forked from dragino/RadioHead
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRH_RF69.h
987 lines (898 loc) · 47.8 KB
/
RH_RF69.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
// RH_RF69.h
// Author: Mike McCauley ([email protected])
// Copyright (C) 2014 Mike McCauley
// $Id: RH_RF69.h,v 1.34 2017/03/08 09:30:47 mikem Exp mikem $
//
///
#ifndef RH_RF69_h
#define RH_RF69_h
#include <RHGenericSPI.h>
#include <RHSPIDriver.h>
// The crystal oscillator frequency of the RF69 module
#define RH_RF69_FXOSC 32000000.0
// The Frequency Synthesizer step = RH_RF69_FXOSC / 2^^19
#define RH_RF69_FSTEP (RH_RF69_FXOSC / 524288)
// This is the maximum number of interrupts the driver can support
// Most Arduinos can handle 2, Megas can handle more
#define RH_RF69_NUM_INTERRUPTS 3
// This is the bit in the SPI address that marks it as a write
#define RH_RF69_SPI_WRITE_MASK 0x80
// Max number of octets the RH_RF69 Rx and Tx FIFOs can hold
#define RH_RF69_FIFO_SIZE 66
// Maximum encryptable payload length the RF69 can support
#define RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN 64
// The length of the headers we add.
// The headers are inside the RF69's payload and are therefore encrypted if encryption is enabled
#define RH_RF69_HEADER_LEN 4
// This is the maximum message length that can be supported by this driver. Limited by
// the size of the FIFO, since we are unable to support on-the-fly filling and emptying
// of the FIFO.
// Can be pre-defined to a smaller size (to save SRAM) prior to including this header
// Here we allow for 4 bytes of address and header and payload to be included in the 64 byte encryption limit.
// the one byte payload length is not encrpyted
#ifndef RH_RF69_MAX_MESSAGE_LEN
#define RH_RF69_MAX_MESSAGE_LEN (RH_RF69_MAX_ENCRYPTABLE_PAYLOAD_LEN - RH_RF69_HEADER_LEN)
#endif
// Keep track of the mode the RF69 is in
#define RH_RF69_MODE_IDLE 0
#define RH_RF69_MODE_RX 1
#define RH_RF69_MODE_TX 2
// This is the default node address,
#define RH_RF69_DEFAULT_NODE_ADDRESS 0
// You can define the following macro (either by editing here or by passing it as a compiler definition
// to change the default value of the ishighpowermodule argument to setTxPower to true
//
// #define RFM69_HW
#ifdef RFM69_HW
#define RH_RF69_DEFAULT_HIGHPOWER true
#else
#define RH_RF69_DEFAULT_HIGHPOWER false
#endif
// Register names
#define RH_RF69_REG_00_FIFO 0x00
#define RH_RF69_REG_01_OPMODE 0x01
#define RH_RF69_REG_02_DATAMODUL 0x02
#define RH_RF69_REG_03_BITRATEMSB 0x03
#define RH_RF69_REG_04_BITRATELSB 0x04
#define RH_RF69_REG_05_FDEVMSB 0x05
#define RH_RF69_REG_06_FDEVLSB 0x06
#define RH_RF69_REG_07_FRFMSB 0x07
#define RH_RF69_REG_08_FRFMID 0x08
#define RH_RF69_REG_09_FRFLSB 0x09
#define RH_RF69_REG_0A_OSC1 0x0a
#define RH_RF69_REG_0B_AFCCTRL 0x0b
#define RH_RF69_REG_0C_RESERVED 0x0c
#define RH_RF69_REG_0D_LISTEN1 0x0d
#define RH_RF69_REG_0E_LISTEN2 0x0e
#define RH_RF69_REG_0F_LISTEN3 0x0f
#define RH_RF69_REG_10_VERSION 0x10
#define RH_RF69_REG_11_PALEVEL 0x11
#define RH_RF69_REG_12_PARAMP 0x12
#define RH_RF69_REG_13_OCP 0x13
#define RH_RF69_REG_14_RESERVED 0x14
#define RH_RF69_REG_15_RESERVED 0x15
#define RH_RF69_REG_16_RESERVED 0x16
#define RH_RF69_REG_17_RESERVED 0x17
#define RH_RF69_REG_18_LNA 0x18
#define RH_RF69_REG_19_RXBW 0x19
#define RH_RF69_REG_1A_AFCBW 0x1a
#define RH_RF69_REG_1B_OOKPEAK 0x1b
#define RH_RF69_REG_1C_OOKAVG 0x1c
#define RH_RF69_REG_1D_OOKFIX 0x1d
#define RH_RF69_REG_1E_AFCFEI 0x1e
#define RH_RF69_REG_1F_AFCMSB 0x1f
#define RH_RF69_REG_20_AFCLSB 0x20
#define RH_RF69_REG_21_FEIMSB 0x21
#define RH_RF69_REG_22_FEILSB 0x22
#define RH_RF69_REG_23_RSSICONFIG 0x23
#define RH_RF69_REG_24_RSSIVALUE 0x24
#define RH_RF69_REG_25_DIOMAPPING1 0x25
#define RH_RF69_REG_26_DIOMAPPING2 0x26
#define RH_RF69_REG_27_IRQFLAGS1 0x27
#define RH_RF69_REG_28_IRQFLAGS2 0x28
#define RH_RF69_REG_29_RSSITHRESH 0x29
#define RH_RF69_REG_2A_RXTIMEOUT1 0x2a
#define RH_RF69_REG_2B_RXTIMEOUT2 0x2b
#define RH_RF69_REG_2C_PREAMBLEMSB 0x2c
#define RH_RF69_REG_2D_PREAMBLELSB 0x2d
#define RH_RF69_REG_2E_SYNCCONFIG 0x2e
#define RH_RF69_REG_2F_SYNCVALUE1 0x2f
// another 7 sync word bytes follow, 30 through 36 inclusive
#define RH_RF69_REG_37_PACKETCONFIG1 0x37
#define RH_RF69_REG_38_PAYLOADLENGTH 0x38
#define RH_RF69_REG_39_NODEADRS 0x39
#define RH_RF69_REG_3A_BROADCASTADRS 0x3a
#define RH_RF69_REG_3B_AUTOMODES 0x3b
#define RH_RF69_REG_3C_FIFOTHRESH 0x3c
#define RH_RF69_REG_3D_PACKETCONFIG2 0x3d
#define RH_RF69_REG_3E_AESKEY1 0x3e
// Another 15 AES key bytes follow
#define RH_RF69_REG_4E_TEMP1 0x4e
#define RH_RF69_REG_4F_TEMP2 0x4f
#define RH_RF69_REG_58_TESTLNA 0x58
#define RH_RF69_REG_5A_TESTPA1 0x5a
#define RH_RF69_REG_5C_TESTPA2 0x5c
#define RH_RF69_REG_6F_TESTDAGC 0x6f
#define RH_RF69_REG_71_TESTAFC 0x71
// These register masks etc are named wherever possible
// corresponding to the bit and field names in the RFM69 Manual
// RH_RF69_REG_01_OPMODE
#define RH_RF69_OPMODE_SEQUENCEROFF 0x80
#define RH_RF69_OPMODE_LISTENON 0x40
#define RH_RF69_OPMODE_LISTENABORT 0x20
#define RH_RF69_OPMODE_MODE 0x1c
#define RH_RF69_OPMODE_MODE_SLEEP 0x00
#define RH_RF69_OPMODE_MODE_STDBY 0x04
#define RH_RF69_OPMODE_MODE_FS 0x08
#define RH_RF69_OPMODE_MODE_TX 0x0c
#define RH_RF69_OPMODE_MODE_RX 0x10
// RH_RF69_REG_02_DATAMODUL
#define RH_RF69_DATAMODUL_DATAMODE 0x60
#define RH_RF69_DATAMODUL_DATAMODE_PACKET 0x00
#define RH_RF69_DATAMODUL_DATAMODE_CONT_WITH_SYNC 0x40
#define RH_RF69_DATAMODUL_DATAMODE_CONT_WITHOUT_SYNC 0x60
#define RH_RF69_DATAMODUL_MODULATIONTYPE 0x18
#define RH_RF69_DATAMODUL_MODULATIONTYPE_FSK 0x00
#define RH_RF69_DATAMODUL_MODULATIONTYPE_OOK 0x08
#define RH_RF69_DATAMODUL_MODULATIONSHAPING 0x03
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_NONE 0x00
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT1_0 0x01
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_5 0x02
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_FSK_BT0_3 0x03
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_NONE 0x00
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_BR 0x01
#define RH_RF69_DATAMODUL_MODULATIONSHAPING_OOK_2BR 0x02
// RH_RF69_REG_11_PALEVEL
#define RH_RF69_PALEVEL_PA0ON 0x80
#define RH_RF69_PALEVEL_PA1ON 0x40
#define RH_RF69_PALEVEL_PA2ON 0x20
#define RH_RF69_PALEVEL_OUTPUTPOWER 0x1f
// RH_RF69_REG_23_RSSICONFIG
#define RH_RF69_RSSICONFIG_RSSIDONE 0x02
#define RH_RF69_RSSICONFIG_RSSISTART 0x01
// RH_RF69_REG_25_DIOMAPPING1
#define RH_RF69_DIOMAPPING1_DIO0MAPPING 0xc0
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_00 0x00
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_01 0x40
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_10 0x80
#define RH_RF69_DIOMAPPING1_DIO0MAPPING_11 0xc0
#define RH_RF69_DIOMAPPING1_DIO1MAPPING 0x30
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_00 0x00
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_01 0x10
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_10 0x20
#define RH_RF69_DIOMAPPING1_DIO1MAPPING_11 0x30
#define RH_RF69_DIOMAPPING1_DIO2MAPPING 0x0c
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_00 0x00
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_01 0x04
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_10 0x08
#define RH_RF69_DIOMAPPING1_DIO2MAPPING_11 0x0c
#define RH_RF69_DIOMAPPING1_DIO3MAPPING 0x03
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_00 0x00
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_01 0x01
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_10 0x02
#define RH_RF69_DIOMAPPING1_DIO3MAPPING_11 0x03
// RH_RF69_REG_26_DIOMAPPING2
#define RH_RF69_DIOMAPPING2_DIO4MAPPING 0xc0
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_00 0x00
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_01 0x40
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_10 0x80
#define RH_RF69_DIOMAPPING2_DIO4MAPPING_11 0xc0
#define RH_RF69_DIOMAPPING2_DIO5MAPPING 0x30
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_00 0x00
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_01 0x10
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_10 0x20
#define RH_RF69_DIOMAPPING2_DIO5MAPPING_11 0x30
#define RH_RF69_DIOMAPPING2_CLKOUT 0x07
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_ 0x00
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_2 0x01
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_4 0x02
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_8 0x03
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_16 0x04
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_32 0x05
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_RC 0x06
#define RH_RF69_DIOMAPPING2_CLKOUT_FXOSC_OFF 0x07
// RH_RF69_REG_27_IRQFLAGS1
#define RH_RF69_IRQFLAGS1_MODEREADY 0x80
#define RH_RF69_IRQFLAGS1_RXREADY 0x40
#define RH_RF69_IRQFLAGS1_TXREADY 0x20
#define RH_RF69_IRQFLAGS1_PLLLOCK 0x10
#define RH_RF69_IRQFLAGS1_RSSI 0x08
#define RH_RF69_IRQFLAGS1_TIMEOUT 0x04
#define RH_RF69_IRQFLAGS1_AUTOMODE 0x02
#define RH_RF69_IRQFLAGS1_SYNADDRESSMATCH 0x01
// RH_RF69_REG_28_IRQFLAGS2
#define RH_RF69_IRQFLAGS2_FIFOFULL 0x80
#define RH_RF69_IRQFLAGS2_FIFONOTEMPTY 0x40
#define RH_RF69_IRQFLAGS2_FIFOLEVEL 0x20
#define RH_RF69_IRQFLAGS2_FIFOOVERRUN 0x10
#define RH_RF69_IRQFLAGS2_PACKETSENT 0x08
#define RH_RF69_IRQFLAGS2_PAYLOADREADY 0x04
#define RH_RF69_IRQFLAGS2_CRCOK 0x02
// RH_RF69_REG_2E_SYNCCONFIG
#define RH_RF69_SYNCCONFIG_SYNCON 0x80
#define RH_RF69_SYNCCONFIG_FIFOFILLCONDITION_MANUAL 0x40
#define RH_RF69_SYNCCONFIG_SYNCSIZE 0x38
#define RH_RF69_SYNCCONFIG_SYNCSIZE_1 0x00
#define RH_RF69_SYNCCONFIG_SYNCSIZE_2 0x08
#define RH_RF69_SYNCCONFIG_SYNCSIZE_3 0x10
#define RH_RF69_SYNCCONFIG_SYNCSIZE_4 0x18
#define RH_RF69_SYNCCONFIG_SYNCSIZE_5 0x20
#define RH_RF69_SYNCCONFIG_SYNCSIZE_6 0x28
#define RH_RF69_SYNCCONFIG_SYNCSIZE_7 0x30
#define RH_RF69_SYNCCONFIG_SYNCSIZE_8 0x38
#define RH_RF69_SYNCCONFIG_SYNCSIZE_SYNCTOL 0x07
// RH_RF69_REG_37_PACKETCONFIG1
#define RH_RF69_PACKETCONFIG1_PACKETFORMAT_VARIABLE 0x80
#define RH_RF69_PACKETCONFIG1_DCFREE 0x60
#define RH_RF69_PACKETCONFIG1_DCFREE_NONE 0x00
#define RH_RF69_PACKETCONFIG1_DCFREE_MANCHESTER 0x20
#define RH_RF69_PACKETCONFIG1_DCFREE_WHITENING 0x40
#define RH_RF69_PACKETCONFIG1_DCFREE_RESERVED 0x60
#define RH_RF69_PACKETCONFIG1_CRC_ON 0x10
#define RH_RF69_PACKETCONFIG1_CRCAUTOCLEAROFF 0x08
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING 0x06
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NONE 0x00
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE 0x02
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_NODE_BC 0x04
#define RH_RF69_PACKETCONFIG1_ADDRESSFILTERING_RESERVED 0x06
// RH_RF69_REG_3C_FIFOTHRESH
#define RH_RF69_FIFOTHRESH_TXSTARTCONDITION_NOTEMPTY 0x80
#define RH_RF69_FIFOTHRESH_FIFOTHRESHOLD 0x7f
// RH_RF69_REG_3D_PACKETCONFIG2
#define RH_RF69_PACKETCONFIG2_INTERPACKETRXDELAY 0xf0
#define RH_RF69_PACKETCONFIG2_RESTARTRX 0x04
#define RH_RF69_PACKETCONFIG2_AUTORXRESTARTON 0x02
#define RH_RF69_PACKETCONFIG2_AESON 0x01
// RH_RF69_REG_4E_TEMP1
#define RH_RF69_TEMP1_TEMPMEASSTART 0x08
#define RH_RF69_TEMP1_TEMPMEASRUNNING 0x04
// RH_RF69_REG_5A_TESTPA1
#define RH_RF69_TESTPA1_NORMAL 0x55
#define RH_RF69_TESTPA1_BOOST 0x5d
// RH_RF69_REG_5C_TESTPA2
#define RH_RF69_TESTPA2_NORMAL 0x70
#define RH_RF69_TESTPA2_BOOST 0x7c
// RH_RF69_REG_6F_TESTDAGC
#define RH_RF69_TESTDAGC_CONTINUOUSDAGC_NORMAL 0x00
#define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAON 0x20
#define RH_RF69_TESTDAGC_CONTINUOUSDAGC_IMPROVED_LOWBETAOFF 0x30
// Define this to include Serial printing in diagnostic routines
#define RH_RF69_HAVE_SERIAL
/////////////////////////////////////////////////////////////////////
/// \class RH_RF69 RH_RF69.h <RH_RF69.h>
/// \brief Driver to send and receive unaddressed, unreliable datagrams via an RF69 and compatible radio transceiver.
///
/// Works with
/// - the excellent Moteino and Moteino-USB
/// boards from LowPowerLab http://lowpowerlab.com/moteino/
/// - compatible chips and modules such as RFM69W, RFM69HW, RFM69CW, RFM69HCW (Semtech SX1231, SX1231H),
/// - RFM69 modules from http://www.hoperfusa.com such as http://www.hoperfusa.com/details.jsp?pid=145
/// - Anarduino MiniWireless -CW and -HW boards http://www.anarduino.com/miniwireless/ including
/// the marvellous high powered MinWireless-HW (with 20dBm output for excellent range)
/// - the excellent Rocket Scream Mini Ultra Pro with the RFM69HCW
/// http://www.rocketscream.com/blog/product/mini-ultra-pro-with-radio/
/// - The excellent Talk2 Whisper Node boards
/// (https://talk2.wisen.com.au/ and https://bitbucket.org/talk2/whisper-node-avr),
/// an Arduino compatible board, which include an on-board RF69 radio, external antenna,
/// run on 2xAAA batteries and support low power operations. RF69 examples work without modification.
/// Use Arduino Board Manager to install the Talk2 code support as described in
/// https://bitbucket.org/talk2/whisper-node-avr
/// - The excellent Adafruit Feather. These are excellent boards that are available with a variety of radios.
/// We tested with the
/// Feather 32u4 with RFM69HCW radio, with Arduino IDE 1.6.8 and the Adafruit AVR Boards board manager version 1.6.10.
/// https://www.adafruit.com/products/3076
///
/// \par Overview
///
/// This class provides basic functions for sending and receiving unaddressed,
/// unreliable datagrams of arbitrary length to 64 octets per packet.
///
/// Manager classes may use this class to implement reliable, addressed datagrams and streams,
/// mesh routers, repeaters, translators etc.
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
/// modulation scheme.
///
/// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
/// RF69B and compatible radio modules, such as the RFM69 module.
///
/// The Hope-RF (http://www.hoperf.com) RF69 is a low-cost ISM transceiver
/// chip. It supports FSK, GFSK, OOK over a wide range of frequencies and
/// programmable data rates. It also suports AES encryption of up to 64 octets
/// of payload It is available prepackaged on modules such as the RFM69W. And
/// such modules can be prepacked on processor boards such as the Moteino from
/// LowPowerLabs (which is what we used to develop the RH_RF69 driver)
///
/// This Driver provides functions for sending and receiving messages of up
/// to 60 octets on any frequency supported by the RF69, in a range of
/// predefined data rates and frequency deviations. Frequency can be set with
/// 61Hz precision to any frequency from 240.0MHz to 960.0MHz. Caution: most modules only support a more limited
/// range of frequencies due to antenna tuning.
///
/// Up to 2 RF69B modules can be connected to an Arduino (3 on a Mega),
/// permitting the construction of translators and frequency changers, etc.
///
/// The following modulation types are suppported with a range of modem configurations for
/// common data rates and frequency deviations:
/// - GFSK Gaussian Frequency Shift Keying
/// - FSK Frequency Shift Keying
///
/// Support for other RF69 features such as on-chip temperature measurement,
/// transmitter power control etc is also provided.
///
/// Tested on USB-Moteino with arduino-1.0.5
/// on OpenSuSE 13.1
///
/// \par Packet Format
///
/// All messages sent and received by this RH_RF69 Driver conform to this packet format:
///
/// - 4 octets PREAMBLE
/// - 2 octets SYNC 0x2d, 0xd4 (configurable, so you can use this as a network filter)
/// - 1 octet RH_RF69 payload length
/// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
/// - 0 to 60 octets DATA
/// - 2 octets CRC computed with CRC16(IBM), computed on HEADER and DATA
///
/// For technical reasons, the message format is not protocol compatible with the
/// 'HopeRF Radio Transceiver Message Library for Arduino'
/// http://www.airspayce.com/mikem/arduino/HopeRF from the same author. Nor is
/// it compatible with messages sent by 'Virtual Wire'
/// http://www.airspayce.com/mikem/arduino/VirtualWire.pdf also from the same
/// author. Nor is it compatible with messages sent by 'RF22'
/// http://www.airspayce.com/mikem/arduino/RF22 also from the same author.
///
/// \par Connecting RFM-69 to Arduino
///
/// We tested with Moteino, which is an Arduino Uno compatible with the RFM69W
/// module on-board. Therefore it needs no connections other than the USB
/// programming connection and an antenna to make it work.
///
/// If you have a bare RFM69W that you want to connect to an Arduino, you
/// might use these connections: CAUTION: you must use a 3.3V type
/// Arduino, otherwise you will also need voltage level shifters between the
/// Arduino and the RFM69. CAUTION, you must also ensure you connect an
/// antenna
///
/// \code
/// Arduino RFM69W
/// GND----------GND (ground in)
/// 3V3----------3.3V (3.3V in)
/// interrupt 0 pin D2-----------DIO0 (interrupt request out)
/// SS pin D10----------NSS (chip select in)
/// SCK pin D13----------SCK (SPI clock in)
/// MOSI pin D11----------MOSI (SPI Data in)
/// MISO pin D12----------MISO (SPI Data out)
/// \endcode
///
/// For Arduino Due, use these connections:
/// \code
/// Arduino RFM69W
/// GND----------GND (ground in)
/// 3V3----------3.3V (3.3V in)
/// interrupt 0 pin D2-----------DIO0 (interrupt request out)
/// SS pin D10----------NSS (chip select in)
/// SCK SPI pin 3----------SCK (SPI clock in)
/// MOSI SPI pin 4----------MOSI (SPI Data in)
/// MISO SPI pin 1----------MISO (SPI Data out)
/// \endcode
///
/// With these connections, you can then use the default constructor RH_RF69().
/// You can override the default settings for the SS pin and the interrupt in
/// the RH_RF69 constructor if you wish to connect the slave select SS to other
/// than the normal one for your Arduino (D10 for Diecimila, Uno etc and D53
/// for Mega) or the interrupt request to other than pin D2 (Caution,
/// different processors have different constraints as to the pins available
/// for interrupts).
///
/// If you have a Teensy 3.1 and a compatible RFM69 breakout board, you will need to
/// construct the RH_RF69 instance like this:
/// \code
/// RH_RF69 driver(15, 16);
/// \endcode
///
/// If you have a MoteinoMEGA https://lowpowerlab.com/shop/moteinomega
/// with RFM69 on board, you dont need to make any wiring connections
/// (the RFM69 module is soldered onto the MotienoMEGA), but you must initialise the RH_RF69
/// constructor like this:
/// \code
/// RH_RF69 driver(4, 2);
/// \endcode
/// Make sure you have the MoteinoMEGA core installed in your Arduino hardware folder as described in the
/// documentation for the MoteinoMEGA.
///
/// If you have an Arduino M0 Pro from arduino.org,
/// you should note that you cannot use Pin 2 for the interrupt line
/// (Pin 2 is for the NMI only). The same comments apply to Pin 4 on Arduino Zero from arduino.cc.
/// Instead you can use any other pin (we use Pin 3) and initialise RH_RF69 like this:
/// \code
/// // Slave Select is pin 10, interrupt is Pin 3
/// RH_RF69 driver(10, 3);
/// \endcode
///
/// If you have a Rocket Scream Mini Ultra Pro with the RFM69HCW
/// - Ensure you have Arduino SAMD board support 1.6.5 or later in Arduino IDE 1.6.8 or later.
/// - The radio SS is hardwired to pin D5 and the DIO0 interrupt to pin D2,
/// so you need to initialise the radio like this:
/// \code
/// RH_RF69 driver(5, 2);
/// \endcode
/// - The name of the serial port on that board is 'SerialUSB', not 'Serial', so this may be helpful at the top of our
/// sample sketches:
/// \code
/// #define Serial SerialUSB
/// \endcode
/// - You also need this in setup before radio initialisation
/// \code
/// // Ensure serial flash is not interfering with radio communication on SPI bus
/// pinMode(4, OUTPUT);
/// digitalWrite(4, HIGH);
/// \endcode
/// - and if you have a 915MHz part, you need this after driver/manager intitalisation:
/// \code
/// rf69.setFrequency(915.0);
/// rf69.setTxPower(20);
/// \endcode
/// which adds up to modifying sample sketches something like:
/// \code
/// #include <SPI.h>
/// #include <RH_RF69.h>
/// RH_RF69 rf69(5, 2); // Rocket Scream Mini Ultra Pro with the RFM69HCW
/// #define Serial SerialUSB
///
/// void setup()
/// {
/// // Ensure serial flash is not interfering with radio communication on SPI bus
/// pinMode(4, OUTPUT);
/// digitalWrite(4, HIGH);
///
/// Serial.begin(9600);
/// while (!Serial) ; // Wait for serial port to be available
/// if (!rf69.init())
/// Serial.println("init failed");
/// rf69.setFrequency(915.0);
/// rf69.setTxPower(20);
/// }
/// ...
/// \endcode
///
/// If you have a talk2 Whisper Node board with on-board RF69 radio,
/// the example rf69_* sketches work without modifications. Initialise the radio like
/// with the default constructor:
/// \code
/// RH_RF69 driver;
/// \endcode
///
/// If you have a Feather 32u4 with RFM69HCW you need to initialise the driver like:
/// \code
/// RH_RF69 driver(8, 7);
/// \endcode
/// and since the radio is the high power HCW model, you must set the Tx power in the
/// range 14 to 20 like this:
/// \code
/// driver.setTxPower(14);
/// \endcode
///
/// If you are connecting an RF69 to a ESP8266 board breakout board that exposes pins
/// 12, 13, 14, 15 (ie NOT an ESP-01) you can connect like this:
/// \code
/// ESP8266 RFM69W
/// GND-----------GND (ground in)
/// VIN-----------3.3V (3.3V in)
/// interrupt D0 pin GPIO0-----------DIO0 (interrupt request out)
/// SS pin GPIO15----------NSS (chip select in)
/// SCK SPI pin GPIO14----------SCK (SPI clock in)
/// MOSI SPI pin GPIO13----------MOSI (SPI Data in)
/// MISO SPI pin GPIO12----------MISO (SPI Data out)
/// \endcode
/// and initialise with
/// \code
/// RH_RF69 driver(15, 0);
/// \endcode
///
/// It is possible to have 2 or more radios connected to one Arduino, provided
/// each radio has its own SS and interrupt line (SCK, SDI and SDO are common
/// to all radios)
///
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave
/// select pin to be other than the usual SS pin (D53 on Mega 2560), you may
/// need to set the usual SS pin to be an output to force the Arduino into SPI
/// master mode.
///
/// Caution: Power supply requirements of the RF69 module may be relevant in some circumstances:
/// RF69 modules are capable of pulling 45mA+ at full power, where Arduino's 3.3V line can
/// give 50mA. You may need to make provision for alternate power supply for
/// the RF69, especially if you wish to use full transmit power, and/or you have
/// other shields demanding power. Inadequate power for the RF69 is likely to cause symptoms such as:
/// -reset's/bootups terminate with "init failed" messages
/// -random termination of communication after 5-30 packets sent/received
/// -"fake ok" state, where initialization passes fluently, but communication doesn't happen
/// -shields hang Arduino boards, especially during the flashing
/// \par Interrupts
///
/// The RH_RF69 driver uses interrupts to react to events in the RF69 module,
/// such as the reception of a new packet, or the completion of transmission
/// of a packet. The RH_RF69 driver interrupt service routine reads status from
/// and writes data to the the RF69 module via the SPI interface. It is very
/// important therefore, that if you are using the RH_RF69 driver with another
/// SPI based deviced, that you disable interrupts while you transfer data to
/// and from that other device. Use cli() to disable interrupts and sei() to
/// reenable them.
///
/// \par Memory
///
/// The RH_RF69 driver requires non-trivial amounts of memory. The sample
/// programs above all compile to about 8kbytes each, which will fit in the
/// flash proram memory of most Arduinos. However, the RAM requirements are
/// more critical. Therefore, you should be vary sparing with RAM use in
/// programs that use the RH_RF69 driver.
///
/// It is often hard to accurately identify when you are hitting RAM limits on Arduino.
/// The symptoms can include:
/// - Mysterious crashes and restarts
/// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
/// - Hanging
/// - Output from Serial.print() not appearing
///
/// \par Automatic Frequency Control (AFC)
///
/// The RF69 module is configured by the RH_RF69 driver to always use AFC.
///
/// \par Transmitter Power
///
/// You can control the transmitter power on the RF69 transceiver
/// with the RH_RF69::setTxPower() function. The argument can be any of
/// -18 to +13 (for RF69W) or -14 to 20 (for RF69HW)
/// The default is 13. Eg:
/// \code
/// driver.setTxPower(-5);
/// \endcode
///
/// We have made some actual power measurements against
/// programmed power for Moteino (with RF69W)
/// - Moteino (with RF69W), USB power
/// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND
/// - bnc connecteor
/// - 12dB attenuator
/// - BNC-SMA adapter
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power Measured Power
/// dBm dBm
/// -18 -17
/// -16 -16
/// -14 -14
/// -12 -12
/// -10 -9
/// -8 -7
/// -6 -4
/// -4 -3
/// -2 -2
/// 0 0.2
/// 2 3
/// 4 5
/// 6 7
/// 8 10
/// 10 13
/// 12 14
/// 13 15
/// 14 -51
/// 20 -51
/// \endcode
/// We have also made some actual power measurements against
/// programmed power for Anarduino MiniWireless with RFM69-HW
/// Anarduino MiniWireless (with RFM69-HW), USB power
/// - 10cm RG58C/U soldered direct to RFM69 module ANT and GND
/// - bnc connecteor
/// - 2x12dB attenuators
/// - BNC-SMA adapter
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power Measured Power
/// dBm dBm
/// -18 no measurable output
/// 0 no measurable output
/// 13 no measurable output
/// 14 11
/// 15 12
/// 16 12.4
/// 17 14
/// 18 15
/// 19 15.8
/// 20 17
/// \endcode
/// (Caution: we dont claim laboratory accuracy for these measurements)
/// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
/// Caution: although the RFM69 appears to have a PC antenna on board, you will get much better power and range even
/// with just a 1/4 wave wire antenna.
///
/// \par Performance
///
/// Some simple speed performance tests have been conducted.
/// In general packet transmission rate will be limited by the modulation scheme.
/// Also, if your code does any slow operations like Serial printing it will also limit performance.
/// We disabled any printing in the tests below.
/// We tested with RH_RF69::GFSK_Rb250Fd250, which is probably the fastest scheme available.
/// We tested with a 13 octet message length, over a very short distance of 10cm.
///
/// Transmission (no reply) tests with modulation RH_RF69::GFSK_Rb250Fd250 and a
/// 13 octet message show about 152 messages per second transmitted and received.
///
/// Transmit-and-wait-for-a-reply tests with modulation RH_RF69::GFSK_Rb250Fd250 and a
/// 13 octet message (send and receive) show about 68 round trips per second.
///
class RH_RF69 : public RHSPIDriver
{
public:
/// \brief Defines register values for a set of modem configuration registers
///
/// Defines register values for a set of modem configuration registers
/// that can be passed to setModemRegisters() if none of the choices in
/// ModemConfigChoice suit your need setModemRegisters() writes the
/// register values from this structure to the appropriate RF69 registers
/// to set the desired modulation type, data rate and deviation/bandwidth.
typedef struct
{
uint8_t reg_02; ///< Value for register RH_RF69_REG_02_DATAMODUL
uint8_t reg_03; ///< Value for register RH_RF69_REG_03_BITRATEMSB
uint8_t reg_04; ///< Value for register RH_RF69_REG_04_BITRATELSB
uint8_t reg_05; ///< Value for register RH_RF69_REG_05_FDEVMSB
uint8_t reg_06; ///< Value for register RH_RF69_REG_06_FDEVLSB
uint8_t reg_19; ///< Value for register RH_RF69_REG_19_RXBW
uint8_t reg_1a; ///< Value for register RH_RF69_REG_1A_AFCBW
uint8_t reg_37; ///< Value for register RH_RF69_REG_37_PACKETCONFIG1
} ModemConfig;
/// Choices for setModemConfig() for a selected subset of common
/// modulation types, and data rates. If you need another configuration,
/// use the register calculator. and call setModemRegisters() with your
/// desired settings.
/// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
/// definitions and not their integer equivalents: its possible that new values will be
/// introduced in later versions (though we will try to avoid it).
/// CAUTION: some of these configurations do not work corectly and are marked as such.
typedef enum
{
FSK_Rb2Fd5 = 0, ///< FSK, Whitening, Rb = 2kbs, Fd = 5kHz
FSK_Rb2_4Fd4_8, ///< FSK, Whitening, Rb = 2.4kbs, Fd = 4.8kHz
FSK_Rb4_8Fd9_6, ///< FSK, Whitening, Rb = 4.8kbs, Fd = 9.6kHz
FSK_Rb9_6Fd19_2, ///< FSK, Whitening, Rb = 9.6kbs, Fd = 19.2kHz
FSK_Rb19_2Fd38_4, ///< FSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz
FSK_Rb38_4Fd76_8, ///< FSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz
FSK_Rb57_6Fd120, ///< FSK, Whitening, Rb = 57.6kbs, Fd = 120kHz
FSK_Rb125Fd125, ///< FSK, Whitening, Rb = 125kbs, Fd = 125kHz
FSK_Rb250Fd250, ///< FSK, Whitening, Rb = 250kbs, Fd = 250kHz
FSK_Rb55555Fd50, ///< FSK, Whitening, Rb = 55555kbs,Fd = 50kHz for RFM69 lib compatibility
GFSK_Rb2Fd5, ///< GFSK, Whitening, Rb = 2kbs, Fd = 5kHz
GFSK_Rb2_4Fd4_8, ///< GFSK, Whitening, Rb = 2.4kbs, Fd = 4.8kHz
GFSK_Rb4_8Fd9_6, ///< GFSK, Whitening, Rb = 4.8kbs, Fd = 9.6kHz
GFSK_Rb9_6Fd19_2, ///< GFSK, Whitening, Rb = 9.6kbs, Fd = 19.2kHz
GFSK_Rb19_2Fd38_4, ///< GFSK, Whitening, Rb = 19.2kbs, Fd = 38.4kHz
GFSK_Rb38_4Fd76_8, ///< GFSK, Whitening, Rb = 38.4kbs, Fd = 76.8kHz
GFSK_Rb57_6Fd120, ///< GFSK, Whitening, Rb = 57.6kbs, Fd = 120kHz
GFSK_Rb125Fd125, ///< GFSK, Whitening, Rb = 125kbs, Fd = 125kHz
GFSK_Rb250Fd250, ///< GFSK, Whitening, Rb = 250kbs, Fd = 250kHz
GFSK_Rb55555Fd50, ///< GFSK, Whitening, Rb = 55555kbs,Fd = 50kHz
OOK_Rb1Bw1, ///< OOK, Whitening, Rb = 1kbs, Rx Bandwidth = 1kHz.
OOK_Rb1_2Bw75, ///< OOK, Whitening, Rb = 1.2kbs, Rx Bandwidth = 75kHz.
OOK_Rb2_4Bw4_8, ///< OOK, Whitening, Rb = 2.4kbs, Rx Bandwidth = 4.8kHz.
OOK_Rb4_8Bw9_6, ///< OOK, Whitening, Rb = 4.8kbs, Rx Bandwidth = 9.6kHz.
OOK_Rb9_6Bw19_2, ///< OOK, Whitening, Rb = 9.6kbs, Rx Bandwidth = 19.2kHz.
OOK_Rb19_2Bw38_4, ///< OOK, Whitening, Rb = 19.2kbs, Rx Bandwidth = 38.4kHz.
OOK_Rb32Bw64, ///< OOK, Whitening, Rb = 32kbs, Rx Bandwidth = 64kHz.
// Test,
} ModemConfigChoice;
/// Constructor. You can have multiple instances, but each instance must have its own
/// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
/// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
/// distinct interrupt lines, one for each instance.
/// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RF69 before
/// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
/// \param[in] interruptPin The interrupt Pin number that is connected to the RF69 DIO0 interrupt line.
/// Defaults to pin 2.
/// Caution: You must specify an interrupt capable pin.
/// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
/// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
/// On Arduino Zero from arduino.cc, any digital pin other than 4.
/// On Arduino M0 Pro from arduino.org, any digital pin other than 2.
/// On other Arduinos pins 2 or 3.
/// See http://arduino.cc/en/Reference/attachInterrupt for more details.
/// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
/// On other boards, any digital pin may be used.
/// \param[in] spi Pointer to the SPI interface object to use.
/// Defaults to the standard Arduino hardware SPI interface
RH_RF69(uint8_t slaveSelectPin = SS, uint8_t interruptPin = 2, RHGenericSPI& spi = hardware_spi);
/// Initialises this instance and the radio module connected to it.
/// The following steps are taken:
/// - Initialise the slave select pin and the SPI interface library
/// - Checks the connected RF69 module can be communicated
/// - Attaches an interrupt handler
/// - Configures the RF69 module
/// - Sets the frequency to 434.0 MHz
/// - Sets the modem data rate to FSK_Rb2Fd5
/// \return true if everything was successful
bool init();
/// Reads the on-chip temperature sensor.
/// The RF69 must be in Idle mode (= RF69 Standby) to measure temperature.
/// The measurement is uncalibrated and without calibration, you can expect it to be far from
/// correct.
/// \return The measured temperature, in degrees C from -40 to 85 (uncalibrated)
int8_t temperatureRead();
/// Sets the transmitter and receiver
/// centre frequency
/// \param[in] centre Frequency in MHz. 240.0 to 960.0. Caution, RF69 comes in several
/// different frequency ranges, and setting a frequency outside that range of your radio will probably not work
/// \param[in] afcPullInRange Not used
/// \return true if the selected frquency centre is within range
bool setFrequency(float centre, float afcPullInRange = 0.05);
/// Reads and returns the current RSSI value.
/// Causes the current signal strength to be measured and returned
/// If you want to find the RSSI
/// of the last received message, use lastRssi() instead.
/// \return The current RSSI value on units of 0.5dB.
int8_t rssiRead();
/// Sets the parameters for the RF69 OPMODE.
/// This is a low level device access function, and should not normally ned to be used by user code.
/// Instead can use stModeRx(), setModeTx(), setModeIdle()
/// \param[in] mode RF69 OPMODE to set, one of RH_RF69_OPMODE_MODE_*.
void setOpMode(uint8_t mode);
/// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
/// disables them.
void setModeIdle();
/// If current mode is Tx or Idle, changes it to Rx.
/// Starts the receiver in the RF69.
void setModeRx();
/// If current mode is Rx or Idle, changes it to Rx. F
/// Starts the transmitter in the RF69.
void setModeTx();
/// Sets the transmitter power output level.
/// Be a good neighbour and set the lowest power level you need.
/// Caution: legal power limits may apply in certain countries.
/// After init(), the power will be set to 13dBm for a low power module.
/// If you are using a high p[ower modfule such as an RFM69HW, you MUST set the power level
/// with the ishighpowermodule flag set to true. Else you wil get no measurable power output.
/// Simlarly if you are not using a high power module, you must NOT set the ishighpowermodule
/// (which is the default)
/// \param[in] power Transmitter power level in dBm. For RF69W (ishighpowermodule = false),
/// valid values are from -18 to +13.; Values outside this range are trimmed.
/// For RF69HW (ishighpowermodule = true), valid values are from -2 to +20.
/// Caution: at +20dBm, duty cycle is limited to 1% and a
/// maximum VSWR of 3:1 at the antenna port.
/// \param ishighpowermodule Set to true if the connected module is a high power module RFM69HW
void setTxPower(int8_t power, bool ishighpowermodule = RH_RF69_DEFAULT_HIGHPOWER);
/// Sets all the registers required to configure the data modem in the RF69, including the data rate,
/// bandwidths etc. You can use this to configure the modem with custom configurations if none of the
/// canned configurations in ModemConfigChoice suit you.
/// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
void setModemRegisters(const ModemConfig* config);
/// Select one of the predefined modem configurations. If you need a modem configuration not provided
/// here, use setModemRegisters() with your own ModemConfig. The default after init() is RH_RF69::GFSK_Rb250Fd250.
/// \param[in] index The configuration choice.
/// \return true if index is a valid choice.
bool setModemConfig(ModemConfigChoice index);
/// Starts the receiver and checks whether a received message is available.
/// This can be called multiple times in a timeout loop
/// \return true if a complete, valid message has been received and is able to be retrieved by
/// recv()
bool available();
/// Turns the receiver on if it not already on.
/// If there is a valid message available, copy it to buf and return true
/// else return false.
/// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
/// You should be sure to call this function frequently enough to not miss any messages
/// It is recommended that you call it in your main loop.
/// \param[in] buf Location to copy the received message
/// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
/// \return true if a valid message was copied to buf
bool recv(uint8_t* buf, uint8_t* len);
/// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
/// Then loads a message into the transmitter and starts the transmitter. Note that a message length
/// of 0 is NOT permitted.
/// \param[in] data Array of data to be sent
/// \param[in] len Number of bytes of data to send (> 0)
/// \return true if the message length was valid and it was correctly queued for transmit
bool send(const uint8_t* data, uint8_t len);
/// Sets the length of the preamble
/// in bytes.
/// Caution: this should be set to the same
/// value on all nodes in your network. Default is 4.
/// Sets the message preamble length in REG_0?_PREAMBLE?SB
/// \param[in] bytes Preamble length in bytes.
void setPreambleLength(uint16_t bytes);
/// Sets the sync words for transmit and receive
/// Caution: SyncWords should be set to the same
/// value on all nodes in your network. Nodes with different SyncWords set will never receive
/// each others messages, so different SyncWords can be used to isolate different
/// networks from each other. Default is { 0x2d, 0xd4 }.
/// Caution: tests here show that with a single sync word (ie where len == 1),
/// RFM69 reception can be unreliable.
/// \param[in] syncWords Array of sync words, 1 to 4 octets long. NULL if no sync words to be used.
/// \param[in] len Number of sync words to set, 1 to 4. 0 if no sync words to be used.
void setSyncWords(const uint8_t* syncWords = NULL, uint8_t len = 0);
/// Enables AES encryption and sets the AES encryption key, used
/// to encrypt and decrypt all messages. The default is disabled.
/// \param[in] key The key to use. Must be 16 bytes long. The same key must be installed
/// in other instances of RF69, otherwise communications will not work correctly. If key is NULL,
/// encryption is disabled, which is the default.
void setEncryptionKey(uint8_t* key = NULL);
/// Returns the time in millis since the most recent preamble was received, and when the most recent
/// RSSI measurement was made.
uint32_t getLastPreambleTime();
/// The maximum message length supported by this driver
/// \return The maximum message length supported by this driver
uint8_t maxMessageLength();
/// Prints the value of a single register
/// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
/// For debugging/testing only
/// \return true if successful
bool printRegister(uint8_t reg);
/// Prints the value of all the RF69 registers
/// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
/// For debugging/testing only
/// \return true if successful
bool printRegisters();
/// Sets the radio operating mode for the case when the driver is idle (ie not
/// transmitting or receiving), allowing you to control the idle mode power requirements
/// at the expense of slower transitions to transmit and receive modes.
/// By default, the idle mode is RH_RF69_OPMODE_MODE_STDBY,
/// but eg setIdleMode(RH_RF69_OPMODE_MODE_SLEEP) will provide a much lower
/// idle current but slower transitions. Call this function after init().
/// \param[in] idleMode The chip operating mode to use when the driver is idle. One of RH_RF69_OPMODE_*
void setIdleMode(uint8_t idleMode);
/// Sets the radio into low-power sleep mode.
/// If successful, the transport will stay in sleep mode until woken by
/// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
/// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
/// \return true if sleep mode was successfully entered.
virtual bool sleep();
/// Return the integer value of the device type
/// as read from the device in from RH_RF69_REG_10_VERSION.
/// Expect 0x24, depending on the type of device actually
/// connected.
/// \return The integer device type
uint16_t deviceType() {return _deviceType;};
protected:
/// This is a low level function to handle the interrupts for one instance of RF69.
/// Called automatically by isr*()
/// Should not need to be called by user code.
void handleInterrupt();
/// Low level function to read the FIFO and put the received data into the receive buffer
/// Should not need to be called by user code.
void readFifo();
protected:
/// Low level interrupt service routine for RF69 connected to interrupt 0
static void isr0();
/// Low level interrupt service routine for RF69 connected to interrupt 1
static void isr1();
/// Low level interrupt service routine for RF69 connected to interrupt 1
static void isr2();
/// Array of instances connected to interrupts 0 and 1
static RH_RF69* _deviceForInterrupt[];
/// Index of next interrupt number to use in _deviceForInterrupt
static uint8_t _interruptCount;
/// The configured interrupt pin connected to this instance
uint8_t _interruptPin;
/// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
/// else 0xff
uint8_t _myInterruptIndex;
/// The radio OP mode to use when mode is RHModeIdle
uint8_t _idleMode;
/// The reported device type
uint8_t _deviceType;
/// The selected output power in dBm
int8_t _power;
/// The message length in _buf
volatile uint8_t _bufLen;
/// Array of octets of teh last received message or the next to transmit message
uint8_t _buf[RH_RF69_MAX_MESSAGE_LEN];
/// True when there is a valid message in the Rx buffer
volatile bool _rxBufValid;
/// Time in millis since the last preamble was received (and the last time the RSSI was measured)
uint32_t _lastPreambleTime;
};
/// @example rf69_client.pde
/// @example rf69_server.pde
/// @example rf69_reliable_datagram_client.pde
/// @example rf69_reliable_datagram_server.pde
#endif