forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblob_serialization.cc
1277 lines (1154 loc) · 42.4 KB
/
blob_serialization.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "caffe2/core/blob_serialization.h"
#include <mutex>
#include <sstream>
#include <utility>
#include <c10/util/irange.h>
#include <c10/util/string_view.h>
#include "caffe2/core/blob.h"
#include "caffe2/core/common.h"
#include "caffe2/utils/proto_utils.h"
#ifdef USE_FBGEMM
#include "fbgemm/FbgemmConvert.h"
#endif
C10_DEFINE_int(
caffe2_tensor_chunk_size,
1000000,
"Chunk size to split tensor data into");
C10_DEFINE_int(
caffe2_max_tensor_serializer_threads,
16,
"Maximal number of threads that can be used for tensor serialization");
C10_DEFINE_bool(
caffe2_serialize_fp16_as_bytes,
false,
"Serialize FLOAT16 tensors using byte_data field");
C10_DEFINE_bool(
caffe2_serialize_using_bytes_as_holder,
false,
"Serialize BOOL, UINT8, INT8, UINT16, INT16, FLOAT16 tensors using byte_data field instead of int32");
namespace caffe2 {
namespace {
// This is a simplified copy of folly::Range.
// This is similar to c10::ArrayRef but it can point to non-const data.
template<typename Iter>
class Range {
public:
using value_type = typename std::remove_reference<
typename std::iterator_traits<Iter>::reference>::type;
Range(Iter b, Iter e) : begin_{b}, end_{e} {}
Range(Iter b, size_t size) : begin_{b}, end_{b + size} {}
CAFFE2_NODISCARD constexpr Iter data() const {
return begin_;
}
CAFFE2_NODISCARD constexpr Iter begin() const {
return begin_;
}
CAFFE2_NODISCARD constexpr Iter end() const {
return end_;
}
CAFFE2_NODISCARD constexpr size_t size() const {
return end_ - begin_;
}
value_type& operator[](size_t n) const {
assert(n < size());
return begin_[n];
}
private:
Iter begin_;
Iter end_;
};
/**
* Return a mutable Range pointing to a portion of the tensor's data field.
*
* Returns a Range pointing to the elements starting at the specified start
* index, and including the specified number of elements.
*/
template <typename T>
Range<T*> GetMutableTensorDataRange(
Tensor& tensor,
size_t start,
size_t numElements) {
CAFFE_ENFORCE(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
start + numElements <= tensor.numel(),
"Requested invalid mutable tensor range [",
start,
", ",
start + numElements,
") with total tensor size ",
tensor.numel());
return Range<T*>(tensor.template mutable_data<T>() + start, numElements);
}
template <typename T>
c10::ArrayRef<T> GetTensorDataRange(
const Tensor& tensor,
size_t start,
size_t numElements) {
CAFFE_ENFORCE(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
start + numElements <= tensor.numel(),
"Requested invalid tensor range [",
start,
", ",
start + numElements,
") with total tensor size ",
tensor.numel());
return c10::ArrayRef<T>(tensor.template data<T>() + start, numElements);
}
template <typename T>
bool EnableByteEncoding() {
// if typeSize == 1, endianness does not matter. Else check for endianness.
if (sizeof(T) > 1 && !kIsLittleEndian) {
return false;
}
return FLAGS_caffe2_serialize_using_bytes_as_holder;
}
bool EnableByteEncodingFloat16() {
if (!kIsLittleEndian) {
return false;
}
// Check if special casing for float is enabled if
// caffe2_serialize_using_bytes_as_holder is not enabled.
return FLAGS_caffe2_serialize_using_bytes_as_holder ||
FLAGS_caffe2_serialize_fp16_as_bytes;
}
size_t EstimatePerElementSize(
const Tensor& tensor,
const BlobSerializationOptions& options) {
const TensorProto::DataType data_type = TypeMetaToDataType(tensor.dtype());
switch (data_type) {
case TensorProto_DataType_FLOAT:
#ifdef USE_FBGEMM
if (options.float_format() ==
BlobSerializationOptions_FloatFormat_FLOAT_BFLOAT16) {
// Each element is serialized as a 2-byte bfloat16
return sizeof(uint16_t);
}
#endif
return sizeof(float);
case TensorProto_DataType_INT32:
// protobuf will use varint encoding, so it won't be a fixed field width
// per integer, and will use between 1 and 5 bytes. Just return 4 bytes
// as an estimate. With randomized data the actual value may be higher
// than this, since around half the numbers will have the high bit set and
// would require 5 bytes to encode.
return sizeof(int32_t);
case TensorProto_DataType_INT64:
// Same varint reasoning as for the INT32 case.
return sizeof(int64_t);
case TensorProto_DataType_STRING:
// We unfortunately cannot estimate the size well for strings, without
// knowing the individual element lengths. Just return 50 bytes per
// string as a guess.
return 50;
case TensorProto_DataType_BOOL:
// Depending on EnableByteEncoding() this is either serialized in
// byte_data or int32_data, but in either case it takes 1 byte per element
// (since bool values will only take 1 byte when varint encoded in
// int32_data).
return 1;
case TensorProto_DataType_UINT8:
if (EnableByteEncoding<uint8_t>()) {
return 1;
} else {
// Unfortunately when storing uint8_t values in int32_data any values
// over 127 will require 2 bytes to store due to varint encoding.
// With random data we would expect around 1.5 bytes per element. Round
// up to 2.
return 2;
}
case TensorProto_DataType_INT8:
if (EnableByteEncoding<int8_t>()) {
return 1;
} else {
// Unfortunately when storing int8_t values in int32_data any negative
// values will require 2 bytes to store due to varint encoding. With
// random data we would expect around 1.5 bytes per element. Round up
// to 2.
return 2;
}
case TensorProto_DataType_UINT16:
if (EnableByteEncoding<uint16_t>()) {
return 2;
} else {
// With random data, varint encoding will end up requiring closer to 3
// bytes per element.
return 3;
}
case TensorProto_DataType_INT16:
if (EnableByteEncoding<int16_t>()) {
return 2;
} else {
// With random data, varint encoding will end up requiring closer to 3
// bytes per element.
return 3;
}
case TensorProto_DataType_FLOAT16:
if (EnableByteEncodingFloat16()) {
return 2;
} else {
// The data will be stored as uint16_t values in the int32_data.
// Due to varint encoding many values may require 3 bytes.
return 3;
}
case TensorProto_DataType_DOUBLE:
return sizeof(double);
case TensorProto_DataType_UNDEFINED:
return tensor.itemsize();
case TensorProto_DataType_BYTE:
case TensorProto_DataType_ZERO_COLLISION_HASH:
case TensorProto_DataType_REBATCHING_BUFFER:
// These data types should never be hit during serialization
LOG(ERROR) << "unexpected tensor data type during serialization size "
"estimation: "
<< static_cast<int>(data_type);
return 0;
}
LOG(ERROR) << "unknown tensor data type during serialization size "
"estimation: "
<< static_cast<int>(data_type);
return 0;
}
} // namespace
/**
* @brief StringSerializer is the serializer for String.
*
* StringSerializer takes in a blob that contains a String, and serializes it
* into a BlobProto protocol buffer.
*/
class StringSerializer : public BlobSerializerBase {
public:
StringSerializer() = default;
~StringSerializer() override = default;
/**
* Serializes a Blob. Note that this blob has to contain Tensor,
* otherwise this function produces a fatal error.
*/
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
SerializationAcceptor acceptor) override {
CAFFE_ENFORCE(typeMeta.Match<std::string>());
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type("std::string");
blob_proto.set_content(*static_cast<const std::string*>(pointer));
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
}
size_t EstimateSerializedBlobSize(
const void* pointer,
TypeMeta,
c10::string_view name,
const BlobSerializationOptions&) override {
auto* str = static_cast<const std::string*>(pointer);
// Add 20 for the "std::string" type field plus other overhead for the
// BlobProto message serialization.
return name.size() + str->size() + 20;
}
};
/**
* @brief StringDeserializer is the deserializer for Strings.
*
*/
class StringDeserializer : public BlobDeserializerBase {
public:
void Deserialize(const BlobProto& proto, Blob* blob) override {
*blob->GetMutable<std::string>() = proto.content();
}
};
namespace {
void SerializeBlob(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
const BlobSerializationOptions& options) {
std::unique_ptr<BlobSerializerBase> serializer(
CreateSerializer(typeMeta.id()));
CAFFE_ENFORCE(serializer, "No known serializer for ", typeMeta.name());
serializer->SerializeWithOptions(pointer, typeMeta, name, std::move(acceptor), options);
}
std::string
SerializeBlob(const void* pointer, TypeMeta typeMeta, const string& name) {
std::string data;
BlobSerializerBase::SerializationAcceptor acceptor =
[&data](const std::string&, const std::string& blob_str) {
DCHECK(data.empty()); // should be called once with kNoChunking
data = blob_str;
};
BlobSerializationOptions options;
options.set_chunk_size(kNoChunking);
SerializeBlob(pointer, typeMeta, name, acceptor, options);
return data;
}
} // namespace
void SerializeBlob(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
const BlobSerializationOptions& options) {
SerializeBlob(blob.GetRaw(), blob.meta(), name, std::move(acceptor), options);
}
void SerializeBlob(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) {
BlobSerializationOptions options;
SerializeBlob(blob.GetRaw(), blob.meta(), name, std::move(acceptor), options);
}
std::string SerializeBlob(const Blob& blob, const string& name) {
return SerializeBlob(blob.GetRaw(), blob.meta(), name);
}
size_t EstimateSerializedBlobSize(
const Blob& blob,
c10::string_view name,
const BlobSerializationOptions& options) {
std::unique_ptr<BlobSerializerBase> serializer{
CreateSerializer(blob.meta().id())};
if (!serializer) {
LOG(ERROR) << "No known serializer for " << blob.meta().name();
return 0;
}
return serializer->EstimateSerializedBlobSize(
blob.GetRaw(), blob.meta(), name, options);
}
void TensorSerializer::Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) {
BlobSerializationOptions options;
this->SerializeWithOptions(pointer, typeMeta, name, acceptor, options);
}
void TensorSerializer::SerializeWithOptions(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
const BlobSerializationOptions& options) {
CAFFE_ENFORCE(typeMeta.Match<Tensor>());
const auto& tensor = *static_cast<const Tensor*>(pointer);
auto chunk_size = options.chunk_size();
if (chunk_size == kNoChunking) {
chunk_size = tensor.numel() + 1; // to account for empty tensors
} else if (chunk_size == kDefaultChunkSize) {
chunk_size = FLAGS_caffe2_tensor_chunk_size;
}
auto processChunk = [&](int64_t chunkStart) {
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type(kTensorBlobType);
TensorProto& proto = *blob_proto.mutable_tensor();
proto.set_name(name);
this->Serialize(
tensor,
name,
blob_proto.mutable_tensor(),
options,
chunkStart,
chunk_size);
acceptor(
c10::str(name, kChunkIdSeparator, chunkStart / chunk_size),
SerializeBlobProtoAsString_EnforceCheck(blob_proto));
};
#ifndef __ANDROID__
// Poorman's IOBound ThreadPool
SimpleQueue<size_t> chunkQueue;
auto task = [&]() {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
size_t chunkStart;
while (chunkQueue.Pop(&chunkStart)) {
processChunk(chunkStart);
}
};
std::vector<std::future<void>> futures;
if (tensor.numel() > chunk_size) {
futures.reserve(FLAGS_caffe2_max_tensor_serializer_threads);
for (const auto i : c10::irange(FLAGS_caffe2_max_tensor_serializer_threads)) {
(void)i;
futures.emplace_back(std::async(std::launch::async, task));
}
}
#endif
VLOG(1) << "Serializing blob " << name;
// Serialize whole vector. If vector is empty, it's shape still needs to be
// serialized in empty proto
for (size_t chunkBegin = 0;
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
chunkBegin < std::max(tensor.numel(), static_cast<int64_t>(1));
chunkBegin += chunk_size) {
VLOG(2) << "Starting a chunk at " << chunkBegin;
#ifndef __ANDROID__
if (tensor.numel() > chunk_size) {
chunkQueue.Push(chunkBegin);
} else {
// Sync mode for small tensors
processChunk(chunkBegin);
}
#else
// Since Android does not have std::future, we will always do sync mode
processChunk(chunkBegin);
#endif
}
#ifndef __ANDROID__
chunkQueue.NoMoreJobs();
for (auto& fut : futures) {
fut.get();
}
#endif
}
size_t TensorSerializer::EstimateSerializedBlobSize(
const void* pointer,
TypeMeta typeMeta,
c10::string_view name,
const BlobSerializationOptions& options) {
CAFFE_ENFORCE(typeMeta.Match<Tensor>());
const auto& tensor = *static_cast<const Tensor*>(pointer);
auto chunk_size = options.chunk_size();
if (chunk_size == kNoChunking) {
chunk_size = tensor.numel() + 1; // to account for empty tensors
} else if (chunk_size == kDefaultChunkSize) {
chunk_size = FLAGS_caffe2_tensor_chunk_size;
}
// There is a small amount of fixed overhead per chunk to serialize the
// fixed TensorProto message data independent from the chunk contents.
// This normally appears to be around 50 bytes.
// The blob name is also written out in the BlobProto for each chunk.
constexpr size_t protobuf_overhead_per_chunk = 50;
size_t num_chunks = (tensor.numel() + (chunk_size - 1)) / chunk_size;
size_t overhead = num_chunks * (name.size() + protobuf_overhead_per_chunk);
return overhead + tensor.numel() * EstimatePerElementSize(tensor, options);
}
namespace {
template <typename T, typename S = T>
void SerializeUsingBytesOrInt32(
bool enableByteEncoding,
c10::ArrayRef<S> input,
BaseContext& context,
TensorProto& proto) {
if (enableByteEncoding) {
const auto bufSize = sizeof(T) * input.size();
auto* byteData = reinterpret_cast<const uint8_t*>(input.data());
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
unique_ptr<uint8_t[]> buffer(new uint8_t[bufSize]);
context.template CopyToCPU<uint8_t>(bufSize, byteData, buffer.get());
context.FinishDeviceComputation();
proto.set_byte_data(buffer.get(), bufSize);
} else {
detail::CopyToProtoWithCast(
input.size(),
reinterpret_cast<const T*>(input.data()),
proto.mutable_int32_data(),
&context);
}
}
/**
* SerializeParams is just a helper class to consolidate the parameters
* required for serializing tensor data so they can be passed around more
* easily.
*
* It also contains some helper functions to perform some operations on the
* parameters that are shared by multiple serialization functions.
*/
template<typename T>
struct SerializeParams {
SerializeParams(
c10::ArrayRef<T> in,
TensorProto& proto,
BaseContext& ctx,
const BlobSerializationOptions& opts)
: input{in}, tensor_proto{proto}, context{ctx}, options{opts} {}
void SetDataFormat(TensorProto::SerializationFormat format) const {
tensor_proto.set_data_format(format);
}
void CopyToRepeatedField(google::protobuf::RepeatedField<T>* field) const {
detail::CopyToProtoAsIs(input.size(), input.data(), field, &context);
}
c10::ArrayRef<T> input;
TensorProto& tensor_proto;
BaseContext& context;
const BlobSerializationOptions& options;
};
void SerializeTensorData(const SerializeParams<int64_t>& params) {
params.CopyToRepeatedField(params.tensor_proto.mutable_int64_data());
}
void SerializeTensorData(const SerializeParams<int32_t>& params) {
params.CopyToRepeatedField(params.tensor_proto.mutable_int32_data());
}
template <typename T>
typename std::enable_if<
std::is_same<T, bool>::value || std::is_same<T, uint8_t>::value ||
std::is_same<T, int8_t>::value || std::is_same<T, uint16_t>::value ||
std::is_same<T, int16_t>::value,
void>::type
SerializeTensorData(const SerializeParams<T>& params) {
SerializeUsingBytesOrInt32<T>(
EnableByteEncoding<T>(),
params.input,
params.context,
params.tensor_proto);
}
void SerializeTensorData(const SerializeParams<at::Half>& params) {
SerializeUsingBytesOrInt32<uint16_t>(
EnableByteEncodingFloat16(),
params.input,
params.context,
params.tensor_proto);
}
#ifdef USE_FBGEMM
namespace {
// Unfortunately we can't include folly/lang/Bits.h here,
// so provide our own byte-swapping code.
fbgemm::bfloat16 ByteSwap(fbgemm::bfloat16 n) {
#ifdef _MSC_VER
return _byteswap_ushort(n);
#else
return __builtin_bswap16(n);
#endif
}
void ByteSwapArray(
const fbgemm::bfloat16* src,
fbgemm::bfloat16* dest,
size_t num_elements) {
// Note that we support src and dest pointing to the same location.
// We currently only use this function on big-endian machines, so it isn't
// worth trying to build a fancier SIMD version.
for (size_t n = 0; n < num_elements; ++n) {
dest[n] = ByteSwap(src[n]);
}
}
} // namespace
#endif // USE_FBGEMM
void SerializeTensorData(const SerializeParams<float>& params) {
// The FLOAT_BFLOAT16 option requests doing a conversion to bfloat16. This
// reduces the serialized data size at the cost of some lost precision.
// We currently only support doing this when compiled with fbgemm.
#ifdef USE_FBGEMM
if (params.options.float_format() ==
BlobSerializationOptions_FloatFormat_FLOAT_BFLOAT16) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
std::unique_ptr<float[]> tmp_buffer;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
const float* src;
if (params.context.device() == CPU) {
src = params.input.data();
} else {
tmp_buffer.reset(new float[params.input.size()]);
params.context.CopyToCPU(
params.input.size(), params.input.data(), tmp_buffer.get());
}
params.SetDataFormat(TensorProto_SerializationFormat_FMT_BFLOAT16);
// TODO: it would be nice if we could use
// folly::resizeWithoutInitialization() here
params.tensor_proto.mutable_raw_data()->resize(
params.input.size() * sizeof(fbgemm::bfloat16));
Range<fbgemm::bfloat16*> dest(
reinterpret_cast<fbgemm::bfloat16*>(
&(*params.tensor_proto.mutable_raw_data())[0]),
params.input.size());
// NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
fbgemm::FloatToBfloat16_simd(src, dest.data(), params.input.size());
// Note: technically a platform can have different integer from floating
// point endianness, and we ideally should check floating point endianness
// here. However, the fbgemm code doesn't appear to make this distinction,
// and at least in the Bfloat16ToFloat_ref() code it appears to assume that
// floating point and integer endianness are the same.
if (!kIsLittleEndian) {
ByteSwapArray(dest.data(), dest.data(), dest.size());
}
return;
}
#endif
params.SetDataFormat(TensorProto_SerializationFormat_FMT_PROTOBUF);
params.CopyToRepeatedField(params.tensor_proto.mutable_float_data());
}
void SerializeTensorData(const SerializeParams<double>& params) {
params.CopyToRepeatedField(params.tensor_proto.mutable_double_data());
}
void SerializeTensorData(const SerializeParams<std::string>& params) {
params.tensor_proto.mutable_string_data()->Reserve(params.input.size());
for (const std::string& element : params.input) {
params.tensor_proto.add_string_data(element);
}
}
#define SERIALIZE_TYPE_CASE(proto_type, type) \
case TensorProto_DataType_##proto_type: { \
SerializeTensorData(SerializeParams<type>( \
GetTensorDataRange<type>(input, chunkBegin, chunkSize), \
proto, \
*context, \
options)); \
return; \
}
} // namespace
void TensorSerializer::Serialize(
const Tensor& input,
const string& name,
TensorProto* proto_ptr,
const BlobSerializationOptions& options,
size_t chunkBegin,
int32_t chunkSize) {
CAFFE_ENFORCE(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
chunkBegin <= input.numel(),
"Chunk begin is out of tensor: ",
chunkBegin,
' ',
input.numel());
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (chunkBegin + chunkSize > input.numel()) {
chunkSize = input.numel() - chunkBegin;
}
if (chunkSize != 0) {
CAFFE_ENFORCE(
input.raw_data(),
"The input does not have data input yet. This is probably because you "
"created a tensor of non-zero shape but never filled its data via "
"mutable_data() calls. This means that it makes no sense to serialize "
"the tensor content.");
} else if (!input.dtype_initialized()) {
C10_LOG_EVERY_MS(WARNING, 1000)
<< "You're trying to serialize tensor with zero numel and no dtype. "
<< "This is a legacy behavior and it WILL BREAK. Contact PyTorch team "
<< "for details. Offending blob name: " << name;
}
TensorProto& proto = *proto_ptr;
proto.mutable_segment()->set_begin(chunkBegin);
proto.mutable_segment()->set_end(chunkBegin + chunkSize);
for (const auto i : c10::irange(input.dim())) {
proto.add_dims(input.size(i));
}
StoreDeviceDetail(input, &proto);
const TensorProto::DataType data_type = TypeMetaToDataType(input.dtype());
proto.set_data_type(data_type);
// TODO: use CUDAGuard here instead of context and employ explicit sync
// copy
auto context = CreateContext(input.GetDevice());
switch (data_type) {
SERIALIZE_TYPE_CASE(FLOAT, float)
SERIALIZE_TYPE_CASE(INT32, int32_t)
SERIALIZE_TYPE_CASE(STRING, std::string)
SERIALIZE_TYPE_CASE(BOOL, bool)
SERIALIZE_TYPE_CASE(UINT8, uint8_t)
SERIALIZE_TYPE_CASE(INT8, int8_t)
SERIALIZE_TYPE_CASE(UINT16, uint16_t)
SERIALIZE_TYPE_CASE(INT16, int16_t)
SERIALIZE_TYPE_CASE(INT64, int64_t)
SERIALIZE_TYPE_CASE(FLOAT16, at::Half)
SERIALIZE_TYPE_CASE(DOUBLE, double)
case TensorProto_DataType_BYTE:
LOG(FATAL) << "This should not happen. When serializing, "
"BYTE is deprecated and moved to UINT8.";
return;
case TensorProto_DataType_UNDEFINED:
proto.mutable_string_data()->Reserve(chunkSize);
if (chunkSize > 0) {
const char* raw_data = static_cast<const char*>(input.raw_data());
for (const auto i : c10::irange(chunkBegin, chunkBegin + chunkSize)) {
proto.add_string_data(SerializeBlob(
raw_data + i * input.itemsize(), input.dtype(), ""));
}
}
return;
case TensorProto_DataType_ZERO_COLLISION_HASH:
CAFFE_ENFORCE(
false,
"Serialization for zero collision hash type is supported by "
"specialized serializer ZeroCollisionIdHashSerializer");
return;
case TensorProto_DataType_REBATCHING_BUFFER:
CAFFE_ENFORCE(
false,
"Serialization for REBATCHING_BUFFER type is supported by "
"specialized serializer RebatchingBufferSerialier");
return;
// Note: we intentially do not provide "default:" so if any new data types
// are added, the compiler should warn the user to add the case here.
}
CAFFE_ENFORCE(false, "unexpected data type during tensor serialization");
}
int GetGPUIDForPointer(const void* ptr);
void TensorSerializer::StoreDeviceDetail(
const Tensor& input,
TensorProto* proto) {
ExtractDeviceOption(proto->mutable_device_detail(), input.GetDevice());
}
// The actual serialization registry objects.
C10_DEFINE_TYPED_REGISTRY(
BlobSerializerRegistry,
TypeIdentifier,
BlobSerializerBase,
std::unique_ptr);
C10_DEFINE_REGISTRY(BlobDeserializerRegistry, BlobDeserializerBase);
void DeserializeBlob(const string& content, Blob* result) {
BlobProto blob_proto;
CAFFE_ENFORCE(
blob_proto.ParseFromString(content),
"Cannot parse content into a BlobProto.");
DeserializeBlob(blob_proto, result);
}
void DeserializeBlob(const BlobProto& blob_proto, Blob* result) {
if (blob_proto.type() == kTensorBlobType) {
// This is a tensor object. Depending on the device type, we will
// use the corresponding TensorDeserializer.
auto deserializer = CreateDeserializer(
"Tensor" +
DeviceTypeName(blob_proto.tensor().device_detail().device_type()));
// Tensor's deserializer should always be registered, but we will double
// check if it is not null anyway.
CAFFE_ENFORCE(deserializer.get());
deserializer->Deserialize(blob_proto, result);
} else {
auto deserializer = CreateDeserializer(blob_proto.type());
CAFFE_ENFORCE(
deserializer.get(),
"No registered deserializer for type ",
blob_proto.type());
deserializer->Deserialize(blob_proto, result);
}
}
// === Local helper functions ===
// Get dimensions from Tensor proto
std::vector<int64_t> DimsFromTensorProto(const TensorProto& proto) {
std::vector<int64_t> dims;
dims.reserve(proto.dims().size());
for (const int64_t d : proto.dims()) {
dims.push_back(d);
}
return dims;
}
// Get number of elements from Tensor proto
int64_t NumelFromTensorProto(const TensorProto& tensor_proto) {
int64_t numel = 1;
for (const int64_t d : tensor_proto.dims()) {
numel *= d;
}
return numel;
}
// Get data type from Tensor proto
TypeMeta GetDataType(const TensorProto& tensor_proto) {
TypeMeta dtype;
if (tensor_proto.data_type() != TensorProto_DataType_UNDEFINED) {
dtype = DataTypeToTypeMeta(tensor_proto.data_type());
} else {
Blob temp_blob;
DeserializeBlob(tensor_proto.string_data(0), &temp_blob);
dtype = temp_blob.meta();
}
return dtype;
}
// Get TensorOptions from Tensor proto
// Assumes TensorProto is not empty
static at::TensorOptions TensorOptionsFromProto(
const TensorProto& tensor_proto) {
return at::dtype(GetDataType(tensor_proto))
.device(OptionToDevice(tensor_proto.device_detail()));
}
std::unique_ptr<BaseContext> ContextFromProto(
const TensorProto& tensor_proto) {
auto device = OptionToDevice(tensor_proto.device_detail());
return CreateContext(device);
}
// === Local helper functions ===
Tensor EmptyTensorFromProto(const TensorProto& tensor_proto) {
auto context = ContextFromProto(tensor_proto);
context->SwitchToDevice();
if (NumelFromTensorProto(tensor_proto) == 0 &&
tensor_proto.data_type() == TensorProto_DataType_UNDEFINED) {
// TODO: remove when serialization of dtype uninitialized tensor is removed
return caffe2::empty(
{0},
at::dtype<float>().device(
OptionToDevice(tensor_proto.device_detail())));
} else {
return caffe2::empty(
DimsFromTensorProto(tensor_proto),
TensorOptionsFromProto(tensor_proto));
}
}
void TensorDeserializer::Deserialize(const BlobProto& blob_proto, Blob* blob) {
const auto& tensor_proto = blob_proto.tensor();
auto context = ContextFromProto(tensor_proto);
context->SwitchToDevice();
if (NumelFromTensorProto(tensor_proto) == 0 &&
tensor_proto.data_type() == TensorProto_DataType_UNDEFINED) {
// TODO: remove after empty Tensor serialization is forbidden
VLOG(1) << "Deseriralizing an empty Tensor.";
BlobGetMutableTensor(
blob,
{0},
at::dtype<float>().device(
OptionToDevice(tensor_proto.device_detail())));
} else {
DeserializeToTensor(
tensor_proto,
BlobGetMutableTensor(
blob,
DimsFromTensorProto(tensor_proto),
TensorOptionsFromProto(tensor_proto)));
}
}
namespace {
template <typename T, typename D = T>
void DeserializeFromBytesOrInt32(
const TensorProto& tensor_proto,
Range<D*> dest,
BaseContext& context) {
if (tensor_proto.has_byte_data()) {
auto typeSize = sizeof(T);
CAFFE_ENFORCE(
kIsLittleEndian || typeSize == 1,
"Serialization with bytes not supported on big endian platform.");
size_t numElems = tensor_proto.byte_data().size();
if (tensor_proto.data_type() == TensorProto_DataType_UINT8) {
if (tensor_proto.has_segment()) {
const auto& segment = tensor_proto.segment();
numElems = segment.end() - segment.begin();
}
}
CAFFE_ENFORCE_EQ(
typeSize * dest.size(), numElems, "Incorrect proto field size.");
const uint8_t* protoData =
reinterpret_cast<const uint8_t*>(tensor_proto.byte_data().data());
context.template CopyToCPU<D>(
dest.size(),
reinterpret_cast<const D*>(protoData),
dest.data());
} else {
// Backward compatibility with models which used int32_data field
detail::CopyFromProtoWithCast(
dest.size(),
tensor_proto.int32_data(),
reinterpret_cast<T*>(dest.data()),
&context);
}
}
/**
* DeserializeParams is just a helper class to consolidate the parameters
* required for deserializing tensor data so they can be passed around more
* easily.
*
* It also contains some helper functions to perform some operations on the
* parameters that are shared by multiple deserialization functions.
*/
template<typename T>
struct DeserializeParams {
DeserializeParams(Range<T*> dst, const TensorProto& proto, BaseContext& ctx)
: dest{dst}, tensor_proto{proto}, context{ctx} {}
void LiteralCopy(c10::string_view src) const {
// Simply copy the data as-is from src to dest
CAFFE_ENFORCE_EQ(
dest.size() * sizeof(T),
src.size(),
"incorrect data size when deserializing blob: ",
dest.size(),
" * ",
sizeof(T),
" != ",
src.size());
context.CopyBytesFromCPU(src.size(), src.data(), dest.data());
}
void CopyFromRepeatedField(
const google::protobuf::RepeatedField<T>& field) const {
detail::CopyFromProtoAsIs(dest.size(), field, dest.data(), &context);
}
void CopyFromBytesOrInt32() const {
DeserializeFromBytesOrInt32<T>(tensor_proto, dest, context);
}
Range<T*> dest;
const TensorProto& tensor_proto;
BaseContext& context;
};
/**
* DeserializeTensorData() is specialized for each supported combination of
* SerializationFormat and output type.
*
* The default implementation throws an exception, but this function can be
* specialized to support different combinations.
*/
template <TensorProto::SerializationFormat, typename T>
void DeserializeTensorData(const DeserializeParams<T>& params) {
CAFFE_ENFORCE(
false,
"unsupported serialization format ",
static_cast<int>(params.tensor_proto.data_format()),
" when deserializing float data");
}
#define DESERIALIZE_IMPL(type, data_type) \
template <> \
void \
DeserializeTensorData<TensorProto_SerializationFormat_##data_type, type>( \
const DeserializeParams<type>& params)
DESERIALIZE_IMPL(int64_t, FMT_PROTOBUF) {
params.CopyFromRepeatedField(params.tensor_proto.int64_data());
}
DESERIALIZE_IMPL(int32_t, FMT_PROTOBUF) {
params.CopyFromRepeatedField(params.tensor_proto.int32_data());
}
DESERIALIZE_IMPL(uint16_t, FMT_PROTOBUF) {
params.CopyFromBytesOrInt32();
}
DESERIALIZE_IMPL(int16_t, FMT_PROTOBUF) {
params.CopyFromBytesOrInt32();
}
DESERIALIZE_IMPL(uint8_t, FMT_PROTOBUF) {
params.CopyFromBytesOrInt32();
}
DESERIALIZE_IMPL(int8_t, FMT_PROTOBUF) {
params.CopyFromBytesOrInt32();
}
DESERIALIZE_IMPL(bool, FMT_PROTOBUF) {
params.CopyFromBytesOrInt32();