-
Notifications
You must be signed in to change notification settings - Fork 537
/
Copy pathrun_placesCNN_unified.py
192 lines (157 loc) · 6.63 KB
/
run_placesCNN_unified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# PlacesCNN to predict the scene category, attribute, and class activation map in a single pass
# by Bolei Zhou, sep 2, 2017
# updated, making it compatible to pytorch 1.x in a hacky way
import torch
from torch.autograd import Variable as V
import torchvision.models as models
from torchvision import transforms as trn
from torch.nn import functional as F
import os
import numpy as np
import cv2
from PIL import Image
# hacky way to deal with the Pytorch 1.0 update
def recursion_change_bn(module):
if isinstance(module, torch.nn.BatchNorm2d):
module.track_running_stats = 1
else:
for i, (name, module1) in enumerate(module._modules.items()):
module1 = recursion_change_bn(module1)
return module
def load_labels():
# prepare all the labels
# scene category relevant
file_name_category = 'categories_places365.txt'
if not os.access(file_name_category, os.W_OK):
synset_url = 'https://raw.githubusercontent.com/csailvision/places365/master/categories_places365.txt'
os.system('wget ' + synset_url)
classes = list()
with open(file_name_category) as class_file:
for line in class_file:
classes.append(line.strip().split(' ')[0][3:])
classes = tuple(classes)
# indoor and outdoor relevant
file_name_IO = 'IO_places365.txt'
if not os.access(file_name_IO, os.W_OK):
synset_url = 'https://raw.githubusercontent.com/csailvision/places365/master/IO_places365.txt'
os.system('wget ' + synset_url)
with open(file_name_IO) as f:
lines = f.readlines()
labels_IO = []
for line in lines:
items = line.rstrip().split()
labels_IO.append(int(items[-1]) -1) # 0 is indoor, 1 is outdoor
labels_IO = np.array(labels_IO)
# scene attribute relevant
file_name_attribute = 'labels_sunattribute.txt'
if not os.access(file_name_attribute, os.W_OK):
synset_url = 'https://raw.githubusercontent.com/csailvision/places365/master/labels_sunattribute.txt'
os.system('wget ' + synset_url)
with open(file_name_attribute) as f:
lines = f.readlines()
labels_attribute = [item.rstrip() for item in lines]
file_name_W = 'W_sceneattribute_wideresnet18.npy'
if not os.access(file_name_W, os.W_OK):
synset_url = 'http://places2.csail.mit.edu/models_places365/W_sceneattribute_wideresnet18.npy'
os.system('wget ' + synset_url)
W_attribute = np.load(file_name_W)
return classes, labels_IO, labels_attribute, W_attribute
def hook_feature(module, input, output):
features_blobs.append(np.squeeze(output.data.cpu().numpy()))
def returnCAM(feature_conv, weight_softmax, class_idx):
# generate the class activation maps upsample to 256x256
size_upsample = (256, 256)
nc, h, w = feature_conv.shape
output_cam = []
for idx in class_idx:
cam = weight_softmax[class_idx].dot(feature_conv.reshape((nc, h*w)))
cam = cam.reshape(h, w)
cam = cam - np.min(cam)
cam_img = cam / np.max(cam)
cam_img = np.uint8(255 * cam_img)
output_cam.append(cv2.resize(cam_img, size_upsample))
return output_cam
def returnTF():
# load the image transformer
tf = trn.Compose([
trn.Resize((224,224)),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return tf
def load_model():
# this model has a last conv feature map as 14x14
model_file = 'wideresnet18_places365.pth.tar'
if not os.access(model_file, os.W_OK):
os.system('wget http://places2.csail.mit.edu/models_places365/' + model_file)
os.system('wget https://raw.githubusercontent.com/csailvision/places365/master/wideresnet.py')
import wideresnet
model = wideresnet.resnet18(num_classes=365)
checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage)
state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()}
model.load_state_dict(state_dict)
# hacky way to deal with the upgraded batchnorm2D and avgpool layers...
for i, (name, module) in enumerate(model._modules.items()):
module = recursion_change_bn(model)
model.avgpool = torch.nn.AvgPool2d(kernel_size=14, stride=1, padding=0)
model.eval()
# the following is deprecated, everything is migrated to python36
## if you encounter the UnicodeDecodeError when use python3 to load the model, add the following line will fix it. Thanks to @soravux
#from functools import partial
#import pickle
#pickle.load = partial(pickle.load, encoding="latin1")
#pickle.Unpickler = partial(pickle.Unpickler, encoding="latin1")
#model = torch.load(model_file, map_location=lambda storage, loc: storage, pickle_module=pickle)
model.eval()
# hook the feature extractor
features_names = ['layer4','avgpool'] # this is the last conv layer of the resnet
for name in features_names:
model._modules.get(name).register_forward_hook(hook_feature)
return model
# load the labels
classes, labels_IO, labels_attribute, W_attribute = load_labels()
# load the model
features_blobs = []
model = load_model()
# load the transformer
tf = returnTF() # image transformer
# get the softmax weight
params = list(model.parameters())
weight_softmax = params[-2].data.numpy()
weight_softmax[weight_softmax<0] = 0
# load the test image
img_url = 'http://places.csail.mit.edu/demo/6.jpg'
os.system('wget %s -q -O test.jpg' % img_url)
img = Image.open('test.jpg')
input_img = V(tf(img).unsqueeze(0))
# forward pass
logit = model.forward(input_img)
h_x = F.softmax(logit, 1).data.squeeze()
probs, idx = h_x.sort(0, True)
probs = probs.numpy()
idx = idx.numpy()
print('RESULT ON ' + img_url)
# output the IO prediction
io_image = np.mean(labels_IO[idx[:10]]) # vote for the indoor or outdoor
if io_image < 0.5:
print('--TYPE OF ENVIRONMENT: indoor')
else:
print('--TYPE OF ENVIRONMENT: outdoor')
# output the prediction of scene category
print('--SCENE CATEGORIES:')
for i in range(0, 5):
print('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))
# output the scene attributes
responses_attribute = W_attribute.dot(features_blobs[1])
idx_a = np.argsort(responses_attribute)
print('--SCENE ATTRIBUTES:')
print(', '.join([labels_attribute[idx_a[i]] for i in range(-1,-10,-1)]))
# generate class activation mapping
print('Class activation map is saved as cam.jpg')
CAMs = returnCAM(features_blobs[0], weight_softmax, [idx[0]])
# render the CAM and output
img = cv2.imread('test.jpg')
height, width, _ = img.shape
heatmap = cv2.applyColorMap(cv2.resize(CAMs[0],(width, height)), cv2.COLORMAP_JET)
result = heatmap * 0.4 + img * 0.5
cv2.imwrite('cam.jpg', result)