forked from thuml/Transfer-Learning-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
regda.py
496 lines (428 loc) · 22.5 KB
/
regda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
"""
@author: Junguang Jiang
@contact: [email protected]
"""
import random
import time
import warnings
import sys
import argparse
import shutil
import torch
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.optim.lr_scheduler import LambdaLR, MultiStepLR
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToPILImage
sys.path.append('../../..')
from dalib.adaptation.regda import PoseResNet2d as RegDAPoseResNet, \
PseudoLabelGenerator2d, RegressionDisparity
import common.vision.models as models
from common.vision.models.keypoint_detection.pose_resnet import Upsampling, PoseResNet
from common.vision.models.keypoint_detection.loss import JointsKLLoss
import common.vision.datasets.keypoint_detection as datasets
import common.vision.transforms.keypoint_detection as T
from common.vision.transforms import Denormalize
from common.utils.data import ForeverDataIterator
from common.utils.meter import AverageMeter, ProgressMeter, AverageMeterDict
from common.utils.metric.keypoint_detection import accuracy
from common.utils.logger import CompleteLogger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
train_transform = T.Compose([
T.RandomRotation(args.rotation),
T.RandomResizedCrop(size=args.image_size, scale=args.resize_scale),
T.ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25),
T.GaussianBlur(),
T.ToTensor(),
normalize
])
val_transform = T.Compose([
T.Resize(args.image_size),
T.ToTensor(),
normalize
])
image_size = (args.image_size, args.image_size)
heatmap_size = (args.heatmap_size, args.heatmap_size)
source_dataset = datasets.__dict__[args.source]
train_source_dataset = source_dataset(root=args.source_root, transforms=train_transform,
image_size=image_size, heatmap_size=heatmap_size)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True, drop_last=True)
val_source_dataset = source_dataset(root=args.source_root, split='test', transforms=val_transform,
image_size=image_size, heatmap_size=heatmap_size)
val_source_loader = DataLoader(val_source_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True)
target_dataset = datasets.__dict__[args.target]
train_target_dataset = target_dataset(root=args.target_root, transforms=train_transform,
image_size=image_size, heatmap_size=heatmap_size)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.workers, pin_memory=True, drop_last=True)
val_target_dataset = target_dataset(root=args.target_root, split='test', transforms=val_transform,
image_size=image_size, heatmap_size=heatmap_size)
val_target_loader = DataLoader(val_target_dataset, batch_size=args.batch_size, shuffle=False, pin_memory=True)
print("Source train:", len(train_source_loader))
print("Target train:", len(train_target_loader))
print("Source test:", len(val_source_loader))
print("Target test:", len(val_target_loader))
train_source_iter = ForeverDataIterator(train_source_loader)
train_target_iter = ForeverDataIterator(train_target_loader)
# create model
backbone = models.__dict__[args.arch](pretrained=True)
upsampling = Upsampling(backbone.out_features)
num_keypoints = train_source_dataset.num_keypoints
model = RegDAPoseResNet(backbone, upsampling, 256, num_keypoints, num_head_layers=args.num_head_layers, finetune=True).to(device)
# define loss function
criterion = JointsKLLoss()
pseudo_label_generator = PseudoLabelGenerator2d(num_keypoints, args.heatmap_size, args.heatmap_size)
regression_disparity = RegressionDisparity(pseudo_label_generator, JointsKLLoss(epsilon=1e-7))
# define optimizer and lr scheduler
optimizer_f = SGD([
{'params': backbone.parameters(), 'lr': 0.1},
{'params': upsampling.parameters(), 'lr': 0.1},
], lr=0.1, momentum=args.momentum, weight_decay=args.wd, nesterov=True)
optimizer_h = SGD(model.head.parameters(), lr=1., momentum=args.momentum, weight_decay=args.wd, nesterov=True)
optimizer_h_adv = SGD(model.head_adv.parameters(), lr=1., momentum=args.momentum, weight_decay=args.wd, nesterov=True)
lr_decay_function = lambda x: args.lr * (1. + args.lr_gamma * float(x)) ** (-args.lr_decay)
lr_scheduler_f = LambdaLR(optimizer_f, lr_decay_function)
lr_scheduler_h = LambdaLR(optimizer_h, lr_decay_function)
lr_scheduler_h_adv = LambdaLR(optimizer_h_adv, lr_decay_function)
start_epoch = 0
if args.resume is None:
if args.pretrain is None:
# first pretrain the backbone and upsampling
print("Pretraining the model on source domain.")
args.pretrain = logger.get_checkpoint_path('pretrain')
pretrained_model = PoseResNet(backbone, upsampling, 256, num_keypoints, True).to(device)
optimizer = SGD(pretrained_model.get_parameters(lr=args.lr), momentum=args.momentum, weight_decay=args.wd, nesterov=True)
lr_scheduler = MultiStepLR(optimizer, args.lr_step, args.lr_factor)
best_acc = 0
for epoch in range(args.pretrain_epochs):
lr_scheduler.step()
print(lr_scheduler.get_lr())
pretrain(train_source_iter, pretrained_model, criterion, optimizer, epoch, args)
source_val_acc = validate(val_source_loader, pretrained_model, criterion, None, args)
# remember best acc and save checkpoint
if source_val_acc['all'] > best_acc:
best_acc = source_val_acc['all']
torch.save(
{
'model': pretrained_model.state_dict()
}, args.pretrain
)
print("Source: {} best: {}".format(source_val_acc['all'], best_acc))
# load from the pretrained checkpoint
pretrained_dict = torch.load(args.pretrain, map_location='cpu')['model']
model_dict = model.state_dict()
# remove keys from pretrained dict that doesn't appear in model dict
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model.load_state_dict(pretrained_dict, strict=False)
else:
# optionally resume from a checkpoint
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer_f.load_state_dict(checkpoint['optimizer_f'])
optimizer_h.load_state_dict(checkpoint['optimizer_h'])
optimizer_h_adv.load_state_dict(checkpoint['optimizer_h_adv'])
lr_scheduler_f.load_state_dict(checkpoint['lr_scheduler_f'])
lr_scheduler_h.load_state_dict(checkpoint['lr_scheduler_h'])
lr_scheduler_h_adv.load_state_dict(checkpoint['lr_scheduler_h_adv'])
start_epoch = checkpoint['epoch'] + 1
# define visualization function
tensor_to_image = Compose([
Denormalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
ToPILImage()
])
def visualize(image, keypoint2d, name, heatmaps=None):
"""
Args:
image (tensor): image in shape 3 x H x W
keypoint2d (tensor): keypoints in shape K x 2
name: name of the saving image
"""
train_source_dataset.visualize(tensor_to_image(image),
keypoint2d, logger.get_image_path("{}.jpg".format(name)))
if args.phase == 'test':
# evaluate on validation set
source_val_acc = validate(val_source_loader, model, criterion, None, args)
target_val_acc = validate(val_target_loader, model, criterion, visualize, args)
print("Source: {:4.3f} Target: {:4.3f}".format(source_val_acc['all'], target_val_acc['all']))
for name, acc in target_val_acc.items():
print("{}: {:4.3f}".format(name, acc))
return
# start training
best_acc = 0
print("Start regression domain adaptation.")
for epoch in range(start_epoch, args.epochs):
logger.set_epoch(epoch)
print(lr_scheduler_f.get_lr(), lr_scheduler_h.get_lr(), lr_scheduler_h_adv.get_lr())
# train for one epoch
train(train_source_iter, train_target_iter, model, criterion, regression_disparity,
optimizer_f, optimizer_h, optimizer_h_adv, lr_scheduler_f, lr_scheduler_h, lr_scheduler_h_adv,
epoch, visualize if args.debug else None, args)
# evaluate on validation set
source_val_acc = validate(val_source_loader, model, criterion, None, args)
target_val_acc = validate(val_target_loader, model, criterion, visualize if args.debug else None, args)
# remember best acc and save checkpoint
torch.save(
{
'model': model.state_dict(),
'optimizer_f': optimizer_f.state_dict(),
'optimizer_h': optimizer_h.state_dict(),
'optimizer_h_adv': optimizer_h_adv.state_dict(),
'lr_scheduler_f': lr_scheduler_f.state_dict(),
'lr_scheduler_h': lr_scheduler_h.state_dict(),
'lr_scheduler_h_adv': lr_scheduler_h_adv.state_dict(),
'epoch': epoch,
'args': args
}, logger.get_checkpoint_path(epoch)
)
if target_val_acc['all'] > best_acc:
shutil.copy(logger.get_checkpoint_path(epoch), logger.get_checkpoint_path('best'))
best_acc = target_val_acc['all']
print("Source: {:4.3f} Target: {:4.3f} Target(best): {:4.3f}".format(source_val_acc['all'], target_val_acc['all'], best_acc))
for name, acc in target_val_acc.items():
print("{}: {:4.3f}".format(name, acc))
logger.close()
def pretrain(train_source_iter, model, criterion, optimizer,
epoch: int, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses_s = AverageMeter('Loss (s)', ":.2e")
acc_s = AverageMeter("Acc (s)", ":3.2f")
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses_s, acc_s],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i in range(args.iters_per_epoch):
optimizer.zero_grad()
x_s, label_s, weight_s, meta_s = next(train_source_iter)
x_s = x_s.to(device)
label_s = label_s.to(device)
weight_s = weight_s.to(device)
# measure data loading time
data_time.update(time.time() - end)
# compute output
y_s = model(x_s)
loss_s = criterion(y_s, label_s, weight_s)
# compute gradient and do SGD step
loss_s.backward()
optimizer.step()
# measure accuracy and record loss
_, avg_acc_s, cnt_s, pred_s = accuracy(y_s.detach().cpu().numpy(),
label_s.detach().cpu().numpy())
acc_s.update(avg_acc_s, cnt_s)
losses_s.update(loss_s, cnt_s)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def train(train_source_iter, train_target_iter, model, criterion,regression_disparity,
optimizer_f, optimizer_h, optimizer_h_adv, lr_scheduler_f, lr_scheduler_h, lr_scheduler_h_adv,
epoch: int, visualize, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses_s = AverageMeter('Loss (s)', ":.2e")
losses_gf = AverageMeter('Loss (t, false)', ":.2e")
losses_gt = AverageMeter('Loss (t, truth)', ":.2e")
acc_s = AverageMeter("Acc (s)", ":3.2f")
acc_t = AverageMeter("Acc (t)", ":3.2f")
acc_s_adv = AverageMeter("Acc (s, adv)", ":3.2f")
acc_t_adv = AverageMeter("Acc (t, adv)", ":3.2f")
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses_s, losses_gf, losses_gt, acc_s, acc_t, acc_s_adv, acc_t_adv],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i in range(args.iters_per_epoch):
x_s, label_s, weight_s, meta_s = next(train_source_iter)
x_t, label_t, weight_t, meta_t = next(train_target_iter)
x_s = x_s.to(device)
label_s = label_s.to(device)
weight_s = weight_s.to(device)
x_t = x_t.to(device)
label_t = label_t.to(device)
weight_t = weight_t.to(device)
# measure data loading time
data_time.update(time.time() - end)
# Step A train all networks to minimize loss on source domain
optimizer_f.zero_grad()
optimizer_h.zero_grad()
optimizer_h_adv.zero_grad()
y_s, y_s_adv = model(x_s)
loss_s = criterion(y_s, label_s, weight_s) + \
args.margin * args.trade_off * regression_disparity(y_s, y_s_adv, weight_s, mode='min')
loss_s.backward()
optimizer_f.step()
optimizer_h.step()
optimizer_h_adv.step()
# Step B train adv regressor to maximize regression disparity
optimizer_h_adv.zero_grad()
y_t, y_t_adv = model(x_t)
loss_ground_false = args.trade_off * regression_disparity(y_t, y_t_adv, weight_t, mode='max')
loss_ground_false.backward()
optimizer_h_adv.step()
# Step C train feature extractor to minimize regression disparity
optimizer_f.zero_grad()
y_t, y_t_adv = model(x_t)
loss_ground_truth = args.trade_off * regression_disparity(y_t, y_t_adv, weight_t, mode='min')
loss_ground_truth.backward()
optimizer_f.step()
# do update step
model.step()
lr_scheduler_f.step()
lr_scheduler_h.step()
lr_scheduler_h_adv.step()
# measure accuracy and record loss
_, avg_acc_s, cnt_s, pred_s = accuracy(y_s.detach().cpu().numpy(),
label_s.detach().cpu().numpy())
acc_s.update(avg_acc_s, cnt_s)
_, avg_acc_t, cnt_t, pred_t = accuracy(y_t.detach().cpu().numpy(),
label_t.detach().cpu().numpy())
acc_t.update(avg_acc_t, cnt_t)
_, avg_acc_s_adv, cnt_s_adv, pred_s_adv = accuracy(y_s_adv.detach().cpu().numpy(),
label_s.detach().cpu().numpy())
acc_s_adv.update(avg_acc_s_adv, cnt_s)
_, avg_acc_t_adv, cnt_t_adv, pred_t_adv = accuracy(y_t_adv.detach().cpu().numpy(),
label_t.detach().cpu().numpy())
acc_t_adv.update(avg_acc_t_adv, cnt_t)
losses_s.update(loss_s, cnt_s)
losses_gf.update(loss_ground_false, cnt_s)
losses_gt.update(loss_ground_truth, cnt_s)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if visualize is not None:
visualize(x_s[0], pred_s[0] * args.image_size / args.heatmap_size, "source_{}_pred".format(i))
visualize(x_s[0], meta_s['keypoint2d'][0], "source_{}_label".format(i))
visualize(x_t[0], pred_t[0] * args.image_size / args.heatmap_size, "target_{}_pred".format(i))
visualize(x_t[0], meta_t['keypoint2d'][0], "target_{}_label".format(i))
visualize(x_s[0], pred_s_adv[0] * args.image_size / args.heatmap_size, "source_adv_{}_pred".format(i))
visualize(x_t[0], pred_t_adv[0] * args.image_size / args.heatmap_size, "target_adv_{}_pred".format(i))
def validate(val_loader, model, criterion, visualize, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.2e')
acc = AverageMeterDict(val_loader.dataset.keypoints_group.keys(), ":3.2f")
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, acc['all']],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (x, label, weight, meta) in enumerate(val_loader):
x = x.to(device)
label = label.to(device)
weight = weight.to(device)
# compute output
y = model(x)
loss = criterion(y, label, weight)
# measure accuracy and record loss
losses.update(loss.item(), x.size(0))
acc_per_points, avg_acc, cnt, pred = accuracy(y.cpu().numpy(),
label.cpu().numpy())
group_acc = val_loader.dataset.group_accuracy(acc_per_points)
acc.update(group_acc, x.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if visualize is not None:
visualize(x[0], pred[0] * args.image_size / args.heatmap_size, "val_{}_pred.jpg".format(i))
visualize(x[0], meta['keypoint2d'][0], "val_{}_label.jpg".format(i))
return acc.average()
if __name__ == '__main__':
architecture_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])
)
dataset_names = sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
parser = argparse.ArgumentParser(description='RegDA for Keypoint Detection Domain Adaptation')
# dataset parameters
parser.add_argument('source_root', help='root path of the source dataset')
parser.add_argument('target_root', help='root path of the target dataset')
parser.add_argument('-s', '--source', help='source domain(s)')
parser.add_argument('-t', '--target', help='target domain(s)')
parser.add_argument('--resize-scale', nargs='+', type=float, default=(0.6, 1.3),
help='scale range for the RandomResizeCrop augmentation')
parser.add_argument('--rotation', type=int, default=180,
help='rotation range of the RandomRotation augmentation')
parser.add_argument('--image-size', type=int, default=256,
help='input image size')
parser.add_argument('--heatmap-size', type=int, default=64,
help='output heatmap size')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet101',
choices=architecture_names,
help='backbone architecture: ' +
' | '.join(architecture_names) +
' (default: resnet101)')
parser.add_argument("--pretrain", type=str, default=None,
help="Where restore pretrained model parameters from.")
parser.add_argument("--resume", type=str, default=None,
help="where restore model parameters from.")
parser.add_argument('--num-head-layers', type=int, default=2)
parser.add_argument('--margin', type=float, default=4., help="margin gamma")
parser.add_argument('--trade-off', default=1., type=float,
help='the trade-off hyper-parameter for transfer loss')
# training parameters
parser.add_argument('-b', '--batch-size', default=32, type=int,
metavar='N',
help='mini-batch size (default: 32)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0.0001, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--lr-gamma', default=0.0001, type=float)
parser.add_argument('--lr-decay', default=0.75, type=float, help='parameter for lr scheduler')
parser.add_argument('--lr-step', default=[45, 60], type=tuple, help='parameter for lr scheduler')
parser.add_argument('--lr-factor', default=0.1, type=float, help='parameter for lr scheduler')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--pretrain_epochs', default=70, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--epochs', default=30, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-i', '--iters-per-epoch', default=500, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument("--log", type=str, default='regda',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test'],
help="When phase is 'test', only test the model.")
parser.add_argument('--debug', action="store_true",
help='In the debug mode, save images and predictions')
args = parser.parse_args()
main(args)