-
Notifications
You must be signed in to change notification settings - Fork 2
/
self_utils.py
86 lines (67 loc) · 3.61 KB
/
self_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#
# MIT License
#
# Copyright (c) 2023 Rémi Marsal [email protected]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import numpy as np
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
import cv2
class SelfLoss(nn.Module):
def __init__(self, stud_dist, stud_uncert_as_a_fraction_of_depth, kldiv, teacher_dist):
super().__init__()
if kldiv:
if stud_dist == 'normal' and teacher_dist == 'normal':
self.loss = self.normal_normal_kldiv
elif stud_dist == 'laplace' and teacher_dist == 'laplace':
self.loss = self.laplace_laplace_kldiv
else:
raise NotImplementedError
if stud_dist == 'laplace':
self.loss = self.laplace_nll
elif stud_dist == 'normal':
self.loss = self.normal_nll
else:
raise NotImplementedError
if stud_uncert_as_a_fraction_of_depth:
self.log_pred_uncert = self.rel_uncert
else:
self.log_pred_uncert = self.abs_uncert
def abs_uncert(self, uncert):
return uncert, torch.exp(uncert)
def rel_uncert(self, uncert):
return torch.log(uncert), uncert
def laplace_nll(self, pred, pred_uncert, teacher_depth, teacher_uncert):
log_pred_uncert, pred_uncert = self.log_pred_uncert(pred_uncert)
return torch.abs(pred - teacher_depth) / pred_uncert + log_pred_uncert
def normal_nll(self, pred, pred_uncert, teacher_depth, teacher_uncert):
log_pred_uncert, pred_uncert = self.log_pred_uncert(pred_uncert)
return 0.5 * ((pred - teacher_depth) / pred_uncert) ** 2 + log_pred_uncert
def normal_normal_kldiv(self, pred, pred_uncert, teacher_depth, teacher_uncert):
log_pred_uncert, pred_uncert = self.log_pred_uncert(pred_uncert)
log_teacher_uncert, teacher_uncert = self.log_pred_uncert(teacher_uncert)
return log_teacher_uncert - log_pred_uncert + (pred_uncert ** 2 + (pred - teacher_depth) ** 2) / (2 * teacher_uncert ** 2)
def laplace_laplace_kldiv(self, pred, pred_uncert, teacher_depth, teacher_uncert):
log_pred_uncert, pred_uncert = self.log_pred_uncert(pred_uncert)
log_teacher_uncert, teacher_uncert = self.log_pred_uncert(teacher_uncert)
return log_teacher_uncert - log_pred_uncert + (pred_uncert * torch.exp(-(pred - teacher_depth).abs() / pred_uncert) + (pred - teacher_depth).abs()) / teacher_uncert
def forward(self, pred, pred_uncert, teacher_depth, teacher_uncert):
return self.loss(pred, pred_uncert, teacher_depth, teacher_uncert).mean()