Skip to content

Latest commit

 

History

History
106 lines (63 loc) · 11 KB

File metadata and controls

106 lines (63 loc) · 11 KB

图解Attention

篇章1中我们对Transformers在NLP中的兴起做了概述,本篇章将从attention开始,逐步对Transformer结构所涉及的知识进行深入讲解,希望能给读者以形象生动的描述。本小节主要对attention进行解析。

seq2seq模型

首先谈一下NLP常用于生成任务的seq2seq结构。seq2seq模型结构在很多任务上都取得了成功,如:机器翻译、文本摘要、图像描述生成。谷歌翻译在 2016 年年末开始使用这种模型。有2篇开创性的论文:Sutskever等2014年发表的Sequence to Sequence Learning with Neural NetworksCho等2014年发表的Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation都对这些模型进行了解释。

然而大家可以发现,想要充分理解模型并实现它,需要拆解一系列概念,而这些概念是层层递进的。如果能够把这些概念进行可视化,会更加容易理解。这就是这篇文章的目标。读者需要先了解一些深度学习的知识,才能读完这篇文章。笔者希望这篇文章,可以帮助读者阅读上面提到的 2 篇论文并且深入理解Attention。

一个序列到序列(seq2seq)模型,接收的输入是一个(单词、字母、图像特征)序列,输出是另外一个序列。一个训练好的模型如下图所示(将鼠标放在图上,图就会动起来):

seq2seq动态图:seq2seq

在神经机器翻译中,一个序列是指一连串的单词。类似地,输出也是一连串单词。 translation动态图:translation

进一步理解细节

seq2seq模型是由编码器(Encoder)和解码器(Decoder)组成的。其中,编码器会处理输入序列中的每个元素,把这些信息转换为一个向量(称为上下文(context))。当我们处理完整个输入序列后,编码器把上下文(context)发送给解码器,解码器开始逐项生成输出序列中的元素。

encoder-decode动态图:encoder-decoder

encoder-decoder动态图:encoder-decoder

这种机制,同样适用于机器翻译。

在机器翻译任务中,上下文(context)是一个向量(基本上是一个数字数组)。编码器和解码器在Transformer出现之前一般采用的是循环神经网络。关于循环神经网络,建议阅读 Luis Serrano写的一篇关于循环神经网络的精彩介绍.

上下文context对应图里中间一个浮点数向量。在下文中,我们会可视化这些向量,使用更明亮的色彩来表示更高的值,如上图右边所示

图:上下文context对应图里中间一个浮点数向量。在下文中,我们会可视化这些向量,使用更明亮的色彩来表示更高的值,如上图右边所示

你可以在编写seq2seq模型的时候设置上下文向量的长度。这个长度是基于编码器 RNN 的隐藏层神经元的数量。上图展示了长度为 4 的向量,但在实际应用中,上下文向量的长度可能是 256,512 或者 1024。

根据设计,RNN 在每个时间步接受 2 个输入:

  • 输入序列中的一个元素(在解码器的例子中,输入是指句子中的一个单词,最终被转化成一个向量)
  • 一个 hidden state(隐藏层状态,也对应一个向量)

如何把每个单词都转化为一个向量呢?我们使用一类称为 "word embedding" 的方法。这类方法把单词转换到一个向量空间,这种表示能够捕捉大量单词之间的语义信息(例如,king - man + woman = queen例子来源)。

我们在处理单词之前,需要把他们转换为向量。这个转换是使用 word embedding 算法来完成的。我们可以使用预训练好的 embeddings,或者在我们的数据集上训练自己的 embedding。通常 embedding 向量大小是 200 或者 300,为了简单起见,我们这里展示的向量长度是4 图:我们在处理单词之前,需要把他们转换为向量。这个转换是使用 word embedding 算法来完成的。我们可以使用预训练好的 embeddings,或者在我们的数据集上训练自己的 embedding。通常 embedding 向量大小是 200 或者 300,为了简单起见,我们这里展示的向量长度是4。上图左边每个单词对应中间一个4维的向量。

介绍完了单词向量/张量的基础知识,让我们回顾一下 RNN 的机制,并可视化这些 RNN 模型:

rnn 动态图:RNN 在第 2 个时间步,采用第 1 个时间步的 hidden state(隐藏层状态) 和第 2 个时间步的输入向量,来得到输出。在下文,我们会使用类似这种动画,来描述神经机器翻译模型里的所有向量。

在下面的可视化图形中,编码器和解码器在每个时间步处理输入,并得到输出。由于编码器和解码器都是 RNN,RNN 会根据当前时间步的输入,和前一个时间步的 hidden state(隐藏层状态),更新当前时间步的 hidden state(隐藏层状态)。

让我们看下编码器的 hidden state(隐藏层状态)。注意,最后一个 hidden state(隐藏层状态)实际上是我们传给解码器的上下文(context)。 动态图:编码器相关

解码器也持有 hidden state(隐藏层状态),而且也需要把 hidden state(隐藏层状态)从一个时间步传递到下一个时间步。我们没有在上图中可视化解码器的 hidden state,是因为这个过程和解码器是类似的,我们现在关注的是 RNN 的主要处理过程。 现在让我们用另一种方式来可视化序列到序列(seq2seq)模型。下面的动画会让我们更加容易理解模型。这种方法称为展开视图。其中,我们不只是显示一个解码器,而是在时间上展开,每个时间步都显示一个解码器。通过这种方式,我们可以看到每个时间步的输入和输出。

动态图:解码器相关

Attention 讲解

事实证明,上下文context向量是这类模型的瓶颈。这使得模型在处理长文本时面临非常大的挑战。

在 Bahdanau等2014发布的Neural Machine Translation by Jointly Learning to Align and Translate 和 Luong等2015年发布的Effective Approaches to Attention-based Neural Machine Translation 两篇论文中,提出了一种解决方法。这 2 篇论文提出并改进了一种叫做注意力attetion的技术,它极大地提高了机器翻译的质量。注意力使得模型可以根据需要,关注到输入序列的相关部分。

在第7个时间步,注意力机制使得解码器在产生英语翻译之前,可以将注意力集中在 "student" 这个词(在法语里,是 "student" 的意思)。这种从输入序列放大相关信号的能力,使得注意力模型,比没有注意力的模型,产生更好的结果。 图:在第 7 个时间步,注意力机制使得解码器在产生英语翻译之前,可以将注意力集中在 "student" 这个词(在法语里,是 "student" 的意思)。这种从输入序列放大相关信号的能力,使得注意力模型,比没有注意力的模型,产生更好的结果。

让我们继续从高层次来理解注意力模型。一个注意力模型不同于经典的序列到序列(seq2seq)模型,主要体现在 2 个方面:

首先,编码器会把更多的数据传递给解码器。编码器把所有时间步的 hidden state(隐藏层状态)传递给解码器,而不是只传递最后一个 hidden state(隐藏层状态): 动态图: 更多的信息传递给decoder

第二,注意力模型的解码器在产生输出之前,做了一个额外的处理。为了把注意力集中在与该时间步相关的输入部分。解码器做了如下的处理:

  1. 查看所有接收到的编码器的 hidden state(隐藏层状态)。其中,编码器中每个 hidden state(隐藏层状态)都对应到输入句子中一个单词。
  2. 给每个 hidden state(隐藏层状态)一个分数(我们先忽略这个分数的计算过程)。
  3. 将每个 hidden state(隐藏层状态)乘以经过 softmax 的对应的分数,从而,高分对应的 hidden state(隐藏层状态)会被放大,而低分对应的 hidden state(隐藏层状态)会被缩小。

动态图:解决码器attention

这个加权平均的步骤是在解码器的每个时间步做的。 现在,让我们把所有内容都融合到下面的图中,来看看注意力模型的整个过程:

  1. 注意力模型的解码器 RNN 的输入包括:一个embedding 向量,和一个初始化好的解码器 hidden state(隐藏层状态)。
  2. RNN 处理上述的 2 个输入,产生一个输出和一个新的 hidden state(隐藏层状态 h4 向量),其中输出会被忽略。
  3. 注意力的步骤:我们使用编码器的 hidden state(隐藏层状态)和 h4 向量来计算这个时间步的上下文向量(C4)。
  4. 我们把 h4 和 C4 拼接起来,得到一个向量。
  5. 我们把这个向量输入一个前馈神经网络(这个网络是和整个模型一起训练的)。
  6. 前馈神经网络的输出表示这个时间步输出的单词。
  7. 在下一个时间步重复1-6步骤。 动态图:attention过程

下图,我们使用另一种方式来可视化注意力,看看在每个解码的时间步中关注输入句子的哪些部分: 动态图:attention关注的词

请注意,注意力模型不是无意识地把输出的第一个单词对应到输入的第一个单词。实际上,它从训练阶段学习到了如何在两种语言中对应单词的关系(在我们的例子中,是法语和英语)。下图展示了注意力机制的准确程度(图片来自于上面提到的论文): 你可以看到模型在输出 "European Economic Area" 时,注意力分布情况。在法语中,这些单词的顺序,相对于英语,是颠倒的("européenne économique zone")。而其他词的顺序是类似的。

如果你觉得你准备好了学习注意力机制的代码实现,一定要看看基于 TensorFlow 的 神经机器翻译 (seq2seq) 指南

致谢

主要由哈尔滨工业大学张贤同学翻译(经原作者 @JayAlammmar 授权)撰写,由本项目同学组织和整理。最后,期待您的阅读反馈和star哦,谢谢。