forked from camicroscope/SlideLoader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspritemaker.py
108 lines (86 loc) · 3.25 KB
/
spritemaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from pathlib import Path
from PIL import Image
import numpy as np
import sys
import os
def createSpritesheet(datasetPath, labelsNames, width, height):
# print(Path(__file__).parent.absolute())
# Constants
TRAINING_PATH = datasetPath+'/spritesheet/'
# SPRITE_SIZE = 60
print(TRAINING_PATH, file=sys.stderr)
# Initialization
x_data = []
y_data = []
# final_image = np.array([])
y_offset = 0
imageCount = 0
imageFiles = []
allowed_extentions = ['jpg', 'png', 'jpeg', 'tif', 'tiff']
for ext in allowed_extentions:
for image_file in Path(TRAINING_PATH).glob("**/*." + ext):
imageCount += 1
imageFiles.append(image_file)
print(imageCount, file=sys.stderr)
new_im = Image.new('RGB', (width*height, imageCount))
labels = [0]*(len(labelsNames))
# print(len(sys.argv))
# Load the training sprite by looping over every image file
for image_file in imageFiles:
# Load the current image file
src_image = Image.open(image_file)
# make it smaller
downsized = src_image.resize((width, height))
# get 1px high version
pixels = list(downsized.getdata())
smoosh = Image.new('RGB', (width * height, 1))
smoosh.putdata(pixels)
# store image
x_data.append(smoosh)
folderName = str(image_file.parent.absolute(
))[-(len(str(image_file.parent.absolute()))-str(image_file.parent.absolute()).rindex('/')-1):]
# print(folderName)
# for i in image_file.stem:
# print(i)
# print(sys.argv[2])
# Use image path to build our answer key
for i in range(1, len(labelsNames)+1):
if folderName == labelsNames[i-1]:
y_data.append(i)
labels[i-1] += 1
print(labels)
# randomize X and Y the same way before making data
assert len(y_data) == len(x_data)
p = np.random.permutation(len(y_data))
npy = np.array(y_data)
shuffled_y = npy[p].tolist()
one_hot_y = []
# Build the data image and 1-hot encoded answer array
for idx in p:
# build master sprite 1 pixel down at a time
new_im.paste(x_data[idx], (0, y_offset))
for i in range(1, len(labelsNames)+1):
if shuffled_y[y_offset] == i:
for j in range(1, len(labelsNames)+1):
if j == i:
one_hot_y.append(1)
else:
one_hot_y.append(0)
# build 1-hot encoded answer key
y_offset += 1
# Save answers file (Y)
newFile = open(datasetPath+'/spritesheet/labels.bin', "wb")
newFileByteArray = bytearray(one_hot_y)
bytesWrite = newFile.write(newFileByteArray)
# should be num classes * original answer key size
assert bytesWrite == ((len(labelsNames)) * len(y_data))
# Save Data Sprite (X)
# new_im = new_im.convert("RGBA")
# pixdata = new_im.load()
# Clean the background noise, if color != white, then set to black.
# change with your color
# for y in range(new_im.size[1]):
# for x in range(new_im.size[0]):
# if pixdata[x, y][0] == 255:
# pixdata[x, y] = (255, 255, 255)
new_im.save(datasetPath+'/spritesheet/data.jpg')