forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoops.cuh
280 lines (233 loc) · 9.75 KB
/
Loops.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#pragma once
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/TensorIteratorDynamicCasting.h>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/OpMathType.h>
#include <thrust/tuple.h>
#define NUM_THREADS (C10_WARP_SIZE * 2)
#define THREAD_WORK_SIZE 4
#define BLOCK_WORK_SIZE (THREAD_WORK_SIZE * num_threads)
constexpr int num_threads = NUM_THREADS;
constexpr int thread_work_size = THREAD_WORK_SIZE;
constexpr int block_work_size = BLOCK_WORK_SIZE;
#include <ATen/native/cuda/MemoryAccess.cuh>
namespace at { namespace native {
template<int N>
static OffsetCalculator<N> make_input_offset_calculator(const TensorIteratorBase& iter) {
// array size can not be 0, this happens when N == 0
constexpr int array_size = std::max<int>(N, 1);
TORCH_INTERNAL_ASSERT(N == iter.ntensors() - iter.noutputs());
std::array<const int64_t*, array_size> strides;
int64_t element_sizes[array_size];
for (int i = 0; i < N; i++) {
strides[i] = iter.strides(i + iter.noutputs()).data();
element_sizes[i] = iter.element_size(i + iter.noutputs());
}
return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}
template <int num_outputs = 1>
static OffsetCalculator<num_outputs> make_output_offset_calculator(const TensorIteratorBase& iter) {
TORCH_INTERNAL_ASSERT(num_outputs == iter.noutputs());
std::array<const int64_t*, num_outputs> strides;
int64_t element_sizes[num_outputs];
for (int i = 0; i < num_outputs; i++) {
strides[i] = iter.strides(i).data();
element_sizes[i] = iter.element_size(i);
}
return OffsetCalculator<num_outputs>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}
template<typename func_t, typename policy_t>
__device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
using traits = function_traits<func_t>;
using return_t = typename traits::result_type;
using args_t = typename traits::ArgsTuple;
int idx = blockIdx.x;
return_t results[thread_work_size];
args_t args[thread_work_size];
// load
policy.load(args, idx);
// compute
#pragma unroll
for (int i = 0; i < thread_work_size; i++) {
if (policy.check_inbounds(i)) {
results[i] = c10::guts::apply(f, args[i]);
}
}
// store
policy.store(results, idx);
}
}} // namespace at::native
// Note:
// CUDA and ROCm get diverged in this PR:
// https://github.com/pytorch/pytorch/pull/32383
// Because for some reason trying to enable vectorized
// memory access introduce regression on ROCm.
#if !defined(USE_ROCM)
#include <ATen/native/cuda/CUDALoops.cuh>
#else
#include <ATen/native/cuda/ROCmLoops.cuh>
#endif
namespace at { namespace native {
template <typename func_t>
void gpu_kernel(TensorIteratorBase& iter, const func_t& f) {
for (int arg = 0; arg < iter.ntensors(); arg++) {
TORCH_INTERNAL_ASSERT(
iter.device(arg).is_cuda(),
"argument ", arg, ": expected a CUDA device but found ", iter.device(arg));
}
if (iter.numel() == 0) {
return;
}
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_kernel(sub_iter, f);
}
return;
}
gpu_kernel_impl(iter, f);
}
template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
struct AUnaryFunctor {
using traits = function_traits<func_t>;
using opmath_arg1_t = typename traits::template arg<0>::type;
__device__ return_t operator()(arg2_t b) const {
return f(a, b);
}
// NB: scalar is stored in higher precision!
AUnaryFunctor(func_t f_, opmath_arg1_t a_): f(f_), a(a_) {}
private:
func_t f;
opmath_arg1_t a;
};
template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
struct BUnaryFunctor {
using traits = function_traits<func_t>;
using opmath_arg2_t = typename traits::template arg<1>::type;
__device__ return_t operator()(arg1_t a) const {
return f(a, b);
}
// NB: scalar is stored in higher precision!
BUnaryFunctor(func_t f_, opmath_arg2_t b_): f(f_), b(b_) {}
private:
func_t f;
opmath_arg2_t b;
};
// Though seemingly noop, this inserts casts from arg1_t to func_t's type
// (which may be higher precision), as well as casts to return_t
template <typename arg1_t, typename arg2_t, typename return_t, typename func_t>
struct BinaryFunctor {
__device__ return_t operator()(arg1_t a, arg2_t b) const {
return f(a, b);
}
BinaryFunctor(func_t f_): f(f_) {}
private:
func_t f;
};
// Unlike gpu_kernel_with_scalars, this allows you to pass a func_t which
// accepts inputs at higher precision (typically opmath_t), but then
// ensure that we load from memory at the correct precision (scalar_t)
// to avoid expensive loads. For the whole sordid story see
// https://dev-discuss.pytorch.org/t/cuda-loops-case-study-code-generation-vs-templates/302
template <typename arg1_t, typename arg2_t = arg1_t, typename return_t = arg1_t, typename func_t>
void opmath_gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
using traits = function_traits<func_t>;
using opmath_arg1_t = typename traits::template arg<0>::type;
using opmath_arg2_t = typename traits::template arg<1>::type;
static_assert(
traits::arity == 2,
"gpu_kernel_with_scalars only supports two input arguments");
if (iter.is_cpu_scalar(1)) {
AUnaryFunctor<arg1_t, arg2_t, return_t, func_t> af(f, iter.scalar_value<opmath_arg1_t>(1));
iter.remove_operand(1);
// TODO: When all kernels that use gpu_kernel_with_scalars are
// ported to structured, this device guard can be deleted. This
// works around incorrect device guard generation for pre-structured
// kernels device guards, but structured kernels do it right and
// we can assume the device is already set correctly
const OptionalDeviceGuard device_guard(iter.device(1));
gpu_kernel(iter, af);
} else if (iter.is_cpu_scalar(2)) {
BUnaryFunctor<arg1_t, arg2_t, return_t, func_t> bf(f, iter.scalar_value<opmath_arg2_t>(2));
iter.remove_operand(2);
gpu_kernel(iter, bf);
} else {
gpu_kernel(iter, BinaryFunctor<arg1_t, arg2_t, return_t, func_t>(f));
}
}
// Legacy variant that assumes that func_t has the correct types
// that we expect to load from memory
template <typename func_t>
void gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
using traits = function_traits<func_t>;
static_assert(
traits::arity == 2,
"gpu_kernel_with_scalars only supports two input arguments");
using arg1_t = typename traits::template arg<0>::type;
using arg2_t = typename traits::template arg<1>::type;
using return_t = typename traits::result_type;
opmath_gpu_kernel_with_scalars<arg1_t, arg2_t, return_t, func_t>(iter, f);
}
namespace { // functions for `gpu_kernel_multiple_outputs`.
// check the return type is `thrust::tuple`, not `std::tuple`.
template <typename T> struct is_tuple: std::false_type {};
template <typename ...T> struct is_tuple<thrust::tuple<T...>>: std::true_type {};
template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
C10_LAUNCH_BOUNDS_1(num_threads)
__global__ void unrolled_elementwise_kernel_for_multi_outputs(int N, func_t f, array_t data, inp_calc_t ic, out_calc_t oc) {
int remaining = N - block_work_size * blockIdx.x;
elementwise_kernel_helper(f, memory::policies::multi_outputs_unroll<array_t, inp_calc_t, out_calc_t, num_outputs>(data, remaining, ic, oc));
}
template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
static inline void launch_unrolled_kernel_for_multi_outputs(int64_t N, const func_t& f, array_t data, inp_calc_t ic, out_calc_t oc) {
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
int64_t grid = (N + block_work_size - 1) / block_work_size;
auto stream = at::cuda::getCurrentCUDAStream();
unrolled_elementwise_kernel_for_multi_outputs<num_outputs, func_t, array_t><<<grid, num_threads, 0, stream>>>(N, f, data, ic, oc);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template <typename func_t>
void gpu_kernel_multiple_outputs_impl(TensorIteratorBase& iter, const func_t& f) {
using traits = function_traits<func_t>;
using output_t = typename traits::result_type;
static_assert(is_tuple<output_t>::value, "f's return type must be `thrust::tuple`");
constexpr int num_outputs = thrust::tuple_size<output_t>::value;
constexpr int num_inputs = traits::arity;
constexpr int ntensors = num_outputs + num_inputs;
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
TORCH_INTERNAL_ASSERT(iter.ntensors() == ntensors);
at::detail::Array<char*, ntensors> data;
for (int i = 0; i < ntensors; i++) {
data[i] = (char*)iter.data_ptr(i);
}
int64_t numel = iter.numel();
if (iter.is_contiguous()) {
auto input_calc = TrivialOffsetCalculator<num_inputs>();
auto output_calc = TrivialOffsetCalculator<num_outputs>();
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
} else {
auto input_calc = make_input_offset_calculator<num_inputs>(iter);
auto output_calc = make_output_offset_calculator<num_outputs>(iter);
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
}
}
} // namespace
template <typename func_t>
void gpu_kernel_multiple_outputs(TensorIteratorBase& iter, const func_t& f) {
ASSERT_HOST_DEVICE_LAMBDA(func_t);
for (int arg = 0; arg < iter.ntensors(); arg++) {
TORCH_INTERNAL_ASSERT(iter.device(arg).is_cuda());
}
if (iter.numel() == 0) {
return;
}
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_kernel_multiple_outputs(sub_iter, f);
}
return;
}
gpu_kernel_multiple_outputs_impl(iter, f);
}
}} //namespace at::native