forked from isseu/emotion-recognition-neural-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanual_poc.py
63 lines (56 loc) · 1.65 KB
/
manual_poc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Proof-of-concept
import cv2
import sys
import os
from constants import *
from emotion_recognition import EmotionRecognition
import numpy as np
def format_image(image):
if len(image.shape) > 2 and image.shape[2] == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
faces = cv2.CascadeClassifier(CASC_PATH).detectMultiScale(
image,
scaleFactor = 1.3,
minNeighbors = 5
)
# None is we don't found an image
if not len(faces) > 0:
return None
max_area_face = faces[0]
for face in faces:
if face[2] * face[3] > max_area_face[2] * max_area_face[3]:
max_area_face = face
# Chop image to face
face = max_area_face
image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])]
# Resize image to network size
try:
image = cv2.resize(image, (SIZE_FACE, SIZE_FACE), interpolation = cv2.INTER_CUBIC) / 255.
while True:
cv2.imshow("frame", image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except Exception:
print("[+] Problem during resize")
return None
# cv2.imshow("Lol", image)
# cv2.waitKey(0)
return image
# Load Model
network = EmotionRecognition()
network.build_network()
files = []
for f in os.listdir("./"):
ext = os.path.splitext(f)[1]
if ext.lower() in [".jpg"]:
files.append(f)
for f in files:
frame = cv2.imread(f)
# Predict result with network
result = network.predict(format_image(frame))
if result is not None:
for index, emotion in enumerate(EMOTIONS):
print emotion, ': ', result[0][index]
print "Emotion: of ", f, "-", EMOTIONS[np.argmax(result[0])]