.. currentmodule:: torch
A :class:`torch.Tensor` is a multi-dimensional matrix containing elements of a single data type.
Torch defines 10 tensor types with CPU and GPU variants which are as follows:
Data type | dtype | CPU tensor | GPU tensor |
---|---|---|---|
32-bit floating point | torch.float32 or torch.float |
:class:`torch.FloatTensor` | :class:`torch.cuda.FloatTensor` |
64-bit floating point | torch.float64 or torch.double |
:class:`torch.DoubleTensor` | :class:`torch.cuda.DoubleTensor` |
16-bit floating point [1] | torch.float16 or torch.half |
:class:`torch.HalfTensor` | :class:`torch.cuda.HalfTensor` |
16-bit floating point [2] | torch.bfloat16 |
:class:`torch.BFloat16Tensor` | :class:`torch.cuda.BFloat16Tensor` |
32-bit complex | torch.complex32 |
||
64-bit complex | torch.complex64 |
||
128-bit complex | torch.complex128 or torch.cdouble |
||
8-bit integer (unsigned) | torch.uint8 |
:class:`torch.ByteTensor` | :class:`torch.cuda.ByteTensor` |
8-bit integer (signed) | torch.int8 |
:class:`torch.CharTensor` | :class:`torch.cuda.CharTensor` |
16-bit integer (signed) | torch.int16 or torch.short |
:class:`torch.ShortTensor` | :class:`torch.cuda.ShortTensor` |
32-bit integer (signed) | torch.int32 or torch.int |
:class:`torch.IntTensor` | :class:`torch.cuda.IntTensor` |
64-bit integer (signed) | torch.int64 or torch.long |
:class:`torch.LongTensor` | :class:`torch.cuda.LongTensor` |
Boolean | torch.bool |
:class:`torch.BoolTensor` | :class:`torch.cuda.BoolTensor` |
quantized 8-bit integer (unsigned) | torch.quint8 |
:class:`torch.ByteTensor` | / |
quantized 8-bit integer (signed) | torch.qint8 |
:class:`torch.CharTensor` | / |
quantized 32-bit integer (signed) | torch.qfint32 |
:class:`torch.IntTensor` | / |
quantized 4-bit integer (unsigned) [3] | torch.quint4x2 |
:class:`torch.ByteTensor` | / |
[1] | Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. |
[2] | Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7
significand bits. Useful when range is important, since it has the same
number of exponent bits as float32 |
[3] | quantized 4-bit integer is stored as a 8-bit signed integer. Currently it's only supported in EmbeddingBag operator. |
:class:`torch.Tensor` is an alias for the default tensor type (:class:`torch.FloatTensor`).
A tensor can be constructed from a Python :class:`list` or sequence using the :func:`torch.tensor` constructor:
>>> torch.tensor([[1., -1.], [1., -1.]]) tensor([[ 1.0000, -1.0000], [ 1.0000, -1.0000]]) >>> torch.tensor(np.array([[1, 2, 3], [4, 5, 6]])) tensor([[ 1, 2, 3], [ 4, 5, 6]])
Warning
:func:`torch.tensor` always copies :attr:`data`. If you have a Tensor
:attr:`data` and just want to change its requires_grad
flag, use
:meth:`~torch.Tensor.requires_grad_` or
:meth:`~torch.Tensor.detach` to avoid a copy.
If you have a numpy array and want to avoid a copy, use
:func:`torch.as_tensor`.
A tensor of specific data type can be constructed by passing a :class:`torch.dtype` and/or a :class:`torch.device` to a constructor or tensor creation op:
>>> torch.zeros([2, 4], dtype=torch.int32) tensor([[ 0, 0, 0, 0], [ 0, 0, 0, 0]], dtype=torch.int32) >>> cuda0 = torch.device('cuda:0') >>> torch.ones([2, 4], dtype=torch.float64, device=cuda0) tensor([[ 1.0000, 1.0000, 1.0000, 1.0000], [ 1.0000, 1.0000, 1.0000, 1.0000]], dtype=torch.float64, device='cuda:0')
For more information about building Tensors, see :ref:`tensor-creation-ops`
The contents of a tensor can be accessed and modified using Python's indexing and slicing notation:
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]]) >>> print(x[1][2]) tensor(6) >>> x[0][1] = 8 >>> print(x) tensor([[ 1, 8, 3], [ 4, 5, 6]])
Use :meth:`torch.Tensor.item` to get a Python number from a tensor containing a single value:
>>> x = torch.tensor([[1]]) >>> x tensor([[ 1]]) >>> x.item() 1 >>> x = torch.tensor(2.5) >>> x tensor(2.5000) >>> x.item() 2.5
For more information about indexing, see :ref:`indexing-slicing-joining`
A tensor can be created with :attr:`requires_grad=True` so that :mod:`torch.autograd` records operations on them for automatic differentiation.
>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True) >>> out = x.pow(2).sum() >>> out.backward() >>> x.grad tensor([[ 2.0000, -2.0000], [ 2.0000, 2.0000]])
Each tensor has an associated :class:`torch.Storage`, which holds its data. The tensor class also provides multi-dimensional, strided view of a storage and defines numeric operations on it.
Note
For more information on tensor views, see :ref:`tensor-view-doc`.
Note
For more information on the :class:`torch.dtype`, :class:`torch.device`, and :class:`torch.layout` attributes of a :class:`torch.Tensor`, see :ref:`tensor-attributes-doc`.
Note
Methods which mutate a tensor are marked with an underscore suffix. For example, :func:`torch.FloatTensor.abs_` computes the absolute value in-place and returns the modified tensor, while :func:`torch.FloatTensor.abs` computes the result in a new tensor.
Note
To change an existing tensor's :class:`torch.device` and/or :class:`torch.dtype`, consider using :meth:`~torch.Tensor.to` method on the tensor.
Warning
Current implementation of :class:`torch.Tensor` introduces memory overhead, thus it might lead to unexpectedly high memory usage in the applications with many tiny tensors. If this is your case, consider using one large structure.
There are a few main ways to create a tensor, depending on your use case.
- To create a tensor with pre-existing data, use :func:`torch.tensor`.
- To create a tensor with specific size, use
torch.*
tensor creation ops (see :ref:`tensor-creation-ops`). - To create a tensor with the same size (and similar types) as another tensor,
use
torch.*_like
tensor creation ops (see :ref:`tensor-creation-ops`). - To create a tensor with similar type but different size as another tensor,
use
tensor.new_*
creation ops.
.. autoattribute:: Tensor.T
.. autoattribute:: Tensor.H
.. autoattribute:: Tensor.mT
.. autoattribute:: Tensor.mH
.. autosummary:: :toctree: generated :nosignatures: Tensor.new_tensor Tensor.new_full Tensor.new_empty Tensor.new_ones Tensor.new_zeros Tensor.is_cuda Tensor.is_quantized Tensor.is_meta Tensor.device Tensor.grad Tensor.ndim Tensor.real Tensor.imag Tensor.abs Tensor.abs_ Tensor.absolute Tensor.absolute_ Tensor.acos Tensor.acos_ Tensor.arccos Tensor.arccos_ Tensor.add Tensor.add_ Tensor.addbmm Tensor.addbmm_ Tensor.addcdiv Tensor.addcdiv_ Tensor.addcmul Tensor.addcmul_ Tensor.addmm Tensor.addmm_ Tensor.sspaddmm Tensor.addmv Tensor.addmv_ Tensor.addr Tensor.addr_ Tensor.adjoint Tensor.allclose Tensor.amax Tensor.amin Tensor.aminmax Tensor.angle Tensor.apply_ Tensor.argmax Tensor.argmin Tensor.argsort Tensor.asin Tensor.asin_ Tensor.arcsin Tensor.arcsin_ Tensor.as_strided Tensor.atan Tensor.atan_ Tensor.arctan Tensor.arctan_ Tensor.atan2 Tensor.atan2_ Tensor.all Tensor.any Tensor.backward Tensor.baddbmm Tensor.baddbmm_ Tensor.bernoulli Tensor.bernoulli_ Tensor.bfloat16 Tensor.bincount Tensor.bitwise_not Tensor.bitwise_not_ Tensor.bitwise_and Tensor.bitwise_and_ Tensor.bitwise_or Tensor.bitwise_or_ Tensor.bitwise_xor Tensor.bitwise_xor_ Tensor.bitwise_left_shift Tensor.bitwise_left_shift_ Tensor.bitwise_right_shift Tensor.bitwise_right_shift_ Tensor.bmm Tensor.bool Tensor.byte Tensor.broadcast_to Tensor.cauchy_ Tensor.ceil Tensor.ceil_ Tensor.char Tensor.cholesky Tensor.cholesky_inverse Tensor.cholesky_solve Tensor.chunk Tensor.clamp Tensor.clamp_ Tensor.clip Tensor.clip_ Tensor.clone Tensor.contiguous Tensor.copy_ Tensor.conj Tensor.conj_physical Tensor.conj_physical_ Tensor.resolve_conj Tensor.resolve_neg Tensor.copysign Tensor.copysign_ Tensor.cos Tensor.cos_ Tensor.cosh Tensor.cosh_ Tensor.corrcoef Tensor.count_nonzero Tensor.cov Tensor.acosh Tensor.acosh_ Tensor.arccosh Tensor.arccosh_ Tensor.cpu Tensor.cross Tensor.cuda Tensor.logcumsumexp Tensor.cummax Tensor.cummin Tensor.cumprod Tensor.cumprod_ Tensor.cumsum Tensor.cumsum_ Tensor.data_ptr Tensor.deg2rad Tensor.dequantize Tensor.det Tensor.dense_dim Tensor.detach Tensor.detach_ Tensor.diag Tensor.diag_embed Tensor.diagflat Tensor.diagonal Tensor.fill_diagonal_ Tensor.fmax Tensor.fmin Tensor.diff Tensor.digamma Tensor.digamma_ Tensor.dim Tensor.dist Tensor.div Tensor.div_ Tensor.divide Tensor.divide_ Tensor.dot Tensor.double Tensor.dsplit Tensor.eig Tensor.element_size Tensor.eq Tensor.eq_ Tensor.equal Tensor.erf Tensor.erf_ Tensor.erfc Tensor.erfc_ Tensor.erfinv Tensor.erfinv_ Tensor.exp Tensor.exp_ Tensor.expm1 Tensor.expm1_ Tensor.expand Tensor.expand_as Tensor.exponential_ Tensor.fix Tensor.fix_ Tensor.fill_ Tensor.flatten Tensor.flip Tensor.fliplr Tensor.flipud Tensor.float Tensor.float_power Tensor.float_power_ Tensor.floor Tensor.floor_ Tensor.floor_divide Tensor.floor_divide_ Tensor.fmod Tensor.fmod_ Tensor.frac Tensor.frac_ Tensor.frexp Tensor.gather Tensor.gcd Tensor.gcd_ Tensor.ge Tensor.ge_ Tensor.greater_equal Tensor.greater_equal_ Tensor.geometric_ Tensor.geqrf Tensor.ger Tensor.get_device Tensor.gt Tensor.gt_ Tensor.greater Tensor.greater_ Tensor.half Tensor.hardshrink Tensor.heaviside Tensor.histc Tensor.histogram Tensor.hsplit Tensor.hypot Tensor.hypot_ Tensor.i0 Tensor.i0_ Tensor.igamma Tensor.igamma_ Tensor.igammac Tensor.igammac_ Tensor.index_add_ Tensor.index_add Tensor.index_copy_ Tensor.index_copy Tensor.index_fill_ Tensor.index_fill Tensor.index_put_ Tensor.index_put Tensor.index_select Tensor.indices Tensor.inner Tensor.int Tensor.int_repr Tensor.inverse Tensor.isclose Tensor.isfinite Tensor.isinf Tensor.isposinf Tensor.isneginf Tensor.isnan Tensor.is_contiguous Tensor.is_complex Tensor.is_conj Tensor.is_floating_point Tensor.is_inference Tensor.is_leaf Tensor.is_pinned Tensor.is_set_to Tensor.is_shared Tensor.is_signed Tensor.is_sparse Tensor.istft Tensor.isreal Tensor.item Tensor.kthvalue Tensor.lcm Tensor.lcm_ Tensor.ldexp Tensor.ldexp_ Tensor.le Tensor.le_ Tensor.less_equal Tensor.less_equal_ Tensor.lerp Tensor.lerp_ Tensor.lgamma Tensor.lgamma_ Tensor.log Tensor.log_ Tensor.logdet Tensor.log10 Tensor.log10_ Tensor.log1p Tensor.log1p_ Tensor.log2 Tensor.log2_ Tensor.log_normal_ Tensor.logaddexp Tensor.logaddexp2 Tensor.logsumexp Tensor.logical_and Tensor.logical_and_ Tensor.logical_not Tensor.logical_not_ Tensor.logical_or Tensor.logical_or_ Tensor.logical_xor Tensor.logical_xor_ Tensor.logit Tensor.logit_ Tensor.long Tensor.lstsq Tensor.lt Tensor.lt_ Tensor.less Tensor.less_ Tensor.lu Tensor.lu_solve Tensor.as_subclass Tensor.map_ Tensor.masked_scatter_ Tensor.masked_scatter Tensor.masked_fill_ Tensor.masked_fill Tensor.masked_select Tensor.matmul Tensor.matrix_power Tensor.matrix_exp Tensor.max Tensor.maximum Tensor.mean Tensor.nanmean Tensor.median Tensor.nanmedian Tensor.min Tensor.minimum Tensor.mm Tensor.smm Tensor.mode Tensor.movedim Tensor.moveaxis Tensor.msort Tensor.mul Tensor.mul_ Tensor.multiply Tensor.multiply_ Tensor.multinomial Tensor.mv Tensor.mvlgamma Tensor.mvlgamma_ Tensor.nansum Tensor.narrow Tensor.narrow_copy Tensor.ndimension Tensor.nan_to_num Tensor.nan_to_num_ Tensor.ne Tensor.ne_ Tensor.not_equal Tensor.not_equal_ Tensor.neg Tensor.neg_ Tensor.negative Tensor.negative_ Tensor.nelement Tensor.nextafter Tensor.nextafter_ Tensor.nonzero Tensor.norm Tensor.normal_ Tensor.numel Tensor.numpy Tensor.orgqr Tensor.ormqr Tensor.outer Tensor.permute Tensor.pin_memory Tensor.pinverse Tensor.polygamma Tensor.polygamma_ Tensor.positive Tensor.pow Tensor.pow_ Tensor.prod Tensor.put_ Tensor.qr Tensor.qscheme Tensor.quantile Tensor.nanquantile Tensor.q_scale Tensor.q_zero_point Tensor.q_per_channel_scales Tensor.q_per_channel_zero_points Tensor.q_per_channel_axis Tensor.rad2deg Tensor.random_ Tensor.ravel Tensor.reciprocal Tensor.reciprocal_ Tensor.record_stream Tensor.register_hook Tensor.remainder Tensor.remainder_ Tensor.renorm Tensor.renorm_ Tensor.repeat Tensor.repeat_interleave Tensor.requires_grad Tensor.requires_grad_ Tensor.reshape Tensor.reshape_as Tensor.resize_ Tensor.resize_as_ Tensor.retain_grad Tensor.retains_grad Tensor.roll Tensor.rot90 Tensor.round Tensor.round_ Tensor.rsqrt Tensor.rsqrt_ Tensor.scatter Tensor.scatter_ Tensor.scatter_add_ Tensor.scatter_add Tensor.select Tensor.set_ Tensor.share_memory_ Tensor.short Tensor.sigmoid Tensor.sigmoid_ Tensor.sign Tensor.sign_ Tensor.signbit Tensor.sgn Tensor.sgn_ Tensor.sin Tensor.sin_ Tensor.sinc Tensor.sinc_ Tensor.sinh Tensor.sinh_ Tensor.asinh Tensor.asinh_ Tensor.arcsinh Tensor.arcsinh_ Tensor.size Tensor.slogdet Tensor.solve Tensor.sort Tensor.split Tensor.sparse_mask Tensor.sparse_dim Tensor.sqrt Tensor.sqrt_ Tensor.square Tensor.square_ Tensor.squeeze Tensor.squeeze_ Tensor.std Tensor.stft Tensor.storage Tensor.storage_offset Tensor.storage_type Tensor.stride Tensor.sub Tensor.sub_ Tensor.subtract Tensor.subtract_ Tensor.sum Tensor.sum_to_size Tensor.svd Tensor.swapaxes Tensor.swapdims Tensor.symeig Tensor.t Tensor.t_ Tensor.tensor_split Tensor.tile Tensor.to Tensor.to_mkldnn Tensor.take Tensor.take_along_dim Tensor.tan Tensor.tan_ Tensor.tanh Tensor.tanh_ Tensor.atanh Tensor.atanh_ Tensor.arctanh Tensor.arctanh_ Tensor.tolist Tensor.topk Tensor.to_sparse Tensor.trace Tensor.transpose Tensor.transpose_ Tensor.triangular_solve Tensor.tril Tensor.tril_ Tensor.triu Tensor.triu_ Tensor.true_divide Tensor.true_divide_ Tensor.trunc Tensor.trunc_ Tensor.type Tensor.type_as Tensor.unbind Tensor.unfold Tensor.uniform_ Tensor.unique Tensor.unique_consecutive Tensor.unsqueeze Tensor.unsqueeze_ Tensor.values Tensor.var Tensor.vdot Tensor.view Tensor.view_as Tensor.vsplit Tensor.where Tensor.xlogy Tensor.xlogy_ Tensor.zero_