forked from dragino/RadioHead
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRH_NRF905.cpp
270 lines (233 loc) · 6.61 KB
/
RH_NRF905.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// RH_NRF905.cpp
//
// Copyright (C) 2012 Mike McCauley
// $Id: RH_NRF905.cpp,v 1.7 2017/01/12 23:58:00 mikem Exp $
#include <RH_NRF905.h>
RH_NRF905::RH_NRF905(uint8_t chipEnablePin, uint8_t txEnablePin, uint8_t slaveSelectPin, RHGenericSPI& spi)
:
RHNRFSPIDriver(slaveSelectPin, spi)
{
_chipEnablePin = chipEnablePin;
_txEnablePin = txEnablePin;
}
bool RH_NRF905::init()
{
#if defined (__MK20DX128__) || defined (__MK20DX256__)
// Teensy is unreliable at 8MHz:
_spi.setFrequency(RHGenericSPI::Frequency1MHz);
#else
_spi.setFrequency(RHGenericSPI::Frequency8MHz);
#endif
if (!RHNRFSPIDriver::init())
return false;
// Initialise the slave select pin and the tx Enable pin
pinMode(_chipEnablePin, OUTPUT);
pinMode(_txEnablePin, OUTPUT);
digitalWrite(_chipEnablePin, LOW);
digitalWrite(_txEnablePin, LOW);
// Configure the chip
// CRC 16 bits enabled. 16MHz crystal freq
spiWriteRegister(RH_NRF905_CONFIG_9, RH_NRF905_CONFIG_9_CRC_EN | RH_NRF905_CONFIG_9_CRC_MODE_16BIT | RH_NRF905_CONFIG_9_XOF_16MHZ);
// Make sure we are powered down
setModeIdle();
// Some innocuous defaults
setChannel(108, LOW); // 433.2 MHz
setRF(RH_NRF905::TransmitPowerm10dBm);
return true;
}
// Use the register commands to read and write the registers
uint8_t RH_NRF905::spiReadRegister(uint8_t reg)
{
return spiRead((reg & RH_NRF905_REG_MASK) | RH_NRF905_REG_R_CONFIG);
}
uint8_t RH_NRF905::spiWriteRegister(uint8_t reg, uint8_t val)
{
return spiWrite((reg & RH_NRF905_REG_MASK) | RH_NRF905_REG_W_CONFIG, val);
}
uint8_t RH_NRF905::spiBurstReadRegister(uint8_t reg, uint8_t* dest, uint8_t len)
{
return spiBurstRead((reg & RH_NRF905_REG_MASK) | RH_NRF905_REG_R_CONFIG, dest, len);
}
uint8_t RH_NRF905::spiBurstWriteRegister(uint8_t reg, uint8_t* src, uint8_t len)
{
return spiBurstWrite((reg & RH_NRF905_REG_MASK) | RH_NRF905_REG_W_CONFIG, src, len);
}
uint8_t RH_NRF905::statusRead()
{
// The status is a byproduct of sending a command
return spiCommand(0);
}
bool RH_NRF905::setChannel(uint16_t channel, bool hiFrequency)
{
spiWriteRegister(RH_NRF905_CONFIG_0, channel & RH_NRF905_CONFIG_0_CH_NO);
// Set or clear the high bit of the channel
uint8_t bit8 = (channel >> 8) & 0x01;
uint8_t reg1 = spiReadRegister(RH_NRF905_CONFIG_1);
reg1 = (reg1 & ~0x01) | bit8;
// Set or clear the HFREQ_PLL bit
reg1 &= ~RH_NRF905_CONFIG_1_HFREQ_PLL;
if (hiFrequency)
reg1 |= RH_NRF905_CONFIG_1_HFREQ_PLL;
spiWriteRegister(RH_NRF905_CONFIG_1, reg1);
return true;
}
bool RH_NRF905::setNetworkAddress(uint8_t* address, uint8_t len)
{
if (len < 1 || len > 4)
return false;
// Set RX_AFW and TX_AFW
spiWriteRegister(RH_NRF905_CONFIG_2, len | (len << 4));
spiBurstWrite(RH_NRF905_REG_W_TX_ADDRESS, address, len);
spiBurstWriteRegister(RH_NRF905_CONFIG_5, address, len);
return true;
}
bool RH_NRF905::setRF(TransmitPower power)
{
// Enum definitions of power are the same numerical values as the register
uint8_t reg1 = spiReadRegister(RH_NRF905_CONFIG_1);
reg1 &= ~RH_NRF905_CONFIG_1_PA_PWR;
reg1 |= ((power & 0x3) << 2) & RH_NRF905_CONFIG_1_PA_PWR;
spiWriteRegister(RH_NRF905_CONFIG_1, reg1);
return true;
}
void RH_NRF905::setModeIdle()
{
if (_mode != RHModeIdle)
{
digitalWrite(_chipEnablePin, LOW);
digitalWrite(_txEnablePin, LOW);
_mode = RHModeIdle;
}
}
void RH_NRF905::setModeRx()
{
if (_mode != RHModeRx)
{
digitalWrite(_txEnablePin, LOW);
digitalWrite(_chipEnablePin, HIGH);
_mode = RHModeRx;
}
}
void RH_NRF905::setModeTx()
{
if (_mode != RHModeTx)
{
// Its the high transition that puts us into TX mode
digitalWrite(_txEnablePin, HIGH);
digitalWrite(_chipEnablePin, HIGH);
_mode = RHModeTx;
}
}
bool RH_NRF905::send(const uint8_t* data, uint8_t len)
{
if (len > RH_NRF905_MAX_MESSAGE_LEN)
return false;
if (!waitCAD())
return false; // Check channel activity
// Set up the headers
_buf[0] = _txHeaderTo;
_buf[1] = _txHeaderFrom;
_buf[2] = _txHeaderId;
_buf[3] = _txHeaderFlags;
_buf[4] = len;
memcpy(_buf+RH_NRF905_HEADER_LEN, data, len);
spiBurstWrite(RH_NRF905_REG_W_TX_PAYLOAD, _buf, len + RH_NRF905_HEADER_LEN);
setModeTx();
// Radio will return to Standby mode after transmission is complete
_txGood++;
return true;
}
bool RH_NRF905::waitPacketSent()
{
if (_mode != RHModeTx)
return false;
while (!(statusRead() & RH_NRF905_STATUS_DR))
YIELD;
setModeIdle();
return true;
}
bool RH_NRF905::isSending()
{
if (_mode != RHModeTx)
return false;
return !(statusRead() & RH_NRF905_STATUS_DR);
}
bool RH_NRF905::printRegister(uint8_t reg)
{
#ifdef RH_HAVE_SERIAL
Serial.print(reg, HEX);
Serial.print(": ");
Serial.println(spiReadRegister(reg), HEX);
#endif
return true;
}
bool RH_NRF905::printRegisters()
{
uint8_t registers[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09};
uint8_t i;
for (i = 0; i < sizeof(registers); i++)
printRegister(registers[i]);
return true;
}
// Check whether the latest received message is complete and uncorrupted
void RH_NRF905::validateRxBuf()
{
// Check the length
uint8_t len = _buf[4];
if (len > RH_NRF905_MAX_MESSAGE_LEN)
return; // Silly LEN header
// Extract the 4 headers
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_bufLen = len + RH_NRF905_HEADER_LEN; // _buf still includes the headers
_rxBufValid = true;
}
}
bool RH_NRF905::available()
{
if (!_rxBufValid)
{
if (_mode == RHModeTx)
return false;
setModeRx();
if (!(statusRead() & RH_NRF905_STATUS_DR))
return false;
// Get the message into the RX buffer, so we can inspect the headers
// we still dont know how long is the user message
spiBurstRead(RH_NRF905_REG_R_RX_PAYLOAD, _buf, RH_NRF905_MAX_PAYLOAD_LEN);
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
return _rxBufValid;
}
void RH_NRF905::clearRxBuf()
{
_rxBufValid = false;
_bufLen = 0;
}
bool RH_NRF905::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen-RH_NRF905_HEADER_LEN)
*len = _bufLen-RH_NRF905_HEADER_LEN;
memcpy(buf, _buf+RH_NRF905_HEADER_LEN, *len);
}
clearRxBuf(); // This message accepted and cleared
return true;
}
uint8_t RH_NRF905::maxMessageLength()
{
return RH_NRF905_MAX_MESSAGE_LEN;
}