forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_jit_cuda_fuser.py
2524 lines (2186 loc) · 102 KB
/
test_jit_cuda_fuser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["oncall: jit"]
import unittest
import os
import random
import torch
from torch.nn import functional
from torch.testing._internal.common_utils import run_tests, ProfilingMode, GRAPH_EXECUTOR # TEST_WITH_ROCM
from torch.testing._internal.common_cuda import TEST_MULTIGPU
from torch.testing._internal.codegen.random_topo_test import runDefaultTestWithSeed
from torch.testing._internal.jit_utils import disable_autodiff_subgraph_inlining
from torch.testing import FileCheck
from test_jit import JitTestCase, RUN_CUDA
from jit.test_fuser_common import TestFuserCommon # noqa: F401
import itertools
import numpy as np
import math
from typing import List
CUDA_MAJOR, CUDA_MINOR = (int(x) for x in torch.version.cuda.split('.'))
os.environ['PYTORCH_NVFUSER_DISABLE_FALLBACK'] = '1'
os.environ['PYTORCH_NVFUSER_DISABLE_FMA'] = '1'
os.environ['PYTORCH_NVFUSER_DISABLE_FASTMATH'] = '1'
os.environ['PYTORCH_NVFUSER_JIT_OPT_LEVEL'] = '0'
os.environ['PYTORCH_NVFUSER_DISABLE_RNG_UNROLL'] = '1'
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
FUSION_GROUP = 'prim::CudaFusionGroup'
FUSION_GUARD = 'prim::CudaFusionGuard'
def is_pre_volta():
prop = torch.cuda.get_device_properties(torch.cuda.current_device())
return prop.major < 7
class TestCudaFuser(JitTestCase):
special_values = torch.tensor(
[float("-inf"), -10, -math.pi,
-1, -0.5, 0, 1, 0.5,
math.pi, 10, float("inf"),
float("nan")], dtype=torch.float, device='cuda')
int_types = [
torch.int8,
torch.uint8,
torch.int16,
torch.int32,
torch.int64
]
support_tensor_dtypes = [
torch.int32,
torch.int64,
torch.float16,
torch.float32,
torch.float64,
torch.bool
]
def _getSubgraphInFusion(self, graph):
num_node = 0
subgraph = None
def count(block, ret):
for n in block.nodes():
if n.kind() == FUSION_GROUP:
ret[0] = ret[0] + 1
self.assertTrue(n.hasAttribute('Subgraph'))
ret[1] = n.g('Subgraph')
for block in n.blocks():
count(block, ret)
ret = [num_node, subgraph]
count(graph, ret)
self.assertEqual(ret[0], 1)
return ret[1]
def setUp(self):
super(TestCudaFuser, self).setUp()
self.old_cpu_fuse = torch._C._jit_can_fuse_on_cpu()
self.old_gpu_fuse = torch._C._jit_can_fuse_on_gpu()
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
self.old_guard = torch._C._jit_set_nvfuser_guard_mode(False)
torch._C._debug_set_autodiff_subgraph_inlining(False)
if(RUN_CUDA):
self.old_nvfuser = torch._C._jit_set_nvfuser_enabled(True)
def tearDown(self):
if(RUN_CUDA):
torch._C._jit_set_nvfuser_enabled(self.old_nvfuser)
torch._C._jit_override_can_fuse_on_cpu(self.old_cpu_fuse)
torch._C._jit_override_can_fuse_on_gpu(self.old_gpu_fuse)
torch._C._jit_set_nvfuser_guard_mode(self.old_guard)
torch._C._debug_set_autodiff_subgraph_inlining(True)
super(TestCudaFuser, self).tearDown()
def _run_helper(self, jit_op, op, *args):
torch.cuda.manual_seed_all(123)
jit_o = jit_op(*args)
torch.cuda.manual_seed_all(123)
jit_o = jit_op(*args)
torch.cuda.manual_seed_all(123)
o = op(*args)
self.assertEqual(o, jit_o)
self.assertGraphContainsExactly(jit_op.graph_for(*args), FUSION_GUARD, 1, consider_subgraphs=True)
def _run_training_helper(self, jit_op, op, grads, *args):
torch.cuda.manual_seed_all(123)
jit_o = jit_op(*args)
jit_g = jit_o.backward(grads)
torch.cuda.manual_seed_all(123)
jit_o = jit_op(*args)
jit_g = jit_o.backward(grads)
torch.cuda.manual_seed_all(123)
jit_o = jit_op(*args)
jit_g = jit_o.backward(grads)
torch.cuda.manual_seed_all(123)
o = op(*args)
g = o.backward(grads)
self.assertEqual(o, jit_o)
self.assertEqual(g, jit_g)
self.assertGraphContainsExactly(jit_op.graph_for(*args), FUSION_GUARD, 1, consider_subgraphs=True)
bwd_graph = list(
list(jit_op.get_debug_state().execution_plans.values())[
0].code.grad_executor_states()[0].execution_plans.values()
)[0].graph
self.assertGraphContainsExactly(bwd_graph, FUSION_GUARD, 1, consider_subgraphs=True)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_half(self):
def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, alpha: float):
o_16 = torch.add(x, y)
o_32_a = torch.add(y, z, alpha=alpha)
o_32_b = torch.add(o_16, z)
return (o_16, o_32_a, o_32_b)
t_jit = torch.jit.script(t)
alpha = 0.5
# stick to integers, this avoid the numerical difference due to our
# promotion
x = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda")
y = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda")
z = torch.randint(0, 256, (4, 8)).to(dtype=torch.float16, device="cuda")
jit_o = t_jit(x, y, z, alpha)
jit_o = t_jit(x, y, z, alpha)
o = t(x, y, z, alpha)
for oo, jit_oo in zip(o, jit_o):
self.assertEqual(oo.dtype, jit_oo.dtype)
self.assertEqual(oo, jit_oo)
self.assertGraphContains(t_jit.graph_for(x, y, z, alpha), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_const(self):
def t(x, y):
o = x + y
o = o + 2.0
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, dtype=torch.float, device="cuda")
y = torch.randn(4, 8, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y)
jit_o = t_jit(x, y)
o = t(x, y)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_chunk(self):
def t(x, y, z, q):
o = x + q
x0, x1 = torch.chunk(o, 2)
o = x0 + x1
o = o + y
o = o * z
o = torch.relu(o)
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, dtype=torch.float, device="cuda")
y = torch.randn(2, 8, dtype=torch.float, device="cuda")
z = torch.randn(2, 8, dtype=torch.float, device="cuda")
q = torch.randn(4, 8, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, z, q)
jit_o = t_jit(x, y, z, q)
o = t(x, y, z, q)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y, z, q), FUSION_GUARD)
@unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device")
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_reduction_dtypes(self):
for op in [torch.sum, torch.mean]:
for dtype in [torch.float16, torch.float32, torch.double]:
def make_func(op):
def func(x: torch.Tensor):
o = torch.mul(x, 1.0)
o = op(o, dim=[2])
return o
return func
x = torch.randn(8, 4, 16, dtype=dtype, device="cuda")
t = make_func(op)
t_jit = torch.jit.trace(t, x)
jit_o = t_jit(x)
jit_o = t_jit(x)
o = t(x)
self.assertEqual(o.dtype, jit_o.dtype)
self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-4))
self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_scalar_input(self):
def t(x: torch.Tensor, y: torch.Tensor, z: float):
o = x + y
o = o + z
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(4, 8, 1, 32, dtype=torch.float, device="cuda")
y = y.expand(4, 8, 32, 32)
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_0(self):
def t(x: torch.Tensor, y: torch.Tensor, z: float):
o = x + y
o = o + z
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0))
self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_1(self):
def t(x: torch.Tensor, y: torch.Tensor, z: float):
o = x + y
o = o + z
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(1, 32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0))
self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_2(self):
def t(x: torch.Tensor, y: torch.Tensor, z: float):
o = x + y
o = o + z
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 1, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(8, 32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0))
self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_3(self):
def t(x: torch.Tensor, y: torch.Tensor, z: float):
o = x + y
o = o + z
return o
t_jit = torch.jit.script(t)
x = torch.randn(8, 17, 8, dtype=torch.float, device="cuda")
y = torch.randn(8, 17, 1, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0))
self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False)
# test_broadcasting_partition_logic_X
# Testing partition logic that is capable to avoid creating unsupported
# broadcasting semantics in CudaFusionGroup
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_partition_logic_0(self):
def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
x = x + 12.0
o1 = x + y
o2 = x + z
o = o1 + o2
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, 6, 8, dtype=torch.float32, device="cuda")
y = torch.randn(8, 6, 8, dtype=torch.float32, device="cuda")
z = torch.randn(6, 8, dtype=torch.float32, device="cuda")
jit_o = t_jit(x, y, z)
jit_o = t_jit(x, y, z)
o = t(x, y, z)
self.assertEqual(o, jit_o)
subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, z))
self.assertGraphContainsExactly(subgraph, 'aten::add', 4, consider_subgraphs=False)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_partition_logic_1(self):
def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
x = x + 12.0
o1 = x + y
o2 = x + z
o = o1 + o2
return o
t_jit = torch.jit.script(t)
x = torch.randn(8, 6, 8, dtype=torch.float32, device="cuda")
y = torch.randn(4, 8, 6, 8, dtype=torch.float32, device="cuda")
z = torch.randn(4, 1, 6, 8, dtype=torch.float32, device="cuda")
jit_o = t_jit(x, y, z)
jit_o = t_jit(x, y, z)
o = t(x, y, z)
self.assertEqual(o, jit_o)
subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, z))
self.assertGraphContainsExactly(subgraph, 'aten::add', 4, consider_subgraphs=False)
@unittest.skipIf(True, "Broadcast with different output not supported yet")
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_multiple_output_shape(self):
def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
o = x + 12
o1 = o + y
o2 = o + z
oo = o1.sum() + o2.sum()
return oo
t_jit = torch.jit.script(t)
x = torch.randn(32, 32, dtype=torch.float, device="cuda")
y = torch.randn(2, 32, 32, dtype=torch.float, device="cuda")
z = torch.randn(4, 32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, z)
jit_o = t_jit(x, y, z)
o = t(x, y, z)
self.assertEqual(o, jit_o)
# Currently cannot fuse this
self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD)
@unittest.skipIf(True, "broadcast on branches can't be resolved yet")
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_broadcasting_multiple_output(self):
def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
o = x + 12
o1 = o + y
o2 = o + z
oo = o1.sum() + o2.sum()
return oo
t_jit = torch.jit.script(t)
x = torch.randn(32, 32, dtype=torch.float, device="cuda")
y = torch.randn(4, 32, 32, dtype=torch.float, device="cuda")
z = torch.randn(4, 32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, z)
jit_o = t_jit(x, y, z)
o = t(x, y, z)
self.assertEqual(o, jit_o)
# Currently cannot fuse this
self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD)
def _unary_test_helper(self, operation):
def t(x: torch.Tensor, z: float):
o = x + z
o = operation(o)
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, 2.0)
jit_o = t_jit(x, 2.0)
o = t(x, 2.0)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, 2.0), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_unary_ops(self):
operations = [torch.neg,
torch.abs,
torch.log,
torch.log10,
torch.log1p,
torch.log2,
torch.lgamma,
torch.exp,
torch.expm1,
torch.erf,
torch.erfc,
torch.cos,
torch.acos,
torch.cosh,
torch.sin,
torch.asin,
torch.tan,
torch.atan,
torch.sqrt,
torch.rsqrt,
torch.ceil,
torch.floor,
torch.round,
torch.trunc,
torch.frac,
torch.reciprocal,
torch.relu,
torch.sigmoid,
torch.tanh,
torch.nn.functional.silu]
for op in operations:
self._unary_test_helper(op)
def _unary_type_test_helper(self, operation, dtype, random_data=True):
shape = (4, 8, 32, 32)
# need additional def of t for boolean ops
def t(x: torch.Tensor, y: torch.Tensor):
o = x * y
o = operation(o)
return o
y = torch.tensor([1], device="cuda").to(dtype)
if random_data:
x = torch.randn(shape, dtype=torch.float32, device="cuda")
if dtype in self.int_types:
# prefer a larger variance for integer types
x *= 5
x = x.to(dtype=dtype)
else:
x = self.special_values.to(dtype=dtype)
try:
ref = t(x, y)
except Exception:
# same way as TE checker, if eager mode throws, ignore this test
return
t_jit = torch.jit.script(t)
jit_o = t_jit(x, y)
jit_o = t_jit(x, y)
if dtype in self.support_tensor_dtypes:
self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD)
o = t(x, y)
self.assertEqual(o, jit_o, msg=f"""
failing case:
{dtype} {operation} {x}
""")
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_data_compatibility(self):
dtypes = [
*self.int_types,
torch.float16,
torch.float32,
torch.float64
]
operations = [torch.neg,
torch.abs,
torch.log,
torch.log10,
torch.log1p,
torch.log2,
torch.lgamma,
torch.exp,
torch.expm1,
torch.erf,
torch.erfc,
torch.cos,
torch.acos,
torch.cosh,
torch.sin,
torch.asin,
torch.tan,
torch.atan,
torch.sqrt,
torch.rsqrt,
torch.ceil,
torch.floor,
torch.round,
torch.trunc,
torch.frac,
torch.reciprocal,
torch.relu,
torch.sigmoid,
torch.tanh,
torch.nn.functional.silu]
prev_fallback = os.environ['PYTORCH_NVFUSER_DISABLE_FALLBACK']
os.environ['PYTORCH_NVFUSER_DISABLE_FALLBACK'] = '0'
for op, dtype in itertools.product(operations, dtypes):
self._unary_type_test_helper(op, dtype, False) # test special numbers
self._unary_type_test_helper(op, dtype) # test random data
os.environ['PYTORCH_NVFUSER_DISABLE_FALLBACK'] = prev_fallback
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_category_rule(self):
def run_tensor(x, z):
def t(x: torch.Tensor, z: torch.Tensor):
o = x + z
o = torch.abs(o)
return o
t_jit = torch.jit.script(t)
jit_o = t_jit(x, z)
jit_o = t_jit(x, z)
o = t(x, z)
self.assertEqual(o.dtype, jit_o.dtype)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, z), FUSION_GUARD)
def run_scalar(x, z):
def t(x: torch.Tensor, z: float):
o = x + z
o = torch.abs(o)
return o
t_jit = torch.jit.script(t)
jit_o = t_jit(x, z)
jit_o = t_jit(x, z)
o = t(x, z)
self.assertEqual(o.dtype, jit_o.dtype)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, z), FUSION_GUARD)
# n-dim with 0-dim (no type-promote)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
z = torch.tensor(2.0, dtype=torch.double, device="cuda")
run_tensor(x, z)
# n-dim with 0-dim (type-promote)
x = torch.randn(4, 8, 32, 32, device="cuda").to(dtype=torch.long)
z = torch.tensor(2.0, dtype=torch.double, device="cuda")
run_tensor(x, z)
# n-dim with n-dim (type-promote)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
z = torch.randn(4, 8, 32, 32, dtype=torch.double, device="cuda")
run_tensor(x, z)
# n-dim with scalar (no type-promote)
x = torch.randn(4, 8, 32, 32, dtype=torch.float16, device="cuda")
z = torch.tensor(3., dtype=torch.double)
run_scalar(x, z)
# n-dim with scalar (type-promote)
x = torch.randn(4, 8, 32, 32, device="cuda").to(dtype=torch.long)
z = torch.tensor(3., dtype=torch.double)
run_scalar(x, z)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_unary_bitwise(self):
def bit_not(x: torch.Tensor):
return ~(x + 0)
jitted = torch.jit.script(bit_not)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(5).to(torch.long)
jit_o = bit_not(x)
jit_o = bit_not(x)
o = bit_not(x)
self.assertEqual(o, jit_o)
jitted.graph_for(x) # Shows up in second instance, not first
self.assertGraphContains(jitted.graph_for(x), FUSION_GUARD)
def bool_not(x: torch.Tensor, y: torch.Tensor):
return ~(x & y)
jitted = torch.jit.script(bool_not)
x = torch.rand(4, 8, 32, 32, dtype=torch.float, device="cuda").round().to(torch.bool)
y = torch.rand(4, 8, 32, 32, dtype=torch.float, device="cuda").round().to(torch.bool)
jit_o = bool_not(x, y)
jit_o = bool_not(x, y)
o = bool_not(x, y)
self.assertEqual(o, jit_o)
jitted.graph_for(x, y) # Shows up in second instance, not first
self.assertGraphContains(jitted.graph_for(x, y), FUSION_GUARD)
def _binary_test_helper(self, operation, dtype):
def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
o = x + z
o = operation(o, y)
return o
x = (torch.randn(4, 32, 32, dtype=torch.float, device="cuda") * 5).to(dtype)
y = (torch.randn(4, 32, 32, dtype=torch.float, device="cuda") * 5).to(dtype)
# Avoid division by zero for integer tensors
div_like = [torch.div, torch.fmod, torch.remainder]
if operation in div_like and (dtype == torch.int32 or dtype == torch.int64):
y[y == 0] = 1
z = torch.tensor([2], device="cuda").to(dtype)
o = t(x, y, z)
t_jit = torch.jit.script(t)
jit_o = t_jit(x, y, z)
jit_o = t_jit(x, y, z)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_binary_ops(self):
data_types = [
torch.float32,
torch.float64,
torch.int32,
torch.int64
]
# need some extra support
# to handle below with integer inputs, and they
# don't look like popular integer ops in models
# , TODO: insert assertions in cpp
# if decide not to fuse these on int
skip_for_integer = [
torch.atan2,
torch.fmod,
torch.pow,
torch.div
]
operations = [torch.div,
torch.mul,
torch.atan2,
torch.max,
torch.min,
torch.pow,
torch.remainder,
torch.fmod,
torch.eq,
torch.ne,
torch.ge,
torch.gt,
torch.le,
torch.lt]
for op, dtype in itertools.product(operations, data_types):
if (dtype not in self.int_types) or (op not in skip_for_integer):
self._binary_test_helper(op, dtype)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_binary_bitwise(self):
def jit_or(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
return (x & y) | z
def jit_xor(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
return (x & y) ^ z
def jit_lshift(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
return (x & y) << z
def jit_rshift(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
return (x & y) >> z
for jit_func in [jit_or, jit_xor, jit_lshift, jit_rshift]:
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(5).to(torch.long)
y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(5).to(torch.long)
z = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda").mul(2).to(torch.long)
jitted = torch.jit.script(jit_func)
jit_o = jitted(x, y, z)
jit_o = jitted(x, y, z)
o = jit_func(x, y, z)
self.assertEqual(o, jit_o)
self.assertGraphContains(jitted.graph_for(x, y, z), FUSION_GUARD)
# We shouldn't need this redefinition of the function, but otherwise it won't recompile for a new type
def jit_or(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
return (x & y) | z
def jit_xor(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
return (x & y) ^ z
for jit_func in [jit_or, jit_xor]:
x = torch.rand(4, 2, dtype=torch.float, device="cuda").round().to(torch.bool)
y = torch.rand(4, 2, dtype=torch.float, device="cuda").round().to(torch.bool)
z = torch.rand(4, 2, dtype=torch.float, device="cuda").round().to(torch.bool)
jitted = torch.jit.script(jit_func)
jit_o = jitted(x, y, z)
jit_o = jitted(x, y, z)
o = jit_func(x, y, z)
self.assertEqual(o, jit_o)
self.assertGraphContains(jitted.graph_for(x, y, z), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_type_as_op(self):
def t(x: torch.Tensor, y: torch.Tensor, z: float):
o = torch.lt(x, z)
o = o.type_as(y)
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 0.5)
jit_o = t_jit(x, y, 0.5)
o = t(x, y, 0.5)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y, 0.5), FUSION_GUARD)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
# legacy fuser does not work for rand_like, see issue #34361
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective")
def test_ternary_ops(self):
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
z = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
cond = torch.randint(0, 2, (4, 8, 32, 32)).to(dtype=torch.bool, device="cuda")
def add(x: torch.Tensor, other: torch.Tensor, alpha: float):
o = torch.relu(x)
o = torch.add(o, other=other, alpha=alpha)
return o
add_jit = torch.jit.script(add)
self._run_helper(add_jit, add, x, y, 2.0)
def clamp0(x: torch.Tensor, f: float):
o = torch.rand_like(x)
o = o * torch.clamp(x, min=f)
return o
clamp0_jit = torch.jit.script(clamp0)
self._run_helper(clamp0_jit, clamp0, x, 0.5)
def clamp1(x: torch.Tensor, f: float, ff: float):
o = torch.rand_like(x)
o = o * torch.clamp(x, min=f, max=ff)
return o
clamp1_jit = torch.jit.script(clamp1)
self._run_helper(clamp1_jit, clamp1, x, -0.2, 0.7)
def threshold(x: torch.Tensor, th: float, val: float):
o = torch.rand_like(x)
o = x * torch.threshold(o, th, val)
return o
threshold_jit = torch.jit.script(threshold)
self._run_helper(threshold_jit, threshold, x, 0.2, 0.9)
def where(x: torch.Tensor, y: torch.Tensor, cond: torch.Tensor):
o = torch.rand_like(x)
o = o * torch.where(cond, x, y)
return o
where_jit = torch.jit.script(where)
self._run_helper(where_jit, where, x, y, cond)
def lerp(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
o = torch.rand_like(x)
o = o * torch.lerp(x, y, z)
return o
lerp_jit = torch.jit.script(lerp)
self._run_helper(lerp_jit, lerp, x, y, z)
def lerp_scale(x: torch.Tensor, y: torch.Tensor, z: float):
o = torch.rand_like(x)
o = o * torch.lerp(x, y, z)
return o
lerp_scale_jit = torch.jit.script(lerp_scale)
self._run_helper(lerp_scale_jit, lerp_scale, x, y, 0.5)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires profiling node to run cuda fuser")
def test_addcmul_ops(self):
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
z = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
def addcmul(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, value: float):
o = torch.add(x, 0.5)
o = torch.addcmul(o, y, z, value=value)
return o
addcmul_jit = torch.jit.script(addcmul)
self._run_helper(addcmul_jit, addcmul, x, y, z, 2.0)
def addcmul_no_alpha(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
o = torch.add(x, 0.5)
o = torch.addcmul(o, y, z)
return o
addcmul_no_alpha_jit = torch.jit.script(addcmul_no_alpha)
self._run_helper(addcmul_no_alpha_jit, addcmul_no_alpha, x, y, z)
def addcmul_const_alpha(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor):
o = torch.add(x, 0.5)
o = torch.addcmul(o, y, z, value=0.75)
return o
addcmul_const_alpha_jit = torch.jit.script(addcmul_const_alpha)
self._run_helper(addcmul_const_alpha_jit, addcmul_const_alpha, x, y, z)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_dynamic_size(self):
old_guard = torch._C._jit_set_nvfuser_guard_mode(True)
torch._C._jit_set_bailout_depth(20)
def t(x: torch.Tensor, y: torch.Tensor, z: float):
o = x + y
o = o + z
return o
t_jit = torch.jit.script(t)
x = torch.randn(4, 8, 32, 32, dtype=torch.float, device="cuda")
y = torch.randn(32, 32, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
subgraph = self._getSubgraphInFusion(t_jit.graph_for(x, y, 2.0))
self.assertGraphContainsExactly(subgraph, 'aten::add', 2, consider_subgraphs=False)
# this test is not ideal, as we rely on the bailout to test it and we
# don't know a way to verify the bailout graph to validate the proper
# fusion.
x = torch.randn(8, 32, 16, 8, dtype=torch.float, device="cuda")
y = torch.randn(16, 8, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GUARD)
x = torch.randn(8, 17, 8, dtype=torch.float, device="cuda")
y = torch.randn(8, 17, 1, dtype=torch.float, device="cuda")
jit_o = t_jit(x, y, 2.0)
jit_o = t_jit(x, y, 2.0)
o = t(x, y, 2.0)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y, 2.0), FUSION_GUARD)
torch._C._jit_set_nvfuser_guard_mode(old_guard)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
def test_random_topo(self):
os.environ["PYTORCH_NVFUSER_DISABLE_FALLBACK"] = "1"
self.assertTrue(runDefaultTestWithSeed(28449))
def _compare(self, desc, inp1, inp2, error):
a = inp1.clone().detach().cpu().numpy()
b = inp2.clone().detach().cpu().numpy()
close = np.allclose(a, b, error, error)
if not close:
print(desc, close)
z = a - b
index = (np.abs(z) >= error + error * np.abs(b)).nonzero()
print("dif : ", z[index])
print("inp1 : ", a[index])
print("inp2 : ", b[index])
return close
# Permutation helper that applies binary operation between two tensors:
# 1. applies separate permutation `perm0` & `perm1` to two inputs
# 2. reduce dimension `broadcast_axis` of operand two to size 1
# The purpose of this test is to ensure permutation works well in
# complicated cases with arbitrary stride order and broadcasting dimensions
def _permutation_helper(self, sizes, broadcast_axis, dtype, device, perm0, perm1):
def t(x: torch.Tensor, y: torch.Tensor):
o = torch.add(x, y)
o = torch.relu(o)
return o
x = torch.randn([sizes[i] for i in perm0], dtype=dtype, device=device).permute(
[perm0.index(i) for i in range(len(sizes))])
if broadcast_axis >= 0:
sizes[broadcast_axis] = 1
y = torch.randn([sizes[i] for i in perm1], dtype=dtype, device=device).permute(
[perm1.index(i) for i in range(len(sizes))])
t_jit = torch.jit.script(t)
jit_o = t_jit(x, y)
jit_o = t_jit(x, y)
o = t(x, y)
self.assertEqual(o.dtype, jit_o.dtype)
self.assertEqual(o, jit_o)
self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD)
# end-2-end test of permutation & contiguity handling in integration.
# we are testing inputs with all combination of permutation order, just to
# ensure that integration would be able to generate functionally correct
# kernels
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_binary_ops_permutation(self):
# note that num_dim is exclusive from len(x), so we are not reducing
# to single element (codegen limitation at this moment)
x = [7, 8, 12]
b_axes = range(-1, len(x))
for b_axis in b_axes:
for perm0 in itertools.permutations(range(len(x))):
for perm1 in itertools.permutations(range(len(x))):
x = [7, 8, 12]
self._permutation_helper(x, b_axis, torch.float32, "cuda", perm0, perm1)
def _reduction_helper(self, sizes, reduction_axis, dtype, device, perm0, perm1, keepdim=False):
class MyReduction(torch.nn.Module):
__constants__ = ['reduction_axis', 'keepdim']
def __init__(self):
super(MyReduction, self).__init__()
self.reduction_axis = reduction_axis
self.keepdim = keepdim
def forward(self, x: torch.Tensor, y: torch.Tensor):
o = torch.add(x, y)
o = torch.sum(o, dim=self.reduction_axis, keepdim=self.keepdim)
return o
t = MyReduction()
x = torch.randn([sizes[i] for i in perm0], dtype=dtype, device=device).permute(
[perm0.index(i) for i in range(len(sizes))])
y = torch.randn([sizes[i] for i in perm1], dtype=dtype, device=device).permute(
[perm1.index(i) for i in range(len(sizes))])
t_jit = torch.jit.script(t)
jit_o = t_jit(x, y)
jit_o = t_jit(x, y)
o = t(x, y)
self.assertEqual(o.dtype, jit_o.dtype)
# numerical issues here due to our scheduling.
# can't use `self.assertEqual(o, jit_o)`
self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-4))
self.assertGraphContains(t_jit.graph_for(x, y), FUSION_GUARD)
@unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device")
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING,
"Requires fusion optimization pass to be effective")
def test_reduction(self):
for x in ([7, 8, 12], [12, 8, 7, 9, 15], [128, 16, 8, 32]):
# note that num_dim is exclusive from len(x), so we are not reducing
# to single element (codegen limitation at this moment)
for num_reduce_dim in range(1, len(x)):
for axes in itertools.combinations(range(len(x)), num_reduce_dim):
for keepdim in (True, False):
perm0 = range(len(x))
perm1 = range(len(x))
self._reduction_helper(x, axes, torch.float32, "cuda", perm0, perm1, keepdim)
def _layer_norm_autodiff_helper(self, model, grad, shapes, args):
jit_model = torch.jit.script(model)
eps = np.random.random() * 1e-4
use_cudnn = bool(np.random.randint(0, 2))
# profile/optimization runs
for i in range(3):
jit_o = jit_model(shapes, *args, eps, use_cudnn)
jit_o.backward(grad)
ref_args = [t.detach().clone().requires_grad_() for t in args]
[t.grad.zero_() for t in args]
jit_o = jit_model(shapes, *args, eps, use_cudnn)