forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoss.cu
626 lines (567 loc) · 21.5 KB
/
Loss.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Dispatch.h>
#include <ATen/cuda/detail/KernelUtils.h>
#include <ATen/native/TensorIterator.h>
#include <aten/src/ATen/TensorUtils.h>
#include <ATen/cuda/detail/KernelUtils.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/Resize.h>
constexpr float EPSILON = 1e-12;
namespace {
using namespace at;
void binary_cross_entropy_backward_out_kernel(Tensor& grad_input, const Tensor& grad, const Tensor& input, const Tensor& target) {
at::TensorIterator iter = TensorIteratorConfig()
.add_output(grad_input)
.add_input(grad)
.add_input(input)
.add_input(target)
.build();
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.common_dtype(), "binary_cross_entropy_backward_out_cuda", [&]() {
at::native::gpu_kernel(iter, [] GPU_LAMBDA (
scalar_t grad_val,
scalar_t input_val,
scalar_t target_val
) -> scalar_t {
const scalar_t one = 1;
const scalar_t epsilon = EPSILON;
scalar_t grad_input_denominator = max(
(one - input_val) * input_val,
epsilon
);
return grad_val * (input_val - target_val) / grad_input_denominator;
}
);
});
}
} // namespace
namespace at { namespace native {
Tensor kl_div_backward_cuda(const Tensor& grad, const Tensor& input, const Tensor& target, int64_t reduction, bool log_target) {
auto grad_input = at::empty_like(input);
if (!log_target) {
TensorIterator iter = TensorIteratorConfig()
.add_output(grad_input)
.add_input(target)
.add_input(grad)
.build();
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "kl_div_backward_cuda", [&]() {
scalar_t inv = (reduction == at::Reduction::Mean) ? scalar_t(1.0 / input.numel()) : scalar_t(1.0);
gpu_kernel(iter,
[inv] GPU_LAMBDA (scalar_t target_val, scalar_t grad_val) {
return (target_val > 0) ? scalar_t(-target_val * grad_val * inv) : scalar_t(0.0);
});
});
}
else {
grad_input = -at::exp(target) * grad;
if (reduction == at::Reduction::Mean) {
grad_input /= input.numel();
}
}
return grad_input;
}
Tensor binary_cross_entropy_cuda(const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor loss = at::empty_like(input);
return at::native::binary_cross_entropy_out_cuda(
input, target, weight, reduction, loss);
}
Tensor& binary_cross_entropy_out_cuda(const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction, Tensor& loss) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor loss_squeezed = at::squeeze(loss);
TensorIterator iter = TensorIteratorConfig()
.add_output(loss_squeezed)
.add_owned_input(at::squeeze(input))
.add_owned_input(at::squeeze(target))
.build();
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.common_dtype(), "binary_cross_entropy_out_cuda", [&]() {
gpu_kernel(iter,
[] GPU_LAMBDA (scalar_t input_val, scalar_t target_val) -> scalar_t {
const scalar_t zero = 0;
const scalar_t one = 1;
const scalar_t neg_100 = -100;
CUDA_KERNEL_ASSERT(input_val >= zero && input_val <= one);
scalar_t log_input_val = std::log(input_val);
scalar_t log_1_minus_input_val = std::log(one - input_val);
log_input_val = std::max(log_input_val, neg_100);
log_1_minus_input_val = std::max(log_1_minus_input_val, neg_100);
return ((target_val - one) * log_1_minus_input_val) - (target_val * log_input_val);
}
);
});
if (weight.defined()) {
loss.mul_(weight);
}
if (reduction != at::Reduction::None) {
Tensor loss_reduced;
if (reduction == at::Reduction::Mean) {
loss_reduced = loss.mean();
} else if (reduction == at::Reduction::Sum) {
loss_reduced = loss.sum();
}
loss.resize_as_(loss_reduced).copy_(loss_reduced);
}
return loss;
}
Tensor binary_cross_entropy_backward_cuda(const Tensor& grad, const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor grad_input = at::empty_like(input);
return at::native::binary_cross_entropy_backward_out_cuda(
grad, input, target, weight, reduction, grad_input);
}
Tensor& binary_cross_entropy_backward_out_cuda(const Tensor& grad, const Tensor& input, const Tensor& target, const c10::optional<Tensor>& weight_opt, int64_t reduction, Tensor& grad_input) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor grad_expand = grad.expand_as(input);
binary_cross_entropy_backward_out_kernel(grad_input, grad_expand, input, target);
if (weight.defined()) {
grad_input.mul_(weight);
}
if (reduction == at::Reduction::Mean) {
grad_input.div_(input.numel());
}
return grad_input;
}
// -----------------------------------
// nll_loss
// -----------------------------------
namespace {
constexpr int NLL_LOSS_THREADS = 32;
#define AT_DISPATCH_NLL_LOSS_INDEX_TYPES(TYPE, NAME, ...) \
[&] { \
at::ScalarType _it = TYPE; \
RECORD_KERNEL_FUNCTION_DTYPE(NAME, _it) \
switch (_it) { \
AT_PRIVATE_CASE_TYPE_USING_HINT(NAME, at::ScalarType::Byte, uint8_t, index_t, __VA_ARGS__) \
AT_PRIVATE_CASE_TYPE_USING_HINT(NAME, at::ScalarType::Long, int64_t, index_t, __VA_ARGS__)\
default: \
AT_ERROR(#NAME, " not implemented for '", toString(_it), "'"); \
} \
}()
template <typename scalar_t, typename index_t>
__global__ void nll_loss_forward_no_reduce_cuda_kernel(
int64_t batch_size,
PackedTensorAccessor64<scalar_t, 2> input,
index_t* target,
scalar_t* output,
scalar_t* weights,
int n_classes,
int ignore_index) {
CUDA_KERNEL_LOOP(index, batch_size) {
int cur_target = target[index];
if (cur_target == ignore_index) {
output[index] = static_cast<scalar_t>(0);
continue;
}
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
auto cur_weight =
weights != nullptr ? weights[cur_target] : static_cast<scalar_t>(1);
output[index] = -cur_weight * input[index][cur_target];
}
}
template <typename scalar_t, typename index_t>
__global__ void nll_loss_forward_reduce_cuda_kernel_1d(
scalar_t* output,
scalar_t* total_weight,
scalar_t* input,
index_t* target,
scalar_t* weights,
bool size_average,
int n_classes,
int64_t ignore_index) {
CUDA_KERNEL_ASSERT(threadIdx.x == 0 && threadIdx.y == 0 && threadIdx.z == 0);
int t = static_cast<int>(*target);
if (t != static_cast<int>(ignore_index)) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
const auto cur_weight = weights != nullptr ? weights[t] : scalar_t{1};
*total_weight = cur_weight;
if (size_average) {
// If we try to normalize a zero then we return a NaN
if (cur_weight == 0) {
*output = std::numeric_limits<scalar_t>::quiet_NaN();
} else {
*output = -input[t];
}
} else {
*output = -cur_weight * input[t];
}
} else {
// If the only element was omited, we get 0. See the discussion in
// https://github.com/pytorch/pytorch/pull/64572#issuecomment-926504162
*output = scalar_t{0};
}
}
template <typename scalar_t, typename accscalar_t, typename index_t>
__global__ void nll_loss_forward_reduce_cuda_kernel_2d(
scalar_t* output,
scalar_t* total_weight,
scalar_t* input,
index_t* target,
scalar_t* weights,
bool size_average,
int nframe,
int ndim,
int n_classes,
int64_t ignore_index) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
__shared__ accscalar_t sh_inputs[NLL_LOSS_THREADS],
acc_weight[NLL_LOSS_THREADS];
sh_inputs[threadIdx.x] = static_cast<accscalar_t>(0);
acc_weight[threadIdx.x] = static_cast<accscalar_t>(0);
for (int i = threadIdx.x; i < nframe; i += NLL_LOSS_THREADS) {
int t = target[i];
if (t != static_cast<int>(ignore_index)) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
scalar_t cur_weight =
weights != nullptr ? weights[t] : static_cast<scalar_t>(1);
sh_inputs[threadIdx.x] -= input[i * ndim + t] * cur_weight;
acc_weight[threadIdx.x] += cur_weight;
}
}
__syncthreads();
if (threadIdx.x == 0) {
accscalar_t output_acc = 0;
accscalar_t total_weight_acc = 0;
for (int i = 0; i < NLL_LOSS_THREADS; ++i) {
output_acc += sh_inputs[i];
total_weight_acc += acc_weight[i];
}
*total_weight = static_cast<scalar_t>(total_weight_acc);
if (size_average) {
*output = static_cast<scalar_t>(output_acc / total_weight_acc);
} else {
*output = static_cast<scalar_t>(output_acc);
}
}
}
void nll_loss_forward_out_cuda_template(
const Tensor& output,
const Tensor& total_weight,
const Tensor& input_,
const Tensor& target_,
const Tensor& weight,
int64_t reduction,
int64_t ignore_index) {
auto input = *input_.expect_contiguous();
auto target = *target_.expect_contiguous();
int64_t n_classes = input.size(-1);
int64_t n_dims = input.dim();
int64_t batch_size = n_dims == 1 ? 1 : input.size(0);
auto weight_ = weight.defined() ? weight.contiguous() : weight;
if (reduction == Reduction::None && n_dims == 2) {
at::native::resize_output(output, {batch_size});
if (batch_size == 0) {
// This guards from unnecessary operations and launching CUDA kernel with
// 0 blocks.
return;
}
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
input.scalar_type(),
"nll_loss_forward_no_reduce_cuda_kernel",
[&] {
AT_DISPATCH_NLL_LOSS_INDEX_TYPES(
target.scalar_type(),
"nll_loss_forward_no_reduce_cuda_kernel_index",
[&] {
nll_loss_forward_no_reduce_cuda_kernel<scalar_t, index_t>
<<<at::cuda::detail::GET_BLOCKS(batch_size),
at::cuda::detail::CUDA_NUM_THREADS,
0,
at::cuda::getCurrentCUDAStream()>>>(
batch_size,
input.packed_accessor64<scalar_t, 2>(),
target.data_ptr<index_t>(),
output.data_ptr<scalar_t>(),
weight_.defined() ? weight_.data_ptr<scalar_t>()
: nullptr,
n_classes,
ignore_index);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
return;
}
// produce scalar outputs for the reduction case
at::native::resize_output(output, {});
total_weight.resize_({});
if (target.numel() == 0) {
// Here target (and input) have zero elements
// Mean reduction on empty tensors produces NaN. See the discussion in
// https://github.com/pytorch/pytorch/pull/64572#issuecomment-926504162
if (reduction == Reduction::Mean) {
output.fill_(std::numeric_limits<double>::quiet_NaN());
} else {
output.zero_();
}
total_weight.zero_();
return;
}
if (n_dims == 1) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
input.scalar_type(),
"nll_loss_forward_reduce_cuda_kernel_1d",
[&] {
AT_DISPATCH_NLL_LOSS_INDEX_TYPES(
target.scalar_type(),
"nll_loss_forward_reduce_cuda_kernel_1d_index",
[&] {
nll_loss_forward_reduce_cuda_kernel_1d<scalar_t, index_t>
<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>(
output.data_ptr<scalar_t>(),
total_weight.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
target.data_ptr<index_t>(),
weight_.defined() ? weight_.data_ptr<scalar_t>()
: nullptr,
reduction == at::Reduction::Mean,
n_classes,
ignore_index);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
} else if (n_dims == 2) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
input.scalar_type(),
"nll_loss_forward_reduce_cuda_kernel_2d",
[&] {
AT_DISPATCH_NLL_LOSS_INDEX_TYPES(
target.scalar_type(),
"nll_loss_forward_reduce_cuda_kernel_2d_index",
[&] {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda*/true>;
nll_loss_forward_reduce_cuda_kernel_2d<scalar_t, accscalar_t, index_t>
<<<1,
NLL_LOSS_THREADS,
0,
at::cuda::getCurrentCUDAStream()>>>(
output.data_ptr<scalar_t>(),
total_weight.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
target.data_ptr<index_t>(),
weight_.defined() ? weight_.data_ptr<scalar_t>()
: nullptr,
reduction == at::Reduction::Mean,
input.size(0),
input.size(1),
n_classes,
ignore_index);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
}
}
template <typename scalar_t, typename index_t>
__global__ void nll_loss_backward_no_reduce_cuda_kernel(
int batch_size,
index_t *target,
PackedTensorAccessor64<scalar_t, 1> grad_output,
PackedTensorAccessor64<scalar_t, 2> grad_input,
scalar_t *weights,
int n_classes,
int ignore_index) {
CUDA_KERNEL_LOOP(index, batch_size) {
int cur_target = target[index];
if (cur_target == ignore_index) {
continue;
}
CUDA_KERNEL_ASSERT(cur_target >= 0 && cur_target < n_classes);
scalar_t weight = weights != nullptr ? weights[cur_target] : static_cast<scalar_t>(1);
grad_input[index][cur_target] = -weight * grad_output[index];
}
};
template <typename scalar_t, typename index_t>
__global__ void nll_loss_backward_reduce_cuda_kernel_1d(
scalar_t *grad_input,
scalar_t *grad_output,
scalar_t *weights,
index_t *target,
scalar_t *total_weight,
bool size_average,
int n_classes,
int64_t ignore_index
) {
int t = static_cast<int>(*target);
if (t != static_cast<int>(ignore_index)) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
const auto grad = -(size_average ? *grad_output / *total_weight
: *grad_output);
grad_input[t] = weights != nullptr ? weights[t] * grad
: grad;
}
}
template <typename scalar_t, typename index_t>
__global__ void nll_loss_backward_reduce_cuda_kernel_2d(
scalar_t* grad_input,
scalar_t* grad_output,
index_t* target,
scalar_t* weights,
scalar_t* total_weight,
bool size_average,
int nframe,
int ndim,
int n_classes,
int64_t ignore_index) {
const auto grad = -(size_average ? *grad_output / *total_weight
: *grad_output);
for (int i = threadIdx.x; i < nframe; i += NLL_LOSS_THREADS) {
int t = target[i];
if (t != static_cast<int>(ignore_index)) {
CUDA_KERNEL_ASSERT(t >= 0 && t < n_classes);
grad_input[i * ndim + t] = weights != nullptr ? weights[t] * grad
: grad;
}
}
}
void nll_loss_backward_out_cuda_template(
const Tensor& grad_input_,
const Tensor& grad_output_,
const Tensor& input_,
const Tensor& target_,
const Tensor& total_weight,
const Tensor& weight,
int64_t reduction,
int64_t ignore_index) {
auto target = *target_.expect_contiguous();
auto input = *input_.expect_contiguous();
auto grad_input = *grad_input_.expect_contiguous();
auto grad_output = *grad_output_.expect_contiguous();
int64_t n_dims = input.dim();
int64_t n_classes = input.size(-1);
int64_t batch_size = n_dims == 1 ? 1 : input.size(0);
auto weight_ = weight.defined() ? weight.contiguous() : weight;
if (reduction == at::Reduction::None && n_dims == 2) {
if (batch_size == 0) {
// This guards from unnecessary operations and launching CUDA kernel with 0 blocks.
return;
}
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
input.scalar_type(),
"nll_loss_backward_no_reduce_cuda_kernel",
[&] {
AT_DISPATCH_NLL_LOSS_INDEX_TYPES(
target.scalar_type(),
"nll_loss_backward_no_reduce_cuda_kernel_index",
[&] {
nll_loss_backward_no_reduce_cuda_kernel<scalar_t, index_t>
<<<at::cuda::detail::GET_BLOCKS(batch_size),
at::cuda::detail::CUDA_NUM_THREADS,
0,
at::cuda::getCurrentCUDAStream()>>>(
batch_size,
target.data_ptr<index_t>(),
grad_output.packed_accessor64<scalar_t, 1>(),
grad_input.packed_accessor64<scalar_t, 2>(),
weight.defined() ? weight_.data_ptr<scalar_t>()
: nullptr,
n_classes,
ignore_index);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
return;
}
if (n_dims == 1) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
input.scalar_type(),
"nll_loss_backward_reduce_cuda_kernel_1d",
[&] {
AT_DISPATCH_NLL_LOSS_INDEX_TYPES(
target.scalar_type(),
"nll_loss_backward_reduce_cuda_kernel_1d_index",
[&] {
nll_loss_backward_reduce_cuda_kernel_1d<scalar_t, index_t>
<<<1, 1, 0, at::cuda::getCurrentCUDAStream()>>>(
grad_input.data_ptr<scalar_t>(),
grad_output.data_ptr<scalar_t>(),
weight.defined() ? weight_.data_ptr<scalar_t>()
: nullptr,
target.data_ptr<index_t>(),
total_weight.data_ptr<scalar_t>(),
reduction == at::Reduction::Mean,
n_classes,
ignore_index);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
input.scalar_type(),
"nll_loss_backward_reduce_cuda_kernel_2d",
[&] {
AT_DISPATCH_NLL_LOSS_INDEX_TYPES(
target.scalar_type(),
"nll_loss_backward_reduce_cuda_kernel_2d_index",
[&] {
nll_loss_backward_reduce_cuda_kernel_2d<scalar_t, index_t>
<<<1, NLL_LOSS_THREADS, 0, at::cuda::getCurrentCUDAStream()>>>(
grad_input.data_ptr<scalar_t>(),
grad_output.data_ptr<scalar_t>(),
target.data_ptr<index_t>(),
weight.defined() ? weight_.data_ptr<scalar_t>() : nullptr,
total_weight.data_ptr<scalar_t>(),
reduction == at::Reduction::Mean,
input.size(0),
input.size(1),
n_classes,
ignore_index);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
}
}
#undef AT_DISPATCH_NLL_LOSS_INDEX_TYPES
} // namespace
TORCH_IMPL_FUNC(nll_loss_forward_out_cuda)
(const Tensor& self,
const Tensor& target,
const OptionalTensorRef weight_opt,
int64_t reduction,
int64_t ignore_index,
const Tensor& output,
const Tensor& total_weight) {
const Tensor& weight = weight_opt.getTensorRef();
nll_loss_forward_out_cuda_template(
output, total_weight, self, target, weight, reduction, ignore_index);
}
TORCH_IMPL_FUNC(nll_loss_backward_out_cuda)
(const Tensor& grad_output,
const Tensor& self,
const Tensor& target,
OptionalTensorRef weight_opt,
int64_t reduction,
int64_t ignore_index,
const Tensor& total_weight,
const Tensor& grad_input) {
const Tensor& weight = weight_opt.getTensorRef();
grad_input.zero_();
nll_loss_backward_out_cuda_template(
grad_input,
grad_output,
self,
target,
total_weight,
weight,
reduction,
ignore_index);
}
}} // namespace at::native