-
Notifications
You must be signed in to change notification settings - Fork 43
/
setup.py
175 lines (142 loc) · 5.71 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import sys
import os
from os.path import join as pjoin
import numpy as np
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
from Cython.Build import cythonize
USE_GPU = True
if "--disable_gpu" in sys.argv:
USE_GPU = False
sys.argv.remove("--disable_gpu")
def find_in_path(name, path):
"Find a file in a search path"
# adapted fom http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/
for dir in path.split(os.pathsep):
binpath = pjoin(dir, name)
if os.path.exists(binpath):
return os.path.abspath(binpath)
return None
def locate_cuda():
"""Locate the CUDA environment on the system
Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
and values giving the absolute path to each directory.
Starts by looking for the CUDAHOME env variable. If not found, everything
is based on finding 'nvcc' in the PATH.
"""
# first check if the CUDAHOME env variable is in use
if 'CUDAHOME' in os.environ:
home = os.environ['CUDAHOME']
nvcc = pjoin(home, 'bin', 'nvcc')
else:
# otherwise, search the PATH for NVCC
default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin')
nvcc = find_in_path('nvcc',
os.environ['PATH'] + os.pathsep + default_path)
if nvcc is None:
raise EnvironmentError(
'The nvcc binary could not be '
'located in your $PATH. Either add it to your path, or set $CUDAHOME'
)
home = os.path.dirname(os.path.dirname(nvcc))
cudaconfig = {
'home': home,
'nvcc': nvcc,
'include': pjoin(home, 'include'),
'lib64': pjoin(home, 'lib64')
}
for k, v in cudaconfig.items():
if not os.path.exists(v):
raise EnvironmentError(
'The CUDA %s path could not be located in %s' % (k, v))
return cudaconfig
CUDA = locate_cuda() if USE_GPU else None
# Obtain the numpy include directory. This logic works across numpy versions.
try:
numpy_include = np.get_include()
except AttributeError:
numpy_include = np.get_numpy_include()
def customize_compiler_for_nvcc(self):
"""inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on."""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
print(extra_postargs)
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# run the customize_compiler
class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
build_ext.build_extensions(self)
ext_modules = [
Extension("mtcnn.utils.nms.cpu_nms", ["mtcnn/utils/nms/cpu_nms.pyx"],
extra_compile_args={'gcc': ["-Wno-cpp", "-Wno-unused-function"]},
include_dirs=[numpy_include]),
]
if USE_GPU:
gpu_extention = Extension(
'mtcnn.utils.nms.gpu_nms',
['mtcnn/utils/nms/nms_kernel.cu', 'mtcnn/utils/nms/gpu_nms.pyx'],
library_dirs=[CUDA['lib64']],
libraries=['cudart'],
language='c++',
runtime_library_dirs=[CUDA['lib64']],
# this syntax is specific to this build system
# we're only going to use certain compiler args with nvcc and not with gcc
# the implementation of this trick is in customize_compiler() below
extra_compile_args={
'gcc': ["-Wno-unused-function"],
'nvcc': [
'-arch=sm_52', '--ptxas-options=-v', '-c',
'--compiler-options', "'-fPIC'"
]
},
include_dirs=[numpy_include, CUDA['include']])
ext_modules.append(gpu_extention)
def package_files(directory):
paths = []
for (path, directories, filenames) in os.walk(directory):
for filename in filenames:
paths.append(os.path.join('..', path, filename))
return paths
extra_files = package_files('mtcnn')
setup(
name="torch_mtcnn",
version="0.1",
description=
'MTCNN pytorch implementation. Joint training and detecting together.',
author='HanBing',
author_email='[email protected]',
packages=[
'mtcnn', 'mtcnn.datasets', 'mtcnn.deploy', 'mtcnn.network',
'mtcnn.train', 'mtcnn.utils', 'mtcnn.utils.nms'
],
ext_modules=ext_modules,
# inject our custom trigger
cmdclass={'build_ext': custom_build_ext},
package_data={'': extra_files})