-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgff_cov.py
523 lines (387 loc) · 24.6 KB
/
gff_cov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import pandas as pd
import itertools
from itertools import *
from Bio import SeqIO
import numpy as np
import argparse
import argparse
import os, shutil
from shutil import copyfile
import fileinput
import glob
"""
Output files (11): If you only want to keep the filter p-value + cov, please uncomment the corresponding lines.
-Augustus_clustering.tab : Outut table of Augustus predicted genes after passing through the clustering filter (max pident within each cluster)
Final output with candidates genes predicted by Augustus after passing through the filter p-value:
-candidates_genes_pvalue_sp1.tab (for specie 1) (optional)
-candidates_genes_pvalue_sp2.tab (for specie 2) (optional)
-candidates_genes_pvalue_s1_sp2.tab (for both species) (all informations)
Final output with candidates genes predicted by Augustus after passing through the filter p-value and cov.
-candidates_genes_pvalue_cov_0035.tab (optional)
-candidates_genes_pvalue_cov_0042.tab (optional)
-candidates_genes_pvalue_cov_s1_sp2.tab (for both species) (all informations)
Final fasta output with candidates genes predicted by Augustus after passing through the filter p-value (this file will be usefull for the blast against the nr db step).
-candidates_aa_pvalue_0035.fasta
-candidates_aa_pvalue_0042.fasta
-candidates_dna_pvalue_0035.fasta
-candidates_dna_pvalue_0042.fasta
"""
parser = argparse.ArgumentParser(description='Merge en keep clusters with the best pident')
parser.add_argument("-d1", "--dN_dS_Busco", help="introduce the dN_dS output of Busco genes")
parser.add_argument("-d2", "--dN_dS_Augustus", help="introduce the dN_dS output of Augustus genes")
parser.add_argument("-s1", "--specie1", help="introduce the name of the specie 1")
parser.add_argument("-s2", "--specie2", help="introduce the name of the specie 2")
parser.add_argument("-c1", "--cov_sp1", help="introduce the Cov table of scaffold for the sp1")
parser.add_argument("-c2", "--cov_sp2", help="introduce the Cov table of scaffold for the sp2")
parser.add_argument("-g1", "--gff_Augustus1", help="introduce the run augustus file of specie1 trained with sp1 (gff format)")
parser.add_argument("-g2", "--gff_Augustus2", help="introduce the run augustus file of specie1 trained with sp2 (gff format)")
parser.add_argument("-g3", "--gff_Augustus3", help="introduce the run augustus file of specie2 trained with sp2 (gff format)")
parser.add_argument("-g4", "--gff_Augustus4", help="introduce the run augustus file of specie2 trained with sp1 (gff format)")
parser.add_argument("-g5", "--gff_Busco1", help="introduce the run augustus of busco for specie1 (gff format)")
parser.add_argument("-g6", "--gff_Busco2", help="introduce the run augustus of busco for specie2 (gff format)")
args = parser.parse_args()
#Ex Usage:
#python3 gff_cov.py -d1 dn_ds_Busco.out -d2 dn_ds_Augustus.out -s1 0035 -s2 0042 -c1 cov_GC_0035.tab -c2 cov_GC_0042.tab -g1 run_augustus_0035_training_0035.out -g2 run_augustus_0035_training_0042.out -g3 run_augustus_0042_training_0042.out -g4 run_augustus_0042_training_0035.out -g5 gff_Busco_0035 -g6 gff_Busco_0042
# Variable that stores fasta sequences
dn_ds_Busco=args.dN_dS_Busco
dn_ds_Augustus=args.dN_dS_Augustus
specie1=args.specie1 #espèce 1
specie2=args.specie2 #espèce 2
gff_sp2_sp2=args.gff_Augustus3
gff_sp1_sp2=args.gff_Augustus2
gff_sp2_sp1=args.gff_Augustus4
gff_sp1_sp1=args.gff_Augustus1
cov_sp1=args.cov_sp1
cov_sp2=args.cov_sp2
gff_Busco_sp1=args.gff_Busco1
gff_Busco_sp2=args.gff_Busco2
"""
==============================================================================================================
=. PREMIERE PARTIE
=
=. # Script qui prend en entrée la distribution des distances synonymes dN des gènes Busco (hypothèse nulle)
=. # Se base sur un seuil d'acceptation de transfert horizontal à 1% des dN des gènes Busco
=. # Crée ensuite un fichier fasta acide aminé de ces séquences par espèce pour ensuite pouvoir les blaster
=
==============================================================================================================
output_aa_file = open(specie1+'_aa.fasta','w')
output_aa_file2 = open(specie2+'_aa.fasta','w')
output_dna_file = open(specie1'+_dna.fasta','w')
output_dna_file2 = open(specie2+'_dna.fasta','w')
"""
#Count number of sequences present after clustering
records = SeqIO.index("clusters1_aa.fasta", "fasta")
count_seq_after_cluster=len(records)
######################################
# I. FILTERING -- P-value. #
######################################
#Open the Augustus predicted genes dataframe with distances informations
dN_dS_not_filtred=pd.read_table(dn_ds_Augustus,header=0,sep="\t")
#Open the Busco dataframe with distances informations
dS_busco=pd.read_table(dn_ds_Busco,header=0,sep=";")
dS_busco.columns = dS_busco.columns.str.replace('\s+', '_') # in case there are multiple white spaces
dS_busco = dS_busco.drop(dS_busco[dS_busco.Mean_length < 750].index)
#p-value at 1%
p_value=dS_busco['dS'].quantile(q=0.01)
#Creat a subset containing candidates genes below p-value of 1%
dN_dS_not_filtred['dS'] < p_value
candidate_df=dN_dS_not_filtred[dN_dS_not_filtred['dS'] < p_value]
#candidate_df.to_csv("candidate_df",sep='\t')
#get the number of candidates genes under the p-value threshold
#print(candidate_df.shape)
#candidate_df=pd.read_table("candidate_df",header=0,sep="\t")
#Allow to transfomr the dN_dS file (one columns contains only sequences of sp1 and the other contains sequences of sp2), sorting GC and other informationq as well.
candidate_df.Length_seq_1, candidate_df.Length_seq_2 = np.where(candidate_df.seq1_id.str.contains('_'+specie1+'_'), candidate_df.Length_seq_1, candidate_df.Length_seq_2), np.where(candidate_df.seq1_id.str.contains('_'+specie2+'_'), candidate_df.Length_seq_1, candidate_df.Length_seq_2)
candidate_df.GC_content_seq1, candidate_df.GC_content_seq2 = np.where(candidate_df.seq1_id.str.contains('_'+specie1+'_'), candidate_df.GC_content_seq1, candidate_df.GC_content_seq2), np.where(candidate_df.seq1_id.str.contains('_'+specie2+'_'), candidate_df.GC_content_seq1, candidate_df.GC_content_seq2)
candidate_df.seq1_id, candidate_df.seq2_id = np.where(candidate_df.seq1_id.str.contains('_'+specie1+'_'), candidate_df.seq1_id, candidate_df.seq2_id), np.where(candidate_df.seq1_id.str.contains('_'+specie2+'_'), candidate_df.seq1_id, candidate_df.seq2_id)
#candidate_df.to_csv("dn_ds.out_test",sep='\t')
#Load the sequences comming from the cluster filtering and range them into ordered files per species
#candidate_df=pd.read_table("dn_ds.out_test",header=0,sep="\t")
#Creat a fasta file for each sequence species to perform a blast
seq1_id=candidate_df["seq1_id"]
seq2_id=candidate_df["seq2_id"]
#Creat new fasta file with sequence passed through p_value filter:
output_aa_sp1 = open('candidates_aa_pvalue_'+specie1+'.fasta','w')
output_aa_sp2 = open('candidates_aa_pvalue_'+specie2+'.fasta','w')
output_dna_sp1 = open('candidates_dna_pvalue_'+specie1+'.fasta','w')
output_dna_sp2 = open('candidates_dna_pvalue_'+specie2+'.fasta','w')
#Open the fasta file with all sequences
record_dict_sp1_aa = SeqIO.to_dict(SeqIO.parse("clusters1_aa.fasta", "fasta"))
record_dict_sp2_aa = SeqIO.to_dict(SeqIO.parse("clusters2_aa.fasta", "fasta"))
record_dict_sp1_dna = SeqIO.to_dict(SeqIO.parse("clusters1_dna.fasta", "fasta"))
record_dict_sp2_dna = SeqIO.to_dict(SeqIO.parse("clusters2_dna.fasta", "fasta"))
#Amino Acide
for i in candidate_df["seq1_id"]:
if i in record_dict_sp1_aa:
SeqIO.write(record_dict_sp1_aa[i], output_aa_sp1, 'fasta')
elif i in record_dict_sp2_aa:
SeqIO.write(record_dict_sp2_aa[i], output_aa_sp1, 'fasta')
for i in candidate_df["seq2_id"]:
if i in record_dict_sp1_aa:
SeqIO.write(record_dict_sp1_aa[i], output_aa_sp2, 'fasta')
elif i in record_dict_sp2_aa:
SeqIO.write(record_dict_sp2_aa[i], output_aa_sp2, 'fasta')
#DNA
for i in candidate_df["seq1_id"]:
if i in record_dict_sp1_dna:
SeqIO.write(record_dict_sp1_dna[i], output_dna_sp1, 'fasta')
elif i in record_dict_sp2_aa:
SeqIO.write(record_dict_sp2_dna[i], output_dna_sp1, 'fasta')
for i in candidate_df["seq2_id"]:
if i in record_dict_sp1_dna:
SeqIO.write(record_dict_sp1_dna[i], output_dna_sp2, 'fasta')
elif i in record_dict_sp2_aa:
SeqIO.write(record_dict_sp2_dna[i], output_dna_sp2, 'fasta')
output_aa_sp1.close()
output_aa_sp2.close()
output_dna_sp1.close()
output_dna_sp2.close()
#Count how many sequences are filtred after p-value:
count_seq_after_p_value=0
for record in SeqIO.parse("candidates_aa_pvalue_"+specie2+".fasta", "fasta"):
count_seq_after_p_value+=1
count_seq_after_p_value2=0
for record in SeqIO.parse("candidates_aa_pvalue_"+specie1+".fasta", "fasta"):
count_seq_after_p_value2+=1
"""
===========================================================================
=
=. DEUXIEME PARTIE
=
=. Permet de récupérer le séquences après filtre de couverture et GC
=
=
=============================================================================
"""
####################################################################################################
#Getting augustus informations such as the scaffold number where are present the candidates genes #
####################################################################################################
#sequences of specie sp2_sp2
liste=["scaf_name","source","feature","start","end","score","strand","frame","gene"]
gene_info=pd.read_csv(gff_sp2_sp2,comment='"',sep='\s+',header=None,names=liste)
scaf_info=pd.read_csv(cov_sp2,sep='\t')
scaf_info.scaf_name = scaf_info.scaf_name.str.replace(' ', '_')
ggf_sp2_sp2=pd.merge(gene_info, scaf_info, on='scaf_name')
ggf_sp2_sp2=ggf_sp2_sp2[ggf_sp2_sp2.feature == 'transcript']
#sequences of specie sp2_sp1
liste=["scaf_name","source","feature","start","end","score","strand","frame","gene"]
gene_info=pd.read_csv(gff_sp2_sp1,comment='"',sep='\s+',header=None,names=liste)
scaf_info=pd.read_csv(cov_sp2,sep='\t')
scaf_info.scaf_name = scaf_info.scaf_name.str.replace(' ', '_')
ggf_sp2_sp1=pd.merge(gene_info, scaf_info, on='scaf_name')
ggf_sp2_sp1=ggf_sp2_sp1[ggf_sp2_sp1.feature == 'transcript']
#sequences of specie sp1_sp1
liste=["scaf_name","source","feature","start","end","score","strand","frame","gene"]
gene_info=pd.read_csv(gff_sp1_sp1,comment='"',sep='\s+',header=None,names=liste)
scaf_info=pd.read_csv(cov_sp1,sep='\t')
scaf_info.scaf_name = scaf_info.scaf_name.str.replace(' ', '_')
ggf_sp1_sp1=pd.merge(gene_info, scaf_info, on='scaf_name')
ggf_sp1_sp1=ggf_sp1_sp1[ggf_sp1_sp1.feature == 'transcript']
#sequences of specie sp1_sp2
liste=["scaf_name","source","feature","start","end","score","strand","frame","gene"]
gene_info=pd.read_csv(gff_sp1_sp2,comment='"',sep='\s+',header=None,names=liste)
scaf_info=pd.read_csv(cov_sp1,sep='\t')
scaf_info.scaf_name = scaf_info.scaf_name.str.replace(' ', '_')
ggf_sp1_sp2=pd.merge(gene_info, scaf_info, on='scaf_name')
ggf_sp1_sp2=ggf_sp1_sp2[ggf_sp1_sp2.feature == 'transcript']
####################################################################################################
#Getting augustus informations such as the scaffold number where are present the candidates genes #
####################################################################################################
#Busco sequences of specie sp1
liste=["scaf_name","source","feature","start","end","score","strand","frame","gene"]
gene_info_sp1=pd.read_csv(gff_Busco_sp1,comment='"',sep='\s+',header=None,names=liste)
scaf_info_sp1=pd.read_csv(cov_sp1,sep='\t')
scaf_info_sp1.scaf_name = scaf_info_sp1.scaf_name.str.replace(' ', '_')
gff_Busco_sp1=pd.merge(gene_info_sp1, scaf_info_sp1, on='scaf_name')
gff_Busco_sp1=gff_Busco_sp1[gff_Busco_sp1.feature == 'transcript']
gff_Busco_sp1= gff_Busco_sp1[["gene","scaf_name","start","end","cov_depth","GC"]]
#gff_Busco_sp1.to_csv("Busco_"+specie1+"_cov_depth.txt",sep='\t')
#Busco sequences of specie sp2
liste=["scaf_name","source","feature","start","end","score","strand","frame","gene"]
gene_info_sp2=pd.read_csv(gff_Busco_sp2,comment='"',sep='\s+',header=None,names=liste)
scaf_info_sp2=pd.read_csv(cov_sp2,sep='\t')
scaf_info_sp2.scaf_name = scaf_info_sp2.scaf_name.str.replace(' ', '_')
gff_Busco_sp2=pd.merge(gene_info_sp2, scaf_info_sp2, on='scaf_name')
gff_Busco_sp2=gff_Busco_sp2[gff_Busco_sp2.feature == 'transcript']
gff_Busco_sp2=gff_Busco_sp2.drop(columns=["source","feature","score","strand","frame"])
gff_Busco_sp2= gff_Busco_sp2[["gene","scaf_name","start","end","cov_depth","GC"]]
#gff_Busco_sp2.to_csv("Busco_"+specie2+"_cov_depth.txt",sep='\t')
#################################################################################################
#. Getting the min and max distribution of busco "Gc and cov-depth" desired (5% quantile). #
#################################################################################################
#If you want to add a GC filtering (but be carefull, we are looking for HGT, then the GC content of a recent transfered gene won't have the same GC as the host genome)
"""Busco_sp2_GC_max=gff_Busco_sp2['GC'].quantile(q=0.975)
#print("Busco_sp2_GC_max: ",Busco_sp2_GC_max)
Busco_sp2_GC_min=gff_Busco_sp2['GC'].quantile(q=0.025)
#print("Busco_sp2_GC_min: ",Busco_sp2_GC_min)
Busco_sp2_GC_mean=gff_Busco_sp2['GC'].mean()
#print("Busco_sp2_GC_mean: ",Busco_sp2_GC_mean)
Busco_sp1_GC_max=gff_Busco_sp1['GC'].quantile(q=0.975)
#print("Busco_sp1_GC_max: ",Busco_sp1_GC_max)
Busco_sp1_GC_min=gff_Busco_sp1['GC'].quantile(q=0.025)
#print("Busco_sp1_GC_min: ",Busco_sp1_GC_min)
Busco_sp1_GC_mean=gff_Busco_sp1['GC'].mean()
#print("Busco_sp1_GC_mean: ",Busco_sp1_GC_mean)"""
#Cov-depth filtering
Busco_sp2_cov_max=gff_Busco_sp2['cov_depth'].quantile(q=0.975)
#print("Busco_sp2_cov_max: ",Busco_sp2_cov_max)
Busco_sp2_cov_min=gff_Busco_sp2['cov_depth'].quantile(q=0.025)
#print("Busco_sp2_cov_min: ",Busco_sp2_cov_min)
Busco_sp2_cov_mean=gff_Busco_sp2['cov_depth'].mean()
#print("Busco_sp2_cov_mean: ",Busco_sp2_cov_mean)
Busco_sp1_cov_max=gff_Busco_sp1['cov_depth'].quantile(q=0.975)
#print("Busco_sp1_cov_max: ",Busco_sp1_cov_max)
Busco_sp1_cov_min=gff_Busco_sp1['cov_depth'].quantile(q=0.025)
#print("Busco_sp1_cov_min: ",Busco_sp1_cov_min)
Busco_sp1_cov_mean=gff_Busco_sp1['cov_depth'].mean()
#print("Busco_sp1_cov_mean: ",Busco_sp1_cov_mean)
#The following part is necessary only if you have renamed you augusuts predicted genes into their Busco names
"""
#Correct busco name to augustus name in candidates transfered genes
sp1_aa="candidates_aa_sp1.fasta"
sp1_aa_corrected="candidates_aa_sp1_corrected.fasta"
sp2_aa="candidates_aa_sp2.fasta"
sp2_aa_corrected="candidates_aa_sp2_corrected.fasta"
with open(sp2_aa) as original, open(sp2_aa_corrected, 'w') as corrected:
records = SeqIO.parse(sp2_aa, 'fasta')
for record in records:
if record.id == "EOG090X0IUZ_sp1_sp1_1":
print(record.id)
record.id = "g7044.t1_sp1_sp1"
record.description = "g7044.t1_sp1_sp1"
SeqIO.write(record, corrected, 'fasta')
with open(sp1_aa) as original, open(sp1_aa_corrected, 'w') as corrected:
records = SeqIO.parse(sp1_aa, 'fasta')
for record in records:
if record.id == "EOG090X0IUZ_sp2_sp2_1":
print(record.id)
record.id = "g5713.t1_sp2_sp2"
record.description = "g5713.t1_sp2_sp2"
if record.id == "EOG090X01YQ_sp2_sp2_2":
print(record.id)
record.id = "g13545.t1_sp2_sp2"
record.description = "g13545.t1_sp2_sp2" # <- Add this line
SeqIO.write(record, corrected, 'fasta')
"""
#Next part allow to creat 2 dataframes with informations such : [gene,scaf_name,start,end,cov_depth,GC], one df for each specie c"andidates_genes_sp1" and "candidates_genes_sp2".
# Then it also concatenate those two dataframe into one "candidates_genes"
df2_sp1 = pd.DataFrame(columns=("scaf_name","source","feature","start","end","score","strand","frame","gene"))
df2_sp2 = pd.DataFrame(columns=("scaf_name","source","feature","start","end","score","strand","frame","gene"))
#####adding to dataframe informations about cov percentage
for record in SeqIO.parse("candidates_aa_pvalue_"+specie1+".fasta", 'fasta'): #pars the dataframe
gene_name=str(record.id.split('_', maxsplit=1)[0])
if(record.id[record.id.index("_"):]) == "_"+specie1+"_"+specie1: #if the number_number_ = _sp1_sp1, then,
df2_sp1=df2_sp1.append(ggf_sp1_sp1[ggf_sp1_sp1['gene']== gene_name])
df2_sp1.loc[df2_sp1['gene'] == gene_name, 'gene'] += "_"+specie1+"_"+specie1
if(record.id[record.id.index("_"):]) == "_"+specie1+"_"+specie2: #if the number_number_ = _sp1_sp1, then,
df2_sp1=df2_sp1.append(ggf_sp1_sp2[ggf_sp1_sp2['gene']== gene_name])
df2_sp1.loc[df2_sp1['gene'] == gene_name, 'gene'] += "_"+specie1+"_"+specie2
if(record.id[record.id.index("_"):]) == "_"+specie2+"_"+specie1: #if the number_number_ = _sp1_sp1, then,
df2_sp2=df2_sp2.append(ggf_sp2_sp1[ggf_sp2_sp1['gene']== gene_name])
df2_sp2.loc[df2_sp2['gene'] == gene_name, 'gene'] += "_"+specie2+"_"+specie1
if(record.id[record.id.index("_"):]) == "_"+specie2+"_"+specie2: #if the number_number_ = _sp1_sp1, then,
df2_sp2=df2_sp2.append(ggf_sp2_sp2[ggf_sp2_sp2['gene']== gene_name])
df2_sp2.loc[df2_sp2['gene'] == gene_name, 'gene'] += "_"+specie2+"_"+specie2
#####adding to dataframe informations about cov percentage
for record in SeqIO.parse("candidates_aa_pvalue_"+specie2+".fasta", 'fasta'): #pars the dataframe
gene_name=str(record.id.split('_', maxsplit=1)[0])
if(record.id[record.id.index("_"):]) == "_"+specie1+"_"+specie1: #if the number_number_ = _sp1_sp1, then,
df2_sp1=df2_sp1.append(ggf_sp1_sp1[ggf_sp1_sp1['gene']== gene_name])
df2_sp1.loc[df2_sp1['gene'] == gene_name, 'gene'] += "_"+specie1+"_"+specie1
if(record.id[record.id.index("_"):]) == "_"+specie1+"_"+specie2: #if the number_number_ = _sp1_sp1, then,
df2_sp1=df2_sp1.append(ggf_sp1_sp2[ggf_sp1_sp2['gene']== gene_name])
df2_sp1.loc[df2_sp1['gene'] == gene_name, 'gene'] += "_"+specie1+"_"+specie2
if(record.id[record.id.index("_"):]) == "_"+specie2+"_"+specie1: #if the number_number_ = _sp1_sp1, then,
df2_sp2=df2_sp2.append(ggf_sp2_sp1[ggf_sp2_sp1['gene']== gene_name])
df2_sp2.loc[df2_sp2['gene'] == gene_name, 'gene'] += "_"+specie2+"_"+specie1
if(record.id[record.id.index("_"):]) == "_"+specie2+"_"+specie2: #if the number_number_ = _sp1_sp1, then,
df2_sp2=df2_sp2.append(ggf_sp2_sp2[ggf_sp2_sp2['gene']== gene_name])
df2_sp2.loc[df2_sp2['gene'] == gene_name, 'gene'] += "_"+specie2+"_"+specie2
df2_sp2=df2_sp2.drop(columns=["source","feature","score","strand","frame"])
df2_sp2= df2_sp2[["gene","scaf_name","start","end","cov_depth","GC"]]
df2_sp1=df2_sp1.drop(columns=["source","feature","score","strand","frame"])
df2_sp1= df2_sp1[["gene","scaf_name","start","end","cov_depth","GC"]]
df2_sp2.to_csv("candidates_genes_pvalue_"+specie2+".tab",sep='\t')
df2_sp1.to_csv("candidates_genes_pvalue_"+specie1+".tab",sep='\t')
#Merge the two dataframe
df2=df2_sp1.append(df2_sp2)
#Creat a new dataframe with all informations of these paired sequences afetr a p-value filter:
augustus_cluster=pd.read_table("Augustus_clustering.tab",header=0,sep='\t')
record_dict_sp1 = SeqIO.to_dict(SeqIO.parse('candidates_aa_pvalue_'+specie1+'.fasta', "fasta"))
dataframe = augustus_cluster[augustus_cluster['seq1_id'].isin(record_dict_sp1) | augustus_cluster['seq2_id'].isin(record_dict_sp1)]
cov_tab_sp1=pd.read_table("candidates_genes_pvalue_"+specie1+".tab",header=0,sep='\t')
cov_tab_sp2=pd.read_table("candidates_genes_pvalue_"+specie2+".tab",header=0,sep='\t')
data = dataframe.merge(cov_tab_sp1, left_on='seq1_id', right_on='gene')
data = data.merge(cov_tab_sp2, left_on='seq2_id', right_on='gene')
data=data.drop(columns=["Unnamed: 0_x", "Unnamed: 0.1", "Unnamed: 0_y", "gene_x", 'Unnamed: 0','gene_x','start_y','end_x','start_x','end_y','gene_y','GC_x'])
data.columns = ['seq1_id','seq2_id','dN','dS','Dist_third_pos','Dist_brute',
'Length_seq_1','Length_seq_2','GC_content_seq1','GC_content_seq2',
'Mean_length','scaf_name_seq1','cov_depth_seq1','GC_scaff_seq1','scaf_name_seq2','cov_depth_seq2','GC_scaff_seq2']
data= data[['seq1_id','seq2_id','dN','dS','Dist_third_pos','Dist_brute','Mean_length',
'Length_seq_1','Length_seq_2','GC_content_seq1','GC_content_seq2','scaf_name_seq1','GC_scaff_seq1','cov_depth_seq1','scaf_name_seq2','GC_scaff_seq2','cov_depth_seq2']]
data.to_csv("candidates_genes_pvalue_"+specie1+"_"+specie2+".tab",sep='\t')
######################################
# II FILTERING -- COV -- GC. #
######################################
#Filtering on specie 2
candidates_sp2=pd.read_csv("candidates_genes_pvalue_"+specie2+".tab",sep='\t')
candidates_sp2 = candidates_sp2[candidates_sp2.cov_depth < Busco_sp2_cov_max]
candidates_sp2 = candidates_sp2[candidates_sp2.cov_depth > Busco_sp2_cov_min]
#candidates_sp2 = candidates_sp2[candidates_sp2.GC < Busco_sp2_GC_max]
#candidates_sp2 = candidates_sp2[candidates_sp2.GC > Busco_sp2_GC_min]
candidates_sp2.to_csv("candidates_genes_pvalue_cov_"+specie2+".tab",sep='\t')
#Fitering on specie 1
candidates_sp1=pd.read_csv("candidates_genes_pvalue_"+specie1+".tab",sep='\t')
candidates_sp1 = candidates_sp1[candidates_sp1.cov_depth < Busco_sp1_cov_max]
candidates_sp1 = candidates_sp1[candidates_sp1.cov_depth > Busco_sp1_cov_min]
#candidates_sp1 = candidates_sp1[candidates_sp1.GC < Busco_sp1_GC_max]
#candidates_sp1 = candidates_sp1[candidates_sp1.GC > Busco_sp1_GC_min]
candidates_sp1.to_csv("candidates_genes_pvalue_cov_"+specie1+".tab",sep='\t')
#################################
#. Sorte the dN_dS file #
#################################
#Open the dataframe with distances informations
dN_dS=pd.read_table(dn_ds_Augustus,header=0,sep="\t")
#Allow to transfomr the dN_dS file (one columns contains only sequences of sp1 and the other contains sequences of sp2), sorting GC and other informationq as well.
dN_dS.Length_seq_1, dN_dS.Length_seq_2 = np.where(dN_dS.seq1_id.str.contains('_'+specie1+'_'), dN_dS.Length_seq_1, dN_dS.Length_seq_2), np.where(dN_dS.seq1_id.str.contains('_'+specie2+'_'), dN_dS.Length_seq_1, dN_dS.Length_seq_2)
dN_dS.GC_content_seq1, dN_dS.GC_content_seq2 = np.where(dN_dS.seq1_id.str.contains('_'+specie1+'_'), dN_dS.GC_content_seq1, dN_dS.GC_content_seq2), np.where(dN_dS.seq1_id.str.contains('_'+specie2+'_'), dN_dS.GC_content_seq1, dN_dS.GC_content_seq2)
dN_dS.seq1_id, dN_dS.seq2_id = np.where(dN_dS.seq1_id.str.contains('_'+specie1+'_'), dN_dS.seq1_id, dN_dS.seq2_id), np.where(dN_dS.seq1_id.str.contains('_'+specie2+'_'), dN_dS.seq1_id, dN_dS.seq2_id)
dN_dS.to_csv("Augustus_clustering.tab",sep='\t')
#_________________________
#Because in a pairs, one seq can passe the filter while the other does not, it is important to keep only paired genes wich are keeping on the two previous filtering:
gene_name_sp1=[]
for i in candidates_sp1["gene"]:
gene_name_sp1.append(i)
gene_name_sp2=[]
for i in candidates_sp2["gene"]:
gene_name_sp2.append(i)
df4 = pd.DataFrame(columns=dN_dS.columns)
for index, row in dN_dS.iterrows():
if row['seq1_id'] in gene_name_sp1 and row['seq2_id'] in gene_name_sp2:
df4 = df4.append(row, ignore_index=True)
candidates_sp1=[]
for i in df4["seq1_id"]:
candidates_sp1.append(i)
candidates_sp1 = pd.DataFrame({'seq1_id':candidates_sp1})
#candidates_sp1.to_csv("conserved_candidates_"+specie1,sep='\t')
candidates_sp2=[]
for i in df4["seq2_id"]:
candidates_sp2.append(i)
candidates_sp2 = pd.DataFrame({'seq2_id':candidates_sp2})
#candidates_sp2.to_csv("conserved_candidates_"+specie2,sep='\t')
#Get output after filtering
Dataframe_HGT_candidates_filtered=pd.merge(dN_dS, df4, how='inner', on=['seq1_id', 'seq2_id'])
Dataframe_HGT_candidates_filtered.to_csv("candidates_genes_pvalue_cov_"+specie1+"_"+specie2+".tab",sep='\t')
#If you want to keep these files, uncomment this code
os.remove("candidates_genes_pvalue_"+specie2+".tab")
os.remove("candidates_genes_pvalue_"+specie1+".tab")
os.remove("candidates_genes_pvalue_cov_"+specie2+".tab")
os.remove("candidates_genes_pvalue_cov_"+specie1+".tab")
print(" =====================================")
print(" =. Criteria retained : ","\n","=====================================","\n",
"Max coverage",specie2,": ",round(Busco_sp2_cov_max,3),"\n","Min coverage",specie2,": ",round(Busco_sp2_cov_min,3),"\n","Max coverage",specie1,": "
,round(Busco_sp1_cov_max,3),"\n","Min coverage",specie1,": ",round(Busco_sp1_cov_min,3),"\n")
print("Number of sequence pairs after clustering silix: ", count_seq_after_cluster)
print("Number of sequence pairs after p-value threshold of", p_value," :", count_seq_after_p_value ,"(Sequences that will be analyzed against the nr database)")
print("Number of sequences after purification 'cover':","\n", "-sp_",specie2,":", candidates_sp2.shape[0],"\n","-sp_",specie1,":",candidates_sp1.shape[0],"\n","-total:", candidates_sp2.shape[0]+candidates_sp1.shape[0])
print("Number of pairs of sequences after purification 'cover':", Dataframe_HGT_candidates_filtered.shape[0])