-
Notifications
You must be signed in to change notification settings - Fork 8
/
dataloader.py
390 lines (283 loc) · 14.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import json
import torch
import numpy as np
from transformers import BertTokenizer
import copy
import random
import itertools
from itertools import chain
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.dataloader import _SingleProcessDataLoaderIter, _MultiProcessingDataLoaderIter
from spans import *
class ABSA_Dataset(Dataset):
def __init__(self, args, file_name, vocab, tokenizer):
super().__init__()
# load raw data
with open(file_name,'r',encoding='utf-8') as f:
raw_data = json.load(f)
if args.need_preprocess:
raw_data = self.process_raw(raw_data)
new_file_name = file_name.replace('.json','_con.json')
with open(new_file_name, 'w', encoding='utf-8') as f:
json.dump(raw_data,f)
print('Saving to:', new_file_name)
self.data = self.process(raw_data, vocab, args, tokenizer)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def process_raw(self, data):
# get parserd data
# we already provide here
pass
def process(self, data, vocab, args, tokenizer):
token_vocab = vocab['token']
pol_vocab = vocab['polarity']
processed = []
max_len = args.max_len
CLS_id = tokenizer.convert_tokens_to_ids(["[CLS]"])
SEP_id = tokenizer.convert_tokens_to_ids(["[SEP]"])
sub_len = len(args.special_token)
for d in data:
tok = list(d['token'])
if args.lower:
tok = [t.lower() for t in tok]
text_raw_bert_indices, word_mapback, _ = text2bert_id(tok, tokenizer)
text_raw_bert_indices = text_raw_bert_indices[:max_len]
word_mapback = word_mapback[:max_len]
length = word_mapback[-1] + 1
# tok = tok[:length]
bert_length = len(word_mapback)
dep_head = list(d['dep_head'])[:length]
# map2id
# tok = [token_vocab.stoi.get(t, token_vocab.unk_index) for t in tok]
# con
con_head = d['con_head']
con_mapnode = d['con_mapnode']
con_path_dict, con_children = get_path_and_children_dict(con_head)
mapback = [ idx for idx ,word in enumerate(con_mapnode) if word[-sub_len: ]!= args.special_token]
layers, influence_range, node2layerid = form_layers_and_influence_range(con_path_dict, mapback)
spans = form_spans(layers, influence_range, length, con_mapnode)
adj_i_oneshot = head_to_adj_oneshot(dep_head, length, d['aspects'])
cd_adj = np.ones((length,length))
if args.con_dep_conditional:
father = 1
if father in con_children and [con_mapnode[node] for node in con_children[father]].count('S[N]') > 1 and con_mapnode[father] == 'S[N]':
cd_span = spans[node2layerid[father]+1]
cd_adj = get_conditional_adj(father, length, cd_span, con_children, con_mapnode)
adj_i_oneshot = adj_i_oneshot * cd_adj
# aspect-specific
bert_sequence_list = []
bert_segments_ids_list = []
label_list = []
aspect_indi_list = []
select_spans_list = []
for aspect in d['aspects']:
asp = list(aspect['term'])
asp_bert_ids, _, _ = text2bert_id(asp, tokenizer)
bert_sequence = CLS_id + text_raw_bert_indices + SEP_id + asp_bert_ids + SEP_id
bert_segments_ids = [0] * (bert_length + 2) + [1] * (len(asp_bert_ids ) +1)
bert_sequence = bert_sequence[:max_len+3]
bert_segments_ids = bert_segments_ids[:max_len+3]
label = aspect['polarity']
aspect_indi = [0] * length
for pidx in range(aspect['from'], aspect['to']):
aspect_indi[pidx] = 1
label = pol_vocab.stoi.get(label)
aspect_range = list(range(mapback[aspect['from']], mapback[aspect['to']-1] + 1))
con_lca = find_inner_LCA(con_path_dict, aspect_range)
select_spans, span_indications = form_aspect_related_spans(con_lca, spans, con_mapnode, node2layerid, con_path_dict)
select_spans = select_func(select_spans, args.max_num_spans, length)
select_spans = [[ x+ 1 for x in span] for span in select_spans]
label_list.append(label)
aspect_indi_list.append(aspect_indi)
bert_sequence_list.append(bert_sequence)
bert_segments_ids_list.append(bert_segments_ids)
select_spans_list.append(select_spans)
# aspect-aspect
choice_list = [(idx, idx + 1) for idx in range(len(d['aspects']) - 1)] if args.is_filtered else list(
itertools.combinations(list(range(len(d['aspects']))), 2))
aa_choice_inner_bert_id_list = []
num_aspects = len(d['aspects'])
cnum = num_aspects + len(choice_list)
aa_graph = np.zeros((cnum, cnum))
cnt = 0
for aa_info in d['aa_choice']:
select_ = (aa_info['select_idx'][0], aa_info['select_idx'][1])
if select_ in choice_list: # choicen
first = aa_info['select_idx'][0]
second = aa_info['select_idx'][1]
word_range = aa_info['word_range']
select_words = d['token'][word_range[0]:word_range[-1] + 1] if (word_range[0] <= word_range[-1]) else ['and']
aa_raw_bert_ids, _, _ = text2bert_id(select_words, tokenizer)
aa_raw_bert_ids = aa_raw_bert_ids[:max_len]
if args.aa_graph_version == 1: #directional
if first % 2 == 0:
aa_graph[cnt + num_aspects][first] = 1
aa_graph[second][cnt + num_aspects] = 1
else:
aa_graph[cnt + num_aspects][second] = 1
aa_graph[first][cnt + num_aspects] = 1
else: # undirectional
aa_graph[cnt + num_aspects][first] = 1
aa_graph[second][cnt + num_aspects] = 1
if args.aa_graph_self:
aa_graph[first][first] = 1
aa_graph[second][second] = 1
aa_graph[cnt + num_aspects][cnt + num_aspects] = 1
aa_choice_inner_bert_id_list.append(CLS_id + aa_raw_bert_ids + SEP_id)
cnt += 1
processed += [
(
length, bert_length, word_mapback,
adj_i_oneshot, aa_graph,
# aspect-specific
bert_sequence_list, bert_segments_ids_list, aspect_indi_list, select_spans_list,
# aspect-aspect
aa_choice_inner_bert_id_list,
# label
label_list
)
]
return processed
def ABSA_collate_fn(batch):
batch_size = len(batch)
batch = list(zip(*batch))
lens = batch[0]
(length_, bert_length_, word_mapback_,
adj_i_oneshot_, aa_graph_,
bert_sequence_list_, bert_segments_ids_list_,
aspect_indi_list_, select_spans_list_,
aa_choice_inner_bert_id_list_,
label_list_) = batch
max_lens = max(lens)
length = torch.LongTensor(length_)
bert_length = torch.LongTensor(bert_length_)
word_mapback = get_long_tensor(word_mapback_, batch_size)
adj_oneshot = np.zeros((batch_size, max_lens, max_lens), dtype=np.float32)
for idx in range(batch_size):
mlen = adj_i_oneshot_[idx].shape[0]
adj_oneshot[idx,:mlen,:mlen] = adj_i_oneshot_[idx]
adj_oneshot = torch.FloatTensor(adj_oneshot)
# Intra-context
map_AS = [[idx] * len(a_i) for idx, a_i in enumerate(bert_sequence_list_)]
map_AS_idx = [range(len(a_i)) for a_i in bert_sequence_list_]
# add_pre = np.array([0] + [len(m) for m in map_AS[:-1]]).cumsum()
map_AS = torch.LongTensor([m for m_list in map_AS for m in m_list])
map_AS_idx = torch.LongTensor([m for m_list in map_AS_idx for m in m_list])
as_batch_size = len(map_AS)
bert_sequence = [p for p_list in bert_sequence_list_ for p in p_list]
bert_sequence = get_long_tensor(bert_sequence, as_batch_size)
bert_segments_ids = [p for p_list in bert_segments_ids_list_ for p in p_list]
bert_segments_ids = get_long_tensor(bert_segments_ids, as_batch_size)
aspect_indi = [p for p_list in aspect_indi_list_ for p in p_list]
aspect_indi = get_long_tensor(aspect_indi, as_batch_size)
con_spans_list = [p for p_list in select_spans_list_ for p in p_list]
max_num_spans = max([len(p) for p in con_spans_list])
con_spans = np.zeros((as_batch_size, max_num_spans, max_lens), dtype=np.int64)
for idx in range(as_batch_size):
mlen = len(con_spans_list[idx][0])
con_spans[idx,:,:mlen] = con_spans_list[idx]
con_spans = torch.LongTensor(con_spans)
# label
label = torch.LongTensor([sl for sl_list in label_list_ for sl in sl_list if isinstance(sl, int)])
# aa_graph
aspect_num = [len(a_i) for a_i in bert_sequence_list_]
max_aspect_num = max(aspect_num)
if (max_aspect_num > 1):
aa_graph_length = torch.LongTensor([2 * num - 1 for num in aspect_num]) # 相当于length
aa_graph = np.zeros((batch_size, 2 * max_aspect_num - 1, 2 * max_aspect_num - 1))
for idx in range(batch_size):
cnum = aa_graph_length[idx]
aa_graph[idx, :cnum, :cnum] = aa_graph_[idx]
aa_graph = torch.LongTensor(aa_graph)
else:
aa_graph_length = torch.LongTensor([])
aa_graph = torch.LongTensor([])
aa_choice = [m for m_list in aa_choice_inner_bert_id_list_ for m in m_list]
aa_batch_size = len(aa_choice)
if aa_batch_size > 0:
map_AA = [[idx] * len(a_i) for idx, a_i in enumerate(aa_choice_inner_bert_id_list_)]
map_AA = torch.LongTensor([m for m_list in map_AA for m in m_list])
map_AA_idx = torch.LongTensor([m + len(a_i) + 1 for a_i in aa_choice_inner_bert_id_list_ for m in range(len(a_i))])
aa_choice_inner_bert_id = [m for m_list in aa_choice_inner_bert_id_list_ for m in m_list if len(m) > 0]
aa_choice_inner_bert_length = torch.LongTensor([len(m) - 2 for m in aa_choice_inner_bert_id])
aa_choice_inner_bert_id = get_long_tensor(aa_choice_inner_bert_id, aa_batch_size)
else:
map_AA = torch.LongTensor([])
map_AA_idx = torch.LongTensor([])
aa_choice_inner_bert_id = torch.LongTensor([])
aa_choice_inner_bert_length = torch.LongTensor([])
return (
length, bert_length, word_mapback, adj_oneshot,
aa_graph, aa_graph_length,
map_AS, map_AS_idx,
bert_sequence, bert_segments_ids,
aspect_indi, con_spans,
map_AA, map_AA_idx,
aa_choice_inner_bert_id, aa_choice_inner_bert_length,
label
)
def text2bert_id(token, tokenizer):
re_token = []
word_mapback = []
word_split_len = []
for idx, word in enumerate(token):
temp = tokenizer.tokenize(word)
re_token.extend(temp)
word_mapback.extend([idx] * len(temp))
word_split_len.append(len(temp))
re_id = tokenizer.convert_tokens_to_ids(re_token)
return re_id ,word_mapback, word_split_len
class ABSA_DataLoader(DataLoader):
def __init__(self, dataset, sort_key, sort_bs_num=None, is_shuffle=True, **kwargs):
'''
:param dataset: Dataset object
:param sort_idx: sort_function
:param sort_bs_num: sort range; default is None(sort for all sequence)
:param is_shuffle: shuffle chunk , default if True
:return:
'''
assert isinstance(dataset.data, list)
super().__init__(dataset,**kwargs)
self.sort_key = sort_key
self.sort_bs_num = sort_bs_num
self.is_shuffle = is_shuffle
def __iter__(self):
if self.is_shuffle:
self.dataset.data = self.block_shuffle(self.dataset.data, self.batch_size, self.sort_bs_num, self.sort_key, self.is_shuffle)
if self.num_workers == 0:
return _SingleProcessDataLoaderIter(self)
else:
return _MultiProcessingDataLoaderIter(self)
@staticmethod
def block_shuffle(data, batch_size, sort_bs_num, sort_key, is_shuffle):
# sort
random.shuffle(data)
data = sorted(data, key = sort_key) # 先按照长度排序
batch_data = [data[i : i + batch_size] for i in range(0,len(data),batch_size)]
batch_data = [sorted(batch, key = sort_key) for batch in batch_data]
if is_shuffle:
random.shuffle(batch_data)
batch_data = list(chain(*batch_data))
return batch_data
def get_long_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to a padded LongTensor. """
token_len = max(len(x) for x in tokens_list)
tokens = torch.LongTensor(batch_size, token_len).fill_(0)
for i, s in enumerate(tokens_list):
tokens[i, : len(s)] = torch.LongTensor(s)
return tokens
def get_float_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to a padded FloatTensor. """
token_len = max(len(x) for x in tokens_list)
tokens = torch.FloatTensor(batch_size, token_len).fill_(0)
for i, s in enumerate(tokens_list):
tokens[i, : len(s)] = torch.FloatTensor(s)
return tokens
def sort_all(batch, lens):
""" Sort all fields by descending order of lens, and return the original indices. """
unsorted_all = [lens] + [range(len(lens))] + list(batch)
sorted_all = [list(t) for t in zip(*sorted(zip(*unsorted_all), reverse=True))]
return sorted_all[2:], sorted_all[1]