forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconcat_opt.cpp
501 lines (447 loc) · 16.3 KB
/
concat_opt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
#include <torch/csrc/jit/passes/concat_opt.h>
#include <algorithm>
#include <unordered_set>
#include <vector>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/named_value.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
namespace torch {
namespace jit {
namespace {
void removeCatNodeFromGraph(Node* n) {
TORCH_INTERNAL_ASSERT(n->kind() == aten::cat);
auto inp_list = n->input(0);
GRAPH_UPDATE("Deleting\n", *n);
n->destroy();
if (!inp_list->hasUses()) {
GRAPH_UPDATE("Deleting\n", *inp_list->node());
inp_list->node()->destroy();
}
}
bool equal(at::ArrayRef<Value*> list1, at::ArrayRef<Value*> list2) {
return list1.size() == list2.size() &&
std::equal(list1.begin(), list1.end(), list2.begin());
}
class ConcatCommonInputsEliminator {
public:
explicit ConcatCommonInputsEliminator(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
bool run() {
handleBlock(graph_->block());
return postprocess();
}
private:
void handleBlock(Block* block) {
for (auto node : block->nodes()) {
if (node->kind() == prim::VarConcat) {
handleCat(node);
}
for (Block* block : node->blocks()) {
handleBlock(block);
}
}
}
void handleCat(Node* node) {
GRAPH_DEBUG("Considering cat node for CSE opt: ", node);
auto curr_all_inputs = node->inputs();
auto curr_tensor_inputs =
curr_all_inputs.slice(0, curr_all_inputs.size() - 1);
auto curr_dim = curr_all_inputs.back();
// Save the input list and the current cat node, so that this can be
// used for subsequent cat nodes, unless there are writes to this cat
// node. When there are writes to this cat node, its output does not
// represent this concatenated list beyond the writes. Currently, we do
// not perform such fine-grained analysis. So, if there are any writes to
// the output, we do not use this cat node for optimization here.
if (!getOrCreateAliasDb()->hasWriters(node->output())) {
concated_outputs_.insert(node);
}
if (curr_tensor_inputs.size() <= 2) {
// The case when concat has 2 input tensors could only be optimized if
// there is another concat of the exact same 2 input tensors. That case
// is expected to be handled by the CSE pass.
return;
}
// Now, we check if the first N-1 elements in %inputs appeared in any of
// the previous cat ops.
//
// Example:
// %11 = prim::VarConcat(%0, %1, <dim>)
// ...
// %13 = prim::VarConcat(%0, %1, %2, <dim>) // first 2 inputs same as %11
// ...
// = %13 ... // Use %13
//
// After CSE opt:
// %11 = prim::VarConcat(%0, %1, <dim>)
// ...
// %14 = prim::VarConcat(%11, %2, <dim>) // Replace first 2 inputs
// // with %11
// ...
// = %14 ... // Replace use of %13 with %14
auto curr_tensor_inputs_prefix =
curr_tensor_inputs.slice(0, curr_tensor_inputs.size() - 1);
for (const auto& prev : concated_outputs_) {
auto prev_all_inputs = prev->inputs();
auto prev_tensor_inputs =
prev_all_inputs.slice(0, prev_all_inputs.size() - 1);
auto prev_dim = prev_all_inputs.back();
if (equal(curr_tensor_inputs_prefix, prev_tensor_inputs) &&
curr_dim == prev_dim) {
if (!node->isDominatedBy(prev)) {
// We can't use the previous concatenated output if it does not
// dominate the current concat node.
continue;
}
std::vector<Value*> new_inputs = {
prev->output(), curr_tensor_inputs.back(), curr_dim};
auto new_concat =
node->owningGraph()->create(prim::VarConcat, new_inputs);
new_concat->output()->setType(node->output()->type());
concats_to_replace_[node] = new_concat;
return;
}
}
// Now, we check if the last N-1 elements in %inputs appeared in any of
// the previous cat ops.
//
// Example:
// %10 = prim::ListConstruct(%1, %2)
// %11 = aten::cat(%10, ...)
// ...
// %12 = prim::ListConstruct(%0, %1, %2) // last 2 inputs same as %11
// %13 = aten::cat(%12, ...)
// ...
// = %13 ... // Use %13
//
// After CSE opt:
// %10 = prim::ListConstruct(%0, %1)
// %11 = aten::cat(%10, ...)
// ...
// %12 = prim::ListConstruct(%0, %11) // Replace last 2 inputs with %11
// %13 = aten::cat(%12, ...)
// ...
// = %13 ... // Use %13
auto curr_tensor_inputs_suffix =
curr_tensor_inputs.slice(1, curr_tensor_inputs.size() - 1);
for (const auto& prev : concated_outputs_) {
auto prev_all_inputs = prev->inputs();
auto prev_tensor_inputs =
prev_all_inputs.slice(0, prev_all_inputs.size() - 1);
auto prev_dim = prev_all_inputs.back();
if (equal(curr_tensor_inputs_suffix, prev_tensor_inputs) &&
curr_dim == prev_dim) {
if (!node->isDominatedBy(prev)) {
// We can't use the previous concatenated list if it does not
// dominate the current list.
continue;
}
std::vector<Value*> new_inputs = {
curr_tensor_inputs.front(), prev->output(), curr_dim};
auto new_concat =
node->owningGraph()->create(prim::VarConcat, new_inputs);
new_concat->output()->setType(node->output()->type());
concats_to_replace_[node] = new_concat;
return;
}
}
// Do we need to handle other cases where N-2 or lesser elements from
// %inputs appear in any of the previous cat ops?
// TODO.
}
bool postprocess() {
// Replace the list nodes that have been marked.
bool changed = false;
for (auto it : concats_to_replace_) {
auto curr_node = it.first;
auto new_node = it.second;
GRAPH_UPDATE("Inserting\n", *new_node, "before\n", *curr_node);
new_node->insertBefore(curr_node);
GRAPH_UPDATE("Replacing uses of\n", *curr_node, "with\n", *new_node);
curr_node->output()->replaceAllUsesWith(new_node->output());
GRAPH_UPDATE("Deleting\n", *curr_node);
curr_node->destroy();
changed = true;
}
return changed;
}
AliasDb* getOrCreateAliasDb() {
if (!aliasDb_) {
aliasDb_ = std::make_unique<AliasDb>(graph_);
}
return aliasDb_.get();
}
std::shared_ptr<Graph> graph_;
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
std::unordered_set<Node*> concated_outputs_;
std::unordered_map<Node*, Node*> concats_to_replace_;
};
} // namespace
bool EliminateConcatCommonInputs(const std::shared_ptr<Graph>& graph) {
GRAPH_DUMP("Before eliminating Concat common inputs", graph);
bool changed = ConcatCommonInputsEliminator(graph).run();
if (changed) {
GRAPH_DUMP("After eliminating Concat common inputs", graph);
}
return changed;
}
namespace {
class ConcatExpander {
public:
explicit ConcatExpander(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
void run() {
handleBlock(graph_->block());
cleanupExpandedCatOps();
GRAPH_DUMP("Before reusing copy buffers: ", graph_);
reuseBuffersInCopies();
}
private:
void handleBlock(Block* block) {
for (auto node : block->nodes()) {
if (node->kind() == aten::cat) {
expandCat(node);
}
for (Block* block : node->blocks()) {
handleBlock(block);
}
}
}
// Expand cat node into multiple copy nodes.
//
// Example:
// %2 = aten::clamp(%0, ...)
// %3 = aten::clamp(%1, ...)
// %10 = prim::ListConstruct(%2, %3)
// %11 = aten::cat(%10, ...)
// ...
// = %11 ... // Use %11
//
// After expanding cat:
// %2 = aten::clamp(%0, ...)
// %3 = aten::clamp(%1, ...)
// %20 = aten::empty(...) // cat output buffer
// %21 = aten::slice(%20, ...) // slice for %2
// %22 = aten::copy_(%21, %2) // copy %2
// %23 = aten::slice(%20, ...) // slice for %3
// %24 = aten::copy_(%23, %3) // copy %3
// ...
// = %20 ... // Use %20 in place of %11
void expandCat(Node* node) {
GRAPH_DEBUG("Considering cat node for expansion: ", node);
// Do not optimize cat nodes whose inputs are mutated in the graph.
// TODO: Improve this by checking if it is mutated in the graph region
// where this optimization is applied.
if (getOrCreateAliasDb()->hasWriters(node->input(0))) {
return;
}
if (node->input(0)->node()->kind() != prim::ListConstruct) {
// Unknown form of input to `cat` op.
return;
}
if (!allShapesAreKnown(node)) {
// Can't expand when shapes are not known for the `cat` op.
return;
}
for (auto cat_inp : node->input(0)->node()->inputs()) {
if (!shapeIsKnown(cat_inp)) {
// Can't expand when shapes of the inputs to `cat` are not known.
return;
}
}
// TODO: Handle non-contiguous Tensors.
// For example, how to handle the cases where the inputs are all channels
// last?
auto maybe_cat_dim = constant_as<int64_t>(node->input(1));
if (!maybe_cat_dim) {
// Can't expand when cat dimension is not a constant.
return;
}
auto cat_dim_value = maybe_cat_dim.value();
auto cat_dim = node->input(1);
// Set the insertion point to the curent `cat` node.
WithInsertPoint guard(node);
auto none = graph_->insertConstant(IValue());
auto one = graph_->insertConstant(1);
// Insert the constants needed for the `cat` output buffer size.
auto tensortype = node->output()->type()->expect<TensorType>();
TORCH_INTERNAL_ASSERT(tensortype);
auto tensortype_sizes = tensortype->sizes();
std::vector<Value*> cat_out_size;
for (size_t i = 0; i < tensortype_sizes.size(); ++i) {
cat_out_size.push_back(graph_->insertConstant(tensortype_sizes[i]));
}
// Create a list of int for `cat` output buffer size.
auto cat_out_size_list = graph_->createList(IntType::get(), cat_out_size);
cat_out_size_list->insertBefore(node);
// Create an empty buffer to be used as `cat` output buffer.
// TODO: Handle tensors with different dtype, layout, device, memory
// format, etc.
auto cat_out_empty = graph_->create(
aten::empty,
{cat_out_size_list->output(), none, none, none, none, none});
cat_out_empty->insertBefore(node);
// For every input to this `cat` node:
// * Create a slice of `cat` output buffer.
auto cat_out_value = cat_out_empty->output();
auto cat_inp_list = node->input(0)->node();
int start_idx = 0;
auto start = graph_->insertConstant(start_idx);
for (auto cat_inp : cat_inp_list->inputs()) {
// Create a slice of the cat output buffer that correspond to
// this input size and position in the output.
auto cat_inp_tensor_type =
dynamic_cast<TensorType*>(cat_inp->type().get());
TORCH_INTERNAL_ASSERT(cat_inp_tensor_type);
TORCH_INTERNAL_ASSERT(cat_inp_tensor_type->dim());
auto cat_inp_tensortype_sizes = cat_inp_tensor_type->sizes();
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int end_idx = start_idx + *cat_inp_tensortype_sizes[cat_dim_value];
auto end = graph_->insertConstant(end_idx);
auto slice = graph_->create(
aten::slice, {cat_out_value, cat_dim, start, end, one});
GRAPH_UPDATE("Inserting\n", *slice, "before\n", *node);
slice->insertBefore(node);
slices_added_.push_back(slice);
// Insert a copy from this input to the output slice.
auto copy = graph_->create(aten::copy_, {slice->output(), cat_inp});
GRAPH_UPDATE("Inserting\n", *copy, "before\n", *node);
copy->insertBefore(node);
copies_added_.push_back(copy);
start_idx = end_idx;
start = end;
}
// Replace the uses of `cat` node with the cat output buffer.
replace_uses_with_[node->output()] = cat_out_value;
nodes_to_remove_.insert(node);
}
bool shapeIsKnown(Value* v) {
if (v->type()->cast<TensorType>()) {
if (!v->isCompleteTensor()) {
return false;
}
if (*v->type()->castRaw<TensorType>()->dim() == 0) {
return false;
}
}
return true;
}
bool allShapesAreKnown(Node* node) {
// TODO: Relax the checks to support dynamic shapes
for (Value* input : node->inputs()) {
if (!shapeIsKnown(input)) {
return false;
}
}
for (Value* output : node->outputs()) {
if (!shapeIsKnown(output)) {
return false;
}
}
return true;
}
void cleanupExpandedCatOps() {
for (auto it : replace_uses_with_) {
GRAPH_UPDATE(
"Replacing uses of\n",
*it.first->node(),
"with\n",
*it.second->node());
it.first->replaceAllUsesWith(it.second);
}
for (auto n : nodes_to_remove_) {
removeCatNodeFromGraph(n);
}
}
void moveBefore(Node* node, Node* before) {
// In order to move a node before another node, we need to move
// all the nodes it depends on as well.
for (auto inp : node->inputs()) {
moveBefore(inp->node(), before);
}
node->moveBefore(before);
}
// Reuse buffers in copies wherever possible.
//
// For example, consider the following sequence of ops:
// %10 = prim::ListConstruct(%0, %1)
// %11 = aten::cat(%10, ...)
// ...
// %12 = prim::ListConstruct(%11, %2) // Uses the result of above cat
// %13 = aten::cat(%12, ...)
//
// Once these cat ops are expanded into copies, we will have two buffers; one
// for %11 and another for %13. This can be optimized by using only one
// buffer. We can only have the buffer that represents %13 and use a view
// (slice) of that one as the buffer for %11.
//
// If any of the copies added earlier has `aten::empty` as its source,
// those cases can be replaced with a single buffer.
//
// Example:
// %20 = aten::empty(...) // cat.1 output buffer
// %21 = aten::slice(%20, ...)
// %22 = aten::copy_(%21, %2)
// %23 = aten::slice(%20, ...)
// %24 = aten::copy_(%23, %3)
// ...
// %30 = aten::empty(...) // cat.2 output buffer
// %31 = aten::slice(%30, ...)
// %32 = aten::copy_(%31, %20) // src of copy is aten::empty
// // so, we reuse this buffer above
// %33 = aten::slice(%30, ...)
// %34 = aten::copy_(%33, %4)
//
// After reusing copy buffers:
// %30 = aten::empty(...) // cat.2 output buffer
// %31 = aten::slice(%30, ...) // move %31 and inputs before %20
// %21 = aten::slice(%31, ...) // use %31 in place of %20
// %22 = aten::copy_(%21, %2)
// %23 = aten::slice(%31, ...) // use %31 in place of %20
// %24 = aten::copy_(%23, %3)
// ...
// ... // copy to %31 is now removed
// %33 = aten::slice(%30, ...)
// %34 = aten::copy_(%33, %4)
void reuseBuffersInCopies() {
for (auto copy : copies_added_) {
auto src = copy->input(1);
auto dst = copy->input(0);
if (src->node()->kind() != aten::empty) {
continue;
}
// Move the destination node before the source.
GRAPH_UPDATE("Moving\n", *dst->node(), "before\n", *src->node());
moveBefore(dst->node(), src->node());
GRAPH_UPDATE("Replacing\n", *src->node(), "with\n", *dst->node());
src->replaceAllUsesWith(dst);
GRAPH_UPDATE("Deleting\n", *src->node());
src->node()->destroy();
GRAPH_UPDATE("Deleting\n", *copy);
copy->destroy();
}
}
AliasDb* getOrCreateAliasDb() {
if (!aliasDb_) {
aliasDb_ = std::make_unique<AliasDb>(graph_);
}
return aliasDb_.get();
}
std::shared_ptr<Graph> graph_;
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
std::unordered_set<Node*> nodes_to_remove_;
std::unordered_map<Value*, Value*> replace_uses_with_;
std::vector<Node*> copies_added_;
std::vector<Node*> slices_added_;
};
} // namespace
void ExpandConcatAndEliminateRedundancy(const std::shared_ptr<Graph>& graph) {
ConcatExpander(graph).run();
GRAPH_DUMP("After expanding Concat and eliminating redundancy", graph);
}
} // namespace jit
} // namespace torch