-
Notifications
You must be signed in to change notification settings - Fork 160
/
aligner_sw_driver.h
537 lines (492 loc) · 20 KB
/
aligner_sw_driver.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
* Copyright 2011, Ben Langmead <[email protected]>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* aligner_sw_driver.h
*
* REDUNDANT SEED HITS
*
* We say that two seed hits are redundant if they trigger identical
* seed-extend dynamic programming problems. Put another way, they both lie on
* the same diagonal of the overall read/reference dynamic programming matrix.
* Detecting redundant seed hits is simple when the seed hits are ungapped. We
* do this after offset resolution but before the offset is converted to genome
* coordinates (see uses of the seenDiags1_/seenDiags2_ fields for examples).
*
* REDUNDANT ALIGNMENTS
*
* In an unpaired context, we say that two alignments are redundant if they
* share any cells in the global DP table. Roughly speaking, this is like
* saying that two alignments are redundant if any read character aligns to the
* same reference character (same reference sequence, same strand, same offset)
* in both alignments.
*
* In a paired-end context, we say that two paired-end alignments are redundant
* if the mate #1s are redundant and the mate #2s are redundant.
*
* How do we enforce this? In the unpaired context, this is relatively simple:
* the cells from each alignment are checked against a set containing all cells
* from all previous alignments. Given a new alignment, for each cell in the
* new alignment we check whether it is in the set. If there is any overlap,
* the new alignment is rejected as redundant. Otherwise, the new alignment is
* accepted and its cells are added to the set.
*
* Enforcement in a paired context is a little trickier. Consider the
* following approaches:
*
* 1. Skip anchors that are redundant with any previous anchor or opposite
* alignment. This is sufficient to ensure no two concordant alignments
* found are redundant.
*
* 2. Same as scheme 1, but with a "transitive closure" scheme for finding all
* concordant pairs in the vicinity of an anchor. Consider the AB/AC
* scenario from the previous paragraph. If B is the anchor alignment, we
* will find AB but not AC. But under this scheme, once we find AB we then
* let B be a new anchor and immediately look for its opposites. Likewise,
* if we find any opposite, we make them anchors and continue searching. We
* don't stop searching until every opposite is used as an anchor.
*
* 3. Skip anchors that are redundant with any previous anchor alignment (but
* allow anchors that are redundant with previous opposite alignments).
* This isn't sufficient to avoid redundant concordant alignments. To avoid
* redundant concordants, we need an additional procedure that checks each
* new concordant alignment one-by-one against a list of previous concordant
* alignments to see if it is redundant.
*
* We take approach 1.
*/
#ifndef ALIGNER_SW_DRIVER_H_
#define ALIGNER_SW_DRIVER_H_
#include <utility>
#include "ds.h"
#include "aligner_seed.h"
#include "aligner_sw.h"
#include "aligner_cache.h"
#include "reference.h"
#include "group_walk.h"
#include "bt2_idx.h"
#include "mem_ids.h"
#include "aln_sink.h"
#include "pe.h"
#include "ival_list.h"
#include "simple_func.h"
#include "random_util.h"
struct SeedPos {
SeedPos() : fw(false), offidx(0), rdoff(0), seedlen(0) { }
SeedPos(
bool fw_,
uint32_t offidx_,
uint32_t rdoff_,
uint32_t seedlen_)
{
init(fw_, offidx_, rdoff_, seedlen_);
}
void init(
bool fw_,
uint32_t offidx_,
uint32_t rdoff_,
uint32_t seedlen_)
{
fw = fw_;
offidx = offidx_;
rdoff = rdoff_;
seedlen = seedlen_;
}
bool operator<(const SeedPos& o) const {
if(offidx < o.offidx) return true;
if(offidx > o.offidx) return false;
if(rdoff < o.rdoff) return true;
if(rdoff > o.rdoff) return false;
if(seedlen < o.seedlen) return true;
if(seedlen > o.seedlen) return false;
if(fw && !o.fw) return true;
if(!fw && o.fw) return false;
return false;
}
bool operator>(const SeedPos& o) const {
if(offidx < o.offidx) return false;
if(offidx > o.offidx) return true;
if(rdoff < o.rdoff) return false;
if(rdoff > o.rdoff) return true;
if(seedlen < o.seedlen) return false;
if(seedlen > o.seedlen) return true;
if(fw && !o.fw) return false;
if(!fw && o.fw) return true;
return false;
}
bool operator==(const SeedPos& o) const {
return fw == o.fw && offidx == o.offidx &&
rdoff == o.rdoff && seedlen == o.seedlen;
}
bool fw;
uint32_t offidx;
uint32_t rdoff;
uint32_t seedlen;
};
/**
* An SATuple along with the associated seed position.
*/
struct SATupleAndPos {
SATuple sat; // result for this seed hit
SeedPos pos; // seed position that yielded the range this was taken from
size_t origSz; // size of range this was taken from
size_t nlex; // # position we can extend seed hit to left w/o edit
size_t nrex; // # position we can extend seed hit to right w/o edit
bool operator<(const SATupleAndPos& o) const {
if(sat < o.sat) return true;
if(sat > o.sat) return false;
return pos < o.pos;
}
bool operator==(const SATupleAndPos& o) const {
return sat == o.sat && pos == o.pos;
}
};
/**
* Encapsulates the weighted random sampling scheme we want to use to pick
* which seed hit range to sample a row from.
*/
class RowSampler {
public:
RowSampler(int cat = 0) : elim_(cat), masses_(cat) {
mass_ = 0.0f;
}
/**
* Initialze sampler with respect to a range of elements in a list of
* SATupleAndPos's.
*/
void init(
const EList<SATupleAndPos, 16>& salist,
size_t sai,
size_t saf,
bool lensq, // whether to square the numerator, which = extended length
bool szsq) // whether to square denominator, which =
{
assert_gt(saf, sai);
elim_.resize(saf - sai);
elim_.fill(false);
// Initialize mass
mass_ = 0.0f;
masses_.resize(saf - sai);
for(size_t i = sai; i < saf; i++) {
size_t len = salist[i].nlex + salist[i].nrex + 1; // + salist[i].sat.key.len;
double num = (double)len;
if(lensq) {
num *= num;
}
double denom = (double)salist[i].sat.size();
if(szsq) {
denom *= denom;
}
masses_[i - sai] = num / denom;
mass_ += masses_[i - sai];
}
}
/**
* Caller is indicating that the bin at index i is exhausted and we should
* exclude it from our sampling from now on.
*/
void finishedRange(size_t i) {
assert_lt(i, masses_.size());
elim_[i] = true;
mass_ -= masses_[i];
}
/**
* Sample randomly from the mass.
*/
size_t next(RandomSource& rnd) {
// Throw the dart
double rd = rnd.nextFloat() * mass_;
double mass_sofar = 0.0f;
size_t sz = masses_.size();
size_t last_unelim = std::numeric_limits<size_t>::max();
for(size_t i = 0; i < sz; i++) {
if(!elim_[i]) {
last_unelim = i;
mass_sofar += masses_[i];
if(rd < mass_sofar) {
// This is the one we hit
return i;
}
}
}
assert_neq(std::numeric_limits<size_t>::max(), last_unelim);
return last_unelim;
}
protected:
double mass_; // total probability mass to throw darts at
EList<bool> elim_; // whether the range is eliminated
EList<double> masses_; // mass of each range
};
/**
* Return values from extendSeeds and extendSeedsPaired.
*/
enum {
// All end-to-end and seed hits were examined
// The policy does not need us to look any further
EXTEND_EXHAUSTED_CANDIDATES = 1,
EXTEND_POLICY_FULFILLED,
// We stopped because we reached a point where the only remaining
// alignments of interest have perfect scores, but we already investigated
// perfect alignments
EXTEND_PERFECT_SCORE,
// We stopped because we ran up against a limit on how much work we should
// do for one set of seed ranges, e.g. the limit on number of consecutive
// unproductive DP extensions
EXTEND_EXCEEDED_SOFT_LIMIT,
// We stopped because we ran up against a limit on how much work we should
// do for overall before giving up on a mate
EXTEND_EXCEEDED_HARD_LIMIT
};
/**
* Data structure encapsulating a range that's been extended out in two
* directions.
*/
struct ExtendRange {
void init(size_t off_, size_t len_, size_t sz_) {
off = off_; len = len_; sz = sz_;
}
size_t off; // offset of extended region
size_t len; // length between extremes of extended region
size_t sz; // # of elements in SA range
};
class SwDriver {
typedef PList<TIndexOffU, CACHE_PAGE_SZ> TSAList;
public:
SwDriver(size_t bytes) :
satups_(DP_CAT),
gws_(DP_CAT),
seenDiags1_(DP_CAT),
seenDiags2_(DP_CAT),
redAnchor_(DP_CAT),
redMate1_(DP_CAT),
redMate2_(DP_CAT),
pool_(bytes, CACHE_PAGE_SZ, DP_CAT),
salistEe_(DP_CAT),
gwstate_(GW_CAT) { }
/**
* Given a collection of SeedHits for a single read, extend seed alignments
* into full alignments. Where possible, try to avoid redundant offset
* lookups and dynamic programming problems. Optionally report alignments
* to a AlnSinkWrap object as they are discovered.
*
* If 'reportImmediately' is true, returns true iff a call to
* mhs->report() returned true (indicating that the reporting
* policy is satisfied and we can stop). Otherwise, returns false.
*/
int extendSeeds(
Read& rd, // read to align
bool mate1, // true iff rd is mate #1
SeedResults& sh, // seed hits to extend into full alignments
const Ebwt& ebwtFw, // BWT
const Ebwt* ebwtBw, // BWT'
const BitPairReference& ref, // Reference strings
SwAligner& swa, // dynamic programming aligner
const Scoring& sc, // scoring scheme
int seedmms, // # mismatches allowed in seed
int seedlen, // length of seed
int seedival, // interval between seeds
TAlScore& minsc, // minimum score for anchor
int nceil, // maximum # Ns permitted in ref portion
size_t maxhalf, // maximum width on one side of DP table
bool doUngapped, // do ungapped alignment
size_t maxIters, // stop after this many seed-extend loop iters
size_t maxUg, // max # ungapped extends
size_t maxDp, // max # DPs
size_t maxUgStreak, // stop after streak of this many ungap fails
size_t maxDpStreak, // stop after streak of this many dp fails
bool doExtend, // do seed extension
bool enable8, // use 8-bit SSE where possible
size_t cminlen, // use checkpointer if read longer than this
size_t cpow2, // interval between diagonals to checkpoint
bool doTri, // triangular mini-fills
int tighten, // -M score tightening mode
AlignmentCacheIface& ca, // alignment cache for seed hits
RandomSource& rnd, // pseudo-random source
WalkMetrics& wlm, // group walk left metrics
SwMetrics& swmSeed, // DP metrics for seed-extend
PerReadMetrics& prm, // per-read metrics
AlnSinkWrap* mhs, // HitSink for multiseed-style aligner
bool reportImmediately, // whether to report hits immediately to mhs
bool& exhaustive);
/**
* Given a collection of SeedHits for a read pair, extend seed
* alignments into full alignments and then look for the opposite
* mate using dynamic programming. Where possible, try to avoid
* redundant offset lookups. Optionally report alignments to a
* AlnSinkWrap object as they are discovered.
*
* If 'reportImmediately' is true, returns true iff a call to
* mhs->report() returned true (indicating that the reporting
* policy is satisfied and we can stop). Otherwise, returns false.
*/
int extendSeedsPaired(
Read& rd, // mate to align as anchor
Read& ord, // mate to align as opposite
bool anchor1, // true iff anchor mate is mate1
bool oppFilt, // true iff opposite mate was filtered out
SeedResults& sh, // seed hits for anchor
const Ebwt& ebwtFw, // BWT
const Ebwt* ebwtBw, // BWT'
const BitPairReference& ref, // Reference strings
SwAligner& swa, // dyn programming aligner for anchor
SwAligner& swao, // dyn programming aligner for opposite
const Scoring& sc, // scoring scheme
const PairedEndPolicy& pepol,// paired-end policy
int seedmms, // # mismatches allowed in seed
int seedlen, // length of seed
int seedival, // interval between seeds
TAlScore& minsc, // minimum score for anchor
TAlScore& ominsc, // minimum score for opposite
int nceil, // max # Ns permitted in ref for anchor
int onceil, // max # Ns permitted in ref for opposite
bool nofw, // don't align forward read
bool norc, // don't align revcomp read
size_t maxhalf, // maximum width on one side of DP table
bool doUngapped, // do ungapped alignment
size_t maxIters, // stop after this many seed-extend loop iters
size_t maxUg, // max # ungapped extends
size_t maxDp, // max # DPs
size_t maxEeStreak, // stop after streak of this many end-to-end fails
size_t maxUgStreak, // stop after streak of this many ungap fails
size_t maxDpStreak, // stop after streak of this many dp fails
size_t maxMateStreak, // stop seed range after N mate-find fails
bool doExtend, // do seed extension
bool enable8, // use 8-bit SSE where possible
size_t cminlen, // use checkpointer if read longer than this
size_t cpow2, // interval between diagonals to checkpoint
bool doTri, // triangular mini-fills
int tighten, // -M score tightening mode
AlignmentCacheIface& cs, // alignment cache for seed hits
RandomSource& rnd, // pseudo-random source
WalkMetrics& wlm, // group walk left metrics
SwMetrics& swmSeed, // DP metrics for seed-extend
SwMetrics& swmMate, // DP metrics for mate finidng
PerReadMetrics& prm, // per-read metrics for anchor
AlnSinkWrap* msink, // AlnSink wrapper for multiseed-style aligner
bool swMateImmediately, // whether to look for mate immediately
bool reportImmediately, // whether to report hits immediately to msink
bool discord, // look for discordant alignments?
bool mixed, // look for unpaired as well as paired alns?
bool& exhaustive);
/**
* Prepare for a new read.
*/
void nextRead(bool paired, size_t mate1len, size_t mate2len) {
redAnchor_.reset();
seenDiags1_.reset();
seenDiags2_.reset();
seedExRangeFw_[0].clear(); // mate 1 fw
seedExRangeFw_[1].clear(); // mate 2 fw
seedExRangeRc_[0].clear(); // mate 1 rc
seedExRangeRc_[1].clear(); // mate 2 rc
size_t maxlen = mate1len;
if(paired) {
redMate1_.reset();
redMate1_.init(mate1len);
redMate2_.reset();
redMate2_.init(mate2len);
if(mate2len > maxlen) {
maxlen = mate2len;
}
}
redAnchor_.init(maxlen);
}
protected:
bool eeSaTups(
const Read& rd, // read
SeedResults& sh, // seed hits to extend into full alignments
const Ebwt& ebwt, // BWT
const BitPairReference& ref, // Reference strings
RandomSource& rnd, // pseudo-random generator
WalkMetrics& wlm, // group walk left metrics
SwMetrics& swmSeed, // metrics for seed extensions
size_t& nelt_out, // out: # elements total
size_t maxelts, // max # elts to report
bool all); // report all hits?
void extend(
const Read& rd, // read
const Ebwt& ebwtFw, // Forward Bowtie index
const Ebwt* ebwtBw, // Backward Bowtie index
TIndexOffU topf, // top in fw index
TIndexOffU botf, // bot in fw index
TIndexOffU topb, // top in bw index
TIndexOffU botb, // bot in bw index
bool fw, // seed orientation
size_t off, // seed offset from 5' end
size_t len, // seed length
PerReadMetrics& prm, // per-read metrics
size_t& nlex, // # positions we can extend to left w/o edit
size_t& nrex); // # positions we can extend to right w/o edit
void prioritizeSATups(
const Read& rd, // read
SeedResults& sh, // seed hits to extend into full alignments
const Ebwt& ebwtFw, // BWT
const Ebwt* ebwtBw, // BWT'
const BitPairReference& ref, // Reference strings
int seedmms, // # seed mismatches allowed
size_t maxelt, // max elts we'll consider
bool doExtend, // extend out seeds
bool lensq, // square extended length
bool szsq, // square SA range size
size_t nsm, // if range as <= nsm elts, it's "small"
AlignmentCacheIface& ca, // alignment cache for seed hits
RandomSource& rnd, // pseudo-random generator
WalkMetrics& wlm, // group walk left metrics
PerReadMetrics& prm, // per-read metrics
size_t& nelt_out, // out: # elements total
bool all); // report all hits?
Random1toN rand_; // random number generators
EList<Random1toN, 16> rands_; // random number generators
EList<Random1toN, 16> rands2_; // random number generators
EList<EEHit, 16> eehits_; // holds end-to-end hits
EList<SATupleAndPos, 16> satpos_; // holds SATuple, SeedPos pairs
EList<SATupleAndPos, 16> satpos2_; // holds SATuple, SeedPos pairs
EList<SATuple, 16> satups_; // holds SATuples to explore elements from
EList<GroupWalk2S<TSlice, 16> > gws_; // list of GroupWalks; no particular order
EList<size_t> mateStreaks_; // mate-find fail streaks
RowSampler rowsamp_; // row sampler
// Ranges that we've extended through when extending seed hits
EList<ExtendRange> seedExRangeFw_[2];
EList<ExtendRange> seedExRangeRc_[2];
// Data structures encapsulating the diagonals that have already been used
// to seed alignment for mate 1 and mate 2.
EIvalMergeListBinned seenDiags1_;
EIvalMergeListBinned seenDiags2_;
// For weeding out redundant alignments
RedundantAlns redAnchor_; // database of cells used for anchor alignments
RedundantAlns redMate1_; // database of cells used for mate 1 alignments
RedundantAlns redMate2_; // database of cells used for mate 2 alignments
// For holding results for anchor (res_) and opposite (ores_) mates
SwResult resGap_; // temp holder for alignment result
SwResult oresGap_; // temp holder for alignment result, opp mate
SwResult resUngap_; // temp holder for ungapped alignment result
SwResult oresUngap_; // temp holder for ungap. aln. opp mate
SwResult resEe_; // temp holder for ungapped alignment result
SwResult oresEe_; // temp holder for ungap. aln. opp mate
Pool pool_; // memory pages for salistExact_
TSAList salistEe_; // PList for offsets for end-to-end hits
GroupWalkState gwstate_; // some per-thread state shared by all GroupWalks
// For AlnRes::matchesRef:
ASSERT_ONLY(SStringExpandable<char> raw_refbuf_);
ASSERT_ONLY(SStringExpandable<uint32_t> raw_destU32_);
ASSERT_ONLY(EList<bool> raw_matches_);
ASSERT_ONLY(BTDnaString tmp_rf_);
ASSERT_ONLY(BTDnaString tmp_rdseq_);
ASSERT_ONLY(BTString tmp_qseq_);
};
#endif /*ALIGNER_SW_DRIVER_H_*/