forked from envoyproxy/envoy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hot-restarter.py
193 lines (151 loc) · 6.04 KB
/
hot-restarter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python
from __future__ import print_function
import os
import signal
import sys
import time
# The number of seconds to wait for children to gracefully exit after
# propagating SIGTERM before force killing children.
# NOTE: If using a shutdown mechanism such as runit's `force-stop` which sends
# a KILL after a specified timeout period, it's important to ensure that this
# constant is smaller than the KILL timeout
TERM_WAIT_SECONDS = 30
restart_epoch = 0
pid_list = []
def term_all_children():
""" Iterate through all known child processes, send a TERM signal to each of
them, and then wait up to TERM_WAIT_SECONDS for them to exit gracefully,
exiting early if all children go away. If one or more children have not
exited after TERM_WAIT_SECONDS, they will be forcibly killed """
# First uninstall the SIGCHLD handler so that we don't get called again.
signal.signal(signal.SIGCHLD, signal.SIG_DFL)
global pid_list
for pid in pid_list:
print("sending TERM to PID={}".format(pid))
try:
os.kill(pid, signal.SIGTERM)
except OSError:
print("error sending TERM to PID={} continuing".format(pid))
all_exited = False
# wait for TERM_WAIT_SECONDS seconds for children to exit cleanly
retries = 0
while not all_exited and retries < TERM_WAIT_SECONDS:
for pid in list(pid_list):
ret_pid, exit_status = os.waitpid(pid, os.WNOHANG)
if ret_pid == 0 and exit_status == 0:
# the child is still running
continue
pid_list.remove(pid)
if len(pid_list) == 0:
all_exited = True
else:
retries += 1
time.sleep(1)
if all_exited:
print("all children exited cleanly")
else:
for pid in pid_list:
print("child PID={} did not exit cleanly, killing".format(pid))
force_kill_all_children()
sys.exit(1) # error status because a child did not exit cleanly
def force_kill_all_children():
""" Iterate through all known child processes and force kill them. Typically
term_all_children() should be attempted first to give child processes an
opportunity to clean up state before exiting """
global pid_list
for pid in pid_list:
print("force killing PID={}".format(pid))
try:
os.kill(pid, signal.SIGKILL)
except OSError:
print("error force killing PID={} continuing".format(pid))
pid_list = []
def sigterm_handler(signum, frame):
""" Handler for SIGTERM. See term_all_children() for further discussion. """
print("got SIGTERM")
term_all_children()
sys.exit(0)
def sighup_handler(signum, frame):
""" Handler for SIGUP. This signal is used to cause the restarter to fork and exec a new
child. """
print("got SIGHUP")
fork_and_exec()
def sigusr1_handler(signum, frame):
""" Handler for SIGUSR1. Propagate SIGUSR1 to all of the child processes """
global pid_list
for pid in pid_list:
print("sending SIGUSR1 to PID={}".format(pid))
try:
os.kill(pid, signal.SIGUSR1)
except OSError:
print("error in SIGUSR1 to PID={} continuing".format(pid))
def sigchld_handler(signum, frame):
""" Handler for SIGCHLD. Iterates through all of our known child processes and figures out whether
the signal/exit was expected or not. Python doesn't have any of the native signal handlers
ability to get the child process info directly from the signal handler so we need to iterate
through all child processes and see what happened."""
print("got SIGCHLD")
kill_all_and_exit = False
global pid_list
pid_list_copy = list(pid_list)
for pid in pid_list_copy:
ret_pid, exit_status = os.waitpid(pid, os.WNOHANG)
if ret_pid == 0 and exit_status == 0:
# This child is still running.
continue
pid_list.remove(pid)
# Now we see how the child exited.
if os.WIFEXITED(exit_status):
exit_code = os.WEXITSTATUS(exit_status)
print("PID={} exited with code={}".format(ret_pid, exit_code))
if exit_code == 0:
# Normal exit. We assume this was on purpose.
pass
else:
# Something bad happened. We need to tear everything down so that whoever started the
# restarter can know about this situation and restart the whole thing.
kill_all_and_exit = True
elif os.WIFSIGNALED(exit_status):
print("PID={} was killed with signal={}".format(ret_pid, os.WTERMSIG(exit_status)))
kill_all_and_exit = True
else:
kill_all_and_exit = True
if kill_all_and_exit:
print("Due to abnormal exit, force killing all child processes and exiting")
# First uninstall the SIGCHLD handler so that we don't get called again.
signal.signal(signal.SIGCHLD, signal.SIG_DFL)
force_kill_all_children()
# Our last child died, so we have no purpose. Exit.
if not pid_list:
print("exiting due to lack of child processes")
sys.exit(1 if kill_all_and_exit else 0)
def fork_and_exec():
""" This routine forks and execs a new child process and keeps track of its PID. Before we fork,
set the current restart epoch in an env variable that processes can read if they care. """
global restart_epoch
os.environ['RESTART_EPOCH'] = str(restart_epoch)
print("forking and execing new child process at epoch {}".format(restart_epoch))
restart_epoch += 1
child_pid = os.fork()
if child_pid == 0:
# Child process
os.execl(sys.argv[1], sys.argv[1])
else:
# Parent process
print("forked new child process with PID={}".format(child_pid))
pid_list.append(child_pid)
def main():
""" Script main. This script is designed so that a process watcher like runit or monit can watch
this process and take corrective action if it ever goes away. """
print("starting hot-restarter with target: {}".format(sys.argv[1]))
signal.signal(signal.SIGTERM, sigterm_handler)
signal.signal(signal.SIGHUP, sighup_handler)
signal.signal(signal.SIGCHLD, sigchld_handler)
signal.signal(signal.SIGUSR1, sigusr1_handler)
# Start the first child process and then go into an endless loop since everything else happens via
# signals.
fork_and_exec()
while True:
time.sleep(60)
if __name__ == '__main__':
main()