'newton-cholesky'], 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc4bb10>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"fullname": "calidhayte.calibrate.Calibrate.stochastic_gradient_descent", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.stochastic_gradient_descent", "kind": "function", "doc": "- name (str, default=\"Tweedie Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via stochastic gradient descent
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Stochastic Gradient Descent',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc502d0>, 'loss': ['squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'], 'penalty': ['l2', 'l1', 'elasticnet', None], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc50ad0>, 'l1_ratio': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc51290>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc519d0>, 'learning_rate': ['constant', 'optimal', 'invscaling', 'adaptive'], 'eta0': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc52110>, 'power_t': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc52890>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"fullname": "calidhayte.calibrate.Calibrate.passive_aggressive", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.passive_aggressive", "kind": "function", "doc": "- name (str, default=\"Stochastic Gradient Descent\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[):\nstr,\n Union[\n scipy.stats.rv_continuous,\n List[Union[int, str, float]]\n ]\n], default=Preset distributions\nThe parameters used in RandomizedSearchCV
\nFit x on y via stochastic gradient descent regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Passive Aggressive Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'C': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc52fd0>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc537d0>, 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive'], 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc53f10>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.ransac": {"fullname": "calidhayte.calibrate.Calibrate.ransac", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.ransac", "kind": "function", "doc": "- name (str, default=\"Passive Aggressive Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via ransac
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'RANSAC',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'estimator': [LinearRegression()]},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.theil_sen": {"fullname": "calidhayte.calibrate.Calibrate.theil_sen", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.theil_sen", "kind": "function", "doc": "- name (str, default=\"RANSAC\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via theil-sen regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Theil-Sen Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc68cd0>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.huber": {"fullname": "calidhayte.calibrate.Calibrate.huber", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.huber", "kind": "function", "doc": "- name (str, default=\"Theil-Sen Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via huber regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Huber Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc69010>, 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc69810>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc69f50>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.quantile": {"fullname": "calidhayte.calibrate.Calibrate.quantile", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.quantile", "kind": "function", "doc": "- name (str, default=\"Huber Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via quantile regression
\n\nParameters
\n\n'interior-point',
\n\nname : str, default=\"Quantile Regression\"\n Name of classification technique.\nrandom_search : bool, default=False\n Whether to perform RandomizedSearch to optimise parameters\nparameters : dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions\n The parameters used in RandomizedSearchCV
\n", "signature": "(\tself,\tname: str = 'Quantile Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'quantile': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6a690>, 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6ae90>, 'tol': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6b5d0>, 'solver': ['highs-ds', 'highs-ipm', 'highs', 'revised simplex']},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.decision_tree": {"fullname": "calidhayte.calibrate.Calibrate.decision_tree", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.decision_tree", "kind": "function", "doc": "Fit x on y via decision tree
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Decision Tree',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'splitter': ['best', 'random'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6bd10>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.extra_tree": {"fullname": "calidhayte.calibrate.Calibrate.extra_tree", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.extra_tree", "kind": "function", "doc": "- name (str, default=\"Decision Tree\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via extra tree
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Extra Tree',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'splitter': ['best', 'random'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6c650>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.random_forest": {"fullname": "calidhayte.calibrate.Calibrate.random_forest", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.random_forest", "kind": "function", "doc": "- name (str, default=\"Extra Tree\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via random forest
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Random Forest',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'bootstrap': [True, False], 'max_samples': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6d510>, 'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6d7d0>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"fullname": "calidhayte.calibrate.Calibrate.extra_trees_ensemble", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.extra_trees_ensemble", "kind": "function", "doc": "- name (str, default=\"Random Forest\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via extra trees ensemble
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Extra Trees Ensemble',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'bootstrap': [True, False], 'max_samples': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6e590>, 'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'], 'max_features': [None, 'sqrt', 'log2'], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6e850>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"fullname": "calidhayte.calibrate.Calibrate.gradient_boost_regressor", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.gradient_boost_regressor", "kind": "function", "doc": "- name (str, default=\"Extra Trees Ensemble\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via gradient boosting regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Gradient Boosting Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'loss': ['squared_error', 'absolute_error', 'huber', 'quantile'], 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6f010>, 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'subsample': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc6fe50>, 'criterion': ['friedman_mse', 'squared_error'], 'max_features': [None, 'sqrt', 'log2'], 'init': [None, 'zero', <class 'sklearn.linear_model._base.LinearRegression'>, <class 'sklearn.linear_model._theil_sen.TheilSenRegressor'>], 'ccp_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc74050>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"fullname": "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.hist_gradient_boost_regressor", "kind": "function", "doc": "- name (str, default=\"Gradient Boosting Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via histogram-based gradient boosting regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Histogram-Based Gradient Boosting Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'loss': ['squared_error', 'absolute_error', 'gamma', 'poisson', 'quantile'], 'quantile': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc74850>, 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc75090>, 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], 'l2_regularization': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc75dd0>, 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255]},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"fullname": "calidhayte.calibrate.Calibrate.mlp_regressor", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.mlp_regressor", "kind": "function", "doc": "- name (str, default=\"Histogram-Based Gradient Boosting Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via multi-layer perceptron regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Multi-Layer Perceptron Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'hidden_layer_sizes': [(100,), (100, 200), (10,), (200, 400), (100, 200, 300)], 'activation': ['identity', 'logistic', 'tanh', 'relu'], 'solver': ['lbfgs', 'sgd', 'adam'], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc76590>, 'batch_size': ['auto', 20, 200, 500, 1000, 5000, 10000], 'learning_rate': ['constant', 'invscaling', 'adaptive'], 'learning_rate_init': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc76ed0>, 'power_t': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc770d0>, 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], 'shuffle': [True, False], 'momentum': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc77e10>, 'beta_1': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc84050>, 'beta_2': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc84790>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc84ed0>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.svr": {"fullname": "calidhayte.calibrate.Calibrate.svr", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.svr", "kind": "function", "doc": "- name (str, default=\"Multi-Layer Perceptron Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via support vector regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Support Vector Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'degree': [2, 3, 4], 'gamma': ['scale', 'auto'], 'coef0': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc85610>, 'C': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc85ed0>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc86610>, 'shrinking': [True, False]},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.linear_svr": {"fullname": "calidhayte.calibrate.Calibrate.linear_svr", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.linear_svr", "kind": "function", "doc": "- name (str, default=\"Support Vector Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via linear support vector regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Linear Support Vector Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'C': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc86d50>, 'epsilon': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc87590>, 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive']},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.nu_svr": {"fullname": "calidhayte.calibrate.Calibrate.nu_svr", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.nu_svr", "kind": "function", "doc": "- name (str, default=\"Linear Support Vector Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via nu-support vector regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Nu-Support Vector Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'degree': [2, 3, 4], 'gamma': ['scale', 'auto'], 'coef0': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc87cd0>, 'shrinking': [True, False], 'nu': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9c610>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.gaussian_process": {"fullname": "calidhayte.calibrate.Calibrate.gaussian_process", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.gaussian_process", "kind": "function", "doc": "- name (str, default=\"Nu-Support Vector Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via gaussian process regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Gaussian Process Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'kernel': [None, <class 'sklearn.gaussian_process.kernels.RBF'>, <class 'sklearn.gaussian_process.kernels.Matern'>, <class 'sklearn.gaussian_process.kernels.DotProduct'>, <class 'sklearn.gaussian_process.kernels.WhiteKernel'>, <class 'sklearn.gaussian_process.kernels.CompoundKernel'>, <class 'sklearn.gaussian_process.kernels.ExpSineSquared'>], 'alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9cd90>, 'normalize_y': [True, False]},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.isotonic": {"fullname": "calidhayte.calibrate.Calibrate.isotonic", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.isotonic", "kind": "function", "doc": "- name (str, default=\"Gaussian Process Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via isotonic regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'Isotonic Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'increasing': [True, False]},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.xgboost": {"fullname": "calidhayte.calibrate.Calibrate.xgboost", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.xgboost", "kind": "function", "doc": "- name (str, default=\"Isotonic Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via xgboost regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'XGBoost Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255], 'grow_policy': ['depthwise', 'lossguide'], 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9d9d0>, 'tree_method': ['exact', 'approx', 'hist'], 'gamma': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9e050>, 'subsample': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9e7d0>, 'reg_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9ef10>, 'reg_lambda': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9f650>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"fullname": "calidhayte.calibrate.Calibrate.xgboost_rf", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.xgboost_rf", "kind": "function", "doc": "- name (str, default=\"XGBoost Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nFit x on y via xgboosted random forest regression
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tname: str = 'XGBoost Random Forest Regression',\trandom_search: bool = False,\tparameters: dict[str, typing.Union[scipy.stats._distn_infrastructure.rv_continuous, typing.List[typing.Union[int, str, float]]]] = {'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], 'max_bin': [1, 3, 7, 15, 31, 63, 127, 255], 'grow_policy': ['depthwise', 'lossguide'], 'learning_rate': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbc9ff90>, 'tree_method': ['exact', 'approx', 'hist'], 'gamma': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca0710>, 'subsample': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca0e90>, 'reg_alpha': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca15d0>, 'reg_lambda': <scipy.stats._distn_infrastructure.rv_continuous_frozen object at 0x7fc3dbca1d10>},\t**kwargs):", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.return_measurements": {"fullname": "calidhayte.calibrate.Calibrate.return_measurements", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.return_measurements", "kind": "function", "doc": "- name (str, default=\"XGBoost Random Forest Regression\"):\nName of classification technique.
\n- random_search (bool, default=False):\nWhether to perform RandomizedSearch to optimise parameters
\n- parameters (dict[ str, Union[ scipy.stats.rv_continuous, List[Union[int, str, float]] ] ], default=Preset distributions):\nThe parameters used in RandomizedSearchCV
\nReturns the measurements used, with missing values and\nnon-overlapping measurements excluded
\n\nReturns
\n\n\n
\n\n- dict[str, pd.DataFrame]: Dictionary with 2 keys:
\n\n\n
\n", "signature": "(self) -> dict[str, pandas.core.frame.DataFrame]:", "funcdef": "def"}, "calidhayte.calibrate.Calibrate.return_models": {"fullname": "calidhayte.calibrate.Calibrate.return_models", "modulename": "calidhayte.calibrate", "qualname": "Calibrate.return_models", "kind": "function", "doc": "\n \n\n\nKey \nValue \n\n \nx \n\n x_data
\n \n\ny \n\n y_data
Returns the models stored in the object
\n\nReturns
\n\n\n
\n", "signature": "(\tself) -> dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]:", "funcdef": "def"}, "calidhayte.graphs": {"fullname": "calidhayte.graphs", "modulename": "calidhayte.graphs", "kind": "module", "doc": "\n"}, "calidhayte.graphs.Graphs": {"fullname": "calidhayte.graphs.Graphs", "modulename": "calidhayte.graphs", "qualname": "Graphs", "kind": "class", "doc": "- dict[str, str, str, int, Pipeline]: The calibrated models. They are stored in a nested structure as\nfollows:\n
\n\n
- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nfolds 0-3.\nif 5-fold cross validated, a key of 4 indicates the data was\ntrained on
\nCalculates errors between \"true\" and \"predicted\" measurements, plots\ngraphs and returns all results
\n"}, "calidhayte.graphs.Graphs.__init__": {"fullname": "calidhayte.graphs.Graphs.__init__", "modulename": "calidhayte.graphs", "qualname": "Graphs.__init__", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.frame.DataFrame,\tx_name: str,\ty: pandas.core.frame.DataFrame,\ty_name: str,\ttarget: str,\tmodels: dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]],\tstyle: str = 'bmh',\tbackend: str = 'TkAgg')"}, "calidhayte.graphs.Graphs.x": {"fullname": "calidhayte.graphs.Graphs.x", "modulename": "calidhayte.graphs", "qualname": "Graphs.x", "kind": "variable", "doc": "Independent variable(s) that are calibrated against
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.graphs.Graphs.y": {"fullname": "calidhayte.graphs.Graphs.y", "modulename": "calidhayte.graphs", "qualname": "Graphs.y", "kind": "variable", "doc": "y
,\nthe independent variable. Index should matchy
.Dependent variable used to calibrate the independent variables
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.graphs.Graphs.x_name": {"fullname": "calidhayte.graphs.Graphs.x_name", "modulename": "calidhayte.graphs", "qualname": "Graphs.x_name", "kind": "variable", "doc": "x
.\nIndex should matchx
.Label for
\n", "annotation": ": str"}, "calidhayte.graphs.Graphs.y_name": {"fullname": "calidhayte.graphs.Graphs.y_name", "modulename": "calidhayte.graphs", "qualname": "Graphs.y_name", "kind": "variable", "doc": "x
measurementsLabel for
\n", "annotation": ": str"}, "calidhayte.graphs.Graphs.target": {"fullname": "calidhayte.graphs.Graphs.target", "modulename": "calidhayte.graphs", "qualname": "Graphs.target", "kind": "variable", "doc": "y
measurementsMeasurand in
\n"}, "calidhayte.graphs.Graphs.models": {"fullname": "calidhayte.graphs.Graphs.models", "modulename": "calidhayte.graphs", "qualname": "Graphs.models", "kind": "variable", "doc": "y
to calibrate againstThe precalibrated models. They are stored in a nested structure as\nfollows:
\n\n\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nif 5-fold cross validated, a key of 4 indicates the data was trained on\nfolds 0-3.
\n\n", "annotation": ": dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.graphs.Graphs.plots": {"fullname": "calidhayte.graphs.Graphs.plots", "modulename": "calidhayte.graphs", "qualname": "Graphs.plots", "kind": "variable", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> Fold\n state Fold {\n [*] : Which fold was excluded from training data\n [*] : (e.g 4 indicates folds 0-3 were used to train)\n }\n }\n }\n }\nThe plotted data, stored in a similar structure to
\n\nmodels
\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Name of the plot (e.g. 'Bland-Altman')
\n\n", "annotation": ": dict[str, dict[str, dict[str, dict[str, matplotlib.figure.Figure]]]]"}, "calidhayte.graphs.Graphs.style": {"fullname": "calidhayte.graphs.Graphs.style", "modulename": "calidhayte.graphs", "qualname": "Graphs.style", "kind": "variable", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> pn\n state \"Plot Name\" as pn {\n [*] : Name of the plot\n [*] : (e.g Bland-Altman)\n }\n }\n }\n }\nName of in-built matplotlib style or path to stylesheet
\n", "annotation": ": Union[str, pathlib.Path]"}, "calidhayte.graphs.Graphs.backend": {"fullname": "calidhayte.graphs.Graphs.backend", "modulename": "calidhayte.graphs", "qualname": "Graphs.backend", "kind": "variable", "doc": "Matplotlib backend to use
\n"}, "calidhayte.graphs.Graphs.plot_meta": {"fullname": "calidhayte.graphs.Graphs.plot_meta", "modulename": "calidhayte.graphs", "qualname": "Graphs.plot_meta", "kind": "function", "doc": "Iterates over data and creates plots using function specified in\n
\n\nplot_func
Should not be accessed directly, should instead be called by\nanother method
\n\nParameters
\n\n\n
\n", "signature": "(\tself,\tplot_func: Callable[..., matplotlib.figure.Figure],\tname: str,\t**kwargs):", "funcdef": "def"}, "calidhayte.graphs.Graphs.bland_altman_plot": {"fullname": "calidhayte.graphs.Graphs.bland_altman_plot", "modulename": "calidhayte.graphs", "qualname": "Graphs.bland_altman_plot", "kind": "function", "doc": "\n", "signature": "(self, title=None):", "funcdef": "def"}, "calidhayte.graphs.Graphs.ecdf_plot": {"fullname": "calidhayte.graphs.Graphs.ecdf_plot", "modulename": "calidhayte.graphs", "qualname": "Graphs.ecdf_plot", "kind": "function", "doc": "\n", "signature": "(self, title=None):", "funcdef": "def"}, "calidhayte.graphs.Graphs.lin_reg_plot": {"fullname": "calidhayte.graphs.Graphs.lin_reg_plot", "modulename": "calidhayte.graphs", "qualname": "Graphs.lin_reg_plot", "kind": "function", "doc": "\n", "signature": "(self, title=None):", "funcdef": "def"}, "calidhayte.graphs.Graphs.shap": {"fullname": "calidhayte.graphs.Graphs.shap", "modulename": "calidhayte.graphs", "qualname": "Graphs.shap", "kind": "function", "doc": "\n", "signature": "(self, pipeline_keys: list[str], title=None):", "funcdef": "def"}, "calidhayte.graphs.Graphs.save_plots": {"fullname": "calidhayte.graphs.Graphs.save_plots", "modulename": "calidhayte.graphs", "qualname": "Graphs.save_plots", "kind": "function", "doc": "\n", "signature": "(\tself,\tpath: str,\tfiletype: Union[Literal['png', 'pgf', 'pdf'], collections.abc.Iterable[Literal['png', 'pgf', 'pdf']]] = 'png'):", "funcdef": "def"}, "calidhayte.graphs.ecdf": {"fullname": "calidhayte.graphs.ecdf", "modulename": "calidhayte.graphs", "qualname": "ecdf", "kind": "function", "doc": "\n", "signature": "(data):", "funcdef": "def"}, "calidhayte.graphs.lin_reg_plot": {"fullname": "calidhayte.graphs.lin_reg_plot", "modulename": "calidhayte.graphs", "qualname": "lin_reg_plot", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.series.Series,\ty: pandas.core.series.Series,\tx_name: str,\ty_name: str,\ttitle: Optional[str] = None):", "funcdef": "def"}, "calidhayte.graphs.bland_altman_plot": {"fullname": "calidhayte.graphs.bland_altman_plot", "modulename": "calidhayte.graphs", "qualname": "bland_altman_plot", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.frame.DataFrame,\ty: pandas.core.series.Series,\ttitle: Optional[str] = None,\t**kwargs):", "funcdef": "def"}, "calidhayte.graphs.ecdf_plot": {"fullname": "calidhayte.graphs.ecdf_plot", "modulename": "calidhayte.graphs", "qualname": "ecdf_plot", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.frame.DataFrame,\ty: pandas.core.series.Series,\tx_name: str,\ty_name: str,\ttitle: Optional[str] = None):", "funcdef": "def"}, "calidhayte.graphs.shap_plot": {"fullname": "calidhayte.graphs.shap_plot", "modulename": "calidhayte.graphs", "qualname": "shap_plot", "kind": "function", "doc": "\n", "signature": "(shaps: pandas.core.frame.DataFrame, x: pandas.core.frame.DataFrame):", "funcdef": "def"}, "calidhayte.graphs.get_shap": {"fullname": "calidhayte.graphs.get_shap", "modulename": "calidhayte.graphs", "qualname": "get_shap", "kind": "function", "doc": "\n", "signature": "(\tx: pandas.core.frame.DataFrame,\ty: pandas.core.frame.DataFrame,\tpipeline: dict[int, sklearn.pipeline.Pipeline]):", "funcdef": "def"}, "calidhayte.results": {"fullname": "calidhayte.results", "modulename": "calidhayte.results", "kind": "module", "doc": "- plot_func (Callable):\nFunction that returns matplotlib figure
\n- name (str):\nName to give plot, used as key in
\nplots
dict- **kwargs: Additional arguments passed to
\nplot_func
Determine the performance of different calibration techniques using a range of\ndifferent metrics.
\n\nActs as a wrapper for scikit-learn performance metrics 1.
\n\n\n\n"}, "calidhayte.results.CoefficientPipelineDict": {"fullname": "calidhayte.results.CoefficientPipelineDict", "modulename": "calidhayte.results", "qualname": "CoefficientPipelineDict", "kind": "variable", "doc": "
\n\nType alias for the nested dictionaries that the models are stored in
\n", "annotation": ": TypeAlias", "default_value": "dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.results.Results": {"fullname": "calidhayte.results.Results", "modulename": "calidhayte.results", "qualname": "Results", "kind": "class", "doc": "Determine performance of models using a range of metrics.
\n\nUsed to compare a range of different models that were fitted in the\nCalibrate class in
\n"}, "calidhayte.results.Results.__init__": {"fullname": "calidhayte.results.Results.__init__", "modulename": "calidhayte.results", "qualname": "Results.__init__", "kind": "function", "doc": "coefficients.py
.Initialises the class
\n\nParameters
\n\n\n
\n", "signature": "(\tx_data: pandas.core.frame.DataFrame,\ty_data: pandas.core.frame.DataFrame,\ttarget: str,\tmodels: dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]])"}, "calidhayte.results.Results.x": {"fullname": "calidhayte.results.Results.x", "modulename": "calidhayte.results", "qualname": "Results.x", "kind": "variable", "doc": "- x_data (pd.DataFrame):\nDependent measurements
\n- y_data (pd.DataFrame):\nIndependent measurements
\n- target (str):\nColumn name of the primary feature to use in calibration, must be\nthe name of a column in both
\nx_data
andy_data
.- models (CoefficientPipelineDict):\nThe calibrated models.
\nDependent measurements
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.results.Results.y": {"fullname": "calidhayte.results.Results.y", "modulename": "calidhayte.results", "qualname": "Results.y", "kind": "variable", "doc": "Independent Measurements
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.results.Results.target": {"fullname": "calidhayte.results.Results.target", "modulename": "calidhayte.results", "qualname": "Results.target", "kind": "variable", "doc": "Column name of primary feature to use in calibration
\n", "annotation": ": str"}, "calidhayte.results.Results.models": {"fullname": "calidhayte.results.Results.models", "modulename": "calidhayte.results", "qualname": "Results.models", "kind": "variable", "doc": "They are stored in a nested structure as\nfollows:
\n\n\n
\n\n- Primary Key, name of the technique (e.g Lasso Regression).
\n- Scaling technique (e.g Yeo-Johnson Transform).
\n- Combination of variables used or
\ntarget
if calibration is\nunivariate (e.g \"target
+ a + b).- Fold, which fold was used excluded from the calibration. If data\nif 5-fold cross validated, a key of 4 indicates the data was\ntrained on folds 0-3.
\n\n", "annotation": ": dict[str, dict[str, dict[str, dict[int, sklearn.pipeline.Pipeline]]]]"}, "calidhayte.results.Results.errors": {"fullname": "calidhayte.results.Results.errors", "modulename": "calidhayte.results", "qualname": "Results.errors", "kind": "variable", "doc": "stateDiagram-v2\n models --> Technique\n state Technique {\n [*] --> Scaling\n [*]: The calibration technique used\n [*]: (e.g \"Lasso Regression\")\n state Scaling {\n [*] --> Variables\n [*]: The scaling technique used\n [*]: (e.g \"Yeo-Johnson Transform\")\n state Variables {\n [*] : The combination of variables used\n [*] : (e.g \"x + a + b\")\n [*] --> Fold\n state Fold {\n [*] : Which fold was excluded from training data\n [*] : (e.g 4 indicates folds 0-3 were used to train)\n }\n }\n }\n }\nResults of error metric valculations. Index increases sequentially\nby 1, columns contain the technique, scaling method, variables and\nfold for each row. It also contains a column for each metric.
\n\n\n\n
\n", "annotation": ": pandas.core.frame.DataFrame"}, "calidhayte.results.Results.explained_variance_score": {"fullname": "calidhayte.results.Results.explained_variance_score", "modulename": "calidhayte.results", "qualname": "Results.explained_variance_score", "kind": "function", "doc": "\n \n\n\n\n Technique \nScaling Method \nVariables \nFold \nExplained Variance Score \n... \nMean Absolute Percentage Error \n\n \n0 \nRandom Forest \nStandard Scaling \nx + a \n0 \n0.95 \n... \n0.05 \n\n \n1 \nTheil-Sen \nYeo-JohnsonScaling \nx + a + b \n1 \n0.98 \n... \n0.01 \n\n \n... \n... \n... \n... \n... \n... \n... \n... \n\n \n\n55 \nExtra Trees \nNone \nx \n2 \n0.43 \n... \n0.52 \nCalculate the explained variance score between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.max": {"fullname": "calidhayte.results.Results.max", "modulename": "calidhayte.results", "qualname": "Results.max", "kind": "function", "doc": "Calculate the max error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_absolute": {"fullname": "calidhayte.results.Results.mean_absolute", "modulename": "calidhayte.results", "qualname": "Results.mean_absolute", "kind": "function", "doc": "Calculate the mean absolute error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.root_mean_squared": {"fullname": "calidhayte.results.Results.root_mean_squared", "modulename": "calidhayte.results", "qualname": "Results.root_mean_squared", "kind": "function", "doc": "Calculate the root mean squared error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.root_mean_squared_log": {"fullname": "calidhayte.results.Results.root_mean_squared_log", "modulename": "calidhayte.results", "qualname": "Results.root_mean_squared_log", "kind": "function", "doc": "Calculate the root mean squared log error between the true values\n(y) and predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.median_absolute": {"fullname": "calidhayte.results.Results.median_absolute", "modulename": "calidhayte.results", "qualname": "Results.median_absolute", "kind": "function", "doc": "Calculate the median absolute error between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_absolute_percentage": {"fullname": "calidhayte.results.Results.mean_absolute_percentage", "modulename": "calidhayte.results", "qualname": "Results.mean_absolute_percentage", "kind": "function", "doc": "Calculate the mean absolute percentage error between the true\nvalues (y) and predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.r2": {"fullname": "calidhayte.results.Results.r2", "modulename": "calidhayte.results", "qualname": "Results.r2", "kind": "function", "doc": "Calculate the r2 between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_poisson_deviance": {"fullname": "calidhayte.results.Results.mean_poisson_deviance", "modulename": "calidhayte.results", "qualname": "Results.mean_poisson_deviance", "kind": "function", "doc": "Calculate the mean poisson deviance between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_gamma_deviance": {"fullname": "calidhayte.results.Results.mean_gamma_deviance", "modulename": "calidhayte.results", "qualname": "Results.mean_gamma_deviance", "kind": "function", "doc": "Calculate the mean gamma deviance between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_tweedie_deviance": {"fullname": "calidhayte.results.Results.mean_tweedie_deviance", "modulename": "calidhayte.results", "qualname": "Results.mean_tweedie_deviance", "kind": "function", "doc": "Calculate the mean tweedie deviance between the true values (y)\nand predicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.mean_pinball_loss": {"fullname": "calidhayte.results.Results.mean_pinball_loss", "modulename": "calidhayte.results", "qualname": "Results.mean_pinball_loss", "kind": "function", "doc": "Calculate the mean pinball loss between the true values (y)\npredicted y (x) 1.
\n\n\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.results.Results.return_errors": {"fullname": "calidhayte.results.Results.return_errors", "modulename": "calidhayte.results", "qualname": "Results.return_errors", "kind": "function", "doc": "Returns all calculated errors in dataframe format
\n\nInitially the error dataframe has the following structure:
\n\n\n\n
\n\n\n \n\n\n\n Technique \nScaling Method \nVariables \nFold \nExplained Variance Score \n... \nMean Absolute Percentage Error \n\n \n0 \nRandom Forest \nStandard Scaling \nx + a \n0 \n0.95 \n... \n0.05 \n\n \n1 \nTheil-Sen \nYeo-JohnsonScaling \nx + a + b \n1 \n0.98 \n... \n0.01 \n\n \n... \n... \n... \n... \n... \n... \n... \n... \n\n \n\n55 \nExtra Trees \nNone \nx \n2 \n0.43 \n... \n0.52 \nHowever, before returning the data, a new MultiIndex is built using\nthe Technique, Scaling Method, Variables and Fold columns. This\nallows easy comparison of the different techniques by grouping on one\nor multiple levels of the MultiIndex.
\n\nReturns
\n\n\n
\n\n- pd.DataFrame: Results dataframe in the following format:
\n\n\n
\n", "signature": "(self) -> pandas.core.frame.DataFrame:", "funcdef": "def"}, "calidhayte.summary": {"fullname": "calidhayte.summary", "modulename": "calidhayte.summary", "kind": "module", "doc": "\n"}, "calidhayte.summary.Summary": {"fullname": "calidhayte.summary.Summary", "modulename": "calidhayte.summary", "qualname": "Summary", "kind": "class", "doc": "\n"}, "calidhayte.summary.Summary.__init__": {"fullname": "calidhayte.summary.Summary.__init__", "modulename": "calidhayte.summary", "qualname": "Summary.__init__", "kind": "function", "doc": "\n", "signature": "(\tresults: pandas.core.frame.DataFrame,\tcols: list[str],\tstyle: str = 'bmh',\tbackend: str = 'TkAgg')"}, "calidhayte.summary.Summary.results": {"fullname": "calidhayte.summary.Summary.results", "modulename": "calidhayte.summary", "qualname": "Summary.results", "kind": "variable", "doc": "\n"}, "calidhayte.summary.Summary.plots": {"fullname": "calidhayte.summary.Summary.plots", "modulename": "calidhayte.summary", "qualname": "Summary.plots", "kind": "variable", "doc": "\n", "annotation": ": dict[str, dict[str, matplotlib.figure.Figure]]"}, "calidhayte.summary.Summary.cols": {"fullname": "calidhayte.summary.Summary.cols", "modulename": "calidhayte.summary", "qualname": "Summary.cols", "kind": "variable", "doc": "\n", "annotation": ": list[str]"}, "calidhayte.summary.Summary.style": {"fullname": "calidhayte.summary.Summary.style", "modulename": "calidhayte.summary", "qualname": "Summary.style", "kind": "variable", "doc": "\n"}, "calidhayte.summary.Summary.backend": {"fullname": "calidhayte.summary.Summary.backend", "modulename": "calidhayte.summary", "qualname": "Summary.backend", "kind": "variable", "doc": "\n"}, "calidhayte.summary.Summary.boxplots": {"fullname": "calidhayte.summary.Summary.boxplots", "modulename": "calidhayte.summary", "qualname": "Summary.boxplots", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.summary.Summary.histograms": {"fullname": "calidhayte.summary.Summary.histograms", "modulename": "calidhayte.summary", "qualname": "Summary.histograms", "kind": "function", "doc": "\n", "signature": "(self):", "funcdef": "def"}, "calidhayte.summary.Summary.save_plots": {"fullname": "calidhayte.summary.Summary.save_plots", "modulename": "calidhayte.summary", "qualname": "Summary.save_plots", "kind": "function", "doc": "\n", "signature": "(self, path, filetype: str = 'png'):", "funcdef": "def"}}, "docInfo": {"calidhayte": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 1226}, "calidhayte.calibrate": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 111}, "calidhayte.calibrate.cont_strat_folds": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 117, "bases": 0, "doc": 336}, "calidhayte.calibrate.Calibrate": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 986}, "calidhayte.calibrate.Calibrate.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 338, "bases": 0, "doc": 334}, "calidhayte.calibrate.Calibrate.x_data": {"qualname": 3, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "calidhayte.calibrate.Calibrate.target": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 32}, "calidhayte.calibrate.Calibrate.scaler_list": {"qualname": 3, "fullname": 5, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "calidhayte.calibrate.Calibrate.scaler": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 11}, "calidhayte.calibrate.Calibrate.y_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 89}, "calidhayte.calibrate.Calibrate.models": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 192}, "calidhayte.calibrate.Calibrate.folds": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 12}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 75}, "calidhayte.calibrate.Calibrate.linreg": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 155, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.ridge": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 337, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.ridge_cv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 64, "bases": 0, "doc": 54}, "calidhayte.calibrate.Calibrate.lasso": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 286, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.lasso_cv": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 64, "bases": 0, "doc": 54}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 288, "bases": 0, "doc": 77}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 57}, "calidhayte.calibrate.Calibrate.elastic_net": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 339, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 65, "bases": 0, "doc": 54}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 341, "bases": 0, "doc": 78}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"qualname": 6, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 60}, "calidhayte.calibrate.Calibrate.lars": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 227, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.lars_lasso": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 206, "bases": 0, "doc": 78}, "calidhayte.calibrate.Calibrate.omp": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 227, "bases": 0, "doc": 77}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 413, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 414, "bases": 0, "doc": 78}, "calidhayte.calibrate.Calibrate.tweedie": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 336, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 616, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 341, "bases": 0, "doc": 77}, "calidhayte.calibrate.Calibrate.ransac": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 170, "bases": 0, "doc": 72}, "calidhayte.calibrate.Calibrate.theil_sen": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 205, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.huber": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 306, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.quantile": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 360, "bases": 0, "doc": 65}, "calidhayte.calibrate.Calibrate.decision_tree": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 328, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.extra_tree": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 328, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.random_forest": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 432, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 433, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 222, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 494, "bases": 0, "doc": 80}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 873, "bases": 0, "doc": 78}, "calidhayte.calibrate.Calibrate.svr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 441, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.linear_svr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 291, "bases": 0, "doc": 78}, "calidhayte.calibrate.Calibrate.nu_svr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 391, "bases": 0, "doc": 78}, "calidhayte.calibrate.Calibrate.gaussian_process": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 170, "bases": 0, "doc": 76}, "calidhayte.calibrate.Calibrate.isotonic": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 176, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.xgboost": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 605, "bases": 0, "doc": 74}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 607, "bases": 0, "doc": 78}, "calidhayte.calibrate.Calibrate.return_measurements": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 80}, "calidhayte.calibrate.Calibrate.return_models": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 119}, "calidhayte.graphs": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "calidhayte.graphs.Graphs.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 198, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.x": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 22}, "calidhayte.graphs.Graphs.y": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 20}, "calidhayte.graphs.Graphs.x_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "calidhayte.graphs.Graphs.y_name": {"qualname": 3, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "calidhayte.graphs.Graphs.target": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 10}, "calidhayte.graphs.Graphs.models": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 192}, "calidhayte.graphs.Graphs.plots": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 164}, "calidhayte.graphs.Graphs.style": {"qualname": 2, "fullname": 4, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 12}, "calidhayte.graphs.Graphs.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "calidhayte.graphs.Graphs.plot_meta": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 82}, "calidhayte.graphs.Graphs.bland_altman_plot": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.ecdf_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.lin_reg_plot": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.shap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 3}, "calidhayte.graphs.Graphs.save_plots": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 127, "bases": 0, "doc": 3}, "calidhayte.graphs.ecdf": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "calidhayte.graphs.lin_reg_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 106, "bases": 0, "doc": 3}, "calidhayte.graphs.bland_altman_plot": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 3}, "calidhayte.graphs.ecdf_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 106, "bases": 0, "doc": 3}, "calidhayte.graphs.shap_plot": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 3}, "calidhayte.graphs.get_shap": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 3}, "calidhayte.results": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 61}, "calidhayte.results.CoefficientPipelineDict": {"qualname": 1, "fullname": 3, "annotation": 2, "default_value": 7, "signature": 0, "bases": 0, "doc": 14}, "calidhayte.results.Results": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 35}, "calidhayte.results.Results.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 132, "bases": 0, "doc": 81}, "calidhayte.results.Results.x": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 4}, "calidhayte.results.Results.y": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 4}, "calidhayte.results.Results.target": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 11}, "calidhayte.results.Results.models": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 189}, "calidhayte.results.Results.errors": {"qualname": 2, "fullname": 4, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 220}, "calidhayte.results.Results.explained_variance_score": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.max": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 46}, "calidhayte.results.Results.mean_absolute": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.root_mean_squared": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 48}, "calidhayte.results.Results.root_mean_squared_log": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 49}, "calidhayte.results.Results.median_absolute": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_absolute_percentage": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 48}, "calidhayte.results.Results.r2": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 45}, "calidhayte.results.Results.mean_poisson_deviance": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_gamma_deviance": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_tweedie_deviance": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 47}, "calidhayte.results.Results.mean_pinball_loss": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 46}, "calidhayte.results.Results.return_errors": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 435}, "calidhayte.summary": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 91, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.results": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.plots": {"qualname": 2, "fullname": 4, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.cols": {"qualname": 2, "fullname": 4, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.style": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.boxplots": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.histograms": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "calidhayte.summary.Summary.save_plots": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}}, "length": 109, "save": true}, "index": {"qualname": {"root": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 49}}}}}}}}, "v": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.summary.Summary": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}, "calidhayte.summary.Summary.results": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.cols": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}, "calidhayte.summary.Summary.boxplots": {"tf": 1}, "calidhayte.summary.Summary.histograms": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 10}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.median_absolute": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.results.Results.max": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1}}, "df": 8, "s": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.boxplots": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "r": {"2": {"docs": {"calidhayte.results.Results.r2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.results": {"tf": 1}}, "df": 21}}}}}}, "f": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 17}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.get_shap": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.histograms": {"tf": 1}}, "df": 1}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}}}, "fullname": {"root": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary": {"tf": 1}, "calidhayte.summary.Summary": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}, "calidhayte.summary.Summary.results": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.cols": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}, "calidhayte.summary.Summary.boxplots": {"tf": 1}, "calidhayte.summary.Summary.histograms": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 109}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}}, "df": 51}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 1}}}, "v": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.summary.Summary.style": {"tf": 1}}, "df": 2}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.summary": {"tf": 1}, "calidhayte.summary.Summary": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.__init__": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.results": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.cols": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.style": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.backend": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.boxplots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.histograms": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.save_plots": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}}, "df": 4, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 2}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}, "n": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.median_absolute": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.results.Results.max": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1}}, "df": 8, "s": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.summary.Summary.backend": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 2}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.boxplots": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "r": {"2": {"docs": {"calidhayte.results.Results.r2": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.x": {"tf": 1.4142135623730951}, "calidhayte.results.Results.y": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.explained_variance_score": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1.4142135623730951}, "calidhayte.results.Results.median_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1.4142135623730951}, "calidhayte.results.Results.r2": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.results": {"tf": 1}}, "df": 23}}}}}}, "f": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}}, "df": 3}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 3}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x_name": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y_name": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.target": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.style": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.backend": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.shap": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1}}, "df": 24}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.get_shap": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.histograms": {"tf": 1}}, "df": 1}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}}, "df": 1}}}}}}}}}}, "annotation": {"root": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}, "calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 21, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.plots": {"tf": 1.4142135623730951}}, "df": 6}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 4}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.summary.Summary.cols": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.folds": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.summary.Summary.plots": {"tf": 1}}, "df": 2}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}}}}}}}}}, "default_value": {"root": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1.7320508075688772}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "signature": {"root": {"0": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}}, "df": 1, "x": {"7": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "c": {"3": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"3": {"0": {"docs": {}, "df": 0, "d": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"9": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"5": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "6": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "c": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "3": {"3": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "c": {"3": {"docs": {}, "df": 0, "c": {"5": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "d": {"3": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "a": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "e": {"7": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "f": {"0": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "2": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "9": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}, "4": {"8": {"1": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "f": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "9": {"6": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0, "a": {"4": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "b": {"2": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "b": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "5": {"0": {"2": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "1": {"2": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "2": {"1": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "3": {"7": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "f": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "6": {"8": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "9": {"0": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "f": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "a": {"6": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "b": {"5": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "d": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "c": {"6": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "d": {"5": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "e": {"5": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "f": {"0": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "7": {"4": {"0": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "5": {"0": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "6": {"5": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "7": {"0": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "e": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "8": {"4": {"0": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "5": {"6": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "6": {"6": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "d": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "7": {"5": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "9": {"docs": {}, "df": 0, "c": {"6": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "d": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "d": {"9": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "e": {"0": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "f": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "f": {"6": {"5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "f": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0, "a": {"0": {"7": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "e": {"9": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "1": {"5": {"docs": {}, "df": 0, "d": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "d": {"1": {"0": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}}}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}}, "1": {"0": {"0": {"0": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 7}, "docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 10}, "2": {"7": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "5": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 3}, "docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 9}, "2": {"0": {"0": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 7}, "docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "5": {"0": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 7}, "5": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 3}, "docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 7}, "docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 8}, "3": {"0": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "1": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 3}, "9": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 5.656854249492381}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 4.69041575982343}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 3.4641016151377544}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 3.4641016151377544}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 2}, "calidhayte.calibrate.Calibrate.omp": {"tf": 2}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 3.4641016151377544}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 3.4641016151377544}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 6.48074069840786}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 3.7416573867739413}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 2}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 2}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 4.242640687119285}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 4.898979485566356}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 7.211102550927978}, "calidhayte.calibrate.Calibrate.svr": {"tf": 5.291502622129181}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 3.4641016151377544}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 2}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 5.477225575051661}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 5.477225575051661}, "calidhayte.graphs.Graphs.__init__": {"tf": 2}, "calidhayte.graphs.Graphs.save_plots": {"tf": 3.7416573867739413}, "calidhayte.summary.Summary.__init__": {"tf": 2}, "calidhayte.summary.Summary.save_plots": {"tf": 1.4142135623730951}}, "df": 43}, "docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 8}, "4": {"0": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 4}, "5": {"0": {"0": {"0": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}, "docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 7}, "docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 7}, "docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 12}, "6": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}, "3": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 3}, "docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 2}, "7": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 5}, "8": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 2}, "9": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 2}, "docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 9.746794344808963}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 15.459624833740307}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 8.12403840463596}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 11.180339887498949}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 15.874507866387544}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 7.0710678118654755}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 14.730919862656235}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 7.0710678118654755}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 14.730919862656235}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 7.0710678118654755}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 15.905973720586866}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 7.0710678118654755}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 15.905973720586866}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 7.0710678118654755}, "calidhayte.calibrate.Calibrate.lars": {"tf": 13.45362404707371}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 12.609520212918492}, "calidhayte.calibrate.Calibrate.omp": {"tf": 13.45362404707371}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 17.406895185529212}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 17.406895185529212}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 15.968719422671311}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 21.095023109728988}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 15.905973720586866}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 11.704699910719626}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 12.609520212918492}, "calidhayte.calibrate.Calibrate.huber": {"tf": 15.198684153570664}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 16.34013463836819}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 15.620499351813308}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 15.620499351813308}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 18}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 18}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 8.306623862918075}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 19.235384061671343}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 25.436194683953808}, "calidhayte.calibrate.Calibrate.svr": {"tf": 18.16590212458495}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 14.730919862656235}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 17.146428199482248}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 7.615773105863909}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 11.874342087037917}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 21.213203435596427}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 21.213203435596427}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 5.830951894845301}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 7.416198487095663}, "calidhayte.graphs.Graphs.__init__": {"tf": 12.569805089976535}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 7.483314773547883}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 4.242640687119285}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 4.242640687119285}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 4.242640687119285}, "calidhayte.graphs.Graphs.shap": {"tf": 5.5677643628300215}, "calidhayte.graphs.Graphs.save_plots": {"tf": 9.797958971132712}, "calidhayte.graphs.ecdf": {"tf": 3.1622776601683795}, "calidhayte.graphs.lin_reg_plot": {"tf": 9.273618495495704}, "calidhayte.graphs.bland_altman_plot": {"tf": 8.660254037844387}, "calidhayte.graphs.ecdf_plot": {"tf": 9.273618495495704}, "calidhayte.graphs.shap_plot": {"tf": 6.782329983125268}, "calidhayte.graphs.get_shap": {"tf": 8.660254037844387}, "calidhayte.results.Results.__init__": {"tf": 10.295630140987}, "calidhayte.results.Results.explained_variance_score": {"tf": 3.1622776601683795}, "calidhayte.results.Results.max": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_absolute": {"tf": 3.1622776601683795}, "calidhayte.results.Results.root_mean_squared": {"tf": 3.1622776601683795}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 3.1622776601683795}, "calidhayte.results.Results.median_absolute": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 3.1622776601683795}, "calidhayte.results.Results.r2": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 3.1622776601683795}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 3.1622776601683795}, "calidhayte.results.Results.return_errors": {"tf": 4.898979485566356}, "calidhayte.summary.Summary.__init__": {"tf": 8.54400374531753}, "calidhayte.summary.Summary.boxplots": {"tf": 3.1622776601683795}, "calidhayte.summary.Summary.histograms": {"tf": 3.1622776601683795}, "calidhayte.summary.Summary.save_plots": {"tf": 5.477225575051661}}, "df": 73, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}}, "df": 3, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.get_shap": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 11}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 2}, "calidhayte.graphs.Graphs.__init__": {"tf": 2}, "calidhayte.graphs.get_shap": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 2}}, "df": 35, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 2}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.449489742783178}}, "df": 32}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.shap_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.get_shap": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 12}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 5}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2.6457513110645907}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1.7320508075688772}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.shap_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.get_shap": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 12}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {"calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 1}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 2}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.449489742783178}}, "df": 32}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "f": {"0": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}}, "df": 2}}}}}}}, "g": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 5}}}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 5}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2.449489742783178}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.shap_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.get_shap": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 11}}}, "o": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.23606797749979}}, "df": 27}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 5}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 37}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 5}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 2}}}}}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2.8284271247461903}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 4, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 7}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.7320508075688772}}, "df": 32}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 13}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 7}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.__init__": {"tf": 2.8284271247461903}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1.7320508075688772}, "calidhayte.results.Results.__init__": {"tf": 2}, "calidhayte.summary.Summary.__init__": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 52, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 2}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.449489742783178}}, "df": 32}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}, "calidhayte.summary.Summary.boxplots": {"tf": 1}, "calidhayte.summary.Summary.histograms": {"tf": 1}, "calidhayte.summary.Summary.save_plots": {"tf": 1}}, "df": 62}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}}, "df": 4}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 37}}}}, "n": {"docs": {"calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.lin_reg_plot": {"tf": 2}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3, "r": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 2}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.449489742783178}}, "df": 32}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 4}}}}}, "v": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1, "a": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 9}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 3}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3}}}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 6}}}}}}, "g": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.shap_plot": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 36}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 2}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.449489742783178}}, "df": 32}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}, "v": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}, "w": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2.6457513110645907}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.23606797749979}}, "df": 27}}, "x": {"2": {"7": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 6.164414002968976}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 4.242640687119285}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.shap_plot": {"tf": 1}, "calidhayte.graphs.get_shap": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 8, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.get_shap": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 32, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 6}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 21}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.23606797749979}}, "df": 27}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}, "l": {"1": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 32, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.23606797749979}}, "df": 27}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 4}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 6}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}}, "df": 5, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}}, "g": {"2": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 7, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.Graphs.shap": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 15}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.4142135623730951}, "calidhayte.graphs.ecdf_plot": {"tf": 1.4142135623730951}}, "df": 42}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4}, "w": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 5}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 9}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 5}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "o": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 37}, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 1, "d": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.__init__": {"tf": 1}, "calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "k": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}}, "df": 40}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 3, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2.449489742783178}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.shap": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 29}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.summary.Summary.__init__": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}}, "df": 37}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 3}}, "e": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 6}}}, "v": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 2}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.449489742783178}}, "df": 32}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}}, "df": 3}}}}, "b": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 3}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2.23606797749979}}, "df": 27}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.omp": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.graphs.lin_reg_plot": {"tf": 1}, "calidhayte.graphs.bland_altman_plot": {"tf": 1}, "calidhayte.graphs.ecdf_plot": {"tf": 1}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 7}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"0": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.ransac": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 5}}}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}}, "df": 1}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0}}, "doc": {"root": {"0": {"1": {"docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}, "2": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "5": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}, "9": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1}, "docs": {"calidhayte": {"tf": 2.449489742783178}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 2.8284271247461903}, "calidhayte.results.Results.return_errors": {"tf": 3.872983346207417}}, "df": 9, "|": {"1": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "1": {"0": {"0": {"0": {"docs": {}, "df": 0, "|": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0, "|": {"2": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "3": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "6": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "9": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}, "6": {"0": {"docs": {"calidhayte.calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 3.3166247903554}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.7320508075688772}}, "df": 19}, "2": {"0": {"2": {"2": {"docs": {"calidhayte": {"tf": 3}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "9": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 7, "|": {"9": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "3": {"0": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "9": {"docs": {"calidhayte": {"tf": 4}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 7.3484692283495345}}, "df": 3}, "docs": {"calidhayte": {"tf": 2.23606797749979}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 8, "|": {"1": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "3": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "4": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "4": {"3": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6, "|": {"3": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "5": {"0": {"0": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "2": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}, "docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 8, "|": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "6": {"2": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0, "|": {"4": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "7": {"8": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}, "docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 2}}, "df": 2, "|": {"2": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}, "8": {"6": {"1": {"7": {"docs": {"calidhayte.calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2, "|": {"7": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "9": {"5": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "8": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 2}}, "df": 2}, "docs": {"calidhayte": {"tf": 27.294688127912362}, "calidhayte.calibrate": {"tf": 7.937253933193772}, "calidhayte.calibrate.cont_strat_folds": {"tf": 13.114877048604}, "calidhayte.calibrate.Calibrate": {"tf": 25.03996805109783}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 10.295630140987}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 3.605551275463989}, "calidhayte.calibrate.Calibrate.models": {"tf": 7.416198487095663}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 4.47213595499958}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 4.242640687119285}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 4.242640687119285}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 4.242640687119285}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 4.242640687119285}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 4.242640687119285}, "calidhayte.calibrate.Calibrate.lars": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.omp": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.huber": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 3.872983346207417}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.svr": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 5.0990195135927845}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 7.211102550927978}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 5.744562646538029}, "calidhayte.graphs": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.__init__": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.x": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.y": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.x_name": {"tf": 2}, "calidhayte.graphs.Graphs.y_name": {"tf": 2}, "calidhayte.graphs.Graphs.target": {"tf": 2}, "calidhayte.graphs.Graphs.models": {"tf": 7.416198487095663}, "calidhayte.graphs.Graphs.plots": {"tf": 7.54983443527075}, "calidhayte.graphs.Graphs.style": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.backend": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 5.477225575051661}, "calidhayte.graphs.Graphs.bland_altman_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.ecdf_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.lin_reg_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.shap": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.save_plots": {"tf": 1.7320508075688772}, "calidhayte.graphs.ecdf": {"tf": 1.7320508075688772}, "calidhayte.graphs.lin_reg_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.bland_altman_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.ecdf_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.shap_plot": {"tf": 1.7320508075688772}, "calidhayte.graphs.get_shap": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 5.656854249492381}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 2.8284271247461903}, "calidhayte.results.Results.__init__": {"tf": 5.830951894845301}, "calidhayte.results.Results.x": {"tf": 1.4142135623730951}, "calidhayte.results.Results.y": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 7.416198487095663}, "calidhayte.results.Results.errors": {"tf": 11.958260743101398}, "calidhayte.results.Results.explained_variance_score": {"tf": 5.385164807134504}, "calidhayte.results.Results.max": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_absolute": {"tf": 5.385164807134504}, "calidhayte.results.Results.root_mean_squared": {"tf": 5.385164807134504}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 5.385164807134504}, "calidhayte.results.Results.median_absolute": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 5.385164807134504}, "calidhayte.results.Results.r2": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 5.385164807134504}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 5.385164807134504}, "calidhayte.results.Results.return_errors": {"tf": 16.97056274847714}, "calidhayte.summary": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.__init__": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.results": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.plots": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.cols": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.style": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.backend": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.boxplots": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.histograms": {"tf": 1.7320508075688772}, "calidhayte.summary.Summary.save_plots": {"tf": 1.7320508075688772}}, "df": 109, "c": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 6, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}}, "df": 12, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 12, "s": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}}, "df": 1}, "d": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "n": {"docs": {"calidhayte": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 3}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 34}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "@": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 8, "s": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results": {"tf": 1}}, "df": 1}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 11}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 2.449489742783178}}, "df": 3}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 37}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 10}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}}, "df": 4}}}, "o": {"docs": {"calidhayte": {"tf": 2.8284271247461903}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 3}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 52}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 2.449489742783178}, "calidhayte.graphs.Graphs.plots": {"tf": 2.449489742783178}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 44, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 4}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 3.1622776601683795}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 2}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 2.449489742783178}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.plots": {"tf": 2.6457513110645907}, "calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1.4142135623730951}, "calidhayte.results.Results.median_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1.4142135623730951}, "calidhayte.results.Results.r2": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 2.6457513110645907}}, "df": 66, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "m": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "k": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 7}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte": {"tf": 2.8284271247461903}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2.23606797749979}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1.7320508075688772}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 57}, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 46, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 10, "g": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}}, "df": 3, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}}, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 37}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 42, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 4, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 6}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}}, "df": 6, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 6}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 2}}}}}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 6, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}}, "df": 5}}}}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 3}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}}, "df": 2, "r": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.return_errors": {"tf": 2}}, "df": 9, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 3}}}}}}}}, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "x": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1}}, "df": 2}, "n": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.x": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 11}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.target": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 10}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.results.Results.errors": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}}, "df": 5, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 11}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 4, "s": {"docs": {"calidhayte": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 2}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 9}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}}, "df": 9, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 6}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1.7320508075688772}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 38, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 37}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 2}}, "s": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 3}}}}}}, "x": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 51, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 2.23606797749979}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.y": {"tf": 1}}, "df": 6}}}}}}}, "x": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 9, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}}, "df": 6}}, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.x": {"tf": 1}}, "df": 5}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.7320508075688772}}, "df": 40}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}}, "df": 3}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 3.1622776601683795}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 17, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 2}}, "df": 6, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 4, "s": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 33, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 2}, "f": {"docs": {"calidhayte": {"tf": 3.1622776601683795}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.8284271247461903}}, "df": 2}}, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.plots": {"tf": 2.8284271247461903}, "calidhayte.results.Results.models": {"tf": 2.6457513110645907}}, "df": 7, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.7320508075688772}}, "df": 9, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}}, "df": 2}}, "s": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 8}}}, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.backend": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}}, "df": 5, "d": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2.449489742783178}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 2.449489742783178}}, "df": 51}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 8}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {"calidhayte": {"tf": 3}, "calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate": {"tf": 3.3166247903554}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 1.7320508075688772}, "calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.return_errors": {"tf": 2.23606797749979}}, "df": 16, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}}, "df": 7}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 24}, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.x": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 9}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 6, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}}}}, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.CoefficientPipelineDict": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 11, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 2}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 2}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"2": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1}}, "df": 3, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.y": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}, "calidhayte.results.Results.errors": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 11}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 9}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 3, "s": {"docs": {"calidhayte": {"tf": 2}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 15}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "a": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 39}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 2}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 2}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 2}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 2}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 2}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 2}, "calidhayte.calibrate.Calibrate.omp": {"tf": 2}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 2}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 2}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 2}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 2}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 2}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 2}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 2}, "calidhayte.calibrate.Calibrate.huber": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 2}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 2}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 2}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 2}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 2}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 2}, "calidhayte.calibrate.Calibrate.svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 2}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 2}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 2}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 2}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 2}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 41}}}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 35, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results": {"tf": 1.4142135623730951}, "calidhayte.results.Results": {"tf": 1}}, "df": 2}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 3}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.scaler": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 13}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.models": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 9}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"calidhayte": {"tf": 2}}, "df": 1, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 2}}, "df": 3, "s": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}}, "df": 3}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"calidhayte.results.Results": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 6}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.quantile": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}}, "df": 1}}}}}}, "n": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}}, "df": 1}}, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 3, "o": {"2": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 2, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 3}}, "t": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 8}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 2.449489742783178}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1.7320508075688772}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.target": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 50}}}, "u": {"docs": {"calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.CoefficientPipelineDict": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}}, "df": 3}}}, "b": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 10, "y": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.backend": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"calidhayte": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.x_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1.4142135623730951}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 8, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 13}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.graphs.Graphs.style": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1}}, "df": 4}}, "x": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "o": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 37}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "k": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.folds": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 7, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.scaler_list": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1}}, "df": 3}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.results.Results": {"tf": 1}, "calidhayte.results.Results.models": {"tf": 1}}, "df": 4}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.target": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.scaler": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1.4142135623730951}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.models": {"tf": 1.7320508075688772}, "calidhayte.results.Results.models": {"tf": 1.7320508075688772}}, "df": 4}}}, "g": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.7320508075688772}, "calidhayte.graphs.Graphs.models": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs.plots": {"tf": 2.8284271247461903}, "calidhayte.results.Results.models": {"tf": 2.6457513110645907}}, "df": 6, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 2.6457513110645907}, "calidhayte.graphs.Graphs": {"tf": 1}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "+": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.graphs.Graphs.plot_meta": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 3.4641016151377544}, "calidhayte.calibrate.Calibrate": {"tf": 8.888194417315589}, "calidhayte.calibrate.Calibrate.models": {"tf": 2}, "calidhayte.graphs.Graphs.models": {"tf": 2}, "calidhayte.graphs.Graphs.plots": {"tf": 2}, "calidhayte.results.Results.models": {"tf": 2}}, "df": 6}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}, "r": {"2": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 2.6457513110645907}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"calidhayte": {"tf": 3.3166247903554}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "d": {"docs": {"calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2, "s": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs": {"tf": 1}, "calidhayte.graphs.Graphs.plot_meta": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.7320508075688772}}, "df": 2, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.y_data": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1.7320508075688772}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 43, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32, "c": {"docs": {}, "df": 0, "v": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.results": {"tf": 1}, "calidhayte.results.Results": {"tf": 1.4142135623730951}}, "df": 4}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1.4142135623730951}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"calidhayte.calibrate.cont_strat_folds": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 2}}}, "v": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.ridge": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "x": {"docs": {"calidhayte": {"tf": 3.7416573867739413}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 2.8284271247461903}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.y_data": {"tf": 1}, "calidhayte.calibrate.Calibrate.models": {"tf": 1}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1}, "calidhayte.graphs.Graphs.plots": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1}, "calidhayte.results.Results.errors": {"tf": 1.7320508075688772}, "calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 2.449489742783178}}, "df": 66, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 1}}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"calidhayte": {"tf": 3}, "calidhayte.calibrate.cont_strat_folds": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 2.23606797749979}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.target": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}, "calidhayte.calibrate.Calibrate.return_measurements": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.x": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}, "calidhayte.graphs.Graphs.target": {"tf": 1}, "calidhayte.results.Results.__init__": {"tf": 1.4142135623730951}, "calidhayte.results.Results.explained_variance_score": {"tf": 1.4142135623730951}, "calidhayte.results.Results.max": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared": {"tf": 1.4142135623730951}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1.4142135623730951}, "calidhayte.results.Results.median_absolute": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1.4142135623730951}, "calidhayte.results.Results.r2": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1.4142135623730951}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1.4142135623730951}}, "df": 60, "e": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}, "calidhayte.results.Results.errors": {"tf": 1}, "calidhayte.results.Results.return_errors": {"tf": 1.4142135623730951}}, "df": 8}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {"calidhayte": {"tf": 1}, "calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2.449489742783178}, "calidhayte.calibrate.Calibrate.pymc_bayesian": {"tf": 1.7320508075688772}, "calidhayte.calibrate.Calibrate.linreg": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1.4142135623730951}}, "df": 4}}}, "k": {"docs": {"calidhayte.results.Results.explained_variance_score": {"tf": 1}, "calidhayte.results.Results.max": {"tf": 1}, "calidhayte.results.Results.mean_absolute": {"tf": 1}, "calidhayte.results.Results.root_mean_squared": {"tf": 1}, "calidhayte.results.Results.root_mean_squared_log": {"tf": 1}, "calidhayte.results.Results.median_absolute": {"tf": 1}, "calidhayte.results.Results.mean_absolute_percentage": {"tf": 1}, "calidhayte.results.Results.r2": {"tf": 1}, "calidhayte.results.Results.mean_poisson_deviance": {"tf": 1}, "calidhayte.results.Results.mean_gamma_deviance": {"tf": 1}, "calidhayte.results.Results.mean_tweedie_deviance": {"tf": 1}, "calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 12}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 2}, "calidhayte.calibrate.Calibrate.__init__": {"tf": 1.4142135623730951}}, "df": 2, "[": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate.linreg": {"tf": 1}, "calidhayte.calibrate.Calibrate.ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.multi_task_elastic_net": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1}, "calidhayte.calibrate.Calibrate.omp": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ridge": {"tf": 1}, "calidhayte.calibrate.Calibrate.bayesian_ard": {"tf": 1}, "calidhayte.calibrate.Calibrate.tweedie": {"tf": 1}, "calidhayte.calibrate.Calibrate.stochastic_gradient_descent": {"tf": 1}, "calidhayte.calibrate.Calibrate.passive_aggressive": {"tf": 1}, "calidhayte.calibrate.Calibrate.ransac": {"tf": 1}, "calidhayte.calibrate.Calibrate.theil_sen": {"tf": 1}, "calidhayte.calibrate.Calibrate.huber": {"tf": 1}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1}, "calidhayte.calibrate.Calibrate.decision_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_tree": {"tf": 1}, "calidhayte.calibrate.Calibrate.random_forest": {"tf": 1}, "calidhayte.calibrate.Calibrate.extra_trees_ensemble": {"tf": 1}, "calidhayte.calibrate.Calibrate.gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.hist_gradient_boost_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1}, "calidhayte.calibrate.Calibrate.svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.linear_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.nu_svr": {"tf": 1}, "calidhayte.calibrate.Calibrate.gaussian_process": {"tf": 1}, "calidhayte.calibrate.Calibrate.isotonic": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost": {"tf": 1}, "calidhayte.calibrate.Calibrate.xgboost_rf": {"tf": 1}}, "df": 32}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte": {"tf": 1}}, "df": 1}, "g": {"docs": {"calidhayte.results.Results.root_mean_squared_log": {"tf": 1}}, "df": 1}, "s": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.mean_pinball_loss": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"calidhayte.calibrate": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate": {"tf": 1.4142135623730951}, "calidhayte.results": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.results.Results.return_errors": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"calidhayte.calibrate.Calibrate.models": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.multi_task_lasso_cv": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.elastic_net_cv": {"tf": 1}, "calidhayte.calibrate.Calibrate.lars_lasso": {"tf": 1.4142135623730951}, "calidhayte.calibrate.Calibrate.return_models": {"tf": 1}, "calidhayte.graphs.Graphs.models": {"tf": 1.4142135623730951}, "calidhayte.graphs.Graphs.plots": {"tf": 1.4142135623730951}, "calidhayte.results.Results.models": {"tf": 1.4142135623730951}}, "df": 11}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"calidhayte.calibrate.Calibrate.mlp_regressor": {"tf": 1.4142135623730951}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"calidhayte.graphs.Graphs.x_name": {"tf": 1}, "calidhayte.graphs.Graphs.y_name": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"calidhayte.calibrate.Calibrate": {"tf": 1}}, "df": 1}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"calidhayte.calibrate.Calibrate.__init__": {"tf": 2}, "calidhayte.calibrate.Calibrate.quantile": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/src/calidhayte/calibrate.py b/src/calidhayte/calibrate.py index bc582d9..5d1964c 100644 --- a/src/calidhayte/calibrate.py +++ b/src/calidhayte/calibrate.py @@ -30,6 +30,7 @@ from sklearn import neural_network as nn from sklearn import svm from sklearn import tree +from sklearn.gaussian_process import kernels as kern import sklearn.preprocessing as pre from sklearn.model_selection import StratifiedKFold, RandomizedSearchCV from sklearn.compose import ColumnTransformer @@ -1645,6 +1646,22 @@ def decision_tree( List[Union[int, str, float]] ] ] = { + 'criterion': [ + 'squared_error', + 'friedman_mse', + 'absolute_error', + 'poisson' + ], + 'splitter': [ + 'best', + 'random' + ], + 'max_features': [ + None, + 'sqrt', + 'log2' + ], + 'ccp_alpha': uniform(loc=0, scale=2), }, **kwargs ): @@ -1691,6 +1708,22 @@ def extra_tree( List[Union[int, str, float]] ] ] = { + 'criterion': [ + 'squared_error', + 'friedman_mse', + 'absolute_error', + 'poisson' + ], + 'splitter': [ + 'best', + 'random' + ], + 'max_features': [ + None, + 'sqrt', + 'log2' + ], + 'ccp_alpha': uniform(loc=0, scale=2), }, **kwargs ): @@ -1737,6 +1770,21 @@ def random_forest( List[Union[int, str, float]] ] ] = { + 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], + 'bootstrap': [True, False], + 'max_samples': uniform(loc=0.01, scale=0.99), + 'criterion': [ + 'squared_error', + 'friedman_mse', + 'absolute_error', + 'poisson' + ], + 'max_features': [ + None, + 'sqrt', + 'log2' + ], + 'ccp_alpha': uniform(loc=0, scale=2), }, **kwargs ): @@ -1783,6 +1831,21 @@ def extra_trees_ensemble( List[Union[int, str, float]] ] ] = { + 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], + 'bootstrap': [True, False], + 'max_samples': uniform(loc=0.01, scale=0.99), + 'criterion': [ + 'squared_error', + 'friedman_mse', + 'absolute_error', + 'poisson' + ], + 'max_features': [ + None, + 'sqrt', + 'log2' + ], + 'ccp_alpha': uniform(loc=0, scale=2), }, **kwargs ): @@ -1829,6 +1892,31 @@ def gradient_boost_regressor( List[Union[int, str, float]] ] ] = { + 'loss': [ + 'squared_error', + 'absolute_error', + 'huber', + 'quantile' + ], + 'learning_rate': uniform(loc=0, scale=2), + 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], + 'subsample': uniform(loc=0.01, scale=0.99), + 'criterion': [ + 'friedman_mse', + 'squared_error' + ], + 'max_features': [ + None, + 'sqrt', + 'log2' + ], + 'init': [ + None, + 'zero', + lm.LinearRegression, + lm.TheilSenRegressor + ], + 'ccp_alpha': uniform(loc=0, scale=2) }, **kwargs ): @@ -1875,6 +1963,18 @@ def hist_gradient_boost_regressor( List[Union[int, str, float]] ] ] = { + 'loss': [ + 'squared_error', + 'absolute_error', + 'gamma', + 'poisson', + 'quantile' + ], + 'quantile': uniform(loc=0, scale=1), + 'learning_rate': uniform(loc=0, scale=2), + 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], + 'l2_regularization': uniform(loc=0, scale=2), + 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255] }, **kwargs ): @@ -1921,6 +2021,48 @@ def mlp_regressor( List[Union[int, str, float]] ] ] = { + 'hidden_layer_sizes': [ + (100, ), + (100, 200), + (10, ), + (200, 400), + (100, 200, 300) + ], + 'activation': [ + 'identity', + 'logistic', + 'tanh', + 'relu' + ], + 'solver': [ + 'lbfgs', + 'sgd', + 'adam' + ], + 'alpha': uniform(loc=0, scale=0.1), + 'batch_size': [ + 'auto', + 20, + 200, + 500, + 1000, + 5000, + 10000 + ], + 'learning_rate': [ + 'constant', + 'invscaling', + 'adaptive' + ], + 'learning_rate_init': uniform(loc=0, scale=0.1), + 'power_t': uniform(loc=0.1, scale=0.9), + 'max_iter': [5, 10, 25, 50, 100, 200, 250, 500], + 'shuffle': [True, False], + 'momentum': uniform(loc=0.1, scale=0.9), + 'beta_1': uniform(loc=0.1, scale=0.9), + 'beta_2': uniform(loc=0.1, scale=0.9), + 'epsilon': uniform(loc=1E8, scale=1E6), + }, **kwargs ): @@ -1967,6 +2109,18 @@ def svr( List[Union[int, str, float]] ] ] = { + 'kernel': [ + 'linear', + 'poly', + 'rbf', + 'sigmoid', + ], + 'degree': [2, 3, 4], + 'gamma': ['scale', 'auto'], + 'coef0': uniform(loc=0, scale=1), + 'C': uniform(loc=0.1, scale=1.9), + 'epsilon': uniform(loc=1E8, scale=1), + 'shrinking': [True, False] }, **kwargs ): @@ -2013,6 +2167,9 @@ def linear_svr( List[Union[int, str, float]] ] ] = { + 'C': uniform(loc=0.1, scale=1.9), + 'epsilon': uniform(loc=1E8, scale=1), + 'loss': ['epsilon_insensitive', 'squared_epsilon_insensitive'] }, **kwargs ): @@ -2059,6 +2216,17 @@ def nu_svr( List[Union[int, str, float]] ] ] = { + 'kernel': [ + 'linear', + 'poly', + 'rbf', + 'sigmoid', + ], + 'degree': [2, 3, 4], + 'gamma': ['scale', 'auto'], + 'coef0': uniform(loc=0, scale=1), + 'shrinking': [True, False], + 'nu': uniform(loc=0, scale=1), }, **kwargs ): @@ -2105,6 +2273,17 @@ def gaussian_process( List[Union[int, str, float]] ] ] = { + 'kernel': [ + None, + kern.RBF, + kern.Matern, + kern.DotProduct, + kern.WhiteKernel, + kern.CompoundKernel, + kern.ExpSineSquared + ], + 'alpha': uniform(loc=0, scale=1E8), + 'normalize_y': [True, False] }, **kwargs ): @@ -2140,52 +2319,6 @@ def gaussian_process( random_search=random_search ) - def pls( - self, - name: str = "PLS Regression", - random_search: bool = False, - parameters: dict[ - str, - Union[ - scipy.stats.rv_continuous, - List[Union[int, str, float]] - ] - ] = { - }, - **kwargs - ): - """ - Fit x on y via pls regression - - Parameters - ---------- - name : str, default="Gaussian Process Regression" - Name of classification technique. - random_search : bool, default=False - Whether to perform RandomizedSearch to optimise parameters - parameters : dict[\ - str,\ - Union[\ - scipy.stats.rv_continuous,\ - List[Union[int, str, float]]\ - ]\ - ], default=Preset distributions - The parameters used in RandomizedSearchCV - """ - if random_search: - classifier = RandomizedSearchCV( - cd.PLSRegression(**kwargs), - parameters, - cv=self.folds - ) - else: - classifier = cd.PLSRegression(**kwargs) - self._sklearn_regression_meta( - classifier, - f'{name}{" (Random Search)" if random_search else ""}', - random_search=random_search - ) - def isotonic( self, name: str = "Isotonic Regression", @@ -2197,6 +2330,7 @@ def isotonic( List[Union[int, str, float]] ] ] = { + 'increasing': [True, False] }, **kwargs ): @@ -2244,6 +2378,18 @@ def xgboost( List[Union[int, str, float]] ] ] = { + 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], + 'max_bins': [1, 3, 7, 15, 31, 63, 127, 255], + 'grow_policy': [ + 'depthwise', + 'lossguide' + ], + 'learning_rate': uniform(loc=0, scale=2), + 'tree_method': ['exact', 'approx', 'hist'], + 'gamma': uniform(loc=0, scale=1), + 'subsample': uniform(loc=0, scale=1), + 'reg_alpha': uniform(loc=0, scale=1), + 'reg_lambda': uniform(loc=0, scale=1) }, **kwargs ): @@ -2290,6 +2436,18 @@ def xgboost_rf( List[Union[int, str, float]] ] ] = { + 'n_estimators': [5, 10, 25, 50, 100, 200, 250, 500], + 'max_bin': [1, 3, 7, 15, 31, 63, 127, 255], + 'grow_policy': [ + 'depthwise', + 'lossguide' + ], + 'learning_rate': uniform(loc=0, scale=2), + 'tree_method': ['exact', 'approx', 'hist'], + 'gamma': uniform(loc=0, scale=1), + 'subsample': uniform(loc=0, scale=1), + 'reg_alpha': uniform(loc=0, scale=1), + 'reg_lambda': uniform(loc=0, scale=1) }, **kwargs ):\n \n\n\n\n \n \n \n Explained Variance Score \n... \nMean Absolute Percentage Error \n\n \nRandom Forest \nStandard Scaling \nx + a \n0 \n0.95 \n... \n0.05 \n\n \nTheil-Sen \nYeo-JohnsonScaling \nx + a + b \n1 \n0.98 \n... \n0.01 \n\n \n... \n... \n... \n... \n... \n... \n... \n\n \n\nExtra Trees \nNone \nx \n2 \n0.43 \n... \n0.52 \n