From b3acc6033400de931a6409fd85d9cc7d4a98099f Mon Sep 17 00:00:00 2001 From: Mirek Kratochvil Date: Wed, 8 Jan 2025 15:24:56 +0100 Subject: [PATCH] remove unsupported/unused code --- docs/src/examples/07a-srba.jl | 14 ++++++++++++-- docs/src/examples/07b-community-ecfba.jl | 9 ++++++--- 2 files changed, 18 insertions(+), 5 deletions(-) diff --git a/docs/src/examples/07a-srba.jl b/docs/src/examples/07a-srba.jl index 8fb944e6..77bc656e 100644 --- a/docs/src/examples/07a-srba.jl +++ b/docs/src/examples/07a-srba.jl @@ -42,7 +42,7 @@ download_model( import AbstractFBCModels as A import JSONFBCModels import ConstraintTrees as C -import SCIP +import HiGHS # ## Collect data for RBA model # RBA models require a lot of data. Below we have processed the data into a @@ -493,6 +493,11 @@ end mus = range(0.1, 0.95, 10) # simulate at these growth rates +settings = [ + set_optimizer_attribute("solver", "simplex"), + set_optimizer_attribute("simplex_strategy", 4), +] + res = screen(mus) do mu @info "sRBA step" mu rbat = with_srba_constraints(ct, mu) @@ -512,8 +517,9 @@ res = screen(mus) do mu rbat; settings = [silence], objective = rbat.lp_objective.value, - optimizer = SCIP.Optimizer, + optimizer = HiGHS.Optimizer, sense = Minimal, + settings ) isnothing(sol) && return nothing @@ -529,6 +535,8 @@ end # finally, we can plot the data, to see if we can recapitulate known phenomena +#= TODO + using CairoMakie # load measured ribosome protein mass fractions @@ -554,3 +562,5 @@ lines!(ax2, mus, [abs(r.glc_flux) for r in res], label = "Glucose") lines!(ax2, mus, [abs(r.o2_flux) for r in res], label = "Oxygen") axislegend(ax2, position = :lt) fig + +=# diff --git a/docs/src/examples/07b-community-ecfba.jl b/docs/src/examples/07b-community-ecfba.jl index 622e4935..8b7f6711 100644 --- a/docs/src/examples/07b-community-ecfba.jl +++ b/docs/src/examples/07b-community-ecfba.jl @@ -45,7 +45,7 @@ download_model( import AbstractFBCModels as A import JSONFBCModels import ConstraintTrees as C -import SCIP +import HiGHS # ## Collect data for enzyme constrained models # Like in the previous example, we will spend some time gathering the necessary @@ -356,10 +356,9 @@ function auxotrophe_fba(wt, aa_ko; fbc_only = false) sol = optimized_values( x; - optimizer = SCIP.Optimizer, + optimizer = HiGHS.Optimizer, objective = x.objective.value, sense = Maximal, - settings = [silence], ) isnothing(sol) && return nothing @@ -444,6 +443,8 @@ eccfba_res = screen(specs) do spec auxotrophe_fba(wt, spec) end +#= + # ## Plot cFBA vs. ec-cFBA vs. experimental data # Now that we have simulated the models, we need to compare them to data. The # data from the paper is processed below, and then plotted. @@ -513,3 +514,5 @@ stem!( xlims!(ax2, 0, 1) ylims!(ax2, 0, 1) fig + +=#