forked from soleilssss/FFCNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshift.py
232 lines (194 loc) · 6.58 KB
/
shift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# 写fftshift和ifftshift,从numpy里面复制了一些出来
import torch
import numpy as np
def roll(a, shift, axis=None):
"""
Roll array elements along a given axis.
Elements that roll beyond the last position are re-introduced at
the first.
Parameters
----------
a : Input tensor.
shift : int or tuple of ints
The number of places by which elements are shifted. If a tuple,
then `axis` must be a tuple of the same size, and each of the
given axes is shifted by the corresponding number. If an int
while `axis` is a tuple of ints, then the same value is used for
all given axes.
axis : int or tuple of ints, optional
Axis or axes along which elements are shifted. By default, the
array is flattened before shifting, after which the original
shape is restored.
Returns
-------
res : Output tensor, with the same shape as `a`.
See Also
--------
rollaxis : Roll the specified axis backwards, until it lies in a
given position.
Notes
-----
.. versionadded:: 1.12.0
Supports rolling over multiple dimensions simultaneously.
Examples
--------
>>> x = np.arange(10)
>>> np.roll(x, 2)
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
>>> np.roll(x, -2)
array([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])
>>> x2 = np.reshape(x, (2,5))
>>> x2
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> np.roll(x2, 1)
array([[9, 0, 1, 2, 3],
[4, 5, 6, 7, 8]])
>>> np.roll(x2, -1)
array([[1, 2, 3, 4, 5],
[6, 7, 8, 9, 0]])
>>> np.roll(x2, 1, axis=0)
array([[5, 6, 7, 8, 9],
[0, 1, 2, 3, 4]])
>>> np.roll(x2, -1, axis=0)
array([[5, 6, 7, 8, 9],
[0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1)
array([[4, 0, 1, 2, 3],
[9, 5, 6, 7, 8]])
>>> np.roll(x2, -1, axis=1)
array([[1, 2, 3, 4, 0],
[6, 7, 8, 9, 5]])
"""
a = asanyarray(a)
if axis is None:
return roll(a.ravel(), shift, 0).reshape(a.shape)
else:
axis = normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
broadcasted = broadcast(shift, axis)
if broadcasted.ndim > 1:
raise ValueError(
"'shift' and 'axis' should be scalars or 1D sequences")
shifts = {ax: 0 for ax in range(a.ndim)}
for sh, ax in broadcasted:
shifts[ax] += sh
rolls = [((slice(None), slice(None)),)] * a.ndim
for ax, offset in shifts.items():
offset %= a.shape[ax] or 1 # If `a` is empty, nothing matters.
if offset:
# (original, result), (original, result)
rolls[ax] = ((slice(None, -offset), slice(offset, None)),
(slice(-offset, None), slice(None, offset)))
result = empty_like(a)
for indices in itertools.product(*rolls):
arr_index, res_index = zip(*indices)
result[res_index] = a[arr_index]
return result
def roll_n(X, axis, n):
axis = (axis + X.ndim)%X.ndim
f_idx = tuple(slice(None, None, None) if i != axis else slice(0,-n,None)
for i in range(X.dim()))
b_idx = tuple(slice(None, None, None) if i != axis else slice(-n,None,None)
for i in range(X.dim()))
front = X[f_idx]
back = X[b_idx]
return torch.cat([back, front],axis)
def fftshift(x, axes=None):
"""
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : Input tensor.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : The shifted tensor.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., ..., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
"""
if axes is None:
axes = tuple(range(x.ndim))
shift = [dim // 2 for dim in x.shape]
elif isinstance(axes, int):
shift = x.shape[axes] // 2
else:
shift = [x.shape[ax] // 2 for ax in axes]
if isinstance(axes, int):
x = roll_n(x, axes, shift)
else:
for i in range(len(shift)):
x = roll_n(x, axes[i], shift[i])
return x
def ifftshift(x, axes=None):
"""
The inverse of `fftshift`. Although identical for even-length `x`, the
functions differ by one sample for odd-length `x`.
Parameters
----------
x : Input tensor.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : The shifted tensor.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
"""
if axes is None:
axes = tuple(range(x.ndim))
shift = [-(dim // 2) for dim in x.shape]
elif isinstance(axes, int):
shift = -(x.shape[axes] // 2)
else:
shift = [-(x.shape[ax] // 2) for ax in axes]
if isinstance(axes, int):
x = roll_n(x, axes, shift)
else:
for i in range(len(shift)):
x = roll_n(x, axes[i], shift[i])
return x
# 测试部分
# x = np.array([[1,2,3,4,5,6], [2,3,4,5,6,7], [3,4,5,6,7,8], [4,5,6,7,8,9], [5,6,7,8,9,10],[6,7,8,9,10,11]])
# # x = np.array([[1,2,3,4,5], [2,3,4,5,6], [3,4,5,6,7], [4,5,6,7,8], [5,6,7,8,9]])
# x = np.array([x,x*0.5])
# y = np.fft.fftshift(x, (1,2))
# x_torch = torch.tensor(x)
# y_torch = fftshift(x_torch, (1,2))
# print('ok for fftshift')
# # 接下来测试ifftshift
# x1 = np.fft.ifftshift(y, (1,2))
# x_torch_0 = ifftshift(y_torch, (-2,-1))
# print('ok for ifftshift')