forked from Panguins/OneTap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath.h
461 lines (374 loc) · 12.2 KB
/
math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#pragma once
#include <xmmintrin.h>
#include <cmath>
enum
{
PITCH = 0, // up / down
YAW, // left / right
ROLL // fall over
};
namespace math
{
static constexpr float pi = 3.14159265358979323846f;
static constexpr float radpi = 57.295779513082f;
static constexpr float pirad = 0.01745329251f;
// sorry just in case u want to not be retarded
static constexpr float deg2rad( const float& x )
{
return x * pirad;
}
static constexpr float rad2deg( const float& x )
{
return x * radpi;
}
__forceinline float normalize( float angle )
{
auto revolutions = angle / 360.f;
if ( angle > 180.f || angle < -180.f )
{
revolutions = round( abs( revolutions ) );
if ( angle < 0.f )
angle = ( angle + 360.f * revolutions );
else
angle = ( angle - 360.f * revolutions );
return angle;
}
return angle;
}
__forceinline float __cdecl DotProduct_ASM( const float _v1[3], const float _v2[3] )
{
float dotret;
__asm
{
mov ecx, _v1
mov eax, _v2
; optimized dot product; 15 cycles
fld dword ptr[eax + 0]; starts & ends on cycle 0
fmul dword ptr[ecx + 0]; starts on cycle 1
fld dword ptr[eax + 4]; starts & ends on cycle 2
fmul dword ptr[ecx + 4]; starts on cycle 3
fld dword ptr[eax + 8]; starts & ends on cycle 4
fmul dword ptr[ecx + 8]; starts on cycle 5
fxch st( 1 ); no cost
faddp st( 2 ), st( 0 ); starts on cycle 6, stalls for cycles 7 - 8
faddp st( 1 ), st( 0 ); starts on cycle 9, stalls for cycles 10 - 12
fstp dword ptr[dotret]; starts on cycle 13, ends on cycle 14
}
return dotret;
}
// even more fps friendly :D
__forceinline void VectorTransformASM( const float* in1, const matrix3x4_t& in2, float* out1 )
{
out1[0] = DotProduct_ASM( in1, in2[0] ) + in2[0][3];
out1[1] = DotProduct_ASM( in1, in2[1] ) + in2[1][3];
out1[2] = DotProduct_ASM( in1, in2[2] ) + in2[2][3];
}
__forceinline void vector_transform( vec3& in1, const matrix3x4_t& in2, vec3& out )
{
out.x = in1.dot( in2.m_flMatVal[0] ) + in2.m_flMatVal[0][3];
out.y = in1.dot( in2.m_flMatVal[1] ) + in2.m_flMatVal[1][3];
out.z = in1.dot( in2.m_flMatVal[2] ) + in2.m_flMatVal[2][3];
}
inline vec3 vector_transform( vec3 vec, matrix3x4_t matrix )
{
vec3 out;
out.x = vec.dot( matrix[0] ) + matrix[0][3];
out.y = vec.dot( matrix[1] ) + matrix[1][3];
out.z = vec.dot( matrix[2] ) + matrix[2][3];
return out;
}
inline vec2 angles_to_pixels( const vec3& angles )
{
static const auto m_pitch = csgo.m_engine_cvars( )->FindVar( xors( "m_pitch" ) );
static const auto m_yaw = csgo.m_engine_cvars( )->FindVar( xors( "m_yaw" ) );
float x = angles.x / m_pitch->get_float( );
float y = angles.y / m_yaw->get_float( );
return vec2( -y, x );
}
// league aimer
inline vec3 pixels_to_angles( const vec2& pixels )
{
static const auto m_pitch = csgo.m_engine_cvars( )->FindVar( xors( "m_pitch" ) );
static const auto m_yaw = csgo.m_engine_cvars( )->FindVar( xors( "m_yaw" ) );
float x = pixels.y * m_pitch->get_float( );
float y = -pixels.x * m_yaw->get_float( );
return vec3( x, y, 0 );
}
// rotate 2d by distance
inline void find_position_rotation( float& x, float& y, const float& screen_width, const float& screen_height )
{
// ty mrs diana euler
// my algebra teacher
// https://stackoverflow.com/questions/8489792/is-it-legal-to-take-acos-of-1-0f-or-1-0f/8490249?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
const vec2 delta = vec2( screen_width / 2 - x, screen_height / 2 - y );
const float hypot = std::hypot( delta.x, delta.y );
const float rotation = rad2deg( std::acos( delta.x / hypot ) );
x += std::sin( rotation );
y += std::cos( rotation );
}
void ConcatTransforms( const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out );
inline vec3 MatrixGetPosition( const matrix3x4_t& src )
{
return vec3( src[0][3], src[1][3], src[2][3] );
}
inline void MatrixSetPosition( matrix3x4_t& src, vec3 position )
{
src[0][3] = position.x;
src[1][3] = position.y;
src[2][3] = position.z;
}
inline void AngleMatrix( vec3 angles, matrix3x4_t& matrix )
{
float sr, sp, sy, cr, cp, cy;
sp = sinf( angles.x * pirad );
cp = cosf( angles.x * pirad );
sy = sinf( angles.y * pirad );
cy = cosf( angles.y * pirad );
sr = sinf( angles.z * pirad );
cr = cosf( angles.z * pirad );
matrix[0][0] = cp * cy;
matrix[1][0] = cp * sy;
matrix[2][0] = -sp;
float crcy = cr * cy;
float crsy = cr * sy;
float srcy = sr * cy;
float srsy = sr * sy;
matrix[0][1] = sp * srcy - crsy;
matrix[1][1] = sp * srsy + crcy;
matrix[2][1] = sr * cp;
matrix[0][2] = ( sp*crcy + srsy );
matrix[1][2] = ( sp*crsy - srcy );
matrix[2][2] = cr * cp;
matrix[0][3] = 0.f;
matrix[1][3] = 0.f;
matrix[2][3] = 0.f;
}
inline void AngleIMatrix( vec3 angles, matrix3x4_t& matrix )
{
float sr, sp, sy, cr, cp, cy;
sp = sinf( angles.x * pirad );
cp = cosf( angles.x * pirad );
sy = sinf( angles.y * pirad );
cy = cosf( angles.y * pirad );
sr = sinf( angles.z * pirad );
cr = cosf( angles.z * pirad );
matrix[0][0] = cp * cy;
matrix[0][1] = cp * sy;
matrix[0][2] = -sp;
matrix[1][0] = sr * sp * cy + cr * -sy;
matrix[1][1] = sr * sp * sy + cr * cy;
matrix[1][2] = sr * cp;
matrix[2][0] = ( cr * sp * cy + -sr * -sy );
matrix[2][1] = ( cr * sp * sy + -sr * cy );
matrix[2][2] = cr * cp;
matrix[0][3] = 0.f;
matrix[1][3] = 0.f;
matrix[2][3] = 0.f;
}
inline void AngleMatrix( vec3 angles, matrix3x4_t& matrix, vec3 origin )
{
AngleMatrix( angles, matrix );
MatrixSetPosition( matrix, origin );
}
inline vec3 VectorRotate( vec3& vec, float rot )
{
rot = -rot + 90.f;
float radius = sqrtf(vec.x * vec.x + vec.y * vec.y);
float radian = rot * pirad;
vec.x = sin(radian) * radius;
vec.y = cos(radian) * radius;
return vec;
}
inline vec3 VectorRotate( const vec3& vec, const vec3& in2 )
{
vec3 out;
matrix3x4_t rotate;
AngleMatrix( in2, rotate );
out.x = DotProduct_ASM( reinterpret_cast< const float* >( &vec ), rotate[0] );
out.y = DotProduct_ASM( reinterpret_cast< const float* >( &vec ), rotate[1] );
out.z = DotProduct_ASM( reinterpret_cast< const float* >( &vec ), rotate[2] );
return out;
}
inline void MatrixCopy( const matrix3x4_t& src, matrix3x4_t& dst )
{
dst[0][0] = src[0][0];
dst[1][0] = src[1][0];
dst[2][0] = src[2][0];
dst[0][1] = src[0][1];
dst[1][1] = src[1][1];
dst[2][1] = src[2][1];
dst[0][2] = src[0][2];
dst[1][2] = src[1][2];
dst[2][2] = src[2][2];
dst[0][3] = src[0][3];
dst[1][3] = src[1][3];
dst[2][3] = src[2][3];
}
inline void MatrixAngles( const matrix3x4_t& matrix, vec3& angles )
{
float forward[3];
float left[3];
float up[3];
// Extract the basis vectors from the matrix. Since we only need the Z
// component of the up vector, we don't get X and Y.
forward[0] = matrix[0][0];
forward[1] = matrix[1][0];
forward[2] = matrix[2][0];
left[0] = matrix[0][1];
left[1] = matrix[1][1];
left[2] = matrix[2][1];
up[2] = matrix[2][2];
float xyDist = sqrtf( forward[0] * forward[0] + forward[1] * forward[1] );
// enough here to get angles?
if ( xyDist > 0.001f )
{
// (yaw) y = ATAN( forward.y, forward.x ); -- in our space, forward is the X axis
angles.y = rad2deg( atan2f( forward[1], forward[0] ) );
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles.x = rad2deg( atan2f( -forward[2], xyDist ) );
// (roll) z = ATAN( left.z, up.z );
angles.z = rad2deg( atan2f( left[2], up[2] ) );
}
else // forward is mostly Z, gimbal lock-
{
// (yaw) y = ATAN( -left.x, left.y ); -- forward is mostly z, so use right for yaw
angles.y = rad2deg( atan2f( -left[0], left[1] ) );
// (pitch) x = ATAN( -forward.z, sqrt(forward.x*forward.x+forward.y*forward.y) );
angles.x = rad2deg( atan2f( -forward[2], xyDist ) );
// Assume no roll in this case as one degree of freedom has been lost (i.e. yaw == roll)
angles.z = 0;
}
}
inline void RotateMatrix( vec3 qAngles, vec3 vecOrigin, float flDegrees, matrix3x4_t& pMatrix )
{
qAngles.y += flDegrees;
qAngles.normalize( );
vec3 qRotated( 0, flDegrees, 0 );
matrix3x4_t pRotatedMatrix;
AngleMatrix( qRotated, pRotatedMatrix );
vec3 vecDelta = MatrixGetPosition( pMatrix ) - vecOrigin;
vec3 vecOut;
VectorTransformASM( &vecDelta[0], pRotatedMatrix, &vecOut[0] );
vecOut += vecOrigin;
matrix3x4_t pBoneRotation, pOut;
MatrixCopy( pMatrix, pBoneRotation );
MatrixSetPosition( pBoneRotation, vec3( 0.f, 0.f, 0.f ) );
ConcatTransforms( pRotatedMatrix, pBoneRotation, pOut );
MatrixAngles( pOut, qAngles );
AngleMatrix( qAngles, pMatrix, vecOut );
}
// mfn epic compiler
inline vec3 _vector_angles( const vec3& start, const vec3& end )
{
const vec3 delta = end - start;
return vec3( rad2deg( std::atan2( -delta.z, std::sqrt( delta.x * delta.x + delta.y * delta.y ) ) ),
rad2deg( std::atan2( delta.y, delta.x ) ),
0.0f );
}
inline void vector_angles( const vec3& forward, vec3& angles )
{
angles = vec3( rad2deg( std::atan2( -forward.z, std::sqrt( forward.x * forward.x + forward.y * forward.y ) ) ),
rad2deg( std::atan2( forward.y, forward.x ) ),
0.0f );
}
inline void __vector_angles( const vec3& forward, vec3& angles )
{
angles.x += rad2deg( std::atan( std::sqrt( forward.x * forward.x + forward.y * forward.y ) ) );
angles.z = -rad2deg( std::atan2( forward.x, forward.y ) );
}
inline vec3 vector_ma( const vec3& start, float scale, const vec3& dir )
{
return start + dir * scale;
}
inline void sin_cos( float radians, float* sine, float* cosine )
{
*sine = sin( radians );
*cosine = cos( radians );
}
inline void angle_vectors( const vec3& angles, vec3* forward = nullptr, vec3* right = nullptr, vec3* up = nullptr )
{
float sr, sp, sy, cr, cp, cy;
sin_cos( deg2rad( angles[YAW] ), &sy, &cy );
sin_cos( deg2rad( angles[PITCH] ), &sp, &cp );
sin_cos( deg2rad( angles[ROLL] ), &sr, &cr );
if ( forward )
{
forward->x = cp * cy;
forward->y = cp * sy;
forward->z = -sp;
}
if ( right )
{
right->x = ( -1 * sr * sp * cy + -1 * cr * -sy );
right->y = ( -1 * sr * sp * sy + -1 * cr * cy );
right->z = -1 * sr * cp;
}
if ( up )
{
up->x = ( cr * sp * cy + -sr * -sy );
up->y = ( cr * sp * sy + -sr * cy );
up->z = cr * cp;
}
}
inline float float_normalize( float val, float min, float max)
{
float step = max - min;
while ( val > max )
val -= step;
while ( val < min )
val += step;
return val;
}
inline float yaw_diff( float start, float end )
{
start = float_normalize( start, -180.f, 180.f );
end = float_normalize( end, -180.f, 180.f );
return float_normalize( end - start, -180.f, 180.f );
}
namespace imports
{
__forceinline uint32_t md5_pseudo_random( uint32_t seed )
{
static auto pseudo_random = memory::pattern::first_code_match< uint32_t(__cdecl*)( uint32_t ) >( csgo.m_client.module( ), xors( "55 8B EC 83 E4 F8 83 EC 70 6A 58" ) );
if ( pseudo_random )
return pseudo_random( seed );
return 0;
}
__forceinline float random( float min, float max )
{
static auto random_float = reinterpret_cast< float(__cdecl*)( float, float ) >( GetProcAddress( GetModuleHandle( xors( "vstdlib.dll" ) ), xors( "RandomFloat" ) ) );
if ( random_float )
return random_float( min, max );
return min;
}
__forceinline int random( int min, int max )
{
static auto random_int = reinterpret_cast< int(__cdecl*)( int, int ) >( GetProcAddress( GetModuleHandle( xors( "vstdlib.dll" ) ), xors( "RandomInt" ) ) );
if ( random_int )
return random_int( min, max );
return min;
}
__forceinline void random_seed( uint32_t seed )
{
static auto random_seed = reinterpret_cast< void(__cdecl*)( uint32_t ) >( GetProcAddress( GetModuleHandle( xors( "vstdlib.dll" ) ), xors( "RandomSeed" ) ) );
if ( random_seed )
return random_seed( seed );
}
}
namespace time
{
static inline float tick_interval( )
{
return csgo.m_globals( )->interval_per_tick;
}
static inline int to_ticks( const float& time )
{
return static_cast< int >( 0.5f + time / tick_interval( ) );
}
static inline float to_time( const int& ticks )
{
return tick_interval( ) * ticks;
}
static constexpr int tick_never_think = -1;
}
}