diff --git a/Kernel/PerturbationEquations.wl b/Kernel/PerturbationEquations.wl index cc0c331..c4a9fe2 100644 --- a/Kernel/PerturbationEquations.wl +++ b/Kernel/PerturbationEquations.wl @@ -173,8 +173,7 @@ r::usage = "Boyer\[Dash]Lindquist radial coordinate."; t::usage = "Boyer\[Dash]Lindquist time coordinate."; f::usage = "Schwarzschild's function, f(r)=1-2M/r."; M::usage = "Mass."; -h::usage = "Height function relating the hyperboloidal time to the Boyer--Lindquist time, t=\[Tau]-h[r] and H[r]=\!\(\*FractionBox[\(d\), SubscriptBox[\(dr\), \(*\)]]\)h[r]=\!\(\*FractionBox[\(1\), \(f\)]\)h'[r]."; -h::usage = "\!\(\*SubscriptBox[\(r\), \(*\)]\) derivative of the Height function which relating the hyperboloidal time to the Boyer--Lindquist time, t=\[Tau]-h[r] and H[r]=\!\(\*FractionBox[\(d\), SubscriptBox[\(dr\), \(*\)]]\)h[r]=\!\(\*FractionBox[\(1\), \(f\)]\)h'[r]."; +H::usage = "Height function relating the hyperboloidal time to the Boyer--Lindquist time, t=\[Tau]-h[r] and H[r]=\!\(\*FractionBox[\(d\), SubscriptBox[\(dr\), \(*\)]]\)h[r]=\!\(\*FractionBox[\(1\), \(f\)]\)h'[r]."; (* ::Subsubsection:: *) @@ -266,7 +265,7 @@ SchwarzschildCovariantSource::argserror = "Argument `1` is unknown"; (*Definitions*) -DefManifold[S2,2,{A,B,F,G,H,J,P,Q}]; +DefManifold[S2,2,{A,B,F,G,J,P,Q}]; DefMetric[1,\[CapitalOmega][-A,-B],CDS2,SymbolOfCovD->{"|","D "}]; DefManifold[R2,2,{a,b,c,d,i,j,k,p}]; @@ -277,6 +276,7 @@ DefProductMetric[g[-\[Alpha],-\[Beta]],{{TangentR2,1},{TangentS2,r[]}},CD,Symbol DefConstantSymbol[M]; DefScalarFunction[f]; +DefScalarFunction[H]; (*DefTensor[r[],M4];*) DefChart[Hyp,R2,{0,1},{\[Tau][],r[]},ChartColor->RGBColor[0,1,0]];