forked from DataXujing/ExtremeNet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
225 lines (182 loc) · 7.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
import os
import json
import torch
import numpy as np
import queue
import pprint
import random
import argparse
import importlib
import threading
import traceback
from tqdm import tqdm
from utils import stdout_to_tqdm
from config import system_configs
from nnet.py_factory import NetworkFactory
from torch.multiprocessing import Process, Queue, Pool
from db.datasets import datasets
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def parse_args():
parser = argparse.ArgumentParser(description="Train CornerNet")
parser.add_argument("cfg_file", help="config file", type=str)
parser.add_argument("--iter", dest="start_iter",
help="train at iteration i",
default=0, type=int)
parser.add_argument("--threads", dest="threads", default=4, type=int)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
return args
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
if self.count > 0:
self.avg = self.sum / self.count
def prefetch_data(db, queue, sample_data, data_aug, debug=False):
ind = 0
print("start prefetching data...")
np.random.seed(os.getpid())
while True:
try:
data, ind = sample_data(db, ind, data_aug=data_aug, debug=debug)
queue.put(data)
except Exception as e:
traceback.print_exc()
raise e
def pin_memory(data_queue, pinned_data_queue, sema):
while True:
data = data_queue.get()
data["xs"] = [x.pin_memory() for x in data["xs"]]
data["ys"] = [y.pin_memory() for y in data["ys"]]
pinned_data_queue.put(data)
if sema.acquire(blocking=False):
return
def init_parallel_jobs(dbs, queue, fn, data_aug, debug=False):
tasks = [Process(target=prefetch_data,
args=(db, queue, fn, data_aug, debug)) for db in dbs]
for task in tasks:
task.daemon = True
task.start()
return tasks
def train(training_dbs, validation_db, start_iter=0, debug=False):
learning_rate = system_configs.learning_rate
max_iteration = system_configs.max_iter
pretrained_model = system_configs.pretrain
snapshot = system_configs.snapshot
# val_iter = system_configs.val_iter
display = system_configs.display
decay_rate = system_configs.decay_rate
stepsize = system_configs.stepsize
# getting the size of each database
training_size = len(training_dbs[0].db_inds)
# validation_size = len(validation_db.db_inds)
# queues storing data for training
training_queue = Queue(system_configs.prefetch_size)
# validation_queue = Queue(5)
# queues storing pinned data for training
pinned_training_queue = queue.Queue(system_configs.prefetch_size)
# pinned_validation_queue = queue.Queue(5)
# load data sampling function
data_file = "sample.{}".format(training_dbs[0].data)
sample_data = importlib.import_module(data_file).sample_data
# allocating resources for parallel reading
training_tasks = init_parallel_jobs(
training_dbs, training_queue, sample_data, True, debug)
# if val_iter:
# validation_tasks = init_parallel_jobs([validation_db], validation_queue, sample_data, False)
training_pin_semaphore = threading.Semaphore()
# validation_pin_semaphore = threading.Semaphore()
training_pin_semaphore.acquire()
# validation_pin_semaphore.acquire()
training_pin_args = (training_queue, pinned_training_queue, training_pin_semaphore)
training_pin_thread = threading.Thread(target=pin_memory, args=training_pin_args)
training_pin_thread.daemon = True
training_pin_thread.start()
# validation_pin_args = (validation_queue, pinned_validation_queue, validation_pin_semaphore)
# validation_pin_thread = threading.Thread(target=pin_memory, args=validation_pin_args)
# validation_pin_thread.daemon = True
# validation_pin_thread.start()
print("building model...")
nnet = NetworkFactory(training_dbs[0])
if pretrained_model is not None:
if not os.path.exists(pretrained_model):
raise ValueError("pretrained model does not exist")
print("loading from pretrained model")
nnet.load_pretrained_params(pretrained_model)
if start_iter:
learning_rate /= (decay_rate ** (start_iter // stepsize))
nnet.load_params(start_iter)
nnet.set_lr(learning_rate)
print("training starts from iteration {} with learning_rate {}".format(start_iter + 1, learning_rate))
else:
nnet.set_lr(learning_rate)
print("training start...")
nnet.cuda()
nnet.train_mode()
avg_loss = AverageMeter()
with stdout_to_tqdm() as save_stdout:
for iteration in tqdm(range(start_iter + 1, max_iteration + 1), file=save_stdout, ncols=80):
training = pinned_training_queue.get(block=True)
training_loss = nnet.train(**training)
avg_loss.update(training_loss.item())
if display and iteration % display == 0:
print("training loss at iteration {}: {:.6f} ({:.6f})".format(
iteration, training_loss.item(), avg_loss.avg))
del training_loss
# if val_iter and validation_db.db_inds.size and iteration % val_iter == 0:
# nnet.eval_mode()
# validation = pinned_validation_queue.get(block=True)
# validation_loss = nnet.validate(**validation)
# print("validation loss at iteration {}: {}".format(iteration, validation_loss.item()))
# nnet.train_mode()
if iteration % snapshot == 0:
nnet.save_params(iteration)
if iteration % 1000 == 0:
nnet.save_params(-1)
avg_loss = AverageMeter()
if iteration % stepsize == 0:
learning_rate /= decay_rate
nnet.set_lr(learning_rate)
# sending signal to kill the thread
training_pin_semaphore.release()
# validation_pin_semaphore.release()
# terminating data fetching processes
for training_task in training_tasks:
training_task.terminate()
# for validation_task in validation_tasks:
# validation_task.terminate()
if __name__ == "__main__":
args = parse_args()
cfg_file = os.path.join(system_configs.config_dir, args.cfg_file + ".json")
with open(cfg_file, "r") as f:
configs = json.load(f)
configs["system"]["snapshot_name"] = args.cfg_file
system_configs.update_config(configs["system"])
train_split = system_configs.train_split
val_split = system_configs.val_split
print("loading all datasets...")
dataset = system_configs.dataset
# threads = max(torch.cuda.device_count() * 2, 4)
threads = args.threads
print("using {} threads".format(threads))
training_dbs = [datasets[dataset](configs["db"], train_split) for _ in range(threads)]
# Remove validation to save GPU resources
# validation_db = datasets[dataset](configs["db"], val_split)
print("system config...")
pprint.pprint(system_configs.full)
print("db config...")
pprint.pprint(training_dbs[0].configs)
print("len of db: {}".format(len(training_dbs[0].db_inds)))
# train(training_dbs, validation_db, args.start_iter)
train(training_dbs, None, args.start_iter, args.debug)