-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathnewtonCotes.h
64 lines (48 loc) · 2.1 KB
/
newtonCotes.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#ifndef NEWTONCOTES_H
#define NEWTONCOTES_H
#include <vector>
#include <functional>
double trapezoidalIntegral(double a, double b, size_t n, const std::function<double (double)> &f) {
const double width = (b-a)/n;
double trapezoidal_integral = 0;
for(size_t step = 0; step < n; step++) {
const double x1 = a + step*width;
const double x2 = a + (step+1)*width;
trapezoidal_integral += 0.5*(x2-x1)*(f(x1) + f(x2));
}
return trapezoidal_integral;
}
double simpsonIntegral(double a, double b, size_t n, const std::function<double (double)> &f) {
const double width = (b-a)/n;
double simpson_integral = 0;
for(size_t step = 0; step < n; step++) {
const double x1 = a + step*width;
const double x2 = a + (step+1)*width;
simpson_integral += (x2-x1)/6.0*(f(x1) + 4.0*f(0.5*(x1+x2)) + f(x2));
}
return simpson_integral;
}
std::vector<std::vector<double>> rombergIntegral(double a, double b, size_t n, const std::function<double (double)> &f) {
std::vector<std::vector<double>> romberg_integral(n, std::vector<double>(n));
//R(0,0) Start with trapezoidal integration with N = 1
romberg_integral.front().front() = trapezoidalIntegral(a, b, 1, f);
double h = b-a;
for(size_t step = 1; step < n; step++) {
h *= 0.5;
//R(step, 0) Improve trapezoidal integration with decreasing h
double trapezoidal_integration = 0;
size_t stepEnd = pow(2, step - 1);
for(size_t tzStep = 1; tzStep <= stepEnd; tzStep++) {
const double deltaX = (2*tzStep - 1)*h;
trapezoidal_integration += f(a + deltaX);
}
romberg_integral[step].front() = 0.5*romberg_integral[step - 1].front() + trapezoidal_integration*h;
//R(m,n) Romberg integration with R(m,1) -> Simpson rule, R(m,2) -> Boole's rule
for(size_t rbStep = 1; rbStep <= step; rbStep++) {
const double k = pow(4, rbStep);
romberg_integral[step][rbStep] = (k*romberg_integral[step][rbStep-1] - romberg_integral[step-1][rbStep-1])/(k-1);
}
}
return romberg_integral;
}
#endif